1 #include <linux/kernel.h>
2 #include <linux/errno.h>
4 #include <linux/spinlock.h>
7 #include <linux/memremap.h>
8 #include <linux/pagemap.h>
9 #include <linux/rmap.h>
10 #include <linux/swap.h>
11 #include <linux/swapops.h>
13 #include <linux/sched.h>
14 #include <linux/rwsem.h>
15 #include <linux/hugetlb.h>
17 #include <asm/mmu_context.h>
18 #include <asm/pgtable.h>
19 #include <asm/tlbflush.h>
23 static struct page
*no_page_table(struct vm_area_struct
*vma
,
27 * When core dumping an enormous anonymous area that nobody
28 * has touched so far, we don't want to allocate unnecessary pages or
29 * page tables. Return error instead of NULL to skip handle_mm_fault,
30 * then get_dump_page() will return NULL to leave a hole in the dump.
31 * But we can only make this optimization where a hole would surely
32 * be zero-filled if handle_mm_fault() actually did handle it.
34 if ((flags
& FOLL_DUMP
) && (!vma
->vm_ops
|| !vma
->vm_ops
->fault
))
35 return ERR_PTR(-EFAULT
);
39 static int follow_pfn_pte(struct vm_area_struct
*vma
, unsigned long address
,
40 pte_t
*pte
, unsigned int flags
)
42 /* No page to get reference */
46 if (flags
& FOLL_TOUCH
) {
49 if (flags
& FOLL_WRITE
)
50 entry
= pte_mkdirty(entry
);
51 entry
= pte_mkyoung(entry
);
53 if (!pte_same(*pte
, entry
)) {
54 set_pte_at(vma
->vm_mm
, address
, pte
, entry
);
55 update_mmu_cache(vma
, address
, pte
);
59 /* Proper page table entry exists, but no corresponding struct page */
64 * FOLL_FORCE can write to even unwritable pte's, but only
65 * after we've gone through a COW cycle and they are dirty.
67 static inline bool can_follow_write_pte(pte_t pte
, unsigned int flags
)
69 return pte_write(pte
) ||
70 ((flags
& FOLL_FORCE
) && (flags
& FOLL_COW
) && pte_dirty(pte
));
73 static struct page
*follow_page_pte(struct vm_area_struct
*vma
,
74 unsigned long address
, pmd_t
*pmd
, unsigned int flags
)
76 struct mm_struct
*mm
= vma
->vm_mm
;
77 struct dev_pagemap
*pgmap
= NULL
;
83 if (unlikely(pmd_bad(*pmd
)))
84 return no_page_table(vma
, flags
);
86 ptep
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
88 if (!pte_present(pte
)) {
91 * KSM's break_ksm() relies upon recognizing a ksm page
92 * even while it is being migrated, so for that case we
93 * need migration_entry_wait().
95 if (likely(!(flags
& FOLL_MIGRATION
)))
99 entry
= pte_to_swp_entry(pte
);
100 if (!is_migration_entry(entry
))
102 pte_unmap_unlock(ptep
, ptl
);
103 migration_entry_wait(mm
, pmd
, address
);
106 if ((flags
& FOLL_NUMA
) && pte_protnone(pte
))
108 if ((flags
& FOLL_WRITE
) && !can_follow_write_pte(pte
, flags
)) {
109 pte_unmap_unlock(ptep
, ptl
);
113 page
= vm_normal_page(vma
, address
, pte
);
114 if (!page
&& pte_devmap(pte
) && (flags
& FOLL_GET
)) {
116 * Only return device mapping pages in the FOLL_GET case since
117 * they are only valid while holding the pgmap reference.
119 pgmap
= get_dev_pagemap(pte_pfn(pte
), NULL
);
121 page
= pte_page(pte
);
124 } else if (unlikely(!page
)) {
125 if (flags
& FOLL_DUMP
) {
126 /* Avoid special (like zero) pages in core dumps */
127 page
= ERR_PTR(-EFAULT
);
131 if (is_zero_pfn(pte_pfn(pte
))) {
132 page
= pte_page(pte
);
136 ret
= follow_pfn_pte(vma
, address
, ptep
, flags
);
142 if (flags
& FOLL_SPLIT
&& PageTransCompound(page
)) {
145 pte_unmap_unlock(ptep
, ptl
);
147 ret
= split_huge_page(page
);
155 if (flags
& FOLL_GET
) {
158 /* drop the pgmap reference now that we hold the page */
160 put_dev_pagemap(pgmap
);
164 if (flags
& FOLL_TOUCH
) {
165 if ((flags
& FOLL_WRITE
) &&
166 !pte_dirty(pte
) && !PageDirty(page
))
167 set_page_dirty(page
);
169 * pte_mkyoung() would be more correct here, but atomic care
170 * is needed to avoid losing the dirty bit: it is easier to use
171 * mark_page_accessed().
173 mark_page_accessed(page
);
175 if ((flags
& FOLL_MLOCK
) && (vma
->vm_flags
& VM_LOCKED
)) {
176 /* Do not mlock pte-mapped THP */
177 if (PageTransCompound(page
))
181 * The preliminary mapping check is mainly to avoid the
182 * pointless overhead of lock_page on the ZERO_PAGE
183 * which might bounce very badly if there is contention.
185 * If the page is already locked, we don't need to
186 * handle it now - vmscan will handle it later if and
187 * when it attempts to reclaim the page.
189 if (page
->mapping
&& trylock_page(page
)) {
190 lru_add_drain(); /* push cached pages to LRU */
192 * Because we lock page here, and migration is
193 * blocked by the pte's page reference, and we
194 * know the page is still mapped, we don't even
195 * need to check for file-cache page truncation.
197 mlock_vma_page(page
);
202 pte_unmap_unlock(ptep
, ptl
);
205 pte_unmap_unlock(ptep
, ptl
);
208 return no_page_table(vma
, flags
);
212 * follow_page_mask - look up a page descriptor from a user-virtual address
213 * @vma: vm_area_struct mapping @address
214 * @address: virtual address to look up
215 * @flags: flags modifying lookup behaviour
216 * @page_mask: on output, *page_mask is set according to the size of the page
218 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
220 * Returns the mapped (struct page *), %NULL if no mapping exists, or
221 * an error pointer if there is a mapping to something not represented
222 * by a page descriptor (see also vm_normal_page()).
224 struct page
*follow_page_mask(struct vm_area_struct
*vma
,
225 unsigned long address
, unsigned int flags
,
226 unsigned int *page_mask
)
233 struct mm_struct
*mm
= vma
->vm_mm
;
237 page
= follow_huge_addr(mm
, address
, flags
& FOLL_WRITE
);
239 BUG_ON(flags
& FOLL_GET
);
243 pgd
= pgd_offset(mm
, address
);
244 if (pgd_none(*pgd
) || unlikely(pgd_bad(*pgd
)))
245 return no_page_table(vma
, flags
);
247 pud
= pud_offset(pgd
, address
);
249 return no_page_table(vma
, flags
);
250 if (pud_huge(*pud
) && vma
->vm_flags
& VM_HUGETLB
) {
251 page
= follow_huge_pud(mm
, address
, pud
, flags
);
254 return no_page_table(vma
, flags
);
256 if (unlikely(pud_bad(*pud
)))
257 return no_page_table(vma
, flags
);
259 pmd
= pmd_offset(pud
, address
);
261 return no_page_table(vma
, flags
);
262 if (pmd_huge(*pmd
) && vma
->vm_flags
& VM_HUGETLB
) {
263 page
= follow_huge_pmd(mm
, address
, pmd
, flags
);
266 return no_page_table(vma
, flags
);
268 if ((flags
& FOLL_NUMA
) && pmd_protnone(*pmd
))
269 return no_page_table(vma
, flags
);
270 if (pmd_devmap(*pmd
)) {
271 ptl
= pmd_lock(mm
, pmd
);
272 page
= follow_devmap_pmd(vma
, address
, pmd
, flags
);
277 if (likely(!pmd_trans_huge(*pmd
)))
278 return follow_page_pte(vma
, address
, pmd
, flags
);
280 ptl
= pmd_lock(mm
, pmd
);
281 if (unlikely(!pmd_trans_huge(*pmd
))) {
283 return follow_page_pte(vma
, address
, pmd
, flags
);
285 if (flags
& FOLL_SPLIT
) {
287 page
= pmd_page(*pmd
);
288 if (is_huge_zero_page(page
)) {
291 split_huge_pmd(vma
, pmd
, address
);
292 if (pmd_trans_unstable(pmd
))
298 ret
= split_huge_page(page
);
302 return no_page_table(vma
, flags
);
305 return ret
? ERR_PTR(ret
) :
306 follow_page_pte(vma
, address
, pmd
, flags
);
309 page
= follow_trans_huge_pmd(vma
, address
, pmd
, flags
);
311 *page_mask
= HPAGE_PMD_NR
- 1;
315 static int get_gate_page(struct mm_struct
*mm
, unsigned long address
,
316 unsigned int gup_flags
, struct vm_area_struct
**vma
,
325 /* user gate pages are read-only */
326 if (gup_flags
& FOLL_WRITE
)
328 if (address
> TASK_SIZE
)
329 pgd
= pgd_offset_k(address
);
331 pgd
= pgd_offset_gate(mm
, address
);
332 BUG_ON(pgd_none(*pgd
));
333 pud
= pud_offset(pgd
, address
);
334 BUG_ON(pud_none(*pud
));
335 pmd
= pmd_offset(pud
, address
);
338 VM_BUG_ON(pmd_trans_huge(*pmd
));
339 pte
= pte_offset_map(pmd
, address
);
342 *vma
= get_gate_vma(mm
);
345 *page
= vm_normal_page(*vma
, address
, *pte
);
347 if ((gup_flags
& FOLL_DUMP
) || !is_zero_pfn(pte_pfn(*pte
)))
349 *page
= pte_page(*pte
);
360 * mmap_sem must be held on entry. If @nonblocking != NULL and
361 * *@flags does not include FOLL_NOWAIT, the mmap_sem may be released.
362 * If it is, *@nonblocking will be set to 0 and -EBUSY returned.
364 static int faultin_page(struct task_struct
*tsk
, struct vm_area_struct
*vma
,
365 unsigned long address
, unsigned int *flags
, int *nonblocking
)
367 unsigned int fault_flags
= 0;
370 /* mlock all present pages, but do not fault in new pages */
371 if ((*flags
& (FOLL_POPULATE
| FOLL_MLOCK
)) == FOLL_MLOCK
)
373 /* For mm_populate(), just skip the stack guard page. */
374 if ((*flags
& FOLL_POPULATE
) &&
375 (stack_guard_page_start(vma
, address
) ||
376 stack_guard_page_end(vma
, address
+ PAGE_SIZE
)))
378 if (*flags
& FOLL_WRITE
)
379 fault_flags
|= FAULT_FLAG_WRITE
;
380 if (*flags
& FOLL_REMOTE
)
381 fault_flags
|= FAULT_FLAG_REMOTE
;
383 fault_flags
|= FAULT_FLAG_ALLOW_RETRY
;
384 if (*flags
& FOLL_NOWAIT
)
385 fault_flags
|= FAULT_FLAG_ALLOW_RETRY
| FAULT_FLAG_RETRY_NOWAIT
;
386 if (*flags
& FOLL_TRIED
) {
387 VM_WARN_ON_ONCE(fault_flags
& FAULT_FLAG_ALLOW_RETRY
);
388 fault_flags
|= FAULT_FLAG_TRIED
;
391 ret
= handle_mm_fault(vma
, address
, fault_flags
);
392 if (ret
& VM_FAULT_ERROR
) {
393 if (ret
& VM_FAULT_OOM
)
395 if (ret
& (VM_FAULT_HWPOISON
| VM_FAULT_HWPOISON_LARGE
))
396 return *flags
& FOLL_HWPOISON
? -EHWPOISON
: -EFAULT
;
397 if (ret
& (VM_FAULT_SIGBUS
| VM_FAULT_SIGSEGV
))
403 if (ret
& VM_FAULT_MAJOR
)
409 if (ret
& VM_FAULT_RETRY
) {
416 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when
417 * necessary, even if maybe_mkwrite decided not to set pte_write. We
418 * can thus safely do subsequent page lookups as if they were reads.
419 * But only do so when looping for pte_write is futile: in some cases
420 * userspace may also be wanting to write to the gotten user page,
421 * which a read fault here might prevent (a readonly page might get
422 * reCOWed by userspace write).
424 if ((ret
& VM_FAULT_WRITE
) && !(vma
->vm_flags
& VM_WRITE
))
429 static int check_vma_flags(struct vm_area_struct
*vma
, unsigned long gup_flags
)
431 vm_flags_t vm_flags
= vma
->vm_flags
;
432 int write
= (gup_flags
& FOLL_WRITE
);
433 int foreign
= (gup_flags
& FOLL_REMOTE
);
435 if (vm_flags
& (VM_IO
| VM_PFNMAP
))
439 if (!(vm_flags
& VM_WRITE
)) {
440 if (!(gup_flags
& FOLL_FORCE
))
443 * We used to let the write,force case do COW in a
444 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
445 * set a breakpoint in a read-only mapping of an
446 * executable, without corrupting the file (yet only
447 * when that file had been opened for writing!).
448 * Anon pages in shared mappings are surprising: now
451 if (!is_cow_mapping(vm_flags
))
454 } else if (!(vm_flags
& VM_READ
)) {
455 if (!(gup_flags
& FOLL_FORCE
))
458 * Is there actually any vma we can reach here which does not
459 * have VM_MAYREAD set?
461 if (!(vm_flags
& VM_MAYREAD
))
465 * gups are always data accesses, not instruction
466 * fetches, so execute=false here
468 if (!arch_vma_access_permitted(vma
, write
, false, foreign
))
474 * __get_user_pages() - pin user pages in memory
475 * @tsk: task_struct of target task
476 * @mm: mm_struct of target mm
477 * @start: starting user address
478 * @nr_pages: number of pages from start to pin
479 * @gup_flags: flags modifying pin behaviour
480 * @pages: array that receives pointers to the pages pinned.
481 * Should be at least nr_pages long. Or NULL, if caller
482 * only intends to ensure the pages are faulted in.
483 * @vmas: array of pointers to vmas corresponding to each page.
484 * Or NULL if the caller does not require them.
485 * @nonblocking: whether waiting for disk IO or mmap_sem contention
487 * Returns number of pages pinned. This may be fewer than the number
488 * requested. If nr_pages is 0 or negative, returns 0. If no pages
489 * were pinned, returns -errno. Each page returned must be released
490 * with a put_page() call when it is finished with. vmas will only
491 * remain valid while mmap_sem is held.
493 * Must be called with mmap_sem held. It may be released. See below.
495 * __get_user_pages walks a process's page tables and takes a reference to
496 * each struct page that each user address corresponds to at a given
497 * instant. That is, it takes the page that would be accessed if a user
498 * thread accesses the given user virtual address at that instant.
500 * This does not guarantee that the page exists in the user mappings when
501 * __get_user_pages returns, and there may even be a completely different
502 * page there in some cases (eg. if mmapped pagecache has been invalidated
503 * and subsequently re faulted). However it does guarantee that the page
504 * won't be freed completely. And mostly callers simply care that the page
505 * contains data that was valid *at some point in time*. Typically, an IO
506 * or similar operation cannot guarantee anything stronger anyway because
507 * locks can't be held over the syscall boundary.
509 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
510 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
511 * appropriate) must be called after the page is finished with, and
512 * before put_page is called.
514 * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
515 * or mmap_sem contention, and if waiting is needed to pin all pages,
516 * *@nonblocking will be set to 0. Further, if @gup_flags does not
517 * include FOLL_NOWAIT, the mmap_sem will be released via up_read() in
520 * A caller using such a combination of @nonblocking and @gup_flags
521 * must therefore hold the mmap_sem for reading only, and recognize
522 * when it's been released. Otherwise, it must be held for either
523 * reading or writing and will not be released.
525 * In most cases, get_user_pages or get_user_pages_fast should be used
526 * instead of __get_user_pages. __get_user_pages should be used only if
527 * you need some special @gup_flags.
529 static long __get_user_pages(struct task_struct
*tsk
, struct mm_struct
*mm
,
530 unsigned long start
, unsigned long nr_pages
,
531 unsigned int gup_flags
, struct page
**pages
,
532 struct vm_area_struct
**vmas
, int *nonblocking
)
535 unsigned int page_mask
;
536 struct vm_area_struct
*vma
= NULL
;
541 VM_BUG_ON(!!pages
!= !!(gup_flags
& FOLL_GET
));
544 * If FOLL_FORCE is set then do not force a full fault as the hinting
545 * fault information is unrelated to the reference behaviour of a task
546 * using the address space
548 if (!(gup_flags
& FOLL_FORCE
))
549 gup_flags
|= FOLL_NUMA
;
553 unsigned int foll_flags
= gup_flags
;
554 unsigned int page_increm
;
556 /* first iteration or cross vma bound */
557 if (!vma
|| start
>= vma
->vm_end
) {
558 vma
= find_extend_vma(mm
, start
);
559 if (!vma
&& in_gate_area(mm
, start
)) {
561 ret
= get_gate_page(mm
, start
& PAGE_MASK
,
563 pages
? &pages
[i
] : NULL
);
570 if (!vma
|| check_vma_flags(vma
, gup_flags
))
571 return i
? : -EFAULT
;
572 if (is_vm_hugetlb_page(vma
)) {
573 i
= follow_hugetlb_page(mm
, vma
, pages
, vmas
,
574 &start
, &nr_pages
, i
,
581 * If we have a pending SIGKILL, don't keep faulting pages and
582 * potentially allocating memory.
584 if (unlikely(fatal_signal_pending(current
)))
585 return i
? i
: -ERESTARTSYS
;
587 page
= follow_page_mask(vma
, start
, foll_flags
, &page_mask
);
590 ret
= faultin_page(tsk
, vma
, start
, &foll_flags
,
605 } else if (PTR_ERR(page
) == -EEXIST
) {
607 * Proper page table entry exists, but no corresponding
611 } else if (IS_ERR(page
)) {
612 return i
? i
: PTR_ERR(page
);
616 flush_anon_page(vma
, page
, start
);
617 flush_dcache_page(page
);
625 page_increm
= 1 + (~(start
>> PAGE_SHIFT
) & page_mask
);
626 if (page_increm
> nr_pages
)
627 page_increm
= nr_pages
;
629 start
+= page_increm
* PAGE_SIZE
;
630 nr_pages
-= page_increm
;
635 bool vma_permits_fault(struct vm_area_struct
*vma
, unsigned int fault_flags
)
637 bool write
= !!(fault_flags
& FAULT_FLAG_WRITE
);
638 bool foreign
= !!(fault_flags
& FAULT_FLAG_REMOTE
);
639 vm_flags_t vm_flags
= write
? VM_WRITE
: VM_READ
;
641 if (!(vm_flags
& vma
->vm_flags
))
645 * The architecture might have a hardware protection
646 * mechanism other than read/write that can deny access.
648 * gup always represents data access, not instruction
649 * fetches, so execute=false here:
651 if (!arch_vma_access_permitted(vma
, write
, false, foreign
))
658 * fixup_user_fault() - manually resolve a user page fault
659 * @tsk: the task_struct to use for page fault accounting, or
660 * NULL if faults are not to be recorded.
661 * @mm: mm_struct of target mm
662 * @address: user address
663 * @fault_flags:flags to pass down to handle_mm_fault()
664 * @unlocked: did we unlock the mmap_sem while retrying, maybe NULL if caller
665 * does not allow retry
667 * This is meant to be called in the specific scenario where for locking reasons
668 * we try to access user memory in atomic context (within a pagefault_disable()
669 * section), this returns -EFAULT, and we want to resolve the user fault before
672 * Typically this is meant to be used by the futex code.
674 * The main difference with get_user_pages() is that this function will
675 * unconditionally call handle_mm_fault() which will in turn perform all the
676 * necessary SW fixup of the dirty and young bits in the PTE, while
677 * get_user_pages() only guarantees to update these in the struct page.
679 * This is important for some architectures where those bits also gate the
680 * access permission to the page because they are maintained in software. On
681 * such architectures, gup() will not be enough to make a subsequent access
684 * This function will not return with an unlocked mmap_sem. So it has not the
685 * same semantics wrt the @mm->mmap_sem as does filemap_fault().
687 int fixup_user_fault(struct task_struct
*tsk
, struct mm_struct
*mm
,
688 unsigned long address
, unsigned int fault_flags
,
691 struct vm_area_struct
*vma
;
695 fault_flags
|= FAULT_FLAG_ALLOW_RETRY
;
698 vma
= find_extend_vma(mm
, address
);
699 if (!vma
|| address
< vma
->vm_start
)
702 if (!vma_permits_fault(vma
, fault_flags
))
705 ret
= handle_mm_fault(vma
, address
, fault_flags
);
706 major
|= ret
& VM_FAULT_MAJOR
;
707 if (ret
& VM_FAULT_ERROR
) {
708 if (ret
& VM_FAULT_OOM
)
710 if (ret
& (VM_FAULT_HWPOISON
| VM_FAULT_HWPOISON_LARGE
))
712 if (ret
& (VM_FAULT_SIGBUS
| VM_FAULT_SIGSEGV
))
717 if (ret
& VM_FAULT_RETRY
) {
718 down_read(&mm
->mmap_sem
);
719 if (!(fault_flags
& FAULT_FLAG_TRIED
)) {
721 fault_flags
&= ~FAULT_FLAG_ALLOW_RETRY
;
722 fault_flags
|= FAULT_FLAG_TRIED
;
735 EXPORT_SYMBOL_GPL(fixup_user_fault
);
737 static __always_inline
long __get_user_pages_locked(struct task_struct
*tsk
,
738 struct mm_struct
*mm
,
740 unsigned long nr_pages
,
742 struct vm_area_struct
**vmas
,
743 int *locked
, bool notify_drop
,
746 long ret
, pages_done
;
750 /* if VM_FAULT_RETRY can be returned, vmas become invalid */
752 /* check caller initialized locked */
753 BUG_ON(*locked
!= 1);
760 lock_dropped
= false;
762 ret
= __get_user_pages(tsk
, mm
, start
, nr_pages
, flags
, pages
,
765 /* VM_FAULT_RETRY couldn't trigger, bypass */
768 /* VM_FAULT_RETRY cannot return errors */
771 BUG_ON(ret
>= nr_pages
);
775 /* If it's a prefault don't insist harder */
785 /* VM_FAULT_RETRY didn't trigger */
790 /* VM_FAULT_RETRY triggered, so seek to the faulting offset */
792 start
+= ret
<< PAGE_SHIFT
;
795 * Repeat on the address that fired VM_FAULT_RETRY
796 * without FAULT_FLAG_ALLOW_RETRY but with
801 down_read(&mm
->mmap_sem
);
802 ret
= __get_user_pages(tsk
, mm
, start
, 1, flags
| FOLL_TRIED
,
817 if (notify_drop
&& lock_dropped
&& *locked
) {
819 * We must let the caller know we temporarily dropped the lock
820 * and so the critical section protected by it was lost.
822 up_read(&mm
->mmap_sem
);
829 * We can leverage the VM_FAULT_RETRY functionality in the page fault
830 * paths better by using either get_user_pages_locked() or
831 * get_user_pages_unlocked().
833 * get_user_pages_locked() is suitable to replace the form:
835 * down_read(&mm->mmap_sem);
837 * get_user_pages(tsk, mm, ..., pages, NULL);
838 * up_read(&mm->mmap_sem);
843 * down_read(&mm->mmap_sem);
845 * get_user_pages_locked(tsk, mm, ..., pages, &locked);
847 * up_read(&mm->mmap_sem);
849 long get_user_pages_locked(unsigned long start
, unsigned long nr_pages
,
850 unsigned int gup_flags
, struct page
**pages
,
853 return __get_user_pages_locked(current
, current
->mm
, start
, nr_pages
,
854 pages
, NULL
, locked
, true,
855 gup_flags
| FOLL_TOUCH
);
857 EXPORT_SYMBOL(get_user_pages_locked
);
860 * Same as get_user_pages_unlocked(...., FOLL_TOUCH) but it allows to
861 * pass additional gup_flags as last parameter (like FOLL_HWPOISON).
863 * NOTE: here FOLL_TOUCH is not set implicitly and must be set by the
864 * caller if required (just like with __get_user_pages). "FOLL_GET",
865 * "FOLL_WRITE" and "FOLL_FORCE" are set implicitly as needed
866 * according to the parameters "pages", "write", "force"
869 __always_inline
long __get_user_pages_unlocked(struct task_struct
*tsk
, struct mm_struct
*mm
,
870 unsigned long start
, unsigned long nr_pages
,
871 struct page
**pages
, unsigned int gup_flags
)
876 down_read(&mm
->mmap_sem
);
877 ret
= __get_user_pages_locked(tsk
, mm
, start
, nr_pages
, pages
, NULL
,
878 &locked
, false, gup_flags
);
880 up_read(&mm
->mmap_sem
);
883 EXPORT_SYMBOL(__get_user_pages_unlocked
);
886 * get_user_pages_unlocked() is suitable to replace the form:
888 * down_read(&mm->mmap_sem);
889 * get_user_pages(tsk, mm, ..., pages, NULL);
890 * up_read(&mm->mmap_sem);
894 * get_user_pages_unlocked(tsk, mm, ..., pages);
896 * It is functionally equivalent to get_user_pages_fast so
897 * get_user_pages_fast should be used instead, if the two parameters
898 * "tsk" and "mm" are respectively equal to current and current->mm,
899 * or if "force" shall be set to 1 (get_user_pages_fast misses the
900 * "force" parameter).
902 long get_user_pages_unlocked(unsigned long start
, unsigned long nr_pages
,
903 struct page
**pages
, unsigned int gup_flags
)
905 return __get_user_pages_unlocked(current
, current
->mm
, start
, nr_pages
,
906 pages
, gup_flags
| FOLL_TOUCH
);
908 EXPORT_SYMBOL(get_user_pages_unlocked
);
911 * get_user_pages_remote() - pin user pages in memory
912 * @tsk: the task_struct to use for page fault accounting, or
913 * NULL if faults are not to be recorded.
914 * @mm: mm_struct of target mm
915 * @start: starting user address
916 * @nr_pages: number of pages from start to pin
917 * @gup_flags: flags modifying lookup behaviour
918 * @pages: array that receives pointers to the pages pinned.
919 * Should be at least nr_pages long. Or NULL, if caller
920 * only intends to ensure the pages are faulted in.
921 * @vmas: array of pointers to vmas corresponding to each page.
922 * Or NULL if the caller does not require them.
924 * Returns number of pages pinned. This may be fewer than the number
925 * requested. If nr_pages is 0 or negative, returns 0. If no pages
926 * were pinned, returns -errno. Each page returned must be released
927 * with a put_page() call when it is finished with. vmas will only
928 * remain valid while mmap_sem is held.
930 * Must be called with mmap_sem held for read or write.
932 * get_user_pages walks a process's page tables and takes a reference to
933 * each struct page that each user address corresponds to at a given
934 * instant. That is, it takes the page that would be accessed if a user
935 * thread accesses the given user virtual address at that instant.
937 * This does not guarantee that the page exists in the user mappings when
938 * get_user_pages returns, and there may even be a completely different
939 * page there in some cases (eg. if mmapped pagecache has been invalidated
940 * and subsequently re faulted). However it does guarantee that the page
941 * won't be freed completely. And mostly callers simply care that the page
942 * contains data that was valid *at some point in time*. Typically, an IO
943 * or similar operation cannot guarantee anything stronger anyway because
944 * locks can't be held over the syscall boundary.
946 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
947 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
948 * be called after the page is finished with, and before put_page is called.
950 * get_user_pages is typically used for fewer-copy IO operations, to get a
951 * handle on the memory by some means other than accesses via the user virtual
952 * addresses. The pages may be submitted for DMA to devices or accessed via
953 * their kernel linear mapping (via the kmap APIs). Care should be taken to
954 * use the correct cache flushing APIs.
956 * See also get_user_pages_fast, for performance critical applications.
958 * get_user_pages should be phased out in favor of
959 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
960 * should use get_user_pages because it cannot pass
961 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
963 long get_user_pages_remote(struct task_struct
*tsk
, struct mm_struct
*mm
,
964 unsigned long start
, unsigned long nr_pages
,
965 unsigned int gup_flags
, struct page
**pages
,
966 struct vm_area_struct
**vmas
)
968 return __get_user_pages_locked(tsk
, mm
, start
, nr_pages
, pages
, vmas
,
970 gup_flags
| FOLL_TOUCH
| FOLL_REMOTE
);
972 EXPORT_SYMBOL(get_user_pages_remote
);
975 * This is the same as get_user_pages_remote(), just with a
976 * less-flexible calling convention where we assume that the task
977 * and mm being operated on are the current task's. We also
978 * obviously don't pass FOLL_REMOTE in here.
980 long get_user_pages(unsigned long start
, unsigned long nr_pages
,
981 unsigned int gup_flags
, struct page
**pages
,
982 struct vm_area_struct
**vmas
)
984 return __get_user_pages_locked(current
, current
->mm
, start
, nr_pages
,
985 pages
, vmas
, NULL
, false,
986 gup_flags
| FOLL_TOUCH
);
988 EXPORT_SYMBOL(get_user_pages
);
991 * populate_vma_page_range() - populate a range of pages in the vma.
993 * @start: start address
997 * This takes care of mlocking the pages too if VM_LOCKED is set.
999 * return 0 on success, negative error code on error.
1001 * vma->vm_mm->mmap_sem must be held.
1003 * If @nonblocking is NULL, it may be held for read or write and will
1006 * If @nonblocking is non-NULL, it must held for read only and may be
1007 * released. If it's released, *@nonblocking will be set to 0.
1009 long populate_vma_page_range(struct vm_area_struct
*vma
,
1010 unsigned long start
, unsigned long end
, int *nonblocking
)
1012 struct mm_struct
*mm
= vma
->vm_mm
;
1013 unsigned long nr_pages
= (end
- start
) / PAGE_SIZE
;
1016 VM_BUG_ON(start
& ~PAGE_MASK
);
1017 VM_BUG_ON(end
& ~PAGE_MASK
);
1018 VM_BUG_ON_VMA(start
< vma
->vm_start
, vma
);
1019 VM_BUG_ON_VMA(end
> vma
->vm_end
, vma
);
1020 VM_BUG_ON_MM(!rwsem_is_locked(&mm
->mmap_sem
), mm
);
1022 gup_flags
= FOLL_TOUCH
| FOLL_POPULATE
| FOLL_MLOCK
;
1023 if (vma
->vm_flags
& VM_LOCKONFAULT
)
1024 gup_flags
&= ~FOLL_POPULATE
;
1026 * We want to touch writable mappings with a write fault in order
1027 * to break COW, except for shared mappings because these don't COW
1028 * and we would not want to dirty them for nothing.
1030 if ((vma
->vm_flags
& (VM_WRITE
| VM_SHARED
)) == VM_WRITE
)
1031 gup_flags
|= FOLL_WRITE
;
1034 * We want mlock to succeed for regions that have any permissions
1035 * other than PROT_NONE.
1037 if (vma
->vm_flags
& (VM_READ
| VM_WRITE
| VM_EXEC
))
1038 gup_flags
|= FOLL_FORCE
;
1041 * We made sure addr is within a VMA, so the following will
1042 * not result in a stack expansion that recurses back here.
1044 return __get_user_pages(current
, mm
, start
, nr_pages
, gup_flags
,
1045 NULL
, NULL
, nonblocking
);
1049 * __mm_populate - populate and/or mlock pages within a range of address space.
1051 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1052 * flags. VMAs must be already marked with the desired vm_flags, and
1053 * mmap_sem must not be held.
1055 int __mm_populate(unsigned long start
, unsigned long len
, int ignore_errors
)
1057 struct mm_struct
*mm
= current
->mm
;
1058 unsigned long end
, nstart
, nend
;
1059 struct vm_area_struct
*vma
= NULL
;
1063 VM_BUG_ON(start
& ~PAGE_MASK
);
1064 VM_BUG_ON(len
!= PAGE_ALIGN(len
));
1067 for (nstart
= start
; nstart
< end
; nstart
= nend
) {
1069 * We want to fault in pages for [nstart; end) address range.
1070 * Find first corresponding VMA.
1074 down_read(&mm
->mmap_sem
);
1075 vma
= find_vma(mm
, nstart
);
1076 } else if (nstart
>= vma
->vm_end
)
1078 if (!vma
|| vma
->vm_start
>= end
)
1081 * Set [nstart; nend) to intersection of desired address
1082 * range with the first VMA. Also, skip undesirable VMA types.
1084 nend
= min(end
, vma
->vm_end
);
1085 if (vma
->vm_flags
& (VM_IO
| VM_PFNMAP
))
1087 if (nstart
< vma
->vm_start
)
1088 nstart
= vma
->vm_start
;
1090 * Now fault in a range of pages. populate_vma_page_range()
1091 * double checks the vma flags, so that it won't mlock pages
1092 * if the vma was already munlocked.
1094 ret
= populate_vma_page_range(vma
, nstart
, nend
, &locked
);
1096 if (ignore_errors
) {
1098 continue; /* continue at next VMA */
1102 nend
= nstart
+ ret
* PAGE_SIZE
;
1106 up_read(&mm
->mmap_sem
);
1107 return ret
; /* 0 or negative error code */
1111 * get_dump_page() - pin user page in memory while writing it to core dump
1112 * @addr: user address
1114 * Returns struct page pointer of user page pinned for dump,
1115 * to be freed afterwards by put_page().
1117 * Returns NULL on any kind of failure - a hole must then be inserted into
1118 * the corefile, to preserve alignment with its headers; and also returns
1119 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1120 * allowing a hole to be left in the corefile to save diskspace.
1122 * Called without mmap_sem, but after all other threads have been killed.
1124 #ifdef CONFIG_ELF_CORE
1125 struct page
*get_dump_page(unsigned long addr
)
1127 struct vm_area_struct
*vma
;
1130 if (__get_user_pages(current
, current
->mm
, addr
, 1,
1131 FOLL_FORCE
| FOLL_DUMP
| FOLL_GET
, &page
, &vma
,
1134 flush_cache_page(vma
, addr
, page_to_pfn(page
));
1137 #endif /* CONFIG_ELF_CORE */
1140 * Generic RCU Fast GUP
1142 * get_user_pages_fast attempts to pin user pages by walking the page
1143 * tables directly and avoids taking locks. Thus the walker needs to be
1144 * protected from page table pages being freed from under it, and should
1145 * block any THP splits.
1147 * One way to achieve this is to have the walker disable interrupts, and
1148 * rely on IPIs from the TLB flushing code blocking before the page table
1149 * pages are freed. This is unsuitable for architectures that do not need
1150 * to broadcast an IPI when invalidating TLBs.
1152 * Another way to achieve this is to batch up page table containing pages
1153 * belonging to more than one mm_user, then rcu_sched a callback to free those
1154 * pages. Disabling interrupts will allow the fast_gup walker to both block
1155 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
1156 * (which is a relatively rare event). The code below adopts this strategy.
1158 * Before activating this code, please be aware that the following assumptions
1159 * are currently made:
1161 * *) HAVE_RCU_TABLE_FREE is enabled, and tlb_remove_table is used to free
1162 * pages containing page tables.
1164 * *) ptes can be read atomically by the architecture.
1166 * *) access_ok is sufficient to validate userspace address ranges.
1168 * The last two assumptions can be relaxed by the addition of helper functions.
1170 * This code is based heavily on the PowerPC implementation by Nick Piggin.
1172 #ifdef CONFIG_HAVE_GENERIC_RCU_GUP
1174 #ifdef __HAVE_ARCH_PTE_SPECIAL
1175 static int gup_pte_range(pmd_t pmd
, unsigned long addr
, unsigned long end
,
1176 int write
, struct page
**pages
, int *nr
)
1181 ptem
= ptep
= pte_offset_map(&pmd
, addr
);
1184 * In the line below we are assuming that the pte can be read
1185 * atomically. If this is not the case for your architecture,
1186 * please wrap this in a helper function!
1188 * for an example see gup_get_pte in arch/x86/mm/gup.c
1190 pte_t pte
= READ_ONCE(*ptep
);
1191 struct page
*head
, *page
;
1194 * Similar to the PMD case below, NUMA hinting must take slow
1195 * path using the pte_protnone check.
1197 if (!pte_present(pte
) || pte_special(pte
) ||
1198 pte_protnone(pte
) || (write
&& !pte_write(pte
)))
1201 if (!arch_pte_access_permitted(pte
, write
))
1204 VM_BUG_ON(!pfn_valid(pte_pfn(pte
)));
1205 page
= pte_page(pte
);
1206 head
= compound_head(page
);
1208 if (!page_cache_get_speculative(head
))
1211 if (unlikely(pte_val(pte
) != pte_val(*ptep
))) {
1216 VM_BUG_ON_PAGE(compound_head(page
) != head
, page
);
1220 } while (ptep
++, addr
+= PAGE_SIZE
, addr
!= end
);
1231 * If we can't determine whether or not a pte is special, then fail immediately
1232 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
1235 * For a futex to be placed on a THP tail page, get_futex_key requires a
1236 * __get_user_pages_fast implementation that can pin pages. Thus it's still
1237 * useful to have gup_huge_pmd even if we can't operate on ptes.
1239 static int gup_pte_range(pmd_t pmd
, unsigned long addr
, unsigned long end
,
1240 int write
, struct page
**pages
, int *nr
)
1244 #endif /* __HAVE_ARCH_PTE_SPECIAL */
1246 static int gup_huge_pmd(pmd_t orig
, pmd_t
*pmdp
, unsigned long addr
,
1247 unsigned long end
, int write
, struct page
**pages
, int *nr
)
1249 struct page
*head
, *page
;
1252 if (write
&& !pmd_write(orig
))
1256 head
= pmd_page(orig
);
1257 page
= head
+ ((addr
& ~PMD_MASK
) >> PAGE_SHIFT
);
1259 VM_BUG_ON_PAGE(compound_head(page
) != head
, page
);
1264 } while (addr
+= PAGE_SIZE
, addr
!= end
);
1266 if (!page_cache_add_speculative(head
, refs
)) {
1271 if (unlikely(pmd_val(orig
) != pmd_val(*pmdp
))) {
1281 static int gup_huge_pud(pud_t orig
, pud_t
*pudp
, unsigned long addr
,
1282 unsigned long end
, int write
, struct page
**pages
, int *nr
)
1284 struct page
*head
, *page
;
1287 if (write
&& !pud_write(orig
))
1291 head
= pud_page(orig
);
1292 page
= head
+ ((addr
& ~PUD_MASK
) >> PAGE_SHIFT
);
1294 VM_BUG_ON_PAGE(compound_head(page
) != head
, page
);
1299 } while (addr
+= PAGE_SIZE
, addr
!= end
);
1301 if (!page_cache_add_speculative(head
, refs
)) {
1306 if (unlikely(pud_val(orig
) != pud_val(*pudp
))) {
1316 static int gup_huge_pgd(pgd_t orig
, pgd_t
*pgdp
, unsigned long addr
,
1317 unsigned long end
, int write
,
1318 struct page
**pages
, int *nr
)
1321 struct page
*head
, *page
;
1323 if (write
&& !pgd_write(orig
))
1327 head
= pgd_page(orig
);
1328 page
= head
+ ((addr
& ~PGDIR_MASK
) >> PAGE_SHIFT
);
1330 VM_BUG_ON_PAGE(compound_head(page
) != head
, page
);
1335 } while (addr
+= PAGE_SIZE
, addr
!= end
);
1337 if (!page_cache_add_speculative(head
, refs
)) {
1342 if (unlikely(pgd_val(orig
) != pgd_val(*pgdp
))) {
1352 static int gup_pmd_range(pud_t pud
, unsigned long addr
, unsigned long end
,
1353 int write
, struct page
**pages
, int *nr
)
1358 pmdp
= pmd_offset(&pud
, addr
);
1360 pmd_t pmd
= READ_ONCE(*pmdp
);
1362 next
= pmd_addr_end(addr
, end
);
1366 if (unlikely(pmd_trans_huge(pmd
) || pmd_huge(pmd
))) {
1368 * NUMA hinting faults need to be handled in the GUP
1369 * slowpath for accounting purposes and so that they
1370 * can be serialised against THP migration.
1372 if (pmd_protnone(pmd
))
1375 if (!gup_huge_pmd(pmd
, pmdp
, addr
, next
, write
,
1379 } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd
))))) {
1381 * architecture have different format for hugetlbfs
1382 * pmd format and THP pmd format
1384 if (!gup_huge_pd(__hugepd(pmd_val(pmd
)), addr
,
1385 PMD_SHIFT
, next
, write
, pages
, nr
))
1387 } else if (!gup_pte_range(pmd
, addr
, next
, write
, pages
, nr
))
1389 } while (pmdp
++, addr
= next
, addr
!= end
);
1394 static int gup_pud_range(pgd_t pgd
, unsigned long addr
, unsigned long end
,
1395 int write
, struct page
**pages
, int *nr
)
1400 pudp
= pud_offset(&pgd
, addr
);
1402 pud_t pud
= READ_ONCE(*pudp
);
1404 next
= pud_addr_end(addr
, end
);
1407 if (unlikely(pud_huge(pud
))) {
1408 if (!gup_huge_pud(pud
, pudp
, addr
, next
, write
,
1411 } else if (unlikely(is_hugepd(__hugepd(pud_val(pud
))))) {
1412 if (!gup_huge_pd(__hugepd(pud_val(pud
)), addr
,
1413 PUD_SHIFT
, next
, write
, pages
, nr
))
1415 } else if (!gup_pmd_range(pud
, addr
, next
, write
, pages
, nr
))
1417 } while (pudp
++, addr
= next
, addr
!= end
);
1423 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
1424 * the regular GUP. It will only return non-negative values.
1426 int __get_user_pages_fast(unsigned long start
, int nr_pages
, int write
,
1427 struct page
**pages
)
1429 struct mm_struct
*mm
= current
->mm
;
1430 unsigned long addr
, len
, end
;
1431 unsigned long next
, flags
;
1437 len
= (unsigned long) nr_pages
<< PAGE_SHIFT
;
1440 if (unlikely(!access_ok(write
? VERIFY_WRITE
: VERIFY_READ
,
1445 * Disable interrupts. We use the nested form as we can already have
1446 * interrupts disabled by get_futex_key.
1448 * With interrupts disabled, we block page table pages from being
1449 * freed from under us. See mmu_gather_tlb in asm-generic/tlb.h
1452 * We do not adopt an rcu_read_lock(.) here as we also want to
1453 * block IPIs that come from THPs splitting.
1456 local_irq_save(flags
);
1457 pgdp
= pgd_offset(mm
, addr
);
1459 pgd_t pgd
= READ_ONCE(*pgdp
);
1461 next
= pgd_addr_end(addr
, end
);
1464 if (unlikely(pgd_huge(pgd
))) {
1465 if (!gup_huge_pgd(pgd
, pgdp
, addr
, next
, write
,
1468 } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd
))))) {
1469 if (!gup_huge_pd(__hugepd(pgd_val(pgd
)), addr
,
1470 PGDIR_SHIFT
, next
, write
, pages
, &nr
))
1472 } else if (!gup_pud_range(pgd
, addr
, next
, write
, pages
, &nr
))
1474 } while (pgdp
++, addr
= next
, addr
!= end
);
1475 local_irq_restore(flags
);
1481 * get_user_pages_fast() - pin user pages in memory
1482 * @start: starting user address
1483 * @nr_pages: number of pages from start to pin
1484 * @write: whether pages will be written to
1485 * @pages: array that receives pointers to the pages pinned.
1486 * Should be at least nr_pages long.
1488 * Attempt to pin user pages in memory without taking mm->mmap_sem.
1489 * If not successful, it will fall back to taking the lock and
1490 * calling get_user_pages().
1492 * Returns number of pages pinned. This may be fewer than the number
1493 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1494 * were pinned, returns -errno.
1496 int get_user_pages_fast(unsigned long start
, int nr_pages
, int write
,
1497 struct page
**pages
)
1502 nr
= __get_user_pages_fast(start
, nr_pages
, write
, pages
);
1505 if (nr
< nr_pages
) {
1506 /* Try to get the remaining pages with get_user_pages */
1507 start
+= nr
<< PAGE_SHIFT
;
1510 ret
= get_user_pages_unlocked(start
, nr_pages
- nr
, pages
,
1511 write
? FOLL_WRITE
: 0);
1513 /* Have to be a bit careful with return values */
1525 #endif /* CONFIG_HAVE_GENERIC_RCU_GUP */