ath10k: add debug trace to rts/cts set function
[linux-stable.git] / mm / migrate.c
blob99250aee1ac166fd8d5bb03849041b2a07fc3f80
1 /*
2 * Memory Migration functionality - linux/mm/migrate.c
4 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6 * Page migration was first developed in the context of the memory hotplug
7 * project. The main authors of the migration code are:
9 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
10 * Hirokazu Takahashi <taka@valinux.co.jp>
11 * Dave Hansen <haveblue@us.ibm.com>
12 * Christoph Lameter
15 #include <linux/migrate.h>
16 #include <linux/export.h>
17 #include <linux/swap.h>
18 #include <linux/swapops.h>
19 #include <linux/pagemap.h>
20 #include <linux/buffer_head.h>
21 #include <linux/mm_inline.h>
22 #include <linux/nsproxy.h>
23 #include <linux/pagevec.h>
24 #include <linux/ksm.h>
25 #include <linux/rmap.h>
26 #include <linux/topology.h>
27 #include <linux/cpu.h>
28 #include <linux/cpuset.h>
29 #include <linux/writeback.h>
30 #include <linux/mempolicy.h>
31 #include <linux/vmalloc.h>
32 #include <linux/security.h>
33 #include <linux/backing-dev.h>
34 #include <linux/compaction.h>
35 #include <linux/syscalls.h>
36 #include <linux/hugetlb.h>
37 #include <linux/hugetlb_cgroup.h>
38 #include <linux/gfp.h>
39 #include <linux/balloon_compaction.h>
40 #include <linux/mmu_notifier.h>
41 #include <linux/page_idle.h>
42 #include <linux/page_owner.h>
44 #include <asm/tlbflush.h>
46 #define CREATE_TRACE_POINTS
47 #include <trace/events/migrate.h>
49 #include "internal.h"
52 * migrate_prep() needs to be called before we start compiling a list of pages
53 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
54 * undesirable, use migrate_prep_local()
56 int migrate_prep(void)
59 * Clear the LRU lists so pages can be isolated.
60 * Note that pages may be moved off the LRU after we have
61 * drained them. Those pages will fail to migrate like other
62 * pages that may be busy.
64 lru_add_drain_all();
66 return 0;
69 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
70 int migrate_prep_local(void)
72 lru_add_drain();
74 return 0;
77 bool isolate_movable_page(struct page *page, isolate_mode_t mode)
79 struct address_space *mapping;
82 * Avoid burning cycles with pages that are yet under __free_pages(),
83 * or just got freed under us.
85 * In case we 'win' a race for a movable page being freed under us and
86 * raise its refcount preventing __free_pages() from doing its job
87 * the put_page() at the end of this block will take care of
88 * release this page, thus avoiding a nasty leakage.
90 if (unlikely(!get_page_unless_zero(page)))
91 goto out;
94 * Check PageMovable before holding a PG_lock because page's owner
95 * assumes anybody doesn't touch PG_lock of newly allocated page
96 * so unconditionally grapping the lock ruins page's owner side.
98 if (unlikely(!__PageMovable(page)))
99 goto out_putpage;
101 * As movable pages are not isolated from LRU lists, concurrent
102 * compaction threads can race against page migration functions
103 * as well as race against the releasing a page.
105 * In order to avoid having an already isolated movable page
106 * being (wrongly) re-isolated while it is under migration,
107 * or to avoid attempting to isolate pages being released,
108 * lets be sure we have the page lock
109 * before proceeding with the movable page isolation steps.
111 if (unlikely(!trylock_page(page)))
112 goto out_putpage;
114 if (!PageMovable(page) || PageIsolated(page))
115 goto out_no_isolated;
117 mapping = page_mapping(page);
118 VM_BUG_ON_PAGE(!mapping, page);
120 if (!mapping->a_ops->isolate_page(page, mode))
121 goto out_no_isolated;
123 /* Driver shouldn't use PG_isolated bit of page->flags */
124 WARN_ON_ONCE(PageIsolated(page));
125 __SetPageIsolated(page);
126 unlock_page(page);
128 return true;
130 out_no_isolated:
131 unlock_page(page);
132 out_putpage:
133 put_page(page);
134 out:
135 return false;
138 /* It should be called on page which is PG_movable */
139 void putback_movable_page(struct page *page)
141 struct address_space *mapping;
143 VM_BUG_ON_PAGE(!PageLocked(page), page);
144 VM_BUG_ON_PAGE(!PageMovable(page), page);
145 VM_BUG_ON_PAGE(!PageIsolated(page), page);
147 mapping = page_mapping(page);
148 mapping->a_ops->putback_page(page);
149 __ClearPageIsolated(page);
153 * Put previously isolated pages back onto the appropriate lists
154 * from where they were once taken off for compaction/migration.
156 * This function shall be used whenever the isolated pageset has been
157 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
158 * and isolate_huge_page().
160 void putback_movable_pages(struct list_head *l)
162 struct page *page;
163 struct page *page2;
165 list_for_each_entry_safe(page, page2, l, lru) {
166 if (unlikely(PageHuge(page))) {
167 putback_active_hugepage(page);
168 continue;
170 list_del(&page->lru);
171 dec_node_page_state(page, NR_ISOLATED_ANON +
172 page_is_file_cache(page));
174 * We isolated non-lru movable page so here we can use
175 * __PageMovable because LRU page's mapping cannot have
176 * PAGE_MAPPING_MOVABLE.
178 if (unlikely(__PageMovable(page))) {
179 VM_BUG_ON_PAGE(!PageIsolated(page), page);
180 lock_page(page);
181 if (PageMovable(page))
182 putback_movable_page(page);
183 else
184 __ClearPageIsolated(page);
185 unlock_page(page);
186 put_page(page);
187 } else {
188 putback_lru_page(page);
194 * Restore a potential migration pte to a working pte entry
196 static int remove_migration_pte(struct page *new, struct vm_area_struct *vma,
197 unsigned long addr, void *old)
199 struct mm_struct *mm = vma->vm_mm;
200 swp_entry_t entry;
201 pmd_t *pmd;
202 pte_t *ptep, pte;
203 spinlock_t *ptl;
205 if (unlikely(PageHuge(new))) {
206 ptep = huge_pte_offset(mm, addr);
207 if (!ptep)
208 goto out;
209 ptl = huge_pte_lockptr(hstate_vma(vma), mm, ptep);
210 } else {
211 pmd = mm_find_pmd(mm, addr);
212 if (!pmd)
213 goto out;
215 ptep = pte_offset_map(pmd, addr);
218 * Peek to check is_swap_pte() before taking ptlock? No, we
219 * can race mremap's move_ptes(), which skips anon_vma lock.
222 ptl = pte_lockptr(mm, pmd);
225 spin_lock(ptl);
226 pte = *ptep;
227 if (!is_swap_pte(pte))
228 goto unlock;
230 entry = pte_to_swp_entry(pte);
232 if (!is_migration_entry(entry) ||
233 migration_entry_to_page(entry) != old)
234 goto unlock;
236 get_page(new);
237 pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
238 if (pte_swp_soft_dirty(*ptep))
239 pte = pte_mksoft_dirty(pte);
241 /* Recheck VMA as permissions can change since migration started */
242 if (is_write_migration_entry(entry))
243 pte = maybe_mkwrite(pte, vma);
245 #ifdef CONFIG_HUGETLB_PAGE
246 if (PageHuge(new)) {
247 pte = pte_mkhuge(pte);
248 pte = arch_make_huge_pte(pte, vma, new, 0);
250 #endif
251 flush_dcache_page(new);
252 set_pte_at(mm, addr, ptep, pte);
254 if (PageHuge(new)) {
255 if (PageAnon(new))
256 hugepage_add_anon_rmap(new, vma, addr);
257 else
258 page_dup_rmap(new, true);
259 } else if (PageAnon(new))
260 page_add_anon_rmap(new, vma, addr, false);
261 else
262 page_add_file_rmap(new, false);
264 if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
265 mlock_vma_page(new);
267 /* No need to invalidate - it was non-present before */
268 update_mmu_cache(vma, addr, ptep);
269 unlock:
270 pte_unmap_unlock(ptep, ptl);
271 out:
272 return SWAP_AGAIN;
276 * Get rid of all migration entries and replace them by
277 * references to the indicated page.
279 void remove_migration_ptes(struct page *old, struct page *new, bool locked)
281 struct rmap_walk_control rwc = {
282 .rmap_one = remove_migration_pte,
283 .arg = old,
286 if (locked)
287 rmap_walk_locked(new, &rwc);
288 else
289 rmap_walk(new, &rwc);
293 * Something used the pte of a page under migration. We need to
294 * get to the page and wait until migration is finished.
295 * When we return from this function the fault will be retried.
297 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
298 spinlock_t *ptl)
300 pte_t pte;
301 swp_entry_t entry;
302 struct page *page;
304 spin_lock(ptl);
305 pte = *ptep;
306 if (!is_swap_pte(pte))
307 goto out;
309 entry = pte_to_swp_entry(pte);
310 if (!is_migration_entry(entry))
311 goto out;
313 page = migration_entry_to_page(entry);
316 * Once radix-tree replacement of page migration started, page_count
317 * *must* be zero. And, we don't want to call wait_on_page_locked()
318 * against a page without get_page().
319 * So, we use get_page_unless_zero(), here. Even failed, page fault
320 * will occur again.
322 if (!get_page_unless_zero(page))
323 goto out;
324 pte_unmap_unlock(ptep, ptl);
325 wait_on_page_locked(page);
326 put_page(page);
327 return;
328 out:
329 pte_unmap_unlock(ptep, ptl);
332 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
333 unsigned long address)
335 spinlock_t *ptl = pte_lockptr(mm, pmd);
336 pte_t *ptep = pte_offset_map(pmd, address);
337 __migration_entry_wait(mm, ptep, ptl);
340 void migration_entry_wait_huge(struct vm_area_struct *vma,
341 struct mm_struct *mm, pte_t *pte)
343 spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
344 __migration_entry_wait(mm, pte, ptl);
347 #ifdef CONFIG_BLOCK
348 /* Returns true if all buffers are successfully locked */
349 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
350 enum migrate_mode mode)
352 struct buffer_head *bh = head;
354 /* Simple case, sync compaction */
355 if (mode != MIGRATE_ASYNC) {
356 do {
357 get_bh(bh);
358 lock_buffer(bh);
359 bh = bh->b_this_page;
361 } while (bh != head);
363 return true;
366 /* async case, we cannot block on lock_buffer so use trylock_buffer */
367 do {
368 get_bh(bh);
369 if (!trylock_buffer(bh)) {
371 * We failed to lock the buffer and cannot stall in
372 * async migration. Release the taken locks
374 struct buffer_head *failed_bh = bh;
375 put_bh(failed_bh);
376 bh = head;
377 while (bh != failed_bh) {
378 unlock_buffer(bh);
379 put_bh(bh);
380 bh = bh->b_this_page;
382 return false;
385 bh = bh->b_this_page;
386 } while (bh != head);
387 return true;
389 #else
390 static inline bool buffer_migrate_lock_buffers(struct buffer_head *head,
391 enum migrate_mode mode)
393 return true;
395 #endif /* CONFIG_BLOCK */
398 * Replace the page in the mapping.
400 * The number of remaining references must be:
401 * 1 for anonymous pages without a mapping
402 * 2 for pages with a mapping
403 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
405 int migrate_page_move_mapping(struct address_space *mapping,
406 struct page *newpage, struct page *page,
407 struct buffer_head *head, enum migrate_mode mode,
408 int extra_count)
410 struct zone *oldzone, *newzone;
411 int dirty;
412 int expected_count = 1 + extra_count;
413 void **pslot;
415 if (!mapping) {
416 /* Anonymous page without mapping */
417 if (page_count(page) != expected_count)
418 return -EAGAIN;
420 /* No turning back from here */
421 newpage->index = page->index;
422 newpage->mapping = page->mapping;
423 if (PageSwapBacked(page))
424 __SetPageSwapBacked(newpage);
426 return MIGRATEPAGE_SUCCESS;
429 oldzone = page_zone(page);
430 newzone = page_zone(newpage);
432 spin_lock_irq(&mapping->tree_lock);
434 pslot = radix_tree_lookup_slot(&mapping->page_tree,
435 page_index(page));
437 expected_count += 1 + page_has_private(page);
438 if (page_count(page) != expected_count ||
439 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
440 spin_unlock_irq(&mapping->tree_lock);
441 return -EAGAIN;
444 if (!page_ref_freeze(page, expected_count)) {
445 spin_unlock_irq(&mapping->tree_lock);
446 return -EAGAIN;
450 * In the async migration case of moving a page with buffers, lock the
451 * buffers using trylock before the mapping is moved. If the mapping
452 * was moved, we later failed to lock the buffers and could not move
453 * the mapping back due to an elevated page count, we would have to
454 * block waiting on other references to be dropped.
456 if (mode == MIGRATE_ASYNC && head &&
457 !buffer_migrate_lock_buffers(head, mode)) {
458 page_ref_unfreeze(page, expected_count);
459 spin_unlock_irq(&mapping->tree_lock);
460 return -EAGAIN;
464 * Now we know that no one else is looking at the page:
465 * no turning back from here.
467 newpage->index = page->index;
468 newpage->mapping = page->mapping;
469 if (PageSwapBacked(page))
470 __SetPageSwapBacked(newpage);
472 get_page(newpage); /* add cache reference */
473 if (PageSwapCache(page)) {
474 SetPageSwapCache(newpage);
475 set_page_private(newpage, page_private(page));
478 /* Move dirty while page refs frozen and newpage not yet exposed */
479 dirty = PageDirty(page);
480 if (dirty) {
481 ClearPageDirty(page);
482 SetPageDirty(newpage);
485 radix_tree_replace_slot(pslot, newpage);
488 * Drop cache reference from old page by unfreezing
489 * to one less reference.
490 * We know this isn't the last reference.
492 page_ref_unfreeze(page, expected_count - 1);
494 spin_unlock(&mapping->tree_lock);
495 /* Leave irq disabled to prevent preemption while updating stats */
498 * If moved to a different zone then also account
499 * the page for that zone. Other VM counters will be
500 * taken care of when we establish references to the
501 * new page and drop references to the old page.
503 * Note that anonymous pages are accounted for
504 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
505 * are mapped to swap space.
507 if (newzone != oldzone) {
508 __dec_node_state(oldzone->zone_pgdat, NR_FILE_PAGES);
509 __inc_node_state(newzone->zone_pgdat, NR_FILE_PAGES);
510 if (PageSwapBacked(page) && !PageSwapCache(page)) {
511 __dec_node_state(oldzone->zone_pgdat, NR_SHMEM);
512 __inc_node_state(newzone->zone_pgdat, NR_SHMEM);
514 if (dirty && mapping_cap_account_dirty(mapping)) {
515 __dec_node_state(oldzone->zone_pgdat, NR_FILE_DIRTY);
516 __dec_zone_state(oldzone, NR_ZONE_WRITE_PENDING);
517 __inc_node_state(newzone->zone_pgdat, NR_FILE_DIRTY);
518 __inc_zone_state(newzone, NR_ZONE_WRITE_PENDING);
521 local_irq_enable();
523 return MIGRATEPAGE_SUCCESS;
525 EXPORT_SYMBOL(migrate_page_move_mapping);
528 * The expected number of remaining references is the same as that
529 * of migrate_page_move_mapping().
531 int migrate_huge_page_move_mapping(struct address_space *mapping,
532 struct page *newpage, struct page *page)
534 int expected_count;
535 void **pslot;
537 spin_lock_irq(&mapping->tree_lock);
539 pslot = radix_tree_lookup_slot(&mapping->page_tree,
540 page_index(page));
542 expected_count = 2 + page_has_private(page);
543 if (page_count(page) != expected_count ||
544 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
545 spin_unlock_irq(&mapping->tree_lock);
546 return -EAGAIN;
549 if (!page_ref_freeze(page, expected_count)) {
550 spin_unlock_irq(&mapping->tree_lock);
551 return -EAGAIN;
554 newpage->index = page->index;
555 newpage->mapping = page->mapping;
557 get_page(newpage);
559 radix_tree_replace_slot(pslot, newpage);
561 page_ref_unfreeze(page, expected_count - 1);
563 spin_unlock_irq(&mapping->tree_lock);
565 return MIGRATEPAGE_SUCCESS;
569 * Gigantic pages are so large that we do not guarantee that page++ pointer
570 * arithmetic will work across the entire page. We need something more
571 * specialized.
573 static void __copy_gigantic_page(struct page *dst, struct page *src,
574 int nr_pages)
576 int i;
577 struct page *dst_base = dst;
578 struct page *src_base = src;
580 for (i = 0; i < nr_pages; ) {
581 cond_resched();
582 copy_highpage(dst, src);
584 i++;
585 dst = mem_map_next(dst, dst_base, i);
586 src = mem_map_next(src, src_base, i);
590 static void copy_huge_page(struct page *dst, struct page *src)
592 int i;
593 int nr_pages;
595 if (PageHuge(src)) {
596 /* hugetlbfs page */
597 struct hstate *h = page_hstate(src);
598 nr_pages = pages_per_huge_page(h);
600 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
601 __copy_gigantic_page(dst, src, nr_pages);
602 return;
604 } else {
605 /* thp page */
606 BUG_ON(!PageTransHuge(src));
607 nr_pages = hpage_nr_pages(src);
610 for (i = 0; i < nr_pages; i++) {
611 cond_resched();
612 copy_highpage(dst + i, src + i);
617 * Copy the page to its new location
619 void migrate_page_copy(struct page *newpage, struct page *page)
621 int cpupid;
623 if (PageHuge(page) || PageTransHuge(page))
624 copy_huge_page(newpage, page);
625 else
626 copy_highpage(newpage, page);
628 if (PageError(page))
629 SetPageError(newpage);
630 if (PageReferenced(page))
631 SetPageReferenced(newpage);
632 if (PageUptodate(page))
633 SetPageUptodate(newpage);
634 if (TestClearPageActive(page)) {
635 VM_BUG_ON_PAGE(PageUnevictable(page), page);
636 SetPageActive(newpage);
637 } else if (TestClearPageUnevictable(page))
638 SetPageUnevictable(newpage);
639 if (PageChecked(page))
640 SetPageChecked(newpage);
641 if (PageMappedToDisk(page))
642 SetPageMappedToDisk(newpage);
644 /* Move dirty on pages not done by migrate_page_move_mapping() */
645 if (PageDirty(page))
646 SetPageDirty(newpage);
648 if (page_is_young(page))
649 set_page_young(newpage);
650 if (page_is_idle(page))
651 set_page_idle(newpage);
654 * Copy NUMA information to the new page, to prevent over-eager
655 * future migrations of this same page.
657 cpupid = page_cpupid_xchg_last(page, -1);
658 page_cpupid_xchg_last(newpage, cpupid);
660 ksm_migrate_page(newpage, page);
662 * Please do not reorder this without considering how mm/ksm.c's
663 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
665 if (PageSwapCache(page))
666 ClearPageSwapCache(page);
667 ClearPagePrivate(page);
668 set_page_private(page, 0);
671 * If any waiters have accumulated on the new page then
672 * wake them up.
674 if (PageWriteback(newpage))
675 end_page_writeback(newpage);
677 copy_page_owner(page, newpage);
679 mem_cgroup_migrate(page, newpage);
681 EXPORT_SYMBOL(migrate_page_copy);
683 /************************************************************
684 * Migration functions
685 ***********************************************************/
688 * Common logic to directly migrate a single LRU page suitable for
689 * pages that do not use PagePrivate/PagePrivate2.
691 * Pages are locked upon entry and exit.
693 int migrate_page(struct address_space *mapping,
694 struct page *newpage, struct page *page,
695 enum migrate_mode mode)
697 int rc;
699 BUG_ON(PageWriteback(page)); /* Writeback must be complete */
701 rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0);
703 if (rc != MIGRATEPAGE_SUCCESS)
704 return rc;
706 migrate_page_copy(newpage, page);
707 return MIGRATEPAGE_SUCCESS;
709 EXPORT_SYMBOL(migrate_page);
711 #ifdef CONFIG_BLOCK
713 * Migration function for pages with buffers. This function can only be used
714 * if the underlying filesystem guarantees that no other references to "page"
715 * exist.
717 int buffer_migrate_page(struct address_space *mapping,
718 struct page *newpage, struct page *page, enum migrate_mode mode)
720 struct buffer_head *bh, *head;
721 int rc;
723 if (!page_has_buffers(page))
724 return migrate_page(mapping, newpage, page, mode);
726 head = page_buffers(page);
728 rc = migrate_page_move_mapping(mapping, newpage, page, head, mode, 0);
730 if (rc != MIGRATEPAGE_SUCCESS)
731 return rc;
734 * In the async case, migrate_page_move_mapping locked the buffers
735 * with an IRQ-safe spinlock held. In the sync case, the buffers
736 * need to be locked now
738 if (mode != MIGRATE_ASYNC)
739 BUG_ON(!buffer_migrate_lock_buffers(head, mode));
741 ClearPagePrivate(page);
742 set_page_private(newpage, page_private(page));
743 set_page_private(page, 0);
744 put_page(page);
745 get_page(newpage);
747 bh = head;
748 do {
749 set_bh_page(bh, newpage, bh_offset(bh));
750 bh = bh->b_this_page;
752 } while (bh != head);
754 SetPagePrivate(newpage);
756 migrate_page_copy(newpage, page);
758 bh = head;
759 do {
760 unlock_buffer(bh);
761 put_bh(bh);
762 bh = bh->b_this_page;
764 } while (bh != head);
766 return MIGRATEPAGE_SUCCESS;
768 EXPORT_SYMBOL(buffer_migrate_page);
769 #endif
772 * Writeback a page to clean the dirty state
774 static int writeout(struct address_space *mapping, struct page *page)
776 struct writeback_control wbc = {
777 .sync_mode = WB_SYNC_NONE,
778 .nr_to_write = 1,
779 .range_start = 0,
780 .range_end = LLONG_MAX,
781 .for_reclaim = 1
783 int rc;
785 if (!mapping->a_ops->writepage)
786 /* No write method for the address space */
787 return -EINVAL;
789 if (!clear_page_dirty_for_io(page))
790 /* Someone else already triggered a write */
791 return -EAGAIN;
794 * A dirty page may imply that the underlying filesystem has
795 * the page on some queue. So the page must be clean for
796 * migration. Writeout may mean we loose the lock and the
797 * page state is no longer what we checked for earlier.
798 * At this point we know that the migration attempt cannot
799 * be successful.
801 remove_migration_ptes(page, page, false);
803 rc = mapping->a_ops->writepage(page, &wbc);
805 if (rc != AOP_WRITEPAGE_ACTIVATE)
806 /* unlocked. Relock */
807 lock_page(page);
809 return (rc < 0) ? -EIO : -EAGAIN;
813 * Default handling if a filesystem does not provide a migration function.
815 static int fallback_migrate_page(struct address_space *mapping,
816 struct page *newpage, struct page *page, enum migrate_mode mode)
818 if (PageDirty(page)) {
819 /* Only writeback pages in full synchronous migration */
820 if (mode != MIGRATE_SYNC)
821 return -EBUSY;
822 return writeout(mapping, page);
826 * Buffers may be managed in a filesystem specific way.
827 * We must have no buffers or drop them.
829 if (page_has_private(page) &&
830 !try_to_release_page(page, GFP_KERNEL))
831 return -EAGAIN;
833 return migrate_page(mapping, newpage, page, mode);
837 * Move a page to a newly allocated page
838 * The page is locked and all ptes have been successfully removed.
840 * The new page will have replaced the old page if this function
841 * is successful.
843 * Return value:
844 * < 0 - error code
845 * MIGRATEPAGE_SUCCESS - success
847 static int move_to_new_page(struct page *newpage, struct page *page,
848 enum migrate_mode mode)
850 struct address_space *mapping;
851 int rc = -EAGAIN;
852 bool is_lru = !__PageMovable(page);
854 VM_BUG_ON_PAGE(!PageLocked(page), page);
855 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
857 mapping = page_mapping(page);
859 if (likely(is_lru)) {
860 if (!mapping)
861 rc = migrate_page(mapping, newpage, page, mode);
862 else if (mapping->a_ops->migratepage)
864 * Most pages have a mapping and most filesystems
865 * provide a migratepage callback. Anonymous pages
866 * are part of swap space which also has its own
867 * migratepage callback. This is the most common path
868 * for page migration.
870 rc = mapping->a_ops->migratepage(mapping, newpage,
871 page, mode);
872 else
873 rc = fallback_migrate_page(mapping, newpage,
874 page, mode);
875 } else {
877 * In case of non-lru page, it could be released after
878 * isolation step. In that case, we shouldn't try migration.
880 VM_BUG_ON_PAGE(!PageIsolated(page), page);
881 if (!PageMovable(page)) {
882 rc = MIGRATEPAGE_SUCCESS;
883 __ClearPageIsolated(page);
884 goto out;
887 rc = mapping->a_ops->migratepage(mapping, newpage,
888 page, mode);
889 WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
890 !PageIsolated(page));
894 * When successful, old pagecache page->mapping must be cleared before
895 * page is freed; but stats require that PageAnon be left as PageAnon.
897 if (rc == MIGRATEPAGE_SUCCESS) {
898 if (__PageMovable(page)) {
899 VM_BUG_ON_PAGE(!PageIsolated(page), page);
902 * We clear PG_movable under page_lock so any compactor
903 * cannot try to migrate this page.
905 __ClearPageIsolated(page);
909 * Anonymous and movable page->mapping will be cleard by
910 * free_pages_prepare so don't reset it here for keeping
911 * the type to work PageAnon, for example.
913 if (!PageMappingFlags(page))
914 page->mapping = NULL;
916 out:
917 return rc;
920 static int __unmap_and_move(struct page *page, struct page *newpage,
921 int force, enum migrate_mode mode)
923 int rc = -EAGAIN;
924 int page_was_mapped = 0;
925 struct anon_vma *anon_vma = NULL;
926 bool is_lru = !__PageMovable(page);
928 if (!trylock_page(page)) {
929 if (!force || mode == MIGRATE_ASYNC)
930 goto out;
933 * It's not safe for direct compaction to call lock_page.
934 * For example, during page readahead pages are added locked
935 * to the LRU. Later, when the IO completes the pages are
936 * marked uptodate and unlocked. However, the queueing
937 * could be merging multiple pages for one bio (e.g.
938 * mpage_readpages). If an allocation happens for the
939 * second or third page, the process can end up locking
940 * the same page twice and deadlocking. Rather than
941 * trying to be clever about what pages can be locked,
942 * avoid the use of lock_page for direct compaction
943 * altogether.
945 if (current->flags & PF_MEMALLOC)
946 goto out;
948 lock_page(page);
951 if (PageWriteback(page)) {
953 * Only in the case of a full synchronous migration is it
954 * necessary to wait for PageWriteback. In the async case,
955 * the retry loop is too short and in the sync-light case,
956 * the overhead of stalling is too much
958 if (mode != MIGRATE_SYNC) {
959 rc = -EBUSY;
960 goto out_unlock;
962 if (!force)
963 goto out_unlock;
964 wait_on_page_writeback(page);
968 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
969 * we cannot notice that anon_vma is freed while we migrates a page.
970 * This get_anon_vma() delays freeing anon_vma pointer until the end
971 * of migration. File cache pages are no problem because of page_lock()
972 * File Caches may use write_page() or lock_page() in migration, then,
973 * just care Anon page here.
975 * Only page_get_anon_vma() understands the subtleties of
976 * getting a hold on an anon_vma from outside one of its mms.
977 * But if we cannot get anon_vma, then we won't need it anyway,
978 * because that implies that the anon page is no longer mapped
979 * (and cannot be remapped so long as we hold the page lock).
981 if (PageAnon(page) && !PageKsm(page))
982 anon_vma = page_get_anon_vma(page);
985 * Block others from accessing the new page when we get around to
986 * establishing additional references. We are usually the only one
987 * holding a reference to newpage at this point. We used to have a BUG
988 * here if trylock_page(newpage) fails, but would like to allow for
989 * cases where there might be a race with the previous use of newpage.
990 * This is much like races on refcount of oldpage: just don't BUG().
992 if (unlikely(!trylock_page(newpage)))
993 goto out_unlock;
995 if (unlikely(!is_lru)) {
996 rc = move_to_new_page(newpage, page, mode);
997 goto out_unlock_both;
1001 * Corner case handling:
1002 * 1. When a new swap-cache page is read into, it is added to the LRU
1003 * and treated as swapcache but it has no rmap yet.
1004 * Calling try_to_unmap() against a page->mapping==NULL page will
1005 * trigger a BUG. So handle it here.
1006 * 2. An orphaned page (see truncate_complete_page) might have
1007 * fs-private metadata. The page can be picked up due to memory
1008 * offlining. Everywhere else except page reclaim, the page is
1009 * invisible to the vm, so the page can not be migrated. So try to
1010 * free the metadata, so the page can be freed.
1012 if (!page->mapping) {
1013 VM_BUG_ON_PAGE(PageAnon(page), page);
1014 if (page_has_private(page)) {
1015 try_to_free_buffers(page);
1016 goto out_unlock_both;
1018 } else if (page_mapped(page)) {
1019 /* Establish migration ptes */
1020 VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1021 page);
1022 try_to_unmap(page,
1023 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1024 page_was_mapped = 1;
1027 if (!page_mapped(page))
1028 rc = move_to_new_page(newpage, page, mode);
1030 if (page_was_mapped)
1031 remove_migration_ptes(page,
1032 rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
1034 out_unlock_both:
1035 unlock_page(newpage);
1036 out_unlock:
1037 /* Drop an anon_vma reference if we took one */
1038 if (anon_vma)
1039 put_anon_vma(anon_vma);
1040 unlock_page(page);
1041 out:
1043 * If migration is successful, decrease refcount of the newpage
1044 * which will not free the page because new page owner increased
1045 * refcounter. As well, if it is LRU page, add the page to LRU
1046 * list in here.
1048 if (rc == MIGRATEPAGE_SUCCESS) {
1049 if (unlikely(__PageMovable(newpage)))
1050 put_page(newpage);
1051 else
1052 putback_lru_page(newpage);
1055 return rc;
1059 * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move(). Work
1060 * around it.
1062 #if (GCC_VERSION >= 40700 && GCC_VERSION < 40900) && defined(CONFIG_ARM)
1063 #define ICE_noinline noinline
1064 #else
1065 #define ICE_noinline
1066 #endif
1069 * Obtain the lock on page, remove all ptes and migrate the page
1070 * to the newly allocated page in newpage.
1072 static ICE_noinline int unmap_and_move(new_page_t get_new_page,
1073 free_page_t put_new_page,
1074 unsigned long private, struct page *page,
1075 int force, enum migrate_mode mode,
1076 enum migrate_reason reason)
1078 int rc = MIGRATEPAGE_SUCCESS;
1079 int *result = NULL;
1080 struct page *newpage;
1082 newpage = get_new_page(page, private, &result);
1083 if (!newpage)
1084 return -ENOMEM;
1086 if (page_count(page) == 1) {
1087 /* page was freed from under us. So we are done. */
1088 ClearPageActive(page);
1089 ClearPageUnevictable(page);
1090 if (unlikely(__PageMovable(page))) {
1091 lock_page(page);
1092 if (!PageMovable(page))
1093 __ClearPageIsolated(page);
1094 unlock_page(page);
1096 if (put_new_page)
1097 put_new_page(newpage, private);
1098 else
1099 put_page(newpage);
1100 goto out;
1103 if (unlikely(PageTransHuge(page))) {
1104 lock_page(page);
1105 rc = split_huge_page(page);
1106 unlock_page(page);
1107 if (rc)
1108 goto out;
1111 rc = __unmap_and_move(page, newpage, force, mode);
1112 if (rc == MIGRATEPAGE_SUCCESS)
1113 set_page_owner_migrate_reason(newpage, reason);
1115 out:
1116 if (rc != -EAGAIN) {
1118 * A page that has been migrated has all references
1119 * removed and will be freed. A page that has not been
1120 * migrated will have kepts its references and be
1121 * restored.
1123 list_del(&page->lru);
1124 dec_node_page_state(page, NR_ISOLATED_ANON +
1125 page_is_file_cache(page));
1129 * If migration is successful, releases reference grabbed during
1130 * isolation. Otherwise, restore the page to right list unless
1131 * we want to retry.
1133 if (rc == MIGRATEPAGE_SUCCESS) {
1134 put_page(page);
1135 if (reason == MR_MEMORY_FAILURE) {
1137 * Set PG_HWPoison on just freed page
1138 * intentionally. Although it's rather weird,
1139 * it's how HWPoison flag works at the moment.
1141 if (!test_set_page_hwpoison(page))
1142 num_poisoned_pages_inc();
1144 } else {
1145 if (rc != -EAGAIN) {
1146 if (likely(!__PageMovable(page))) {
1147 putback_lru_page(page);
1148 goto put_new;
1151 lock_page(page);
1152 if (PageMovable(page))
1153 putback_movable_page(page);
1154 else
1155 __ClearPageIsolated(page);
1156 unlock_page(page);
1157 put_page(page);
1159 put_new:
1160 if (put_new_page)
1161 put_new_page(newpage, private);
1162 else
1163 put_page(newpage);
1166 if (result) {
1167 if (rc)
1168 *result = rc;
1169 else
1170 *result = page_to_nid(newpage);
1172 return rc;
1176 * Counterpart of unmap_and_move_page() for hugepage migration.
1178 * This function doesn't wait the completion of hugepage I/O
1179 * because there is no race between I/O and migration for hugepage.
1180 * Note that currently hugepage I/O occurs only in direct I/O
1181 * where no lock is held and PG_writeback is irrelevant,
1182 * and writeback status of all subpages are counted in the reference
1183 * count of the head page (i.e. if all subpages of a 2MB hugepage are
1184 * under direct I/O, the reference of the head page is 512 and a bit more.)
1185 * This means that when we try to migrate hugepage whose subpages are
1186 * doing direct I/O, some references remain after try_to_unmap() and
1187 * hugepage migration fails without data corruption.
1189 * There is also no race when direct I/O is issued on the page under migration,
1190 * because then pte is replaced with migration swap entry and direct I/O code
1191 * will wait in the page fault for migration to complete.
1193 static int unmap_and_move_huge_page(new_page_t get_new_page,
1194 free_page_t put_new_page, unsigned long private,
1195 struct page *hpage, int force,
1196 enum migrate_mode mode, int reason)
1198 int rc = -EAGAIN;
1199 int *result = NULL;
1200 int page_was_mapped = 0;
1201 struct page *new_hpage;
1202 struct anon_vma *anon_vma = NULL;
1205 * Movability of hugepages depends on architectures and hugepage size.
1206 * This check is necessary because some callers of hugepage migration
1207 * like soft offline and memory hotremove don't walk through page
1208 * tables or check whether the hugepage is pmd-based or not before
1209 * kicking migration.
1211 if (!hugepage_migration_supported(page_hstate(hpage))) {
1212 putback_active_hugepage(hpage);
1213 return -ENOSYS;
1216 new_hpage = get_new_page(hpage, private, &result);
1217 if (!new_hpage)
1218 return -ENOMEM;
1220 if (!trylock_page(hpage)) {
1221 if (!force || mode != MIGRATE_SYNC)
1222 goto out;
1223 lock_page(hpage);
1226 if (PageAnon(hpage))
1227 anon_vma = page_get_anon_vma(hpage);
1229 if (unlikely(!trylock_page(new_hpage)))
1230 goto put_anon;
1232 if (page_mapped(hpage)) {
1233 try_to_unmap(hpage,
1234 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1235 page_was_mapped = 1;
1238 if (!page_mapped(hpage))
1239 rc = move_to_new_page(new_hpage, hpage, mode);
1241 if (page_was_mapped)
1242 remove_migration_ptes(hpage,
1243 rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
1245 unlock_page(new_hpage);
1247 put_anon:
1248 if (anon_vma)
1249 put_anon_vma(anon_vma);
1251 if (rc == MIGRATEPAGE_SUCCESS) {
1252 hugetlb_cgroup_migrate(hpage, new_hpage);
1253 put_new_page = NULL;
1254 set_page_owner_migrate_reason(new_hpage, reason);
1257 unlock_page(hpage);
1258 out:
1259 if (rc != -EAGAIN)
1260 putback_active_hugepage(hpage);
1263 * If migration was not successful and there's a freeing callback, use
1264 * it. Otherwise, put_page() will drop the reference grabbed during
1265 * isolation.
1267 if (put_new_page)
1268 put_new_page(new_hpage, private);
1269 else
1270 putback_active_hugepage(new_hpage);
1272 if (result) {
1273 if (rc)
1274 *result = rc;
1275 else
1276 *result = page_to_nid(new_hpage);
1278 return rc;
1282 * migrate_pages - migrate the pages specified in a list, to the free pages
1283 * supplied as the target for the page migration
1285 * @from: The list of pages to be migrated.
1286 * @get_new_page: The function used to allocate free pages to be used
1287 * as the target of the page migration.
1288 * @put_new_page: The function used to free target pages if migration
1289 * fails, or NULL if no special handling is necessary.
1290 * @private: Private data to be passed on to get_new_page()
1291 * @mode: The migration mode that specifies the constraints for
1292 * page migration, if any.
1293 * @reason: The reason for page migration.
1295 * The function returns after 10 attempts or if no pages are movable any more
1296 * because the list has become empty or no retryable pages exist any more.
1297 * The caller should call putback_movable_pages() to return pages to the LRU
1298 * or free list only if ret != 0.
1300 * Returns the number of pages that were not migrated, or an error code.
1302 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1303 free_page_t put_new_page, unsigned long private,
1304 enum migrate_mode mode, int reason)
1306 int retry = 1;
1307 int nr_failed = 0;
1308 int nr_succeeded = 0;
1309 int pass = 0;
1310 struct page *page;
1311 struct page *page2;
1312 int swapwrite = current->flags & PF_SWAPWRITE;
1313 int rc;
1315 if (!swapwrite)
1316 current->flags |= PF_SWAPWRITE;
1318 for(pass = 0; pass < 10 && retry; pass++) {
1319 retry = 0;
1321 list_for_each_entry_safe(page, page2, from, lru) {
1322 cond_resched();
1324 if (PageHuge(page))
1325 rc = unmap_and_move_huge_page(get_new_page,
1326 put_new_page, private, page,
1327 pass > 2, mode, reason);
1328 else
1329 rc = unmap_and_move(get_new_page, put_new_page,
1330 private, page, pass > 2, mode,
1331 reason);
1333 switch(rc) {
1334 case -ENOMEM:
1335 nr_failed++;
1336 goto out;
1337 case -EAGAIN:
1338 retry++;
1339 break;
1340 case MIGRATEPAGE_SUCCESS:
1341 nr_succeeded++;
1342 break;
1343 default:
1345 * Permanent failure (-EBUSY, -ENOSYS, etc.):
1346 * unlike -EAGAIN case, the failed page is
1347 * removed from migration page list and not
1348 * retried in the next outer loop.
1350 nr_failed++;
1351 break;
1355 nr_failed += retry;
1356 rc = nr_failed;
1357 out:
1358 if (nr_succeeded)
1359 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1360 if (nr_failed)
1361 count_vm_events(PGMIGRATE_FAIL, nr_failed);
1362 trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
1364 if (!swapwrite)
1365 current->flags &= ~PF_SWAPWRITE;
1367 return rc;
1370 #ifdef CONFIG_NUMA
1372 * Move a list of individual pages
1374 struct page_to_node {
1375 unsigned long addr;
1376 struct page *page;
1377 int node;
1378 int status;
1381 static struct page *new_page_node(struct page *p, unsigned long private,
1382 int **result)
1384 struct page_to_node *pm = (struct page_to_node *)private;
1386 while (pm->node != MAX_NUMNODES && pm->page != p)
1387 pm++;
1389 if (pm->node == MAX_NUMNODES)
1390 return NULL;
1392 *result = &pm->status;
1394 if (PageHuge(p))
1395 return alloc_huge_page_node(page_hstate(compound_head(p)),
1396 pm->node);
1397 else
1398 return __alloc_pages_node(pm->node,
1399 GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, 0);
1403 * Move a set of pages as indicated in the pm array. The addr
1404 * field must be set to the virtual address of the page to be moved
1405 * and the node number must contain a valid target node.
1406 * The pm array ends with node = MAX_NUMNODES.
1408 static int do_move_page_to_node_array(struct mm_struct *mm,
1409 struct page_to_node *pm,
1410 int migrate_all)
1412 int err;
1413 struct page_to_node *pp;
1414 LIST_HEAD(pagelist);
1416 down_read(&mm->mmap_sem);
1419 * Build a list of pages to migrate
1421 for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
1422 struct vm_area_struct *vma;
1423 struct page *page;
1425 err = -EFAULT;
1426 vma = find_vma(mm, pp->addr);
1427 if (!vma || pp->addr < vma->vm_start || !vma_migratable(vma))
1428 goto set_status;
1430 /* FOLL_DUMP to ignore special (like zero) pages */
1431 page = follow_page(vma, pp->addr,
1432 FOLL_GET | FOLL_SPLIT | FOLL_DUMP);
1434 err = PTR_ERR(page);
1435 if (IS_ERR(page))
1436 goto set_status;
1438 err = -ENOENT;
1439 if (!page)
1440 goto set_status;
1442 pp->page = page;
1443 err = page_to_nid(page);
1445 if (err == pp->node)
1447 * Node already in the right place
1449 goto put_and_set;
1451 err = -EACCES;
1452 if (page_mapcount(page) > 1 &&
1453 !migrate_all)
1454 goto put_and_set;
1456 if (PageHuge(page)) {
1457 if (PageHead(page))
1458 isolate_huge_page(page, &pagelist);
1459 goto put_and_set;
1462 err = isolate_lru_page(page);
1463 if (!err) {
1464 list_add_tail(&page->lru, &pagelist);
1465 inc_node_page_state(page, NR_ISOLATED_ANON +
1466 page_is_file_cache(page));
1468 put_and_set:
1470 * Either remove the duplicate refcount from
1471 * isolate_lru_page() or drop the page ref if it was
1472 * not isolated.
1474 put_page(page);
1475 set_status:
1476 pp->status = err;
1479 err = 0;
1480 if (!list_empty(&pagelist)) {
1481 err = migrate_pages(&pagelist, new_page_node, NULL,
1482 (unsigned long)pm, MIGRATE_SYNC, MR_SYSCALL);
1483 if (err)
1484 putback_movable_pages(&pagelist);
1487 up_read(&mm->mmap_sem);
1488 return err;
1492 * Migrate an array of page address onto an array of nodes and fill
1493 * the corresponding array of status.
1495 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1496 unsigned long nr_pages,
1497 const void __user * __user *pages,
1498 const int __user *nodes,
1499 int __user *status, int flags)
1501 struct page_to_node *pm;
1502 unsigned long chunk_nr_pages;
1503 unsigned long chunk_start;
1504 int err;
1506 err = -ENOMEM;
1507 pm = (struct page_to_node *)__get_free_page(GFP_KERNEL);
1508 if (!pm)
1509 goto out;
1511 migrate_prep();
1514 * Store a chunk of page_to_node array in a page,
1515 * but keep the last one as a marker
1517 chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1;
1519 for (chunk_start = 0;
1520 chunk_start < nr_pages;
1521 chunk_start += chunk_nr_pages) {
1522 int j;
1524 if (chunk_start + chunk_nr_pages > nr_pages)
1525 chunk_nr_pages = nr_pages - chunk_start;
1527 /* fill the chunk pm with addrs and nodes from user-space */
1528 for (j = 0; j < chunk_nr_pages; j++) {
1529 const void __user *p;
1530 int node;
1532 err = -EFAULT;
1533 if (get_user(p, pages + j + chunk_start))
1534 goto out_pm;
1535 pm[j].addr = (unsigned long) p;
1537 if (get_user(node, nodes + j + chunk_start))
1538 goto out_pm;
1540 err = -ENODEV;
1541 if (node < 0 || node >= MAX_NUMNODES)
1542 goto out_pm;
1544 if (!node_state(node, N_MEMORY))
1545 goto out_pm;
1547 err = -EACCES;
1548 if (!node_isset(node, task_nodes))
1549 goto out_pm;
1551 pm[j].node = node;
1554 /* End marker for this chunk */
1555 pm[chunk_nr_pages].node = MAX_NUMNODES;
1557 /* Migrate this chunk */
1558 err = do_move_page_to_node_array(mm, pm,
1559 flags & MPOL_MF_MOVE_ALL);
1560 if (err < 0)
1561 goto out_pm;
1563 /* Return status information */
1564 for (j = 0; j < chunk_nr_pages; j++)
1565 if (put_user(pm[j].status, status + j + chunk_start)) {
1566 err = -EFAULT;
1567 goto out_pm;
1570 err = 0;
1572 out_pm:
1573 free_page((unsigned long)pm);
1574 out:
1575 return err;
1579 * Determine the nodes of an array of pages and store it in an array of status.
1581 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1582 const void __user **pages, int *status)
1584 unsigned long i;
1586 down_read(&mm->mmap_sem);
1588 for (i = 0; i < nr_pages; i++) {
1589 unsigned long addr = (unsigned long)(*pages);
1590 struct vm_area_struct *vma;
1591 struct page *page;
1592 int err = -EFAULT;
1594 vma = find_vma(mm, addr);
1595 if (!vma || addr < vma->vm_start)
1596 goto set_status;
1598 /* FOLL_DUMP to ignore special (like zero) pages */
1599 page = follow_page(vma, addr, FOLL_DUMP);
1601 err = PTR_ERR(page);
1602 if (IS_ERR(page))
1603 goto set_status;
1605 err = page ? page_to_nid(page) : -ENOENT;
1606 set_status:
1607 *status = err;
1609 pages++;
1610 status++;
1613 up_read(&mm->mmap_sem);
1617 * Determine the nodes of a user array of pages and store it in
1618 * a user array of status.
1620 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1621 const void __user * __user *pages,
1622 int __user *status)
1624 #define DO_PAGES_STAT_CHUNK_NR 16
1625 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1626 int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1628 while (nr_pages) {
1629 unsigned long chunk_nr;
1631 chunk_nr = nr_pages;
1632 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1633 chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1635 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1636 break;
1638 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1640 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1641 break;
1643 pages += chunk_nr;
1644 status += chunk_nr;
1645 nr_pages -= chunk_nr;
1647 return nr_pages ? -EFAULT : 0;
1651 * Move a list of pages in the address space of the currently executing
1652 * process.
1654 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1655 const void __user * __user *, pages,
1656 const int __user *, nodes,
1657 int __user *, status, int, flags)
1659 const struct cred *cred = current_cred(), *tcred;
1660 struct task_struct *task;
1661 struct mm_struct *mm;
1662 int err;
1663 nodemask_t task_nodes;
1665 /* Check flags */
1666 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1667 return -EINVAL;
1669 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1670 return -EPERM;
1672 /* Find the mm_struct */
1673 rcu_read_lock();
1674 task = pid ? find_task_by_vpid(pid) : current;
1675 if (!task) {
1676 rcu_read_unlock();
1677 return -ESRCH;
1679 get_task_struct(task);
1682 * Check if this process has the right to modify the specified
1683 * process. The right exists if the process has administrative
1684 * capabilities, superuser privileges or the same
1685 * userid as the target process.
1687 tcred = __task_cred(task);
1688 if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) &&
1689 !uid_eq(cred->uid, tcred->suid) && !uid_eq(cred->uid, tcred->uid) &&
1690 !capable(CAP_SYS_NICE)) {
1691 rcu_read_unlock();
1692 err = -EPERM;
1693 goto out;
1695 rcu_read_unlock();
1697 err = security_task_movememory(task);
1698 if (err)
1699 goto out;
1701 task_nodes = cpuset_mems_allowed(task);
1702 mm = get_task_mm(task);
1703 put_task_struct(task);
1705 if (!mm)
1706 return -EINVAL;
1708 if (nodes)
1709 err = do_pages_move(mm, task_nodes, nr_pages, pages,
1710 nodes, status, flags);
1711 else
1712 err = do_pages_stat(mm, nr_pages, pages, status);
1714 mmput(mm);
1715 return err;
1717 out:
1718 put_task_struct(task);
1719 return err;
1722 #ifdef CONFIG_NUMA_BALANCING
1724 * Returns true if this is a safe migration target node for misplaced NUMA
1725 * pages. Currently it only checks the watermarks which crude
1727 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1728 unsigned long nr_migrate_pages)
1730 int z;
1732 if (!pgdat_reclaimable(pgdat))
1733 return false;
1735 for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1736 struct zone *zone = pgdat->node_zones + z;
1738 if (!populated_zone(zone))
1739 continue;
1741 /* Avoid waking kswapd by allocating pages_to_migrate pages. */
1742 if (!zone_watermark_ok(zone, 0,
1743 high_wmark_pages(zone) +
1744 nr_migrate_pages,
1745 0, 0))
1746 continue;
1747 return true;
1749 return false;
1752 static struct page *alloc_misplaced_dst_page(struct page *page,
1753 unsigned long data,
1754 int **result)
1756 int nid = (int) data;
1757 struct page *newpage;
1759 newpage = __alloc_pages_node(nid,
1760 (GFP_HIGHUSER_MOVABLE |
1761 __GFP_THISNODE | __GFP_NOMEMALLOC |
1762 __GFP_NORETRY | __GFP_NOWARN) &
1763 ~__GFP_RECLAIM, 0);
1765 return newpage;
1769 * page migration rate limiting control.
1770 * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs
1771 * window of time. Default here says do not migrate more than 1280M per second.
1773 static unsigned int migrate_interval_millisecs __read_mostly = 100;
1774 static unsigned int ratelimit_pages __read_mostly = 128 << (20 - PAGE_SHIFT);
1776 /* Returns true if the node is migrate rate-limited after the update */
1777 static bool numamigrate_update_ratelimit(pg_data_t *pgdat,
1778 unsigned long nr_pages)
1781 * Rate-limit the amount of data that is being migrated to a node.
1782 * Optimal placement is no good if the memory bus is saturated and
1783 * all the time is being spent migrating!
1785 if (time_after(jiffies, pgdat->numabalancing_migrate_next_window)) {
1786 spin_lock(&pgdat->numabalancing_migrate_lock);
1787 pgdat->numabalancing_migrate_nr_pages = 0;
1788 pgdat->numabalancing_migrate_next_window = jiffies +
1789 msecs_to_jiffies(migrate_interval_millisecs);
1790 spin_unlock(&pgdat->numabalancing_migrate_lock);
1792 if (pgdat->numabalancing_migrate_nr_pages > ratelimit_pages) {
1793 trace_mm_numa_migrate_ratelimit(current, pgdat->node_id,
1794 nr_pages);
1795 return true;
1799 * This is an unlocked non-atomic update so errors are possible.
1800 * The consequences are failing to migrate when we potentiall should
1801 * have which is not severe enough to warrant locking. If it is ever
1802 * a problem, it can be converted to a per-cpu counter.
1804 pgdat->numabalancing_migrate_nr_pages += nr_pages;
1805 return false;
1808 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
1810 int page_lru;
1812 VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
1814 /* Avoid migrating to a node that is nearly full */
1815 if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page)))
1816 return 0;
1818 if (isolate_lru_page(page))
1819 return 0;
1822 * migrate_misplaced_transhuge_page() skips page migration's usual
1823 * check on page_count(), so we must do it here, now that the page
1824 * has been isolated: a GUP pin, or any other pin, prevents migration.
1825 * The expected page count is 3: 1 for page's mapcount and 1 for the
1826 * caller's pin and 1 for the reference taken by isolate_lru_page().
1828 if (PageTransHuge(page) && page_count(page) != 3) {
1829 putback_lru_page(page);
1830 return 0;
1833 page_lru = page_is_file_cache(page);
1834 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
1835 hpage_nr_pages(page));
1838 * Isolating the page has taken another reference, so the
1839 * caller's reference can be safely dropped without the page
1840 * disappearing underneath us during migration.
1842 put_page(page);
1843 return 1;
1846 bool pmd_trans_migrating(pmd_t pmd)
1848 struct page *page = pmd_page(pmd);
1849 return PageLocked(page);
1853 * Attempt to migrate a misplaced page to the specified destination
1854 * node. Caller is expected to have an elevated reference count on
1855 * the page that will be dropped by this function before returning.
1857 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
1858 int node)
1860 pg_data_t *pgdat = NODE_DATA(node);
1861 int isolated;
1862 int nr_remaining;
1863 LIST_HEAD(migratepages);
1866 * Don't migrate file pages that are mapped in multiple processes
1867 * with execute permissions as they are probably shared libraries.
1869 if (page_mapcount(page) != 1 && page_is_file_cache(page) &&
1870 (vma->vm_flags & VM_EXEC))
1871 goto out;
1874 * Rate-limit the amount of data that is being migrated to a node.
1875 * Optimal placement is no good if the memory bus is saturated and
1876 * all the time is being spent migrating!
1878 if (numamigrate_update_ratelimit(pgdat, 1))
1879 goto out;
1881 isolated = numamigrate_isolate_page(pgdat, page);
1882 if (!isolated)
1883 goto out;
1885 list_add(&page->lru, &migratepages);
1886 nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
1887 NULL, node, MIGRATE_ASYNC,
1888 MR_NUMA_MISPLACED);
1889 if (nr_remaining) {
1890 if (!list_empty(&migratepages)) {
1891 list_del(&page->lru);
1892 dec_node_page_state(page, NR_ISOLATED_ANON +
1893 page_is_file_cache(page));
1894 putback_lru_page(page);
1896 isolated = 0;
1897 } else
1898 count_vm_numa_event(NUMA_PAGE_MIGRATE);
1899 BUG_ON(!list_empty(&migratepages));
1900 return isolated;
1902 out:
1903 put_page(page);
1904 return 0;
1906 #endif /* CONFIG_NUMA_BALANCING */
1908 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1910 * Migrates a THP to a given target node. page must be locked and is unlocked
1911 * before returning.
1913 int migrate_misplaced_transhuge_page(struct mm_struct *mm,
1914 struct vm_area_struct *vma,
1915 pmd_t *pmd, pmd_t entry,
1916 unsigned long address,
1917 struct page *page, int node)
1919 spinlock_t *ptl;
1920 pg_data_t *pgdat = NODE_DATA(node);
1921 int isolated = 0;
1922 struct page *new_page = NULL;
1923 int page_lru = page_is_file_cache(page);
1924 unsigned long mmun_start = address & HPAGE_PMD_MASK;
1925 unsigned long mmun_end = mmun_start + HPAGE_PMD_SIZE;
1926 pmd_t orig_entry;
1929 * Rate-limit the amount of data that is being migrated to a node.
1930 * Optimal placement is no good if the memory bus is saturated and
1931 * all the time is being spent migrating!
1933 if (numamigrate_update_ratelimit(pgdat, HPAGE_PMD_NR))
1934 goto out_dropref;
1936 new_page = alloc_pages_node(node,
1937 (GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
1938 HPAGE_PMD_ORDER);
1939 if (!new_page)
1940 goto out_fail;
1941 prep_transhuge_page(new_page);
1943 isolated = numamigrate_isolate_page(pgdat, page);
1944 if (!isolated) {
1945 put_page(new_page);
1946 goto out_fail;
1949 * We are not sure a pending tlb flush here is for a huge page
1950 * mapping or not. Hence use the tlb range variant
1952 if (mm_tlb_flush_pending(mm))
1953 flush_tlb_range(vma, mmun_start, mmun_end);
1955 /* Prepare a page as a migration target */
1956 __SetPageLocked(new_page);
1957 __SetPageSwapBacked(new_page);
1959 /* anon mapping, we can simply copy page->mapping to the new page: */
1960 new_page->mapping = page->mapping;
1961 new_page->index = page->index;
1962 migrate_page_copy(new_page, page);
1963 WARN_ON(PageLRU(new_page));
1965 /* Recheck the target PMD */
1966 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1967 ptl = pmd_lock(mm, pmd);
1968 if (unlikely(!pmd_same(*pmd, entry) || page_count(page) != 2)) {
1969 fail_putback:
1970 spin_unlock(ptl);
1971 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1973 /* Reverse changes made by migrate_page_copy() */
1974 if (TestClearPageActive(new_page))
1975 SetPageActive(page);
1976 if (TestClearPageUnevictable(new_page))
1977 SetPageUnevictable(page);
1979 unlock_page(new_page);
1980 put_page(new_page); /* Free it */
1982 /* Retake the callers reference and putback on LRU */
1983 get_page(page);
1984 putback_lru_page(page);
1985 mod_node_page_state(page_pgdat(page),
1986 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
1988 goto out_unlock;
1991 orig_entry = *pmd;
1992 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1993 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1996 * Clear the old entry under pagetable lock and establish the new PTE.
1997 * Any parallel GUP will either observe the old page blocking on the
1998 * page lock, block on the page table lock or observe the new page.
1999 * The SetPageUptodate on the new page and page_add_new_anon_rmap
2000 * guarantee the copy is visible before the pagetable update.
2002 flush_cache_range(vma, mmun_start, mmun_end);
2003 page_add_anon_rmap(new_page, vma, mmun_start, true);
2004 pmdp_huge_clear_flush_notify(vma, mmun_start, pmd);
2005 set_pmd_at(mm, mmun_start, pmd, entry);
2006 update_mmu_cache_pmd(vma, address, &entry);
2008 if (page_count(page) != 2) {
2009 set_pmd_at(mm, mmun_start, pmd, orig_entry);
2010 flush_pmd_tlb_range(vma, mmun_start, mmun_end);
2011 mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
2012 update_mmu_cache_pmd(vma, address, &entry);
2013 page_remove_rmap(new_page, true);
2014 goto fail_putback;
2017 mlock_migrate_page(new_page, page);
2018 page_remove_rmap(page, true);
2019 set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
2021 spin_unlock(ptl);
2022 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2024 /* Take an "isolate" reference and put new page on the LRU. */
2025 get_page(new_page);
2026 putback_lru_page(new_page);
2028 unlock_page(new_page);
2029 unlock_page(page);
2030 put_page(page); /* Drop the rmap reference */
2031 put_page(page); /* Drop the LRU isolation reference */
2033 count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
2034 count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
2036 mod_node_page_state(page_pgdat(page),
2037 NR_ISOLATED_ANON + page_lru,
2038 -HPAGE_PMD_NR);
2039 return isolated;
2041 out_fail:
2042 count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
2043 out_dropref:
2044 ptl = pmd_lock(mm, pmd);
2045 if (pmd_same(*pmd, entry)) {
2046 entry = pmd_modify(entry, vma->vm_page_prot);
2047 set_pmd_at(mm, mmun_start, pmd, entry);
2048 update_mmu_cache_pmd(vma, address, &entry);
2050 spin_unlock(ptl);
2052 out_unlock:
2053 unlock_page(page);
2054 put_page(page);
2055 return 0;
2057 #endif /* CONFIG_NUMA_BALANCING */
2059 #endif /* CONFIG_NUMA */