2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
24 #include <linux/fsnotify.h>
25 #include <linux/pagemap.h>
26 #include <linux/highmem.h>
27 #include <linux/time.h>
28 #include <linux/init.h>
29 #include <linux/string.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mount.h>
32 #include <linux/mpage.h>
33 #include <linux/namei.h>
34 #include <linux/swap.h>
35 #include <linux/writeback.h>
36 #include <linux/compat.h>
37 #include <linux/bit_spinlock.h>
38 #include <linux/security.h>
39 #include <linux/xattr.h>
41 #include <linux/slab.h>
42 #include <linux/blkdev.h>
43 #include <linux/uuid.h>
44 #include <linux/btrfs.h>
45 #include <linux/uaccess.h>
48 #include "transaction.h"
49 #include "btrfs_inode.h"
50 #include "print-tree.h"
53 #include "inode-map.h"
55 #include "rcu-string.h"
57 #include "dev-replace.h"
62 #include "compression.h"
65 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI
66 * structures are incorrect, as the timespec structure from userspace
67 * is 4 bytes too small. We define these alternatives here to teach
68 * the kernel about the 32-bit struct packing.
70 struct btrfs_ioctl_timespec_32
{
73 } __attribute__ ((__packed__
));
75 struct btrfs_ioctl_received_subvol_args_32
{
76 char uuid
[BTRFS_UUID_SIZE
]; /* in */
77 __u64 stransid
; /* in */
78 __u64 rtransid
; /* out */
79 struct btrfs_ioctl_timespec_32 stime
; /* in */
80 struct btrfs_ioctl_timespec_32 rtime
; /* out */
82 __u64 reserved
[16]; /* in */
83 } __attribute__ ((__packed__
));
85 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \
86 struct btrfs_ioctl_received_subvol_args_32)
90 static int btrfs_clone(struct inode
*src
, struct inode
*inode
,
91 u64 off
, u64 olen
, u64 olen_aligned
, u64 destoff
,
94 /* Mask out flags that are inappropriate for the given type of inode. */
95 static inline __u32
btrfs_mask_flags(umode_t mode
, __u32 flags
)
99 else if (S_ISREG(mode
))
100 return flags
& ~FS_DIRSYNC_FL
;
102 return flags
& (FS_NODUMP_FL
| FS_NOATIME_FL
);
106 * Export inode flags to the format expected by the FS_IOC_GETFLAGS ioctl.
108 static unsigned int btrfs_flags_to_ioctl(unsigned int flags
)
110 unsigned int iflags
= 0;
112 if (flags
& BTRFS_INODE_SYNC
)
113 iflags
|= FS_SYNC_FL
;
114 if (flags
& BTRFS_INODE_IMMUTABLE
)
115 iflags
|= FS_IMMUTABLE_FL
;
116 if (flags
& BTRFS_INODE_APPEND
)
117 iflags
|= FS_APPEND_FL
;
118 if (flags
& BTRFS_INODE_NODUMP
)
119 iflags
|= FS_NODUMP_FL
;
120 if (flags
& BTRFS_INODE_NOATIME
)
121 iflags
|= FS_NOATIME_FL
;
122 if (flags
& BTRFS_INODE_DIRSYNC
)
123 iflags
|= FS_DIRSYNC_FL
;
124 if (flags
& BTRFS_INODE_NODATACOW
)
125 iflags
|= FS_NOCOW_FL
;
127 if (flags
& BTRFS_INODE_NOCOMPRESS
)
128 iflags
|= FS_NOCOMP_FL
;
129 else if (flags
& BTRFS_INODE_COMPRESS
)
130 iflags
|= FS_COMPR_FL
;
136 * Update inode->i_flags based on the btrfs internal flags.
138 void btrfs_update_iflags(struct inode
*inode
)
140 struct btrfs_inode
*ip
= BTRFS_I(inode
);
141 unsigned int new_fl
= 0;
143 if (ip
->flags
& BTRFS_INODE_SYNC
)
145 if (ip
->flags
& BTRFS_INODE_IMMUTABLE
)
146 new_fl
|= S_IMMUTABLE
;
147 if (ip
->flags
& BTRFS_INODE_APPEND
)
149 if (ip
->flags
& BTRFS_INODE_NOATIME
)
151 if (ip
->flags
& BTRFS_INODE_DIRSYNC
)
154 set_mask_bits(&inode
->i_flags
,
155 S_SYNC
| S_APPEND
| S_IMMUTABLE
| S_NOATIME
| S_DIRSYNC
,
159 static int btrfs_ioctl_getflags(struct file
*file
, void __user
*arg
)
161 struct btrfs_inode
*ip
= BTRFS_I(file_inode(file
));
162 unsigned int flags
= btrfs_flags_to_ioctl(ip
->flags
);
164 if (copy_to_user(arg
, &flags
, sizeof(flags
)))
169 static int check_flags(unsigned int flags
)
171 if (flags
& ~(FS_IMMUTABLE_FL
| FS_APPEND_FL
| \
172 FS_NOATIME_FL
| FS_NODUMP_FL
| \
173 FS_SYNC_FL
| FS_DIRSYNC_FL
| \
174 FS_NOCOMP_FL
| FS_COMPR_FL
|
178 if ((flags
& FS_NOCOMP_FL
) && (flags
& FS_COMPR_FL
))
184 static int btrfs_ioctl_setflags(struct file
*file
, void __user
*arg
)
186 struct inode
*inode
= file_inode(file
);
187 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
188 struct btrfs_inode
*ip
= BTRFS_I(inode
);
189 struct btrfs_root
*root
= ip
->root
;
190 struct btrfs_trans_handle
*trans
;
191 unsigned int flags
, oldflags
;
194 unsigned int i_oldflags
;
197 if (!inode_owner_or_capable(inode
))
200 if (btrfs_root_readonly(root
))
203 if (copy_from_user(&flags
, arg
, sizeof(flags
)))
206 ret
= check_flags(flags
);
210 ret
= mnt_want_write_file(file
);
216 ip_oldflags
= ip
->flags
;
217 i_oldflags
= inode
->i_flags
;
218 mode
= inode
->i_mode
;
220 flags
= btrfs_mask_flags(inode
->i_mode
, flags
);
221 oldflags
= btrfs_flags_to_ioctl(ip
->flags
);
222 if ((flags
^ oldflags
) & (FS_APPEND_FL
| FS_IMMUTABLE_FL
)) {
223 if (!capable(CAP_LINUX_IMMUTABLE
)) {
229 if (flags
& FS_SYNC_FL
)
230 ip
->flags
|= BTRFS_INODE_SYNC
;
232 ip
->flags
&= ~BTRFS_INODE_SYNC
;
233 if (flags
& FS_IMMUTABLE_FL
)
234 ip
->flags
|= BTRFS_INODE_IMMUTABLE
;
236 ip
->flags
&= ~BTRFS_INODE_IMMUTABLE
;
237 if (flags
& FS_APPEND_FL
)
238 ip
->flags
|= BTRFS_INODE_APPEND
;
240 ip
->flags
&= ~BTRFS_INODE_APPEND
;
241 if (flags
& FS_NODUMP_FL
)
242 ip
->flags
|= BTRFS_INODE_NODUMP
;
244 ip
->flags
&= ~BTRFS_INODE_NODUMP
;
245 if (flags
& FS_NOATIME_FL
)
246 ip
->flags
|= BTRFS_INODE_NOATIME
;
248 ip
->flags
&= ~BTRFS_INODE_NOATIME
;
249 if (flags
& FS_DIRSYNC_FL
)
250 ip
->flags
|= BTRFS_INODE_DIRSYNC
;
252 ip
->flags
&= ~BTRFS_INODE_DIRSYNC
;
253 if (flags
& FS_NOCOW_FL
) {
256 * It's safe to turn csums off here, no extents exist.
257 * Otherwise we want the flag to reflect the real COW
258 * status of the file and will not set it.
260 if (inode
->i_size
== 0)
261 ip
->flags
|= BTRFS_INODE_NODATACOW
262 | BTRFS_INODE_NODATASUM
;
264 ip
->flags
|= BTRFS_INODE_NODATACOW
;
268 * Revert back under same assumptions as above
271 if (inode
->i_size
== 0)
272 ip
->flags
&= ~(BTRFS_INODE_NODATACOW
273 | BTRFS_INODE_NODATASUM
);
275 ip
->flags
&= ~BTRFS_INODE_NODATACOW
;
280 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
281 * flag may be changed automatically if compression code won't make
284 if (flags
& FS_NOCOMP_FL
) {
285 ip
->flags
&= ~BTRFS_INODE_COMPRESS
;
286 ip
->flags
|= BTRFS_INODE_NOCOMPRESS
;
288 ret
= btrfs_set_prop(inode
, "btrfs.compression", NULL
, 0, 0);
289 if (ret
&& ret
!= -ENODATA
)
291 } else if (flags
& FS_COMPR_FL
) {
294 ip
->flags
|= BTRFS_INODE_COMPRESS
;
295 ip
->flags
&= ~BTRFS_INODE_NOCOMPRESS
;
297 if (fs_info
->compress_type
== BTRFS_COMPRESS_LZO
)
299 else if (fs_info
->compress_type
== BTRFS_COMPRESS_ZLIB
)
303 ret
= btrfs_set_prop(inode
, "btrfs.compression",
304 comp
, strlen(comp
), 0);
309 ret
= btrfs_set_prop(inode
, "btrfs.compression", NULL
, 0, 0);
310 if (ret
&& ret
!= -ENODATA
)
312 ip
->flags
&= ~(BTRFS_INODE_COMPRESS
| BTRFS_INODE_NOCOMPRESS
);
315 trans
= btrfs_start_transaction(root
, 1);
317 ret
= PTR_ERR(trans
);
321 btrfs_update_iflags(inode
);
322 inode_inc_iversion(inode
);
323 inode
->i_ctime
= current_time(inode
);
324 ret
= btrfs_update_inode(trans
, root
, inode
);
326 btrfs_end_transaction(trans
);
329 ip
->flags
= ip_oldflags
;
330 inode
->i_flags
= i_oldflags
;
335 mnt_drop_write_file(file
);
339 static int btrfs_ioctl_getversion(struct file
*file
, int __user
*arg
)
341 struct inode
*inode
= file_inode(file
);
343 return put_user(inode
->i_generation
, arg
);
346 static noinline
int btrfs_ioctl_fitrim(struct file
*file
, void __user
*arg
)
348 struct inode
*inode
= file_inode(file
);
349 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
350 struct btrfs_device
*device
;
351 struct request_queue
*q
;
352 struct fstrim_range range
;
353 u64 minlen
= ULLONG_MAX
;
355 u64 total_bytes
= btrfs_super_total_bytes(fs_info
->super_copy
);
358 if (!capable(CAP_SYS_ADMIN
))
362 list_for_each_entry_rcu(device
, &fs_info
->fs_devices
->devices
,
366 q
= bdev_get_queue(device
->bdev
);
367 if (blk_queue_discard(q
)) {
369 minlen
= min_t(u64
, q
->limits
.discard_granularity
,
377 if (copy_from_user(&range
, arg
, sizeof(range
)))
379 if (range
.start
> total_bytes
||
380 range
.len
< fs_info
->sb
->s_blocksize
)
383 range
.len
= min(range
.len
, total_bytes
- range
.start
);
384 range
.minlen
= max(range
.minlen
, minlen
);
385 ret
= btrfs_trim_fs(fs_info
, &range
);
389 if (copy_to_user(arg
, &range
, sizeof(range
)))
395 int btrfs_is_empty_uuid(u8
*uuid
)
399 for (i
= 0; i
< BTRFS_UUID_SIZE
; i
++) {
406 static noinline
int create_subvol(struct inode
*dir
,
407 struct dentry
*dentry
,
408 const char *name
, int namelen
,
410 struct btrfs_qgroup_inherit
*inherit
)
412 struct btrfs_fs_info
*fs_info
= btrfs_sb(dir
->i_sb
);
413 struct btrfs_trans_handle
*trans
;
414 struct btrfs_key key
;
415 struct btrfs_root_item
*root_item
;
416 struct btrfs_inode_item
*inode_item
;
417 struct extent_buffer
*leaf
;
418 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
419 struct btrfs_root
*new_root
;
420 struct btrfs_block_rsv block_rsv
;
421 struct timespec cur_time
= current_time(dir
);
426 u64 new_dirid
= BTRFS_FIRST_FREE_OBJECTID
;
431 root_item
= kzalloc(sizeof(*root_item
), GFP_KERNEL
);
435 ret
= btrfs_find_free_objectid(fs_info
->tree_root
, &objectid
);
440 * Don't create subvolume whose level is not zero. Or qgroup will be
441 * screwed up since it assumes subvolume qgroup's level to be 0.
443 if (btrfs_qgroup_level(objectid
)) {
448 btrfs_init_block_rsv(&block_rsv
, BTRFS_BLOCK_RSV_TEMP
);
450 * The same as the snapshot creation, please see the comment
451 * of create_snapshot().
453 ret
= btrfs_subvolume_reserve_metadata(root
, &block_rsv
,
454 8, &qgroup_reserved
, false);
458 trans
= btrfs_start_transaction(root
, 0);
460 ret
= PTR_ERR(trans
);
461 btrfs_subvolume_release_metadata(fs_info
, &block_rsv
);
464 trans
->block_rsv
= &block_rsv
;
465 trans
->bytes_reserved
= block_rsv
.size
;
467 ret
= btrfs_qgroup_inherit(trans
, fs_info
, 0, objectid
, inherit
);
471 leaf
= btrfs_alloc_tree_block(trans
, root
, 0, objectid
, NULL
, 0, 0, 0);
477 memzero_extent_buffer(leaf
, 0, sizeof(struct btrfs_header
));
478 btrfs_set_header_bytenr(leaf
, leaf
->start
);
479 btrfs_set_header_generation(leaf
, trans
->transid
);
480 btrfs_set_header_backref_rev(leaf
, BTRFS_MIXED_BACKREF_REV
);
481 btrfs_set_header_owner(leaf
, objectid
);
483 write_extent_buffer_fsid(leaf
, fs_info
->fsid
);
484 write_extent_buffer_chunk_tree_uuid(leaf
, fs_info
->chunk_tree_uuid
);
485 btrfs_mark_buffer_dirty(leaf
);
487 inode_item
= &root_item
->inode
;
488 btrfs_set_stack_inode_generation(inode_item
, 1);
489 btrfs_set_stack_inode_size(inode_item
, 3);
490 btrfs_set_stack_inode_nlink(inode_item
, 1);
491 btrfs_set_stack_inode_nbytes(inode_item
,
493 btrfs_set_stack_inode_mode(inode_item
, S_IFDIR
| 0755);
495 btrfs_set_root_flags(root_item
, 0);
496 btrfs_set_root_limit(root_item
, 0);
497 btrfs_set_stack_inode_flags(inode_item
, BTRFS_INODE_ROOT_ITEM_INIT
);
499 btrfs_set_root_bytenr(root_item
, leaf
->start
);
500 btrfs_set_root_generation(root_item
, trans
->transid
);
501 btrfs_set_root_level(root_item
, 0);
502 btrfs_set_root_refs(root_item
, 1);
503 btrfs_set_root_used(root_item
, leaf
->len
);
504 btrfs_set_root_last_snapshot(root_item
, 0);
506 btrfs_set_root_generation_v2(root_item
,
507 btrfs_root_generation(root_item
));
508 uuid_le_gen(&new_uuid
);
509 memcpy(root_item
->uuid
, new_uuid
.b
, BTRFS_UUID_SIZE
);
510 btrfs_set_stack_timespec_sec(&root_item
->otime
, cur_time
.tv_sec
);
511 btrfs_set_stack_timespec_nsec(&root_item
->otime
, cur_time
.tv_nsec
);
512 root_item
->ctime
= root_item
->otime
;
513 btrfs_set_root_ctransid(root_item
, trans
->transid
);
514 btrfs_set_root_otransid(root_item
, trans
->transid
);
516 btrfs_tree_unlock(leaf
);
517 free_extent_buffer(leaf
);
520 btrfs_set_root_dirid(root_item
, new_dirid
);
522 key
.objectid
= objectid
;
524 key
.type
= BTRFS_ROOT_ITEM_KEY
;
525 ret
= btrfs_insert_root(trans
, fs_info
->tree_root
, &key
,
530 key
.offset
= (u64
)-1;
531 new_root
= btrfs_read_fs_root_no_name(fs_info
, &key
);
532 if (IS_ERR(new_root
)) {
533 ret
= PTR_ERR(new_root
);
534 btrfs_abort_transaction(trans
, ret
);
538 btrfs_record_root_in_trans(trans
, new_root
);
540 ret
= btrfs_create_subvol_root(trans
, new_root
, root
, new_dirid
);
542 /* We potentially lose an unused inode item here */
543 btrfs_abort_transaction(trans
, ret
);
547 mutex_lock(&new_root
->objectid_mutex
);
548 new_root
->highest_objectid
= new_dirid
;
549 mutex_unlock(&new_root
->objectid_mutex
);
552 * insert the directory item
554 ret
= btrfs_set_inode_index(BTRFS_I(dir
), &index
);
556 btrfs_abort_transaction(trans
, ret
);
560 ret
= btrfs_insert_dir_item(trans
, root
,
561 name
, namelen
, BTRFS_I(dir
), &key
,
562 BTRFS_FT_DIR
, index
);
564 btrfs_abort_transaction(trans
, ret
);
568 btrfs_i_size_write(BTRFS_I(dir
), dir
->i_size
+ namelen
* 2);
569 ret
= btrfs_update_inode(trans
, root
, dir
);
572 ret
= btrfs_add_root_ref(trans
, fs_info
,
573 objectid
, root
->root_key
.objectid
,
574 btrfs_ino(BTRFS_I(dir
)), index
, name
, namelen
);
577 ret
= btrfs_uuid_tree_add(trans
, fs_info
, root_item
->uuid
,
578 BTRFS_UUID_KEY_SUBVOL
, objectid
);
580 btrfs_abort_transaction(trans
, ret
);
584 trans
->block_rsv
= NULL
;
585 trans
->bytes_reserved
= 0;
586 btrfs_subvolume_release_metadata(fs_info
, &block_rsv
);
589 *async_transid
= trans
->transid
;
590 err
= btrfs_commit_transaction_async(trans
, 1);
592 err
= btrfs_commit_transaction(trans
);
594 err
= btrfs_commit_transaction(trans
);
600 inode
= btrfs_lookup_dentry(dir
, dentry
);
602 return PTR_ERR(inode
);
603 d_instantiate(dentry
, inode
);
612 static void btrfs_wait_for_no_snapshotting_writes(struct btrfs_root
*root
)
618 prepare_to_wait(&root
->subv_writers
->wait
, &wait
,
619 TASK_UNINTERRUPTIBLE
);
621 writers
= percpu_counter_sum(&root
->subv_writers
->counter
);
625 finish_wait(&root
->subv_writers
->wait
, &wait
);
629 static int create_snapshot(struct btrfs_root
*root
, struct inode
*dir
,
630 struct dentry
*dentry
,
631 u64
*async_transid
, bool readonly
,
632 struct btrfs_qgroup_inherit
*inherit
)
634 struct btrfs_fs_info
*fs_info
= btrfs_sb(dir
->i_sb
);
636 struct btrfs_pending_snapshot
*pending_snapshot
;
637 struct btrfs_trans_handle
*trans
;
640 if (!test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
))
643 pending_snapshot
= kzalloc(sizeof(*pending_snapshot
), GFP_KERNEL
);
644 if (!pending_snapshot
)
647 pending_snapshot
->root_item
= kzalloc(sizeof(struct btrfs_root_item
),
649 pending_snapshot
->path
= btrfs_alloc_path();
650 if (!pending_snapshot
->root_item
|| !pending_snapshot
->path
) {
655 atomic_inc(&root
->will_be_snapshotted
);
656 smp_mb__after_atomic();
657 btrfs_wait_for_no_snapshotting_writes(root
);
659 ret
= btrfs_start_delalloc_inodes(root
, 0);
663 btrfs_wait_ordered_extents(root
, U64_MAX
, 0, (u64
)-1);
665 btrfs_init_block_rsv(&pending_snapshot
->block_rsv
,
666 BTRFS_BLOCK_RSV_TEMP
);
668 * 1 - parent dir inode
671 * 2 - root ref/backref
672 * 1 - root of snapshot
675 ret
= btrfs_subvolume_reserve_metadata(BTRFS_I(dir
)->root
,
676 &pending_snapshot
->block_rsv
, 8,
677 &pending_snapshot
->qgroup_reserved
,
682 pending_snapshot
->dentry
= dentry
;
683 pending_snapshot
->root
= root
;
684 pending_snapshot
->readonly
= readonly
;
685 pending_snapshot
->dir
= dir
;
686 pending_snapshot
->inherit
= inherit
;
688 trans
= btrfs_start_transaction(root
, 0);
690 ret
= PTR_ERR(trans
);
694 spin_lock(&fs_info
->trans_lock
);
695 list_add(&pending_snapshot
->list
,
696 &trans
->transaction
->pending_snapshots
);
697 spin_unlock(&fs_info
->trans_lock
);
699 *async_transid
= trans
->transid
;
700 ret
= btrfs_commit_transaction_async(trans
, 1);
702 ret
= btrfs_commit_transaction(trans
);
704 ret
= btrfs_commit_transaction(trans
);
709 ret
= pending_snapshot
->error
;
713 ret
= btrfs_orphan_cleanup(pending_snapshot
->snap
);
717 inode
= btrfs_lookup_dentry(d_inode(dentry
->d_parent
), dentry
);
719 ret
= PTR_ERR(inode
);
723 d_instantiate(dentry
, inode
);
726 btrfs_subvolume_release_metadata(fs_info
, &pending_snapshot
->block_rsv
);
728 if (atomic_dec_and_test(&root
->will_be_snapshotted
))
729 wake_up_atomic_t(&root
->will_be_snapshotted
);
731 kfree(pending_snapshot
->root_item
);
732 btrfs_free_path(pending_snapshot
->path
);
733 kfree(pending_snapshot
);
738 /* copy of may_delete in fs/namei.c()
739 * Check whether we can remove a link victim from directory dir, check
740 * whether the type of victim is right.
741 * 1. We can't do it if dir is read-only (done in permission())
742 * 2. We should have write and exec permissions on dir
743 * 3. We can't remove anything from append-only dir
744 * 4. We can't do anything with immutable dir (done in permission())
745 * 5. If the sticky bit on dir is set we should either
746 * a. be owner of dir, or
747 * b. be owner of victim, or
748 * c. have CAP_FOWNER capability
749 * 6. If the victim is append-only or immutable we can't do anything with
750 * links pointing to it.
751 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
752 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
753 * 9. We can't remove a root or mountpoint.
754 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
755 * nfs_async_unlink().
758 static int btrfs_may_delete(struct inode
*dir
, struct dentry
*victim
, int isdir
)
762 if (d_really_is_negative(victim
))
765 BUG_ON(d_inode(victim
->d_parent
) != dir
);
766 audit_inode_child(dir
, victim
, AUDIT_TYPE_CHILD_DELETE
);
768 error
= inode_permission(dir
, MAY_WRITE
| MAY_EXEC
);
773 if (check_sticky(dir
, d_inode(victim
)) || IS_APPEND(d_inode(victim
)) ||
774 IS_IMMUTABLE(d_inode(victim
)) || IS_SWAPFILE(d_inode(victim
)))
777 if (!d_is_dir(victim
))
781 } else if (d_is_dir(victim
))
785 if (victim
->d_flags
& DCACHE_NFSFS_RENAMED
)
790 /* copy of may_create in fs/namei.c() */
791 static inline int btrfs_may_create(struct inode
*dir
, struct dentry
*child
)
793 if (d_really_is_positive(child
))
797 return inode_permission(dir
, MAY_WRITE
| MAY_EXEC
);
801 * Create a new subvolume below @parent. This is largely modeled after
802 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
803 * inside this filesystem so it's quite a bit simpler.
805 static noinline
int btrfs_mksubvol(const struct path
*parent
,
806 const char *name
, int namelen
,
807 struct btrfs_root
*snap_src
,
808 u64
*async_transid
, bool readonly
,
809 struct btrfs_qgroup_inherit
*inherit
)
811 struct inode
*dir
= d_inode(parent
->dentry
);
812 struct btrfs_fs_info
*fs_info
= btrfs_sb(dir
->i_sb
);
813 struct dentry
*dentry
;
816 error
= down_write_killable_nested(&dir
->i_rwsem
, I_MUTEX_PARENT
);
820 dentry
= lookup_one_len(name
, parent
->dentry
, namelen
);
821 error
= PTR_ERR(dentry
);
825 error
= btrfs_may_create(dir
, dentry
);
830 * even if this name doesn't exist, we may get hash collisions.
831 * check for them now when we can safely fail
833 error
= btrfs_check_dir_item_collision(BTRFS_I(dir
)->root
,
839 down_read(&fs_info
->subvol_sem
);
841 if (btrfs_root_refs(&BTRFS_I(dir
)->root
->root_item
) == 0)
845 error
= create_snapshot(snap_src
, dir
, dentry
,
846 async_transid
, readonly
, inherit
);
848 error
= create_subvol(dir
, dentry
, name
, namelen
,
849 async_transid
, inherit
);
852 fsnotify_mkdir(dir
, dentry
);
854 up_read(&fs_info
->subvol_sem
);
863 * When we're defragging a range, we don't want to kick it off again
864 * if it is really just waiting for delalloc to send it down.
865 * If we find a nice big extent or delalloc range for the bytes in the
866 * file you want to defrag, we return 0 to let you know to skip this
869 static int check_defrag_in_cache(struct inode
*inode
, u64 offset
, u32 thresh
)
871 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
872 struct extent_map
*em
= NULL
;
873 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
876 read_lock(&em_tree
->lock
);
877 em
= lookup_extent_mapping(em_tree
, offset
, PAGE_SIZE
);
878 read_unlock(&em_tree
->lock
);
881 end
= extent_map_end(em
);
883 if (end
- offset
> thresh
)
886 /* if we already have a nice delalloc here, just stop */
888 end
= count_range_bits(io_tree
, &offset
, offset
+ thresh
,
889 thresh
, EXTENT_DELALLOC
, 1);
896 * helper function to walk through a file and find extents
897 * newer than a specific transid, and smaller than thresh.
899 * This is used by the defragging code to find new and small
902 static int find_new_extents(struct btrfs_root
*root
,
903 struct inode
*inode
, u64 newer_than
,
904 u64
*off
, u32 thresh
)
906 struct btrfs_path
*path
;
907 struct btrfs_key min_key
;
908 struct extent_buffer
*leaf
;
909 struct btrfs_file_extent_item
*extent
;
912 u64 ino
= btrfs_ino(BTRFS_I(inode
));
914 path
= btrfs_alloc_path();
918 min_key
.objectid
= ino
;
919 min_key
.type
= BTRFS_EXTENT_DATA_KEY
;
920 min_key
.offset
= *off
;
923 ret
= btrfs_search_forward(root
, &min_key
, path
, newer_than
);
927 if (min_key
.objectid
!= ino
)
929 if (min_key
.type
!= BTRFS_EXTENT_DATA_KEY
)
932 leaf
= path
->nodes
[0];
933 extent
= btrfs_item_ptr(leaf
, path
->slots
[0],
934 struct btrfs_file_extent_item
);
936 type
= btrfs_file_extent_type(leaf
, extent
);
937 if (type
== BTRFS_FILE_EXTENT_REG
&&
938 btrfs_file_extent_num_bytes(leaf
, extent
) < thresh
&&
939 check_defrag_in_cache(inode
, min_key
.offset
, thresh
)) {
940 *off
= min_key
.offset
;
941 btrfs_free_path(path
);
946 if (path
->slots
[0] < btrfs_header_nritems(leaf
)) {
947 btrfs_item_key_to_cpu(leaf
, &min_key
, path
->slots
[0]);
951 if (min_key
.offset
== (u64
)-1)
955 btrfs_release_path(path
);
958 btrfs_free_path(path
);
962 static struct extent_map
*defrag_lookup_extent(struct inode
*inode
, u64 start
)
964 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
965 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
966 struct extent_map
*em
;
970 * hopefully we have this extent in the tree already, try without
971 * the full extent lock
973 read_lock(&em_tree
->lock
);
974 em
= lookup_extent_mapping(em_tree
, start
, len
);
975 read_unlock(&em_tree
->lock
);
978 struct extent_state
*cached
= NULL
;
979 u64 end
= start
+ len
- 1;
981 /* get the big lock and read metadata off disk */
982 lock_extent_bits(io_tree
, start
, end
, &cached
);
983 em
= btrfs_get_extent(BTRFS_I(inode
), NULL
, 0, start
, len
, 0);
984 unlock_extent_cached(io_tree
, start
, end
, &cached
, GFP_NOFS
);
993 static bool defrag_check_next_extent(struct inode
*inode
, struct extent_map
*em
)
995 struct extent_map
*next
;
998 /* this is the last extent */
999 if (em
->start
+ em
->len
>= i_size_read(inode
))
1002 next
= defrag_lookup_extent(inode
, em
->start
+ em
->len
);
1003 if (!next
|| next
->block_start
>= EXTENT_MAP_LAST_BYTE
)
1005 else if ((em
->block_start
+ em
->block_len
== next
->block_start
) &&
1006 (em
->block_len
> SZ_128K
&& next
->block_len
> SZ_128K
))
1009 free_extent_map(next
);
1013 static int should_defrag_range(struct inode
*inode
, u64 start
, u32 thresh
,
1014 u64
*last_len
, u64
*skip
, u64
*defrag_end
,
1017 struct extent_map
*em
;
1019 bool next_mergeable
= true;
1020 bool prev_mergeable
= true;
1023 * make sure that once we start defragging an extent, we keep on
1026 if (start
< *defrag_end
)
1031 em
= defrag_lookup_extent(inode
, start
);
1035 /* this will cover holes, and inline extents */
1036 if (em
->block_start
>= EXTENT_MAP_LAST_BYTE
) {
1042 prev_mergeable
= false;
1044 next_mergeable
= defrag_check_next_extent(inode
, em
);
1046 * we hit a real extent, if it is big or the next extent is not a
1047 * real extent, don't bother defragging it
1049 if (!compress
&& (*last_len
== 0 || *last_len
>= thresh
) &&
1050 (em
->len
>= thresh
|| (!next_mergeable
&& !prev_mergeable
)))
1054 * last_len ends up being a counter of how many bytes we've defragged.
1055 * every time we choose not to defrag an extent, we reset *last_len
1056 * so that the next tiny extent will force a defrag.
1058 * The end result of this is that tiny extents before a single big
1059 * extent will force at least part of that big extent to be defragged.
1062 *defrag_end
= extent_map_end(em
);
1065 *skip
= extent_map_end(em
);
1069 free_extent_map(em
);
1074 * it doesn't do much good to defrag one or two pages
1075 * at a time. This pulls in a nice chunk of pages
1076 * to COW and defrag.
1078 * It also makes sure the delalloc code has enough
1079 * dirty data to avoid making new small extents as part
1082 * It's a good idea to start RA on this range
1083 * before calling this.
1085 static int cluster_pages_for_defrag(struct inode
*inode
,
1086 struct page
**pages
,
1087 unsigned long start_index
,
1088 unsigned long num_pages
)
1090 unsigned long file_end
;
1091 u64 isize
= i_size_read(inode
);
1098 struct btrfs_ordered_extent
*ordered
;
1099 struct extent_state
*cached_state
= NULL
;
1100 struct extent_io_tree
*tree
;
1101 struct extent_changeset
*data_reserved
= NULL
;
1102 gfp_t mask
= btrfs_alloc_write_mask(inode
->i_mapping
);
1104 file_end
= (isize
- 1) >> PAGE_SHIFT
;
1105 if (!isize
|| start_index
> file_end
)
1108 page_cnt
= min_t(u64
, (u64
)num_pages
, (u64
)file_end
- start_index
+ 1);
1110 ret
= btrfs_delalloc_reserve_space(inode
, &data_reserved
,
1111 start_index
<< PAGE_SHIFT
,
1112 page_cnt
<< PAGE_SHIFT
);
1116 tree
= &BTRFS_I(inode
)->io_tree
;
1118 /* step one, lock all the pages */
1119 for (i
= 0; i
< page_cnt
; i
++) {
1122 page
= find_or_create_page(inode
->i_mapping
,
1123 start_index
+ i
, mask
);
1127 page_start
= page_offset(page
);
1128 page_end
= page_start
+ PAGE_SIZE
- 1;
1130 lock_extent_bits(tree
, page_start
, page_end
,
1132 ordered
= btrfs_lookup_ordered_extent(inode
,
1134 unlock_extent_cached(tree
, page_start
, page_end
,
1135 &cached_state
, GFP_NOFS
);
1140 btrfs_start_ordered_extent(inode
, ordered
, 1);
1141 btrfs_put_ordered_extent(ordered
);
1144 * we unlocked the page above, so we need check if
1145 * it was released or not.
1147 if (page
->mapping
!= inode
->i_mapping
) {
1154 if (!PageUptodate(page
)) {
1155 btrfs_readpage(NULL
, page
);
1157 if (!PageUptodate(page
)) {
1165 if (page
->mapping
!= inode
->i_mapping
) {
1177 if (!(inode
->i_sb
->s_flags
& MS_ACTIVE
))
1181 * so now we have a nice long stream of locked
1182 * and up to date pages, lets wait on them
1184 for (i
= 0; i
< i_done
; i
++)
1185 wait_on_page_writeback(pages
[i
]);
1187 page_start
= page_offset(pages
[0]);
1188 page_end
= page_offset(pages
[i_done
- 1]) + PAGE_SIZE
;
1190 lock_extent_bits(&BTRFS_I(inode
)->io_tree
,
1191 page_start
, page_end
- 1, &cached_state
);
1192 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, page_start
,
1193 page_end
- 1, EXTENT_DIRTY
| EXTENT_DELALLOC
|
1194 EXTENT_DO_ACCOUNTING
| EXTENT_DEFRAG
, 0, 0,
1195 &cached_state
, GFP_NOFS
);
1197 if (i_done
!= page_cnt
) {
1198 spin_lock(&BTRFS_I(inode
)->lock
);
1199 BTRFS_I(inode
)->outstanding_extents
++;
1200 spin_unlock(&BTRFS_I(inode
)->lock
);
1201 btrfs_delalloc_release_space(inode
, data_reserved
,
1202 start_index
<< PAGE_SHIFT
,
1203 (page_cnt
- i_done
) << PAGE_SHIFT
);
1207 set_extent_defrag(&BTRFS_I(inode
)->io_tree
, page_start
, page_end
- 1,
1210 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
,
1211 page_start
, page_end
- 1, &cached_state
,
1214 for (i
= 0; i
< i_done
; i
++) {
1215 clear_page_dirty_for_io(pages
[i
]);
1216 ClearPageChecked(pages
[i
]);
1217 set_page_extent_mapped(pages
[i
]);
1218 set_page_dirty(pages
[i
]);
1219 unlock_page(pages
[i
]);
1222 extent_changeset_free(data_reserved
);
1225 for (i
= 0; i
< i_done
; i
++) {
1226 unlock_page(pages
[i
]);
1229 btrfs_delalloc_release_space(inode
, data_reserved
,
1230 start_index
<< PAGE_SHIFT
,
1231 page_cnt
<< PAGE_SHIFT
);
1232 extent_changeset_free(data_reserved
);
1237 int btrfs_defrag_file(struct inode
*inode
, struct file
*file
,
1238 struct btrfs_ioctl_defrag_range_args
*range
,
1239 u64 newer_than
, unsigned long max_to_defrag
)
1241 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
1242 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1243 struct file_ra_state
*ra
= NULL
;
1244 unsigned long last_index
;
1245 u64 isize
= i_size_read(inode
);
1249 u64 newer_off
= range
->start
;
1251 unsigned long ra_index
= 0;
1253 int defrag_count
= 0;
1254 int compress_type
= BTRFS_COMPRESS_ZLIB
;
1255 u32 extent_thresh
= range
->extent_thresh
;
1256 unsigned long max_cluster
= SZ_256K
>> PAGE_SHIFT
;
1257 unsigned long cluster
= max_cluster
;
1258 u64 new_align
= ~((u64
)SZ_128K
- 1);
1259 struct page
**pages
= NULL
;
1260 bool do_compress
= range
->flags
& BTRFS_DEFRAG_RANGE_COMPRESS
;
1265 if (range
->start
>= isize
)
1269 if (range
->compress_type
> BTRFS_COMPRESS_TYPES
)
1271 if (range
->compress_type
)
1272 compress_type
= range
->compress_type
;
1275 if (extent_thresh
== 0)
1276 extent_thresh
= SZ_256K
;
1279 * If we were not given a file, allocate a readahead context. As
1280 * readahead is just an optimization, defrag will work without it so
1281 * we don't error out.
1284 ra
= kzalloc(sizeof(*ra
), GFP_KERNEL
);
1286 file_ra_state_init(ra
, inode
->i_mapping
);
1291 pages
= kmalloc_array(max_cluster
, sizeof(struct page
*), GFP_KERNEL
);
1297 /* find the last page to defrag */
1298 if (range
->start
+ range
->len
> range
->start
) {
1299 last_index
= min_t(u64
, isize
- 1,
1300 range
->start
+ range
->len
- 1) >> PAGE_SHIFT
;
1302 last_index
= (isize
- 1) >> PAGE_SHIFT
;
1306 ret
= find_new_extents(root
, inode
, newer_than
,
1307 &newer_off
, SZ_64K
);
1309 range
->start
= newer_off
;
1311 * we always align our defrag to help keep
1312 * the extents in the file evenly spaced
1314 i
= (newer_off
& new_align
) >> PAGE_SHIFT
;
1318 i
= range
->start
>> PAGE_SHIFT
;
1321 max_to_defrag
= last_index
- i
+ 1;
1324 * make writeback starts from i, so the defrag range can be
1325 * written sequentially.
1327 if (i
< inode
->i_mapping
->writeback_index
)
1328 inode
->i_mapping
->writeback_index
= i
;
1330 while (i
<= last_index
&& defrag_count
< max_to_defrag
&&
1331 (i
< DIV_ROUND_UP(i_size_read(inode
), PAGE_SIZE
))) {
1333 * make sure we stop running if someone unmounts
1336 if (!(inode
->i_sb
->s_flags
& MS_ACTIVE
))
1339 if (btrfs_defrag_cancelled(fs_info
)) {
1340 btrfs_debug(fs_info
, "defrag_file cancelled");
1345 if (!should_defrag_range(inode
, (u64
)i
<< PAGE_SHIFT
,
1346 extent_thresh
, &last_len
, &skip
,
1347 &defrag_end
, do_compress
)){
1350 * the should_defrag function tells us how much to skip
1351 * bump our counter by the suggested amount
1353 next
= DIV_ROUND_UP(skip
, PAGE_SIZE
);
1354 i
= max(i
+ 1, next
);
1359 cluster
= (PAGE_ALIGN(defrag_end
) >>
1361 cluster
= min(cluster
, max_cluster
);
1363 cluster
= max_cluster
;
1366 if (i
+ cluster
> ra_index
) {
1367 ra_index
= max(i
, ra_index
);
1369 page_cache_sync_readahead(inode
->i_mapping
, ra
,
1370 file
, ra_index
, cluster
);
1371 ra_index
+= cluster
;
1376 BTRFS_I(inode
)->defrag_compress
= compress_type
;
1377 ret
= cluster_pages_for_defrag(inode
, pages
, i
, cluster
);
1379 inode_unlock(inode
);
1383 defrag_count
+= ret
;
1384 balance_dirty_pages_ratelimited(inode
->i_mapping
);
1385 inode_unlock(inode
);
1388 if (newer_off
== (u64
)-1)
1394 newer_off
= max(newer_off
+ 1,
1395 (u64
)i
<< PAGE_SHIFT
);
1397 ret
= find_new_extents(root
, inode
, newer_than
,
1398 &newer_off
, SZ_64K
);
1400 range
->start
= newer_off
;
1401 i
= (newer_off
& new_align
) >> PAGE_SHIFT
;
1408 last_len
+= ret
<< PAGE_SHIFT
;
1416 if ((range
->flags
& BTRFS_DEFRAG_RANGE_START_IO
)) {
1417 filemap_flush(inode
->i_mapping
);
1418 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT
,
1419 &BTRFS_I(inode
)->runtime_flags
))
1420 filemap_flush(inode
->i_mapping
);
1424 /* the filemap_flush will queue IO into the worker threads, but
1425 * we have to make sure the IO is actually started and that
1426 * ordered extents get created before we return
1428 atomic_inc(&fs_info
->async_submit_draining
);
1429 while (atomic_read(&fs_info
->nr_async_submits
) ||
1430 atomic_read(&fs_info
->async_delalloc_pages
)) {
1431 wait_event(fs_info
->async_submit_wait
,
1432 (atomic_read(&fs_info
->nr_async_submits
) == 0 &&
1433 atomic_read(&fs_info
->async_delalloc_pages
) == 0));
1435 atomic_dec(&fs_info
->async_submit_draining
);
1438 if (range
->compress_type
== BTRFS_COMPRESS_LZO
) {
1439 btrfs_set_fs_incompat(fs_info
, COMPRESS_LZO
);
1440 } else if (range
->compress_type
== BTRFS_COMPRESS_ZSTD
) {
1441 btrfs_set_fs_incompat(fs_info
, COMPRESS_ZSTD
);
1449 BTRFS_I(inode
)->defrag_compress
= BTRFS_COMPRESS_NONE
;
1450 inode_unlock(inode
);
1458 static noinline
int btrfs_ioctl_resize(struct file
*file
,
1461 struct inode
*inode
= file_inode(file
);
1462 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
1466 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1467 struct btrfs_ioctl_vol_args
*vol_args
;
1468 struct btrfs_trans_handle
*trans
;
1469 struct btrfs_device
*device
= NULL
;
1472 char *devstr
= NULL
;
1476 if (!capable(CAP_SYS_ADMIN
))
1479 ret
= mnt_want_write_file(file
);
1483 if (test_and_set_bit(BTRFS_FS_EXCL_OP
, &fs_info
->flags
)) {
1484 mnt_drop_write_file(file
);
1485 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS
;
1488 mutex_lock(&fs_info
->volume_mutex
);
1489 vol_args
= memdup_user(arg
, sizeof(*vol_args
));
1490 if (IS_ERR(vol_args
)) {
1491 ret
= PTR_ERR(vol_args
);
1495 vol_args
->name
[BTRFS_PATH_NAME_MAX
] = '\0';
1497 sizestr
= vol_args
->name
;
1498 devstr
= strchr(sizestr
, ':');
1500 sizestr
= devstr
+ 1;
1502 devstr
= vol_args
->name
;
1503 ret
= kstrtoull(devstr
, 10, &devid
);
1510 btrfs_info(fs_info
, "resizing devid %llu", devid
);
1513 device
= btrfs_find_device(fs_info
, devid
, NULL
, NULL
);
1515 btrfs_info(fs_info
, "resizer unable to find device %llu",
1521 if (!device
->writeable
) {
1523 "resizer unable to apply on readonly device %llu",
1529 if (!strcmp(sizestr
, "max"))
1530 new_size
= device
->bdev
->bd_inode
->i_size
;
1532 if (sizestr
[0] == '-') {
1535 } else if (sizestr
[0] == '+') {
1539 new_size
= memparse(sizestr
, &retptr
);
1540 if (*retptr
!= '\0' || new_size
== 0) {
1546 if (device
->is_tgtdev_for_dev_replace
) {
1551 old_size
= btrfs_device_get_total_bytes(device
);
1554 if (new_size
> old_size
) {
1558 new_size
= old_size
- new_size
;
1559 } else if (mod
> 0) {
1560 if (new_size
> ULLONG_MAX
- old_size
) {
1564 new_size
= old_size
+ new_size
;
1567 if (new_size
< SZ_256M
) {
1571 if (new_size
> device
->bdev
->bd_inode
->i_size
) {
1576 new_size
= round_down(new_size
, fs_info
->sectorsize
);
1578 btrfs_info_in_rcu(fs_info
, "new size for %s is %llu",
1579 rcu_str_deref(device
->name
), new_size
);
1581 if (new_size
> old_size
) {
1582 trans
= btrfs_start_transaction(root
, 0);
1583 if (IS_ERR(trans
)) {
1584 ret
= PTR_ERR(trans
);
1587 ret
= btrfs_grow_device(trans
, device
, new_size
);
1588 btrfs_commit_transaction(trans
);
1589 } else if (new_size
< old_size
) {
1590 ret
= btrfs_shrink_device(device
, new_size
);
1591 } /* equal, nothing need to do */
1596 mutex_unlock(&fs_info
->volume_mutex
);
1597 clear_bit(BTRFS_FS_EXCL_OP
, &fs_info
->flags
);
1598 mnt_drop_write_file(file
);
1602 static noinline
int btrfs_ioctl_snap_create_transid(struct file
*file
,
1603 const char *name
, unsigned long fd
, int subvol
,
1604 u64
*transid
, bool readonly
,
1605 struct btrfs_qgroup_inherit
*inherit
)
1610 if (!S_ISDIR(file_inode(file
)->i_mode
))
1613 ret
= mnt_want_write_file(file
);
1617 namelen
= strlen(name
);
1618 if (strchr(name
, '/')) {
1620 goto out_drop_write
;
1623 if (name
[0] == '.' &&
1624 (namelen
== 1 || (name
[1] == '.' && namelen
== 2))) {
1626 goto out_drop_write
;
1630 ret
= btrfs_mksubvol(&file
->f_path
, name
, namelen
,
1631 NULL
, transid
, readonly
, inherit
);
1633 struct fd src
= fdget(fd
);
1634 struct inode
*src_inode
;
1637 goto out_drop_write
;
1640 src_inode
= file_inode(src
.file
);
1641 if (src_inode
->i_sb
!= file_inode(file
)->i_sb
) {
1642 btrfs_info(BTRFS_I(file_inode(file
))->root
->fs_info
,
1643 "Snapshot src from another FS");
1645 } else if (!inode_owner_or_capable(src_inode
)) {
1647 * Subvolume creation is not restricted, but snapshots
1648 * are limited to own subvolumes only
1652 ret
= btrfs_mksubvol(&file
->f_path
, name
, namelen
,
1653 BTRFS_I(src_inode
)->root
,
1654 transid
, readonly
, inherit
);
1659 mnt_drop_write_file(file
);
1664 static noinline
int btrfs_ioctl_snap_create(struct file
*file
,
1665 void __user
*arg
, int subvol
)
1667 struct btrfs_ioctl_vol_args
*vol_args
;
1670 if (!S_ISDIR(file_inode(file
)->i_mode
))
1673 vol_args
= memdup_user(arg
, sizeof(*vol_args
));
1674 if (IS_ERR(vol_args
))
1675 return PTR_ERR(vol_args
);
1676 vol_args
->name
[BTRFS_PATH_NAME_MAX
] = '\0';
1678 ret
= btrfs_ioctl_snap_create_transid(file
, vol_args
->name
,
1679 vol_args
->fd
, subvol
,
1686 static noinline
int btrfs_ioctl_snap_create_v2(struct file
*file
,
1687 void __user
*arg
, int subvol
)
1689 struct btrfs_ioctl_vol_args_v2
*vol_args
;
1693 bool readonly
= false;
1694 struct btrfs_qgroup_inherit
*inherit
= NULL
;
1696 if (!S_ISDIR(file_inode(file
)->i_mode
))
1699 vol_args
= memdup_user(arg
, sizeof(*vol_args
));
1700 if (IS_ERR(vol_args
))
1701 return PTR_ERR(vol_args
);
1702 vol_args
->name
[BTRFS_SUBVOL_NAME_MAX
] = '\0';
1704 if (vol_args
->flags
&
1705 ~(BTRFS_SUBVOL_CREATE_ASYNC
| BTRFS_SUBVOL_RDONLY
|
1706 BTRFS_SUBVOL_QGROUP_INHERIT
)) {
1711 if (vol_args
->flags
& BTRFS_SUBVOL_CREATE_ASYNC
)
1713 if (vol_args
->flags
& BTRFS_SUBVOL_RDONLY
)
1715 if (vol_args
->flags
& BTRFS_SUBVOL_QGROUP_INHERIT
) {
1716 if (vol_args
->size
> PAGE_SIZE
) {
1720 inherit
= memdup_user(vol_args
->qgroup_inherit
, vol_args
->size
);
1721 if (IS_ERR(inherit
)) {
1722 ret
= PTR_ERR(inherit
);
1727 ret
= btrfs_ioctl_snap_create_transid(file
, vol_args
->name
,
1728 vol_args
->fd
, subvol
, ptr
,
1733 if (ptr
&& copy_to_user(arg
+
1734 offsetof(struct btrfs_ioctl_vol_args_v2
,
1746 static noinline
int btrfs_ioctl_subvol_getflags(struct file
*file
,
1749 struct inode
*inode
= file_inode(file
);
1750 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
1751 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1755 if (btrfs_ino(BTRFS_I(inode
)) != BTRFS_FIRST_FREE_OBJECTID
)
1758 down_read(&fs_info
->subvol_sem
);
1759 if (btrfs_root_readonly(root
))
1760 flags
|= BTRFS_SUBVOL_RDONLY
;
1761 up_read(&fs_info
->subvol_sem
);
1763 if (copy_to_user(arg
, &flags
, sizeof(flags
)))
1769 static noinline
int btrfs_ioctl_subvol_setflags(struct file
*file
,
1772 struct inode
*inode
= file_inode(file
);
1773 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
1774 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1775 struct btrfs_trans_handle
*trans
;
1780 if (!inode_owner_or_capable(inode
))
1783 ret
= mnt_want_write_file(file
);
1787 if (btrfs_ino(BTRFS_I(inode
)) != BTRFS_FIRST_FREE_OBJECTID
) {
1789 goto out_drop_write
;
1792 if (copy_from_user(&flags
, arg
, sizeof(flags
))) {
1794 goto out_drop_write
;
1797 if (flags
& BTRFS_SUBVOL_CREATE_ASYNC
) {
1799 goto out_drop_write
;
1802 if (flags
& ~BTRFS_SUBVOL_RDONLY
) {
1804 goto out_drop_write
;
1807 down_write(&fs_info
->subvol_sem
);
1810 if (!!(flags
& BTRFS_SUBVOL_RDONLY
) == btrfs_root_readonly(root
))
1813 root_flags
= btrfs_root_flags(&root
->root_item
);
1814 if (flags
& BTRFS_SUBVOL_RDONLY
) {
1815 btrfs_set_root_flags(&root
->root_item
,
1816 root_flags
| BTRFS_ROOT_SUBVOL_RDONLY
);
1819 * Block RO -> RW transition if this subvolume is involved in
1822 spin_lock(&root
->root_item_lock
);
1823 if (root
->send_in_progress
== 0) {
1824 btrfs_set_root_flags(&root
->root_item
,
1825 root_flags
& ~BTRFS_ROOT_SUBVOL_RDONLY
);
1826 spin_unlock(&root
->root_item_lock
);
1828 spin_unlock(&root
->root_item_lock
);
1830 "Attempt to set subvolume %llu read-write during send",
1831 root
->root_key
.objectid
);
1837 trans
= btrfs_start_transaction(root
, 1);
1838 if (IS_ERR(trans
)) {
1839 ret
= PTR_ERR(trans
);
1843 ret
= btrfs_update_root(trans
, fs_info
->tree_root
,
1844 &root
->root_key
, &root
->root_item
);
1846 btrfs_commit_transaction(trans
);
1849 btrfs_set_root_flags(&root
->root_item
, root_flags
);
1851 up_write(&fs_info
->subvol_sem
);
1853 mnt_drop_write_file(file
);
1859 * helper to check if the subvolume references other subvolumes
1861 static noinline
int may_destroy_subvol(struct btrfs_root
*root
)
1863 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1864 struct btrfs_path
*path
;
1865 struct btrfs_dir_item
*di
;
1866 struct btrfs_key key
;
1870 path
= btrfs_alloc_path();
1874 /* Make sure this root isn't set as the default subvol */
1875 dir_id
= btrfs_super_root_dir(fs_info
->super_copy
);
1876 di
= btrfs_lookup_dir_item(NULL
, fs_info
->tree_root
, path
,
1877 dir_id
, "default", 7, 0);
1878 if (di
&& !IS_ERR(di
)) {
1879 btrfs_dir_item_key_to_cpu(path
->nodes
[0], di
, &key
);
1880 if (key
.objectid
== root
->root_key
.objectid
) {
1883 "deleting default subvolume %llu is not allowed",
1887 btrfs_release_path(path
);
1890 key
.objectid
= root
->root_key
.objectid
;
1891 key
.type
= BTRFS_ROOT_REF_KEY
;
1892 key
.offset
= (u64
)-1;
1894 ret
= btrfs_search_slot(NULL
, fs_info
->tree_root
, &key
, path
, 0, 0);
1900 if (path
->slots
[0] > 0) {
1902 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, path
->slots
[0]);
1903 if (key
.objectid
== root
->root_key
.objectid
&&
1904 key
.type
== BTRFS_ROOT_REF_KEY
)
1908 btrfs_free_path(path
);
1912 static noinline
int key_in_sk(struct btrfs_key
*key
,
1913 struct btrfs_ioctl_search_key
*sk
)
1915 struct btrfs_key test
;
1918 test
.objectid
= sk
->min_objectid
;
1919 test
.type
= sk
->min_type
;
1920 test
.offset
= sk
->min_offset
;
1922 ret
= btrfs_comp_cpu_keys(key
, &test
);
1926 test
.objectid
= sk
->max_objectid
;
1927 test
.type
= sk
->max_type
;
1928 test
.offset
= sk
->max_offset
;
1930 ret
= btrfs_comp_cpu_keys(key
, &test
);
1936 static noinline
int copy_to_sk(struct btrfs_path
*path
,
1937 struct btrfs_key
*key
,
1938 struct btrfs_ioctl_search_key
*sk
,
1941 unsigned long *sk_offset
,
1945 struct extent_buffer
*leaf
;
1946 struct btrfs_ioctl_search_header sh
;
1947 struct btrfs_key test
;
1948 unsigned long item_off
;
1949 unsigned long item_len
;
1955 leaf
= path
->nodes
[0];
1956 slot
= path
->slots
[0];
1957 nritems
= btrfs_header_nritems(leaf
);
1959 if (btrfs_header_generation(leaf
) > sk
->max_transid
) {
1963 found_transid
= btrfs_header_generation(leaf
);
1965 for (i
= slot
; i
< nritems
; i
++) {
1966 item_off
= btrfs_item_ptr_offset(leaf
, i
);
1967 item_len
= btrfs_item_size_nr(leaf
, i
);
1969 btrfs_item_key_to_cpu(leaf
, key
, i
);
1970 if (!key_in_sk(key
, sk
))
1973 if (sizeof(sh
) + item_len
> *buf_size
) {
1980 * return one empty item back for v1, which does not
1984 *buf_size
= sizeof(sh
) + item_len
;
1989 if (sizeof(sh
) + item_len
+ *sk_offset
> *buf_size
) {
1994 sh
.objectid
= key
->objectid
;
1995 sh
.offset
= key
->offset
;
1996 sh
.type
= key
->type
;
1998 sh
.transid
= found_transid
;
2000 /* copy search result header */
2001 if (copy_to_user(ubuf
+ *sk_offset
, &sh
, sizeof(sh
))) {
2006 *sk_offset
+= sizeof(sh
);
2009 char __user
*up
= ubuf
+ *sk_offset
;
2011 if (read_extent_buffer_to_user(leaf
, up
,
2012 item_off
, item_len
)) {
2017 *sk_offset
+= item_len
;
2021 if (ret
) /* -EOVERFLOW from above */
2024 if (*num_found
>= sk
->nr_items
) {
2031 test
.objectid
= sk
->max_objectid
;
2032 test
.type
= sk
->max_type
;
2033 test
.offset
= sk
->max_offset
;
2034 if (btrfs_comp_cpu_keys(key
, &test
) >= 0)
2036 else if (key
->offset
< (u64
)-1)
2038 else if (key
->type
< (u8
)-1) {
2041 } else if (key
->objectid
< (u64
)-1) {
2049 * 0: all items from this leaf copied, continue with next
2050 * 1: * more items can be copied, but unused buffer is too small
2051 * * all items were found
2052 * Either way, it will stops the loop which iterates to the next
2054 * -EOVERFLOW: item was to large for buffer
2055 * -EFAULT: could not copy extent buffer back to userspace
2060 static noinline
int search_ioctl(struct inode
*inode
,
2061 struct btrfs_ioctl_search_key
*sk
,
2065 struct btrfs_fs_info
*info
= btrfs_sb(inode
->i_sb
);
2066 struct btrfs_root
*root
;
2067 struct btrfs_key key
;
2068 struct btrfs_path
*path
;
2071 unsigned long sk_offset
= 0;
2073 if (*buf_size
< sizeof(struct btrfs_ioctl_search_header
)) {
2074 *buf_size
= sizeof(struct btrfs_ioctl_search_header
);
2078 path
= btrfs_alloc_path();
2082 if (sk
->tree_id
== 0) {
2083 /* search the root of the inode that was passed */
2084 root
= BTRFS_I(inode
)->root
;
2086 key
.objectid
= sk
->tree_id
;
2087 key
.type
= BTRFS_ROOT_ITEM_KEY
;
2088 key
.offset
= (u64
)-1;
2089 root
= btrfs_read_fs_root_no_name(info
, &key
);
2091 btrfs_free_path(path
);
2096 key
.objectid
= sk
->min_objectid
;
2097 key
.type
= sk
->min_type
;
2098 key
.offset
= sk
->min_offset
;
2101 ret
= btrfs_search_forward(root
, &key
, path
, sk
->min_transid
);
2107 ret
= copy_to_sk(path
, &key
, sk
, buf_size
, ubuf
,
2108 &sk_offset
, &num_found
);
2109 btrfs_release_path(path
);
2117 sk
->nr_items
= num_found
;
2118 btrfs_free_path(path
);
2122 static noinline
int btrfs_ioctl_tree_search(struct file
*file
,
2125 struct btrfs_ioctl_search_args __user
*uargs
;
2126 struct btrfs_ioctl_search_key sk
;
2127 struct inode
*inode
;
2131 if (!capable(CAP_SYS_ADMIN
))
2134 uargs
= (struct btrfs_ioctl_search_args __user
*)argp
;
2136 if (copy_from_user(&sk
, &uargs
->key
, sizeof(sk
)))
2139 buf_size
= sizeof(uargs
->buf
);
2141 inode
= file_inode(file
);
2142 ret
= search_ioctl(inode
, &sk
, &buf_size
, uargs
->buf
);
2145 * In the origin implementation an overflow is handled by returning a
2146 * search header with a len of zero, so reset ret.
2148 if (ret
== -EOVERFLOW
)
2151 if (ret
== 0 && copy_to_user(&uargs
->key
, &sk
, sizeof(sk
)))
2156 static noinline
int btrfs_ioctl_tree_search_v2(struct file
*file
,
2159 struct btrfs_ioctl_search_args_v2 __user
*uarg
;
2160 struct btrfs_ioctl_search_args_v2 args
;
2161 struct inode
*inode
;
2164 const size_t buf_limit
= SZ_16M
;
2166 if (!capable(CAP_SYS_ADMIN
))
2169 /* copy search header and buffer size */
2170 uarg
= (struct btrfs_ioctl_search_args_v2 __user
*)argp
;
2171 if (copy_from_user(&args
, uarg
, sizeof(args
)))
2174 buf_size
= args
.buf_size
;
2176 /* limit result size to 16MB */
2177 if (buf_size
> buf_limit
)
2178 buf_size
= buf_limit
;
2180 inode
= file_inode(file
);
2181 ret
= search_ioctl(inode
, &args
.key
, &buf_size
,
2182 (char *)(&uarg
->buf
[0]));
2183 if (ret
== 0 && copy_to_user(&uarg
->key
, &args
.key
, sizeof(args
.key
)))
2185 else if (ret
== -EOVERFLOW
&&
2186 copy_to_user(&uarg
->buf_size
, &buf_size
, sizeof(buf_size
)))
2193 * Search INODE_REFs to identify path name of 'dirid' directory
2194 * in a 'tree_id' tree. and sets path name to 'name'.
2196 static noinline
int btrfs_search_path_in_tree(struct btrfs_fs_info
*info
,
2197 u64 tree_id
, u64 dirid
, char *name
)
2199 struct btrfs_root
*root
;
2200 struct btrfs_key key
;
2206 struct btrfs_inode_ref
*iref
;
2207 struct extent_buffer
*l
;
2208 struct btrfs_path
*path
;
2210 if (dirid
== BTRFS_FIRST_FREE_OBJECTID
) {
2215 path
= btrfs_alloc_path();
2219 ptr
= &name
[BTRFS_INO_LOOKUP_PATH_MAX
];
2221 key
.objectid
= tree_id
;
2222 key
.type
= BTRFS_ROOT_ITEM_KEY
;
2223 key
.offset
= (u64
)-1;
2224 root
= btrfs_read_fs_root_no_name(info
, &key
);
2226 btrfs_err(info
, "could not find root %llu", tree_id
);
2231 key
.objectid
= dirid
;
2232 key
.type
= BTRFS_INODE_REF_KEY
;
2233 key
.offset
= (u64
)-1;
2236 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
2240 ret
= btrfs_previous_item(root
, path
, dirid
,
2241 BTRFS_INODE_REF_KEY
);
2251 slot
= path
->slots
[0];
2252 btrfs_item_key_to_cpu(l
, &key
, slot
);
2254 iref
= btrfs_item_ptr(l
, slot
, struct btrfs_inode_ref
);
2255 len
= btrfs_inode_ref_name_len(l
, iref
);
2257 total_len
+= len
+ 1;
2259 ret
= -ENAMETOOLONG
;
2264 read_extent_buffer(l
, ptr
, (unsigned long)(iref
+ 1), len
);
2266 if (key
.offset
== BTRFS_FIRST_FREE_OBJECTID
)
2269 btrfs_release_path(path
);
2270 key
.objectid
= key
.offset
;
2271 key
.offset
= (u64
)-1;
2272 dirid
= key
.objectid
;
2274 memmove(name
, ptr
, total_len
);
2275 name
[total_len
] = '\0';
2278 btrfs_free_path(path
);
2282 static noinline
int btrfs_ioctl_ino_lookup(struct file
*file
,
2285 struct btrfs_ioctl_ino_lookup_args
*args
;
2286 struct inode
*inode
;
2289 args
= memdup_user(argp
, sizeof(*args
));
2291 return PTR_ERR(args
);
2293 inode
= file_inode(file
);
2296 * Unprivileged query to obtain the containing subvolume root id. The
2297 * path is reset so it's consistent with btrfs_search_path_in_tree.
2299 if (args
->treeid
== 0)
2300 args
->treeid
= BTRFS_I(inode
)->root
->root_key
.objectid
;
2302 if (args
->objectid
== BTRFS_FIRST_FREE_OBJECTID
) {
2307 if (!capable(CAP_SYS_ADMIN
)) {
2312 ret
= btrfs_search_path_in_tree(BTRFS_I(inode
)->root
->fs_info
,
2313 args
->treeid
, args
->objectid
,
2317 if (ret
== 0 && copy_to_user(argp
, args
, sizeof(*args
)))
2324 static noinline
int btrfs_ioctl_snap_destroy(struct file
*file
,
2327 struct dentry
*parent
= file
->f_path
.dentry
;
2328 struct btrfs_fs_info
*fs_info
= btrfs_sb(parent
->d_sb
);
2329 struct dentry
*dentry
;
2330 struct inode
*dir
= d_inode(parent
);
2331 struct inode
*inode
;
2332 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
2333 struct btrfs_root
*dest
= NULL
;
2334 struct btrfs_ioctl_vol_args
*vol_args
;
2335 struct btrfs_trans_handle
*trans
;
2336 struct btrfs_block_rsv block_rsv
;
2338 u64 qgroup_reserved
;
2343 if (!S_ISDIR(dir
->i_mode
))
2346 vol_args
= memdup_user(arg
, sizeof(*vol_args
));
2347 if (IS_ERR(vol_args
))
2348 return PTR_ERR(vol_args
);
2350 vol_args
->name
[BTRFS_PATH_NAME_MAX
] = '\0';
2351 namelen
= strlen(vol_args
->name
);
2352 if (strchr(vol_args
->name
, '/') ||
2353 strncmp(vol_args
->name
, "..", namelen
) == 0) {
2358 err
= mnt_want_write_file(file
);
2363 err
= down_write_killable_nested(&dir
->i_rwsem
, I_MUTEX_PARENT
);
2365 goto out_drop_write
;
2366 dentry
= lookup_one_len(vol_args
->name
, parent
, namelen
);
2367 if (IS_ERR(dentry
)) {
2368 err
= PTR_ERR(dentry
);
2369 goto out_unlock_dir
;
2372 if (d_really_is_negative(dentry
)) {
2377 inode
= d_inode(dentry
);
2378 dest
= BTRFS_I(inode
)->root
;
2379 if (!capable(CAP_SYS_ADMIN
)) {
2381 * Regular user. Only allow this with a special mount
2382 * option, when the user has write+exec access to the
2383 * subvol root, and when rmdir(2) would have been
2386 * Note that this is _not_ check that the subvol is
2387 * empty or doesn't contain data that we wouldn't
2388 * otherwise be able to delete.
2390 * Users who want to delete empty subvols should try
2394 if (!btrfs_test_opt(fs_info
, USER_SUBVOL_RM_ALLOWED
))
2398 * Do not allow deletion if the parent dir is the same
2399 * as the dir to be deleted. That means the ioctl
2400 * must be called on the dentry referencing the root
2401 * of the subvol, not a random directory contained
2408 err
= inode_permission(inode
, MAY_WRITE
| MAY_EXEC
);
2413 /* check if subvolume may be deleted by a user */
2414 err
= btrfs_may_delete(dir
, dentry
, 1);
2418 if (btrfs_ino(BTRFS_I(inode
)) != BTRFS_FIRST_FREE_OBJECTID
) {
2426 * Don't allow to delete a subvolume with send in progress. This is
2427 * inside the i_mutex so the error handling that has to drop the bit
2428 * again is not run concurrently.
2430 spin_lock(&dest
->root_item_lock
);
2431 root_flags
= btrfs_root_flags(&dest
->root_item
);
2432 if (dest
->send_in_progress
== 0) {
2433 btrfs_set_root_flags(&dest
->root_item
,
2434 root_flags
| BTRFS_ROOT_SUBVOL_DEAD
);
2435 spin_unlock(&dest
->root_item_lock
);
2437 spin_unlock(&dest
->root_item_lock
);
2439 "Attempt to delete subvolume %llu during send",
2440 dest
->root_key
.objectid
);
2442 goto out_unlock_inode
;
2445 down_write(&fs_info
->subvol_sem
);
2447 err
= may_destroy_subvol(dest
);
2451 btrfs_init_block_rsv(&block_rsv
, BTRFS_BLOCK_RSV_TEMP
);
2453 * One for dir inode, two for dir entries, two for root
2456 err
= btrfs_subvolume_reserve_metadata(root
, &block_rsv
,
2457 5, &qgroup_reserved
, true);
2461 trans
= btrfs_start_transaction(root
, 0);
2462 if (IS_ERR(trans
)) {
2463 err
= PTR_ERR(trans
);
2466 trans
->block_rsv
= &block_rsv
;
2467 trans
->bytes_reserved
= block_rsv
.size
;
2469 btrfs_record_snapshot_destroy(trans
, BTRFS_I(dir
));
2471 ret
= btrfs_unlink_subvol(trans
, root
, dir
,
2472 dest
->root_key
.objectid
,
2473 dentry
->d_name
.name
,
2474 dentry
->d_name
.len
);
2477 btrfs_abort_transaction(trans
, ret
);
2481 btrfs_record_root_in_trans(trans
, dest
);
2483 memset(&dest
->root_item
.drop_progress
, 0,
2484 sizeof(dest
->root_item
.drop_progress
));
2485 dest
->root_item
.drop_level
= 0;
2486 btrfs_set_root_refs(&dest
->root_item
, 0);
2488 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED
, &dest
->state
)) {
2489 ret
= btrfs_insert_orphan_item(trans
,
2491 dest
->root_key
.objectid
);
2493 btrfs_abort_transaction(trans
, ret
);
2499 ret
= btrfs_uuid_tree_rem(trans
, fs_info
, dest
->root_item
.uuid
,
2500 BTRFS_UUID_KEY_SUBVOL
,
2501 dest
->root_key
.objectid
);
2502 if (ret
&& ret
!= -ENOENT
) {
2503 btrfs_abort_transaction(trans
, ret
);
2507 if (!btrfs_is_empty_uuid(dest
->root_item
.received_uuid
)) {
2508 ret
= btrfs_uuid_tree_rem(trans
, fs_info
,
2509 dest
->root_item
.received_uuid
,
2510 BTRFS_UUID_KEY_RECEIVED_SUBVOL
,
2511 dest
->root_key
.objectid
);
2512 if (ret
&& ret
!= -ENOENT
) {
2513 btrfs_abort_transaction(trans
, ret
);
2520 trans
->block_rsv
= NULL
;
2521 trans
->bytes_reserved
= 0;
2522 ret
= btrfs_end_transaction(trans
);
2525 inode
->i_flags
|= S_DEAD
;
2527 btrfs_subvolume_release_metadata(fs_info
, &block_rsv
);
2529 up_write(&fs_info
->subvol_sem
);
2531 spin_lock(&dest
->root_item_lock
);
2532 root_flags
= btrfs_root_flags(&dest
->root_item
);
2533 btrfs_set_root_flags(&dest
->root_item
,
2534 root_flags
& ~BTRFS_ROOT_SUBVOL_DEAD
);
2535 spin_unlock(&dest
->root_item_lock
);
2538 inode_unlock(inode
);
2540 d_invalidate(dentry
);
2541 btrfs_invalidate_inodes(dest
);
2543 ASSERT(dest
->send_in_progress
== 0);
2546 if (dest
->ino_cache_inode
) {
2547 iput(dest
->ino_cache_inode
);
2548 dest
->ino_cache_inode
= NULL
;
2556 mnt_drop_write_file(file
);
2562 static int btrfs_ioctl_defrag(struct file
*file
, void __user
*argp
)
2564 struct inode
*inode
= file_inode(file
);
2565 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2566 struct btrfs_ioctl_defrag_range_args
*range
;
2569 ret
= mnt_want_write_file(file
);
2573 if (btrfs_root_readonly(root
)) {
2578 switch (inode
->i_mode
& S_IFMT
) {
2580 if (!capable(CAP_SYS_ADMIN
)) {
2584 ret
= btrfs_defrag_root(root
);
2587 if (!(file
->f_mode
& FMODE_WRITE
)) {
2592 range
= kzalloc(sizeof(*range
), GFP_KERNEL
);
2599 if (copy_from_user(range
, argp
,
2605 /* compression requires us to start the IO */
2606 if ((range
->flags
& BTRFS_DEFRAG_RANGE_COMPRESS
)) {
2607 range
->flags
|= BTRFS_DEFRAG_RANGE_START_IO
;
2608 range
->extent_thresh
= (u32
)-1;
2611 /* the rest are all set to zero by kzalloc */
2612 range
->len
= (u64
)-1;
2614 ret
= btrfs_defrag_file(file_inode(file
), file
,
2624 mnt_drop_write_file(file
);
2628 static long btrfs_ioctl_add_dev(struct btrfs_fs_info
*fs_info
, void __user
*arg
)
2630 struct btrfs_ioctl_vol_args
*vol_args
;
2633 if (!capable(CAP_SYS_ADMIN
))
2636 if (test_and_set_bit(BTRFS_FS_EXCL_OP
, &fs_info
->flags
))
2637 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS
;
2639 mutex_lock(&fs_info
->volume_mutex
);
2640 vol_args
= memdup_user(arg
, sizeof(*vol_args
));
2641 if (IS_ERR(vol_args
)) {
2642 ret
= PTR_ERR(vol_args
);
2646 vol_args
->name
[BTRFS_PATH_NAME_MAX
] = '\0';
2647 ret
= btrfs_init_new_device(fs_info
, vol_args
->name
);
2650 btrfs_info(fs_info
, "disk added %s", vol_args
->name
);
2654 mutex_unlock(&fs_info
->volume_mutex
);
2655 clear_bit(BTRFS_FS_EXCL_OP
, &fs_info
->flags
);
2659 static long btrfs_ioctl_rm_dev_v2(struct file
*file
, void __user
*arg
)
2661 struct inode
*inode
= file_inode(file
);
2662 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
2663 struct btrfs_ioctl_vol_args_v2
*vol_args
;
2666 if (!capable(CAP_SYS_ADMIN
))
2669 ret
= mnt_want_write_file(file
);
2673 vol_args
= memdup_user(arg
, sizeof(*vol_args
));
2674 if (IS_ERR(vol_args
)) {
2675 ret
= PTR_ERR(vol_args
);
2679 /* Check for compatibility reject unknown flags */
2680 if (vol_args
->flags
& ~BTRFS_VOL_ARG_V2_FLAGS_SUPPORTED
)
2683 if (test_and_set_bit(BTRFS_FS_EXCL_OP
, &fs_info
->flags
)) {
2684 ret
= BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS
;
2688 mutex_lock(&fs_info
->volume_mutex
);
2689 if (vol_args
->flags
& BTRFS_DEVICE_SPEC_BY_ID
) {
2690 ret
= btrfs_rm_device(fs_info
, NULL
, vol_args
->devid
);
2692 vol_args
->name
[BTRFS_SUBVOL_NAME_MAX
] = '\0';
2693 ret
= btrfs_rm_device(fs_info
, vol_args
->name
, 0);
2695 mutex_unlock(&fs_info
->volume_mutex
);
2696 clear_bit(BTRFS_FS_EXCL_OP
, &fs_info
->flags
);
2699 if (vol_args
->flags
& BTRFS_DEVICE_SPEC_BY_ID
)
2700 btrfs_info(fs_info
, "device deleted: id %llu",
2703 btrfs_info(fs_info
, "device deleted: %s",
2709 mnt_drop_write_file(file
);
2713 static long btrfs_ioctl_rm_dev(struct file
*file
, void __user
*arg
)
2715 struct inode
*inode
= file_inode(file
);
2716 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
2717 struct btrfs_ioctl_vol_args
*vol_args
;
2720 if (!capable(CAP_SYS_ADMIN
))
2723 ret
= mnt_want_write_file(file
);
2727 if (test_and_set_bit(BTRFS_FS_EXCL_OP
, &fs_info
->flags
)) {
2728 ret
= BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS
;
2729 goto out_drop_write
;
2732 vol_args
= memdup_user(arg
, sizeof(*vol_args
));
2733 if (IS_ERR(vol_args
)) {
2734 ret
= PTR_ERR(vol_args
);
2738 vol_args
->name
[BTRFS_PATH_NAME_MAX
] = '\0';
2739 mutex_lock(&fs_info
->volume_mutex
);
2740 ret
= btrfs_rm_device(fs_info
, vol_args
->name
, 0);
2741 mutex_unlock(&fs_info
->volume_mutex
);
2744 btrfs_info(fs_info
, "disk deleted %s", vol_args
->name
);
2747 clear_bit(BTRFS_FS_EXCL_OP
, &fs_info
->flags
);
2749 mnt_drop_write_file(file
);
2754 static long btrfs_ioctl_fs_info(struct btrfs_fs_info
*fs_info
,
2757 struct btrfs_ioctl_fs_info_args
*fi_args
;
2758 struct btrfs_device
*device
;
2759 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
2762 fi_args
= kzalloc(sizeof(*fi_args
), GFP_KERNEL
);
2766 mutex_lock(&fs_devices
->device_list_mutex
);
2767 fi_args
->num_devices
= fs_devices
->num_devices
;
2768 memcpy(&fi_args
->fsid
, fs_info
->fsid
, sizeof(fi_args
->fsid
));
2770 list_for_each_entry(device
, &fs_devices
->devices
, dev_list
) {
2771 if (device
->devid
> fi_args
->max_id
)
2772 fi_args
->max_id
= device
->devid
;
2774 mutex_unlock(&fs_devices
->device_list_mutex
);
2776 fi_args
->nodesize
= fs_info
->nodesize
;
2777 fi_args
->sectorsize
= fs_info
->sectorsize
;
2778 fi_args
->clone_alignment
= fs_info
->sectorsize
;
2780 if (copy_to_user(arg
, fi_args
, sizeof(*fi_args
)))
2787 static long btrfs_ioctl_dev_info(struct btrfs_fs_info
*fs_info
,
2790 struct btrfs_ioctl_dev_info_args
*di_args
;
2791 struct btrfs_device
*dev
;
2792 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
2794 char *s_uuid
= NULL
;
2796 di_args
= memdup_user(arg
, sizeof(*di_args
));
2797 if (IS_ERR(di_args
))
2798 return PTR_ERR(di_args
);
2800 if (!btrfs_is_empty_uuid(di_args
->uuid
))
2801 s_uuid
= di_args
->uuid
;
2803 mutex_lock(&fs_devices
->device_list_mutex
);
2804 dev
= btrfs_find_device(fs_info
, di_args
->devid
, s_uuid
, NULL
);
2811 di_args
->devid
= dev
->devid
;
2812 di_args
->bytes_used
= btrfs_device_get_bytes_used(dev
);
2813 di_args
->total_bytes
= btrfs_device_get_total_bytes(dev
);
2814 memcpy(di_args
->uuid
, dev
->uuid
, sizeof(di_args
->uuid
));
2816 struct rcu_string
*name
;
2819 name
= rcu_dereference(dev
->name
);
2820 strncpy(di_args
->path
, name
->str
, sizeof(di_args
->path
));
2822 di_args
->path
[sizeof(di_args
->path
) - 1] = 0;
2824 di_args
->path
[0] = '\0';
2828 mutex_unlock(&fs_devices
->device_list_mutex
);
2829 if (ret
== 0 && copy_to_user(arg
, di_args
, sizeof(*di_args
)))
2836 static struct page
*extent_same_get_page(struct inode
*inode
, pgoff_t index
)
2840 page
= grab_cache_page(inode
->i_mapping
, index
);
2842 return ERR_PTR(-ENOMEM
);
2844 if (!PageUptodate(page
)) {
2847 ret
= btrfs_readpage(NULL
, page
);
2849 return ERR_PTR(ret
);
2851 if (!PageUptodate(page
)) {
2854 return ERR_PTR(-EIO
);
2856 if (page
->mapping
!= inode
->i_mapping
) {
2859 return ERR_PTR(-EAGAIN
);
2866 static int gather_extent_pages(struct inode
*inode
, struct page
**pages
,
2867 int num_pages
, u64 off
)
2870 pgoff_t index
= off
>> PAGE_SHIFT
;
2872 for (i
= 0; i
< num_pages
; i
++) {
2874 pages
[i
] = extent_same_get_page(inode
, index
+ i
);
2875 if (IS_ERR(pages
[i
])) {
2876 int err
= PTR_ERR(pages
[i
]);
2887 static int lock_extent_range(struct inode
*inode
, u64 off
, u64 len
,
2888 bool retry_range_locking
)
2891 * Do any pending delalloc/csum calculations on inode, one way or
2892 * another, and lock file content.
2893 * The locking order is:
2896 * 2) range in the inode's io tree
2899 struct btrfs_ordered_extent
*ordered
;
2900 lock_extent(&BTRFS_I(inode
)->io_tree
, off
, off
+ len
- 1);
2901 ordered
= btrfs_lookup_first_ordered_extent(inode
,
2904 ordered
->file_offset
+ ordered
->len
<= off
||
2905 ordered
->file_offset
>= off
+ len
) &&
2906 !test_range_bit(&BTRFS_I(inode
)->io_tree
, off
,
2907 off
+ len
- 1, EXTENT_DELALLOC
, 0, NULL
)) {
2909 btrfs_put_ordered_extent(ordered
);
2912 unlock_extent(&BTRFS_I(inode
)->io_tree
, off
, off
+ len
- 1);
2914 btrfs_put_ordered_extent(ordered
);
2915 if (!retry_range_locking
)
2917 btrfs_wait_ordered_range(inode
, off
, len
);
2922 static void btrfs_double_inode_unlock(struct inode
*inode1
, struct inode
*inode2
)
2924 inode_unlock(inode1
);
2925 inode_unlock(inode2
);
2928 static void btrfs_double_inode_lock(struct inode
*inode1
, struct inode
*inode2
)
2930 if (inode1
< inode2
)
2931 swap(inode1
, inode2
);
2933 inode_lock_nested(inode1
, I_MUTEX_PARENT
);
2934 inode_lock_nested(inode2
, I_MUTEX_CHILD
);
2937 static void btrfs_double_extent_unlock(struct inode
*inode1
, u64 loff1
,
2938 struct inode
*inode2
, u64 loff2
, u64 len
)
2940 unlock_extent(&BTRFS_I(inode1
)->io_tree
, loff1
, loff1
+ len
- 1);
2941 unlock_extent(&BTRFS_I(inode2
)->io_tree
, loff2
, loff2
+ len
- 1);
2944 static int btrfs_double_extent_lock(struct inode
*inode1
, u64 loff1
,
2945 struct inode
*inode2
, u64 loff2
, u64 len
,
2946 bool retry_range_locking
)
2950 if (inode1
< inode2
) {
2951 swap(inode1
, inode2
);
2954 ret
= lock_extent_range(inode1
, loff1
, len
, retry_range_locking
);
2957 ret
= lock_extent_range(inode2
, loff2
, len
, retry_range_locking
);
2959 unlock_extent(&BTRFS_I(inode1
)->io_tree
, loff1
,
2966 struct page
**src_pages
;
2967 struct page
**dst_pages
;
2970 static void btrfs_cmp_data_free(struct cmp_pages
*cmp
)
2975 for (i
= 0; i
< cmp
->num_pages
; i
++) {
2976 pg
= cmp
->src_pages
[i
];
2981 pg
= cmp
->dst_pages
[i
];
2987 kfree(cmp
->src_pages
);
2988 kfree(cmp
->dst_pages
);
2991 static int btrfs_cmp_data_prepare(struct inode
*src
, u64 loff
,
2992 struct inode
*dst
, u64 dst_loff
,
2993 u64 len
, struct cmp_pages
*cmp
)
2996 int num_pages
= PAGE_ALIGN(len
) >> PAGE_SHIFT
;
2997 struct page
**src_pgarr
, **dst_pgarr
;
3000 * We must gather up all the pages before we initiate our
3001 * extent locking. We use an array for the page pointers. Size
3002 * of the array is bounded by len, which is in turn bounded by
3003 * BTRFS_MAX_DEDUPE_LEN.
3005 src_pgarr
= kcalloc(num_pages
, sizeof(struct page
*), GFP_KERNEL
);
3006 dst_pgarr
= kcalloc(num_pages
, sizeof(struct page
*), GFP_KERNEL
);
3007 if (!src_pgarr
|| !dst_pgarr
) {
3012 cmp
->num_pages
= num_pages
;
3013 cmp
->src_pages
= src_pgarr
;
3014 cmp
->dst_pages
= dst_pgarr
;
3017 * If deduping ranges in the same inode, locking rules make it mandatory
3018 * to always lock pages in ascending order to avoid deadlocks with
3019 * concurrent tasks (such as starting writeback/delalloc).
3021 if (src
== dst
&& dst_loff
< loff
) {
3022 swap(src_pgarr
, dst_pgarr
);
3023 swap(loff
, dst_loff
);
3026 ret
= gather_extent_pages(src
, src_pgarr
, cmp
->num_pages
, loff
);
3030 ret
= gather_extent_pages(dst
, dst_pgarr
, cmp
->num_pages
, dst_loff
);
3034 btrfs_cmp_data_free(cmp
);
3038 static int btrfs_cmp_data(u64 len
, struct cmp_pages
*cmp
)
3042 struct page
*src_page
, *dst_page
;
3043 unsigned int cmp_len
= PAGE_SIZE
;
3044 void *addr
, *dst_addr
;
3048 if (len
< PAGE_SIZE
)
3051 BUG_ON(i
>= cmp
->num_pages
);
3053 src_page
= cmp
->src_pages
[i
];
3054 dst_page
= cmp
->dst_pages
[i
];
3055 ASSERT(PageLocked(src_page
));
3056 ASSERT(PageLocked(dst_page
));
3058 addr
= kmap_atomic(src_page
);
3059 dst_addr
= kmap_atomic(dst_page
);
3061 flush_dcache_page(src_page
);
3062 flush_dcache_page(dst_page
);
3064 if (memcmp(addr
, dst_addr
, cmp_len
))
3067 kunmap_atomic(addr
);
3068 kunmap_atomic(dst_addr
);
3080 static int extent_same_check_offsets(struct inode
*inode
, u64 off
, u64
*plen
,
3084 u64 bs
= BTRFS_I(inode
)->root
->fs_info
->sb
->s_blocksize
;
3086 if (off
+ olen
> inode
->i_size
|| off
+ olen
< off
)
3089 /* if we extend to eof, continue to block boundary */
3090 if (off
+ len
== inode
->i_size
)
3091 *plen
= len
= ALIGN(inode
->i_size
, bs
) - off
;
3093 /* Check that we are block aligned - btrfs_clone() requires this */
3094 if (!IS_ALIGNED(off
, bs
) || !IS_ALIGNED(off
+ len
, bs
))
3100 static int btrfs_extent_same(struct inode
*src
, u64 loff
, u64 olen
,
3101 struct inode
*dst
, u64 dst_loff
)
3105 struct cmp_pages cmp
;
3106 bool same_inode
= (src
== dst
);
3107 u64 same_lock_start
= 0;
3108 u64 same_lock_len
= 0;
3116 btrfs_double_inode_lock(src
, dst
);
3118 ret
= extent_same_check_offsets(src
, loff
, &len
, olen
);
3122 ret
= extent_same_check_offsets(dst
, dst_loff
, &len
, olen
);
3128 * Single inode case wants the same checks, except we
3129 * don't want our length pushed out past i_size as
3130 * comparing that data range makes no sense.
3132 * extent_same_check_offsets() will do this for an
3133 * unaligned length at i_size, so catch it here and
3134 * reject the request.
3136 * This effectively means we require aligned extents
3137 * for the single-inode case, whereas the other cases
3138 * allow an unaligned length so long as it ends at
3146 /* Check for overlapping ranges */
3147 if (dst_loff
+ len
> loff
&& dst_loff
< loff
+ len
) {
3152 same_lock_start
= min_t(u64
, loff
, dst_loff
);
3153 same_lock_len
= max_t(u64
, loff
, dst_loff
) + len
- same_lock_start
;
3156 /* don't make the dst file partly checksummed */
3157 if ((BTRFS_I(src
)->flags
& BTRFS_INODE_NODATASUM
) !=
3158 (BTRFS_I(dst
)->flags
& BTRFS_INODE_NODATASUM
)) {
3164 ret
= btrfs_cmp_data_prepare(src
, loff
, dst
, dst_loff
, olen
, &cmp
);
3169 ret
= lock_extent_range(src
, same_lock_start
, same_lock_len
,
3172 ret
= btrfs_double_extent_lock(src
, loff
, dst
, dst_loff
, len
,
3175 * If one of the inodes has dirty pages in the respective range or
3176 * ordered extents, we need to flush dellaloc and wait for all ordered
3177 * extents in the range. We must unlock the pages and the ranges in the
3178 * io trees to avoid deadlocks when flushing delalloc (requires locking
3179 * pages) and when waiting for ordered extents to complete (they require
3182 if (ret
== -EAGAIN
) {
3184 * Ranges in the io trees already unlocked. Now unlock all
3185 * pages before waiting for all IO to complete.
3187 btrfs_cmp_data_free(&cmp
);
3189 btrfs_wait_ordered_range(src
, same_lock_start
,
3192 btrfs_wait_ordered_range(src
, loff
, len
);
3193 btrfs_wait_ordered_range(dst
, dst_loff
, len
);
3199 /* ranges in the io trees already unlocked */
3200 btrfs_cmp_data_free(&cmp
);
3204 /* pass original length for comparison so we stay within i_size */
3205 ret
= btrfs_cmp_data(olen
, &cmp
);
3207 ret
= btrfs_clone(src
, dst
, loff
, olen
, len
, dst_loff
, 1);
3210 unlock_extent(&BTRFS_I(src
)->io_tree
, same_lock_start
,
3211 same_lock_start
+ same_lock_len
- 1);
3213 btrfs_double_extent_unlock(src
, loff
, dst
, dst_loff
, len
);
3215 btrfs_cmp_data_free(&cmp
);
3220 btrfs_double_inode_unlock(src
, dst
);
3225 #define BTRFS_MAX_DEDUPE_LEN SZ_16M
3227 ssize_t
btrfs_dedupe_file_range(struct file
*src_file
, u64 loff
, u64 olen
,
3228 struct file
*dst_file
, u64 dst_loff
)
3230 struct inode
*src
= file_inode(src_file
);
3231 struct inode
*dst
= file_inode(dst_file
);
3232 u64 bs
= BTRFS_I(src
)->root
->fs_info
->sb
->s_blocksize
;
3235 if (olen
> BTRFS_MAX_DEDUPE_LEN
)
3236 olen
= BTRFS_MAX_DEDUPE_LEN
;
3238 if (WARN_ON_ONCE(bs
< PAGE_SIZE
)) {
3240 * Btrfs does not support blocksize < page_size. As a
3241 * result, btrfs_cmp_data() won't correctly handle
3242 * this situation without an update.
3247 res
= btrfs_extent_same(src
, loff
, olen
, dst
, dst_loff
);
3253 static int clone_finish_inode_update(struct btrfs_trans_handle
*trans
,
3254 struct inode
*inode
,
3260 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3263 inode_inc_iversion(inode
);
3264 if (!no_time_update
)
3265 inode
->i_mtime
= inode
->i_ctime
= current_time(inode
);
3267 * We round up to the block size at eof when determining which
3268 * extents to clone above, but shouldn't round up the file size.
3270 if (endoff
> destoff
+ olen
)
3271 endoff
= destoff
+ olen
;
3272 if (endoff
> inode
->i_size
)
3273 btrfs_i_size_write(BTRFS_I(inode
), endoff
);
3275 ret
= btrfs_update_inode(trans
, root
, inode
);
3277 btrfs_abort_transaction(trans
, ret
);
3278 btrfs_end_transaction(trans
);
3281 ret
= btrfs_end_transaction(trans
);
3286 static void clone_update_extent_map(struct btrfs_inode
*inode
,
3287 const struct btrfs_trans_handle
*trans
,
3288 const struct btrfs_path
*path
,
3289 const u64 hole_offset
,
3292 struct extent_map_tree
*em_tree
= &inode
->extent_tree
;
3293 struct extent_map
*em
;
3296 em
= alloc_extent_map();
3298 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC
, &inode
->runtime_flags
);
3303 struct btrfs_file_extent_item
*fi
;
3305 fi
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
3306 struct btrfs_file_extent_item
);
3307 btrfs_extent_item_to_extent_map(inode
, path
, fi
, false, em
);
3308 em
->generation
= -1;
3309 if (btrfs_file_extent_type(path
->nodes
[0], fi
) ==
3310 BTRFS_FILE_EXTENT_INLINE
)
3311 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC
,
3312 &inode
->runtime_flags
);
3314 em
->start
= hole_offset
;
3316 em
->ram_bytes
= em
->len
;
3317 em
->orig_start
= hole_offset
;
3318 em
->block_start
= EXTENT_MAP_HOLE
;
3320 em
->orig_block_len
= 0;
3321 em
->compress_type
= BTRFS_COMPRESS_NONE
;
3322 em
->generation
= trans
->transid
;
3326 write_lock(&em_tree
->lock
);
3327 ret
= add_extent_mapping(em_tree
, em
, 1);
3328 write_unlock(&em_tree
->lock
);
3329 if (ret
!= -EEXIST
) {
3330 free_extent_map(em
);
3333 btrfs_drop_extent_cache(inode
, em
->start
,
3334 em
->start
+ em
->len
- 1, 0);
3338 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC
, &inode
->runtime_flags
);
3342 * Make sure we do not end up inserting an inline extent into a file that has
3343 * already other (non-inline) extents. If a file has an inline extent it can
3344 * not have any other extents and the (single) inline extent must start at the
3345 * file offset 0. Failing to respect these rules will lead to file corruption,
3346 * resulting in EIO errors on read/write operations, hitting BUG_ON's in mm, etc
3348 * We can have extents that have been already written to disk or we can have
3349 * dirty ranges still in delalloc, in which case the extent maps and items are
3350 * created only when we run delalloc, and the delalloc ranges might fall outside
3351 * the range we are currently locking in the inode's io tree. So we check the
3352 * inode's i_size because of that (i_size updates are done while holding the
3353 * i_mutex, which we are holding here).
3354 * We also check to see if the inode has a size not greater than "datal" but has
3355 * extents beyond it, due to an fallocate with FALLOC_FL_KEEP_SIZE (and we are
3356 * protected against such concurrent fallocate calls by the i_mutex).
3358 * If the file has no extents but a size greater than datal, do not allow the
3359 * copy because we would need turn the inline extent into a non-inline one (even
3360 * with NO_HOLES enabled). If we find our destination inode only has one inline
3361 * extent, just overwrite it with the source inline extent if its size is less
3362 * than the source extent's size, or we could copy the source inline extent's
3363 * data into the destination inode's inline extent if the later is greater then
3366 static int clone_copy_inline_extent(struct inode
*dst
,
3367 struct btrfs_trans_handle
*trans
,
3368 struct btrfs_path
*path
,
3369 struct btrfs_key
*new_key
,
3370 const u64 drop_start
,
3376 struct btrfs_fs_info
*fs_info
= btrfs_sb(dst
->i_sb
);
3377 struct btrfs_root
*root
= BTRFS_I(dst
)->root
;
3378 const u64 aligned_end
= ALIGN(new_key
->offset
+ datal
,
3379 fs_info
->sectorsize
);
3381 struct btrfs_key key
;
3383 if (new_key
->offset
> 0)
3386 key
.objectid
= btrfs_ino(BTRFS_I(dst
));
3387 key
.type
= BTRFS_EXTENT_DATA_KEY
;
3389 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
3392 } else if (ret
> 0) {
3393 if (path
->slots
[0] >= btrfs_header_nritems(path
->nodes
[0])) {
3394 ret
= btrfs_next_leaf(root
, path
);
3398 goto copy_inline_extent
;
3400 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, path
->slots
[0]);
3401 if (key
.objectid
== btrfs_ino(BTRFS_I(dst
)) &&
3402 key
.type
== BTRFS_EXTENT_DATA_KEY
) {
3403 ASSERT(key
.offset
> 0);
3406 } else if (i_size_read(dst
) <= datal
) {
3407 struct btrfs_file_extent_item
*ei
;
3411 * If the file size is <= datal, make sure there are no other
3412 * extents following (can happen do to an fallocate call with
3413 * the flag FALLOC_FL_KEEP_SIZE).
3415 ei
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
3416 struct btrfs_file_extent_item
);
3418 * If it's an inline extent, it can not have other extents
3421 if (btrfs_file_extent_type(path
->nodes
[0], ei
) ==
3422 BTRFS_FILE_EXTENT_INLINE
)
3423 goto copy_inline_extent
;
3425 ext_len
= btrfs_file_extent_num_bytes(path
->nodes
[0], ei
);
3426 if (ext_len
> aligned_end
)
3429 ret
= btrfs_next_item(root
, path
);
3432 } else if (ret
== 0) {
3433 btrfs_item_key_to_cpu(path
->nodes
[0], &key
,
3435 if (key
.objectid
== btrfs_ino(BTRFS_I(dst
)) &&
3436 key
.type
== BTRFS_EXTENT_DATA_KEY
)
3443 * We have no extent items, or we have an extent at offset 0 which may
3444 * or may not be inlined. All these cases are dealt the same way.
3446 if (i_size_read(dst
) > datal
) {
3448 * If the destination inode has an inline extent...
3449 * This would require copying the data from the source inline
3450 * extent into the beginning of the destination's inline extent.
3451 * But this is really complex, both extents can be compressed
3452 * or just one of them, which would require decompressing and
3453 * re-compressing data (which could increase the new compressed
3454 * size, not allowing the compressed data to fit anymore in an
3456 * So just don't support this case for now (it should be rare,
3457 * we are not really saving space when cloning inline extents).
3462 btrfs_release_path(path
);
3463 ret
= btrfs_drop_extents(trans
, root
, dst
, drop_start
, aligned_end
, 1);
3466 ret
= btrfs_insert_empty_item(trans
, root
, path
, new_key
, size
);
3471 const u32 start
= btrfs_file_extent_calc_inline_size(0);
3473 memmove(inline_data
+ start
, inline_data
+ start
+ skip
, datal
);
3476 write_extent_buffer(path
->nodes
[0], inline_data
,
3477 btrfs_item_ptr_offset(path
->nodes
[0],
3480 inode_add_bytes(dst
, datal
);
3486 * btrfs_clone() - clone a range from inode file to another
3488 * @src: Inode to clone from
3489 * @inode: Inode to clone to
3490 * @off: Offset within source to start clone from
3491 * @olen: Original length, passed by user, of range to clone
3492 * @olen_aligned: Block-aligned value of olen
3493 * @destoff: Offset within @inode to start clone
3494 * @no_time_update: Whether to update mtime/ctime on the target inode
3496 static int btrfs_clone(struct inode
*src
, struct inode
*inode
,
3497 const u64 off
, const u64 olen
, const u64 olen_aligned
,
3498 const u64 destoff
, int no_time_update
)
3500 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
3501 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3502 struct btrfs_path
*path
= NULL
;
3503 struct extent_buffer
*leaf
;
3504 struct btrfs_trans_handle
*trans
;
3506 struct btrfs_key key
;
3510 const u64 len
= olen_aligned
;
3511 u64 last_dest_end
= destoff
;
3514 buf
= kvmalloc(fs_info
->nodesize
, GFP_KERNEL
);
3518 path
= btrfs_alloc_path();
3524 path
->reada
= READA_FORWARD
;
3526 key
.objectid
= btrfs_ino(BTRFS_I(src
));
3527 key
.type
= BTRFS_EXTENT_DATA_KEY
;
3531 u64 next_key_min_offset
= key
.offset
+ 1;
3534 * note the key will change type as we walk through the
3537 path
->leave_spinning
= 1;
3538 ret
= btrfs_search_slot(NULL
, BTRFS_I(src
)->root
, &key
, path
,
3543 * First search, if no extent item that starts at offset off was
3544 * found but the previous item is an extent item, it's possible
3545 * it might overlap our target range, therefore process it.
3547 if (key
.offset
== off
&& ret
> 0 && path
->slots
[0] > 0) {
3548 btrfs_item_key_to_cpu(path
->nodes
[0], &key
,
3549 path
->slots
[0] - 1);
3550 if (key
.type
== BTRFS_EXTENT_DATA_KEY
)
3554 nritems
= btrfs_header_nritems(path
->nodes
[0]);
3556 if (path
->slots
[0] >= nritems
) {
3557 ret
= btrfs_next_leaf(BTRFS_I(src
)->root
, path
);
3562 nritems
= btrfs_header_nritems(path
->nodes
[0]);
3564 leaf
= path
->nodes
[0];
3565 slot
= path
->slots
[0];
3567 btrfs_item_key_to_cpu(leaf
, &key
, slot
);
3568 if (key
.type
> BTRFS_EXTENT_DATA_KEY
||
3569 key
.objectid
!= btrfs_ino(BTRFS_I(src
)))
3572 if (key
.type
== BTRFS_EXTENT_DATA_KEY
) {
3573 struct btrfs_file_extent_item
*extent
;
3576 struct btrfs_key new_key
;
3577 u64 disko
= 0, diskl
= 0;
3578 u64 datao
= 0, datal
= 0;
3582 extent
= btrfs_item_ptr(leaf
, slot
,
3583 struct btrfs_file_extent_item
);
3584 comp
= btrfs_file_extent_compression(leaf
, extent
);
3585 type
= btrfs_file_extent_type(leaf
, extent
);
3586 if (type
== BTRFS_FILE_EXTENT_REG
||
3587 type
== BTRFS_FILE_EXTENT_PREALLOC
) {
3588 disko
= btrfs_file_extent_disk_bytenr(leaf
,
3590 diskl
= btrfs_file_extent_disk_num_bytes(leaf
,
3592 datao
= btrfs_file_extent_offset(leaf
, extent
);
3593 datal
= btrfs_file_extent_num_bytes(leaf
,
3595 } else if (type
== BTRFS_FILE_EXTENT_INLINE
) {
3596 /* take upper bound, may be compressed */
3597 datal
= btrfs_file_extent_ram_bytes(leaf
,
3602 * The first search might have left us at an extent
3603 * item that ends before our target range's start, can
3604 * happen if we have holes and NO_HOLES feature enabled.
3606 if (key
.offset
+ datal
<= off
) {
3609 } else if (key
.offset
>= off
+ len
) {
3612 next_key_min_offset
= key
.offset
+ datal
;
3613 size
= btrfs_item_size_nr(leaf
, slot
);
3614 read_extent_buffer(leaf
, buf
,
3615 btrfs_item_ptr_offset(leaf
, slot
),
3618 btrfs_release_path(path
);
3619 path
->leave_spinning
= 0;
3621 memcpy(&new_key
, &key
, sizeof(new_key
));
3622 new_key
.objectid
= btrfs_ino(BTRFS_I(inode
));
3623 if (off
<= key
.offset
)
3624 new_key
.offset
= key
.offset
+ destoff
- off
;
3626 new_key
.offset
= destoff
;
3629 * Deal with a hole that doesn't have an extent item
3630 * that represents it (NO_HOLES feature enabled).
3631 * This hole is either in the middle of the cloning
3632 * range or at the beginning (fully overlaps it or
3633 * partially overlaps it).
3635 if (new_key
.offset
!= last_dest_end
)
3636 drop_start
= last_dest_end
;
3638 drop_start
= new_key
.offset
;
3641 * 1 - adjusting old extent (we may have to split it)
3642 * 1 - add new extent
3645 trans
= btrfs_start_transaction(root
, 3);
3646 if (IS_ERR(trans
)) {
3647 ret
= PTR_ERR(trans
);
3651 if (type
== BTRFS_FILE_EXTENT_REG
||
3652 type
== BTRFS_FILE_EXTENT_PREALLOC
) {
3654 * a | --- range to clone ---| b
3655 * | ------------- extent ------------- |
3658 /* subtract range b */
3659 if (key
.offset
+ datal
> off
+ len
)
3660 datal
= off
+ len
- key
.offset
;
3662 /* subtract range a */
3663 if (off
> key
.offset
) {
3664 datao
+= off
- key
.offset
;
3665 datal
-= off
- key
.offset
;
3668 ret
= btrfs_drop_extents(trans
, root
, inode
,
3670 new_key
.offset
+ datal
,
3673 if (ret
!= -EOPNOTSUPP
)
3674 btrfs_abort_transaction(trans
,
3676 btrfs_end_transaction(trans
);
3680 ret
= btrfs_insert_empty_item(trans
, root
, path
,
3683 btrfs_abort_transaction(trans
, ret
);
3684 btrfs_end_transaction(trans
);
3688 leaf
= path
->nodes
[0];
3689 slot
= path
->slots
[0];
3690 write_extent_buffer(leaf
, buf
,
3691 btrfs_item_ptr_offset(leaf
, slot
),
3694 extent
= btrfs_item_ptr(leaf
, slot
,
3695 struct btrfs_file_extent_item
);
3697 /* disko == 0 means it's a hole */
3701 btrfs_set_file_extent_offset(leaf
, extent
,
3703 btrfs_set_file_extent_num_bytes(leaf
, extent
,
3707 inode_add_bytes(inode
, datal
);
3708 ret
= btrfs_inc_extent_ref(trans
,
3711 root
->root_key
.objectid
,
3712 btrfs_ino(BTRFS_I(inode
)),
3713 new_key
.offset
- datao
);
3715 btrfs_abort_transaction(trans
,
3717 btrfs_end_transaction(trans
);
3722 } else if (type
== BTRFS_FILE_EXTENT_INLINE
) {
3726 if (off
> key
.offset
) {
3727 skip
= off
- key
.offset
;
3728 new_key
.offset
+= skip
;
3731 if (key
.offset
+ datal
> off
+ len
)
3732 trim
= key
.offset
+ datal
- (off
+ len
);
3734 if (comp
&& (skip
|| trim
)) {
3736 btrfs_end_transaction(trans
);
3739 size
-= skip
+ trim
;
3740 datal
-= skip
+ trim
;
3742 ret
= clone_copy_inline_extent(inode
,
3749 if (ret
!= -EOPNOTSUPP
)
3750 btrfs_abort_transaction(trans
,
3752 btrfs_end_transaction(trans
);
3755 leaf
= path
->nodes
[0];
3756 slot
= path
->slots
[0];
3759 /* If we have an implicit hole (NO_HOLES feature). */
3760 if (drop_start
< new_key
.offset
)
3761 clone_update_extent_map(BTRFS_I(inode
), trans
,
3763 new_key
.offset
- drop_start
);
3765 clone_update_extent_map(BTRFS_I(inode
), trans
,
3768 btrfs_mark_buffer_dirty(leaf
);
3769 btrfs_release_path(path
);
3771 last_dest_end
= ALIGN(new_key
.offset
+ datal
,
3772 fs_info
->sectorsize
);
3773 ret
= clone_finish_inode_update(trans
, inode
,
3779 if (new_key
.offset
+ datal
>= destoff
+ len
)
3782 btrfs_release_path(path
);
3783 key
.offset
= next_key_min_offset
;
3785 if (fatal_signal_pending(current
)) {
3792 if (last_dest_end
< destoff
+ len
) {
3794 * We have an implicit hole (NO_HOLES feature is enabled) that
3795 * fully or partially overlaps our cloning range at its end.
3797 btrfs_release_path(path
);
3800 * 1 - remove extent(s)
3803 trans
= btrfs_start_transaction(root
, 2);
3804 if (IS_ERR(trans
)) {
3805 ret
= PTR_ERR(trans
);
3808 ret
= btrfs_drop_extents(trans
, root
, inode
,
3809 last_dest_end
, destoff
+ len
, 1);
3811 if (ret
!= -EOPNOTSUPP
)
3812 btrfs_abort_transaction(trans
, ret
);
3813 btrfs_end_transaction(trans
);
3816 clone_update_extent_map(BTRFS_I(inode
), trans
, NULL
,
3818 destoff
+ len
- last_dest_end
);
3819 ret
= clone_finish_inode_update(trans
, inode
, destoff
+ len
,
3820 destoff
, olen
, no_time_update
);
3824 btrfs_free_path(path
);
3829 static noinline
int btrfs_clone_files(struct file
*file
, struct file
*file_src
,
3830 u64 off
, u64 olen
, u64 destoff
)
3832 struct inode
*inode
= file_inode(file
);
3833 struct inode
*src
= file_inode(file_src
);
3834 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
3835 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3838 u64 bs
= fs_info
->sb
->s_blocksize
;
3839 int same_inode
= src
== inode
;
3843 * - split compressed inline extents. annoying: we need to
3844 * decompress into destination's address_space (the file offset
3845 * may change, so source mapping won't do), then recompress (or
3846 * otherwise reinsert) a subrange.
3848 * - split destination inode's inline extents. The inline extents can
3849 * be either compressed or non-compressed.
3852 if (btrfs_root_readonly(root
))
3855 if (file_src
->f_path
.mnt
!= file
->f_path
.mnt
||
3856 src
->i_sb
!= inode
->i_sb
)
3859 /* don't make the dst file partly checksummed */
3860 if ((BTRFS_I(src
)->flags
& BTRFS_INODE_NODATASUM
) !=
3861 (BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
))
3864 if (S_ISDIR(src
->i_mode
) || S_ISDIR(inode
->i_mode
))
3868 btrfs_double_inode_lock(src
, inode
);
3873 /* determine range to clone */
3875 if (off
+ len
> src
->i_size
|| off
+ len
< off
)
3878 olen
= len
= src
->i_size
- off
;
3879 /* if we extend to eof, continue to block boundary */
3880 if (off
+ len
== src
->i_size
)
3881 len
= ALIGN(src
->i_size
, bs
) - off
;
3888 /* verify the end result is block aligned */
3889 if (!IS_ALIGNED(off
, bs
) || !IS_ALIGNED(off
+ len
, bs
) ||
3890 !IS_ALIGNED(destoff
, bs
))
3893 /* verify if ranges are overlapped within the same file */
3895 if (destoff
+ len
> off
&& destoff
< off
+ len
)
3899 if (destoff
> inode
->i_size
) {
3900 ret
= btrfs_cont_expand(inode
, inode
->i_size
, destoff
);
3906 * Lock the target range too. Right after we replace the file extent
3907 * items in the fs tree (which now point to the cloned data), we might
3908 * have a worker replace them with extent items relative to a write
3909 * operation that was issued before this clone operation (i.e. confront
3910 * with inode.c:btrfs_finish_ordered_io).
3913 u64 lock_start
= min_t(u64
, off
, destoff
);
3914 u64 lock_len
= max_t(u64
, off
, destoff
) + len
- lock_start
;
3916 ret
= lock_extent_range(src
, lock_start
, lock_len
, true);
3918 ret
= btrfs_double_extent_lock(src
, off
, inode
, destoff
, len
,
3923 /* ranges in the io trees already unlocked */
3927 ret
= btrfs_clone(src
, inode
, off
, olen
, len
, destoff
, 0);
3930 u64 lock_start
= min_t(u64
, off
, destoff
);
3931 u64 lock_end
= max_t(u64
, off
, destoff
) + len
- 1;
3933 unlock_extent(&BTRFS_I(src
)->io_tree
, lock_start
, lock_end
);
3935 btrfs_double_extent_unlock(src
, off
, inode
, destoff
, len
);
3938 * Truncate page cache pages so that future reads will see the cloned
3939 * data immediately and not the previous data.
3941 truncate_inode_pages_range(&inode
->i_data
,
3942 round_down(destoff
, PAGE_SIZE
),
3943 round_up(destoff
+ len
, PAGE_SIZE
) - 1);
3946 btrfs_double_inode_unlock(src
, inode
);
3952 int btrfs_clone_file_range(struct file
*src_file
, loff_t off
,
3953 struct file
*dst_file
, loff_t destoff
, u64 len
)
3955 return btrfs_clone_files(dst_file
, src_file
, off
, len
, destoff
);
3959 * there are many ways the trans_start and trans_end ioctls can lead
3960 * to deadlocks. They should only be used by applications that
3961 * basically own the machine, and have a very in depth understanding
3962 * of all the possible deadlocks and enospc problems.
3964 static long btrfs_ioctl_trans_start(struct file
*file
)
3966 struct inode
*inode
= file_inode(file
);
3967 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
3968 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3969 struct btrfs_trans_handle
*trans
;
3970 struct btrfs_file_private
*private;
3972 static bool warned
= false;
3975 if (!capable(CAP_SYS_ADMIN
))
3980 "Userspace transaction mechanism is considered "
3981 "deprecated and slated to be removed in 4.17. "
3982 "If you have a valid use case please "
3983 "speak up on the mailing list");
3989 private = file
->private_data
;
3990 if (private && private->trans
)
3993 private = kzalloc(sizeof(struct btrfs_file_private
),
3997 file
->private_data
= private;
4001 if (btrfs_root_readonly(root
))
4004 ret
= mnt_want_write_file(file
);
4008 atomic_inc(&fs_info
->open_ioctl_trans
);
4011 trans
= btrfs_start_ioctl_transaction(root
);
4015 private->trans
= trans
;
4019 atomic_dec(&fs_info
->open_ioctl_trans
);
4020 mnt_drop_write_file(file
);
4025 static long btrfs_ioctl_default_subvol(struct file
*file
, void __user
*argp
)
4027 struct inode
*inode
= file_inode(file
);
4028 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
4029 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4030 struct btrfs_root
*new_root
;
4031 struct btrfs_dir_item
*di
;
4032 struct btrfs_trans_handle
*trans
;
4033 struct btrfs_path
*path
;
4034 struct btrfs_key location
;
4035 struct btrfs_disk_key disk_key
;
4040 if (!capable(CAP_SYS_ADMIN
))
4043 ret
= mnt_want_write_file(file
);
4047 if (copy_from_user(&objectid
, argp
, sizeof(objectid
))) {
4053 objectid
= BTRFS_FS_TREE_OBJECTID
;
4055 location
.objectid
= objectid
;
4056 location
.type
= BTRFS_ROOT_ITEM_KEY
;
4057 location
.offset
= (u64
)-1;
4059 new_root
= btrfs_read_fs_root_no_name(fs_info
, &location
);
4060 if (IS_ERR(new_root
)) {
4061 ret
= PTR_ERR(new_root
);
4064 if (!is_fstree(new_root
->objectid
)) {
4069 path
= btrfs_alloc_path();
4074 path
->leave_spinning
= 1;
4076 trans
= btrfs_start_transaction(root
, 1);
4077 if (IS_ERR(trans
)) {
4078 btrfs_free_path(path
);
4079 ret
= PTR_ERR(trans
);
4083 dir_id
= btrfs_super_root_dir(fs_info
->super_copy
);
4084 di
= btrfs_lookup_dir_item(trans
, fs_info
->tree_root
, path
,
4085 dir_id
, "default", 7, 1);
4086 if (IS_ERR_OR_NULL(di
)) {
4087 btrfs_free_path(path
);
4088 btrfs_end_transaction(trans
);
4090 "Umm, you don't have the default diritem, this isn't going to work");
4095 btrfs_cpu_key_to_disk(&disk_key
, &new_root
->root_key
);
4096 btrfs_set_dir_item_key(path
->nodes
[0], di
, &disk_key
);
4097 btrfs_mark_buffer_dirty(path
->nodes
[0]);
4098 btrfs_free_path(path
);
4100 btrfs_set_fs_incompat(fs_info
, DEFAULT_SUBVOL
);
4101 btrfs_end_transaction(trans
);
4103 mnt_drop_write_file(file
);
4107 void btrfs_get_block_group_info(struct list_head
*groups_list
,
4108 struct btrfs_ioctl_space_info
*space
)
4110 struct btrfs_block_group_cache
*block_group
;
4112 space
->total_bytes
= 0;
4113 space
->used_bytes
= 0;
4115 list_for_each_entry(block_group
, groups_list
, list
) {
4116 space
->flags
= block_group
->flags
;
4117 space
->total_bytes
+= block_group
->key
.offset
;
4118 space
->used_bytes
+=
4119 btrfs_block_group_used(&block_group
->item
);
4123 static long btrfs_ioctl_space_info(struct btrfs_fs_info
*fs_info
,
4126 struct btrfs_ioctl_space_args space_args
;
4127 struct btrfs_ioctl_space_info space
;
4128 struct btrfs_ioctl_space_info
*dest
;
4129 struct btrfs_ioctl_space_info
*dest_orig
;
4130 struct btrfs_ioctl_space_info __user
*user_dest
;
4131 struct btrfs_space_info
*info
;
4132 u64 types
[] = {BTRFS_BLOCK_GROUP_DATA
,
4133 BTRFS_BLOCK_GROUP_SYSTEM
,
4134 BTRFS_BLOCK_GROUP_METADATA
,
4135 BTRFS_BLOCK_GROUP_DATA
| BTRFS_BLOCK_GROUP_METADATA
};
4142 if (copy_from_user(&space_args
,
4143 (struct btrfs_ioctl_space_args __user
*)arg
,
4144 sizeof(space_args
)))
4147 for (i
= 0; i
< num_types
; i
++) {
4148 struct btrfs_space_info
*tmp
;
4152 list_for_each_entry_rcu(tmp
, &fs_info
->space_info
,
4154 if (tmp
->flags
== types
[i
]) {
4164 down_read(&info
->groups_sem
);
4165 for (c
= 0; c
< BTRFS_NR_RAID_TYPES
; c
++) {
4166 if (!list_empty(&info
->block_groups
[c
]))
4169 up_read(&info
->groups_sem
);
4173 * Global block reserve, exported as a space_info
4177 /* space_slots == 0 means they are asking for a count */
4178 if (space_args
.space_slots
== 0) {
4179 space_args
.total_spaces
= slot_count
;
4183 slot_count
= min_t(u64
, space_args
.space_slots
, slot_count
);
4185 alloc_size
= sizeof(*dest
) * slot_count
;
4187 /* we generally have at most 6 or so space infos, one for each raid
4188 * level. So, a whole page should be more than enough for everyone
4190 if (alloc_size
> PAGE_SIZE
)
4193 space_args
.total_spaces
= 0;
4194 dest
= kmalloc(alloc_size
, GFP_KERNEL
);
4199 /* now we have a buffer to copy into */
4200 for (i
= 0; i
< num_types
; i
++) {
4201 struct btrfs_space_info
*tmp
;
4208 list_for_each_entry_rcu(tmp
, &fs_info
->space_info
,
4210 if (tmp
->flags
== types
[i
]) {
4219 down_read(&info
->groups_sem
);
4220 for (c
= 0; c
< BTRFS_NR_RAID_TYPES
; c
++) {
4221 if (!list_empty(&info
->block_groups
[c
])) {
4222 btrfs_get_block_group_info(
4223 &info
->block_groups
[c
], &space
);
4224 memcpy(dest
, &space
, sizeof(space
));
4226 space_args
.total_spaces
++;
4232 up_read(&info
->groups_sem
);
4236 * Add global block reserve
4239 struct btrfs_block_rsv
*block_rsv
= &fs_info
->global_block_rsv
;
4241 spin_lock(&block_rsv
->lock
);
4242 space
.total_bytes
= block_rsv
->size
;
4243 space
.used_bytes
= block_rsv
->size
- block_rsv
->reserved
;
4244 spin_unlock(&block_rsv
->lock
);
4245 space
.flags
= BTRFS_SPACE_INFO_GLOBAL_RSV
;
4246 memcpy(dest
, &space
, sizeof(space
));
4247 space_args
.total_spaces
++;
4250 user_dest
= (struct btrfs_ioctl_space_info __user
*)
4251 (arg
+ sizeof(struct btrfs_ioctl_space_args
));
4253 if (copy_to_user(user_dest
, dest_orig
, alloc_size
))
4258 if (ret
== 0 && copy_to_user(arg
, &space_args
, sizeof(space_args
)))
4265 * there are many ways the trans_start and trans_end ioctls can lead
4266 * to deadlocks. They should only be used by applications that
4267 * basically own the machine, and have a very in depth understanding
4268 * of all the possible deadlocks and enospc problems.
4270 long btrfs_ioctl_trans_end(struct file
*file
)
4272 struct inode
*inode
= file_inode(file
);
4273 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4274 struct btrfs_file_private
*private = file
->private_data
;
4276 if (!private || !private->trans
)
4279 btrfs_end_transaction(private->trans
);
4280 private->trans
= NULL
;
4282 atomic_dec(&root
->fs_info
->open_ioctl_trans
);
4284 mnt_drop_write_file(file
);
4288 static noinline
long btrfs_ioctl_start_sync(struct btrfs_root
*root
,
4291 struct btrfs_trans_handle
*trans
;
4295 trans
= btrfs_attach_transaction_barrier(root
);
4296 if (IS_ERR(trans
)) {
4297 if (PTR_ERR(trans
) != -ENOENT
)
4298 return PTR_ERR(trans
);
4300 /* No running transaction, don't bother */
4301 transid
= root
->fs_info
->last_trans_committed
;
4304 transid
= trans
->transid
;
4305 ret
= btrfs_commit_transaction_async(trans
, 0);
4307 btrfs_end_transaction(trans
);
4312 if (copy_to_user(argp
, &transid
, sizeof(transid
)))
4317 static noinline
long btrfs_ioctl_wait_sync(struct btrfs_fs_info
*fs_info
,
4323 if (copy_from_user(&transid
, argp
, sizeof(transid
)))
4326 transid
= 0; /* current trans */
4328 return btrfs_wait_for_commit(fs_info
, transid
);
4331 static long btrfs_ioctl_scrub(struct file
*file
, void __user
*arg
)
4333 struct btrfs_fs_info
*fs_info
= btrfs_sb(file_inode(file
)->i_sb
);
4334 struct btrfs_ioctl_scrub_args
*sa
;
4337 if (!capable(CAP_SYS_ADMIN
))
4340 sa
= memdup_user(arg
, sizeof(*sa
));
4344 if (!(sa
->flags
& BTRFS_SCRUB_READONLY
)) {
4345 ret
= mnt_want_write_file(file
);
4350 ret
= btrfs_scrub_dev(fs_info
, sa
->devid
, sa
->start
, sa
->end
,
4351 &sa
->progress
, sa
->flags
& BTRFS_SCRUB_READONLY
,
4354 if (copy_to_user(arg
, sa
, sizeof(*sa
)))
4357 if (!(sa
->flags
& BTRFS_SCRUB_READONLY
))
4358 mnt_drop_write_file(file
);
4364 static long btrfs_ioctl_scrub_cancel(struct btrfs_fs_info
*fs_info
)
4366 if (!capable(CAP_SYS_ADMIN
))
4369 return btrfs_scrub_cancel(fs_info
);
4372 static long btrfs_ioctl_scrub_progress(struct btrfs_fs_info
*fs_info
,
4375 struct btrfs_ioctl_scrub_args
*sa
;
4378 if (!capable(CAP_SYS_ADMIN
))
4381 sa
= memdup_user(arg
, sizeof(*sa
));
4385 ret
= btrfs_scrub_progress(fs_info
, sa
->devid
, &sa
->progress
);
4387 if (copy_to_user(arg
, sa
, sizeof(*sa
)))
4394 static long btrfs_ioctl_get_dev_stats(struct btrfs_fs_info
*fs_info
,
4397 struct btrfs_ioctl_get_dev_stats
*sa
;
4400 sa
= memdup_user(arg
, sizeof(*sa
));
4404 if ((sa
->flags
& BTRFS_DEV_STATS_RESET
) && !capable(CAP_SYS_ADMIN
)) {
4409 ret
= btrfs_get_dev_stats(fs_info
, sa
);
4411 if (copy_to_user(arg
, sa
, sizeof(*sa
)))
4418 static long btrfs_ioctl_dev_replace(struct btrfs_fs_info
*fs_info
,
4421 struct btrfs_ioctl_dev_replace_args
*p
;
4424 if (!capable(CAP_SYS_ADMIN
))
4427 p
= memdup_user(arg
, sizeof(*p
));
4432 case BTRFS_IOCTL_DEV_REPLACE_CMD_START
:
4433 if (sb_rdonly(fs_info
->sb
)) {
4437 if (test_and_set_bit(BTRFS_FS_EXCL_OP
, &fs_info
->flags
)) {
4438 ret
= BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS
;
4440 ret
= btrfs_dev_replace_by_ioctl(fs_info
, p
);
4441 clear_bit(BTRFS_FS_EXCL_OP
, &fs_info
->flags
);
4444 case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS
:
4445 btrfs_dev_replace_status(fs_info
, p
);
4448 case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL
:
4449 ret
= btrfs_dev_replace_cancel(fs_info
, p
);
4456 if (copy_to_user(arg
, p
, sizeof(*p
)))
4463 static long btrfs_ioctl_ino_to_path(struct btrfs_root
*root
, void __user
*arg
)
4469 struct btrfs_ioctl_ino_path_args
*ipa
= NULL
;
4470 struct inode_fs_paths
*ipath
= NULL
;
4471 struct btrfs_path
*path
;
4473 if (!capable(CAP_DAC_READ_SEARCH
))
4476 path
= btrfs_alloc_path();
4482 ipa
= memdup_user(arg
, sizeof(*ipa
));
4489 size
= min_t(u32
, ipa
->size
, 4096);
4490 ipath
= init_ipath(size
, root
, path
);
4491 if (IS_ERR(ipath
)) {
4492 ret
= PTR_ERR(ipath
);
4497 ret
= paths_from_inode(ipa
->inum
, ipath
);
4501 for (i
= 0; i
< ipath
->fspath
->elem_cnt
; ++i
) {
4502 rel_ptr
= ipath
->fspath
->val
[i
] -
4503 (u64
)(unsigned long)ipath
->fspath
->val
;
4504 ipath
->fspath
->val
[i
] = rel_ptr
;
4507 ret
= copy_to_user((void *)(unsigned long)ipa
->fspath
,
4508 (void *)(unsigned long)ipath
->fspath
, size
);
4515 btrfs_free_path(path
);
4522 static int build_ino_list(u64 inum
, u64 offset
, u64 root
, void *ctx
)
4524 struct btrfs_data_container
*inodes
= ctx
;
4525 const size_t c
= 3 * sizeof(u64
);
4527 if (inodes
->bytes_left
>= c
) {
4528 inodes
->bytes_left
-= c
;
4529 inodes
->val
[inodes
->elem_cnt
] = inum
;
4530 inodes
->val
[inodes
->elem_cnt
+ 1] = offset
;
4531 inodes
->val
[inodes
->elem_cnt
+ 2] = root
;
4532 inodes
->elem_cnt
+= 3;
4534 inodes
->bytes_missing
+= c
- inodes
->bytes_left
;
4535 inodes
->bytes_left
= 0;
4536 inodes
->elem_missed
+= 3;
4542 static long btrfs_ioctl_logical_to_ino(struct btrfs_fs_info
*fs_info
,
4547 struct btrfs_ioctl_logical_ino_args
*loi
;
4548 struct btrfs_data_container
*inodes
= NULL
;
4549 struct btrfs_path
*path
= NULL
;
4551 if (!capable(CAP_SYS_ADMIN
))
4554 loi
= memdup_user(arg
, sizeof(*loi
));
4556 return PTR_ERR(loi
);
4558 path
= btrfs_alloc_path();
4564 size
= min_t(u32
, loi
->size
, SZ_64K
);
4565 inodes
= init_data_container(size
);
4566 if (IS_ERR(inodes
)) {
4567 ret
= PTR_ERR(inodes
);
4572 ret
= iterate_inodes_from_logical(loi
->logical
, fs_info
, path
,
4573 build_ino_list
, inodes
);
4579 ret
= copy_to_user((void *)(unsigned long)loi
->inodes
,
4580 (void *)(unsigned long)inodes
, size
);
4585 btrfs_free_path(path
);
4592 void update_ioctl_balance_args(struct btrfs_fs_info
*fs_info
, int lock
,
4593 struct btrfs_ioctl_balance_args
*bargs
)
4595 struct btrfs_balance_control
*bctl
= fs_info
->balance_ctl
;
4597 bargs
->flags
= bctl
->flags
;
4599 if (atomic_read(&fs_info
->balance_running
))
4600 bargs
->state
|= BTRFS_BALANCE_STATE_RUNNING
;
4601 if (atomic_read(&fs_info
->balance_pause_req
))
4602 bargs
->state
|= BTRFS_BALANCE_STATE_PAUSE_REQ
;
4603 if (atomic_read(&fs_info
->balance_cancel_req
))
4604 bargs
->state
|= BTRFS_BALANCE_STATE_CANCEL_REQ
;
4606 memcpy(&bargs
->data
, &bctl
->data
, sizeof(bargs
->data
));
4607 memcpy(&bargs
->meta
, &bctl
->meta
, sizeof(bargs
->meta
));
4608 memcpy(&bargs
->sys
, &bctl
->sys
, sizeof(bargs
->sys
));
4611 spin_lock(&fs_info
->balance_lock
);
4612 memcpy(&bargs
->stat
, &bctl
->stat
, sizeof(bargs
->stat
));
4613 spin_unlock(&fs_info
->balance_lock
);
4615 memcpy(&bargs
->stat
, &bctl
->stat
, sizeof(bargs
->stat
));
4619 static long btrfs_ioctl_balance(struct file
*file
, void __user
*arg
)
4621 struct btrfs_root
*root
= BTRFS_I(file_inode(file
))->root
;
4622 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4623 struct btrfs_ioctl_balance_args
*bargs
;
4624 struct btrfs_balance_control
*bctl
;
4625 bool need_unlock
; /* for mut. excl. ops lock */
4628 if (!capable(CAP_SYS_ADMIN
))
4631 ret
= mnt_want_write_file(file
);
4636 if (!test_and_set_bit(BTRFS_FS_EXCL_OP
, &fs_info
->flags
)) {
4637 mutex_lock(&fs_info
->volume_mutex
);
4638 mutex_lock(&fs_info
->balance_mutex
);
4644 * mut. excl. ops lock is locked. Three possibilities:
4645 * (1) some other op is running
4646 * (2) balance is running
4647 * (3) balance is paused -- special case (think resume)
4649 mutex_lock(&fs_info
->balance_mutex
);
4650 if (fs_info
->balance_ctl
) {
4651 /* this is either (2) or (3) */
4652 if (!atomic_read(&fs_info
->balance_running
)) {
4653 mutex_unlock(&fs_info
->balance_mutex
);
4654 if (!mutex_trylock(&fs_info
->volume_mutex
))
4656 mutex_lock(&fs_info
->balance_mutex
);
4658 if (fs_info
->balance_ctl
&&
4659 !atomic_read(&fs_info
->balance_running
)) {
4661 need_unlock
= false;
4665 mutex_unlock(&fs_info
->balance_mutex
);
4666 mutex_unlock(&fs_info
->volume_mutex
);
4670 mutex_unlock(&fs_info
->balance_mutex
);
4676 mutex_unlock(&fs_info
->balance_mutex
);
4677 ret
= BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS
;
4682 BUG_ON(!test_bit(BTRFS_FS_EXCL_OP
, &fs_info
->flags
));
4685 bargs
= memdup_user(arg
, sizeof(*bargs
));
4686 if (IS_ERR(bargs
)) {
4687 ret
= PTR_ERR(bargs
);
4691 if (bargs
->flags
& BTRFS_BALANCE_RESUME
) {
4692 if (!fs_info
->balance_ctl
) {
4697 bctl
= fs_info
->balance_ctl
;
4698 spin_lock(&fs_info
->balance_lock
);
4699 bctl
->flags
|= BTRFS_BALANCE_RESUME
;
4700 spin_unlock(&fs_info
->balance_lock
);
4708 if (fs_info
->balance_ctl
) {
4713 bctl
= kzalloc(sizeof(*bctl
), GFP_KERNEL
);
4719 bctl
->fs_info
= fs_info
;
4721 memcpy(&bctl
->data
, &bargs
->data
, sizeof(bctl
->data
));
4722 memcpy(&bctl
->meta
, &bargs
->meta
, sizeof(bctl
->meta
));
4723 memcpy(&bctl
->sys
, &bargs
->sys
, sizeof(bctl
->sys
));
4725 bctl
->flags
= bargs
->flags
;
4727 /* balance everything - no filters */
4728 bctl
->flags
|= BTRFS_BALANCE_TYPE_MASK
;
4731 if (bctl
->flags
& ~(BTRFS_BALANCE_ARGS_MASK
| BTRFS_BALANCE_TYPE_MASK
)) {
4738 * Ownership of bctl and filesystem flag BTRFS_FS_EXCL_OP
4739 * goes to to btrfs_balance. bctl is freed in __cancel_balance,
4740 * or, if restriper was paused all the way until unmount, in
4741 * free_fs_info. The flag is cleared in __cancel_balance.
4743 need_unlock
= false;
4745 ret
= btrfs_balance(bctl
, bargs
);
4749 if (copy_to_user(arg
, bargs
, sizeof(*bargs
)))
4758 mutex_unlock(&fs_info
->balance_mutex
);
4759 mutex_unlock(&fs_info
->volume_mutex
);
4761 clear_bit(BTRFS_FS_EXCL_OP
, &fs_info
->flags
);
4763 mnt_drop_write_file(file
);
4767 static long btrfs_ioctl_balance_ctl(struct btrfs_fs_info
*fs_info
, int cmd
)
4769 if (!capable(CAP_SYS_ADMIN
))
4773 case BTRFS_BALANCE_CTL_PAUSE
:
4774 return btrfs_pause_balance(fs_info
);
4775 case BTRFS_BALANCE_CTL_CANCEL
:
4776 return btrfs_cancel_balance(fs_info
);
4782 static long btrfs_ioctl_balance_progress(struct btrfs_fs_info
*fs_info
,
4785 struct btrfs_ioctl_balance_args
*bargs
;
4788 if (!capable(CAP_SYS_ADMIN
))
4791 mutex_lock(&fs_info
->balance_mutex
);
4792 if (!fs_info
->balance_ctl
) {
4797 bargs
= kzalloc(sizeof(*bargs
), GFP_KERNEL
);
4803 update_ioctl_balance_args(fs_info
, 1, bargs
);
4805 if (copy_to_user(arg
, bargs
, sizeof(*bargs
)))
4810 mutex_unlock(&fs_info
->balance_mutex
);
4814 static long btrfs_ioctl_quota_ctl(struct file
*file
, void __user
*arg
)
4816 struct inode
*inode
= file_inode(file
);
4817 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
4818 struct btrfs_ioctl_quota_ctl_args
*sa
;
4819 struct btrfs_trans_handle
*trans
= NULL
;
4823 if (!capable(CAP_SYS_ADMIN
))
4826 ret
= mnt_want_write_file(file
);
4830 sa
= memdup_user(arg
, sizeof(*sa
));
4836 down_write(&fs_info
->subvol_sem
);
4837 trans
= btrfs_start_transaction(fs_info
->tree_root
, 2);
4838 if (IS_ERR(trans
)) {
4839 ret
= PTR_ERR(trans
);
4844 case BTRFS_QUOTA_CTL_ENABLE
:
4845 ret
= btrfs_quota_enable(trans
, fs_info
);
4847 case BTRFS_QUOTA_CTL_DISABLE
:
4848 ret
= btrfs_quota_disable(trans
, fs_info
);
4855 err
= btrfs_commit_transaction(trans
);
4860 up_write(&fs_info
->subvol_sem
);
4862 mnt_drop_write_file(file
);
4866 static long btrfs_ioctl_qgroup_assign(struct file
*file
, void __user
*arg
)
4868 struct inode
*inode
= file_inode(file
);
4869 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
4870 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4871 struct btrfs_ioctl_qgroup_assign_args
*sa
;
4872 struct btrfs_trans_handle
*trans
;
4876 if (!capable(CAP_SYS_ADMIN
))
4879 ret
= mnt_want_write_file(file
);
4883 sa
= memdup_user(arg
, sizeof(*sa
));
4889 trans
= btrfs_join_transaction(root
);
4890 if (IS_ERR(trans
)) {
4891 ret
= PTR_ERR(trans
);
4896 ret
= btrfs_add_qgroup_relation(trans
, fs_info
,
4899 ret
= btrfs_del_qgroup_relation(trans
, fs_info
,
4903 /* update qgroup status and info */
4904 err
= btrfs_run_qgroups(trans
, fs_info
);
4906 btrfs_handle_fs_error(fs_info
, err
,
4907 "failed to update qgroup status and info");
4908 err
= btrfs_end_transaction(trans
);
4915 mnt_drop_write_file(file
);
4919 static long btrfs_ioctl_qgroup_create(struct file
*file
, void __user
*arg
)
4921 struct inode
*inode
= file_inode(file
);
4922 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
4923 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4924 struct btrfs_ioctl_qgroup_create_args
*sa
;
4925 struct btrfs_trans_handle
*trans
;
4929 if (!capable(CAP_SYS_ADMIN
))
4932 ret
= mnt_want_write_file(file
);
4936 sa
= memdup_user(arg
, sizeof(*sa
));
4942 if (!sa
->qgroupid
) {
4947 trans
= btrfs_join_transaction(root
);
4948 if (IS_ERR(trans
)) {
4949 ret
= PTR_ERR(trans
);
4954 ret
= btrfs_create_qgroup(trans
, fs_info
, sa
->qgroupid
);
4956 ret
= btrfs_remove_qgroup(trans
, fs_info
, sa
->qgroupid
);
4959 err
= btrfs_end_transaction(trans
);
4966 mnt_drop_write_file(file
);
4970 static long btrfs_ioctl_qgroup_limit(struct file
*file
, void __user
*arg
)
4972 struct inode
*inode
= file_inode(file
);
4973 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
4974 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4975 struct btrfs_ioctl_qgroup_limit_args
*sa
;
4976 struct btrfs_trans_handle
*trans
;
4981 if (!capable(CAP_SYS_ADMIN
))
4984 ret
= mnt_want_write_file(file
);
4988 sa
= memdup_user(arg
, sizeof(*sa
));
4994 trans
= btrfs_join_transaction(root
);
4995 if (IS_ERR(trans
)) {
4996 ret
= PTR_ERR(trans
);
5000 qgroupid
= sa
->qgroupid
;
5002 /* take the current subvol as qgroup */
5003 qgroupid
= root
->root_key
.objectid
;
5006 ret
= btrfs_limit_qgroup(trans
, fs_info
, qgroupid
, &sa
->lim
);
5008 err
= btrfs_end_transaction(trans
);
5015 mnt_drop_write_file(file
);
5019 static long btrfs_ioctl_quota_rescan(struct file
*file
, void __user
*arg
)
5021 struct inode
*inode
= file_inode(file
);
5022 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
5023 struct btrfs_ioctl_quota_rescan_args
*qsa
;
5026 if (!capable(CAP_SYS_ADMIN
))
5029 ret
= mnt_want_write_file(file
);
5033 qsa
= memdup_user(arg
, sizeof(*qsa
));
5044 ret
= btrfs_qgroup_rescan(fs_info
);
5049 mnt_drop_write_file(file
);
5053 static long btrfs_ioctl_quota_rescan_status(struct file
*file
, void __user
*arg
)
5055 struct inode
*inode
= file_inode(file
);
5056 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
5057 struct btrfs_ioctl_quota_rescan_args
*qsa
;
5060 if (!capable(CAP_SYS_ADMIN
))
5063 qsa
= kzalloc(sizeof(*qsa
), GFP_KERNEL
);
5067 if (fs_info
->qgroup_flags
& BTRFS_QGROUP_STATUS_FLAG_RESCAN
) {
5069 qsa
->progress
= fs_info
->qgroup_rescan_progress
.objectid
;
5072 if (copy_to_user(arg
, qsa
, sizeof(*qsa
)))
5079 static long btrfs_ioctl_quota_rescan_wait(struct file
*file
, void __user
*arg
)
5081 struct inode
*inode
= file_inode(file
);
5082 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
5084 if (!capable(CAP_SYS_ADMIN
))
5087 return btrfs_qgroup_wait_for_completion(fs_info
, true);
5090 static long _btrfs_ioctl_set_received_subvol(struct file
*file
,
5091 struct btrfs_ioctl_received_subvol_args
*sa
)
5093 struct inode
*inode
= file_inode(file
);
5094 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
5095 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5096 struct btrfs_root_item
*root_item
= &root
->root_item
;
5097 struct btrfs_trans_handle
*trans
;
5098 struct timespec ct
= current_time(inode
);
5100 int received_uuid_changed
;
5102 if (!inode_owner_or_capable(inode
))
5105 ret
= mnt_want_write_file(file
);
5109 down_write(&fs_info
->subvol_sem
);
5111 if (btrfs_ino(BTRFS_I(inode
)) != BTRFS_FIRST_FREE_OBJECTID
) {
5116 if (btrfs_root_readonly(root
)) {
5123 * 2 - uuid items (received uuid + subvol uuid)
5125 trans
= btrfs_start_transaction(root
, 3);
5126 if (IS_ERR(trans
)) {
5127 ret
= PTR_ERR(trans
);
5132 sa
->rtransid
= trans
->transid
;
5133 sa
->rtime
.sec
= ct
.tv_sec
;
5134 sa
->rtime
.nsec
= ct
.tv_nsec
;
5136 received_uuid_changed
= memcmp(root_item
->received_uuid
, sa
->uuid
,
5138 if (received_uuid_changed
&&
5139 !btrfs_is_empty_uuid(root_item
->received_uuid
))
5140 btrfs_uuid_tree_rem(trans
, fs_info
, root_item
->received_uuid
,
5141 BTRFS_UUID_KEY_RECEIVED_SUBVOL
,
5142 root
->root_key
.objectid
);
5143 memcpy(root_item
->received_uuid
, sa
->uuid
, BTRFS_UUID_SIZE
);
5144 btrfs_set_root_stransid(root_item
, sa
->stransid
);
5145 btrfs_set_root_rtransid(root_item
, sa
->rtransid
);
5146 btrfs_set_stack_timespec_sec(&root_item
->stime
, sa
->stime
.sec
);
5147 btrfs_set_stack_timespec_nsec(&root_item
->stime
, sa
->stime
.nsec
);
5148 btrfs_set_stack_timespec_sec(&root_item
->rtime
, sa
->rtime
.sec
);
5149 btrfs_set_stack_timespec_nsec(&root_item
->rtime
, sa
->rtime
.nsec
);
5151 ret
= btrfs_update_root(trans
, fs_info
->tree_root
,
5152 &root
->root_key
, &root
->root_item
);
5154 btrfs_end_transaction(trans
);
5157 if (received_uuid_changed
&& !btrfs_is_empty_uuid(sa
->uuid
)) {
5158 ret
= btrfs_uuid_tree_add(trans
, fs_info
, sa
->uuid
,
5159 BTRFS_UUID_KEY_RECEIVED_SUBVOL
,
5160 root
->root_key
.objectid
);
5161 if (ret
< 0 && ret
!= -EEXIST
) {
5162 btrfs_abort_transaction(trans
, ret
);
5166 ret
= btrfs_commit_transaction(trans
);
5168 btrfs_abort_transaction(trans
, ret
);
5173 up_write(&fs_info
->subvol_sem
);
5174 mnt_drop_write_file(file
);
5179 static long btrfs_ioctl_set_received_subvol_32(struct file
*file
,
5182 struct btrfs_ioctl_received_subvol_args_32
*args32
= NULL
;
5183 struct btrfs_ioctl_received_subvol_args
*args64
= NULL
;
5186 args32
= memdup_user(arg
, sizeof(*args32
));
5188 return PTR_ERR(args32
);
5190 args64
= kmalloc(sizeof(*args64
), GFP_KERNEL
);
5196 memcpy(args64
->uuid
, args32
->uuid
, BTRFS_UUID_SIZE
);
5197 args64
->stransid
= args32
->stransid
;
5198 args64
->rtransid
= args32
->rtransid
;
5199 args64
->stime
.sec
= args32
->stime
.sec
;
5200 args64
->stime
.nsec
= args32
->stime
.nsec
;
5201 args64
->rtime
.sec
= args32
->rtime
.sec
;
5202 args64
->rtime
.nsec
= args32
->rtime
.nsec
;
5203 args64
->flags
= args32
->flags
;
5205 ret
= _btrfs_ioctl_set_received_subvol(file
, args64
);
5209 memcpy(args32
->uuid
, args64
->uuid
, BTRFS_UUID_SIZE
);
5210 args32
->stransid
= args64
->stransid
;
5211 args32
->rtransid
= args64
->rtransid
;
5212 args32
->stime
.sec
= args64
->stime
.sec
;
5213 args32
->stime
.nsec
= args64
->stime
.nsec
;
5214 args32
->rtime
.sec
= args64
->rtime
.sec
;
5215 args32
->rtime
.nsec
= args64
->rtime
.nsec
;
5216 args32
->flags
= args64
->flags
;
5218 ret
= copy_to_user(arg
, args32
, sizeof(*args32
));
5229 static long btrfs_ioctl_set_received_subvol(struct file
*file
,
5232 struct btrfs_ioctl_received_subvol_args
*sa
= NULL
;
5235 sa
= memdup_user(arg
, sizeof(*sa
));
5239 ret
= _btrfs_ioctl_set_received_subvol(file
, sa
);
5244 ret
= copy_to_user(arg
, sa
, sizeof(*sa
));
5253 static int btrfs_ioctl_get_fslabel(struct file
*file
, void __user
*arg
)
5255 struct inode
*inode
= file_inode(file
);
5256 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
5259 char label
[BTRFS_LABEL_SIZE
];
5261 spin_lock(&fs_info
->super_lock
);
5262 memcpy(label
, fs_info
->super_copy
->label
, BTRFS_LABEL_SIZE
);
5263 spin_unlock(&fs_info
->super_lock
);
5265 len
= strnlen(label
, BTRFS_LABEL_SIZE
);
5267 if (len
== BTRFS_LABEL_SIZE
) {
5269 "label is too long, return the first %zu bytes",
5273 ret
= copy_to_user(arg
, label
, len
);
5275 return ret
? -EFAULT
: 0;
5278 static int btrfs_ioctl_set_fslabel(struct file
*file
, void __user
*arg
)
5280 struct inode
*inode
= file_inode(file
);
5281 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
5282 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5283 struct btrfs_super_block
*super_block
= fs_info
->super_copy
;
5284 struct btrfs_trans_handle
*trans
;
5285 char label
[BTRFS_LABEL_SIZE
];
5288 if (!capable(CAP_SYS_ADMIN
))
5291 if (copy_from_user(label
, arg
, sizeof(label
)))
5294 if (strnlen(label
, BTRFS_LABEL_SIZE
) == BTRFS_LABEL_SIZE
) {
5296 "unable to set label with more than %d bytes",
5297 BTRFS_LABEL_SIZE
- 1);
5301 ret
= mnt_want_write_file(file
);
5305 trans
= btrfs_start_transaction(root
, 0);
5306 if (IS_ERR(trans
)) {
5307 ret
= PTR_ERR(trans
);
5311 spin_lock(&fs_info
->super_lock
);
5312 strcpy(super_block
->label
, label
);
5313 spin_unlock(&fs_info
->super_lock
);
5314 ret
= btrfs_commit_transaction(trans
);
5317 mnt_drop_write_file(file
);
5321 #define INIT_FEATURE_FLAGS(suffix) \
5322 { .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \
5323 .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \
5324 .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix }
5326 int btrfs_ioctl_get_supported_features(void __user
*arg
)
5328 static const struct btrfs_ioctl_feature_flags features
[3] = {
5329 INIT_FEATURE_FLAGS(SUPP
),
5330 INIT_FEATURE_FLAGS(SAFE_SET
),
5331 INIT_FEATURE_FLAGS(SAFE_CLEAR
)
5334 if (copy_to_user(arg
, &features
, sizeof(features
)))
5340 static int btrfs_ioctl_get_features(struct file
*file
, void __user
*arg
)
5342 struct inode
*inode
= file_inode(file
);
5343 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
5344 struct btrfs_super_block
*super_block
= fs_info
->super_copy
;
5345 struct btrfs_ioctl_feature_flags features
;
5347 features
.compat_flags
= btrfs_super_compat_flags(super_block
);
5348 features
.compat_ro_flags
= btrfs_super_compat_ro_flags(super_block
);
5349 features
.incompat_flags
= btrfs_super_incompat_flags(super_block
);
5351 if (copy_to_user(arg
, &features
, sizeof(features
)))
5357 static int check_feature_bits(struct btrfs_fs_info
*fs_info
,
5358 enum btrfs_feature_set set
,
5359 u64 change_mask
, u64 flags
, u64 supported_flags
,
5360 u64 safe_set
, u64 safe_clear
)
5362 const char *type
= btrfs_feature_set_names
[set
];
5364 u64 disallowed
, unsupported
;
5365 u64 set_mask
= flags
& change_mask
;
5366 u64 clear_mask
= ~flags
& change_mask
;
5368 unsupported
= set_mask
& ~supported_flags
;
5370 names
= btrfs_printable_features(set
, unsupported
);
5373 "this kernel does not support the %s feature bit%s",
5374 names
, strchr(names
, ',') ? "s" : "");
5378 "this kernel does not support %s bits 0x%llx",
5383 disallowed
= set_mask
& ~safe_set
;
5385 names
= btrfs_printable_features(set
, disallowed
);
5388 "can't set the %s feature bit%s while mounted",
5389 names
, strchr(names
, ',') ? "s" : "");
5393 "can't set %s bits 0x%llx while mounted",
5398 disallowed
= clear_mask
& ~safe_clear
;
5400 names
= btrfs_printable_features(set
, disallowed
);
5403 "can't clear the %s feature bit%s while mounted",
5404 names
, strchr(names
, ',') ? "s" : "");
5408 "can't clear %s bits 0x%llx while mounted",
5416 #define check_feature(fs_info, change_mask, flags, mask_base) \
5417 check_feature_bits(fs_info, FEAT_##mask_base, change_mask, flags, \
5418 BTRFS_FEATURE_ ## mask_base ## _SUPP, \
5419 BTRFS_FEATURE_ ## mask_base ## _SAFE_SET, \
5420 BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR)
5422 static int btrfs_ioctl_set_features(struct file
*file
, void __user
*arg
)
5424 struct inode
*inode
= file_inode(file
);
5425 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
5426 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5427 struct btrfs_super_block
*super_block
= fs_info
->super_copy
;
5428 struct btrfs_ioctl_feature_flags flags
[2];
5429 struct btrfs_trans_handle
*trans
;
5433 if (!capable(CAP_SYS_ADMIN
))
5436 if (copy_from_user(flags
, arg
, sizeof(flags
)))
5440 if (!flags
[0].compat_flags
&& !flags
[0].compat_ro_flags
&&
5441 !flags
[0].incompat_flags
)
5444 ret
= check_feature(fs_info
, flags
[0].compat_flags
,
5445 flags
[1].compat_flags
, COMPAT
);
5449 ret
= check_feature(fs_info
, flags
[0].compat_ro_flags
,
5450 flags
[1].compat_ro_flags
, COMPAT_RO
);
5454 ret
= check_feature(fs_info
, flags
[0].incompat_flags
,
5455 flags
[1].incompat_flags
, INCOMPAT
);
5459 ret
= mnt_want_write_file(file
);
5463 trans
= btrfs_start_transaction(root
, 0);
5464 if (IS_ERR(trans
)) {
5465 ret
= PTR_ERR(trans
);
5466 goto out_drop_write
;
5469 spin_lock(&fs_info
->super_lock
);
5470 newflags
= btrfs_super_compat_flags(super_block
);
5471 newflags
|= flags
[0].compat_flags
& flags
[1].compat_flags
;
5472 newflags
&= ~(flags
[0].compat_flags
& ~flags
[1].compat_flags
);
5473 btrfs_set_super_compat_flags(super_block
, newflags
);
5475 newflags
= btrfs_super_compat_ro_flags(super_block
);
5476 newflags
|= flags
[0].compat_ro_flags
& flags
[1].compat_ro_flags
;
5477 newflags
&= ~(flags
[0].compat_ro_flags
& ~flags
[1].compat_ro_flags
);
5478 btrfs_set_super_compat_ro_flags(super_block
, newflags
);
5480 newflags
= btrfs_super_incompat_flags(super_block
);
5481 newflags
|= flags
[0].incompat_flags
& flags
[1].incompat_flags
;
5482 newflags
&= ~(flags
[0].incompat_flags
& ~flags
[1].incompat_flags
);
5483 btrfs_set_super_incompat_flags(super_block
, newflags
);
5484 spin_unlock(&fs_info
->super_lock
);
5486 ret
= btrfs_commit_transaction(trans
);
5488 mnt_drop_write_file(file
);
5493 long btrfs_ioctl(struct file
*file
, unsigned int
5494 cmd
, unsigned long arg
)
5496 struct inode
*inode
= file_inode(file
);
5497 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
5498 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5499 void __user
*argp
= (void __user
*)arg
;
5502 case FS_IOC_GETFLAGS
:
5503 return btrfs_ioctl_getflags(file
, argp
);
5504 case FS_IOC_SETFLAGS
:
5505 return btrfs_ioctl_setflags(file
, argp
);
5506 case FS_IOC_GETVERSION
:
5507 return btrfs_ioctl_getversion(file
, argp
);
5509 return btrfs_ioctl_fitrim(file
, argp
);
5510 case BTRFS_IOC_SNAP_CREATE
:
5511 return btrfs_ioctl_snap_create(file
, argp
, 0);
5512 case BTRFS_IOC_SNAP_CREATE_V2
:
5513 return btrfs_ioctl_snap_create_v2(file
, argp
, 0);
5514 case BTRFS_IOC_SUBVOL_CREATE
:
5515 return btrfs_ioctl_snap_create(file
, argp
, 1);
5516 case BTRFS_IOC_SUBVOL_CREATE_V2
:
5517 return btrfs_ioctl_snap_create_v2(file
, argp
, 1);
5518 case BTRFS_IOC_SNAP_DESTROY
:
5519 return btrfs_ioctl_snap_destroy(file
, argp
);
5520 case BTRFS_IOC_SUBVOL_GETFLAGS
:
5521 return btrfs_ioctl_subvol_getflags(file
, argp
);
5522 case BTRFS_IOC_SUBVOL_SETFLAGS
:
5523 return btrfs_ioctl_subvol_setflags(file
, argp
);
5524 case BTRFS_IOC_DEFAULT_SUBVOL
:
5525 return btrfs_ioctl_default_subvol(file
, argp
);
5526 case BTRFS_IOC_DEFRAG
:
5527 return btrfs_ioctl_defrag(file
, NULL
);
5528 case BTRFS_IOC_DEFRAG_RANGE
:
5529 return btrfs_ioctl_defrag(file
, argp
);
5530 case BTRFS_IOC_RESIZE
:
5531 return btrfs_ioctl_resize(file
, argp
);
5532 case BTRFS_IOC_ADD_DEV
:
5533 return btrfs_ioctl_add_dev(fs_info
, argp
);
5534 case BTRFS_IOC_RM_DEV
:
5535 return btrfs_ioctl_rm_dev(file
, argp
);
5536 case BTRFS_IOC_RM_DEV_V2
:
5537 return btrfs_ioctl_rm_dev_v2(file
, argp
);
5538 case BTRFS_IOC_FS_INFO
:
5539 return btrfs_ioctl_fs_info(fs_info
, argp
);
5540 case BTRFS_IOC_DEV_INFO
:
5541 return btrfs_ioctl_dev_info(fs_info
, argp
);
5542 case BTRFS_IOC_BALANCE
:
5543 return btrfs_ioctl_balance(file
, NULL
);
5544 case BTRFS_IOC_TRANS_START
:
5545 return btrfs_ioctl_trans_start(file
);
5546 case BTRFS_IOC_TRANS_END
:
5547 return btrfs_ioctl_trans_end(file
);
5548 case BTRFS_IOC_TREE_SEARCH
:
5549 return btrfs_ioctl_tree_search(file
, argp
);
5550 case BTRFS_IOC_TREE_SEARCH_V2
:
5551 return btrfs_ioctl_tree_search_v2(file
, argp
);
5552 case BTRFS_IOC_INO_LOOKUP
:
5553 return btrfs_ioctl_ino_lookup(file
, argp
);
5554 case BTRFS_IOC_INO_PATHS
:
5555 return btrfs_ioctl_ino_to_path(root
, argp
);
5556 case BTRFS_IOC_LOGICAL_INO
:
5557 return btrfs_ioctl_logical_to_ino(fs_info
, argp
);
5558 case BTRFS_IOC_SPACE_INFO
:
5559 return btrfs_ioctl_space_info(fs_info
, argp
);
5560 case BTRFS_IOC_SYNC
: {
5563 ret
= btrfs_start_delalloc_roots(fs_info
, 0, -1);
5566 ret
= btrfs_sync_fs(inode
->i_sb
, 1);
5568 * The transaction thread may want to do more work,
5569 * namely it pokes the cleaner kthread that will start
5570 * processing uncleaned subvols.
5572 wake_up_process(fs_info
->transaction_kthread
);
5575 case BTRFS_IOC_START_SYNC
:
5576 return btrfs_ioctl_start_sync(root
, argp
);
5577 case BTRFS_IOC_WAIT_SYNC
:
5578 return btrfs_ioctl_wait_sync(fs_info
, argp
);
5579 case BTRFS_IOC_SCRUB
:
5580 return btrfs_ioctl_scrub(file
, argp
);
5581 case BTRFS_IOC_SCRUB_CANCEL
:
5582 return btrfs_ioctl_scrub_cancel(fs_info
);
5583 case BTRFS_IOC_SCRUB_PROGRESS
:
5584 return btrfs_ioctl_scrub_progress(fs_info
, argp
);
5585 case BTRFS_IOC_BALANCE_V2
:
5586 return btrfs_ioctl_balance(file
, argp
);
5587 case BTRFS_IOC_BALANCE_CTL
:
5588 return btrfs_ioctl_balance_ctl(fs_info
, arg
);
5589 case BTRFS_IOC_BALANCE_PROGRESS
:
5590 return btrfs_ioctl_balance_progress(fs_info
, argp
);
5591 case BTRFS_IOC_SET_RECEIVED_SUBVOL
:
5592 return btrfs_ioctl_set_received_subvol(file
, argp
);
5594 case BTRFS_IOC_SET_RECEIVED_SUBVOL_32
:
5595 return btrfs_ioctl_set_received_subvol_32(file
, argp
);
5597 case BTRFS_IOC_SEND
:
5598 return btrfs_ioctl_send(file
, argp
);
5599 case BTRFS_IOC_GET_DEV_STATS
:
5600 return btrfs_ioctl_get_dev_stats(fs_info
, argp
);
5601 case BTRFS_IOC_QUOTA_CTL
:
5602 return btrfs_ioctl_quota_ctl(file
, argp
);
5603 case BTRFS_IOC_QGROUP_ASSIGN
:
5604 return btrfs_ioctl_qgroup_assign(file
, argp
);
5605 case BTRFS_IOC_QGROUP_CREATE
:
5606 return btrfs_ioctl_qgroup_create(file
, argp
);
5607 case BTRFS_IOC_QGROUP_LIMIT
:
5608 return btrfs_ioctl_qgroup_limit(file
, argp
);
5609 case BTRFS_IOC_QUOTA_RESCAN
:
5610 return btrfs_ioctl_quota_rescan(file
, argp
);
5611 case BTRFS_IOC_QUOTA_RESCAN_STATUS
:
5612 return btrfs_ioctl_quota_rescan_status(file
, argp
);
5613 case BTRFS_IOC_QUOTA_RESCAN_WAIT
:
5614 return btrfs_ioctl_quota_rescan_wait(file
, argp
);
5615 case BTRFS_IOC_DEV_REPLACE
:
5616 return btrfs_ioctl_dev_replace(fs_info
, argp
);
5617 case BTRFS_IOC_GET_FSLABEL
:
5618 return btrfs_ioctl_get_fslabel(file
, argp
);
5619 case BTRFS_IOC_SET_FSLABEL
:
5620 return btrfs_ioctl_set_fslabel(file
, argp
);
5621 case BTRFS_IOC_GET_SUPPORTED_FEATURES
:
5622 return btrfs_ioctl_get_supported_features(argp
);
5623 case BTRFS_IOC_GET_FEATURES
:
5624 return btrfs_ioctl_get_features(file
, argp
);
5625 case BTRFS_IOC_SET_FEATURES
:
5626 return btrfs_ioctl_set_features(file
, argp
);
5632 #ifdef CONFIG_COMPAT
5633 long btrfs_compat_ioctl(struct file
*file
, unsigned int cmd
, unsigned long arg
)
5636 * These all access 32-bit values anyway so no further
5637 * handling is necessary.
5640 case FS_IOC32_GETFLAGS
:
5641 cmd
= FS_IOC_GETFLAGS
;
5643 case FS_IOC32_SETFLAGS
:
5644 cmd
= FS_IOC_SETFLAGS
;
5646 case FS_IOC32_GETVERSION
:
5647 cmd
= FS_IOC_GETVERSION
;
5651 return btrfs_ioctl(file
, cmd
, (unsigned long) compat_ptr(arg
));