ath10k: add debug trace to rts/cts set function
[linux-stable.git] / mm / vmalloc.c
blobf2481cb4e6b216e40252b0000b5fcea0d3cb9d30
1 /*
2 * linux/mm/vmalloc.c
4 * Copyright (C) 1993 Linus Torvalds
5 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
6 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
7 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
8 * Numa awareness, Christoph Lameter, SGI, June 2005
9 */
11 #include <linux/vmalloc.h>
12 #include <linux/mm.h>
13 #include <linux/module.h>
14 #include <linux/highmem.h>
15 #include <linux/sched.h>
16 #include <linux/slab.h>
17 #include <linux/spinlock.h>
18 #include <linux/interrupt.h>
19 #include <linux/proc_fs.h>
20 #include <linux/seq_file.h>
21 #include <linux/debugobjects.h>
22 #include <linux/kallsyms.h>
23 #include <linux/list.h>
24 #include <linux/notifier.h>
25 #include <linux/rbtree.h>
26 #include <linux/radix-tree.h>
27 #include <linux/rcupdate.h>
28 #include <linux/pfn.h>
29 #include <linux/kmemleak.h>
30 #include <linux/atomic.h>
31 #include <linux/compiler.h>
32 #include <linux/llist.h>
33 #include <linux/bitops.h>
35 #include <asm/uaccess.h>
36 #include <asm/tlbflush.h>
37 #include <asm/shmparam.h>
39 #include "internal.h"
41 struct vfree_deferred {
42 struct llist_head list;
43 struct work_struct wq;
45 static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
47 static void __vunmap(const void *, int);
49 static void free_work(struct work_struct *w)
51 struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
52 struct llist_node *llnode = llist_del_all(&p->list);
53 while (llnode) {
54 void *p = llnode;
55 llnode = llist_next(llnode);
56 __vunmap(p, 1);
60 /*** Page table manipulation functions ***/
62 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
64 pte_t *pte;
66 pte = pte_offset_kernel(pmd, addr);
67 do {
68 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
69 WARN_ON(!pte_none(ptent) && !pte_present(ptent));
70 } while (pte++, addr += PAGE_SIZE, addr != end);
73 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
75 pmd_t *pmd;
76 unsigned long next;
78 pmd = pmd_offset(pud, addr);
79 do {
80 next = pmd_addr_end(addr, end);
81 if (pmd_clear_huge(pmd))
82 continue;
83 if (pmd_none_or_clear_bad(pmd))
84 continue;
85 vunmap_pte_range(pmd, addr, next);
86 } while (pmd++, addr = next, addr != end);
89 static void vunmap_pud_range(pgd_t *pgd, unsigned long addr, unsigned long end)
91 pud_t *pud;
92 unsigned long next;
94 pud = pud_offset(pgd, addr);
95 do {
96 next = pud_addr_end(addr, end);
97 if (pud_clear_huge(pud))
98 continue;
99 if (pud_none_or_clear_bad(pud))
100 continue;
101 vunmap_pmd_range(pud, addr, next);
102 } while (pud++, addr = next, addr != end);
105 static void vunmap_page_range(unsigned long addr, unsigned long end)
107 pgd_t *pgd;
108 unsigned long next;
110 BUG_ON(addr >= end);
111 pgd = pgd_offset_k(addr);
112 do {
113 next = pgd_addr_end(addr, end);
114 if (pgd_none_or_clear_bad(pgd))
115 continue;
116 vunmap_pud_range(pgd, addr, next);
117 } while (pgd++, addr = next, addr != end);
120 static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
121 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
123 pte_t *pte;
126 * nr is a running index into the array which helps higher level
127 * callers keep track of where we're up to.
130 pte = pte_alloc_kernel(pmd, addr);
131 if (!pte)
132 return -ENOMEM;
133 do {
134 struct page *page = pages[*nr];
136 if (WARN_ON(!pte_none(*pte)))
137 return -EBUSY;
138 if (WARN_ON(!page))
139 return -ENOMEM;
140 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
141 (*nr)++;
142 } while (pte++, addr += PAGE_SIZE, addr != end);
143 return 0;
146 static int vmap_pmd_range(pud_t *pud, unsigned long addr,
147 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
149 pmd_t *pmd;
150 unsigned long next;
152 pmd = pmd_alloc(&init_mm, pud, addr);
153 if (!pmd)
154 return -ENOMEM;
155 do {
156 next = pmd_addr_end(addr, end);
157 if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
158 return -ENOMEM;
159 } while (pmd++, addr = next, addr != end);
160 return 0;
163 static int vmap_pud_range(pgd_t *pgd, unsigned long addr,
164 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
166 pud_t *pud;
167 unsigned long next;
169 pud = pud_alloc(&init_mm, pgd, addr);
170 if (!pud)
171 return -ENOMEM;
172 do {
173 next = pud_addr_end(addr, end);
174 if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
175 return -ENOMEM;
176 } while (pud++, addr = next, addr != end);
177 return 0;
181 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
182 * will have pfns corresponding to the "pages" array.
184 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
186 static int vmap_page_range_noflush(unsigned long start, unsigned long end,
187 pgprot_t prot, struct page **pages)
189 pgd_t *pgd;
190 unsigned long next;
191 unsigned long addr = start;
192 int err = 0;
193 int nr = 0;
195 BUG_ON(addr >= end);
196 pgd = pgd_offset_k(addr);
197 do {
198 next = pgd_addr_end(addr, end);
199 err = vmap_pud_range(pgd, addr, next, prot, pages, &nr);
200 if (err)
201 return err;
202 } while (pgd++, addr = next, addr != end);
204 return nr;
207 static int vmap_page_range(unsigned long start, unsigned long end,
208 pgprot_t prot, struct page **pages)
210 int ret;
212 ret = vmap_page_range_noflush(start, end, prot, pages);
213 flush_cache_vmap(start, end);
214 return ret;
217 int is_vmalloc_or_module_addr(const void *x)
220 * ARM, x86-64 and sparc64 put modules in a special place,
221 * and fall back on vmalloc() if that fails. Others
222 * just put it in the vmalloc space.
224 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
225 unsigned long addr = (unsigned long)x;
226 if (addr >= MODULES_VADDR && addr < MODULES_END)
227 return 1;
228 #endif
229 return is_vmalloc_addr(x);
233 * Walk a vmap address to the struct page it maps.
235 struct page *vmalloc_to_page(const void *vmalloc_addr)
237 unsigned long addr = (unsigned long) vmalloc_addr;
238 struct page *page = NULL;
239 pgd_t *pgd = pgd_offset_k(addr);
242 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
243 * architectures that do not vmalloc module space
245 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
247 if (!pgd_none(*pgd)) {
248 pud_t *pud = pud_offset(pgd, addr);
249 if (!pud_none(*pud)) {
250 pmd_t *pmd = pmd_offset(pud, addr);
251 if (!pmd_none(*pmd)) {
252 pte_t *ptep, pte;
254 ptep = pte_offset_map(pmd, addr);
255 pte = *ptep;
256 if (pte_present(pte))
257 page = pte_page(pte);
258 pte_unmap(ptep);
262 return page;
264 EXPORT_SYMBOL(vmalloc_to_page);
267 * Map a vmalloc()-space virtual address to the physical page frame number.
269 unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
271 return page_to_pfn(vmalloc_to_page(vmalloc_addr));
273 EXPORT_SYMBOL(vmalloc_to_pfn);
276 /*** Global kva allocator ***/
278 #define VM_VM_AREA 0x04
280 static DEFINE_SPINLOCK(vmap_area_lock);
281 /* Export for kexec only */
282 LIST_HEAD(vmap_area_list);
283 static LLIST_HEAD(vmap_purge_list);
284 static struct rb_root vmap_area_root = RB_ROOT;
286 /* The vmap cache globals are protected by vmap_area_lock */
287 static struct rb_node *free_vmap_cache;
288 static unsigned long cached_hole_size;
289 static unsigned long cached_vstart;
290 static unsigned long cached_align;
292 static unsigned long vmap_area_pcpu_hole;
294 static struct vmap_area *__find_vmap_area(unsigned long addr)
296 struct rb_node *n = vmap_area_root.rb_node;
298 while (n) {
299 struct vmap_area *va;
301 va = rb_entry(n, struct vmap_area, rb_node);
302 if (addr < va->va_start)
303 n = n->rb_left;
304 else if (addr >= va->va_end)
305 n = n->rb_right;
306 else
307 return va;
310 return NULL;
313 static void __insert_vmap_area(struct vmap_area *va)
315 struct rb_node **p = &vmap_area_root.rb_node;
316 struct rb_node *parent = NULL;
317 struct rb_node *tmp;
319 while (*p) {
320 struct vmap_area *tmp_va;
322 parent = *p;
323 tmp_va = rb_entry(parent, struct vmap_area, rb_node);
324 if (va->va_start < tmp_va->va_end)
325 p = &(*p)->rb_left;
326 else if (va->va_end > tmp_va->va_start)
327 p = &(*p)->rb_right;
328 else
329 BUG();
332 rb_link_node(&va->rb_node, parent, p);
333 rb_insert_color(&va->rb_node, &vmap_area_root);
335 /* address-sort this list */
336 tmp = rb_prev(&va->rb_node);
337 if (tmp) {
338 struct vmap_area *prev;
339 prev = rb_entry(tmp, struct vmap_area, rb_node);
340 list_add_rcu(&va->list, &prev->list);
341 } else
342 list_add_rcu(&va->list, &vmap_area_list);
345 static void purge_vmap_area_lazy(void);
347 static BLOCKING_NOTIFIER_HEAD(vmap_notify_list);
350 * Allocate a region of KVA of the specified size and alignment, within the
351 * vstart and vend.
353 static struct vmap_area *alloc_vmap_area(unsigned long size,
354 unsigned long align,
355 unsigned long vstart, unsigned long vend,
356 int node, gfp_t gfp_mask)
358 struct vmap_area *va;
359 struct rb_node *n;
360 unsigned long addr;
361 int purged = 0;
362 struct vmap_area *first;
364 BUG_ON(!size);
365 BUG_ON(offset_in_page(size));
366 BUG_ON(!is_power_of_2(align));
368 might_sleep_if(gfpflags_allow_blocking(gfp_mask));
370 va = kmalloc_node(sizeof(struct vmap_area),
371 gfp_mask & GFP_RECLAIM_MASK, node);
372 if (unlikely(!va))
373 return ERR_PTR(-ENOMEM);
376 * Only scan the relevant parts containing pointers to other objects
377 * to avoid false negatives.
379 kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask & GFP_RECLAIM_MASK);
381 retry:
382 spin_lock(&vmap_area_lock);
384 * Invalidate cache if we have more permissive parameters.
385 * cached_hole_size notes the largest hole noticed _below_
386 * the vmap_area cached in free_vmap_cache: if size fits
387 * into that hole, we want to scan from vstart to reuse
388 * the hole instead of allocating above free_vmap_cache.
389 * Note that __free_vmap_area may update free_vmap_cache
390 * without updating cached_hole_size or cached_align.
392 if (!free_vmap_cache ||
393 size < cached_hole_size ||
394 vstart < cached_vstart ||
395 align < cached_align) {
396 nocache:
397 cached_hole_size = 0;
398 free_vmap_cache = NULL;
400 /* record if we encounter less permissive parameters */
401 cached_vstart = vstart;
402 cached_align = align;
404 /* find starting point for our search */
405 if (free_vmap_cache) {
406 first = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
407 addr = ALIGN(first->va_end, align);
408 if (addr < vstart)
409 goto nocache;
410 if (addr + size < addr)
411 goto overflow;
413 } else {
414 addr = ALIGN(vstart, align);
415 if (addr + size < addr)
416 goto overflow;
418 n = vmap_area_root.rb_node;
419 first = NULL;
421 while (n) {
422 struct vmap_area *tmp;
423 tmp = rb_entry(n, struct vmap_area, rb_node);
424 if (tmp->va_end >= addr) {
425 first = tmp;
426 if (tmp->va_start <= addr)
427 break;
428 n = n->rb_left;
429 } else
430 n = n->rb_right;
433 if (!first)
434 goto found;
437 /* from the starting point, walk areas until a suitable hole is found */
438 while (addr + size > first->va_start && addr + size <= vend) {
439 if (addr + cached_hole_size < first->va_start)
440 cached_hole_size = first->va_start - addr;
441 addr = ALIGN(first->va_end, align);
442 if (addr + size < addr)
443 goto overflow;
445 if (list_is_last(&first->list, &vmap_area_list))
446 goto found;
448 first = list_next_entry(first, list);
451 found:
452 if (addr + size > vend)
453 goto overflow;
455 va->va_start = addr;
456 va->va_end = addr + size;
457 va->flags = 0;
458 __insert_vmap_area(va);
459 free_vmap_cache = &va->rb_node;
460 spin_unlock(&vmap_area_lock);
462 BUG_ON(!IS_ALIGNED(va->va_start, align));
463 BUG_ON(va->va_start < vstart);
464 BUG_ON(va->va_end > vend);
466 return va;
468 overflow:
469 spin_unlock(&vmap_area_lock);
470 if (!purged) {
471 purge_vmap_area_lazy();
472 purged = 1;
473 goto retry;
476 if (gfpflags_allow_blocking(gfp_mask)) {
477 unsigned long freed = 0;
478 blocking_notifier_call_chain(&vmap_notify_list, 0, &freed);
479 if (freed > 0) {
480 purged = 0;
481 goto retry;
485 if (printk_ratelimit())
486 pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n",
487 size);
488 kfree(va);
489 return ERR_PTR(-EBUSY);
492 int register_vmap_purge_notifier(struct notifier_block *nb)
494 return blocking_notifier_chain_register(&vmap_notify_list, nb);
496 EXPORT_SYMBOL_GPL(register_vmap_purge_notifier);
498 int unregister_vmap_purge_notifier(struct notifier_block *nb)
500 return blocking_notifier_chain_unregister(&vmap_notify_list, nb);
502 EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier);
504 static void __free_vmap_area(struct vmap_area *va)
506 BUG_ON(RB_EMPTY_NODE(&va->rb_node));
508 if (free_vmap_cache) {
509 if (va->va_end < cached_vstart) {
510 free_vmap_cache = NULL;
511 } else {
512 struct vmap_area *cache;
513 cache = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
514 if (va->va_start <= cache->va_start) {
515 free_vmap_cache = rb_prev(&va->rb_node);
517 * We don't try to update cached_hole_size or
518 * cached_align, but it won't go very wrong.
523 rb_erase(&va->rb_node, &vmap_area_root);
524 RB_CLEAR_NODE(&va->rb_node);
525 list_del_rcu(&va->list);
528 * Track the highest possible candidate for pcpu area
529 * allocation. Areas outside of vmalloc area can be returned
530 * here too, consider only end addresses which fall inside
531 * vmalloc area proper.
533 if (va->va_end > VMALLOC_START && va->va_end <= VMALLOC_END)
534 vmap_area_pcpu_hole = max(vmap_area_pcpu_hole, va->va_end);
536 kfree_rcu(va, rcu_head);
540 * Free a region of KVA allocated by alloc_vmap_area
542 static void free_vmap_area(struct vmap_area *va)
544 spin_lock(&vmap_area_lock);
545 __free_vmap_area(va);
546 spin_unlock(&vmap_area_lock);
550 * Clear the pagetable entries of a given vmap_area
552 static void unmap_vmap_area(struct vmap_area *va)
554 vunmap_page_range(va->va_start, va->va_end);
557 static void vmap_debug_free_range(unsigned long start, unsigned long end)
560 * Unmap page tables and force a TLB flush immediately if pagealloc
561 * debugging is enabled. This catches use after free bugs similarly to
562 * those in linear kernel virtual address space after a page has been
563 * freed.
565 * All the lazy freeing logic is still retained, in order to minimise
566 * intrusiveness of this debugging feature.
568 * This is going to be *slow* (linear kernel virtual address debugging
569 * doesn't do a broadcast TLB flush so it is a lot faster).
571 if (debug_pagealloc_enabled()) {
572 vunmap_page_range(start, end);
573 flush_tlb_kernel_range(start, end);
578 * lazy_max_pages is the maximum amount of virtual address space we gather up
579 * before attempting to purge with a TLB flush.
581 * There is a tradeoff here: a larger number will cover more kernel page tables
582 * and take slightly longer to purge, but it will linearly reduce the number of
583 * global TLB flushes that must be performed. It would seem natural to scale
584 * this number up linearly with the number of CPUs (because vmapping activity
585 * could also scale linearly with the number of CPUs), however it is likely
586 * that in practice, workloads might be constrained in other ways that mean
587 * vmap activity will not scale linearly with CPUs. Also, I want to be
588 * conservative and not introduce a big latency on huge systems, so go with
589 * a less aggressive log scale. It will still be an improvement over the old
590 * code, and it will be simple to change the scale factor if we find that it
591 * becomes a problem on bigger systems.
593 static unsigned long lazy_max_pages(void)
595 unsigned int log;
597 log = fls(num_online_cpus());
599 return log * (32UL * 1024 * 1024 / PAGE_SIZE);
602 static atomic_t vmap_lazy_nr = ATOMIC_INIT(0);
604 /* for per-CPU blocks */
605 static void purge_fragmented_blocks_allcpus(void);
608 * called before a call to iounmap() if the caller wants vm_area_struct's
609 * immediately freed.
611 void set_iounmap_nonlazy(void)
613 atomic_set(&vmap_lazy_nr, lazy_max_pages()+1);
617 * Purges all lazily-freed vmap areas.
619 * If sync is 0 then don't purge if there is already a purge in progress.
620 * If force_flush is 1, then flush kernel TLBs between *start and *end even
621 * if we found no lazy vmap areas to unmap (callers can use this to optimise
622 * their own TLB flushing).
623 * Returns with *start = min(*start, lowest purged address)
624 * *end = max(*end, highest purged address)
626 static void __purge_vmap_area_lazy(unsigned long *start, unsigned long *end,
627 int sync, int force_flush)
629 static DEFINE_SPINLOCK(purge_lock);
630 struct llist_node *valist;
631 struct vmap_area *va;
632 struct vmap_area *n_va;
633 int nr = 0;
636 * If sync is 0 but force_flush is 1, we'll go sync anyway but callers
637 * should not expect such behaviour. This just simplifies locking for
638 * the case that isn't actually used at the moment anyway.
640 if (!sync && !force_flush) {
641 if (!spin_trylock(&purge_lock))
642 return;
643 } else
644 spin_lock(&purge_lock);
646 if (sync)
647 purge_fragmented_blocks_allcpus();
649 valist = llist_del_all(&vmap_purge_list);
650 llist_for_each_entry(va, valist, purge_list) {
651 if (va->va_start < *start)
652 *start = va->va_start;
653 if (va->va_end > *end)
654 *end = va->va_end;
655 nr += (va->va_end - va->va_start) >> PAGE_SHIFT;
658 if (nr)
659 atomic_sub(nr, &vmap_lazy_nr);
661 if (nr || force_flush)
662 flush_tlb_kernel_range(*start, *end);
664 if (nr) {
665 spin_lock(&vmap_area_lock);
666 llist_for_each_entry_safe(va, n_va, valist, purge_list)
667 __free_vmap_area(va);
668 spin_unlock(&vmap_area_lock);
670 spin_unlock(&purge_lock);
674 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
675 * is already purging.
677 static void try_purge_vmap_area_lazy(void)
679 unsigned long start = ULONG_MAX, end = 0;
681 __purge_vmap_area_lazy(&start, &end, 0, 0);
685 * Kick off a purge of the outstanding lazy areas.
687 static void purge_vmap_area_lazy(void)
689 unsigned long start = ULONG_MAX, end = 0;
691 __purge_vmap_area_lazy(&start, &end, 1, 0);
695 * Free a vmap area, caller ensuring that the area has been unmapped
696 * and flush_cache_vunmap had been called for the correct range
697 * previously.
699 static void free_vmap_area_noflush(struct vmap_area *va)
701 int nr_lazy;
703 nr_lazy = atomic_add_return((va->va_end - va->va_start) >> PAGE_SHIFT,
704 &vmap_lazy_nr);
706 /* After this point, we may free va at any time */
707 llist_add(&va->purge_list, &vmap_purge_list);
709 if (unlikely(nr_lazy > lazy_max_pages()))
710 try_purge_vmap_area_lazy();
714 * Free and unmap a vmap area, caller ensuring flush_cache_vunmap had been
715 * called for the correct range previously.
717 static void free_unmap_vmap_area_noflush(struct vmap_area *va)
719 unmap_vmap_area(va);
720 free_vmap_area_noflush(va);
724 * Free and unmap a vmap area
726 static void free_unmap_vmap_area(struct vmap_area *va)
728 flush_cache_vunmap(va->va_start, va->va_end);
729 free_unmap_vmap_area_noflush(va);
732 static struct vmap_area *find_vmap_area(unsigned long addr)
734 struct vmap_area *va;
736 spin_lock(&vmap_area_lock);
737 va = __find_vmap_area(addr);
738 spin_unlock(&vmap_area_lock);
740 return va;
743 static void free_unmap_vmap_area_addr(unsigned long addr)
745 struct vmap_area *va;
747 va = find_vmap_area(addr);
748 BUG_ON(!va);
749 free_unmap_vmap_area(va);
753 /*** Per cpu kva allocator ***/
756 * vmap space is limited especially on 32 bit architectures. Ensure there is
757 * room for at least 16 percpu vmap blocks per CPU.
760 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
761 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess
762 * instead (we just need a rough idea)
764 #if BITS_PER_LONG == 32
765 #define VMALLOC_SPACE (128UL*1024*1024)
766 #else
767 #define VMALLOC_SPACE (128UL*1024*1024*1024)
768 #endif
770 #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE)
771 #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */
772 #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */
773 #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2)
774 #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */
775 #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */
776 #define VMAP_BBMAP_BITS \
777 VMAP_MIN(VMAP_BBMAP_BITS_MAX, \
778 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \
779 VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
781 #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE)
783 static bool vmap_initialized __read_mostly = false;
785 struct vmap_block_queue {
786 spinlock_t lock;
787 struct list_head free;
790 struct vmap_block {
791 spinlock_t lock;
792 struct vmap_area *va;
793 unsigned long free, dirty;
794 unsigned long dirty_min, dirty_max; /*< dirty range */
795 struct list_head free_list;
796 struct rcu_head rcu_head;
797 struct list_head purge;
800 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
801 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
804 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
805 * in the free path. Could get rid of this if we change the API to return a
806 * "cookie" from alloc, to be passed to free. But no big deal yet.
808 static DEFINE_SPINLOCK(vmap_block_tree_lock);
809 static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
812 * We should probably have a fallback mechanism to allocate virtual memory
813 * out of partially filled vmap blocks. However vmap block sizing should be
814 * fairly reasonable according to the vmalloc size, so it shouldn't be a
815 * big problem.
818 static unsigned long addr_to_vb_idx(unsigned long addr)
820 addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
821 addr /= VMAP_BLOCK_SIZE;
822 return addr;
825 static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
827 unsigned long addr;
829 addr = va_start + (pages_off << PAGE_SHIFT);
830 BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
831 return (void *)addr;
835 * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
836 * block. Of course pages number can't exceed VMAP_BBMAP_BITS
837 * @order: how many 2^order pages should be occupied in newly allocated block
838 * @gfp_mask: flags for the page level allocator
840 * Returns: virtual address in a newly allocated block or ERR_PTR(-errno)
842 static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
844 struct vmap_block_queue *vbq;
845 struct vmap_block *vb;
846 struct vmap_area *va;
847 unsigned long vb_idx;
848 int node, err;
849 void *vaddr;
851 node = numa_node_id();
853 vb = kmalloc_node(sizeof(struct vmap_block),
854 gfp_mask & GFP_RECLAIM_MASK, node);
855 if (unlikely(!vb))
856 return ERR_PTR(-ENOMEM);
858 va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
859 VMALLOC_START, VMALLOC_END,
860 node, gfp_mask);
861 if (IS_ERR(va)) {
862 kfree(vb);
863 return ERR_CAST(va);
866 err = radix_tree_preload(gfp_mask);
867 if (unlikely(err)) {
868 kfree(vb);
869 free_vmap_area(va);
870 return ERR_PTR(err);
873 vaddr = vmap_block_vaddr(va->va_start, 0);
874 spin_lock_init(&vb->lock);
875 vb->va = va;
876 /* At least something should be left free */
877 BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
878 vb->free = VMAP_BBMAP_BITS - (1UL << order);
879 vb->dirty = 0;
880 vb->dirty_min = VMAP_BBMAP_BITS;
881 vb->dirty_max = 0;
882 INIT_LIST_HEAD(&vb->free_list);
884 vb_idx = addr_to_vb_idx(va->va_start);
885 spin_lock(&vmap_block_tree_lock);
886 err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
887 spin_unlock(&vmap_block_tree_lock);
888 BUG_ON(err);
889 radix_tree_preload_end();
891 vbq = &get_cpu_var(vmap_block_queue);
892 spin_lock(&vbq->lock);
893 list_add_tail_rcu(&vb->free_list, &vbq->free);
894 spin_unlock(&vbq->lock);
895 put_cpu_var(vmap_block_queue);
897 return vaddr;
900 static void free_vmap_block(struct vmap_block *vb)
902 struct vmap_block *tmp;
903 unsigned long vb_idx;
905 vb_idx = addr_to_vb_idx(vb->va->va_start);
906 spin_lock(&vmap_block_tree_lock);
907 tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
908 spin_unlock(&vmap_block_tree_lock);
909 BUG_ON(tmp != vb);
911 free_vmap_area_noflush(vb->va);
912 kfree_rcu(vb, rcu_head);
915 static void purge_fragmented_blocks(int cpu)
917 LIST_HEAD(purge);
918 struct vmap_block *vb;
919 struct vmap_block *n_vb;
920 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
922 rcu_read_lock();
923 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
925 if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
926 continue;
928 spin_lock(&vb->lock);
929 if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
930 vb->free = 0; /* prevent further allocs after releasing lock */
931 vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
932 vb->dirty_min = 0;
933 vb->dirty_max = VMAP_BBMAP_BITS;
934 spin_lock(&vbq->lock);
935 list_del_rcu(&vb->free_list);
936 spin_unlock(&vbq->lock);
937 spin_unlock(&vb->lock);
938 list_add_tail(&vb->purge, &purge);
939 } else
940 spin_unlock(&vb->lock);
942 rcu_read_unlock();
944 list_for_each_entry_safe(vb, n_vb, &purge, purge) {
945 list_del(&vb->purge);
946 free_vmap_block(vb);
950 static void purge_fragmented_blocks_allcpus(void)
952 int cpu;
954 for_each_possible_cpu(cpu)
955 purge_fragmented_blocks(cpu);
958 static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
960 struct vmap_block_queue *vbq;
961 struct vmap_block *vb;
962 void *vaddr = NULL;
963 unsigned int order;
965 BUG_ON(offset_in_page(size));
966 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
967 if (WARN_ON(size == 0)) {
969 * Allocating 0 bytes isn't what caller wants since
970 * get_order(0) returns funny result. Just warn and terminate
971 * early.
973 return NULL;
975 order = get_order(size);
977 rcu_read_lock();
978 vbq = &get_cpu_var(vmap_block_queue);
979 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
980 unsigned long pages_off;
982 spin_lock(&vb->lock);
983 if (vb->free < (1UL << order)) {
984 spin_unlock(&vb->lock);
985 continue;
988 pages_off = VMAP_BBMAP_BITS - vb->free;
989 vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
990 vb->free -= 1UL << order;
991 if (vb->free == 0) {
992 spin_lock(&vbq->lock);
993 list_del_rcu(&vb->free_list);
994 spin_unlock(&vbq->lock);
997 spin_unlock(&vb->lock);
998 break;
1001 put_cpu_var(vmap_block_queue);
1002 rcu_read_unlock();
1004 /* Allocate new block if nothing was found */
1005 if (!vaddr)
1006 vaddr = new_vmap_block(order, gfp_mask);
1008 return vaddr;
1011 static void vb_free(const void *addr, unsigned long size)
1013 unsigned long offset;
1014 unsigned long vb_idx;
1015 unsigned int order;
1016 struct vmap_block *vb;
1018 BUG_ON(offset_in_page(size));
1019 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
1021 flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);
1023 order = get_order(size);
1025 offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
1026 offset >>= PAGE_SHIFT;
1028 vb_idx = addr_to_vb_idx((unsigned long)addr);
1029 rcu_read_lock();
1030 vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
1031 rcu_read_unlock();
1032 BUG_ON(!vb);
1034 vunmap_page_range((unsigned long)addr, (unsigned long)addr + size);
1036 spin_lock(&vb->lock);
1038 /* Expand dirty range */
1039 vb->dirty_min = min(vb->dirty_min, offset);
1040 vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
1042 vb->dirty += 1UL << order;
1043 if (vb->dirty == VMAP_BBMAP_BITS) {
1044 BUG_ON(vb->free);
1045 spin_unlock(&vb->lock);
1046 free_vmap_block(vb);
1047 } else
1048 spin_unlock(&vb->lock);
1052 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
1054 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
1055 * to amortize TLB flushing overheads. What this means is that any page you
1056 * have now, may, in a former life, have been mapped into kernel virtual
1057 * address by the vmap layer and so there might be some CPUs with TLB entries
1058 * still referencing that page (additional to the regular 1:1 kernel mapping).
1060 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
1061 * be sure that none of the pages we have control over will have any aliases
1062 * from the vmap layer.
1064 void vm_unmap_aliases(void)
1066 unsigned long start = ULONG_MAX, end = 0;
1067 int cpu;
1068 int flush = 0;
1070 if (unlikely(!vmap_initialized))
1071 return;
1073 for_each_possible_cpu(cpu) {
1074 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1075 struct vmap_block *vb;
1077 rcu_read_lock();
1078 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1079 spin_lock(&vb->lock);
1080 if (vb->dirty) {
1081 unsigned long va_start = vb->va->va_start;
1082 unsigned long s, e;
1084 s = va_start + (vb->dirty_min << PAGE_SHIFT);
1085 e = va_start + (vb->dirty_max << PAGE_SHIFT);
1087 start = min(s, start);
1088 end = max(e, end);
1090 flush = 1;
1092 spin_unlock(&vb->lock);
1094 rcu_read_unlock();
1097 __purge_vmap_area_lazy(&start, &end, 1, flush);
1099 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
1102 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
1103 * @mem: the pointer returned by vm_map_ram
1104 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
1106 void vm_unmap_ram(const void *mem, unsigned int count)
1108 unsigned long size = (unsigned long)count << PAGE_SHIFT;
1109 unsigned long addr = (unsigned long)mem;
1111 BUG_ON(!addr);
1112 BUG_ON(addr < VMALLOC_START);
1113 BUG_ON(addr > VMALLOC_END);
1114 BUG_ON(!PAGE_ALIGNED(addr));
1116 debug_check_no_locks_freed(mem, size);
1117 vmap_debug_free_range(addr, addr+size);
1119 if (likely(count <= VMAP_MAX_ALLOC))
1120 vb_free(mem, size);
1121 else
1122 free_unmap_vmap_area_addr(addr);
1124 EXPORT_SYMBOL(vm_unmap_ram);
1127 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
1128 * @pages: an array of pointers to the pages to be mapped
1129 * @count: number of pages
1130 * @node: prefer to allocate data structures on this node
1131 * @prot: memory protection to use. PAGE_KERNEL for regular RAM
1133 * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
1134 * faster than vmap so it's good. But if you mix long-life and short-life
1135 * objects with vm_map_ram(), it could consume lots of address space through
1136 * fragmentation (especially on a 32bit machine). You could see failures in
1137 * the end. Please use this function for short-lived objects.
1139 * Returns: a pointer to the address that has been mapped, or %NULL on failure
1141 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
1143 unsigned long size = (unsigned long)count << PAGE_SHIFT;
1144 unsigned long addr;
1145 void *mem;
1147 if (likely(count <= VMAP_MAX_ALLOC)) {
1148 mem = vb_alloc(size, GFP_KERNEL);
1149 if (IS_ERR(mem))
1150 return NULL;
1151 addr = (unsigned long)mem;
1152 } else {
1153 struct vmap_area *va;
1154 va = alloc_vmap_area(size, PAGE_SIZE,
1155 VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
1156 if (IS_ERR(va))
1157 return NULL;
1159 addr = va->va_start;
1160 mem = (void *)addr;
1162 if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
1163 vm_unmap_ram(mem, count);
1164 return NULL;
1166 return mem;
1168 EXPORT_SYMBOL(vm_map_ram);
1170 static struct vm_struct *vmlist __initdata;
1172 * vm_area_add_early - add vmap area early during boot
1173 * @vm: vm_struct to add
1175 * This function is used to add fixed kernel vm area to vmlist before
1176 * vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags
1177 * should contain proper values and the other fields should be zero.
1179 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1181 void __init vm_area_add_early(struct vm_struct *vm)
1183 struct vm_struct *tmp, **p;
1185 BUG_ON(vmap_initialized);
1186 for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
1187 if (tmp->addr >= vm->addr) {
1188 BUG_ON(tmp->addr < vm->addr + vm->size);
1189 break;
1190 } else
1191 BUG_ON(tmp->addr + tmp->size > vm->addr);
1193 vm->next = *p;
1194 *p = vm;
1198 * vm_area_register_early - register vmap area early during boot
1199 * @vm: vm_struct to register
1200 * @align: requested alignment
1202 * This function is used to register kernel vm area before
1203 * vmalloc_init() is called. @vm->size and @vm->flags should contain
1204 * proper values on entry and other fields should be zero. On return,
1205 * vm->addr contains the allocated address.
1207 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1209 void __init vm_area_register_early(struct vm_struct *vm, size_t align)
1211 static size_t vm_init_off __initdata;
1212 unsigned long addr;
1214 addr = ALIGN(VMALLOC_START + vm_init_off, align);
1215 vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
1217 vm->addr = (void *)addr;
1219 vm_area_add_early(vm);
1222 void __init vmalloc_init(void)
1224 struct vmap_area *va;
1225 struct vm_struct *tmp;
1226 int i;
1228 for_each_possible_cpu(i) {
1229 struct vmap_block_queue *vbq;
1230 struct vfree_deferred *p;
1232 vbq = &per_cpu(vmap_block_queue, i);
1233 spin_lock_init(&vbq->lock);
1234 INIT_LIST_HEAD(&vbq->free);
1235 p = &per_cpu(vfree_deferred, i);
1236 init_llist_head(&p->list);
1237 INIT_WORK(&p->wq, free_work);
1240 /* Import existing vmlist entries. */
1241 for (tmp = vmlist; tmp; tmp = tmp->next) {
1242 va = kzalloc(sizeof(struct vmap_area), GFP_NOWAIT);
1243 va->flags = VM_VM_AREA;
1244 va->va_start = (unsigned long)tmp->addr;
1245 va->va_end = va->va_start + tmp->size;
1246 va->vm = tmp;
1247 __insert_vmap_area(va);
1250 vmap_area_pcpu_hole = VMALLOC_END;
1252 vmap_initialized = true;
1256 * map_kernel_range_noflush - map kernel VM area with the specified pages
1257 * @addr: start of the VM area to map
1258 * @size: size of the VM area to map
1259 * @prot: page protection flags to use
1260 * @pages: pages to map
1262 * Map PFN_UP(@size) pages at @addr. The VM area @addr and @size
1263 * specify should have been allocated using get_vm_area() and its
1264 * friends.
1266 * NOTE:
1267 * This function does NOT do any cache flushing. The caller is
1268 * responsible for calling flush_cache_vmap() on to-be-mapped areas
1269 * before calling this function.
1271 * RETURNS:
1272 * The number of pages mapped on success, -errno on failure.
1274 int map_kernel_range_noflush(unsigned long addr, unsigned long size,
1275 pgprot_t prot, struct page **pages)
1277 return vmap_page_range_noflush(addr, addr + size, prot, pages);
1281 * unmap_kernel_range_noflush - unmap kernel VM area
1282 * @addr: start of the VM area to unmap
1283 * @size: size of the VM area to unmap
1285 * Unmap PFN_UP(@size) pages at @addr. The VM area @addr and @size
1286 * specify should have been allocated using get_vm_area() and its
1287 * friends.
1289 * NOTE:
1290 * This function does NOT do any cache flushing. The caller is
1291 * responsible for calling flush_cache_vunmap() on to-be-mapped areas
1292 * before calling this function and flush_tlb_kernel_range() after.
1294 void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)
1296 vunmap_page_range(addr, addr + size);
1298 EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush);
1301 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
1302 * @addr: start of the VM area to unmap
1303 * @size: size of the VM area to unmap
1305 * Similar to unmap_kernel_range_noflush() but flushes vcache before
1306 * the unmapping and tlb after.
1308 void unmap_kernel_range(unsigned long addr, unsigned long size)
1310 unsigned long end = addr + size;
1312 flush_cache_vunmap(addr, end);
1313 vunmap_page_range(addr, end);
1314 flush_tlb_kernel_range(addr, end);
1316 EXPORT_SYMBOL_GPL(unmap_kernel_range);
1318 int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page **pages)
1320 unsigned long addr = (unsigned long)area->addr;
1321 unsigned long end = addr + get_vm_area_size(area);
1322 int err;
1324 err = vmap_page_range(addr, end, prot, pages);
1326 return err > 0 ? 0 : err;
1328 EXPORT_SYMBOL_GPL(map_vm_area);
1330 static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
1331 unsigned long flags, const void *caller)
1333 spin_lock(&vmap_area_lock);
1334 vm->flags = flags;
1335 vm->addr = (void *)va->va_start;
1336 vm->size = va->va_end - va->va_start;
1337 vm->caller = caller;
1338 va->vm = vm;
1339 va->flags |= VM_VM_AREA;
1340 spin_unlock(&vmap_area_lock);
1343 static void clear_vm_uninitialized_flag(struct vm_struct *vm)
1346 * Before removing VM_UNINITIALIZED,
1347 * we should make sure that vm has proper values.
1348 * Pair with smp_rmb() in show_numa_info().
1350 smp_wmb();
1351 vm->flags &= ~VM_UNINITIALIZED;
1354 static struct vm_struct *__get_vm_area_node(unsigned long size,
1355 unsigned long align, unsigned long flags, unsigned long start,
1356 unsigned long end, int node, gfp_t gfp_mask, const void *caller)
1358 struct vmap_area *va;
1359 struct vm_struct *area;
1361 BUG_ON(in_interrupt());
1362 size = PAGE_ALIGN(size);
1363 if (unlikely(!size))
1364 return NULL;
1366 if (flags & VM_IOREMAP)
1367 align = 1ul << clamp_t(int, get_count_order_long(size),
1368 PAGE_SHIFT, IOREMAP_MAX_ORDER);
1370 area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
1371 if (unlikely(!area))
1372 return NULL;
1374 if (!(flags & VM_NO_GUARD))
1375 size += PAGE_SIZE;
1377 va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
1378 if (IS_ERR(va)) {
1379 kfree(area);
1380 return NULL;
1383 setup_vmalloc_vm(area, va, flags, caller);
1385 return area;
1388 struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
1389 unsigned long start, unsigned long end)
1391 return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
1392 GFP_KERNEL, __builtin_return_address(0));
1394 EXPORT_SYMBOL_GPL(__get_vm_area);
1396 struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
1397 unsigned long start, unsigned long end,
1398 const void *caller)
1400 return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
1401 GFP_KERNEL, caller);
1405 * get_vm_area - reserve a contiguous kernel virtual area
1406 * @size: size of the area
1407 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
1409 * Search an area of @size in the kernel virtual mapping area,
1410 * and reserved it for out purposes. Returns the area descriptor
1411 * on success or %NULL on failure.
1413 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
1415 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
1416 NUMA_NO_NODE, GFP_KERNEL,
1417 __builtin_return_address(0));
1420 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
1421 const void *caller)
1423 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
1424 NUMA_NO_NODE, GFP_KERNEL, caller);
1428 * find_vm_area - find a continuous kernel virtual area
1429 * @addr: base address
1431 * Search for the kernel VM area starting at @addr, and return it.
1432 * It is up to the caller to do all required locking to keep the returned
1433 * pointer valid.
1435 struct vm_struct *find_vm_area(const void *addr)
1437 struct vmap_area *va;
1439 va = find_vmap_area((unsigned long)addr);
1440 if (va && va->flags & VM_VM_AREA)
1441 return va->vm;
1443 return NULL;
1447 * remove_vm_area - find and remove a continuous kernel virtual area
1448 * @addr: base address
1450 * Search for the kernel VM area starting at @addr, and remove it.
1451 * This function returns the found VM area, but using it is NOT safe
1452 * on SMP machines, except for its size or flags.
1454 struct vm_struct *remove_vm_area(const void *addr)
1456 struct vmap_area *va;
1458 va = find_vmap_area((unsigned long)addr);
1459 if (va && va->flags & VM_VM_AREA) {
1460 struct vm_struct *vm = va->vm;
1462 spin_lock(&vmap_area_lock);
1463 va->vm = NULL;
1464 va->flags &= ~VM_VM_AREA;
1465 spin_unlock(&vmap_area_lock);
1467 vmap_debug_free_range(va->va_start, va->va_end);
1468 kasan_free_shadow(vm);
1469 free_unmap_vmap_area(va);
1471 return vm;
1473 return NULL;
1476 static void __vunmap(const void *addr, int deallocate_pages)
1478 struct vm_struct *area;
1480 if (!addr)
1481 return;
1483 if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
1484 addr))
1485 return;
1487 area = remove_vm_area(addr);
1488 if (unlikely(!area)) {
1489 WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
1490 addr);
1491 return;
1494 debug_check_no_locks_freed(addr, get_vm_area_size(area));
1495 debug_check_no_obj_freed(addr, get_vm_area_size(area));
1497 if (deallocate_pages) {
1498 int i;
1500 for (i = 0; i < area->nr_pages; i++) {
1501 struct page *page = area->pages[i];
1503 BUG_ON(!page);
1504 __free_pages(page, 0);
1507 kvfree(area->pages);
1510 kfree(area);
1511 return;
1515 * vfree - release memory allocated by vmalloc()
1516 * @addr: memory base address
1518 * Free the virtually continuous memory area starting at @addr, as
1519 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
1520 * NULL, no operation is performed.
1522 * Must not be called in NMI context (strictly speaking, only if we don't
1523 * have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
1524 * conventions for vfree() arch-depenedent would be a really bad idea)
1526 * NOTE: assumes that the object at *addr has a size >= sizeof(llist_node)
1528 void vfree(const void *addr)
1530 BUG_ON(in_nmi());
1532 kmemleak_free(addr);
1534 if (!addr)
1535 return;
1536 if (unlikely(in_interrupt())) {
1537 struct vfree_deferred *p = this_cpu_ptr(&vfree_deferred);
1538 if (llist_add((struct llist_node *)addr, &p->list))
1539 schedule_work(&p->wq);
1540 } else
1541 __vunmap(addr, 1);
1543 EXPORT_SYMBOL(vfree);
1546 * vunmap - release virtual mapping obtained by vmap()
1547 * @addr: memory base address
1549 * Free the virtually contiguous memory area starting at @addr,
1550 * which was created from the page array passed to vmap().
1552 * Must not be called in interrupt context.
1554 void vunmap(const void *addr)
1556 BUG_ON(in_interrupt());
1557 might_sleep();
1558 if (addr)
1559 __vunmap(addr, 0);
1561 EXPORT_SYMBOL(vunmap);
1564 * vmap - map an array of pages into virtually contiguous space
1565 * @pages: array of page pointers
1566 * @count: number of pages to map
1567 * @flags: vm_area->flags
1568 * @prot: page protection for the mapping
1570 * Maps @count pages from @pages into contiguous kernel virtual
1571 * space.
1573 void *vmap(struct page **pages, unsigned int count,
1574 unsigned long flags, pgprot_t prot)
1576 struct vm_struct *area;
1577 unsigned long size; /* In bytes */
1579 might_sleep();
1581 if (count > totalram_pages)
1582 return NULL;
1584 size = (unsigned long)count << PAGE_SHIFT;
1585 area = get_vm_area_caller(size, flags, __builtin_return_address(0));
1586 if (!area)
1587 return NULL;
1589 if (map_vm_area(area, prot, pages)) {
1590 vunmap(area->addr);
1591 return NULL;
1594 return area->addr;
1596 EXPORT_SYMBOL(vmap);
1598 static void *__vmalloc_node(unsigned long size, unsigned long align,
1599 gfp_t gfp_mask, pgprot_t prot,
1600 int node, const void *caller);
1601 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
1602 pgprot_t prot, int node)
1604 struct page **pages;
1605 unsigned int nr_pages, array_size, i;
1606 const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
1607 const gfp_t alloc_mask = gfp_mask | __GFP_NOWARN;
1609 nr_pages = get_vm_area_size(area) >> PAGE_SHIFT;
1610 array_size = (nr_pages * sizeof(struct page *));
1612 area->nr_pages = nr_pages;
1613 /* Please note that the recursion is strictly bounded. */
1614 if (array_size > PAGE_SIZE) {
1615 pages = __vmalloc_node(array_size, 1, nested_gfp|__GFP_HIGHMEM,
1616 PAGE_KERNEL, node, area->caller);
1617 } else {
1618 pages = kmalloc_node(array_size, nested_gfp, node);
1620 area->pages = pages;
1621 if (!area->pages) {
1622 remove_vm_area(area->addr);
1623 kfree(area);
1624 return NULL;
1627 for (i = 0; i < area->nr_pages; i++) {
1628 struct page *page;
1630 if (node == NUMA_NO_NODE)
1631 page = alloc_page(alloc_mask);
1632 else
1633 page = alloc_pages_node(node, alloc_mask, 0);
1635 if (unlikely(!page)) {
1636 /* Successfully allocated i pages, free them in __vunmap() */
1637 area->nr_pages = i;
1638 goto fail;
1640 area->pages[i] = page;
1641 if (gfpflags_allow_blocking(gfp_mask))
1642 cond_resched();
1645 if (map_vm_area(area, prot, pages))
1646 goto fail;
1647 return area->addr;
1649 fail:
1650 warn_alloc(gfp_mask,
1651 "vmalloc: allocation failure, allocated %ld of %ld bytes",
1652 (area->nr_pages*PAGE_SIZE), area->size);
1653 vfree(area->addr);
1654 return NULL;
1658 * __vmalloc_node_range - allocate virtually contiguous memory
1659 * @size: allocation size
1660 * @align: desired alignment
1661 * @start: vm area range start
1662 * @end: vm area range end
1663 * @gfp_mask: flags for the page level allocator
1664 * @prot: protection mask for the allocated pages
1665 * @vm_flags: additional vm area flags (e.g. %VM_NO_GUARD)
1666 * @node: node to use for allocation or NUMA_NO_NODE
1667 * @caller: caller's return address
1669 * Allocate enough pages to cover @size from the page level
1670 * allocator with @gfp_mask flags. Map them into contiguous
1671 * kernel virtual space, using a pagetable protection of @prot.
1673 void *__vmalloc_node_range(unsigned long size, unsigned long align,
1674 unsigned long start, unsigned long end, gfp_t gfp_mask,
1675 pgprot_t prot, unsigned long vm_flags, int node,
1676 const void *caller)
1678 struct vm_struct *area;
1679 void *addr;
1680 unsigned long real_size = size;
1682 size = PAGE_ALIGN(size);
1683 if (!size || (size >> PAGE_SHIFT) > totalram_pages)
1684 goto fail;
1686 area = __get_vm_area_node(size, align, VM_ALLOC | VM_UNINITIALIZED |
1687 vm_flags, start, end, node, gfp_mask, caller);
1688 if (!area)
1689 goto fail;
1691 addr = __vmalloc_area_node(area, gfp_mask, prot, node);
1692 if (!addr)
1693 return NULL;
1696 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
1697 * flag. It means that vm_struct is not fully initialized.
1698 * Now, it is fully initialized, so remove this flag here.
1700 clear_vm_uninitialized_flag(area);
1703 * A ref_count = 2 is needed because vm_struct allocated in
1704 * __get_vm_area_node() contains a reference to the virtual address of
1705 * the vmalloc'ed block.
1707 kmemleak_alloc(addr, real_size, 2, gfp_mask);
1709 return addr;
1711 fail:
1712 warn_alloc(gfp_mask,
1713 "vmalloc: allocation failure: %lu bytes", real_size);
1714 return NULL;
1718 * __vmalloc_node - allocate virtually contiguous memory
1719 * @size: allocation size
1720 * @align: desired alignment
1721 * @gfp_mask: flags for the page level allocator
1722 * @prot: protection mask for the allocated pages
1723 * @node: node to use for allocation or NUMA_NO_NODE
1724 * @caller: caller's return address
1726 * Allocate enough pages to cover @size from the page level
1727 * allocator with @gfp_mask flags. Map them into contiguous
1728 * kernel virtual space, using a pagetable protection of @prot.
1730 static void *__vmalloc_node(unsigned long size, unsigned long align,
1731 gfp_t gfp_mask, pgprot_t prot,
1732 int node, const void *caller)
1734 return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
1735 gfp_mask, prot, 0, node, caller);
1738 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
1740 return __vmalloc_node(size, 1, gfp_mask, prot, NUMA_NO_NODE,
1741 __builtin_return_address(0));
1743 EXPORT_SYMBOL(__vmalloc);
1745 static inline void *__vmalloc_node_flags(unsigned long size,
1746 int node, gfp_t flags)
1748 return __vmalloc_node(size, 1, flags, PAGE_KERNEL,
1749 node, __builtin_return_address(0));
1753 * vmalloc - allocate virtually contiguous memory
1754 * @size: allocation size
1755 * Allocate enough pages to cover @size from the page level
1756 * allocator and map them into contiguous kernel virtual space.
1758 * For tight control over page level allocator and protection flags
1759 * use __vmalloc() instead.
1761 void *vmalloc(unsigned long size)
1763 return __vmalloc_node_flags(size, NUMA_NO_NODE,
1764 GFP_KERNEL | __GFP_HIGHMEM);
1766 EXPORT_SYMBOL(vmalloc);
1769 * vzalloc - allocate virtually contiguous memory with zero fill
1770 * @size: allocation size
1771 * Allocate enough pages to cover @size from the page level
1772 * allocator and map them into contiguous kernel virtual space.
1773 * The memory allocated is set to zero.
1775 * For tight control over page level allocator and protection flags
1776 * use __vmalloc() instead.
1778 void *vzalloc(unsigned long size)
1780 return __vmalloc_node_flags(size, NUMA_NO_NODE,
1781 GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
1783 EXPORT_SYMBOL(vzalloc);
1786 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
1787 * @size: allocation size
1789 * The resulting memory area is zeroed so it can be mapped to userspace
1790 * without leaking data.
1792 void *vmalloc_user(unsigned long size)
1794 struct vm_struct *area;
1795 void *ret;
1797 ret = __vmalloc_node(size, SHMLBA,
1798 GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
1799 PAGE_KERNEL, NUMA_NO_NODE,
1800 __builtin_return_address(0));
1801 if (ret) {
1802 area = find_vm_area(ret);
1803 area->flags |= VM_USERMAP;
1805 return ret;
1807 EXPORT_SYMBOL(vmalloc_user);
1810 * vmalloc_node - allocate memory on a specific node
1811 * @size: allocation size
1812 * @node: numa node
1814 * Allocate enough pages to cover @size from the page level
1815 * allocator and map them into contiguous kernel virtual space.
1817 * For tight control over page level allocator and protection flags
1818 * use __vmalloc() instead.
1820 void *vmalloc_node(unsigned long size, int node)
1822 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
1823 node, __builtin_return_address(0));
1825 EXPORT_SYMBOL(vmalloc_node);
1828 * vzalloc_node - allocate memory on a specific node with zero fill
1829 * @size: allocation size
1830 * @node: numa node
1832 * Allocate enough pages to cover @size from the page level
1833 * allocator and map them into contiguous kernel virtual space.
1834 * The memory allocated is set to zero.
1836 * For tight control over page level allocator and protection flags
1837 * use __vmalloc_node() instead.
1839 void *vzalloc_node(unsigned long size, int node)
1841 return __vmalloc_node_flags(size, node,
1842 GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
1844 EXPORT_SYMBOL(vzalloc_node);
1846 #ifndef PAGE_KERNEL_EXEC
1847 # define PAGE_KERNEL_EXEC PAGE_KERNEL
1848 #endif
1851 * vmalloc_exec - allocate virtually contiguous, executable memory
1852 * @size: allocation size
1854 * Kernel-internal function to allocate enough pages to cover @size
1855 * the page level allocator and map them into contiguous and
1856 * executable kernel virtual space.
1858 * For tight control over page level allocator and protection flags
1859 * use __vmalloc() instead.
1862 void *vmalloc_exec(unsigned long size)
1864 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC,
1865 NUMA_NO_NODE, __builtin_return_address(0));
1868 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
1869 #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
1870 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
1871 #define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL
1872 #else
1873 #define GFP_VMALLOC32 GFP_KERNEL
1874 #endif
1877 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
1878 * @size: allocation size
1880 * Allocate enough 32bit PA addressable pages to cover @size from the
1881 * page level allocator and map them into contiguous kernel virtual space.
1883 void *vmalloc_32(unsigned long size)
1885 return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL,
1886 NUMA_NO_NODE, __builtin_return_address(0));
1888 EXPORT_SYMBOL(vmalloc_32);
1891 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
1892 * @size: allocation size
1894 * The resulting memory area is 32bit addressable and zeroed so it can be
1895 * mapped to userspace without leaking data.
1897 void *vmalloc_32_user(unsigned long size)
1899 struct vm_struct *area;
1900 void *ret;
1902 ret = __vmalloc_node(size, 1, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
1903 NUMA_NO_NODE, __builtin_return_address(0));
1904 if (ret) {
1905 area = find_vm_area(ret);
1906 area->flags |= VM_USERMAP;
1908 return ret;
1910 EXPORT_SYMBOL(vmalloc_32_user);
1913 * small helper routine , copy contents to buf from addr.
1914 * If the page is not present, fill zero.
1917 static int aligned_vread(char *buf, char *addr, unsigned long count)
1919 struct page *p;
1920 int copied = 0;
1922 while (count) {
1923 unsigned long offset, length;
1925 offset = offset_in_page(addr);
1926 length = PAGE_SIZE - offset;
1927 if (length > count)
1928 length = count;
1929 p = vmalloc_to_page(addr);
1931 * To do safe access to this _mapped_ area, we need
1932 * lock. But adding lock here means that we need to add
1933 * overhead of vmalloc()/vfree() calles for this _debug_
1934 * interface, rarely used. Instead of that, we'll use
1935 * kmap() and get small overhead in this access function.
1937 if (p) {
1939 * we can expect USER0 is not used (see vread/vwrite's
1940 * function description)
1942 void *map = kmap_atomic(p);
1943 memcpy(buf, map + offset, length);
1944 kunmap_atomic(map);
1945 } else
1946 memset(buf, 0, length);
1948 addr += length;
1949 buf += length;
1950 copied += length;
1951 count -= length;
1953 return copied;
1956 static int aligned_vwrite(char *buf, char *addr, unsigned long count)
1958 struct page *p;
1959 int copied = 0;
1961 while (count) {
1962 unsigned long offset, length;
1964 offset = offset_in_page(addr);
1965 length = PAGE_SIZE - offset;
1966 if (length > count)
1967 length = count;
1968 p = vmalloc_to_page(addr);
1970 * To do safe access to this _mapped_ area, we need
1971 * lock. But adding lock here means that we need to add
1972 * overhead of vmalloc()/vfree() calles for this _debug_
1973 * interface, rarely used. Instead of that, we'll use
1974 * kmap() and get small overhead in this access function.
1976 if (p) {
1978 * we can expect USER0 is not used (see vread/vwrite's
1979 * function description)
1981 void *map = kmap_atomic(p);
1982 memcpy(map + offset, buf, length);
1983 kunmap_atomic(map);
1985 addr += length;
1986 buf += length;
1987 copied += length;
1988 count -= length;
1990 return copied;
1994 * vread() - read vmalloc area in a safe way.
1995 * @buf: buffer for reading data
1996 * @addr: vm address.
1997 * @count: number of bytes to be read.
1999 * Returns # of bytes which addr and buf should be increased.
2000 * (same number to @count). Returns 0 if [addr...addr+count) doesn't
2001 * includes any intersect with alive vmalloc area.
2003 * This function checks that addr is a valid vmalloc'ed area, and
2004 * copy data from that area to a given buffer. If the given memory range
2005 * of [addr...addr+count) includes some valid address, data is copied to
2006 * proper area of @buf. If there are memory holes, they'll be zero-filled.
2007 * IOREMAP area is treated as memory hole and no copy is done.
2009 * If [addr...addr+count) doesn't includes any intersects with alive
2010 * vm_struct area, returns 0. @buf should be kernel's buffer.
2012 * Note: In usual ops, vread() is never necessary because the caller
2013 * should know vmalloc() area is valid and can use memcpy().
2014 * This is for routines which have to access vmalloc area without
2015 * any informaion, as /dev/kmem.
2019 long vread(char *buf, char *addr, unsigned long count)
2021 struct vmap_area *va;
2022 struct vm_struct *vm;
2023 char *vaddr, *buf_start = buf;
2024 unsigned long buflen = count;
2025 unsigned long n;
2027 /* Don't allow overflow */
2028 if ((unsigned long) addr + count < count)
2029 count = -(unsigned long) addr;
2031 spin_lock(&vmap_area_lock);
2032 list_for_each_entry(va, &vmap_area_list, list) {
2033 if (!count)
2034 break;
2036 if (!(va->flags & VM_VM_AREA))
2037 continue;
2039 vm = va->vm;
2040 vaddr = (char *) vm->addr;
2041 if (addr >= vaddr + get_vm_area_size(vm))
2042 continue;
2043 while (addr < vaddr) {
2044 if (count == 0)
2045 goto finished;
2046 *buf = '\0';
2047 buf++;
2048 addr++;
2049 count--;
2051 n = vaddr + get_vm_area_size(vm) - addr;
2052 if (n > count)
2053 n = count;
2054 if (!(vm->flags & VM_IOREMAP))
2055 aligned_vread(buf, addr, n);
2056 else /* IOREMAP area is treated as memory hole */
2057 memset(buf, 0, n);
2058 buf += n;
2059 addr += n;
2060 count -= n;
2062 finished:
2063 spin_unlock(&vmap_area_lock);
2065 if (buf == buf_start)
2066 return 0;
2067 /* zero-fill memory holes */
2068 if (buf != buf_start + buflen)
2069 memset(buf, 0, buflen - (buf - buf_start));
2071 return buflen;
2075 * vwrite() - write vmalloc area in a safe way.
2076 * @buf: buffer for source data
2077 * @addr: vm address.
2078 * @count: number of bytes to be read.
2080 * Returns # of bytes which addr and buf should be incresed.
2081 * (same number to @count).
2082 * If [addr...addr+count) doesn't includes any intersect with valid
2083 * vmalloc area, returns 0.
2085 * This function checks that addr is a valid vmalloc'ed area, and
2086 * copy data from a buffer to the given addr. If specified range of
2087 * [addr...addr+count) includes some valid address, data is copied from
2088 * proper area of @buf. If there are memory holes, no copy to hole.
2089 * IOREMAP area is treated as memory hole and no copy is done.
2091 * If [addr...addr+count) doesn't includes any intersects with alive
2092 * vm_struct area, returns 0. @buf should be kernel's buffer.
2094 * Note: In usual ops, vwrite() is never necessary because the caller
2095 * should know vmalloc() area is valid and can use memcpy().
2096 * This is for routines which have to access vmalloc area without
2097 * any informaion, as /dev/kmem.
2100 long vwrite(char *buf, char *addr, unsigned long count)
2102 struct vmap_area *va;
2103 struct vm_struct *vm;
2104 char *vaddr;
2105 unsigned long n, buflen;
2106 int copied = 0;
2108 /* Don't allow overflow */
2109 if ((unsigned long) addr + count < count)
2110 count = -(unsigned long) addr;
2111 buflen = count;
2113 spin_lock(&vmap_area_lock);
2114 list_for_each_entry(va, &vmap_area_list, list) {
2115 if (!count)
2116 break;
2118 if (!(va->flags & VM_VM_AREA))
2119 continue;
2121 vm = va->vm;
2122 vaddr = (char *) vm->addr;
2123 if (addr >= vaddr + get_vm_area_size(vm))
2124 continue;
2125 while (addr < vaddr) {
2126 if (count == 0)
2127 goto finished;
2128 buf++;
2129 addr++;
2130 count--;
2132 n = vaddr + get_vm_area_size(vm) - addr;
2133 if (n > count)
2134 n = count;
2135 if (!(vm->flags & VM_IOREMAP)) {
2136 aligned_vwrite(buf, addr, n);
2137 copied++;
2139 buf += n;
2140 addr += n;
2141 count -= n;
2143 finished:
2144 spin_unlock(&vmap_area_lock);
2145 if (!copied)
2146 return 0;
2147 return buflen;
2151 * remap_vmalloc_range_partial - map vmalloc pages to userspace
2152 * @vma: vma to cover
2153 * @uaddr: target user address to start at
2154 * @kaddr: virtual address of vmalloc kernel memory
2155 * @size: size of map area
2157 * Returns: 0 for success, -Exxx on failure
2159 * This function checks that @kaddr is a valid vmalloc'ed area,
2160 * and that it is big enough to cover the range starting at
2161 * @uaddr in @vma. Will return failure if that criteria isn't
2162 * met.
2164 * Similar to remap_pfn_range() (see mm/memory.c)
2166 int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
2167 void *kaddr, unsigned long size)
2169 struct vm_struct *area;
2171 size = PAGE_ALIGN(size);
2173 if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
2174 return -EINVAL;
2176 area = find_vm_area(kaddr);
2177 if (!area)
2178 return -EINVAL;
2180 if (!(area->flags & VM_USERMAP))
2181 return -EINVAL;
2183 if (kaddr + size > area->addr + area->size)
2184 return -EINVAL;
2186 do {
2187 struct page *page = vmalloc_to_page(kaddr);
2188 int ret;
2190 ret = vm_insert_page(vma, uaddr, page);
2191 if (ret)
2192 return ret;
2194 uaddr += PAGE_SIZE;
2195 kaddr += PAGE_SIZE;
2196 size -= PAGE_SIZE;
2197 } while (size > 0);
2199 vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
2201 return 0;
2203 EXPORT_SYMBOL(remap_vmalloc_range_partial);
2206 * remap_vmalloc_range - map vmalloc pages to userspace
2207 * @vma: vma to cover (map full range of vma)
2208 * @addr: vmalloc memory
2209 * @pgoff: number of pages into addr before first page to map
2211 * Returns: 0 for success, -Exxx on failure
2213 * This function checks that addr is a valid vmalloc'ed area, and
2214 * that it is big enough to cover the vma. Will return failure if
2215 * that criteria isn't met.
2217 * Similar to remap_pfn_range() (see mm/memory.c)
2219 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
2220 unsigned long pgoff)
2222 return remap_vmalloc_range_partial(vma, vma->vm_start,
2223 addr + (pgoff << PAGE_SHIFT),
2224 vma->vm_end - vma->vm_start);
2226 EXPORT_SYMBOL(remap_vmalloc_range);
2229 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
2230 * have one.
2232 void __weak vmalloc_sync_all(void)
2237 static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data)
2239 pte_t ***p = data;
2241 if (p) {
2242 *(*p) = pte;
2243 (*p)++;
2245 return 0;
2249 * alloc_vm_area - allocate a range of kernel address space
2250 * @size: size of the area
2251 * @ptes: returns the PTEs for the address space
2253 * Returns: NULL on failure, vm_struct on success
2255 * This function reserves a range of kernel address space, and
2256 * allocates pagetables to map that range. No actual mappings
2257 * are created.
2259 * If @ptes is non-NULL, pointers to the PTEs (in init_mm)
2260 * allocated for the VM area are returned.
2262 struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
2264 struct vm_struct *area;
2266 area = get_vm_area_caller(size, VM_IOREMAP,
2267 __builtin_return_address(0));
2268 if (area == NULL)
2269 return NULL;
2272 * This ensures that page tables are constructed for this region
2273 * of kernel virtual address space and mapped into init_mm.
2275 if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
2276 size, f, ptes ? &ptes : NULL)) {
2277 free_vm_area(area);
2278 return NULL;
2281 return area;
2283 EXPORT_SYMBOL_GPL(alloc_vm_area);
2285 void free_vm_area(struct vm_struct *area)
2287 struct vm_struct *ret;
2288 ret = remove_vm_area(area->addr);
2289 BUG_ON(ret != area);
2290 kfree(area);
2292 EXPORT_SYMBOL_GPL(free_vm_area);
2294 #ifdef CONFIG_SMP
2295 static struct vmap_area *node_to_va(struct rb_node *n)
2297 return n ? rb_entry(n, struct vmap_area, rb_node) : NULL;
2301 * pvm_find_next_prev - find the next and prev vmap_area surrounding @end
2302 * @end: target address
2303 * @pnext: out arg for the next vmap_area
2304 * @pprev: out arg for the previous vmap_area
2306 * Returns: %true if either or both of next and prev are found,
2307 * %false if no vmap_area exists
2309 * Find vmap_areas end addresses of which enclose @end. ie. if not
2310 * NULL, *pnext->va_end > @end and *pprev->va_end <= @end.
2312 static bool pvm_find_next_prev(unsigned long end,
2313 struct vmap_area **pnext,
2314 struct vmap_area **pprev)
2316 struct rb_node *n = vmap_area_root.rb_node;
2317 struct vmap_area *va = NULL;
2319 while (n) {
2320 va = rb_entry(n, struct vmap_area, rb_node);
2321 if (end < va->va_end)
2322 n = n->rb_left;
2323 else if (end > va->va_end)
2324 n = n->rb_right;
2325 else
2326 break;
2329 if (!va)
2330 return false;
2332 if (va->va_end > end) {
2333 *pnext = va;
2334 *pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2335 } else {
2336 *pprev = va;
2337 *pnext = node_to_va(rb_next(&(*pprev)->rb_node));
2339 return true;
2343 * pvm_determine_end - find the highest aligned address between two vmap_areas
2344 * @pnext: in/out arg for the next vmap_area
2345 * @pprev: in/out arg for the previous vmap_area
2346 * @align: alignment
2348 * Returns: determined end address
2350 * Find the highest aligned address between *@pnext and *@pprev below
2351 * VMALLOC_END. *@pnext and *@pprev are adjusted so that the aligned
2352 * down address is between the end addresses of the two vmap_areas.
2354 * Please note that the address returned by this function may fall
2355 * inside *@pnext vmap_area. The caller is responsible for checking
2356 * that.
2358 static unsigned long pvm_determine_end(struct vmap_area **pnext,
2359 struct vmap_area **pprev,
2360 unsigned long align)
2362 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2363 unsigned long addr;
2365 if (*pnext)
2366 addr = min((*pnext)->va_start & ~(align - 1), vmalloc_end);
2367 else
2368 addr = vmalloc_end;
2370 while (*pprev && (*pprev)->va_end > addr) {
2371 *pnext = *pprev;
2372 *pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2375 return addr;
2379 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
2380 * @offsets: array containing offset of each area
2381 * @sizes: array containing size of each area
2382 * @nr_vms: the number of areas to allocate
2383 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
2385 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
2386 * vm_structs on success, %NULL on failure
2388 * Percpu allocator wants to use congruent vm areas so that it can
2389 * maintain the offsets among percpu areas. This function allocates
2390 * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to
2391 * be scattered pretty far, distance between two areas easily going up
2392 * to gigabytes. To avoid interacting with regular vmallocs, these
2393 * areas are allocated from top.
2395 * Despite its complicated look, this allocator is rather simple. It
2396 * does everything top-down and scans areas from the end looking for
2397 * matching slot. While scanning, if any of the areas overlaps with
2398 * existing vmap_area, the base address is pulled down to fit the
2399 * area. Scanning is repeated till all the areas fit and then all
2400 * necessary data structres are inserted and the result is returned.
2402 struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
2403 const size_t *sizes, int nr_vms,
2404 size_t align)
2406 const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
2407 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2408 struct vmap_area **vas, *prev, *next;
2409 struct vm_struct **vms;
2410 int area, area2, last_area, term_area;
2411 unsigned long base, start, end, last_end;
2412 bool purged = false;
2414 /* verify parameters and allocate data structures */
2415 BUG_ON(offset_in_page(align) || !is_power_of_2(align));
2416 for (last_area = 0, area = 0; area < nr_vms; area++) {
2417 start = offsets[area];
2418 end = start + sizes[area];
2420 /* is everything aligned properly? */
2421 BUG_ON(!IS_ALIGNED(offsets[area], align));
2422 BUG_ON(!IS_ALIGNED(sizes[area], align));
2424 /* detect the area with the highest address */
2425 if (start > offsets[last_area])
2426 last_area = area;
2428 for (area2 = 0; area2 < nr_vms; area2++) {
2429 unsigned long start2 = offsets[area2];
2430 unsigned long end2 = start2 + sizes[area2];
2432 if (area2 == area)
2433 continue;
2435 BUG_ON(start2 >= start && start2 < end);
2436 BUG_ON(end2 <= end && end2 > start);
2439 last_end = offsets[last_area] + sizes[last_area];
2441 if (vmalloc_end - vmalloc_start < last_end) {
2442 WARN_ON(true);
2443 return NULL;
2446 vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
2447 vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
2448 if (!vas || !vms)
2449 goto err_free2;
2451 for (area = 0; area < nr_vms; area++) {
2452 vas[area] = kzalloc(sizeof(struct vmap_area), GFP_KERNEL);
2453 vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
2454 if (!vas[area] || !vms[area])
2455 goto err_free;
2457 retry:
2458 spin_lock(&vmap_area_lock);
2460 /* start scanning - we scan from the top, begin with the last area */
2461 area = term_area = last_area;
2462 start = offsets[area];
2463 end = start + sizes[area];
2465 if (!pvm_find_next_prev(vmap_area_pcpu_hole, &next, &prev)) {
2466 base = vmalloc_end - last_end;
2467 goto found;
2469 base = pvm_determine_end(&next, &prev, align) - end;
2471 while (true) {
2472 BUG_ON(next && next->va_end <= base + end);
2473 BUG_ON(prev && prev->va_end > base + end);
2476 * base might have underflowed, add last_end before
2477 * comparing.
2479 if (base + last_end < vmalloc_start + last_end) {
2480 spin_unlock(&vmap_area_lock);
2481 if (!purged) {
2482 purge_vmap_area_lazy();
2483 purged = true;
2484 goto retry;
2486 goto err_free;
2490 * If next overlaps, move base downwards so that it's
2491 * right below next and then recheck.
2493 if (next && next->va_start < base + end) {
2494 base = pvm_determine_end(&next, &prev, align) - end;
2495 term_area = area;
2496 continue;
2500 * If prev overlaps, shift down next and prev and move
2501 * base so that it's right below new next and then
2502 * recheck.
2504 if (prev && prev->va_end > base + start) {
2505 next = prev;
2506 prev = node_to_va(rb_prev(&next->rb_node));
2507 base = pvm_determine_end(&next, &prev, align) - end;
2508 term_area = area;
2509 continue;
2513 * This area fits, move on to the previous one. If
2514 * the previous one is the terminal one, we're done.
2516 area = (area + nr_vms - 1) % nr_vms;
2517 if (area == term_area)
2518 break;
2519 start = offsets[area];
2520 end = start + sizes[area];
2521 pvm_find_next_prev(base + end, &next, &prev);
2523 found:
2524 /* we've found a fitting base, insert all va's */
2525 for (area = 0; area < nr_vms; area++) {
2526 struct vmap_area *va = vas[area];
2528 va->va_start = base + offsets[area];
2529 va->va_end = va->va_start + sizes[area];
2530 __insert_vmap_area(va);
2533 vmap_area_pcpu_hole = base + offsets[last_area];
2535 spin_unlock(&vmap_area_lock);
2537 /* insert all vm's */
2538 for (area = 0; area < nr_vms; area++)
2539 setup_vmalloc_vm(vms[area], vas[area], VM_ALLOC,
2540 pcpu_get_vm_areas);
2542 kfree(vas);
2543 return vms;
2545 err_free:
2546 for (area = 0; area < nr_vms; area++) {
2547 kfree(vas[area]);
2548 kfree(vms[area]);
2550 err_free2:
2551 kfree(vas);
2552 kfree(vms);
2553 return NULL;
2557 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
2558 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
2559 * @nr_vms: the number of allocated areas
2561 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
2563 void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
2565 int i;
2567 for (i = 0; i < nr_vms; i++)
2568 free_vm_area(vms[i]);
2569 kfree(vms);
2571 #endif /* CONFIG_SMP */
2573 #ifdef CONFIG_PROC_FS
2574 static void *s_start(struct seq_file *m, loff_t *pos)
2575 __acquires(&vmap_area_lock)
2577 loff_t n = *pos;
2578 struct vmap_area *va;
2580 spin_lock(&vmap_area_lock);
2581 va = list_first_entry(&vmap_area_list, typeof(*va), list);
2582 while (n > 0 && &va->list != &vmap_area_list) {
2583 n--;
2584 va = list_next_entry(va, list);
2586 if (!n && &va->list != &vmap_area_list)
2587 return va;
2589 return NULL;
2593 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
2595 struct vmap_area *va = p, *next;
2597 ++*pos;
2598 next = list_next_entry(va, list);
2599 if (&next->list != &vmap_area_list)
2600 return next;
2602 return NULL;
2605 static void s_stop(struct seq_file *m, void *p)
2606 __releases(&vmap_area_lock)
2608 spin_unlock(&vmap_area_lock);
2611 static void show_numa_info(struct seq_file *m, struct vm_struct *v)
2613 if (IS_ENABLED(CONFIG_NUMA)) {
2614 unsigned int nr, *counters = m->private;
2616 if (!counters)
2617 return;
2619 if (v->flags & VM_UNINITIALIZED)
2620 return;
2621 /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
2622 smp_rmb();
2624 memset(counters, 0, nr_node_ids * sizeof(unsigned int));
2626 for (nr = 0; nr < v->nr_pages; nr++)
2627 counters[page_to_nid(v->pages[nr])]++;
2629 for_each_node_state(nr, N_HIGH_MEMORY)
2630 if (counters[nr])
2631 seq_printf(m, " N%u=%u", nr, counters[nr]);
2635 static int s_show(struct seq_file *m, void *p)
2637 struct vmap_area *va = p;
2638 struct vm_struct *v;
2641 * s_show can encounter race with remove_vm_area, !VM_VM_AREA on
2642 * behalf of vmap area is being tear down or vm_map_ram allocation.
2644 if (!(va->flags & VM_VM_AREA))
2645 return 0;
2647 v = va->vm;
2649 seq_printf(m, "0x%pK-0x%pK %7ld",
2650 v->addr, v->addr + v->size, v->size);
2652 if (v->caller)
2653 seq_printf(m, " %pS", v->caller);
2655 if (v->nr_pages)
2656 seq_printf(m, " pages=%d", v->nr_pages);
2658 if (v->phys_addr)
2659 seq_printf(m, " phys=%llx", (unsigned long long)v->phys_addr);
2661 if (v->flags & VM_IOREMAP)
2662 seq_puts(m, " ioremap");
2664 if (v->flags & VM_ALLOC)
2665 seq_puts(m, " vmalloc");
2667 if (v->flags & VM_MAP)
2668 seq_puts(m, " vmap");
2670 if (v->flags & VM_USERMAP)
2671 seq_puts(m, " user");
2673 if (is_vmalloc_addr(v->pages))
2674 seq_puts(m, " vpages");
2676 show_numa_info(m, v);
2677 seq_putc(m, '\n');
2678 return 0;
2681 static const struct seq_operations vmalloc_op = {
2682 .start = s_start,
2683 .next = s_next,
2684 .stop = s_stop,
2685 .show = s_show,
2688 static int vmalloc_open(struct inode *inode, struct file *file)
2690 if (IS_ENABLED(CONFIG_NUMA))
2691 return seq_open_private(file, &vmalloc_op,
2692 nr_node_ids * sizeof(unsigned int));
2693 else
2694 return seq_open(file, &vmalloc_op);
2697 static const struct file_operations proc_vmalloc_operations = {
2698 .open = vmalloc_open,
2699 .read = seq_read,
2700 .llseek = seq_lseek,
2701 .release = seq_release_private,
2704 static int __init proc_vmalloc_init(void)
2706 proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations);
2707 return 0;
2709 module_init(proc_vmalloc_init);
2711 #endif