3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same initializations to
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
39 * empty slabs with no allocated objects
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
53 * The c_cpuarray may not be read with enabled local interrupts -
54 * it's changed with a smp_call_function().
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
58 * Several members in struct kmem_cache and struct slab never change, they
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
68 * Further notes from the original documentation:
70 * 11 April '97. Started multi-threading - markhe
71 * The global cache-chain is protected by the mutex 'slab_mutex'.
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
76 * At present, each engine can be growing a cache. This should be blocked.
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
89 #include <linux/slab.h>
91 #include <linux/poison.h>
92 #include <linux/swap.h>
93 #include <linux/cache.h>
94 #include <linux/interrupt.h>
95 #include <linux/init.h>
96 #include <linux/compiler.h>
97 #include <linux/cpuset.h>
98 #include <linux/proc_fs.h>
99 #include <linux/seq_file.h>
100 #include <linux/notifier.h>
101 #include <linux/kallsyms.h>
102 #include <linux/cpu.h>
103 #include <linux/sysctl.h>
104 #include <linux/module.h>
105 #include <linux/rcupdate.h>
106 #include <linux/string.h>
107 #include <linux/uaccess.h>
108 #include <linux/nodemask.h>
109 #include <linux/kmemleak.h>
110 #include <linux/mempolicy.h>
111 #include <linux/mutex.h>
112 #include <linux/fault-inject.h>
113 #include <linux/rtmutex.h>
114 #include <linux/reciprocal_div.h>
115 #include <linux/debugobjects.h>
116 #include <linux/kmemcheck.h>
117 #include <linux/memory.h>
118 #include <linux/prefetch.h>
120 #include <net/sock.h>
122 #include <asm/cacheflush.h>
123 #include <asm/tlbflush.h>
124 #include <asm/page.h>
126 #include <trace/events/kmem.h>
128 #include "internal.h"
133 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
134 * 0 for faster, smaller code (especially in the critical paths).
136 * STATS - 1 to collect stats for /proc/slabinfo.
137 * 0 for faster, smaller code (especially in the critical paths).
139 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
142 #ifdef CONFIG_DEBUG_SLAB
145 #define FORCED_DEBUG 1
149 #define FORCED_DEBUG 0
152 /* Shouldn't this be in a header file somewhere? */
153 #define BYTES_PER_WORD sizeof(void *)
154 #define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
156 #ifndef ARCH_KMALLOC_FLAGS
157 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
160 #define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
161 <= SLAB_OBJ_MIN_SIZE) ? 1 : 0)
163 #if FREELIST_BYTE_INDEX
164 typedef unsigned char freelist_idx_t
;
166 typedef unsigned short freelist_idx_t
;
169 #define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
175 * - LIFO ordering, to hand out cache-warm objects from _alloc
176 * - reduce the number of linked list operations
177 * - reduce spinlock operations
179 * The limit is stored in the per-cpu structure to reduce the data cache
186 unsigned int batchcount
;
187 unsigned int touched
;
189 * Must have this definition in here for the proper
190 * alignment of array_cache. Also simplifies accessing
197 struct array_cache ac
;
201 * Need this for bootstrapping a per node allocator.
203 #define NUM_INIT_LISTS (2 * MAX_NUMNODES)
204 static struct kmem_cache_node __initdata init_kmem_cache_node
[NUM_INIT_LISTS
];
205 #define CACHE_CACHE 0
206 #define SIZE_NODE (MAX_NUMNODES)
208 static int drain_freelist(struct kmem_cache
*cache
,
209 struct kmem_cache_node
*n
, int tofree
);
210 static void free_block(struct kmem_cache
*cachep
, void **objpp
, int len
,
211 int node
, struct list_head
*list
);
212 static void slabs_destroy(struct kmem_cache
*cachep
, struct list_head
*list
);
213 static int enable_cpucache(struct kmem_cache
*cachep
, gfp_t gfp
);
214 static void cache_reap(struct work_struct
*unused
);
216 static inline void fixup_objfreelist_debug(struct kmem_cache
*cachep
,
218 static inline void fixup_slab_list(struct kmem_cache
*cachep
,
219 struct kmem_cache_node
*n
, struct page
*page
,
221 static int slab_early_init
= 1;
223 #define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
225 static void kmem_cache_node_init(struct kmem_cache_node
*parent
)
227 INIT_LIST_HEAD(&parent
->slabs_full
);
228 INIT_LIST_HEAD(&parent
->slabs_partial
);
229 INIT_LIST_HEAD(&parent
->slabs_free
);
230 parent
->shared
= NULL
;
231 parent
->alien
= NULL
;
232 parent
->colour_next
= 0;
233 spin_lock_init(&parent
->list_lock
);
234 parent
->free_objects
= 0;
235 parent
->free_touched
= 0;
236 parent
->num_slabs
= 0;
239 #define MAKE_LIST(cachep, listp, slab, nodeid) \
241 INIT_LIST_HEAD(listp); \
242 list_splice(&get_node(cachep, nodeid)->slab, listp); \
245 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
247 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
248 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
249 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
252 #define CFLGS_OBJFREELIST_SLAB (0x40000000UL)
253 #define CFLGS_OFF_SLAB (0x80000000UL)
254 #define OBJFREELIST_SLAB(x) ((x)->flags & CFLGS_OBJFREELIST_SLAB)
255 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
257 #define BATCHREFILL_LIMIT 16
259 * Optimization question: fewer reaps means less probability for unnessary
260 * cpucache drain/refill cycles.
262 * OTOH the cpuarrays can contain lots of objects,
263 * which could lock up otherwise freeable slabs.
265 #define REAPTIMEOUT_AC (2*HZ)
266 #define REAPTIMEOUT_NODE (4*HZ)
269 #define STATS_INC_ACTIVE(x) ((x)->num_active++)
270 #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
271 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
272 #define STATS_INC_GROWN(x) ((x)->grown++)
273 #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
274 #define STATS_SET_HIGH(x) \
276 if ((x)->num_active > (x)->high_mark) \
277 (x)->high_mark = (x)->num_active; \
279 #define STATS_INC_ERR(x) ((x)->errors++)
280 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
281 #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
282 #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
283 #define STATS_SET_FREEABLE(x, i) \
285 if ((x)->max_freeable < i) \
286 (x)->max_freeable = i; \
288 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
289 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
290 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
291 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
293 #define STATS_INC_ACTIVE(x) do { } while (0)
294 #define STATS_DEC_ACTIVE(x) do { } while (0)
295 #define STATS_INC_ALLOCED(x) do { } while (0)
296 #define STATS_INC_GROWN(x) do { } while (0)
297 #define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0)
298 #define STATS_SET_HIGH(x) do { } while (0)
299 #define STATS_INC_ERR(x) do { } while (0)
300 #define STATS_INC_NODEALLOCS(x) do { } while (0)
301 #define STATS_INC_NODEFREES(x) do { } while (0)
302 #define STATS_INC_ACOVERFLOW(x) do { } while (0)
303 #define STATS_SET_FREEABLE(x, i) do { } while (0)
304 #define STATS_INC_ALLOCHIT(x) do { } while (0)
305 #define STATS_INC_ALLOCMISS(x) do { } while (0)
306 #define STATS_INC_FREEHIT(x) do { } while (0)
307 #define STATS_INC_FREEMISS(x) do { } while (0)
313 * memory layout of objects:
315 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
316 * the end of an object is aligned with the end of the real
317 * allocation. Catches writes behind the end of the allocation.
318 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
320 * cachep->obj_offset: The real object.
321 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
322 * cachep->size - 1* BYTES_PER_WORD: last caller address
323 * [BYTES_PER_WORD long]
325 static int obj_offset(struct kmem_cache
*cachep
)
327 return cachep
->obj_offset
;
330 static unsigned long long *dbg_redzone1(struct kmem_cache
*cachep
, void *objp
)
332 BUG_ON(!(cachep
->flags
& SLAB_RED_ZONE
));
333 return (unsigned long long*) (objp
+ obj_offset(cachep
) -
334 sizeof(unsigned long long));
337 static unsigned long long *dbg_redzone2(struct kmem_cache
*cachep
, void *objp
)
339 BUG_ON(!(cachep
->flags
& SLAB_RED_ZONE
));
340 if (cachep
->flags
& SLAB_STORE_USER
)
341 return (unsigned long long *)(objp
+ cachep
->size
-
342 sizeof(unsigned long long) -
344 return (unsigned long long *) (objp
+ cachep
->size
-
345 sizeof(unsigned long long));
348 static void **dbg_userword(struct kmem_cache
*cachep
, void *objp
)
350 BUG_ON(!(cachep
->flags
& SLAB_STORE_USER
));
351 return (void **)(objp
+ cachep
->size
- BYTES_PER_WORD
);
356 #define obj_offset(x) 0
357 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
358 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
359 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
363 #ifdef CONFIG_DEBUG_SLAB_LEAK
365 static inline bool is_store_user_clean(struct kmem_cache
*cachep
)
367 return atomic_read(&cachep
->store_user_clean
) == 1;
370 static inline void set_store_user_clean(struct kmem_cache
*cachep
)
372 atomic_set(&cachep
->store_user_clean
, 1);
375 static inline void set_store_user_dirty(struct kmem_cache
*cachep
)
377 if (is_store_user_clean(cachep
))
378 atomic_set(&cachep
->store_user_clean
, 0);
382 static inline void set_store_user_dirty(struct kmem_cache
*cachep
) {}
387 * Do not go above this order unless 0 objects fit into the slab or
388 * overridden on the command line.
390 #define SLAB_MAX_ORDER_HI 1
391 #define SLAB_MAX_ORDER_LO 0
392 static int slab_max_order
= SLAB_MAX_ORDER_LO
;
393 static bool slab_max_order_set __initdata
;
395 static inline struct kmem_cache
*virt_to_cache(const void *obj
)
397 struct page
*page
= virt_to_head_page(obj
);
398 return page
->slab_cache
;
401 static inline void *index_to_obj(struct kmem_cache
*cache
, struct page
*page
,
404 return page
->s_mem
+ cache
->size
* idx
;
408 * We want to avoid an expensive divide : (offset / cache->size)
409 * Using the fact that size is a constant for a particular cache,
410 * we can replace (offset / cache->size) by
411 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
413 static inline unsigned int obj_to_index(const struct kmem_cache
*cache
,
414 const struct page
*page
, void *obj
)
416 u32 offset
= (obj
- page
->s_mem
);
417 return reciprocal_divide(offset
, cache
->reciprocal_buffer_size
);
420 #define BOOT_CPUCACHE_ENTRIES 1
421 /* internal cache of cache description objs */
422 static struct kmem_cache kmem_cache_boot
= {
424 .limit
= BOOT_CPUCACHE_ENTRIES
,
426 .size
= sizeof(struct kmem_cache
),
427 .name
= "kmem_cache",
430 static DEFINE_PER_CPU(struct delayed_work
, slab_reap_work
);
432 static inline struct array_cache
*cpu_cache_get(struct kmem_cache
*cachep
)
434 return this_cpu_ptr(cachep
->cpu_cache
);
438 * Calculate the number of objects and left-over bytes for a given buffer size.
440 static unsigned int cache_estimate(unsigned long gfporder
, size_t buffer_size
,
441 unsigned long flags
, size_t *left_over
)
444 size_t slab_size
= PAGE_SIZE
<< gfporder
;
447 * The slab management structure can be either off the slab or
448 * on it. For the latter case, the memory allocated for a
451 * - @buffer_size bytes for each object
452 * - One freelist_idx_t for each object
454 * We don't need to consider alignment of freelist because
455 * freelist will be at the end of slab page. The objects will be
456 * at the correct alignment.
458 * If the slab management structure is off the slab, then the
459 * alignment will already be calculated into the size. Because
460 * the slabs are all pages aligned, the objects will be at the
461 * correct alignment when allocated.
463 if (flags
& (CFLGS_OBJFREELIST_SLAB
| CFLGS_OFF_SLAB
)) {
464 num
= slab_size
/ buffer_size
;
465 *left_over
= slab_size
% buffer_size
;
467 num
= slab_size
/ (buffer_size
+ sizeof(freelist_idx_t
));
468 *left_over
= slab_size
%
469 (buffer_size
+ sizeof(freelist_idx_t
));
476 #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
478 static void __slab_error(const char *function
, struct kmem_cache
*cachep
,
481 pr_err("slab error in %s(): cache `%s': %s\n",
482 function
, cachep
->name
, msg
);
484 add_taint(TAINT_BAD_PAGE
, LOCKDEP_NOW_UNRELIABLE
);
489 * By default on NUMA we use alien caches to stage the freeing of
490 * objects allocated from other nodes. This causes massive memory
491 * inefficiencies when using fake NUMA setup to split memory into a
492 * large number of small nodes, so it can be disabled on the command
496 static int use_alien_caches __read_mostly
= 1;
497 static int __init
noaliencache_setup(char *s
)
499 use_alien_caches
= 0;
502 __setup("noaliencache", noaliencache_setup
);
504 static int __init
slab_max_order_setup(char *str
)
506 get_option(&str
, &slab_max_order
);
507 slab_max_order
= slab_max_order
< 0 ? 0 :
508 min(slab_max_order
, MAX_ORDER
- 1);
509 slab_max_order_set
= true;
513 __setup("slab_max_order=", slab_max_order_setup
);
517 * Special reaping functions for NUMA systems called from cache_reap().
518 * These take care of doing round robin flushing of alien caches (containing
519 * objects freed on different nodes from which they were allocated) and the
520 * flushing of remote pcps by calling drain_node_pages.
522 static DEFINE_PER_CPU(unsigned long, slab_reap_node
);
524 static void init_reap_node(int cpu
)
526 per_cpu(slab_reap_node
, cpu
) = next_node_in(cpu_to_mem(cpu
),
530 static void next_reap_node(void)
532 int node
= __this_cpu_read(slab_reap_node
);
534 node
= next_node_in(node
, node_online_map
);
535 __this_cpu_write(slab_reap_node
, node
);
539 #define init_reap_node(cpu) do { } while (0)
540 #define next_reap_node(void) do { } while (0)
544 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
545 * via the workqueue/eventd.
546 * Add the CPU number into the expiration time to minimize the possibility of
547 * the CPUs getting into lockstep and contending for the global cache chain
550 static void start_cpu_timer(int cpu
)
552 struct delayed_work
*reap_work
= &per_cpu(slab_reap_work
, cpu
);
555 * When this gets called from do_initcalls via cpucache_init(),
556 * init_workqueues() has already run, so keventd will be setup
559 if (keventd_up() && reap_work
->work
.func
== NULL
) {
561 INIT_DEFERRABLE_WORK(reap_work
, cache_reap
);
562 schedule_delayed_work_on(cpu
, reap_work
,
563 __round_jiffies_relative(HZ
, cpu
));
567 static void init_arraycache(struct array_cache
*ac
, int limit
, int batch
)
570 * The array_cache structures contain pointers to free object.
571 * However, when such objects are allocated or transferred to another
572 * cache the pointers are not cleared and they could be counted as
573 * valid references during a kmemleak scan. Therefore, kmemleak must
574 * not scan such objects.
576 kmemleak_no_scan(ac
);
580 ac
->batchcount
= batch
;
585 static struct array_cache
*alloc_arraycache(int node
, int entries
,
586 int batchcount
, gfp_t gfp
)
588 size_t memsize
= sizeof(void *) * entries
+ sizeof(struct array_cache
);
589 struct array_cache
*ac
= NULL
;
591 ac
= kmalloc_node(memsize
, gfp
, node
);
592 init_arraycache(ac
, entries
, batchcount
);
596 static noinline
void cache_free_pfmemalloc(struct kmem_cache
*cachep
,
597 struct page
*page
, void *objp
)
599 struct kmem_cache_node
*n
;
603 page_node
= page_to_nid(page
);
604 n
= get_node(cachep
, page_node
);
606 spin_lock(&n
->list_lock
);
607 free_block(cachep
, &objp
, 1, page_node
, &list
);
608 spin_unlock(&n
->list_lock
);
610 slabs_destroy(cachep
, &list
);
614 * Transfer objects in one arraycache to another.
615 * Locking must be handled by the caller.
617 * Return the number of entries transferred.
619 static int transfer_objects(struct array_cache
*to
,
620 struct array_cache
*from
, unsigned int max
)
622 /* Figure out how many entries to transfer */
623 int nr
= min3(from
->avail
, max
, to
->limit
- to
->avail
);
628 memcpy(to
->entry
+ to
->avail
, from
->entry
+ from
->avail
-nr
,
638 #define drain_alien_cache(cachep, alien) do { } while (0)
639 #define reap_alien(cachep, n) do { } while (0)
641 static inline struct alien_cache
**alloc_alien_cache(int node
,
642 int limit
, gfp_t gfp
)
647 static inline void free_alien_cache(struct alien_cache
**ac_ptr
)
651 static inline int cache_free_alien(struct kmem_cache
*cachep
, void *objp
)
656 static inline void *alternate_node_alloc(struct kmem_cache
*cachep
,
662 static inline void *____cache_alloc_node(struct kmem_cache
*cachep
,
663 gfp_t flags
, int nodeid
)
668 static inline gfp_t
gfp_exact_node(gfp_t flags
)
670 return flags
& ~__GFP_NOFAIL
;
673 #else /* CONFIG_NUMA */
675 static void *____cache_alloc_node(struct kmem_cache
*, gfp_t
, int);
676 static void *alternate_node_alloc(struct kmem_cache
*, gfp_t
);
678 static struct alien_cache
*__alloc_alien_cache(int node
, int entries
,
679 int batch
, gfp_t gfp
)
681 size_t memsize
= sizeof(void *) * entries
+ sizeof(struct alien_cache
);
682 struct alien_cache
*alc
= NULL
;
684 alc
= kmalloc_node(memsize
, gfp
, node
);
685 init_arraycache(&alc
->ac
, entries
, batch
);
686 spin_lock_init(&alc
->lock
);
690 static struct alien_cache
**alloc_alien_cache(int node
, int limit
, gfp_t gfp
)
692 struct alien_cache
**alc_ptr
;
693 size_t memsize
= sizeof(void *) * nr_node_ids
;
698 alc_ptr
= kzalloc_node(memsize
, gfp
, node
);
703 if (i
== node
|| !node_online(i
))
705 alc_ptr
[i
] = __alloc_alien_cache(node
, limit
, 0xbaadf00d, gfp
);
707 for (i
--; i
>= 0; i
--)
716 static void free_alien_cache(struct alien_cache
**alc_ptr
)
727 static void __drain_alien_cache(struct kmem_cache
*cachep
,
728 struct array_cache
*ac
, int node
,
729 struct list_head
*list
)
731 struct kmem_cache_node
*n
= get_node(cachep
, node
);
734 spin_lock(&n
->list_lock
);
736 * Stuff objects into the remote nodes shared array first.
737 * That way we could avoid the overhead of putting the objects
738 * into the free lists and getting them back later.
741 transfer_objects(n
->shared
, ac
, ac
->limit
);
743 free_block(cachep
, ac
->entry
, ac
->avail
, node
, list
);
745 spin_unlock(&n
->list_lock
);
750 * Called from cache_reap() to regularly drain alien caches round robin.
752 static void reap_alien(struct kmem_cache
*cachep
, struct kmem_cache_node
*n
)
754 int node
= __this_cpu_read(slab_reap_node
);
757 struct alien_cache
*alc
= n
->alien
[node
];
758 struct array_cache
*ac
;
762 if (ac
->avail
&& spin_trylock_irq(&alc
->lock
)) {
765 __drain_alien_cache(cachep
, ac
, node
, &list
);
766 spin_unlock_irq(&alc
->lock
);
767 slabs_destroy(cachep
, &list
);
773 static void drain_alien_cache(struct kmem_cache
*cachep
,
774 struct alien_cache
**alien
)
777 struct alien_cache
*alc
;
778 struct array_cache
*ac
;
781 for_each_online_node(i
) {
787 spin_lock_irqsave(&alc
->lock
, flags
);
788 __drain_alien_cache(cachep
, ac
, i
, &list
);
789 spin_unlock_irqrestore(&alc
->lock
, flags
);
790 slabs_destroy(cachep
, &list
);
795 static int __cache_free_alien(struct kmem_cache
*cachep
, void *objp
,
796 int node
, int page_node
)
798 struct kmem_cache_node
*n
;
799 struct alien_cache
*alien
= NULL
;
800 struct array_cache
*ac
;
803 n
= get_node(cachep
, node
);
804 STATS_INC_NODEFREES(cachep
);
805 if (n
->alien
&& n
->alien
[page_node
]) {
806 alien
= n
->alien
[page_node
];
808 spin_lock(&alien
->lock
);
809 if (unlikely(ac
->avail
== ac
->limit
)) {
810 STATS_INC_ACOVERFLOW(cachep
);
811 __drain_alien_cache(cachep
, ac
, page_node
, &list
);
813 ac
->entry
[ac
->avail
++] = objp
;
814 spin_unlock(&alien
->lock
);
815 slabs_destroy(cachep
, &list
);
817 n
= get_node(cachep
, page_node
);
818 spin_lock(&n
->list_lock
);
819 free_block(cachep
, &objp
, 1, page_node
, &list
);
820 spin_unlock(&n
->list_lock
);
821 slabs_destroy(cachep
, &list
);
826 static inline int cache_free_alien(struct kmem_cache
*cachep
, void *objp
)
828 int page_node
= page_to_nid(virt_to_page(objp
));
829 int node
= numa_mem_id();
831 * Make sure we are not freeing a object from another node to the array
834 if (likely(node
== page_node
))
837 return __cache_free_alien(cachep
, objp
, node
, page_node
);
841 * Construct gfp mask to allocate from a specific node but do not reclaim or
842 * warn about failures.
844 static inline gfp_t
gfp_exact_node(gfp_t flags
)
846 return (flags
| __GFP_THISNODE
| __GFP_NOWARN
) & ~(__GFP_RECLAIM
|__GFP_NOFAIL
);
850 static int init_cache_node(struct kmem_cache
*cachep
, int node
, gfp_t gfp
)
852 struct kmem_cache_node
*n
;
855 * Set up the kmem_cache_node for cpu before we can
856 * begin anything. Make sure some other cpu on this
857 * node has not already allocated this
859 n
= get_node(cachep
, node
);
861 spin_lock_irq(&n
->list_lock
);
862 n
->free_limit
= (1 + nr_cpus_node(node
)) * cachep
->batchcount
+
864 spin_unlock_irq(&n
->list_lock
);
869 n
= kmalloc_node(sizeof(struct kmem_cache_node
), gfp
, node
);
873 kmem_cache_node_init(n
);
874 n
->next_reap
= jiffies
+ REAPTIMEOUT_NODE
+
875 ((unsigned long)cachep
) % REAPTIMEOUT_NODE
;
878 (1 + nr_cpus_node(node
)) * cachep
->batchcount
+ cachep
->num
;
881 * The kmem_cache_nodes don't come and go as CPUs
882 * come and go. slab_mutex is sufficient
885 cachep
->node
[node
] = n
;
890 #if (defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)) || defined(CONFIG_SMP)
892 * Allocates and initializes node for a node on each slab cache, used for
893 * either memory or cpu hotplug. If memory is being hot-added, the kmem_cache_node
894 * will be allocated off-node since memory is not yet online for the new node.
895 * When hotplugging memory or a cpu, existing node are not replaced if
898 * Must hold slab_mutex.
900 static int init_cache_node_node(int node
)
903 struct kmem_cache
*cachep
;
905 list_for_each_entry(cachep
, &slab_caches
, list
) {
906 ret
= init_cache_node(cachep
, node
, GFP_KERNEL
);
915 static int setup_kmem_cache_node(struct kmem_cache
*cachep
,
916 int node
, gfp_t gfp
, bool force_change
)
919 struct kmem_cache_node
*n
;
920 struct array_cache
*old_shared
= NULL
;
921 struct array_cache
*new_shared
= NULL
;
922 struct alien_cache
**new_alien
= NULL
;
925 if (use_alien_caches
) {
926 new_alien
= alloc_alien_cache(node
, cachep
->limit
, gfp
);
931 if (cachep
->shared
) {
932 new_shared
= alloc_arraycache(node
,
933 cachep
->shared
* cachep
->batchcount
, 0xbaadf00d, gfp
);
938 ret
= init_cache_node(cachep
, node
, gfp
);
942 n
= get_node(cachep
, node
);
943 spin_lock_irq(&n
->list_lock
);
944 if (n
->shared
&& force_change
) {
945 free_block(cachep
, n
->shared
->entry
,
946 n
->shared
->avail
, node
, &list
);
947 n
->shared
->avail
= 0;
950 if (!n
->shared
|| force_change
) {
951 old_shared
= n
->shared
;
952 n
->shared
= new_shared
;
957 n
->alien
= new_alien
;
961 spin_unlock_irq(&n
->list_lock
);
962 slabs_destroy(cachep
, &list
);
965 * To protect lockless access to n->shared during irq disabled context.
966 * If n->shared isn't NULL in irq disabled context, accessing to it is
967 * guaranteed to be valid until irq is re-enabled, because it will be
968 * freed after synchronize_sched().
970 if (old_shared
&& force_change
)
976 free_alien_cache(new_alien
);
983 static void cpuup_canceled(long cpu
)
985 struct kmem_cache
*cachep
;
986 struct kmem_cache_node
*n
= NULL
;
987 int node
= cpu_to_mem(cpu
);
988 const struct cpumask
*mask
= cpumask_of_node(node
);
990 list_for_each_entry(cachep
, &slab_caches
, list
) {
991 struct array_cache
*nc
;
992 struct array_cache
*shared
;
993 struct alien_cache
**alien
;
996 n
= get_node(cachep
, node
);
1000 spin_lock_irq(&n
->list_lock
);
1002 /* Free limit for this kmem_cache_node */
1003 n
->free_limit
-= cachep
->batchcount
;
1005 /* cpu is dead; no one can alloc from it. */
1006 nc
= per_cpu_ptr(cachep
->cpu_cache
, cpu
);
1008 free_block(cachep
, nc
->entry
, nc
->avail
, node
, &list
);
1012 if (!cpumask_empty(mask
)) {
1013 spin_unlock_irq(&n
->list_lock
);
1019 free_block(cachep
, shared
->entry
,
1020 shared
->avail
, node
, &list
);
1027 spin_unlock_irq(&n
->list_lock
);
1031 drain_alien_cache(cachep
, alien
);
1032 free_alien_cache(alien
);
1036 slabs_destroy(cachep
, &list
);
1039 * In the previous loop, all the objects were freed to
1040 * the respective cache's slabs, now we can go ahead and
1041 * shrink each nodelist to its limit.
1043 list_for_each_entry(cachep
, &slab_caches
, list
) {
1044 n
= get_node(cachep
, node
);
1047 drain_freelist(cachep
, n
, INT_MAX
);
1051 static int cpuup_prepare(long cpu
)
1053 struct kmem_cache
*cachep
;
1054 int node
= cpu_to_mem(cpu
);
1058 * We need to do this right in the beginning since
1059 * alloc_arraycache's are going to use this list.
1060 * kmalloc_node allows us to add the slab to the right
1061 * kmem_cache_node and not this cpu's kmem_cache_node
1063 err
= init_cache_node_node(node
);
1068 * Now we can go ahead with allocating the shared arrays and
1071 list_for_each_entry(cachep
, &slab_caches
, list
) {
1072 err
= setup_kmem_cache_node(cachep
, node
, GFP_KERNEL
, false);
1079 cpuup_canceled(cpu
);
1083 int slab_prepare_cpu(unsigned int cpu
)
1087 mutex_lock(&slab_mutex
);
1088 err
= cpuup_prepare(cpu
);
1089 mutex_unlock(&slab_mutex
);
1094 * This is called for a failed online attempt and for a successful
1097 * Even if all the cpus of a node are down, we don't free the
1098 * kmem_list3 of any cache. This to avoid a race between cpu_down, and
1099 * a kmalloc allocation from another cpu for memory from the node of
1100 * the cpu going down. The list3 structure is usually allocated from
1101 * kmem_cache_create() and gets destroyed at kmem_cache_destroy().
1103 int slab_dead_cpu(unsigned int cpu
)
1105 mutex_lock(&slab_mutex
);
1106 cpuup_canceled(cpu
);
1107 mutex_unlock(&slab_mutex
);
1112 static int slab_online_cpu(unsigned int cpu
)
1114 start_cpu_timer(cpu
);
1118 static int slab_offline_cpu(unsigned int cpu
)
1121 * Shutdown cache reaper. Note that the slab_mutex is held so
1122 * that if cache_reap() is invoked it cannot do anything
1123 * expensive but will only modify reap_work and reschedule the
1126 cancel_delayed_work_sync(&per_cpu(slab_reap_work
, cpu
));
1127 /* Now the cache_reaper is guaranteed to be not running. */
1128 per_cpu(slab_reap_work
, cpu
).work
.func
= NULL
;
1132 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1134 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1135 * Returns -EBUSY if all objects cannot be drained so that the node is not
1138 * Must hold slab_mutex.
1140 static int __meminit
drain_cache_node_node(int node
)
1142 struct kmem_cache
*cachep
;
1145 list_for_each_entry(cachep
, &slab_caches
, list
) {
1146 struct kmem_cache_node
*n
;
1148 n
= get_node(cachep
, node
);
1152 drain_freelist(cachep
, n
, INT_MAX
);
1154 if (!list_empty(&n
->slabs_full
) ||
1155 !list_empty(&n
->slabs_partial
)) {
1163 static int __meminit
slab_memory_callback(struct notifier_block
*self
,
1164 unsigned long action
, void *arg
)
1166 struct memory_notify
*mnb
= arg
;
1170 nid
= mnb
->status_change_nid
;
1175 case MEM_GOING_ONLINE
:
1176 mutex_lock(&slab_mutex
);
1177 ret
= init_cache_node_node(nid
);
1178 mutex_unlock(&slab_mutex
);
1180 case MEM_GOING_OFFLINE
:
1181 mutex_lock(&slab_mutex
);
1182 ret
= drain_cache_node_node(nid
);
1183 mutex_unlock(&slab_mutex
);
1187 case MEM_CANCEL_ONLINE
:
1188 case MEM_CANCEL_OFFLINE
:
1192 return notifier_from_errno(ret
);
1194 #endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1197 * swap the static kmem_cache_node with kmalloced memory
1199 static void __init
init_list(struct kmem_cache
*cachep
, struct kmem_cache_node
*list
,
1202 struct kmem_cache_node
*ptr
;
1204 ptr
= kmalloc_node(sizeof(struct kmem_cache_node
), GFP_NOWAIT
, nodeid
);
1207 memcpy(ptr
, list
, sizeof(struct kmem_cache_node
));
1209 * Do not assume that spinlocks can be initialized via memcpy:
1211 spin_lock_init(&ptr
->list_lock
);
1213 MAKE_ALL_LISTS(cachep
, ptr
, nodeid
);
1214 cachep
->node
[nodeid
] = ptr
;
1218 * For setting up all the kmem_cache_node for cache whose buffer_size is same as
1219 * size of kmem_cache_node.
1221 static void __init
set_up_node(struct kmem_cache
*cachep
, int index
)
1225 for_each_online_node(node
) {
1226 cachep
->node
[node
] = &init_kmem_cache_node
[index
+ node
];
1227 cachep
->node
[node
]->next_reap
= jiffies
+
1229 ((unsigned long)cachep
) % REAPTIMEOUT_NODE
;
1234 * Initialisation. Called after the page allocator have been initialised and
1235 * before smp_init().
1237 void __init
kmem_cache_init(void)
1241 BUILD_BUG_ON(sizeof(((struct page
*)NULL
)->lru
) <
1242 sizeof(struct rcu_head
));
1243 kmem_cache
= &kmem_cache_boot
;
1245 if (!IS_ENABLED(CONFIG_NUMA
) || num_possible_nodes() == 1)
1246 use_alien_caches
= 0;
1248 for (i
= 0; i
< NUM_INIT_LISTS
; i
++)
1249 kmem_cache_node_init(&init_kmem_cache_node
[i
]);
1252 * Fragmentation resistance on low memory - only use bigger
1253 * page orders on machines with more than 32MB of memory if
1254 * not overridden on the command line.
1256 if (!slab_max_order_set
&& totalram_pages
> (32 << 20) >> PAGE_SHIFT
)
1257 slab_max_order
= SLAB_MAX_ORDER_HI
;
1259 /* Bootstrap is tricky, because several objects are allocated
1260 * from caches that do not exist yet:
1261 * 1) initialize the kmem_cache cache: it contains the struct
1262 * kmem_cache structures of all caches, except kmem_cache itself:
1263 * kmem_cache is statically allocated.
1264 * Initially an __init data area is used for the head array and the
1265 * kmem_cache_node structures, it's replaced with a kmalloc allocated
1266 * array at the end of the bootstrap.
1267 * 2) Create the first kmalloc cache.
1268 * The struct kmem_cache for the new cache is allocated normally.
1269 * An __init data area is used for the head array.
1270 * 3) Create the remaining kmalloc caches, with minimally sized
1272 * 4) Replace the __init data head arrays for kmem_cache and the first
1273 * kmalloc cache with kmalloc allocated arrays.
1274 * 5) Replace the __init data for kmem_cache_node for kmem_cache and
1275 * the other cache's with kmalloc allocated memory.
1276 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1279 /* 1) create the kmem_cache */
1282 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
1284 create_boot_cache(kmem_cache
, "kmem_cache",
1285 offsetof(struct kmem_cache
, node
) +
1286 nr_node_ids
* sizeof(struct kmem_cache_node
*),
1287 SLAB_HWCACHE_ALIGN
);
1288 list_add(&kmem_cache
->list
, &slab_caches
);
1289 slab_state
= PARTIAL
;
1292 * Initialize the caches that provide memory for the kmem_cache_node
1293 * structures first. Without this, further allocations will bug.
1295 kmalloc_caches
[INDEX_NODE
] = create_kmalloc_cache("kmalloc-node",
1296 kmalloc_size(INDEX_NODE
), ARCH_KMALLOC_FLAGS
);
1297 slab_state
= PARTIAL_NODE
;
1298 setup_kmalloc_cache_index_table();
1300 slab_early_init
= 0;
1302 /* 5) Replace the bootstrap kmem_cache_node */
1306 for_each_online_node(nid
) {
1307 init_list(kmem_cache
, &init_kmem_cache_node
[CACHE_CACHE
+ nid
], nid
);
1309 init_list(kmalloc_caches
[INDEX_NODE
],
1310 &init_kmem_cache_node
[SIZE_NODE
+ nid
], nid
);
1314 create_kmalloc_caches(ARCH_KMALLOC_FLAGS
);
1317 void __init
kmem_cache_init_late(void)
1319 struct kmem_cache
*cachep
;
1323 /* 6) resize the head arrays to their final sizes */
1324 mutex_lock(&slab_mutex
);
1325 list_for_each_entry(cachep
, &slab_caches
, list
)
1326 if (enable_cpucache(cachep
, GFP_NOWAIT
))
1328 mutex_unlock(&slab_mutex
);
1335 * Register a memory hotplug callback that initializes and frees
1338 hotplug_memory_notifier(slab_memory_callback
, SLAB_CALLBACK_PRI
);
1342 * The reap timers are started later, with a module init call: That part
1343 * of the kernel is not yet operational.
1347 static int __init
cpucache_init(void)
1352 * Register the timers that return unneeded pages to the page allocator
1354 ret
= cpuhp_setup_state(CPUHP_AP_ONLINE_DYN
, "SLAB online",
1355 slab_online_cpu
, slab_offline_cpu
);
1362 __initcall(cpucache_init
);
1364 static noinline
void
1365 slab_out_of_memory(struct kmem_cache
*cachep
, gfp_t gfpflags
, int nodeid
)
1368 struct kmem_cache_node
*n
;
1370 unsigned long flags
;
1372 static DEFINE_RATELIMIT_STATE(slab_oom_rs
, DEFAULT_RATELIMIT_INTERVAL
,
1373 DEFAULT_RATELIMIT_BURST
);
1375 if ((gfpflags
& __GFP_NOWARN
) || !__ratelimit(&slab_oom_rs
))
1378 pr_warn("SLAB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
1379 nodeid
, gfpflags
, &gfpflags
);
1380 pr_warn(" cache: %s, object size: %d, order: %d\n",
1381 cachep
->name
, cachep
->size
, cachep
->gfporder
);
1383 for_each_kmem_cache_node(cachep
, node
, n
) {
1384 unsigned long active_objs
= 0, num_objs
= 0, free_objects
= 0;
1385 unsigned long active_slabs
= 0, num_slabs
= 0;
1386 unsigned long num_slabs_partial
= 0, num_slabs_free
= 0;
1387 unsigned long num_slabs_full
;
1389 spin_lock_irqsave(&n
->list_lock
, flags
);
1390 num_slabs
= n
->num_slabs
;
1391 list_for_each_entry(page
, &n
->slabs_partial
, lru
) {
1392 active_objs
+= page
->active
;
1393 num_slabs_partial
++;
1395 list_for_each_entry(page
, &n
->slabs_free
, lru
)
1398 free_objects
+= n
->free_objects
;
1399 spin_unlock_irqrestore(&n
->list_lock
, flags
);
1401 num_objs
= num_slabs
* cachep
->num
;
1402 active_slabs
= num_slabs
- num_slabs_free
;
1403 num_slabs_full
= num_slabs
-
1404 (num_slabs_partial
+ num_slabs_free
);
1405 active_objs
+= (num_slabs_full
* cachep
->num
);
1407 pr_warn(" node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n",
1408 node
, active_slabs
, num_slabs
, active_objs
, num_objs
,
1415 * Interface to system's page allocator. No need to hold the
1416 * kmem_cache_node ->list_lock.
1418 * If we requested dmaable memory, we will get it. Even if we
1419 * did not request dmaable memory, we might get it, but that
1420 * would be relatively rare and ignorable.
1422 static struct page
*kmem_getpages(struct kmem_cache
*cachep
, gfp_t flags
,
1428 flags
|= cachep
->allocflags
;
1429 if (cachep
->flags
& SLAB_RECLAIM_ACCOUNT
)
1430 flags
|= __GFP_RECLAIMABLE
;
1432 page
= __alloc_pages_node(nodeid
, flags
| __GFP_NOTRACK
, cachep
->gfporder
);
1434 slab_out_of_memory(cachep
, flags
, nodeid
);
1438 if (memcg_charge_slab(page
, flags
, cachep
->gfporder
, cachep
)) {
1439 __free_pages(page
, cachep
->gfporder
);
1443 nr_pages
= (1 << cachep
->gfporder
);
1444 if (cachep
->flags
& SLAB_RECLAIM_ACCOUNT
)
1445 add_zone_page_state(page_zone(page
),
1446 NR_SLAB_RECLAIMABLE
, nr_pages
);
1448 add_zone_page_state(page_zone(page
),
1449 NR_SLAB_UNRECLAIMABLE
, nr_pages
);
1451 __SetPageSlab(page
);
1452 /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
1453 if (sk_memalloc_socks() && page_is_pfmemalloc(page
))
1454 SetPageSlabPfmemalloc(page
);
1456 if (kmemcheck_enabled
&& !(cachep
->flags
& SLAB_NOTRACK
)) {
1457 kmemcheck_alloc_shadow(page
, cachep
->gfporder
, flags
, nodeid
);
1460 kmemcheck_mark_uninitialized_pages(page
, nr_pages
);
1462 kmemcheck_mark_unallocated_pages(page
, nr_pages
);
1469 * Interface to system's page release.
1471 static void kmem_freepages(struct kmem_cache
*cachep
, struct page
*page
)
1473 int order
= cachep
->gfporder
;
1474 unsigned long nr_freed
= (1 << order
);
1476 kmemcheck_free_shadow(page
, order
);
1478 if (cachep
->flags
& SLAB_RECLAIM_ACCOUNT
)
1479 sub_zone_page_state(page_zone(page
),
1480 NR_SLAB_RECLAIMABLE
, nr_freed
);
1482 sub_zone_page_state(page_zone(page
),
1483 NR_SLAB_UNRECLAIMABLE
, nr_freed
);
1485 BUG_ON(!PageSlab(page
));
1486 __ClearPageSlabPfmemalloc(page
);
1487 __ClearPageSlab(page
);
1488 page_mapcount_reset(page
);
1489 page
->mapping
= NULL
;
1491 if (current
->reclaim_state
)
1492 current
->reclaim_state
->reclaimed_slab
+= nr_freed
;
1493 memcg_uncharge_slab(page
, order
, cachep
);
1494 __free_pages(page
, order
);
1497 static void kmem_rcu_free(struct rcu_head
*head
)
1499 struct kmem_cache
*cachep
;
1502 page
= container_of(head
, struct page
, rcu_head
);
1503 cachep
= page
->slab_cache
;
1505 kmem_freepages(cachep
, page
);
1509 static bool is_debug_pagealloc_cache(struct kmem_cache
*cachep
)
1511 if (debug_pagealloc_enabled() && OFF_SLAB(cachep
) &&
1512 (cachep
->size
% PAGE_SIZE
) == 0)
1518 #ifdef CONFIG_DEBUG_PAGEALLOC
1519 static void store_stackinfo(struct kmem_cache
*cachep
, unsigned long *addr
,
1520 unsigned long caller
)
1522 int size
= cachep
->object_size
;
1524 addr
= (unsigned long *)&((char *)addr
)[obj_offset(cachep
)];
1526 if (size
< 5 * sizeof(unsigned long))
1529 *addr
++ = 0x12345678;
1531 *addr
++ = smp_processor_id();
1532 size
-= 3 * sizeof(unsigned long);
1534 unsigned long *sptr
= &caller
;
1535 unsigned long svalue
;
1537 while (!kstack_end(sptr
)) {
1539 if (kernel_text_address(svalue
)) {
1541 size
-= sizeof(unsigned long);
1542 if (size
<= sizeof(unsigned long))
1548 *addr
++ = 0x87654321;
1551 static void slab_kernel_map(struct kmem_cache
*cachep
, void *objp
,
1552 int map
, unsigned long caller
)
1554 if (!is_debug_pagealloc_cache(cachep
))
1558 store_stackinfo(cachep
, objp
, caller
);
1560 kernel_map_pages(virt_to_page(objp
), cachep
->size
/ PAGE_SIZE
, map
);
1564 static inline void slab_kernel_map(struct kmem_cache
*cachep
, void *objp
,
1565 int map
, unsigned long caller
) {}
1569 static void poison_obj(struct kmem_cache
*cachep
, void *addr
, unsigned char val
)
1571 int size
= cachep
->object_size
;
1572 addr
= &((char *)addr
)[obj_offset(cachep
)];
1574 memset(addr
, val
, size
);
1575 *(unsigned char *)(addr
+ size
- 1) = POISON_END
;
1578 static void dump_line(char *data
, int offset
, int limit
)
1581 unsigned char error
= 0;
1584 pr_err("%03x: ", offset
);
1585 for (i
= 0; i
< limit
; i
++) {
1586 if (data
[offset
+ i
] != POISON_FREE
) {
1587 error
= data
[offset
+ i
];
1591 print_hex_dump(KERN_CONT
, "", 0, 16, 1,
1592 &data
[offset
], limit
, 1);
1594 if (bad_count
== 1) {
1595 error
^= POISON_FREE
;
1596 if (!(error
& (error
- 1))) {
1597 pr_err("Single bit error detected. Probably bad RAM.\n");
1599 pr_err("Run memtest86+ or a similar memory test tool.\n");
1601 pr_err("Run a memory test tool.\n");
1610 static void print_objinfo(struct kmem_cache
*cachep
, void *objp
, int lines
)
1615 if (cachep
->flags
& SLAB_RED_ZONE
) {
1616 pr_err("Redzone: 0x%llx/0x%llx\n",
1617 *dbg_redzone1(cachep
, objp
),
1618 *dbg_redzone2(cachep
, objp
));
1621 if (cachep
->flags
& SLAB_STORE_USER
) {
1622 pr_err("Last user: [<%p>](%pSR)\n",
1623 *dbg_userword(cachep
, objp
),
1624 *dbg_userword(cachep
, objp
));
1626 realobj
= (char *)objp
+ obj_offset(cachep
);
1627 size
= cachep
->object_size
;
1628 for (i
= 0; i
< size
&& lines
; i
+= 16, lines
--) {
1631 if (i
+ limit
> size
)
1633 dump_line(realobj
, i
, limit
);
1637 static void check_poison_obj(struct kmem_cache
*cachep
, void *objp
)
1643 if (is_debug_pagealloc_cache(cachep
))
1646 realobj
= (char *)objp
+ obj_offset(cachep
);
1647 size
= cachep
->object_size
;
1649 for (i
= 0; i
< size
; i
++) {
1650 char exp
= POISON_FREE
;
1653 if (realobj
[i
] != exp
) {
1658 pr_err("Slab corruption (%s): %s start=%p, len=%d\n",
1659 print_tainted(), cachep
->name
,
1661 print_objinfo(cachep
, objp
, 0);
1663 /* Hexdump the affected line */
1666 if (i
+ limit
> size
)
1668 dump_line(realobj
, i
, limit
);
1671 /* Limit to 5 lines */
1677 /* Print some data about the neighboring objects, if they
1680 struct page
*page
= virt_to_head_page(objp
);
1683 objnr
= obj_to_index(cachep
, page
, objp
);
1685 objp
= index_to_obj(cachep
, page
, objnr
- 1);
1686 realobj
= (char *)objp
+ obj_offset(cachep
);
1687 pr_err("Prev obj: start=%p, len=%d\n", realobj
, size
);
1688 print_objinfo(cachep
, objp
, 2);
1690 if (objnr
+ 1 < cachep
->num
) {
1691 objp
= index_to_obj(cachep
, page
, objnr
+ 1);
1692 realobj
= (char *)objp
+ obj_offset(cachep
);
1693 pr_err("Next obj: start=%p, len=%d\n", realobj
, size
);
1694 print_objinfo(cachep
, objp
, 2);
1701 static void slab_destroy_debugcheck(struct kmem_cache
*cachep
,
1706 if (OBJFREELIST_SLAB(cachep
) && cachep
->flags
& SLAB_POISON
) {
1707 poison_obj(cachep
, page
->freelist
- obj_offset(cachep
),
1711 for (i
= 0; i
< cachep
->num
; i
++) {
1712 void *objp
= index_to_obj(cachep
, page
, i
);
1714 if (cachep
->flags
& SLAB_POISON
) {
1715 check_poison_obj(cachep
, objp
);
1716 slab_kernel_map(cachep
, objp
, 1, 0);
1718 if (cachep
->flags
& SLAB_RED_ZONE
) {
1719 if (*dbg_redzone1(cachep
, objp
) != RED_INACTIVE
)
1720 slab_error(cachep
, "start of a freed object was overwritten");
1721 if (*dbg_redzone2(cachep
, objp
) != RED_INACTIVE
)
1722 slab_error(cachep
, "end of a freed object was overwritten");
1727 static void slab_destroy_debugcheck(struct kmem_cache
*cachep
,
1734 * slab_destroy - destroy and release all objects in a slab
1735 * @cachep: cache pointer being destroyed
1736 * @page: page pointer being destroyed
1738 * Destroy all the objs in a slab page, and release the mem back to the system.
1739 * Before calling the slab page must have been unlinked from the cache. The
1740 * kmem_cache_node ->list_lock is not held/needed.
1742 static void slab_destroy(struct kmem_cache
*cachep
, struct page
*page
)
1746 freelist
= page
->freelist
;
1747 slab_destroy_debugcheck(cachep
, page
);
1748 if (unlikely(cachep
->flags
& SLAB_DESTROY_BY_RCU
))
1749 call_rcu(&page
->rcu_head
, kmem_rcu_free
);
1751 kmem_freepages(cachep
, page
);
1754 * From now on, we don't use freelist
1755 * although actual page can be freed in rcu context
1757 if (OFF_SLAB(cachep
))
1758 kmem_cache_free(cachep
->freelist_cache
, freelist
);
1761 static void slabs_destroy(struct kmem_cache
*cachep
, struct list_head
*list
)
1763 struct page
*page
, *n
;
1765 list_for_each_entry_safe(page
, n
, list
, lru
) {
1766 list_del(&page
->lru
);
1767 slab_destroy(cachep
, page
);
1772 * calculate_slab_order - calculate size (page order) of slabs
1773 * @cachep: pointer to the cache that is being created
1774 * @size: size of objects to be created in this cache.
1775 * @flags: slab allocation flags
1777 * Also calculates the number of objects per slab.
1779 * This could be made much more intelligent. For now, try to avoid using
1780 * high order pages for slabs. When the gfp() functions are more friendly
1781 * towards high-order requests, this should be changed.
1783 static size_t calculate_slab_order(struct kmem_cache
*cachep
,
1784 size_t size
, unsigned long flags
)
1786 size_t left_over
= 0;
1789 for (gfporder
= 0; gfporder
<= KMALLOC_MAX_ORDER
; gfporder
++) {
1793 num
= cache_estimate(gfporder
, size
, flags
, &remainder
);
1797 /* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */
1798 if (num
> SLAB_OBJ_MAX_NUM
)
1801 if (flags
& CFLGS_OFF_SLAB
) {
1802 struct kmem_cache
*freelist_cache
;
1803 size_t freelist_size
;
1805 freelist_size
= num
* sizeof(freelist_idx_t
);
1806 freelist_cache
= kmalloc_slab(freelist_size
, 0u);
1807 if (!freelist_cache
)
1811 * Needed to avoid possible looping condition
1812 * in cache_grow_begin()
1814 if (OFF_SLAB(freelist_cache
))
1817 /* check if off slab has enough benefit */
1818 if (freelist_cache
->size
> cachep
->size
/ 2)
1822 /* Found something acceptable - save it away */
1824 cachep
->gfporder
= gfporder
;
1825 left_over
= remainder
;
1828 * A VFS-reclaimable slab tends to have most allocations
1829 * as GFP_NOFS and we really don't want to have to be allocating
1830 * higher-order pages when we are unable to shrink dcache.
1832 if (flags
& SLAB_RECLAIM_ACCOUNT
)
1836 * Large number of objects is good, but very large slabs are
1837 * currently bad for the gfp()s.
1839 if (gfporder
>= slab_max_order
)
1843 * Acceptable internal fragmentation?
1845 if (left_over
* 8 <= (PAGE_SIZE
<< gfporder
))
1851 static struct array_cache __percpu
*alloc_kmem_cache_cpus(
1852 struct kmem_cache
*cachep
, int entries
, int batchcount
)
1856 struct array_cache __percpu
*cpu_cache
;
1858 size
= sizeof(void *) * entries
+ sizeof(struct array_cache
);
1859 cpu_cache
= __alloc_percpu(size
, sizeof(void *));
1864 for_each_possible_cpu(cpu
) {
1865 init_arraycache(per_cpu_ptr(cpu_cache
, cpu
),
1866 entries
, batchcount
);
1872 static int __ref
setup_cpu_cache(struct kmem_cache
*cachep
, gfp_t gfp
)
1874 if (slab_state
>= FULL
)
1875 return enable_cpucache(cachep
, gfp
);
1877 cachep
->cpu_cache
= alloc_kmem_cache_cpus(cachep
, 1, 1);
1878 if (!cachep
->cpu_cache
)
1881 if (slab_state
== DOWN
) {
1882 /* Creation of first cache (kmem_cache). */
1883 set_up_node(kmem_cache
, CACHE_CACHE
);
1884 } else if (slab_state
== PARTIAL
) {
1885 /* For kmem_cache_node */
1886 set_up_node(cachep
, SIZE_NODE
);
1890 for_each_online_node(node
) {
1891 cachep
->node
[node
] = kmalloc_node(
1892 sizeof(struct kmem_cache_node
), gfp
, node
);
1893 BUG_ON(!cachep
->node
[node
]);
1894 kmem_cache_node_init(cachep
->node
[node
]);
1898 cachep
->node
[numa_mem_id()]->next_reap
=
1899 jiffies
+ REAPTIMEOUT_NODE
+
1900 ((unsigned long)cachep
) % REAPTIMEOUT_NODE
;
1902 cpu_cache_get(cachep
)->avail
= 0;
1903 cpu_cache_get(cachep
)->limit
= BOOT_CPUCACHE_ENTRIES
;
1904 cpu_cache_get(cachep
)->batchcount
= 1;
1905 cpu_cache_get(cachep
)->touched
= 0;
1906 cachep
->batchcount
= 1;
1907 cachep
->limit
= BOOT_CPUCACHE_ENTRIES
;
1911 unsigned long kmem_cache_flags(unsigned long object_size
,
1912 unsigned long flags
, const char *name
,
1913 void (*ctor
)(void *))
1919 __kmem_cache_alias(const char *name
, size_t size
, size_t align
,
1920 unsigned long flags
, void (*ctor
)(void *))
1922 struct kmem_cache
*cachep
;
1924 cachep
= find_mergeable(size
, align
, flags
, name
, ctor
);
1929 * Adjust the object sizes so that we clear
1930 * the complete object on kzalloc.
1932 cachep
->object_size
= max_t(int, cachep
->object_size
, size
);
1937 static bool set_objfreelist_slab_cache(struct kmem_cache
*cachep
,
1938 size_t size
, unsigned long flags
)
1944 if (cachep
->ctor
|| flags
& SLAB_DESTROY_BY_RCU
)
1947 left
= calculate_slab_order(cachep
, size
,
1948 flags
| CFLGS_OBJFREELIST_SLAB
);
1952 if (cachep
->num
* sizeof(freelist_idx_t
) > cachep
->object_size
)
1955 cachep
->colour
= left
/ cachep
->colour_off
;
1960 static bool set_off_slab_cache(struct kmem_cache
*cachep
,
1961 size_t size
, unsigned long flags
)
1968 * Always use on-slab management when SLAB_NOLEAKTRACE
1969 * to avoid recursive calls into kmemleak.
1971 if (flags
& SLAB_NOLEAKTRACE
)
1975 * Size is large, assume best to place the slab management obj
1976 * off-slab (should allow better packing of objs).
1978 left
= calculate_slab_order(cachep
, size
, flags
| CFLGS_OFF_SLAB
);
1983 * If the slab has been placed off-slab, and we have enough space then
1984 * move it on-slab. This is at the expense of any extra colouring.
1986 if (left
>= cachep
->num
* sizeof(freelist_idx_t
))
1989 cachep
->colour
= left
/ cachep
->colour_off
;
1994 static bool set_on_slab_cache(struct kmem_cache
*cachep
,
1995 size_t size
, unsigned long flags
)
2001 left
= calculate_slab_order(cachep
, size
, flags
);
2005 cachep
->colour
= left
/ cachep
->colour_off
;
2011 * __kmem_cache_create - Create a cache.
2012 * @cachep: cache management descriptor
2013 * @flags: SLAB flags
2015 * Returns a ptr to the cache on success, NULL on failure.
2016 * Cannot be called within a int, but can be interrupted.
2017 * The @ctor is run when new pages are allocated by the cache.
2021 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2022 * to catch references to uninitialised memory.
2024 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2025 * for buffer overruns.
2027 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2028 * cacheline. This can be beneficial if you're counting cycles as closely
2032 __kmem_cache_create (struct kmem_cache
*cachep
, unsigned long flags
)
2034 size_t ralign
= BYTES_PER_WORD
;
2037 size_t size
= cachep
->size
;
2042 * Enable redzoning and last user accounting, except for caches with
2043 * large objects, if the increased size would increase the object size
2044 * above the next power of two: caches with object sizes just above a
2045 * power of two have a significant amount of internal fragmentation.
2047 if (size
< 4096 || fls(size
- 1) == fls(size
-1 + REDZONE_ALIGN
+
2048 2 * sizeof(unsigned long long)))
2049 flags
|= SLAB_RED_ZONE
| SLAB_STORE_USER
;
2050 if (!(flags
& SLAB_DESTROY_BY_RCU
))
2051 flags
|= SLAB_POISON
;
2056 * Check that size is in terms of words. This is needed to avoid
2057 * unaligned accesses for some archs when redzoning is used, and makes
2058 * sure any on-slab bufctl's are also correctly aligned.
2060 if (size
& (BYTES_PER_WORD
- 1)) {
2061 size
+= (BYTES_PER_WORD
- 1);
2062 size
&= ~(BYTES_PER_WORD
- 1);
2065 if (flags
& SLAB_RED_ZONE
) {
2066 ralign
= REDZONE_ALIGN
;
2067 /* If redzoning, ensure that the second redzone is suitably
2068 * aligned, by adjusting the object size accordingly. */
2069 size
+= REDZONE_ALIGN
- 1;
2070 size
&= ~(REDZONE_ALIGN
- 1);
2073 /* 3) caller mandated alignment */
2074 if (ralign
< cachep
->align
) {
2075 ralign
= cachep
->align
;
2077 /* disable debug if necessary */
2078 if (ralign
> __alignof__(unsigned long long))
2079 flags
&= ~(SLAB_RED_ZONE
| SLAB_STORE_USER
);
2083 cachep
->align
= ralign
;
2084 cachep
->colour_off
= cache_line_size();
2085 /* Offset must be a multiple of the alignment. */
2086 if (cachep
->colour_off
< cachep
->align
)
2087 cachep
->colour_off
= cachep
->align
;
2089 if (slab_is_available())
2097 * Both debugging options require word-alignment which is calculated
2100 if (flags
& SLAB_RED_ZONE
) {
2101 /* add space for red zone words */
2102 cachep
->obj_offset
+= sizeof(unsigned long long);
2103 size
+= 2 * sizeof(unsigned long long);
2105 if (flags
& SLAB_STORE_USER
) {
2106 /* user store requires one word storage behind the end of
2107 * the real object. But if the second red zone needs to be
2108 * aligned to 64 bits, we must allow that much space.
2110 if (flags
& SLAB_RED_ZONE
)
2111 size
+= REDZONE_ALIGN
;
2113 size
+= BYTES_PER_WORD
;
2117 kasan_cache_create(cachep
, &size
, &flags
);
2119 size
= ALIGN(size
, cachep
->align
);
2121 * We should restrict the number of objects in a slab to implement
2122 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition.
2124 if (FREELIST_BYTE_INDEX
&& size
< SLAB_OBJ_MIN_SIZE
)
2125 size
= ALIGN(SLAB_OBJ_MIN_SIZE
, cachep
->align
);
2129 * To activate debug pagealloc, off-slab management is necessary
2130 * requirement. In early phase of initialization, small sized slab
2131 * doesn't get initialized so it would not be possible. So, we need
2132 * to check size >= 256. It guarantees that all necessary small
2133 * sized slab is initialized in current slab initialization sequence.
2135 if (debug_pagealloc_enabled() && (flags
& SLAB_POISON
) &&
2136 size
>= 256 && cachep
->object_size
> cache_line_size()) {
2137 if (size
< PAGE_SIZE
|| size
% PAGE_SIZE
== 0) {
2138 size_t tmp_size
= ALIGN(size
, PAGE_SIZE
);
2140 if (set_off_slab_cache(cachep
, tmp_size
, flags
)) {
2141 flags
|= CFLGS_OFF_SLAB
;
2142 cachep
->obj_offset
+= tmp_size
- size
;
2150 if (set_objfreelist_slab_cache(cachep
, size
, flags
)) {
2151 flags
|= CFLGS_OBJFREELIST_SLAB
;
2155 if (set_off_slab_cache(cachep
, size
, flags
)) {
2156 flags
|= CFLGS_OFF_SLAB
;
2160 if (set_on_slab_cache(cachep
, size
, flags
))
2166 cachep
->freelist_size
= cachep
->num
* sizeof(freelist_idx_t
);
2167 cachep
->flags
= flags
;
2168 cachep
->allocflags
= __GFP_COMP
;
2169 if (flags
& SLAB_CACHE_DMA
)
2170 cachep
->allocflags
|= GFP_DMA
;
2171 cachep
->size
= size
;
2172 cachep
->reciprocal_buffer_size
= reciprocal_value(size
);
2176 * If we're going to use the generic kernel_map_pages()
2177 * poisoning, then it's going to smash the contents of
2178 * the redzone and userword anyhow, so switch them off.
2180 if (IS_ENABLED(CONFIG_PAGE_POISONING
) &&
2181 (cachep
->flags
& SLAB_POISON
) &&
2182 is_debug_pagealloc_cache(cachep
))
2183 cachep
->flags
&= ~(SLAB_RED_ZONE
| SLAB_STORE_USER
);
2186 if (OFF_SLAB(cachep
)) {
2187 cachep
->freelist_cache
=
2188 kmalloc_slab(cachep
->freelist_size
, 0u);
2191 err
= setup_cpu_cache(cachep
, gfp
);
2193 __kmem_cache_release(cachep
);
2201 static void check_irq_off(void)
2203 BUG_ON(!irqs_disabled());
2206 static void check_irq_on(void)
2208 BUG_ON(irqs_disabled());
2211 static void check_mutex_acquired(void)
2213 BUG_ON(!mutex_is_locked(&slab_mutex
));
2216 static void check_spinlock_acquired(struct kmem_cache
*cachep
)
2220 assert_spin_locked(&get_node(cachep
, numa_mem_id())->list_lock
);
2224 static void check_spinlock_acquired_node(struct kmem_cache
*cachep
, int node
)
2228 assert_spin_locked(&get_node(cachep
, node
)->list_lock
);
2233 #define check_irq_off() do { } while(0)
2234 #define check_irq_on() do { } while(0)
2235 #define check_mutex_acquired() do { } while(0)
2236 #define check_spinlock_acquired(x) do { } while(0)
2237 #define check_spinlock_acquired_node(x, y) do { } while(0)
2240 static void drain_array_locked(struct kmem_cache
*cachep
, struct array_cache
*ac
,
2241 int node
, bool free_all
, struct list_head
*list
)
2245 if (!ac
|| !ac
->avail
)
2248 tofree
= free_all
? ac
->avail
: (ac
->limit
+ 4) / 5;
2249 if (tofree
> ac
->avail
)
2250 tofree
= (ac
->avail
+ 1) / 2;
2252 free_block(cachep
, ac
->entry
, tofree
, node
, list
);
2253 ac
->avail
-= tofree
;
2254 memmove(ac
->entry
, &(ac
->entry
[tofree
]), sizeof(void *) * ac
->avail
);
2257 static void do_drain(void *arg
)
2259 struct kmem_cache
*cachep
= arg
;
2260 struct array_cache
*ac
;
2261 int node
= numa_mem_id();
2262 struct kmem_cache_node
*n
;
2266 ac
= cpu_cache_get(cachep
);
2267 n
= get_node(cachep
, node
);
2268 spin_lock(&n
->list_lock
);
2269 free_block(cachep
, ac
->entry
, ac
->avail
, node
, &list
);
2270 spin_unlock(&n
->list_lock
);
2271 slabs_destroy(cachep
, &list
);
2275 static void drain_cpu_caches(struct kmem_cache
*cachep
)
2277 struct kmem_cache_node
*n
;
2281 on_each_cpu(do_drain
, cachep
, 1);
2283 for_each_kmem_cache_node(cachep
, node
, n
)
2285 drain_alien_cache(cachep
, n
->alien
);
2287 for_each_kmem_cache_node(cachep
, node
, n
) {
2288 spin_lock_irq(&n
->list_lock
);
2289 drain_array_locked(cachep
, n
->shared
, node
, true, &list
);
2290 spin_unlock_irq(&n
->list_lock
);
2292 slabs_destroy(cachep
, &list
);
2297 * Remove slabs from the list of free slabs.
2298 * Specify the number of slabs to drain in tofree.
2300 * Returns the actual number of slabs released.
2302 static int drain_freelist(struct kmem_cache
*cache
,
2303 struct kmem_cache_node
*n
, int tofree
)
2305 struct list_head
*p
;
2310 while (nr_freed
< tofree
&& !list_empty(&n
->slabs_free
)) {
2312 spin_lock_irq(&n
->list_lock
);
2313 p
= n
->slabs_free
.prev
;
2314 if (p
== &n
->slabs_free
) {
2315 spin_unlock_irq(&n
->list_lock
);
2319 page
= list_entry(p
, struct page
, lru
);
2320 list_del(&page
->lru
);
2323 * Safe to drop the lock. The slab is no longer linked
2326 n
->free_objects
-= cache
->num
;
2327 spin_unlock_irq(&n
->list_lock
);
2328 slab_destroy(cache
, page
);
2335 int __kmem_cache_shrink(struct kmem_cache
*cachep
, bool deactivate
)
2339 struct kmem_cache_node
*n
;
2341 drain_cpu_caches(cachep
);
2344 for_each_kmem_cache_node(cachep
, node
, n
) {
2345 drain_freelist(cachep
, n
, INT_MAX
);
2347 ret
+= !list_empty(&n
->slabs_full
) ||
2348 !list_empty(&n
->slabs_partial
);
2350 return (ret
? 1 : 0);
2353 int __kmem_cache_shutdown(struct kmem_cache
*cachep
)
2355 return __kmem_cache_shrink(cachep
, false);
2358 void __kmem_cache_release(struct kmem_cache
*cachep
)
2361 struct kmem_cache_node
*n
;
2363 cache_random_seq_destroy(cachep
);
2365 free_percpu(cachep
->cpu_cache
);
2367 /* NUMA: free the node structures */
2368 for_each_kmem_cache_node(cachep
, i
, n
) {
2370 free_alien_cache(n
->alien
);
2372 cachep
->node
[i
] = NULL
;
2377 * Get the memory for a slab management obj.
2379 * For a slab cache when the slab descriptor is off-slab, the
2380 * slab descriptor can't come from the same cache which is being created,
2381 * Because if it is the case, that means we defer the creation of
2382 * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point.
2383 * And we eventually call down to __kmem_cache_create(), which
2384 * in turn looks up in the kmalloc_{dma,}_caches for the disired-size one.
2385 * This is a "chicken-and-egg" problem.
2387 * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches,
2388 * which are all initialized during kmem_cache_init().
2390 static void *alloc_slabmgmt(struct kmem_cache
*cachep
,
2391 struct page
*page
, int colour_off
,
2392 gfp_t local_flags
, int nodeid
)
2395 void *addr
= page_address(page
);
2397 page
->s_mem
= addr
+ colour_off
;
2400 if (OBJFREELIST_SLAB(cachep
))
2402 else if (OFF_SLAB(cachep
)) {
2403 /* Slab management obj is off-slab. */
2404 freelist
= kmem_cache_alloc_node(cachep
->freelist_cache
,
2405 local_flags
, nodeid
);
2409 /* We will use last bytes at the slab for freelist */
2410 freelist
= addr
+ (PAGE_SIZE
<< cachep
->gfporder
) -
2411 cachep
->freelist_size
;
2417 static inline freelist_idx_t
get_free_obj(struct page
*page
, unsigned int idx
)
2419 return ((freelist_idx_t
*)page
->freelist
)[idx
];
2422 static inline void set_free_obj(struct page
*page
,
2423 unsigned int idx
, freelist_idx_t val
)
2425 ((freelist_idx_t
*)(page
->freelist
))[idx
] = val
;
2428 static void cache_init_objs_debug(struct kmem_cache
*cachep
, struct page
*page
)
2433 for (i
= 0; i
< cachep
->num
; i
++) {
2434 void *objp
= index_to_obj(cachep
, page
, i
);
2436 if (cachep
->flags
& SLAB_STORE_USER
)
2437 *dbg_userword(cachep
, objp
) = NULL
;
2439 if (cachep
->flags
& SLAB_RED_ZONE
) {
2440 *dbg_redzone1(cachep
, objp
) = RED_INACTIVE
;
2441 *dbg_redzone2(cachep
, objp
) = RED_INACTIVE
;
2444 * Constructors are not allowed to allocate memory from the same
2445 * cache which they are a constructor for. Otherwise, deadlock.
2446 * They must also be threaded.
2448 if (cachep
->ctor
&& !(cachep
->flags
& SLAB_POISON
)) {
2449 kasan_unpoison_object_data(cachep
,
2450 objp
+ obj_offset(cachep
));
2451 cachep
->ctor(objp
+ obj_offset(cachep
));
2452 kasan_poison_object_data(
2453 cachep
, objp
+ obj_offset(cachep
));
2456 if (cachep
->flags
& SLAB_RED_ZONE
) {
2457 if (*dbg_redzone2(cachep
, objp
) != RED_INACTIVE
)
2458 slab_error(cachep
, "constructor overwrote the end of an object");
2459 if (*dbg_redzone1(cachep
, objp
) != RED_INACTIVE
)
2460 slab_error(cachep
, "constructor overwrote the start of an object");
2462 /* need to poison the objs? */
2463 if (cachep
->flags
& SLAB_POISON
) {
2464 poison_obj(cachep
, objp
, POISON_FREE
);
2465 slab_kernel_map(cachep
, objp
, 0, 0);
2471 #ifdef CONFIG_SLAB_FREELIST_RANDOM
2472 /* Hold information during a freelist initialization */
2473 union freelist_init_state
{
2480 struct rnd_state rnd_state
;
2484 * Initialize the state based on the randomization methode available.
2485 * return true if the pre-computed list is available, false otherwize.
2487 static bool freelist_state_initialize(union freelist_init_state
*state
,
2488 struct kmem_cache
*cachep
,
2494 /* Use best entropy available to define a random shift */
2495 rand
= get_random_int();
2497 /* Use a random state if the pre-computed list is not available */
2498 if (!cachep
->random_seq
) {
2499 prandom_seed_state(&state
->rnd_state
, rand
);
2502 state
->list
= cachep
->random_seq
;
2503 state
->count
= count
;
2511 /* Get the next entry on the list and randomize it using a random shift */
2512 static freelist_idx_t
next_random_slot(union freelist_init_state
*state
)
2514 return (state
->list
[state
->pos
++] + state
->rand
) % state
->count
;
2517 /* Swap two freelist entries */
2518 static void swap_free_obj(struct page
*page
, unsigned int a
, unsigned int b
)
2520 swap(((freelist_idx_t
*)page
->freelist
)[a
],
2521 ((freelist_idx_t
*)page
->freelist
)[b
]);
2525 * Shuffle the freelist initialization state based on pre-computed lists.
2526 * return true if the list was successfully shuffled, false otherwise.
2528 static bool shuffle_freelist(struct kmem_cache
*cachep
, struct page
*page
)
2530 unsigned int objfreelist
= 0, i
, rand
, count
= cachep
->num
;
2531 union freelist_init_state state
;
2537 precomputed
= freelist_state_initialize(&state
, cachep
, count
);
2539 /* Take a random entry as the objfreelist */
2540 if (OBJFREELIST_SLAB(cachep
)) {
2542 objfreelist
= count
- 1;
2544 objfreelist
= next_random_slot(&state
);
2545 page
->freelist
= index_to_obj(cachep
, page
, objfreelist
) +
2551 * On early boot, generate the list dynamically.
2552 * Later use a pre-computed list for speed.
2555 for (i
= 0; i
< count
; i
++)
2556 set_free_obj(page
, i
, i
);
2558 /* Fisher-Yates shuffle */
2559 for (i
= count
- 1; i
> 0; i
--) {
2560 rand
= prandom_u32_state(&state
.rnd_state
);
2562 swap_free_obj(page
, i
, rand
);
2565 for (i
= 0; i
< count
; i
++)
2566 set_free_obj(page
, i
, next_random_slot(&state
));
2569 if (OBJFREELIST_SLAB(cachep
))
2570 set_free_obj(page
, cachep
->num
- 1, objfreelist
);
2575 static inline bool shuffle_freelist(struct kmem_cache
*cachep
,
2580 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
2582 static void cache_init_objs(struct kmem_cache
*cachep
,
2589 cache_init_objs_debug(cachep
, page
);
2591 /* Try to randomize the freelist if enabled */
2592 shuffled
= shuffle_freelist(cachep
, page
);
2594 if (!shuffled
&& OBJFREELIST_SLAB(cachep
)) {
2595 page
->freelist
= index_to_obj(cachep
, page
, cachep
->num
- 1) +
2599 for (i
= 0; i
< cachep
->num
; i
++) {
2600 objp
= index_to_obj(cachep
, page
, i
);
2601 kasan_init_slab_obj(cachep
, objp
);
2603 /* constructor could break poison info */
2604 if (DEBUG
== 0 && cachep
->ctor
) {
2605 kasan_unpoison_object_data(cachep
, objp
);
2607 kasan_poison_object_data(cachep
, objp
);
2611 set_free_obj(page
, i
, i
);
2615 static void *slab_get_obj(struct kmem_cache
*cachep
, struct page
*page
)
2619 objp
= index_to_obj(cachep
, page
, get_free_obj(page
, page
->active
));
2623 if (cachep
->flags
& SLAB_STORE_USER
)
2624 set_store_user_dirty(cachep
);
2630 static void slab_put_obj(struct kmem_cache
*cachep
,
2631 struct page
*page
, void *objp
)
2633 unsigned int objnr
= obj_to_index(cachep
, page
, objp
);
2637 /* Verify double free bug */
2638 for (i
= page
->active
; i
< cachep
->num
; i
++) {
2639 if (get_free_obj(page
, i
) == objnr
) {
2640 pr_err("slab: double free detected in cache '%s', objp %p\n",
2641 cachep
->name
, objp
);
2647 if (!page
->freelist
)
2648 page
->freelist
= objp
+ obj_offset(cachep
);
2650 set_free_obj(page
, page
->active
, objnr
);
2654 * Map pages beginning at addr to the given cache and slab. This is required
2655 * for the slab allocator to be able to lookup the cache and slab of a
2656 * virtual address for kfree, ksize, and slab debugging.
2658 static void slab_map_pages(struct kmem_cache
*cache
, struct page
*page
,
2661 page
->slab_cache
= cache
;
2662 page
->freelist
= freelist
;
2666 * Grow (by 1) the number of slabs within a cache. This is called by
2667 * kmem_cache_alloc() when there are no active objs left in a cache.
2669 static struct page
*cache_grow_begin(struct kmem_cache
*cachep
,
2670 gfp_t flags
, int nodeid
)
2676 struct kmem_cache_node
*n
;
2680 * Be lazy and only check for valid flags here, keeping it out of the
2681 * critical path in kmem_cache_alloc().
2683 if (unlikely(flags
& GFP_SLAB_BUG_MASK
)) {
2684 gfp_t invalid_mask
= flags
& GFP_SLAB_BUG_MASK
;
2685 flags
&= ~GFP_SLAB_BUG_MASK
;
2686 pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
2687 invalid_mask
, &invalid_mask
, flags
, &flags
);
2690 local_flags
= flags
& (GFP_CONSTRAINT_MASK
|GFP_RECLAIM_MASK
);
2693 if (gfpflags_allow_blocking(local_flags
))
2697 * Get mem for the objs. Attempt to allocate a physical page from
2700 page
= kmem_getpages(cachep
, local_flags
, nodeid
);
2704 page_node
= page_to_nid(page
);
2705 n
= get_node(cachep
, page_node
);
2707 /* Get colour for the slab, and cal the next value. */
2709 if (n
->colour_next
>= cachep
->colour
)
2712 offset
= n
->colour_next
;
2713 if (offset
>= cachep
->colour
)
2716 offset
*= cachep
->colour_off
;
2718 /* Get slab management. */
2719 freelist
= alloc_slabmgmt(cachep
, page
, offset
,
2720 local_flags
& ~GFP_CONSTRAINT_MASK
, page_node
);
2721 if (OFF_SLAB(cachep
) && !freelist
)
2724 slab_map_pages(cachep
, page
, freelist
);
2726 kasan_poison_slab(page
);
2727 cache_init_objs(cachep
, page
);
2729 if (gfpflags_allow_blocking(local_flags
))
2730 local_irq_disable();
2735 kmem_freepages(cachep
, page
);
2737 if (gfpflags_allow_blocking(local_flags
))
2738 local_irq_disable();
2742 static void cache_grow_end(struct kmem_cache
*cachep
, struct page
*page
)
2744 struct kmem_cache_node
*n
;
2752 INIT_LIST_HEAD(&page
->lru
);
2753 n
= get_node(cachep
, page_to_nid(page
));
2755 spin_lock(&n
->list_lock
);
2757 list_add_tail(&page
->lru
, &(n
->slabs_free
));
2759 fixup_slab_list(cachep
, n
, page
, &list
);
2762 STATS_INC_GROWN(cachep
);
2763 n
->free_objects
+= cachep
->num
- page
->active
;
2764 spin_unlock(&n
->list_lock
);
2766 fixup_objfreelist_debug(cachep
, &list
);
2772 * Perform extra freeing checks:
2773 * - detect bad pointers.
2774 * - POISON/RED_ZONE checking
2776 static void kfree_debugcheck(const void *objp
)
2778 if (!virt_addr_valid(objp
)) {
2779 pr_err("kfree_debugcheck: out of range ptr %lxh\n",
2780 (unsigned long)objp
);
2785 static inline void verify_redzone_free(struct kmem_cache
*cache
, void *obj
)
2787 unsigned long long redzone1
, redzone2
;
2789 redzone1
= *dbg_redzone1(cache
, obj
);
2790 redzone2
= *dbg_redzone2(cache
, obj
);
2795 if (redzone1
== RED_ACTIVE
&& redzone2
== RED_ACTIVE
)
2798 if (redzone1
== RED_INACTIVE
&& redzone2
== RED_INACTIVE
)
2799 slab_error(cache
, "double free detected");
2801 slab_error(cache
, "memory outside object was overwritten");
2803 pr_err("%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
2804 obj
, redzone1
, redzone2
);
2807 static void *cache_free_debugcheck(struct kmem_cache
*cachep
, void *objp
,
2808 unsigned long caller
)
2813 BUG_ON(virt_to_cache(objp
) != cachep
);
2815 objp
-= obj_offset(cachep
);
2816 kfree_debugcheck(objp
);
2817 page
= virt_to_head_page(objp
);
2819 if (cachep
->flags
& SLAB_RED_ZONE
) {
2820 verify_redzone_free(cachep
, objp
);
2821 *dbg_redzone1(cachep
, objp
) = RED_INACTIVE
;
2822 *dbg_redzone2(cachep
, objp
) = RED_INACTIVE
;
2824 if (cachep
->flags
& SLAB_STORE_USER
) {
2825 set_store_user_dirty(cachep
);
2826 *dbg_userword(cachep
, objp
) = (void *)caller
;
2829 objnr
= obj_to_index(cachep
, page
, objp
);
2831 BUG_ON(objnr
>= cachep
->num
);
2832 BUG_ON(objp
!= index_to_obj(cachep
, page
, objnr
));
2834 if (cachep
->flags
& SLAB_POISON
) {
2835 poison_obj(cachep
, objp
, POISON_FREE
);
2836 slab_kernel_map(cachep
, objp
, 0, caller
);
2842 #define kfree_debugcheck(x) do { } while(0)
2843 #define cache_free_debugcheck(x,objp,z) (objp)
2846 static inline void fixup_objfreelist_debug(struct kmem_cache
*cachep
,
2854 objp
= next
- obj_offset(cachep
);
2855 next
= *(void **)next
;
2856 poison_obj(cachep
, objp
, POISON_FREE
);
2861 static inline void fixup_slab_list(struct kmem_cache
*cachep
,
2862 struct kmem_cache_node
*n
, struct page
*page
,
2865 /* move slabp to correct slabp list: */
2866 list_del(&page
->lru
);
2867 if (page
->active
== cachep
->num
) {
2868 list_add(&page
->lru
, &n
->slabs_full
);
2869 if (OBJFREELIST_SLAB(cachep
)) {
2871 /* Poisoning will be done without holding the lock */
2872 if (cachep
->flags
& SLAB_POISON
) {
2873 void **objp
= page
->freelist
;
2879 page
->freelist
= NULL
;
2882 list_add(&page
->lru
, &n
->slabs_partial
);
2885 /* Try to find non-pfmemalloc slab if needed */
2886 static noinline
struct page
*get_valid_first_slab(struct kmem_cache_node
*n
,
2887 struct page
*page
, bool pfmemalloc
)
2895 if (!PageSlabPfmemalloc(page
))
2898 /* No need to keep pfmemalloc slab if we have enough free objects */
2899 if (n
->free_objects
> n
->free_limit
) {
2900 ClearPageSlabPfmemalloc(page
);
2904 /* Move pfmemalloc slab to the end of list to speed up next search */
2905 list_del(&page
->lru
);
2907 list_add_tail(&page
->lru
, &n
->slabs_free
);
2909 list_add_tail(&page
->lru
, &n
->slabs_partial
);
2911 list_for_each_entry(page
, &n
->slabs_partial
, lru
) {
2912 if (!PageSlabPfmemalloc(page
))
2916 list_for_each_entry(page
, &n
->slabs_free
, lru
) {
2917 if (!PageSlabPfmemalloc(page
))
2924 static struct page
*get_first_slab(struct kmem_cache_node
*n
, bool pfmemalloc
)
2928 page
= list_first_entry_or_null(&n
->slabs_partial
,
2931 n
->free_touched
= 1;
2932 page
= list_first_entry_or_null(&n
->slabs_free
,
2936 if (sk_memalloc_socks())
2937 return get_valid_first_slab(n
, page
, pfmemalloc
);
2942 static noinline
void *cache_alloc_pfmemalloc(struct kmem_cache
*cachep
,
2943 struct kmem_cache_node
*n
, gfp_t flags
)
2949 if (!gfp_pfmemalloc_allowed(flags
))
2952 spin_lock(&n
->list_lock
);
2953 page
= get_first_slab(n
, true);
2955 spin_unlock(&n
->list_lock
);
2959 obj
= slab_get_obj(cachep
, page
);
2962 fixup_slab_list(cachep
, n
, page
, &list
);
2964 spin_unlock(&n
->list_lock
);
2965 fixup_objfreelist_debug(cachep
, &list
);
2971 * Slab list should be fixed up by fixup_slab_list() for existing slab
2972 * or cache_grow_end() for new slab
2974 static __always_inline
int alloc_block(struct kmem_cache
*cachep
,
2975 struct array_cache
*ac
, struct page
*page
, int batchcount
)
2978 * There must be at least one object available for
2981 BUG_ON(page
->active
>= cachep
->num
);
2983 while (page
->active
< cachep
->num
&& batchcount
--) {
2984 STATS_INC_ALLOCED(cachep
);
2985 STATS_INC_ACTIVE(cachep
);
2986 STATS_SET_HIGH(cachep
);
2988 ac
->entry
[ac
->avail
++] = slab_get_obj(cachep
, page
);
2994 static void *cache_alloc_refill(struct kmem_cache
*cachep
, gfp_t flags
)
2997 struct kmem_cache_node
*n
;
2998 struct array_cache
*ac
, *shared
;
3004 node
= numa_mem_id();
3006 ac
= cpu_cache_get(cachep
);
3007 batchcount
= ac
->batchcount
;
3008 if (!ac
->touched
&& batchcount
> BATCHREFILL_LIMIT
) {
3010 * If there was little recent activity on this cache, then
3011 * perform only a partial refill. Otherwise we could generate
3014 batchcount
= BATCHREFILL_LIMIT
;
3016 n
= get_node(cachep
, node
);
3018 BUG_ON(ac
->avail
> 0 || !n
);
3019 shared
= READ_ONCE(n
->shared
);
3020 if (!n
->free_objects
&& (!shared
|| !shared
->avail
))
3023 spin_lock(&n
->list_lock
);
3024 shared
= READ_ONCE(n
->shared
);
3026 /* See if we can refill from the shared array */
3027 if (shared
&& transfer_objects(ac
, shared
, batchcount
)) {
3028 shared
->touched
= 1;
3032 while (batchcount
> 0) {
3033 /* Get slab alloc is to come from. */
3034 page
= get_first_slab(n
, false);
3038 check_spinlock_acquired(cachep
);
3040 batchcount
= alloc_block(cachep
, ac
, page
, batchcount
);
3041 fixup_slab_list(cachep
, n
, page
, &list
);
3045 n
->free_objects
-= ac
->avail
;
3047 spin_unlock(&n
->list_lock
);
3048 fixup_objfreelist_debug(cachep
, &list
);
3051 if (unlikely(!ac
->avail
)) {
3052 /* Check if we can use obj in pfmemalloc slab */
3053 if (sk_memalloc_socks()) {
3054 void *obj
= cache_alloc_pfmemalloc(cachep
, n
, flags
);
3060 page
= cache_grow_begin(cachep
, gfp_exact_node(flags
), node
);
3063 * cache_grow_begin() can reenable interrupts,
3064 * then ac could change.
3066 ac
= cpu_cache_get(cachep
);
3067 if (!ac
->avail
&& page
)
3068 alloc_block(cachep
, ac
, page
, batchcount
);
3069 cache_grow_end(cachep
, page
);
3076 return ac
->entry
[--ac
->avail
];
3079 static inline void cache_alloc_debugcheck_before(struct kmem_cache
*cachep
,
3082 might_sleep_if(gfpflags_allow_blocking(flags
));
3086 static void *cache_alloc_debugcheck_after(struct kmem_cache
*cachep
,
3087 gfp_t flags
, void *objp
, unsigned long caller
)
3091 if (cachep
->flags
& SLAB_POISON
) {
3092 check_poison_obj(cachep
, objp
);
3093 slab_kernel_map(cachep
, objp
, 1, 0);
3094 poison_obj(cachep
, objp
, POISON_INUSE
);
3096 if (cachep
->flags
& SLAB_STORE_USER
)
3097 *dbg_userword(cachep
, objp
) = (void *)caller
;
3099 if (cachep
->flags
& SLAB_RED_ZONE
) {
3100 if (*dbg_redzone1(cachep
, objp
) != RED_INACTIVE
||
3101 *dbg_redzone2(cachep
, objp
) != RED_INACTIVE
) {
3102 slab_error(cachep
, "double free, or memory outside object was overwritten");
3103 pr_err("%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
3104 objp
, *dbg_redzone1(cachep
, objp
),
3105 *dbg_redzone2(cachep
, objp
));
3107 *dbg_redzone1(cachep
, objp
) = RED_ACTIVE
;
3108 *dbg_redzone2(cachep
, objp
) = RED_ACTIVE
;
3111 objp
+= obj_offset(cachep
);
3112 if (cachep
->ctor
&& cachep
->flags
& SLAB_POISON
)
3114 if (ARCH_SLAB_MINALIGN
&&
3115 ((unsigned long)objp
& (ARCH_SLAB_MINALIGN
-1))) {
3116 pr_err("0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3117 objp
, (int)ARCH_SLAB_MINALIGN
);
3122 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3125 static inline void *____cache_alloc(struct kmem_cache
*cachep
, gfp_t flags
)
3128 struct array_cache
*ac
;
3132 ac
= cpu_cache_get(cachep
);
3133 if (likely(ac
->avail
)) {
3135 objp
= ac
->entry
[--ac
->avail
];
3137 STATS_INC_ALLOCHIT(cachep
);
3141 STATS_INC_ALLOCMISS(cachep
);
3142 objp
= cache_alloc_refill(cachep
, flags
);
3144 * the 'ac' may be updated by cache_alloc_refill(),
3145 * and kmemleak_erase() requires its correct value.
3147 ac
= cpu_cache_get(cachep
);
3151 * To avoid a false negative, if an object that is in one of the
3152 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3153 * treat the array pointers as a reference to the object.
3156 kmemleak_erase(&ac
->entry
[ac
->avail
]);
3162 * Try allocating on another node if PFA_SPREAD_SLAB is a mempolicy is set.
3164 * If we are in_interrupt, then process context, including cpusets and
3165 * mempolicy, may not apply and should not be used for allocation policy.
3167 static void *alternate_node_alloc(struct kmem_cache
*cachep
, gfp_t flags
)
3169 int nid_alloc
, nid_here
;
3171 if (in_interrupt() || (flags
& __GFP_THISNODE
))
3173 nid_alloc
= nid_here
= numa_mem_id();
3174 if (cpuset_do_slab_mem_spread() && (cachep
->flags
& SLAB_MEM_SPREAD
))
3175 nid_alloc
= cpuset_slab_spread_node();
3176 else if (current
->mempolicy
)
3177 nid_alloc
= mempolicy_slab_node();
3178 if (nid_alloc
!= nid_here
)
3179 return ____cache_alloc_node(cachep
, flags
, nid_alloc
);
3184 * Fallback function if there was no memory available and no objects on a
3185 * certain node and fall back is permitted. First we scan all the
3186 * available node for available objects. If that fails then we
3187 * perform an allocation without specifying a node. This allows the page
3188 * allocator to do its reclaim / fallback magic. We then insert the
3189 * slab into the proper nodelist and then allocate from it.
3191 static void *fallback_alloc(struct kmem_cache
*cache
, gfp_t flags
)
3193 struct zonelist
*zonelist
;
3196 enum zone_type high_zoneidx
= gfp_zone(flags
);
3200 unsigned int cpuset_mems_cookie
;
3202 if (flags
& __GFP_THISNODE
)
3206 cpuset_mems_cookie
= read_mems_allowed_begin();
3207 zonelist
= node_zonelist(mempolicy_slab_node(), flags
);
3211 * Look through allowed nodes for objects available
3212 * from existing per node queues.
3214 for_each_zone_zonelist(zone
, z
, zonelist
, high_zoneidx
) {
3215 nid
= zone_to_nid(zone
);
3217 if (cpuset_zone_allowed(zone
, flags
) &&
3218 get_node(cache
, nid
) &&
3219 get_node(cache
, nid
)->free_objects
) {
3220 obj
= ____cache_alloc_node(cache
,
3221 gfp_exact_node(flags
), nid
);
3229 * This allocation will be performed within the constraints
3230 * of the current cpuset / memory policy requirements.
3231 * We may trigger various forms of reclaim on the allowed
3232 * set and go into memory reserves if necessary.
3234 page
= cache_grow_begin(cache
, flags
, numa_mem_id());
3235 cache_grow_end(cache
, page
);
3237 nid
= page_to_nid(page
);
3238 obj
= ____cache_alloc_node(cache
,
3239 gfp_exact_node(flags
), nid
);
3242 * Another processor may allocate the objects in
3243 * the slab since we are not holding any locks.
3250 if (unlikely(!obj
&& read_mems_allowed_retry(cpuset_mems_cookie
)))
3256 * A interface to enable slab creation on nodeid
3258 static void *____cache_alloc_node(struct kmem_cache
*cachep
, gfp_t flags
,
3262 struct kmem_cache_node
*n
;
3266 VM_BUG_ON(nodeid
< 0 || nodeid
>= MAX_NUMNODES
);
3267 n
= get_node(cachep
, nodeid
);
3271 spin_lock(&n
->list_lock
);
3272 page
= get_first_slab(n
, false);
3276 check_spinlock_acquired_node(cachep
, nodeid
);
3278 STATS_INC_NODEALLOCS(cachep
);
3279 STATS_INC_ACTIVE(cachep
);
3280 STATS_SET_HIGH(cachep
);
3282 BUG_ON(page
->active
== cachep
->num
);
3284 obj
= slab_get_obj(cachep
, page
);
3287 fixup_slab_list(cachep
, n
, page
, &list
);
3289 spin_unlock(&n
->list_lock
);
3290 fixup_objfreelist_debug(cachep
, &list
);
3294 spin_unlock(&n
->list_lock
);
3295 page
= cache_grow_begin(cachep
, gfp_exact_node(flags
), nodeid
);
3297 /* This slab isn't counted yet so don't update free_objects */
3298 obj
= slab_get_obj(cachep
, page
);
3300 cache_grow_end(cachep
, page
);
3302 return obj
? obj
: fallback_alloc(cachep
, flags
);
3305 static __always_inline
void *
3306 slab_alloc_node(struct kmem_cache
*cachep
, gfp_t flags
, int nodeid
,
3307 unsigned long caller
)
3309 unsigned long save_flags
;
3311 int slab_node
= numa_mem_id();
3313 flags
&= gfp_allowed_mask
;
3314 cachep
= slab_pre_alloc_hook(cachep
, flags
);
3315 if (unlikely(!cachep
))
3318 cache_alloc_debugcheck_before(cachep
, flags
);
3319 local_irq_save(save_flags
);
3321 if (nodeid
== NUMA_NO_NODE
)
3324 if (unlikely(!get_node(cachep
, nodeid
))) {
3325 /* Node not bootstrapped yet */
3326 ptr
= fallback_alloc(cachep
, flags
);
3330 if (nodeid
== slab_node
) {
3332 * Use the locally cached objects if possible.
3333 * However ____cache_alloc does not allow fallback
3334 * to other nodes. It may fail while we still have
3335 * objects on other nodes available.
3337 ptr
= ____cache_alloc(cachep
, flags
);
3341 /* ___cache_alloc_node can fall back to other nodes */
3342 ptr
= ____cache_alloc_node(cachep
, flags
, nodeid
);
3344 local_irq_restore(save_flags
);
3345 ptr
= cache_alloc_debugcheck_after(cachep
, flags
, ptr
, caller
);
3347 if (unlikely(flags
& __GFP_ZERO
) && ptr
)
3348 memset(ptr
, 0, cachep
->object_size
);
3350 slab_post_alloc_hook(cachep
, flags
, 1, &ptr
);
3354 static __always_inline
void *
3355 __do_cache_alloc(struct kmem_cache
*cache
, gfp_t flags
)
3359 if (current
->mempolicy
|| cpuset_do_slab_mem_spread()) {
3360 objp
= alternate_node_alloc(cache
, flags
);
3364 objp
= ____cache_alloc(cache
, flags
);
3367 * We may just have run out of memory on the local node.
3368 * ____cache_alloc_node() knows how to locate memory on other nodes
3371 objp
= ____cache_alloc_node(cache
, flags
, numa_mem_id());
3378 static __always_inline
void *
3379 __do_cache_alloc(struct kmem_cache
*cachep
, gfp_t flags
)
3381 return ____cache_alloc(cachep
, flags
);
3384 #endif /* CONFIG_NUMA */
3386 static __always_inline
void *
3387 slab_alloc(struct kmem_cache
*cachep
, gfp_t flags
, unsigned long caller
)
3389 unsigned long save_flags
;
3392 flags
&= gfp_allowed_mask
;
3393 cachep
= slab_pre_alloc_hook(cachep
, flags
);
3394 if (unlikely(!cachep
))
3397 cache_alloc_debugcheck_before(cachep
, flags
);
3398 local_irq_save(save_flags
);
3399 objp
= __do_cache_alloc(cachep
, flags
);
3400 local_irq_restore(save_flags
);
3401 objp
= cache_alloc_debugcheck_after(cachep
, flags
, objp
, caller
);
3404 if (unlikely(flags
& __GFP_ZERO
) && objp
)
3405 memset(objp
, 0, cachep
->object_size
);
3407 slab_post_alloc_hook(cachep
, flags
, 1, &objp
);
3412 * Caller needs to acquire correct kmem_cache_node's list_lock
3413 * @list: List of detached free slabs should be freed by caller
3415 static void free_block(struct kmem_cache
*cachep
, void **objpp
,
3416 int nr_objects
, int node
, struct list_head
*list
)
3419 struct kmem_cache_node
*n
= get_node(cachep
, node
);
3422 n
->free_objects
+= nr_objects
;
3424 for (i
= 0; i
< nr_objects
; i
++) {
3430 page
= virt_to_head_page(objp
);
3431 list_del(&page
->lru
);
3432 check_spinlock_acquired_node(cachep
, node
);
3433 slab_put_obj(cachep
, page
, objp
);
3434 STATS_DEC_ACTIVE(cachep
);
3436 /* fixup slab chains */
3437 if (page
->active
== 0)
3438 list_add(&page
->lru
, &n
->slabs_free
);
3440 /* Unconditionally move a slab to the end of the
3441 * partial list on free - maximum time for the
3442 * other objects to be freed, too.
3444 list_add_tail(&page
->lru
, &n
->slabs_partial
);
3448 while (n
->free_objects
> n
->free_limit
&& !list_empty(&n
->slabs_free
)) {
3449 n
->free_objects
-= cachep
->num
;
3451 page
= list_last_entry(&n
->slabs_free
, struct page
, lru
);
3452 list_move(&page
->lru
, list
);
3457 static void cache_flusharray(struct kmem_cache
*cachep
, struct array_cache
*ac
)
3460 struct kmem_cache_node
*n
;
3461 int node
= numa_mem_id();
3464 batchcount
= ac
->batchcount
;
3467 n
= get_node(cachep
, node
);
3468 spin_lock(&n
->list_lock
);
3470 struct array_cache
*shared_array
= n
->shared
;
3471 int max
= shared_array
->limit
- shared_array
->avail
;
3473 if (batchcount
> max
)
3475 memcpy(&(shared_array
->entry
[shared_array
->avail
]),
3476 ac
->entry
, sizeof(void *) * batchcount
);
3477 shared_array
->avail
+= batchcount
;
3482 free_block(cachep
, ac
->entry
, batchcount
, node
, &list
);
3489 list_for_each_entry(page
, &n
->slabs_free
, lru
) {
3490 BUG_ON(page
->active
);
3494 STATS_SET_FREEABLE(cachep
, i
);
3497 spin_unlock(&n
->list_lock
);
3498 slabs_destroy(cachep
, &list
);
3499 ac
->avail
-= batchcount
;
3500 memmove(ac
->entry
, &(ac
->entry
[batchcount
]), sizeof(void *)*ac
->avail
);
3504 * Release an obj back to its cache. If the obj has a constructed state, it must
3505 * be in this state _before_ it is released. Called with disabled ints.
3507 static inline void __cache_free(struct kmem_cache
*cachep
, void *objp
,
3508 unsigned long caller
)
3510 /* Put the object into the quarantine, don't touch it for now. */
3511 if (kasan_slab_free(cachep
, objp
))
3514 ___cache_free(cachep
, objp
, caller
);
3517 void ___cache_free(struct kmem_cache
*cachep
, void *objp
,
3518 unsigned long caller
)
3520 struct array_cache
*ac
= cpu_cache_get(cachep
);
3523 kmemleak_free_recursive(objp
, cachep
->flags
);
3524 objp
= cache_free_debugcheck(cachep
, objp
, caller
);
3526 kmemcheck_slab_free(cachep
, objp
, cachep
->object_size
);
3529 * Skip calling cache_free_alien() when the platform is not numa.
3530 * This will avoid cache misses that happen while accessing slabp (which
3531 * is per page memory reference) to get nodeid. Instead use a global
3532 * variable to skip the call, which is mostly likely to be present in
3535 if (nr_online_nodes
> 1 && cache_free_alien(cachep
, objp
))
3538 if (ac
->avail
< ac
->limit
) {
3539 STATS_INC_FREEHIT(cachep
);
3541 STATS_INC_FREEMISS(cachep
);
3542 cache_flusharray(cachep
, ac
);
3545 if (sk_memalloc_socks()) {
3546 struct page
*page
= virt_to_head_page(objp
);
3548 if (unlikely(PageSlabPfmemalloc(page
))) {
3549 cache_free_pfmemalloc(cachep
, page
, objp
);
3554 ac
->entry
[ac
->avail
++] = objp
;
3558 * kmem_cache_alloc - Allocate an object
3559 * @cachep: The cache to allocate from.
3560 * @flags: See kmalloc().
3562 * Allocate an object from this cache. The flags are only relevant
3563 * if the cache has no available objects.
3565 void *kmem_cache_alloc(struct kmem_cache
*cachep
, gfp_t flags
)
3567 void *ret
= slab_alloc(cachep
, flags
, _RET_IP_
);
3569 kasan_slab_alloc(cachep
, ret
, flags
);
3570 trace_kmem_cache_alloc(_RET_IP_
, ret
,
3571 cachep
->object_size
, cachep
->size
, flags
);
3575 EXPORT_SYMBOL(kmem_cache_alloc
);
3577 static __always_inline
void
3578 cache_alloc_debugcheck_after_bulk(struct kmem_cache
*s
, gfp_t flags
,
3579 size_t size
, void **p
, unsigned long caller
)
3583 for (i
= 0; i
< size
; i
++)
3584 p
[i
] = cache_alloc_debugcheck_after(s
, flags
, p
[i
], caller
);
3587 int kmem_cache_alloc_bulk(struct kmem_cache
*s
, gfp_t flags
, size_t size
,
3592 s
= slab_pre_alloc_hook(s
, flags
);
3596 cache_alloc_debugcheck_before(s
, flags
);
3598 local_irq_disable();
3599 for (i
= 0; i
< size
; i
++) {
3600 void *objp
= __do_cache_alloc(s
, flags
);
3602 if (unlikely(!objp
))
3608 cache_alloc_debugcheck_after_bulk(s
, flags
, size
, p
, _RET_IP_
);
3610 /* Clear memory outside IRQ disabled section */
3611 if (unlikely(flags
& __GFP_ZERO
))
3612 for (i
= 0; i
< size
; i
++)
3613 memset(p
[i
], 0, s
->object_size
);
3615 slab_post_alloc_hook(s
, flags
, size
, p
);
3616 /* FIXME: Trace call missing. Christoph would like a bulk variant */
3620 cache_alloc_debugcheck_after_bulk(s
, flags
, i
, p
, _RET_IP_
);
3621 slab_post_alloc_hook(s
, flags
, i
, p
);
3622 __kmem_cache_free_bulk(s
, i
, p
);
3625 EXPORT_SYMBOL(kmem_cache_alloc_bulk
);
3627 #ifdef CONFIG_TRACING
3629 kmem_cache_alloc_trace(struct kmem_cache
*cachep
, gfp_t flags
, size_t size
)
3633 ret
= slab_alloc(cachep
, flags
, _RET_IP_
);
3635 kasan_kmalloc(cachep
, ret
, size
, flags
);
3636 trace_kmalloc(_RET_IP_
, ret
,
3637 size
, cachep
->size
, flags
);
3640 EXPORT_SYMBOL(kmem_cache_alloc_trace
);
3645 * kmem_cache_alloc_node - Allocate an object on the specified node
3646 * @cachep: The cache to allocate from.
3647 * @flags: See kmalloc().
3648 * @nodeid: node number of the target node.
3650 * Identical to kmem_cache_alloc but it will allocate memory on the given
3651 * node, which can improve the performance for cpu bound structures.
3653 * Fallback to other node is possible if __GFP_THISNODE is not set.
3655 void *kmem_cache_alloc_node(struct kmem_cache
*cachep
, gfp_t flags
, int nodeid
)
3657 void *ret
= slab_alloc_node(cachep
, flags
, nodeid
, _RET_IP_
);
3659 kasan_slab_alloc(cachep
, ret
, flags
);
3660 trace_kmem_cache_alloc_node(_RET_IP_
, ret
,
3661 cachep
->object_size
, cachep
->size
,
3666 EXPORT_SYMBOL(kmem_cache_alloc_node
);
3668 #ifdef CONFIG_TRACING
3669 void *kmem_cache_alloc_node_trace(struct kmem_cache
*cachep
,
3676 ret
= slab_alloc_node(cachep
, flags
, nodeid
, _RET_IP_
);
3678 kasan_kmalloc(cachep
, ret
, size
, flags
);
3679 trace_kmalloc_node(_RET_IP_
, ret
,
3684 EXPORT_SYMBOL(kmem_cache_alloc_node_trace
);
3687 static __always_inline
void *
3688 __do_kmalloc_node(size_t size
, gfp_t flags
, int node
, unsigned long caller
)
3690 struct kmem_cache
*cachep
;
3693 cachep
= kmalloc_slab(size
, flags
);
3694 if (unlikely(ZERO_OR_NULL_PTR(cachep
)))
3696 ret
= kmem_cache_alloc_node_trace(cachep
, flags
, node
, size
);
3697 kasan_kmalloc(cachep
, ret
, size
, flags
);
3702 void *__kmalloc_node(size_t size
, gfp_t flags
, int node
)
3704 return __do_kmalloc_node(size
, flags
, node
, _RET_IP_
);
3706 EXPORT_SYMBOL(__kmalloc_node
);
3708 void *__kmalloc_node_track_caller(size_t size
, gfp_t flags
,
3709 int node
, unsigned long caller
)
3711 return __do_kmalloc_node(size
, flags
, node
, caller
);
3713 EXPORT_SYMBOL(__kmalloc_node_track_caller
);
3714 #endif /* CONFIG_NUMA */
3717 * __do_kmalloc - allocate memory
3718 * @size: how many bytes of memory are required.
3719 * @flags: the type of memory to allocate (see kmalloc).
3720 * @caller: function caller for debug tracking of the caller
3722 static __always_inline
void *__do_kmalloc(size_t size
, gfp_t flags
,
3723 unsigned long caller
)
3725 struct kmem_cache
*cachep
;
3728 cachep
= kmalloc_slab(size
, flags
);
3729 if (unlikely(ZERO_OR_NULL_PTR(cachep
)))
3731 ret
= slab_alloc(cachep
, flags
, caller
);
3733 kasan_kmalloc(cachep
, ret
, size
, flags
);
3734 trace_kmalloc(caller
, ret
,
3735 size
, cachep
->size
, flags
);
3740 void *__kmalloc(size_t size
, gfp_t flags
)
3742 return __do_kmalloc(size
, flags
, _RET_IP_
);
3744 EXPORT_SYMBOL(__kmalloc
);
3746 void *__kmalloc_track_caller(size_t size
, gfp_t flags
, unsigned long caller
)
3748 return __do_kmalloc(size
, flags
, caller
);
3750 EXPORT_SYMBOL(__kmalloc_track_caller
);
3753 * kmem_cache_free - Deallocate an object
3754 * @cachep: The cache the allocation was from.
3755 * @objp: The previously allocated object.
3757 * Free an object which was previously allocated from this
3760 void kmem_cache_free(struct kmem_cache
*cachep
, void *objp
)
3762 unsigned long flags
;
3763 cachep
= cache_from_obj(cachep
, objp
);
3767 local_irq_save(flags
);
3768 debug_check_no_locks_freed(objp
, cachep
->object_size
);
3769 if (!(cachep
->flags
& SLAB_DEBUG_OBJECTS
))
3770 debug_check_no_obj_freed(objp
, cachep
->object_size
);
3771 __cache_free(cachep
, objp
, _RET_IP_
);
3772 local_irq_restore(flags
);
3774 trace_kmem_cache_free(_RET_IP_
, objp
);
3776 EXPORT_SYMBOL(kmem_cache_free
);
3778 void kmem_cache_free_bulk(struct kmem_cache
*orig_s
, size_t size
, void **p
)
3780 struct kmem_cache
*s
;
3783 local_irq_disable();
3784 for (i
= 0; i
< size
; i
++) {
3787 if (!orig_s
) /* called via kfree_bulk */
3788 s
= virt_to_cache(objp
);
3790 s
= cache_from_obj(orig_s
, objp
);
3792 debug_check_no_locks_freed(objp
, s
->object_size
);
3793 if (!(s
->flags
& SLAB_DEBUG_OBJECTS
))
3794 debug_check_no_obj_freed(objp
, s
->object_size
);
3796 __cache_free(s
, objp
, _RET_IP_
);
3800 /* FIXME: add tracing */
3802 EXPORT_SYMBOL(kmem_cache_free_bulk
);
3805 * kfree - free previously allocated memory
3806 * @objp: pointer returned by kmalloc.
3808 * If @objp is NULL, no operation is performed.
3810 * Don't free memory not originally allocated by kmalloc()
3811 * or you will run into trouble.
3813 void kfree(const void *objp
)
3815 struct kmem_cache
*c
;
3816 unsigned long flags
;
3818 trace_kfree(_RET_IP_
, objp
);
3820 if (unlikely(ZERO_OR_NULL_PTR(objp
)))
3822 local_irq_save(flags
);
3823 kfree_debugcheck(objp
);
3824 c
= virt_to_cache(objp
);
3825 debug_check_no_locks_freed(objp
, c
->object_size
);
3827 debug_check_no_obj_freed(objp
, c
->object_size
);
3828 __cache_free(c
, (void *)objp
, _RET_IP_
);
3829 local_irq_restore(flags
);
3831 EXPORT_SYMBOL(kfree
);
3834 * This initializes kmem_cache_node or resizes various caches for all nodes.
3836 static int setup_kmem_cache_nodes(struct kmem_cache
*cachep
, gfp_t gfp
)
3840 struct kmem_cache_node
*n
;
3842 for_each_online_node(node
) {
3843 ret
= setup_kmem_cache_node(cachep
, node
, gfp
, true);
3852 if (!cachep
->list
.next
) {
3853 /* Cache is not active yet. Roll back what we did */
3856 n
= get_node(cachep
, node
);
3859 free_alien_cache(n
->alien
);
3861 cachep
->node
[node
] = NULL
;
3869 /* Always called with the slab_mutex held */
3870 static int __do_tune_cpucache(struct kmem_cache
*cachep
, int limit
,
3871 int batchcount
, int shared
, gfp_t gfp
)
3873 struct array_cache __percpu
*cpu_cache
, *prev
;
3876 cpu_cache
= alloc_kmem_cache_cpus(cachep
, limit
, batchcount
);
3880 prev
= cachep
->cpu_cache
;
3881 cachep
->cpu_cache
= cpu_cache
;
3882 kick_all_cpus_sync();
3885 cachep
->batchcount
= batchcount
;
3886 cachep
->limit
= limit
;
3887 cachep
->shared
= shared
;
3892 for_each_online_cpu(cpu
) {
3895 struct kmem_cache_node
*n
;
3896 struct array_cache
*ac
= per_cpu_ptr(prev
, cpu
);
3898 node
= cpu_to_mem(cpu
);
3899 n
= get_node(cachep
, node
);
3900 spin_lock_irq(&n
->list_lock
);
3901 free_block(cachep
, ac
->entry
, ac
->avail
, node
, &list
);
3902 spin_unlock_irq(&n
->list_lock
);
3903 slabs_destroy(cachep
, &list
);
3908 return setup_kmem_cache_nodes(cachep
, gfp
);
3911 static int do_tune_cpucache(struct kmem_cache
*cachep
, int limit
,
3912 int batchcount
, int shared
, gfp_t gfp
)
3915 struct kmem_cache
*c
;
3917 ret
= __do_tune_cpucache(cachep
, limit
, batchcount
, shared
, gfp
);
3919 if (slab_state
< FULL
)
3922 if ((ret
< 0) || !is_root_cache(cachep
))
3925 lockdep_assert_held(&slab_mutex
);
3926 for_each_memcg_cache(c
, cachep
) {
3927 /* return value determined by the root cache only */
3928 __do_tune_cpucache(c
, limit
, batchcount
, shared
, gfp
);
3934 /* Called with slab_mutex held always */
3935 static int enable_cpucache(struct kmem_cache
*cachep
, gfp_t gfp
)
3942 err
= cache_random_seq_create(cachep
, cachep
->num
, gfp
);
3946 if (!is_root_cache(cachep
)) {
3947 struct kmem_cache
*root
= memcg_root_cache(cachep
);
3948 limit
= root
->limit
;
3949 shared
= root
->shared
;
3950 batchcount
= root
->batchcount
;
3953 if (limit
&& shared
&& batchcount
)
3956 * The head array serves three purposes:
3957 * - create a LIFO ordering, i.e. return objects that are cache-warm
3958 * - reduce the number of spinlock operations.
3959 * - reduce the number of linked list operations on the slab and
3960 * bufctl chains: array operations are cheaper.
3961 * The numbers are guessed, we should auto-tune as described by
3964 if (cachep
->size
> 131072)
3966 else if (cachep
->size
> PAGE_SIZE
)
3968 else if (cachep
->size
> 1024)
3970 else if (cachep
->size
> 256)
3976 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
3977 * allocation behaviour: Most allocs on one cpu, most free operations
3978 * on another cpu. For these cases, an efficient object passing between
3979 * cpus is necessary. This is provided by a shared array. The array
3980 * replaces Bonwick's magazine layer.
3981 * On uniprocessor, it's functionally equivalent (but less efficient)
3982 * to a larger limit. Thus disabled by default.
3985 if (cachep
->size
<= PAGE_SIZE
&& num_possible_cpus() > 1)
3990 * With debugging enabled, large batchcount lead to excessively long
3991 * periods with disabled local interrupts. Limit the batchcount
3996 batchcount
= (limit
+ 1) / 2;
3998 err
= do_tune_cpucache(cachep
, limit
, batchcount
, shared
, gfp
);
4001 pr_err("enable_cpucache failed for %s, error %d\n",
4002 cachep
->name
, -err
);
4007 * Drain an array if it contains any elements taking the node lock only if
4008 * necessary. Note that the node listlock also protects the array_cache
4009 * if drain_array() is used on the shared array.
4011 static void drain_array(struct kmem_cache
*cachep
, struct kmem_cache_node
*n
,
4012 struct array_cache
*ac
, int node
)
4016 /* ac from n->shared can be freed if we don't hold the slab_mutex. */
4017 check_mutex_acquired();
4019 if (!ac
|| !ac
->avail
)
4027 spin_lock_irq(&n
->list_lock
);
4028 drain_array_locked(cachep
, ac
, node
, false, &list
);
4029 spin_unlock_irq(&n
->list_lock
);
4031 slabs_destroy(cachep
, &list
);
4035 * cache_reap - Reclaim memory from caches.
4036 * @w: work descriptor
4038 * Called from workqueue/eventd every few seconds.
4040 * - clear the per-cpu caches for this CPU.
4041 * - return freeable pages to the main free memory pool.
4043 * If we cannot acquire the cache chain mutex then just give up - we'll try
4044 * again on the next iteration.
4046 static void cache_reap(struct work_struct
*w
)
4048 struct kmem_cache
*searchp
;
4049 struct kmem_cache_node
*n
;
4050 int node
= numa_mem_id();
4051 struct delayed_work
*work
= to_delayed_work(w
);
4053 if (!mutex_trylock(&slab_mutex
))
4054 /* Give up. Setup the next iteration. */
4057 list_for_each_entry(searchp
, &slab_caches
, list
) {
4061 * We only take the node lock if absolutely necessary and we
4062 * have established with reasonable certainty that
4063 * we can do some work if the lock was obtained.
4065 n
= get_node(searchp
, node
);
4067 reap_alien(searchp
, n
);
4069 drain_array(searchp
, n
, cpu_cache_get(searchp
), node
);
4072 * These are racy checks but it does not matter
4073 * if we skip one check or scan twice.
4075 if (time_after(n
->next_reap
, jiffies
))
4078 n
->next_reap
= jiffies
+ REAPTIMEOUT_NODE
;
4080 drain_array(searchp
, n
, n
->shared
, node
);
4082 if (n
->free_touched
)
4083 n
->free_touched
= 0;
4087 freed
= drain_freelist(searchp
, n
, (n
->free_limit
+
4088 5 * searchp
->num
- 1) / (5 * searchp
->num
));
4089 STATS_ADD_REAPED(searchp
, freed
);
4095 mutex_unlock(&slab_mutex
);
4098 /* Set up the next iteration */
4099 schedule_delayed_work(work
, round_jiffies_relative(REAPTIMEOUT_AC
));
4102 #ifdef CONFIG_SLABINFO
4103 void get_slabinfo(struct kmem_cache
*cachep
, struct slabinfo
*sinfo
)
4106 unsigned long active_objs
;
4107 unsigned long num_objs
;
4108 unsigned long active_slabs
= 0;
4109 unsigned long num_slabs
, free_objects
= 0, shared_avail
= 0;
4110 unsigned long num_slabs_partial
= 0, num_slabs_free
= 0;
4111 unsigned long num_slabs_full
= 0;
4115 struct kmem_cache_node
*n
;
4119 for_each_kmem_cache_node(cachep
, node
, n
) {
4122 spin_lock_irq(&n
->list_lock
);
4124 num_slabs
+= n
->num_slabs
;
4126 list_for_each_entry(page
, &n
->slabs_partial
, lru
) {
4127 if (page
->active
== cachep
->num
&& !error
)
4128 error
= "slabs_partial accounting error";
4129 if (!page
->active
&& !error
)
4130 error
= "slabs_partial accounting error";
4131 active_objs
+= page
->active
;
4132 num_slabs_partial
++;
4135 list_for_each_entry(page
, &n
->slabs_free
, lru
) {
4136 if (page
->active
&& !error
)
4137 error
= "slabs_free accounting error";
4141 free_objects
+= n
->free_objects
;
4143 shared_avail
+= n
->shared
->avail
;
4145 spin_unlock_irq(&n
->list_lock
);
4147 num_objs
= num_slabs
* cachep
->num
;
4148 active_slabs
= num_slabs
- num_slabs_free
;
4149 num_slabs_full
= num_slabs
- (num_slabs_partial
+ num_slabs_free
);
4150 active_objs
+= (num_slabs_full
* cachep
->num
);
4152 if (num_objs
- active_objs
!= free_objects
&& !error
)
4153 error
= "free_objects accounting error";
4155 name
= cachep
->name
;
4157 pr_err("slab: cache %s error: %s\n", name
, error
);
4159 sinfo
->active_objs
= active_objs
;
4160 sinfo
->num_objs
= num_objs
;
4161 sinfo
->active_slabs
= active_slabs
;
4162 sinfo
->num_slabs
= num_slabs
;
4163 sinfo
->shared_avail
= shared_avail
;
4164 sinfo
->limit
= cachep
->limit
;
4165 sinfo
->batchcount
= cachep
->batchcount
;
4166 sinfo
->shared
= cachep
->shared
;
4167 sinfo
->objects_per_slab
= cachep
->num
;
4168 sinfo
->cache_order
= cachep
->gfporder
;
4171 void slabinfo_show_stats(struct seq_file
*m
, struct kmem_cache
*cachep
)
4175 unsigned long high
= cachep
->high_mark
;
4176 unsigned long allocs
= cachep
->num_allocations
;
4177 unsigned long grown
= cachep
->grown
;
4178 unsigned long reaped
= cachep
->reaped
;
4179 unsigned long errors
= cachep
->errors
;
4180 unsigned long max_freeable
= cachep
->max_freeable
;
4181 unsigned long node_allocs
= cachep
->node_allocs
;
4182 unsigned long node_frees
= cachep
->node_frees
;
4183 unsigned long overflows
= cachep
->node_overflow
;
4185 seq_printf(m
, " : globalstat %7lu %6lu %5lu %4lu %4lu %4lu %4lu %4lu %4lu",
4186 allocs
, high
, grown
,
4187 reaped
, errors
, max_freeable
, node_allocs
,
4188 node_frees
, overflows
);
4192 unsigned long allochit
= atomic_read(&cachep
->allochit
);
4193 unsigned long allocmiss
= atomic_read(&cachep
->allocmiss
);
4194 unsigned long freehit
= atomic_read(&cachep
->freehit
);
4195 unsigned long freemiss
= atomic_read(&cachep
->freemiss
);
4197 seq_printf(m
, " : cpustat %6lu %6lu %6lu %6lu",
4198 allochit
, allocmiss
, freehit
, freemiss
);
4203 #define MAX_SLABINFO_WRITE 128
4205 * slabinfo_write - Tuning for the slab allocator
4207 * @buffer: user buffer
4208 * @count: data length
4211 ssize_t
slabinfo_write(struct file
*file
, const char __user
*buffer
,
4212 size_t count
, loff_t
*ppos
)
4214 char kbuf
[MAX_SLABINFO_WRITE
+ 1], *tmp
;
4215 int limit
, batchcount
, shared
, res
;
4216 struct kmem_cache
*cachep
;
4218 if (count
> MAX_SLABINFO_WRITE
)
4220 if (copy_from_user(&kbuf
, buffer
, count
))
4222 kbuf
[MAX_SLABINFO_WRITE
] = '\0';
4224 tmp
= strchr(kbuf
, ' ');
4229 if (sscanf(tmp
, " %d %d %d", &limit
, &batchcount
, &shared
) != 3)
4232 /* Find the cache in the chain of caches. */
4233 mutex_lock(&slab_mutex
);
4235 list_for_each_entry(cachep
, &slab_caches
, list
) {
4236 if (!strcmp(cachep
->name
, kbuf
)) {
4237 if (limit
< 1 || batchcount
< 1 ||
4238 batchcount
> limit
|| shared
< 0) {
4241 res
= do_tune_cpucache(cachep
, limit
,
4248 mutex_unlock(&slab_mutex
);
4254 #ifdef CONFIG_DEBUG_SLAB_LEAK
4256 static inline int add_caller(unsigned long *n
, unsigned long v
)
4266 unsigned long *q
= p
+ 2 * i
;
4280 memmove(p
+ 2, p
, n
[1] * 2 * sizeof(unsigned long) - ((void *)p
- (void *)n
));
4286 static void handle_slab(unsigned long *n
, struct kmem_cache
*c
,
4295 for (i
= 0, p
= page
->s_mem
; i
< c
->num
; i
++, p
+= c
->size
) {
4298 for (j
= page
->active
; j
< c
->num
; j
++) {
4299 if (get_free_obj(page
, j
) == i
) {
4309 * probe_kernel_read() is used for DEBUG_PAGEALLOC. page table
4310 * mapping is established when actual object allocation and
4311 * we could mistakenly access the unmapped object in the cpu
4314 if (probe_kernel_read(&v
, dbg_userword(c
, p
), sizeof(v
)))
4317 if (!add_caller(n
, v
))
4322 static void show_symbol(struct seq_file
*m
, unsigned long address
)
4324 #ifdef CONFIG_KALLSYMS
4325 unsigned long offset
, size
;
4326 char modname
[MODULE_NAME_LEN
], name
[KSYM_NAME_LEN
];
4328 if (lookup_symbol_attrs(address
, &size
, &offset
, modname
, name
) == 0) {
4329 seq_printf(m
, "%s+%#lx/%#lx", name
, offset
, size
);
4331 seq_printf(m
, " [%s]", modname
);
4335 seq_printf(m
, "%p", (void *)address
);
4338 static int leaks_show(struct seq_file
*m
, void *p
)
4340 struct kmem_cache
*cachep
= list_entry(p
, struct kmem_cache
, list
);
4342 struct kmem_cache_node
*n
;
4344 unsigned long *x
= m
->private;
4348 if (!(cachep
->flags
& SLAB_STORE_USER
))
4350 if (!(cachep
->flags
& SLAB_RED_ZONE
))
4354 * Set store_user_clean and start to grab stored user information
4355 * for all objects on this cache. If some alloc/free requests comes
4356 * during the processing, information would be wrong so restart
4360 set_store_user_clean(cachep
);
4361 drain_cpu_caches(cachep
);
4365 for_each_kmem_cache_node(cachep
, node
, n
) {
4368 spin_lock_irq(&n
->list_lock
);
4370 list_for_each_entry(page
, &n
->slabs_full
, lru
)
4371 handle_slab(x
, cachep
, page
);
4372 list_for_each_entry(page
, &n
->slabs_partial
, lru
)
4373 handle_slab(x
, cachep
, page
);
4374 spin_unlock_irq(&n
->list_lock
);
4376 } while (!is_store_user_clean(cachep
));
4378 name
= cachep
->name
;
4380 /* Increase the buffer size */
4381 mutex_unlock(&slab_mutex
);
4382 m
->private = kzalloc(x
[0] * 4 * sizeof(unsigned long), GFP_KERNEL
);
4384 /* Too bad, we are really out */
4386 mutex_lock(&slab_mutex
);
4389 *(unsigned long *)m
->private = x
[0] * 2;
4391 mutex_lock(&slab_mutex
);
4392 /* Now make sure this entry will be retried */
4396 for (i
= 0; i
< x
[1]; i
++) {
4397 seq_printf(m
, "%s: %lu ", name
, x
[2*i
+3]);
4398 show_symbol(m
, x
[2*i
+2]);
4405 static const struct seq_operations slabstats_op
= {
4406 .start
= slab_start
,
4412 static int slabstats_open(struct inode
*inode
, struct file
*file
)
4416 n
= __seq_open_private(file
, &slabstats_op
, PAGE_SIZE
);
4420 *n
= PAGE_SIZE
/ (2 * sizeof(unsigned long));
4425 static const struct file_operations proc_slabstats_operations
= {
4426 .open
= slabstats_open
,
4428 .llseek
= seq_lseek
,
4429 .release
= seq_release_private
,
4433 static int __init
slab_proc_init(void)
4435 #ifdef CONFIG_DEBUG_SLAB_LEAK
4436 proc_create("slab_allocators", 0, NULL
, &proc_slabstats_operations
);
4440 module_init(slab_proc_init
);
4443 #ifdef CONFIG_HARDENED_USERCOPY
4445 * Rejects objects that are incorrectly sized.
4447 * Returns NULL if check passes, otherwise const char * to name of cache
4448 * to indicate an error.
4450 const char *__check_heap_object(const void *ptr
, unsigned long n
,
4453 struct kmem_cache
*cachep
;
4455 unsigned long offset
;
4457 /* Find and validate object. */
4458 cachep
= page
->slab_cache
;
4459 objnr
= obj_to_index(cachep
, page
, (void *)ptr
);
4460 BUG_ON(objnr
>= cachep
->num
);
4462 /* Find offset within object. */
4463 offset
= ptr
- index_to_obj(cachep
, page
, objnr
) - obj_offset(cachep
);
4465 /* Allow address range falling entirely within object size. */
4466 if (offset
<= cachep
->object_size
&& n
<= cachep
->object_size
- offset
)
4469 return cachep
->name
;
4471 #endif /* CONFIG_HARDENED_USERCOPY */
4474 * ksize - get the actual amount of memory allocated for a given object
4475 * @objp: Pointer to the object
4477 * kmalloc may internally round up allocations and return more memory
4478 * than requested. ksize() can be used to determine the actual amount of
4479 * memory allocated. The caller may use this additional memory, even though
4480 * a smaller amount of memory was initially specified with the kmalloc call.
4481 * The caller must guarantee that objp points to a valid object previously
4482 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4483 * must not be freed during the duration of the call.
4485 size_t ksize(const void *objp
)
4490 if (unlikely(objp
== ZERO_SIZE_PTR
))
4493 size
= virt_to_cache(objp
)->object_size
;
4494 /* We assume that ksize callers could use the whole allocated area,
4495 * so we need to unpoison this area.
4497 kasan_unpoison_shadow(objp
, size
);
4501 EXPORT_SYMBOL(ksize
);