xen/blkback: fix memory leaks
[linux-stable.git] / mm / vmscan.c
blob0cc3c1eb15f5a75f707707da80666fdeadb5e319
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/mm/vmscan.c
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
7 * Swap reorganised 29.12.95, Stephen Tweedie.
8 * kswapd added: 7.1.96 sct
9 * Removed kswapd_ctl limits, and swap out as many pages as needed
10 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
11 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
12 * Multiqueue VM started 5.8.00, Rik van Riel.
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
17 #include <linux/mm.h>
18 #include <linux/sched/mm.h>
19 #include <linux/module.h>
20 #include <linux/gfp.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/swap.h>
23 #include <linux/pagemap.h>
24 #include <linux/init.h>
25 #include <linux/highmem.h>
26 #include <linux/vmpressure.h>
27 #include <linux/vmstat.h>
28 #include <linux/file.h>
29 #include <linux/writeback.h>
30 #include <linux/blkdev.h>
31 #include <linux/buffer_head.h> /* for try_to_release_page(),
32 buffer_heads_over_limit */
33 #include <linux/mm_inline.h>
34 #include <linux/backing-dev.h>
35 #include <linux/rmap.h>
36 #include <linux/topology.h>
37 #include <linux/cpu.h>
38 #include <linux/cpuset.h>
39 #include <linux/compaction.h>
40 #include <linux/notifier.h>
41 #include <linux/rwsem.h>
42 #include <linux/delay.h>
43 #include <linux/kthread.h>
44 #include <linux/freezer.h>
45 #include <linux/memcontrol.h>
46 #include <linux/delayacct.h>
47 #include <linux/sysctl.h>
48 #include <linux/oom.h>
49 #include <linux/prefetch.h>
50 #include <linux/printk.h>
51 #include <linux/dax.h>
53 #include <asm/tlbflush.h>
54 #include <asm/div64.h>
56 #include <linux/swapops.h>
57 #include <linux/balloon_compaction.h>
59 #include "internal.h"
61 #define CREATE_TRACE_POINTS
62 #include <trace/events/vmscan.h>
64 struct scan_control {
65 /* How many pages shrink_list() should reclaim */
66 unsigned long nr_to_reclaim;
68 /* This context's GFP mask */
69 gfp_t gfp_mask;
71 /* Allocation order */
72 int order;
75 * Nodemask of nodes allowed by the caller. If NULL, all nodes
76 * are scanned.
78 nodemask_t *nodemask;
81 * The memory cgroup that hit its limit and as a result is the
82 * primary target of this reclaim invocation.
84 struct mem_cgroup *target_mem_cgroup;
86 /* Scan (total_size >> priority) pages at once */
87 int priority;
89 /* The highest zone to isolate pages for reclaim from */
90 enum zone_type reclaim_idx;
92 /* Writepage batching in laptop mode; RECLAIM_WRITE */
93 unsigned int may_writepage:1;
95 /* Can mapped pages be reclaimed? */
96 unsigned int may_unmap:1;
98 /* Can pages be swapped as part of reclaim? */
99 unsigned int may_swap:1;
102 * Cgroups are not reclaimed below their configured memory.low,
103 * unless we threaten to OOM. If any cgroups are skipped due to
104 * memory.low and nothing was reclaimed, go back for memory.low.
106 unsigned int memcg_low_reclaim:1;
107 unsigned int memcg_low_skipped:1;
109 unsigned int hibernation_mode:1;
111 /* One of the zones is ready for compaction */
112 unsigned int compaction_ready:1;
114 /* Incremented by the number of inactive pages that were scanned */
115 unsigned long nr_scanned;
117 /* Number of pages freed so far during a call to shrink_zones() */
118 unsigned long nr_reclaimed;
121 #ifdef ARCH_HAS_PREFETCH
122 #define prefetch_prev_lru_page(_page, _base, _field) \
123 do { \
124 if ((_page)->lru.prev != _base) { \
125 struct page *prev; \
127 prev = lru_to_page(&(_page->lru)); \
128 prefetch(&prev->_field); \
130 } while (0)
131 #else
132 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
133 #endif
135 #ifdef ARCH_HAS_PREFETCHW
136 #define prefetchw_prev_lru_page(_page, _base, _field) \
137 do { \
138 if ((_page)->lru.prev != _base) { \
139 struct page *prev; \
141 prev = lru_to_page(&(_page->lru)); \
142 prefetchw(&prev->_field); \
144 } while (0)
145 #else
146 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
147 #endif
150 * From 0 .. 100. Higher means more swappy.
152 int vm_swappiness = 60;
154 * The total number of pages which are beyond the high watermark within all
155 * zones.
157 unsigned long vm_total_pages;
159 static LIST_HEAD(shrinker_list);
160 static DECLARE_RWSEM(shrinker_rwsem);
162 #ifdef CONFIG_MEMCG
163 static bool global_reclaim(struct scan_control *sc)
165 return !sc->target_mem_cgroup;
169 * sane_reclaim - is the usual dirty throttling mechanism operational?
170 * @sc: scan_control in question
172 * The normal page dirty throttling mechanism in balance_dirty_pages() is
173 * completely broken with the legacy memcg and direct stalling in
174 * shrink_page_list() is used for throttling instead, which lacks all the
175 * niceties such as fairness, adaptive pausing, bandwidth proportional
176 * allocation and configurability.
178 * This function tests whether the vmscan currently in progress can assume
179 * that the normal dirty throttling mechanism is operational.
181 static bool sane_reclaim(struct scan_control *sc)
183 struct mem_cgroup *memcg = sc->target_mem_cgroup;
185 if (!memcg)
186 return true;
187 #ifdef CONFIG_CGROUP_WRITEBACK
188 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
189 return true;
190 #endif
191 return false;
193 #else
194 static bool global_reclaim(struct scan_control *sc)
196 return true;
199 static bool sane_reclaim(struct scan_control *sc)
201 return true;
203 #endif
206 * This misses isolated pages which are not accounted for to save counters.
207 * As the data only determines if reclaim or compaction continues, it is
208 * not expected that isolated pages will be a dominating factor.
210 unsigned long zone_reclaimable_pages(struct zone *zone)
212 unsigned long nr;
214 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
215 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
216 if (get_nr_swap_pages() > 0)
217 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
218 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
220 return nr;
223 unsigned long pgdat_reclaimable_pages(struct pglist_data *pgdat)
225 unsigned long nr;
227 nr = node_page_state_snapshot(pgdat, NR_ACTIVE_FILE) +
228 node_page_state_snapshot(pgdat, NR_INACTIVE_FILE) +
229 node_page_state_snapshot(pgdat, NR_ISOLATED_FILE);
231 if (get_nr_swap_pages() > 0)
232 nr += node_page_state_snapshot(pgdat, NR_ACTIVE_ANON) +
233 node_page_state_snapshot(pgdat, NR_INACTIVE_ANON) +
234 node_page_state_snapshot(pgdat, NR_ISOLATED_ANON);
236 return nr;
240 * lruvec_lru_size - Returns the number of pages on the given LRU list.
241 * @lruvec: lru vector
242 * @lru: lru to use
243 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
245 unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx)
247 unsigned long lru_size;
248 int zid;
250 if (!mem_cgroup_disabled())
251 lru_size = mem_cgroup_get_lru_size(lruvec, lru);
252 else
253 lru_size = node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru);
255 for (zid = zone_idx + 1; zid < MAX_NR_ZONES; zid++) {
256 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
257 unsigned long size;
259 if (!managed_zone(zone))
260 continue;
262 if (!mem_cgroup_disabled())
263 size = mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
264 else
265 size = zone_page_state(&lruvec_pgdat(lruvec)->node_zones[zid],
266 NR_ZONE_LRU_BASE + lru);
267 lru_size -= min(size, lru_size);
270 return lru_size;
275 * Add a shrinker callback to be called from the vm.
277 int register_shrinker(struct shrinker *shrinker)
279 size_t size = sizeof(*shrinker->nr_deferred);
281 if (shrinker->flags & SHRINKER_NUMA_AWARE)
282 size *= nr_node_ids;
284 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
285 if (!shrinker->nr_deferred)
286 return -ENOMEM;
288 down_write(&shrinker_rwsem);
289 list_add_tail(&shrinker->list, &shrinker_list);
290 up_write(&shrinker_rwsem);
291 return 0;
293 EXPORT_SYMBOL(register_shrinker);
296 * Remove one
298 void unregister_shrinker(struct shrinker *shrinker)
300 if (!shrinker->nr_deferred)
301 return;
302 down_write(&shrinker_rwsem);
303 list_del(&shrinker->list);
304 up_write(&shrinker_rwsem);
305 kfree(shrinker->nr_deferred);
306 shrinker->nr_deferred = NULL;
308 EXPORT_SYMBOL(unregister_shrinker);
310 #define SHRINK_BATCH 128
312 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
313 struct shrinker *shrinker,
314 unsigned long nr_scanned,
315 unsigned long nr_eligible)
317 unsigned long freed = 0;
318 unsigned long long delta;
319 long total_scan;
320 long freeable;
321 long nr;
322 long new_nr;
323 int nid = shrinkctl->nid;
324 long batch_size = shrinker->batch ? shrinker->batch
325 : SHRINK_BATCH;
326 long scanned = 0, next_deferred;
328 freeable = shrinker->count_objects(shrinker, shrinkctl);
329 if (freeable == 0)
330 return 0;
333 * copy the current shrinker scan count into a local variable
334 * and zero it so that other concurrent shrinker invocations
335 * don't also do this scanning work.
337 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
339 total_scan = nr;
340 delta = (4 * nr_scanned) / shrinker->seeks;
341 delta *= freeable;
342 do_div(delta, nr_eligible + 1);
343 total_scan += delta;
344 if (total_scan < 0) {
345 pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n",
346 shrinker->scan_objects, total_scan);
347 total_scan = freeable;
348 next_deferred = nr;
349 } else
350 next_deferred = total_scan;
353 * We need to avoid excessive windup on filesystem shrinkers
354 * due to large numbers of GFP_NOFS allocations causing the
355 * shrinkers to return -1 all the time. This results in a large
356 * nr being built up so when a shrink that can do some work
357 * comes along it empties the entire cache due to nr >>>
358 * freeable. This is bad for sustaining a working set in
359 * memory.
361 * Hence only allow the shrinker to scan the entire cache when
362 * a large delta change is calculated directly.
364 if (delta < freeable / 4)
365 total_scan = min(total_scan, freeable / 2);
368 * Avoid risking looping forever due to too large nr value:
369 * never try to free more than twice the estimate number of
370 * freeable entries.
372 if (total_scan > freeable * 2)
373 total_scan = freeable * 2;
375 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
376 nr_scanned, nr_eligible,
377 freeable, delta, total_scan);
380 * Normally, we should not scan less than batch_size objects in one
381 * pass to avoid too frequent shrinker calls, but if the slab has less
382 * than batch_size objects in total and we are really tight on memory,
383 * we will try to reclaim all available objects, otherwise we can end
384 * up failing allocations although there are plenty of reclaimable
385 * objects spread over several slabs with usage less than the
386 * batch_size.
388 * We detect the "tight on memory" situations by looking at the total
389 * number of objects we want to scan (total_scan). If it is greater
390 * than the total number of objects on slab (freeable), we must be
391 * scanning at high prio and therefore should try to reclaim as much as
392 * possible.
394 while (total_scan >= batch_size ||
395 total_scan >= freeable) {
396 unsigned long ret;
397 unsigned long nr_to_scan = min(batch_size, total_scan);
399 shrinkctl->nr_to_scan = nr_to_scan;
400 shrinkctl->nr_scanned = nr_to_scan;
401 ret = shrinker->scan_objects(shrinker, shrinkctl);
402 if (ret == SHRINK_STOP)
403 break;
404 freed += ret;
406 count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
407 total_scan -= shrinkctl->nr_scanned;
408 scanned += shrinkctl->nr_scanned;
410 cond_resched();
413 if (next_deferred >= scanned)
414 next_deferred -= scanned;
415 else
416 next_deferred = 0;
418 * move the unused scan count back into the shrinker in a
419 * manner that handles concurrent updates. If we exhausted the
420 * scan, there is no need to do an update.
422 if (next_deferred > 0)
423 new_nr = atomic_long_add_return(next_deferred,
424 &shrinker->nr_deferred[nid]);
425 else
426 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
428 trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
429 return freed;
433 * shrink_slab - shrink slab caches
434 * @gfp_mask: allocation context
435 * @nid: node whose slab caches to target
436 * @memcg: memory cgroup whose slab caches to target
437 * @nr_scanned: pressure numerator
438 * @nr_eligible: pressure denominator
440 * Call the shrink functions to age shrinkable caches.
442 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
443 * unaware shrinkers will receive a node id of 0 instead.
445 * @memcg specifies the memory cgroup to target. If it is not NULL,
446 * only shrinkers with SHRINKER_MEMCG_AWARE set will be called to scan
447 * objects from the memory cgroup specified. Otherwise, only unaware
448 * shrinkers are called.
450 * @nr_scanned and @nr_eligible form a ratio that indicate how much of
451 * the available objects should be scanned. Page reclaim for example
452 * passes the number of pages scanned and the number of pages on the
453 * LRU lists that it considered on @nid, plus a bias in @nr_scanned
454 * when it encountered mapped pages. The ratio is further biased by
455 * the ->seeks setting of the shrink function, which indicates the
456 * cost to recreate an object relative to that of an LRU page.
458 * Returns the number of reclaimed slab objects.
460 static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
461 struct mem_cgroup *memcg,
462 unsigned long nr_scanned,
463 unsigned long nr_eligible)
465 struct shrinker *shrinker;
466 unsigned long freed = 0;
468 if (memcg && (!memcg_kmem_enabled() || !mem_cgroup_online(memcg)))
469 return 0;
471 if (nr_scanned == 0)
472 nr_scanned = SWAP_CLUSTER_MAX;
474 if (!down_read_trylock(&shrinker_rwsem)) {
476 * If we would return 0, our callers would understand that we
477 * have nothing else to shrink and give up trying. By returning
478 * 1 we keep it going and assume we'll be able to shrink next
479 * time.
481 freed = 1;
482 goto out;
485 list_for_each_entry(shrinker, &shrinker_list, list) {
486 struct shrink_control sc = {
487 .gfp_mask = gfp_mask,
488 .nid = nid,
489 .memcg = memcg,
493 * If kernel memory accounting is disabled, we ignore
494 * SHRINKER_MEMCG_AWARE flag and call all shrinkers
495 * passing NULL for memcg.
497 if (memcg_kmem_enabled() &&
498 !!memcg != !!(shrinker->flags & SHRINKER_MEMCG_AWARE))
499 continue;
501 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
502 sc.nid = 0;
504 freed += do_shrink_slab(&sc, shrinker, nr_scanned, nr_eligible);
506 * Bail out if someone want to register a new shrinker to
507 * prevent the regsitration from being stalled for long periods
508 * by parallel ongoing shrinking.
510 if (rwsem_is_contended(&shrinker_rwsem)) {
511 freed = freed ? : 1;
512 break;
516 up_read(&shrinker_rwsem);
517 out:
518 cond_resched();
519 return freed;
522 void drop_slab_node(int nid)
524 unsigned long freed;
526 do {
527 struct mem_cgroup *memcg = NULL;
529 freed = 0;
530 do {
531 freed += shrink_slab(GFP_KERNEL, nid, memcg,
532 1000, 1000);
533 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
534 } while (freed > 10);
537 void drop_slab(void)
539 int nid;
541 for_each_online_node(nid)
542 drop_slab_node(nid);
545 static inline int is_page_cache_freeable(struct page *page)
548 * A freeable page cache page is referenced only by the caller
549 * that isolated the page, the page cache radix tree and
550 * optional buffer heads at page->private.
552 int radix_pins = PageTransHuge(page) && PageSwapCache(page) ?
553 HPAGE_PMD_NR : 1;
554 return page_count(page) - page_has_private(page) == 1 + radix_pins;
557 static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
559 if (current->flags & PF_SWAPWRITE)
560 return 1;
561 if (!inode_write_congested(inode))
562 return 1;
563 if (inode_to_bdi(inode) == current->backing_dev_info)
564 return 1;
565 return 0;
569 * We detected a synchronous write error writing a page out. Probably
570 * -ENOSPC. We need to propagate that into the address_space for a subsequent
571 * fsync(), msync() or close().
573 * The tricky part is that after writepage we cannot touch the mapping: nothing
574 * prevents it from being freed up. But we have a ref on the page and once
575 * that page is locked, the mapping is pinned.
577 * We're allowed to run sleeping lock_page() here because we know the caller has
578 * __GFP_FS.
580 static void handle_write_error(struct address_space *mapping,
581 struct page *page, int error)
583 lock_page(page);
584 if (page_mapping(page) == mapping)
585 mapping_set_error(mapping, error);
586 unlock_page(page);
589 /* possible outcome of pageout() */
590 typedef enum {
591 /* failed to write page out, page is locked */
592 PAGE_KEEP,
593 /* move page to the active list, page is locked */
594 PAGE_ACTIVATE,
595 /* page has been sent to the disk successfully, page is unlocked */
596 PAGE_SUCCESS,
597 /* page is clean and locked */
598 PAGE_CLEAN,
599 } pageout_t;
602 * pageout is called by shrink_page_list() for each dirty page.
603 * Calls ->writepage().
605 static pageout_t pageout(struct page *page, struct address_space *mapping,
606 struct scan_control *sc)
609 * If the page is dirty, only perform writeback if that write
610 * will be non-blocking. To prevent this allocation from being
611 * stalled by pagecache activity. But note that there may be
612 * stalls if we need to run get_block(). We could test
613 * PagePrivate for that.
615 * If this process is currently in __generic_file_write_iter() against
616 * this page's queue, we can perform writeback even if that
617 * will block.
619 * If the page is swapcache, write it back even if that would
620 * block, for some throttling. This happens by accident, because
621 * swap_backing_dev_info is bust: it doesn't reflect the
622 * congestion state of the swapdevs. Easy to fix, if needed.
624 if (!is_page_cache_freeable(page))
625 return PAGE_KEEP;
626 if (!mapping) {
628 * Some data journaling orphaned pages can have
629 * page->mapping == NULL while being dirty with clean buffers.
631 if (page_has_private(page)) {
632 if (try_to_free_buffers(page)) {
633 ClearPageDirty(page);
634 pr_info("%s: orphaned page\n", __func__);
635 return PAGE_CLEAN;
638 return PAGE_KEEP;
640 if (mapping->a_ops->writepage == NULL)
641 return PAGE_ACTIVATE;
642 if (!may_write_to_inode(mapping->host, sc))
643 return PAGE_KEEP;
645 if (clear_page_dirty_for_io(page)) {
646 int res;
647 struct writeback_control wbc = {
648 .sync_mode = WB_SYNC_NONE,
649 .nr_to_write = SWAP_CLUSTER_MAX,
650 .range_start = 0,
651 .range_end = LLONG_MAX,
652 .for_reclaim = 1,
655 SetPageReclaim(page);
656 res = mapping->a_ops->writepage(page, &wbc);
657 if (res < 0)
658 handle_write_error(mapping, page, res);
659 if (res == AOP_WRITEPAGE_ACTIVATE) {
660 ClearPageReclaim(page);
661 return PAGE_ACTIVATE;
664 if (!PageWriteback(page)) {
665 /* synchronous write or broken a_ops? */
666 ClearPageReclaim(page);
668 trace_mm_vmscan_writepage(page);
669 inc_node_page_state(page, NR_VMSCAN_WRITE);
670 return PAGE_SUCCESS;
673 return PAGE_CLEAN;
677 * Same as remove_mapping, but if the page is removed from the mapping, it
678 * gets returned with a refcount of 0.
680 static int __remove_mapping(struct address_space *mapping, struct page *page,
681 bool reclaimed)
683 unsigned long flags;
684 int refcount;
686 BUG_ON(!PageLocked(page));
687 BUG_ON(mapping != page_mapping(page));
689 spin_lock_irqsave(&mapping->tree_lock, flags);
691 * The non racy check for a busy page.
693 * Must be careful with the order of the tests. When someone has
694 * a ref to the page, it may be possible that they dirty it then
695 * drop the reference. So if PageDirty is tested before page_count
696 * here, then the following race may occur:
698 * get_user_pages(&page);
699 * [user mapping goes away]
700 * write_to(page);
701 * !PageDirty(page) [good]
702 * SetPageDirty(page);
703 * put_page(page);
704 * !page_count(page) [good, discard it]
706 * [oops, our write_to data is lost]
708 * Reversing the order of the tests ensures such a situation cannot
709 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
710 * load is not satisfied before that of page->_refcount.
712 * Note that if SetPageDirty is always performed via set_page_dirty,
713 * and thus under tree_lock, then this ordering is not required.
715 if (unlikely(PageTransHuge(page)) && PageSwapCache(page))
716 refcount = 1 + HPAGE_PMD_NR;
717 else
718 refcount = 2;
719 if (!page_ref_freeze(page, refcount))
720 goto cannot_free;
721 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
722 if (unlikely(PageDirty(page))) {
723 page_ref_unfreeze(page, refcount);
724 goto cannot_free;
727 if (PageSwapCache(page)) {
728 swp_entry_t swap = { .val = page_private(page) };
729 mem_cgroup_swapout(page, swap);
730 __delete_from_swap_cache(page);
731 spin_unlock_irqrestore(&mapping->tree_lock, flags);
732 put_swap_page(page, swap);
733 } else {
734 void (*freepage)(struct page *);
735 void *shadow = NULL;
737 freepage = mapping->a_ops->freepage;
739 * Remember a shadow entry for reclaimed file cache in
740 * order to detect refaults, thus thrashing, later on.
742 * But don't store shadows in an address space that is
743 * already exiting. This is not just an optizimation,
744 * inode reclaim needs to empty out the radix tree or
745 * the nodes are lost. Don't plant shadows behind its
746 * back.
748 * We also don't store shadows for DAX mappings because the
749 * only page cache pages found in these are zero pages
750 * covering holes, and because we don't want to mix DAX
751 * exceptional entries and shadow exceptional entries in the
752 * same page_tree.
754 if (reclaimed && page_is_file_cache(page) &&
755 !mapping_exiting(mapping) && !dax_mapping(mapping))
756 shadow = workingset_eviction(mapping, page);
757 __delete_from_page_cache(page, shadow);
758 spin_unlock_irqrestore(&mapping->tree_lock, flags);
760 if (freepage != NULL)
761 freepage(page);
764 return 1;
766 cannot_free:
767 spin_unlock_irqrestore(&mapping->tree_lock, flags);
768 return 0;
772 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
773 * someone else has a ref on the page, abort and return 0. If it was
774 * successfully detached, return 1. Assumes the caller has a single ref on
775 * this page.
777 int remove_mapping(struct address_space *mapping, struct page *page)
779 if (__remove_mapping(mapping, page, false)) {
781 * Unfreezing the refcount with 1 rather than 2 effectively
782 * drops the pagecache ref for us without requiring another
783 * atomic operation.
785 page_ref_unfreeze(page, 1);
786 return 1;
788 return 0;
792 * putback_lru_page - put previously isolated page onto appropriate LRU list
793 * @page: page to be put back to appropriate lru list
795 * Add previously isolated @page to appropriate LRU list.
796 * Page may still be unevictable for other reasons.
798 * lru_lock must not be held, interrupts must be enabled.
800 void putback_lru_page(struct page *page)
802 bool is_unevictable;
803 int was_unevictable = PageUnevictable(page);
805 VM_BUG_ON_PAGE(PageLRU(page), page);
807 redo:
808 ClearPageUnevictable(page);
810 if (page_evictable(page)) {
812 * For evictable pages, we can use the cache.
813 * In event of a race, worst case is we end up with an
814 * unevictable page on [in]active list.
815 * We know how to handle that.
817 is_unevictable = false;
818 lru_cache_add(page);
819 } else {
821 * Put unevictable pages directly on zone's unevictable
822 * list.
824 is_unevictable = true;
825 add_page_to_unevictable_list(page);
827 * When racing with an mlock or AS_UNEVICTABLE clearing
828 * (page is unlocked) make sure that if the other thread
829 * does not observe our setting of PG_lru and fails
830 * isolation/check_move_unevictable_pages,
831 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
832 * the page back to the evictable list.
834 * The other side is TestClearPageMlocked() or shmem_lock().
836 smp_mb();
840 * page's status can change while we move it among lru. If an evictable
841 * page is on unevictable list, it never be freed. To avoid that,
842 * check after we added it to the list, again.
844 if (is_unevictable && page_evictable(page)) {
845 if (!isolate_lru_page(page)) {
846 put_page(page);
847 goto redo;
849 /* This means someone else dropped this page from LRU
850 * So, it will be freed or putback to LRU again. There is
851 * nothing to do here.
855 if (was_unevictable && !is_unevictable)
856 count_vm_event(UNEVICTABLE_PGRESCUED);
857 else if (!was_unevictable && is_unevictable)
858 count_vm_event(UNEVICTABLE_PGCULLED);
860 put_page(page); /* drop ref from isolate */
863 enum page_references {
864 PAGEREF_RECLAIM,
865 PAGEREF_RECLAIM_CLEAN,
866 PAGEREF_KEEP,
867 PAGEREF_ACTIVATE,
870 static enum page_references page_check_references(struct page *page,
871 struct scan_control *sc)
873 int referenced_ptes, referenced_page;
874 unsigned long vm_flags;
876 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
877 &vm_flags);
878 referenced_page = TestClearPageReferenced(page);
881 * Mlock lost the isolation race with us. Let try_to_unmap()
882 * move the page to the unevictable list.
884 if (vm_flags & VM_LOCKED)
885 return PAGEREF_RECLAIM;
887 if (referenced_ptes) {
888 if (PageSwapBacked(page))
889 return PAGEREF_ACTIVATE;
891 * All mapped pages start out with page table
892 * references from the instantiating fault, so we need
893 * to look twice if a mapped file page is used more
894 * than once.
896 * Mark it and spare it for another trip around the
897 * inactive list. Another page table reference will
898 * lead to its activation.
900 * Note: the mark is set for activated pages as well
901 * so that recently deactivated but used pages are
902 * quickly recovered.
904 SetPageReferenced(page);
906 if (referenced_page || referenced_ptes > 1)
907 return PAGEREF_ACTIVATE;
910 * Activate file-backed executable pages after first usage.
912 if (vm_flags & VM_EXEC)
913 return PAGEREF_ACTIVATE;
915 return PAGEREF_KEEP;
918 /* Reclaim if clean, defer dirty pages to writeback */
919 if (referenced_page && !PageSwapBacked(page))
920 return PAGEREF_RECLAIM_CLEAN;
922 return PAGEREF_RECLAIM;
925 /* Check if a page is dirty or under writeback */
926 static void page_check_dirty_writeback(struct page *page,
927 bool *dirty, bool *writeback)
929 struct address_space *mapping;
932 * Anonymous pages are not handled by flushers and must be written
933 * from reclaim context. Do not stall reclaim based on them
935 if (!page_is_file_cache(page) ||
936 (PageAnon(page) && !PageSwapBacked(page))) {
937 *dirty = false;
938 *writeback = false;
939 return;
942 /* By default assume that the page flags are accurate */
943 *dirty = PageDirty(page);
944 *writeback = PageWriteback(page);
946 /* Verify dirty/writeback state if the filesystem supports it */
947 if (!page_has_private(page))
948 return;
950 mapping = page_mapping(page);
951 if (mapping && mapping->a_ops->is_dirty_writeback)
952 mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
955 struct reclaim_stat {
956 unsigned nr_dirty;
957 unsigned nr_unqueued_dirty;
958 unsigned nr_congested;
959 unsigned nr_writeback;
960 unsigned nr_immediate;
961 unsigned nr_activate;
962 unsigned nr_ref_keep;
963 unsigned nr_unmap_fail;
967 * shrink_page_list() returns the number of reclaimed pages
969 static unsigned long shrink_page_list(struct list_head *page_list,
970 struct pglist_data *pgdat,
971 struct scan_control *sc,
972 enum ttu_flags ttu_flags,
973 struct reclaim_stat *stat,
974 bool force_reclaim)
976 LIST_HEAD(ret_pages);
977 LIST_HEAD(free_pages);
978 int pgactivate = 0;
979 unsigned nr_unqueued_dirty = 0;
980 unsigned nr_dirty = 0;
981 unsigned nr_congested = 0;
982 unsigned nr_reclaimed = 0;
983 unsigned nr_writeback = 0;
984 unsigned nr_immediate = 0;
985 unsigned nr_ref_keep = 0;
986 unsigned nr_unmap_fail = 0;
988 cond_resched();
990 while (!list_empty(page_list)) {
991 struct address_space *mapping;
992 struct page *page;
993 int may_enter_fs;
994 enum page_references references = PAGEREF_RECLAIM_CLEAN;
995 bool dirty, writeback;
997 cond_resched();
999 page = lru_to_page(page_list);
1000 list_del(&page->lru);
1002 if (!trylock_page(page))
1003 goto keep;
1005 VM_BUG_ON_PAGE(PageActive(page), page);
1007 sc->nr_scanned++;
1009 if (unlikely(!page_evictable(page)))
1010 goto activate_locked;
1012 if (!sc->may_unmap && page_mapped(page))
1013 goto keep_locked;
1015 /* Double the slab pressure for mapped and swapcache pages */
1016 if ((page_mapped(page) || PageSwapCache(page)) &&
1017 !(PageAnon(page) && !PageSwapBacked(page)))
1018 sc->nr_scanned++;
1020 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
1021 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
1024 * The number of dirty pages determines if a zone is marked
1025 * reclaim_congested which affects wait_iff_congested. kswapd
1026 * will stall and start writing pages if the tail of the LRU
1027 * is all dirty unqueued pages.
1029 page_check_dirty_writeback(page, &dirty, &writeback);
1030 if (dirty || writeback)
1031 nr_dirty++;
1033 if (dirty && !writeback)
1034 nr_unqueued_dirty++;
1037 * Treat this page as congested if the underlying BDI is or if
1038 * pages are cycling through the LRU so quickly that the
1039 * pages marked for immediate reclaim are making it to the
1040 * end of the LRU a second time.
1042 mapping = page_mapping(page);
1043 if (((dirty || writeback) && mapping &&
1044 inode_write_congested(mapping->host)) ||
1045 (writeback && PageReclaim(page)))
1046 nr_congested++;
1049 * If a page at the tail of the LRU is under writeback, there
1050 * are three cases to consider.
1052 * 1) If reclaim is encountering an excessive number of pages
1053 * under writeback and this page is both under writeback and
1054 * PageReclaim then it indicates that pages are being queued
1055 * for IO but are being recycled through the LRU before the
1056 * IO can complete. Waiting on the page itself risks an
1057 * indefinite stall if it is impossible to writeback the
1058 * page due to IO error or disconnected storage so instead
1059 * note that the LRU is being scanned too quickly and the
1060 * caller can stall after page list has been processed.
1062 * 2) Global or new memcg reclaim encounters a page that is
1063 * not marked for immediate reclaim, or the caller does not
1064 * have __GFP_FS (or __GFP_IO if it's simply going to swap,
1065 * not to fs). In this case mark the page for immediate
1066 * reclaim and continue scanning.
1068 * Require may_enter_fs because we would wait on fs, which
1069 * may not have submitted IO yet. And the loop driver might
1070 * enter reclaim, and deadlock if it waits on a page for
1071 * which it is needed to do the write (loop masks off
1072 * __GFP_IO|__GFP_FS for this reason); but more thought
1073 * would probably show more reasons.
1075 * 3) Legacy memcg encounters a page that is already marked
1076 * PageReclaim. memcg does not have any dirty pages
1077 * throttling so we could easily OOM just because too many
1078 * pages are in writeback and there is nothing else to
1079 * reclaim. Wait for the writeback to complete.
1081 * In cases 1) and 2) we activate the pages to get them out of
1082 * the way while we continue scanning for clean pages on the
1083 * inactive list and refilling from the active list. The
1084 * observation here is that waiting for disk writes is more
1085 * expensive than potentially causing reloads down the line.
1086 * Since they're marked for immediate reclaim, they won't put
1087 * memory pressure on the cache working set any longer than it
1088 * takes to write them to disk.
1090 if (PageWriteback(page)) {
1091 /* Case 1 above */
1092 if (current_is_kswapd() &&
1093 PageReclaim(page) &&
1094 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1095 nr_immediate++;
1096 goto activate_locked;
1098 /* Case 2 above */
1099 } else if (sane_reclaim(sc) ||
1100 !PageReclaim(page) || !may_enter_fs) {
1102 * This is slightly racy - end_page_writeback()
1103 * might have just cleared PageReclaim, then
1104 * setting PageReclaim here end up interpreted
1105 * as PageReadahead - but that does not matter
1106 * enough to care. What we do want is for this
1107 * page to have PageReclaim set next time memcg
1108 * reclaim reaches the tests above, so it will
1109 * then wait_on_page_writeback() to avoid OOM;
1110 * and it's also appropriate in global reclaim.
1112 SetPageReclaim(page);
1113 nr_writeback++;
1114 goto activate_locked;
1116 /* Case 3 above */
1117 } else {
1118 unlock_page(page);
1119 wait_on_page_writeback(page);
1120 /* then go back and try same page again */
1121 list_add_tail(&page->lru, page_list);
1122 continue;
1126 if (!force_reclaim)
1127 references = page_check_references(page, sc);
1129 switch (references) {
1130 case PAGEREF_ACTIVATE:
1131 goto activate_locked;
1132 case PAGEREF_KEEP:
1133 nr_ref_keep++;
1134 goto keep_locked;
1135 case PAGEREF_RECLAIM:
1136 case PAGEREF_RECLAIM_CLEAN:
1137 ; /* try to reclaim the page below */
1141 * Anonymous process memory has backing store?
1142 * Try to allocate it some swap space here.
1143 * Lazyfree page could be freed directly
1145 if (PageAnon(page) && PageSwapBacked(page)) {
1146 if (!PageSwapCache(page)) {
1147 if (!(sc->gfp_mask & __GFP_IO))
1148 goto keep_locked;
1149 if (PageTransHuge(page)) {
1150 /* cannot split THP, skip it */
1151 if (!can_split_huge_page(page, NULL))
1152 goto activate_locked;
1154 * Split pages without a PMD map right
1155 * away. Chances are some or all of the
1156 * tail pages can be freed without IO.
1158 if (!compound_mapcount(page) &&
1159 split_huge_page_to_list(page,
1160 page_list))
1161 goto activate_locked;
1163 if (!add_to_swap(page)) {
1164 if (!PageTransHuge(page))
1165 goto activate_locked;
1166 /* Fallback to swap normal pages */
1167 if (split_huge_page_to_list(page,
1168 page_list))
1169 goto activate_locked;
1170 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1171 count_vm_event(THP_SWPOUT_FALLBACK);
1172 #endif
1173 if (!add_to_swap(page))
1174 goto activate_locked;
1177 may_enter_fs = 1;
1179 /* Adding to swap updated mapping */
1180 mapping = page_mapping(page);
1182 } else if (unlikely(PageTransHuge(page))) {
1183 /* Split file THP */
1184 if (split_huge_page_to_list(page, page_list))
1185 goto keep_locked;
1189 * The page is mapped into the page tables of one or more
1190 * processes. Try to unmap it here.
1192 if (page_mapped(page)) {
1193 enum ttu_flags flags = ttu_flags | TTU_BATCH_FLUSH;
1195 if (unlikely(PageTransHuge(page)))
1196 flags |= TTU_SPLIT_HUGE_PMD;
1197 if (!try_to_unmap(page, flags)) {
1198 nr_unmap_fail++;
1199 goto activate_locked;
1203 if (PageDirty(page)) {
1205 * Only kswapd can writeback filesystem pages
1206 * to avoid risk of stack overflow. But avoid
1207 * injecting inefficient single-page IO into
1208 * flusher writeback as much as possible: only
1209 * write pages when we've encountered many
1210 * dirty pages, and when we've already scanned
1211 * the rest of the LRU for clean pages and see
1212 * the same dirty pages again (PageReclaim).
1214 if (page_is_file_cache(page) &&
1215 (!current_is_kswapd() || !PageReclaim(page) ||
1216 !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1218 * Immediately reclaim when written back.
1219 * Similar in principal to deactivate_page()
1220 * except we already have the page isolated
1221 * and know it's dirty
1223 inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
1224 SetPageReclaim(page);
1226 goto activate_locked;
1229 if (references == PAGEREF_RECLAIM_CLEAN)
1230 goto keep_locked;
1231 if (!may_enter_fs)
1232 goto keep_locked;
1233 if (!sc->may_writepage)
1234 goto keep_locked;
1237 * Page is dirty. Flush the TLB if a writable entry
1238 * potentially exists to avoid CPU writes after IO
1239 * starts and then write it out here.
1241 try_to_unmap_flush_dirty();
1242 switch (pageout(page, mapping, sc)) {
1243 case PAGE_KEEP:
1244 goto keep_locked;
1245 case PAGE_ACTIVATE:
1246 goto activate_locked;
1247 case PAGE_SUCCESS:
1248 if (PageWriteback(page))
1249 goto keep;
1250 if (PageDirty(page))
1251 goto keep;
1254 * A synchronous write - probably a ramdisk. Go
1255 * ahead and try to reclaim the page.
1257 if (!trylock_page(page))
1258 goto keep;
1259 if (PageDirty(page) || PageWriteback(page))
1260 goto keep_locked;
1261 mapping = page_mapping(page);
1262 case PAGE_CLEAN:
1263 ; /* try to free the page below */
1268 * If the page has buffers, try to free the buffer mappings
1269 * associated with this page. If we succeed we try to free
1270 * the page as well.
1272 * We do this even if the page is PageDirty().
1273 * try_to_release_page() does not perform I/O, but it is
1274 * possible for a page to have PageDirty set, but it is actually
1275 * clean (all its buffers are clean). This happens if the
1276 * buffers were written out directly, with submit_bh(). ext3
1277 * will do this, as well as the blockdev mapping.
1278 * try_to_release_page() will discover that cleanness and will
1279 * drop the buffers and mark the page clean - it can be freed.
1281 * Rarely, pages can have buffers and no ->mapping. These are
1282 * the pages which were not successfully invalidated in
1283 * truncate_complete_page(). We try to drop those buffers here
1284 * and if that worked, and the page is no longer mapped into
1285 * process address space (page_count == 1) it can be freed.
1286 * Otherwise, leave the page on the LRU so it is swappable.
1288 if (page_has_private(page)) {
1289 if (!try_to_release_page(page, sc->gfp_mask))
1290 goto activate_locked;
1291 if (!mapping && page_count(page) == 1) {
1292 unlock_page(page);
1293 if (put_page_testzero(page))
1294 goto free_it;
1295 else {
1297 * rare race with speculative reference.
1298 * the speculative reference will free
1299 * this page shortly, so we may
1300 * increment nr_reclaimed here (and
1301 * leave it off the LRU).
1303 nr_reclaimed++;
1304 continue;
1309 if (PageAnon(page) && !PageSwapBacked(page)) {
1310 /* follow __remove_mapping for reference */
1311 if (!page_ref_freeze(page, 1))
1312 goto keep_locked;
1313 if (PageDirty(page)) {
1314 page_ref_unfreeze(page, 1);
1315 goto keep_locked;
1318 count_vm_event(PGLAZYFREED);
1319 count_memcg_page_event(page, PGLAZYFREED);
1320 } else if (!mapping || !__remove_mapping(mapping, page, true))
1321 goto keep_locked;
1323 * At this point, we have no other references and there is
1324 * no way to pick any more up (removed from LRU, removed
1325 * from pagecache). Can use non-atomic bitops now (and
1326 * we obviously don't have to worry about waking up a process
1327 * waiting on the page lock, because there are no references.
1329 __ClearPageLocked(page);
1330 free_it:
1331 nr_reclaimed++;
1334 * Is there need to periodically free_page_list? It would
1335 * appear not as the counts should be low
1337 if (unlikely(PageTransHuge(page))) {
1338 mem_cgroup_uncharge(page);
1339 (*get_compound_page_dtor(page))(page);
1340 } else
1341 list_add(&page->lru, &free_pages);
1342 continue;
1344 activate_locked:
1345 /* Not a candidate for swapping, so reclaim swap space. */
1346 if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
1347 PageMlocked(page)))
1348 try_to_free_swap(page);
1349 VM_BUG_ON_PAGE(PageActive(page), page);
1350 if (!PageMlocked(page)) {
1351 SetPageActive(page);
1352 pgactivate++;
1353 count_memcg_page_event(page, PGACTIVATE);
1355 keep_locked:
1356 unlock_page(page);
1357 keep:
1358 list_add(&page->lru, &ret_pages);
1359 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1362 mem_cgroup_uncharge_list(&free_pages);
1363 try_to_unmap_flush();
1364 free_hot_cold_page_list(&free_pages, true);
1366 list_splice(&ret_pages, page_list);
1367 count_vm_events(PGACTIVATE, pgactivate);
1369 if (stat) {
1370 stat->nr_dirty = nr_dirty;
1371 stat->nr_congested = nr_congested;
1372 stat->nr_unqueued_dirty = nr_unqueued_dirty;
1373 stat->nr_writeback = nr_writeback;
1374 stat->nr_immediate = nr_immediate;
1375 stat->nr_activate = pgactivate;
1376 stat->nr_ref_keep = nr_ref_keep;
1377 stat->nr_unmap_fail = nr_unmap_fail;
1379 return nr_reclaimed;
1382 unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1383 struct list_head *page_list)
1385 struct scan_control sc = {
1386 .gfp_mask = GFP_KERNEL,
1387 .priority = DEF_PRIORITY,
1388 .may_unmap = 1,
1390 unsigned long ret;
1391 struct page *page, *next;
1392 LIST_HEAD(clean_pages);
1394 list_for_each_entry_safe(page, next, page_list, lru) {
1395 if (page_is_file_cache(page) && !PageDirty(page) &&
1396 !__PageMovable(page) && !PageUnevictable(page)) {
1397 ClearPageActive(page);
1398 list_move(&page->lru, &clean_pages);
1402 ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
1403 TTU_IGNORE_ACCESS, NULL, true);
1404 list_splice(&clean_pages, page_list);
1405 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret);
1406 return ret;
1410 * Attempt to remove the specified page from its LRU. Only take this page
1411 * if it is of the appropriate PageActive status. Pages which are being
1412 * freed elsewhere are also ignored.
1414 * page: page to consider
1415 * mode: one of the LRU isolation modes defined above
1417 * returns 0 on success, -ve errno on failure.
1419 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1421 int ret = -EINVAL;
1423 /* Only take pages on the LRU. */
1424 if (!PageLRU(page))
1425 return ret;
1427 /* Compaction should not handle unevictable pages but CMA can do so */
1428 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1429 return ret;
1431 ret = -EBUSY;
1434 * To minimise LRU disruption, the caller can indicate that it only
1435 * wants to isolate pages it will be able to operate on without
1436 * blocking - clean pages for the most part.
1438 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1439 * that it is possible to migrate without blocking
1441 if (mode & ISOLATE_ASYNC_MIGRATE) {
1442 /* All the caller can do on PageWriteback is block */
1443 if (PageWriteback(page))
1444 return ret;
1446 if (PageDirty(page)) {
1447 struct address_space *mapping;
1448 bool migrate_dirty;
1451 * Only pages without mappings or that have a
1452 * ->migratepage callback are possible to migrate
1453 * without blocking. However, we can be racing with
1454 * truncation so it's necessary to lock the page
1455 * to stabilise the mapping as truncation holds
1456 * the page lock until after the page is removed
1457 * from the page cache.
1459 if (!trylock_page(page))
1460 return ret;
1462 mapping = page_mapping(page);
1463 migrate_dirty = !mapping || mapping->a_ops->migratepage;
1464 unlock_page(page);
1465 if (!migrate_dirty)
1466 return ret;
1470 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1471 return ret;
1473 if (likely(get_page_unless_zero(page))) {
1475 * Be careful not to clear PageLRU until after we're
1476 * sure the page is not being freed elsewhere -- the
1477 * page release code relies on it.
1479 ClearPageLRU(page);
1480 ret = 0;
1483 return ret;
1488 * Update LRU sizes after isolating pages. The LRU size updates must
1489 * be complete before mem_cgroup_update_lru_size due to a santity check.
1491 static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1492 enum lru_list lru, unsigned long *nr_zone_taken)
1494 int zid;
1496 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1497 if (!nr_zone_taken[zid])
1498 continue;
1500 __update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1501 #ifdef CONFIG_MEMCG
1502 mem_cgroup_update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1503 #endif
1509 * zone_lru_lock is heavily contended. Some of the functions that
1510 * shrink the lists perform better by taking out a batch of pages
1511 * and working on them outside the LRU lock.
1513 * For pagecache intensive workloads, this function is the hottest
1514 * spot in the kernel (apart from copy_*_user functions).
1516 * Appropriate locks must be held before calling this function.
1518 * @nr_to_scan: The number of eligible pages to look through on the list.
1519 * @lruvec: The LRU vector to pull pages from.
1520 * @dst: The temp list to put pages on to.
1521 * @nr_scanned: The number of pages that were scanned.
1522 * @sc: The scan_control struct for this reclaim session
1523 * @mode: One of the LRU isolation modes
1524 * @lru: LRU list id for isolating
1526 * returns how many pages were moved onto *@dst.
1528 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1529 struct lruvec *lruvec, struct list_head *dst,
1530 unsigned long *nr_scanned, struct scan_control *sc,
1531 isolate_mode_t mode, enum lru_list lru)
1533 struct list_head *src = &lruvec->lists[lru];
1534 unsigned long nr_taken = 0;
1535 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1536 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1537 unsigned long skipped = 0;
1538 unsigned long scan, total_scan, nr_pages;
1539 LIST_HEAD(pages_skipped);
1541 scan = 0;
1542 for (total_scan = 0;
1543 scan < nr_to_scan && nr_taken < nr_to_scan && !list_empty(src);
1544 total_scan++) {
1545 struct page *page;
1547 page = lru_to_page(src);
1548 prefetchw_prev_lru_page(page, src, flags);
1550 VM_BUG_ON_PAGE(!PageLRU(page), page);
1552 if (page_zonenum(page) > sc->reclaim_idx) {
1553 list_move(&page->lru, &pages_skipped);
1554 nr_skipped[page_zonenum(page)]++;
1555 continue;
1559 * Do not count skipped pages because that makes the function
1560 * return with no isolated pages if the LRU mostly contains
1561 * ineligible pages. This causes the VM to not reclaim any
1562 * pages, triggering a premature OOM.
1564 scan++;
1565 switch (__isolate_lru_page(page, mode)) {
1566 case 0:
1567 nr_pages = hpage_nr_pages(page);
1568 nr_taken += nr_pages;
1569 nr_zone_taken[page_zonenum(page)] += nr_pages;
1570 list_move(&page->lru, dst);
1571 break;
1573 case -EBUSY:
1574 /* else it is being freed elsewhere */
1575 list_move(&page->lru, src);
1576 continue;
1578 default:
1579 BUG();
1584 * Splice any skipped pages to the start of the LRU list. Note that
1585 * this disrupts the LRU order when reclaiming for lower zones but
1586 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1587 * scanning would soon rescan the same pages to skip and put the
1588 * system at risk of premature OOM.
1590 if (!list_empty(&pages_skipped)) {
1591 int zid;
1593 list_splice(&pages_skipped, src);
1594 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1595 if (!nr_skipped[zid])
1596 continue;
1598 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1599 skipped += nr_skipped[zid];
1602 *nr_scanned = total_scan;
1603 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
1604 total_scan, skipped, nr_taken, mode, lru);
1605 update_lru_sizes(lruvec, lru, nr_zone_taken);
1606 return nr_taken;
1610 * isolate_lru_page - tries to isolate a page from its LRU list
1611 * @page: page to isolate from its LRU list
1613 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1614 * vmstat statistic corresponding to whatever LRU list the page was on.
1616 * Returns 0 if the page was removed from an LRU list.
1617 * Returns -EBUSY if the page was not on an LRU list.
1619 * The returned page will have PageLRU() cleared. If it was found on
1620 * the active list, it will have PageActive set. If it was found on
1621 * the unevictable list, it will have the PageUnevictable bit set. That flag
1622 * may need to be cleared by the caller before letting the page go.
1624 * The vmstat statistic corresponding to the list on which the page was
1625 * found will be decremented.
1627 * Restrictions:
1628 * (1) Must be called with an elevated refcount on the page. This is a
1629 * fundamentnal difference from isolate_lru_pages (which is called
1630 * without a stable reference).
1631 * (2) the lru_lock must not be held.
1632 * (3) interrupts must be enabled.
1634 int isolate_lru_page(struct page *page)
1636 int ret = -EBUSY;
1638 VM_BUG_ON_PAGE(!page_count(page), page);
1639 WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
1641 if (PageLRU(page)) {
1642 struct zone *zone = page_zone(page);
1643 struct lruvec *lruvec;
1645 spin_lock_irq(zone_lru_lock(zone));
1646 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
1647 if (PageLRU(page)) {
1648 int lru = page_lru(page);
1649 get_page(page);
1650 ClearPageLRU(page);
1651 del_page_from_lru_list(page, lruvec, lru);
1652 ret = 0;
1654 spin_unlock_irq(zone_lru_lock(zone));
1656 return ret;
1660 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1661 * then get resheduled. When there are massive number of tasks doing page
1662 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1663 * the LRU list will go small and be scanned faster than necessary, leading to
1664 * unnecessary swapping, thrashing and OOM.
1666 static int too_many_isolated(struct pglist_data *pgdat, int file,
1667 struct scan_control *sc)
1669 unsigned long inactive, isolated;
1671 if (current_is_kswapd())
1672 return 0;
1674 if (!sane_reclaim(sc))
1675 return 0;
1677 if (file) {
1678 inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
1679 isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1680 } else {
1681 inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
1682 isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1686 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1687 * won't get blocked by normal direct-reclaimers, forming a circular
1688 * deadlock.
1690 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
1691 inactive >>= 3;
1693 return isolated > inactive;
1696 static noinline_for_stack void
1697 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1699 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1700 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1701 LIST_HEAD(pages_to_free);
1704 * Put back any unfreeable pages.
1706 while (!list_empty(page_list)) {
1707 struct page *page = lru_to_page(page_list);
1708 int lru;
1710 VM_BUG_ON_PAGE(PageLRU(page), page);
1711 list_del(&page->lru);
1712 if (unlikely(!page_evictable(page))) {
1713 spin_unlock_irq(&pgdat->lru_lock);
1714 putback_lru_page(page);
1715 spin_lock_irq(&pgdat->lru_lock);
1716 continue;
1719 lruvec = mem_cgroup_page_lruvec(page, pgdat);
1721 SetPageLRU(page);
1722 lru = page_lru(page);
1723 add_page_to_lru_list(page, lruvec, lru);
1725 if (is_active_lru(lru)) {
1726 int file = is_file_lru(lru);
1727 int numpages = hpage_nr_pages(page);
1728 reclaim_stat->recent_rotated[file] += numpages;
1730 if (put_page_testzero(page)) {
1731 __ClearPageLRU(page);
1732 __ClearPageActive(page);
1733 del_page_from_lru_list(page, lruvec, lru);
1735 if (unlikely(PageCompound(page))) {
1736 spin_unlock_irq(&pgdat->lru_lock);
1737 mem_cgroup_uncharge(page);
1738 (*get_compound_page_dtor(page))(page);
1739 spin_lock_irq(&pgdat->lru_lock);
1740 } else
1741 list_add(&page->lru, &pages_to_free);
1746 * To save our caller's stack, now use input list for pages to free.
1748 list_splice(&pages_to_free, page_list);
1752 * If a kernel thread (such as nfsd for loop-back mounts) services
1753 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1754 * In that case we should only throttle if the backing device it is
1755 * writing to is congested. In other cases it is safe to throttle.
1757 static int current_may_throttle(void)
1759 return !(current->flags & PF_LESS_THROTTLE) ||
1760 current->backing_dev_info == NULL ||
1761 bdi_write_congested(current->backing_dev_info);
1765 * shrink_inactive_list() is a helper for shrink_node(). It returns the number
1766 * of reclaimed pages
1768 static noinline_for_stack unsigned long
1769 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1770 struct scan_control *sc, enum lru_list lru)
1772 LIST_HEAD(page_list);
1773 unsigned long nr_scanned;
1774 unsigned long nr_reclaimed = 0;
1775 unsigned long nr_taken;
1776 struct reclaim_stat stat = {};
1777 isolate_mode_t isolate_mode = 0;
1778 int file = is_file_lru(lru);
1779 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1780 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1781 bool stalled = false;
1783 while (unlikely(too_many_isolated(pgdat, file, sc))) {
1784 if (stalled)
1785 return 0;
1787 /* wait a bit for the reclaimer. */
1788 msleep(100);
1789 stalled = true;
1791 /* We are about to die and free our memory. Return now. */
1792 if (fatal_signal_pending(current))
1793 return SWAP_CLUSTER_MAX;
1796 lru_add_drain();
1798 if (!sc->may_unmap)
1799 isolate_mode |= ISOLATE_UNMAPPED;
1801 spin_lock_irq(&pgdat->lru_lock);
1803 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1804 &nr_scanned, sc, isolate_mode, lru);
1806 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1807 reclaim_stat->recent_scanned[file] += nr_taken;
1809 if (current_is_kswapd()) {
1810 if (global_reclaim(sc))
1811 __count_vm_events(PGSCAN_KSWAPD, nr_scanned);
1812 count_memcg_events(lruvec_memcg(lruvec), PGSCAN_KSWAPD,
1813 nr_scanned);
1814 } else {
1815 if (global_reclaim(sc))
1816 __count_vm_events(PGSCAN_DIRECT, nr_scanned);
1817 count_memcg_events(lruvec_memcg(lruvec), PGSCAN_DIRECT,
1818 nr_scanned);
1820 spin_unlock_irq(&pgdat->lru_lock);
1822 if (nr_taken == 0)
1823 return 0;
1825 nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, 0,
1826 &stat, false);
1828 spin_lock_irq(&pgdat->lru_lock);
1830 if (current_is_kswapd()) {
1831 if (global_reclaim(sc))
1832 __count_vm_events(PGSTEAL_KSWAPD, nr_reclaimed);
1833 count_memcg_events(lruvec_memcg(lruvec), PGSTEAL_KSWAPD,
1834 nr_reclaimed);
1835 } else {
1836 if (global_reclaim(sc))
1837 __count_vm_events(PGSTEAL_DIRECT, nr_reclaimed);
1838 count_memcg_events(lruvec_memcg(lruvec), PGSTEAL_DIRECT,
1839 nr_reclaimed);
1842 putback_inactive_pages(lruvec, &page_list);
1844 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
1846 spin_unlock_irq(&pgdat->lru_lock);
1848 mem_cgroup_uncharge_list(&page_list);
1849 free_hot_cold_page_list(&page_list, true);
1852 * If reclaim is isolating dirty pages under writeback, it implies
1853 * that the long-lived page allocation rate is exceeding the page
1854 * laundering rate. Either the global limits are not being effective
1855 * at throttling processes due to the page distribution throughout
1856 * zones or there is heavy usage of a slow backing device. The
1857 * only option is to throttle from reclaim context which is not ideal
1858 * as there is no guarantee the dirtying process is throttled in the
1859 * same way balance_dirty_pages() manages.
1861 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
1862 * of pages under pages flagged for immediate reclaim and stall if any
1863 * are encountered in the nr_immediate check below.
1865 if (stat.nr_writeback && stat.nr_writeback == nr_taken)
1866 set_bit(PGDAT_WRITEBACK, &pgdat->flags);
1869 * If dirty pages are scanned that are not queued for IO, it
1870 * implies that flushers are not doing their job. This can
1871 * happen when memory pressure pushes dirty pages to the end of
1872 * the LRU before the dirty limits are breached and the dirty
1873 * data has expired. It can also happen when the proportion of
1874 * dirty pages grows not through writes but through memory
1875 * pressure reclaiming all the clean cache. And in some cases,
1876 * the flushers simply cannot keep up with the allocation
1877 * rate. Nudge the flusher threads in case they are asleep.
1879 if (stat.nr_unqueued_dirty == nr_taken)
1880 wakeup_flusher_threads(0, WB_REASON_VMSCAN);
1883 * Legacy memcg will stall in page writeback so avoid forcibly
1884 * stalling here.
1886 if (sane_reclaim(sc)) {
1888 * Tag a zone as congested if all the dirty pages scanned were
1889 * backed by a congested BDI and wait_iff_congested will stall.
1891 if (stat.nr_dirty && stat.nr_dirty == stat.nr_congested)
1892 set_bit(PGDAT_CONGESTED, &pgdat->flags);
1894 /* Allow kswapd to start writing pages during reclaim. */
1895 if (stat.nr_unqueued_dirty == nr_taken)
1896 set_bit(PGDAT_DIRTY, &pgdat->flags);
1899 * If kswapd scans pages marked marked for immediate
1900 * reclaim and under writeback (nr_immediate), it implies
1901 * that pages are cycling through the LRU faster than
1902 * they are written so also forcibly stall.
1904 if (stat.nr_immediate && current_may_throttle())
1905 congestion_wait(BLK_RW_ASYNC, HZ/10);
1909 * Stall direct reclaim for IO completions if underlying BDIs or zone
1910 * is congested. Allow kswapd to continue until it starts encountering
1911 * unqueued dirty pages or cycling through the LRU too quickly.
1913 if (!sc->hibernation_mode && !current_is_kswapd() &&
1914 current_may_throttle())
1915 wait_iff_congested(pgdat, BLK_RW_ASYNC, HZ/10);
1917 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
1918 nr_scanned, nr_reclaimed,
1919 stat.nr_dirty, stat.nr_writeback,
1920 stat.nr_congested, stat.nr_immediate,
1921 stat.nr_activate, stat.nr_ref_keep,
1922 stat.nr_unmap_fail,
1923 sc->priority, file);
1924 return nr_reclaimed;
1928 * This moves pages from the active list to the inactive list.
1930 * We move them the other way if the page is referenced by one or more
1931 * processes, from rmap.
1933 * If the pages are mostly unmapped, the processing is fast and it is
1934 * appropriate to hold zone_lru_lock across the whole operation. But if
1935 * the pages are mapped, the processing is slow (page_referenced()) so we
1936 * should drop zone_lru_lock around each page. It's impossible to balance
1937 * this, so instead we remove the pages from the LRU while processing them.
1938 * It is safe to rely on PG_active against the non-LRU pages in here because
1939 * nobody will play with that bit on a non-LRU page.
1941 * The downside is that we have to touch page->_refcount against each page.
1942 * But we had to alter page->flags anyway.
1944 * Returns the number of pages moved to the given lru.
1947 static unsigned move_active_pages_to_lru(struct lruvec *lruvec,
1948 struct list_head *list,
1949 struct list_head *pages_to_free,
1950 enum lru_list lru)
1952 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1953 struct page *page;
1954 int nr_pages;
1955 int nr_moved = 0;
1957 while (!list_empty(list)) {
1958 page = lru_to_page(list);
1959 lruvec = mem_cgroup_page_lruvec(page, pgdat);
1961 VM_BUG_ON_PAGE(PageLRU(page), page);
1962 SetPageLRU(page);
1964 nr_pages = hpage_nr_pages(page);
1965 update_lru_size(lruvec, lru, page_zonenum(page), nr_pages);
1966 list_move(&page->lru, &lruvec->lists[lru]);
1968 if (put_page_testzero(page)) {
1969 __ClearPageLRU(page);
1970 __ClearPageActive(page);
1971 del_page_from_lru_list(page, lruvec, lru);
1973 if (unlikely(PageCompound(page))) {
1974 spin_unlock_irq(&pgdat->lru_lock);
1975 mem_cgroup_uncharge(page);
1976 (*get_compound_page_dtor(page))(page);
1977 spin_lock_irq(&pgdat->lru_lock);
1978 } else
1979 list_add(&page->lru, pages_to_free);
1980 } else {
1981 nr_moved += nr_pages;
1985 if (!is_active_lru(lru)) {
1986 __count_vm_events(PGDEACTIVATE, nr_moved);
1987 count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
1988 nr_moved);
1991 return nr_moved;
1994 static void shrink_active_list(unsigned long nr_to_scan,
1995 struct lruvec *lruvec,
1996 struct scan_control *sc,
1997 enum lru_list lru)
1999 unsigned long nr_taken;
2000 unsigned long nr_scanned;
2001 unsigned long vm_flags;
2002 LIST_HEAD(l_hold); /* The pages which were snipped off */
2003 LIST_HEAD(l_active);
2004 LIST_HEAD(l_inactive);
2005 struct page *page;
2006 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2007 unsigned nr_deactivate, nr_activate;
2008 unsigned nr_rotated = 0;
2009 isolate_mode_t isolate_mode = 0;
2010 int file = is_file_lru(lru);
2011 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2013 lru_add_drain();
2015 if (!sc->may_unmap)
2016 isolate_mode |= ISOLATE_UNMAPPED;
2018 spin_lock_irq(&pgdat->lru_lock);
2020 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
2021 &nr_scanned, sc, isolate_mode, lru);
2023 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2024 reclaim_stat->recent_scanned[file] += nr_taken;
2026 __count_vm_events(PGREFILL, nr_scanned);
2027 count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
2029 spin_unlock_irq(&pgdat->lru_lock);
2031 while (!list_empty(&l_hold)) {
2032 cond_resched();
2033 page = lru_to_page(&l_hold);
2034 list_del(&page->lru);
2036 if (unlikely(!page_evictable(page))) {
2037 putback_lru_page(page);
2038 continue;
2041 if (unlikely(buffer_heads_over_limit)) {
2042 if (page_has_private(page) && trylock_page(page)) {
2043 if (page_has_private(page))
2044 try_to_release_page(page, 0);
2045 unlock_page(page);
2049 if (page_referenced(page, 0, sc->target_mem_cgroup,
2050 &vm_flags)) {
2051 nr_rotated += hpage_nr_pages(page);
2053 * Identify referenced, file-backed active pages and
2054 * give them one more trip around the active list. So
2055 * that executable code get better chances to stay in
2056 * memory under moderate memory pressure. Anon pages
2057 * are not likely to be evicted by use-once streaming
2058 * IO, plus JVM can create lots of anon VM_EXEC pages,
2059 * so we ignore them here.
2061 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
2062 list_add(&page->lru, &l_active);
2063 continue;
2067 ClearPageActive(page); /* we are de-activating */
2068 list_add(&page->lru, &l_inactive);
2072 * Move pages back to the lru list.
2074 spin_lock_irq(&pgdat->lru_lock);
2076 * Count referenced pages from currently used mappings as rotated,
2077 * even though only some of them are actually re-activated. This
2078 * helps balance scan pressure between file and anonymous pages in
2079 * get_scan_count.
2081 reclaim_stat->recent_rotated[file] += nr_rotated;
2083 nr_activate = move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
2084 nr_deactivate = move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
2085 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2086 spin_unlock_irq(&pgdat->lru_lock);
2088 mem_cgroup_uncharge_list(&l_hold);
2089 free_hot_cold_page_list(&l_hold, true);
2090 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2091 nr_deactivate, nr_rotated, sc->priority, file);
2095 * The inactive anon list should be small enough that the VM never has
2096 * to do too much work.
2098 * The inactive file list should be small enough to leave most memory
2099 * to the established workingset on the scan-resistant active list,
2100 * but large enough to avoid thrashing the aggregate readahead window.
2102 * Both inactive lists should also be large enough that each inactive
2103 * page has a chance to be referenced again before it is reclaimed.
2105 * If that fails and refaulting is observed, the inactive list grows.
2107 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2108 * on this LRU, maintained by the pageout code. A zone->inactive_ratio
2109 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2111 * total target max
2112 * memory ratio inactive
2113 * -------------------------------------
2114 * 10MB 1 5MB
2115 * 100MB 1 50MB
2116 * 1GB 3 250MB
2117 * 10GB 10 0.9GB
2118 * 100GB 31 3GB
2119 * 1TB 101 10GB
2120 * 10TB 320 32GB
2122 static bool inactive_list_is_low(struct lruvec *lruvec, bool file,
2123 struct scan_control *sc, bool trace)
2125 enum lru_list active_lru = file * LRU_FILE + LRU_ACTIVE;
2126 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2127 enum lru_list inactive_lru = file * LRU_FILE;
2128 unsigned long inactive, active;
2129 unsigned long inactive_ratio;
2130 unsigned long refaults;
2131 unsigned long gb;
2134 * If we don't have swap space, anonymous page deactivation
2135 * is pointless.
2137 if (!file && !total_swap_pages)
2138 return false;
2140 inactive = lruvec_lru_size(lruvec, inactive_lru, sc->reclaim_idx);
2141 active = lruvec_lru_size(lruvec, active_lru, sc->reclaim_idx);
2144 * When refaults are being observed, it means a new workingset
2145 * is being established. Disable active list protection to get
2146 * rid of the stale workingset quickly.
2148 refaults = lruvec_page_state(lruvec, WORKINGSET_ACTIVATE);
2149 if (file && lruvec->refaults != refaults) {
2150 inactive_ratio = 0;
2151 } else {
2152 gb = (inactive + active) >> (30 - PAGE_SHIFT);
2153 if (gb)
2154 inactive_ratio = int_sqrt(10 * gb);
2155 else
2156 inactive_ratio = 1;
2159 if (trace)
2160 trace_mm_vmscan_inactive_list_is_low(pgdat->node_id, sc->reclaim_idx,
2161 lruvec_lru_size(lruvec, inactive_lru, MAX_NR_ZONES), inactive,
2162 lruvec_lru_size(lruvec, active_lru, MAX_NR_ZONES), active,
2163 inactive_ratio, file);
2165 return inactive * inactive_ratio < active;
2168 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2169 struct lruvec *lruvec, struct scan_control *sc)
2171 if (is_active_lru(lru)) {
2172 if (inactive_list_is_low(lruvec, is_file_lru(lru), sc, true))
2173 shrink_active_list(nr_to_scan, lruvec, sc, lru);
2174 return 0;
2177 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2180 enum scan_balance {
2181 SCAN_EQUAL,
2182 SCAN_FRACT,
2183 SCAN_ANON,
2184 SCAN_FILE,
2188 * Determine how aggressively the anon and file LRU lists should be
2189 * scanned. The relative value of each set of LRU lists is determined
2190 * by looking at the fraction of the pages scanned we did rotate back
2191 * onto the active list instead of evict.
2193 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2194 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2196 static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg,
2197 struct scan_control *sc, unsigned long *nr,
2198 unsigned long *lru_pages)
2200 int swappiness = mem_cgroup_swappiness(memcg);
2201 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2202 u64 fraction[2];
2203 u64 denominator = 0; /* gcc */
2204 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2205 unsigned long anon_prio, file_prio;
2206 enum scan_balance scan_balance;
2207 unsigned long anon, file;
2208 unsigned long ap, fp;
2209 enum lru_list lru;
2211 /* If we have no swap space, do not bother scanning anon pages. */
2212 if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
2213 scan_balance = SCAN_FILE;
2214 goto out;
2218 * Global reclaim will swap to prevent OOM even with no
2219 * swappiness, but memcg users want to use this knob to
2220 * disable swapping for individual groups completely when
2221 * using the memory controller's swap limit feature would be
2222 * too expensive.
2224 if (!global_reclaim(sc) && !swappiness) {
2225 scan_balance = SCAN_FILE;
2226 goto out;
2230 * Do not apply any pressure balancing cleverness when the
2231 * system is close to OOM, scan both anon and file equally
2232 * (unless the swappiness setting disagrees with swapping).
2234 if (!sc->priority && swappiness) {
2235 scan_balance = SCAN_EQUAL;
2236 goto out;
2240 * Prevent the reclaimer from falling into the cache trap: as
2241 * cache pages start out inactive, every cache fault will tip
2242 * the scan balance towards the file LRU. And as the file LRU
2243 * shrinks, so does the window for rotation from references.
2244 * This means we have a runaway feedback loop where a tiny
2245 * thrashing file LRU becomes infinitely more attractive than
2246 * anon pages. Try to detect this based on file LRU size.
2248 if (global_reclaim(sc)) {
2249 unsigned long pgdatfile;
2250 unsigned long pgdatfree;
2251 int z;
2252 unsigned long total_high_wmark = 0;
2254 pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2255 pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) +
2256 node_page_state(pgdat, NR_INACTIVE_FILE);
2258 for (z = 0; z < MAX_NR_ZONES; z++) {
2259 struct zone *zone = &pgdat->node_zones[z];
2260 if (!managed_zone(zone))
2261 continue;
2263 total_high_wmark += high_wmark_pages(zone);
2266 if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) {
2268 * Force SCAN_ANON if there are enough inactive
2269 * anonymous pages on the LRU in eligible zones.
2270 * Otherwise, the small LRU gets thrashed.
2272 if (!inactive_list_is_low(lruvec, false, sc, false) &&
2273 lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, sc->reclaim_idx)
2274 >> sc->priority) {
2275 scan_balance = SCAN_ANON;
2276 goto out;
2282 * If there is enough inactive page cache, i.e. if the size of the
2283 * inactive list is greater than that of the active list *and* the
2284 * inactive list actually has some pages to scan on this priority, we
2285 * do not reclaim anything from the anonymous working set right now.
2286 * Without the second condition we could end up never scanning an
2287 * lruvec even if it has plenty of old anonymous pages unless the
2288 * system is under heavy pressure.
2290 if (!inactive_list_is_low(lruvec, true, sc, false) &&
2291 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, sc->reclaim_idx) >> sc->priority) {
2292 scan_balance = SCAN_FILE;
2293 goto out;
2296 scan_balance = SCAN_FRACT;
2299 * With swappiness at 100, anonymous and file have the same priority.
2300 * This scanning priority is essentially the inverse of IO cost.
2302 anon_prio = swappiness;
2303 file_prio = 200 - anon_prio;
2306 * OK, so we have swap space and a fair amount of page cache
2307 * pages. We use the recently rotated / recently scanned
2308 * ratios to determine how valuable each cache is.
2310 * Because workloads change over time (and to avoid overflow)
2311 * we keep these statistics as a floating average, which ends
2312 * up weighing recent references more than old ones.
2314 * anon in [0], file in [1]
2317 anon = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON, MAX_NR_ZONES) +
2318 lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, MAX_NR_ZONES);
2319 file = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE, MAX_NR_ZONES) +
2320 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, MAX_NR_ZONES);
2322 spin_lock_irq(&pgdat->lru_lock);
2323 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
2324 reclaim_stat->recent_scanned[0] /= 2;
2325 reclaim_stat->recent_rotated[0] /= 2;
2328 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
2329 reclaim_stat->recent_scanned[1] /= 2;
2330 reclaim_stat->recent_rotated[1] /= 2;
2334 * The amount of pressure on anon vs file pages is inversely
2335 * proportional to the fraction of recently scanned pages on
2336 * each list that were recently referenced and in active use.
2338 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
2339 ap /= reclaim_stat->recent_rotated[0] + 1;
2341 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
2342 fp /= reclaim_stat->recent_rotated[1] + 1;
2343 spin_unlock_irq(&pgdat->lru_lock);
2345 fraction[0] = ap;
2346 fraction[1] = fp;
2347 denominator = ap + fp + 1;
2348 out:
2349 *lru_pages = 0;
2350 for_each_evictable_lru(lru) {
2351 int file = is_file_lru(lru);
2352 unsigned long size;
2353 unsigned long scan;
2355 size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2356 scan = size >> sc->priority;
2358 * If the cgroup's already been deleted, make sure to
2359 * scrape out the remaining cache.
2361 if (!scan && !mem_cgroup_online(memcg))
2362 scan = min(size, SWAP_CLUSTER_MAX);
2364 switch (scan_balance) {
2365 case SCAN_EQUAL:
2366 /* Scan lists relative to size */
2367 break;
2368 case SCAN_FRACT:
2370 * Scan types proportional to swappiness and
2371 * their relative recent reclaim efficiency.
2372 * Make sure we don't miss the last page
2373 * because of a round-off error.
2375 scan = DIV64_U64_ROUND_UP(scan * fraction[file],
2376 denominator);
2377 break;
2378 case SCAN_FILE:
2379 case SCAN_ANON:
2380 /* Scan one type exclusively */
2381 if ((scan_balance == SCAN_FILE) != file) {
2382 size = 0;
2383 scan = 0;
2385 break;
2386 default:
2387 /* Look ma, no brain */
2388 BUG();
2391 *lru_pages += size;
2392 nr[lru] = scan;
2397 * This is a basic per-node page freer. Used by both kswapd and direct reclaim.
2399 static void shrink_node_memcg(struct pglist_data *pgdat, struct mem_cgroup *memcg,
2400 struct scan_control *sc, unsigned long *lru_pages)
2402 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
2403 unsigned long nr[NR_LRU_LISTS];
2404 unsigned long targets[NR_LRU_LISTS];
2405 unsigned long nr_to_scan;
2406 enum lru_list lru;
2407 unsigned long nr_reclaimed = 0;
2408 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2409 struct blk_plug plug;
2410 bool scan_adjusted;
2412 get_scan_count(lruvec, memcg, sc, nr, lru_pages);
2414 /* Record the original scan target for proportional adjustments later */
2415 memcpy(targets, nr, sizeof(nr));
2418 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2419 * event that can occur when there is little memory pressure e.g.
2420 * multiple streaming readers/writers. Hence, we do not abort scanning
2421 * when the requested number of pages are reclaimed when scanning at
2422 * DEF_PRIORITY on the assumption that the fact we are direct
2423 * reclaiming implies that kswapd is not keeping up and it is best to
2424 * do a batch of work at once. For memcg reclaim one check is made to
2425 * abort proportional reclaim if either the file or anon lru has already
2426 * dropped to zero at the first pass.
2428 scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
2429 sc->priority == DEF_PRIORITY);
2431 blk_start_plug(&plug);
2432 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2433 nr[LRU_INACTIVE_FILE]) {
2434 unsigned long nr_anon, nr_file, percentage;
2435 unsigned long nr_scanned;
2437 for_each_evictable_lru(lru) {
2438 if (nr[lru]) {
2439 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2440 nr[lru] -= nr_to_scan;
2442 nr_reclaimed += shrink_list(lru, nr_to_scan,
2443 lruvec, sc);
2447 cond_resched();
2449 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2450 continue;
2453 * For kswapd and memcg, reclaim at least the number of pages
2454 * requested. Ensure that the anon and file LRUs are scanned
2455 * proportionally what was requested by get_scan_count(). We
2456 * stop reclaiming one LRU and reduce the amount scanning
2457 * proportional to the original scan target.
2459 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2460 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2463 * It's just vindictive to attack the larger once the smaller
2464 * has gone to zero. And given the way we stop scanning the
2465 * smaller below, this makes sure that we only make one nudge
2466 * towards proportionality once we've got nr_to_reclaim.
2468 if (!nr_file || !nr_anon)
2469 break;
2471 if (nr_file > nr_anon) {
2472 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2473 targets[LRU_ACTIVE_ANON] + 1;
2474 lru = LRU_BASE;
2475 percentage = nr_anon * 100 / scan_target;
2476 } else {
2477 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2478 targets[LRU_ACTIVE_FILE] + 1;
2479 lru = LRU_FILE;
2480 percentage = nr_file * 100 / scan_target;
2483 /* Stop scanning the smaller of the LRU */
2484 nr[lru] = 0;
2485 nr[lru + LRU_ACTIVE] = 0;
2488 * Recalculate the other LRU scan count based on its original
2489 * scan target and the percentage scanning already complete
2491 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2492 nr_scanned = targets[lru] - nr[lru];
2493 nr[lru] = targets[lru] * (100 - percentage) / 100;
2494 nr[lru] -= min(nr[lru], nr_scanned);
2496 lru += LRU_ACTIVE;
2497 nr_scanned = targets[lru] - nr[lru];
2498 nr[lru] = targets[lru] * (100 - percentage) / 100;
2499 nr[lru] -= min(nr[lru], nr_scanned);
2501 scan_adjusted = true;
2503 blk_finish_plug(&plug);
2504 sc->nr_reclaimed += nr_reclaimed;
2507 * Even if we did not try to evict anon pages at all, we want to
2508 * rebalance the anon lru active/inactive ratio.
2510 if (inactive_list_is_low(lruvec, false, sc, true))
2511 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2512 sc, LRU_ACTIVE_ANON);
2515 /* Use reclaim/compaction for costly allocs or under memory pressure */
2516 static bool in_reclaim_compaction(struct scan_control *sc)
2518 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2519 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2520 sc->priority < DEF_PRIORITY - 2))
2521 return true;
2523 return false;
2527 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2528 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2529 * true if more pages should be reclaimed such that when the page allocator
2530 * calls try_to_compact_zone() that it will have enough free pages to succeed.
2531 * It will give up earlier than that if there is difficulty reclaiming pages.
2533 static inline bool should_continue_reclaim(struct pglist_data *pgdat,
2534 unsigned long nr_reclaimed,
2535 unsigned long nr_scanned,
2536 struct scan_control *sc)
2538 unsigned long pages_for_compaction;
2539 unsigned long inactive_lru_pages;
2540 int z;
2542 /* If not in reclaim/compaction mode, stop */
2543 if (!in_reclaim_compaction(sc))
2544 return false;
2546 /* Consider stopping depending on scan and reclaim activity */
2547 if (sc->gfp_mask & __GFP_RETRY_MAYFAIL) {
2549 * For __GFP_RETRY_MAYFAIL allocations, stop reclaiming if the
2550 * full LRU list has been scanned and we are still failing
2551 * to reclaim pages. This full LRU scan is potentially
2552 * expensive but a __GFP_RETRY_MAYFAIL caller really wants to succeed
2554 if (!nr_reclaimed && !nr_scanned)
2555 return false;
2556 } else {
2558 * For non-__GFP_RETRY_MAYFAIL allocations which can presumably
2559 * fail without consequence, stop if we failed to reclaim
2560 * any pages from the last SWAP_CLUSTER_MAX number of
2561 * pages that were scanned. This will return to the
2562 * caller faster at the risk reclaim/compaction and
2563 * the resulting allocation attempt fails
2565 if (!nr_reclaimed)
2566 return false;
2570 * If we have not reclaimed enough pages for compaction and the
2571 * inactive lists are large enough, continue reclaiming
2573 pages_for_compaction = compact_gap(sc->order);
2574 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
2575 if (get_nr_swap_pages() > 0)
2576 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
2577 if (sc->nr_reclaimed < pages_for_compaction &&
2578 inactive_lru_pages > pages_for_compaction)
2579 return true;
2581 /* If compaction would go ahead or the allocation would succeed, stop */
2582 for (z = 0; z <= sc->reclaim_idx; z++) {
2583 struct zone *zone = &pgdat->node_zones[z];
2584 if (!managed_zone(zone))
2585 continue;
2587 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
2588 case COMPACT_SUCCESS:
2589 case COMPACT_CONTINUE:
2590 return false;
2591 default:
2592 /* check next zone */
2596 return true;
2599 static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc)
2601 struct reclaim_state *reclaim_state = current->reclaim_state;
2602 unsigned long nr_reclaimed, nr_scanned;
2603 bool reclaimable = false;
2605 do {
2606 struct mem_cgroup *root = sc->target_mem_cgroup;
2607 struct mem_cgroup_reclaim_cookie reclaim = {
2608 .pgdat = pgdat,
2609 .priority = sc->priority,
2611 unsigned long node_lru_pages = 0;
2612 struct mem_cgroup *memcg;
2614 nr_reclaimed = sc->nr_reclaimed;
2615 nr_scanned = sc->nr_scanned;
2617 memcg = mem_cgroup_iter(root, NULL, &reclaim);
2618 do {
2619 unsigned long lru_pages;
2620 unsigned long reclaimed;
2621 unsigned long scanned;
2623 if (mem_cgroup_low(root, memcg)) {
2624 if (!sc->memcg_low_reclaim) {
2625 sc->memcg_low_skipped = 1;
2626 continue;
2628 mem_cgroup_event(memcg, MEMCG_LOW);
2631 reclaimed = sc->nr_reclaimed;
2632 scanned = sc->nr_scanned;
2634 shrink_node_memcg(pgdat, memcg, sc, &lru_pages);
2635 node_lru_pages += lru_pages;
2637 if (memcg)
2638 shrink_slab(sc->gfp_mask, pgdat->node_id,
2639 memcg, sc->nr_scanned - scanned,
2640 lru_pages);
2642 /* Record the group's reclaim efficiency */
2643 vmpressure(sc->gfp_mask, memcg, false,
2644 sc->nr_scanned - scanned,
2645 sc->nr_reclaimed - reclaimed);
2648 * Direct reclaim and kswapd have to scan all memory
2649 * cgroups to fulfill the overall scan target for the
2650 * node.
2652 * Limit reclaim, on the other hand, only cares about
2653 * nr_to_reclaim pages to be reclaimed and it will
2654 * retry with decreasing priority if one round over the
2655 * whole hierarchy is not sufficient.
2657 if (!global_reclaim(sc) &&
2658 sc->nr_reclaimed >= sc->nr_to_reclaim) {
2659 mem_cgroup_iter_break(root, memcg);
2660 break;
2662 } while ((memcg = mem_cgroup_iter(root, memcg, &reclaim)));
2665 * Shrink the slab caches in the same proportion that
2666 * the eligible LRU pages were scanned.
2668 if (global_reclaim(sc))
2669 shrink_slab(sc->gfp_mask, pgdat->node_id, NULL,
2670 sc->nr_scanned - nr_scanned,
2671 node_lru_pages);
2673 if (reclaim_state) {
2674 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2675 reclaim_state->reclaimed_slab = 0;
2678 /* Record the subtree's reclaim efficiency */
2679 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
2680 sc->nr_scanned - nr_scanned,
2681 sc->nr_reclaimed - nr_reclaimed);
2683 if (sc->nr_reclaimed - nr_reclaimed)
2684 reclaimable = true;
2686 } while (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
2687 sc->nr_scanned - nr_scanned, sc));
2690 * Kswapd gives up on balancing particular nodes after too
2691 * many failures to reclaim anything from them and goes to
2692 * sleep. On reclaim progress, reset the failure counter. A
2693 * successful direct reclaim run will revive a dormant kswapd.
2695 if (reclaimable)
2696 pgdat->kswapd_failures = 0;
2698 return reclaimable;
2702 * Returns true if compaction should go ahead for a costly-order request, or
2703 * the allocation would already succeed without compaction. Return false if we
2704 * should reclaim first.
2706 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2708 unsigned long watermark;
2709 enum compact_result suitable;
2711 suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
2712 if (suitable == COMPACT_SUCCESS)
2713 /* Allocation should succeed already. Don't reclaim. */
2714 return true;
2715 if (suitable == COMPACT_SKIPPED)
2716 /* Compaction cannot yet proceed. Do reclaim. */
2717 return false;
2720 * Compaction is already possible, but it takes time to run and there
2721 * are potentially other callers using the pages just freed. So proceed
2722 * with reclaim to make a buffer of free pages available to give
2723 * compaction a reasonable chance of completing and allocating the page.
2724 * Note that we won't actually reclaim the whole buffer in one attempt
2725 * as the target watermark in should_continue_reclaim() is lower. But if
2726 * we are already above the high+gap watermark, don't reclaim at all.
2728 watermark = high_wmark_pages(zone) + compact_gap(sc->order);
2730 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
2734 * This is the direct reclaim path, for page-allocating processes. We only
2735 * try to reclaim pages from zones which will satisfy the caller's allocation
2736 * request.
2738 * If a zone is deemed to be full of pinned pages then just give it a light
2739 * scan then give up on it.
2741 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2743 struct zoneref *z;
2744 struct zone *zone;
2745 unsigned long nr_soft_reclaimed;
2746 unsigned long nr_soft_scanned;
2747 gfp_t orig_mask;
2748 pg_data_t *last_pgdat = NULL;
2751 * If the number of buffer_heads in the machine exceeds the maximum
2752 * allowed level, force direct reclaim to scan the highmem zone as
2753 * highmem pages could be pinning lowmem pages storing buffer_heads
2755 orig_mask = sc->gfp_mask;
2756 if (buffer_heads_over_limit) {
2757 sc->gfp_mask |= __GFP_HIGHMEM;
2758 sc->reclaim_idx = gfp_zone(sc->gfp_mask);
2761 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2762 sc->reclaim_idx, sc->nodemask) {
2764 * Take care memory controller reclaiming has small influence
2765 * to global LRU.
2767 if (global_reclaim(sc)) {
2768 if (!cpuset_zone_allowed(zone,
2769 GFP_KERNEL | __GFP_HARDWALL))
2770 continue;
2773 * If we already have plenty of memory free for
2774 * compaction in this zone, don't free any more.
2775 * Even though compaction is invoked for any
2776 * non-zero order, only frequent costly order
2777 * reclamation is disruptive enough to become a
2778 * noticeable problem, like transparent huge
2779 * page allocations.
2781 if (IS_ENABLED(CONFIG_COMPACTION) &&
2782 sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2783 compaction_ready(zone, sc)) {
2784 sc->compaction_ready = true;
2785 continue;
2789 * Shrink each node in the zonelist once. If the
2790 * zonelist is ordered by zone (not the default) then a
2791 * node may be shrunk multiple times but in that case
2792 * the user prefers lower zones being preserved.
2794 if (zone->zone_pgdat == last_pgdat)
2795 continue;
2798 * This steals pages from memory cgroups over softlimit
2799 * and returns the number of reclaimed pages and
2800 * scanned pages. This works for global memory pressure
2801 * and balancing, not for a memcg's limit.
2803 nr_soft_scanned = 0;
2804 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
2805 sc->order, sc->gfp_mask,
2806 &nr_soft_scanned);
2807 sc->nr_reclaimed += nr_soft_reclaimed;
2808 sc->nr_scanned += nr_soft_scanned;
2809 /* need some check for avoid more shrink_zone() */
2812 /* See comment about same check for global reclaim above */
2813 if (zone->zone_pgdat == last_pgdat)
2814 continue;
2815 last_pgdat = zone->zone_pgdat;
2816 shrink_node(zone->zone_pgdat, sc);
2820 * Restore to original mask to avoid the impact on the caller if we
2821 * promoted it to __GFP_HIGHMEM.
2823 sc->gfp_mask = orig_mask;
2826 static void snapshot_refaults(struct mem_cgroup *root_memcg, pg_data_t *pgdat)
2828 struct mem_cgroup *memcg;
2830 memcg = mem_cgroup_iter(root_memcg, NULL, NULL);
2831 do {
2832 unsigned long refaults;
2833 struct lruvec *lruvec;
2835 lruvec = mem_cgroup_lruvec(pgdat, memcg);
2836 refaults = lruvec_page_state(lruvec, WORKINGSET_ACTIVATE);
2837 lruvec->refaults = refaults;
2838 } while ((memcg = mem_cgroup_iter(root_memcg, memcg, NULL)));
2842 * This is the main entry point to direct page reclaim.
2844 * If a full scan of the inactive list fails to free enough memory then we
2845 * are "out of memory" and something needs to be killed.
2847 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2848 * high - the zone may be full of dirty or under-writeback pages, which this
2849 * caller can't do much about. We kick the writeback threads and take explicit
2850 * naps in the hope that some of these pages can be written. But if the
2851 * allocating task holds filesystem locks which prevent writeout this might not
2852 * work, and the allocation attempt will fail.
2854 * returns: 0, if no pages reclaimed
2855 * else, the number of pages reclaimed
2857 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2858 struct scan_control *sc)
2860 int initial_priority = sc->priority;
2861 pg_data_t *last_pgdat;
2862 struct zoneref *z;
2863 struct zone *zone;
2864 retry:
2865 delayacct_freepages_start();
2867 if (global_reclaim(sc))
2868 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
2870 do {
2871 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2872 sc->priority);
2873 sc->nr_scanned = 0;
2874 shrink_zones(zonelist, sc);
2876 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2877 break;
2879 if (sc->compaction_ready)
2880 break;
2883 * If we're getting trouble reclaiming, start doing
2884 * writepage even in laptop mode.
2886 if (sc->priority < DEF_PRIORITY - 2)
2887 sc->may_writepage = 1;
2888 } while (--sc->priority >= 0);
2890 last_pgdat = NULL;
2891 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
2892 sc->nodemask) {
2893 if (zone->zone_pgdat == last_pgdat)
2894 continue;
2895 last_pgdat = zone->zone_pgdat;
2896 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
2899 delayacct_freepages_end();
2901 if (sc->nr_reclaimed)
2902 return sc->nr_reclaimed;
2904 /* Aborted reclaim to try compaction? don't OOM, then */
2905 if (sc->compaction_ready)
2906 return 1;
2908 /* Untapped cgroup reserves? Don't OOM, retry. */
2909 if (sc->memcg_low_skipped) {
2910 sc->priority = initial_priority;
2911 sc->memcg_low_reclaim = 1;
2912 sc->memcg_low_skipped = 0;
2913 goto retry;
2916 return 0;
2919 static bool allow_direct_reclaim(pg_data_t *pgdat)
2921 struct zone *zone;
2922 unsigned long pfmemalloc_reserve = 0;
2923 unsigned long free_pages = 0;
2924 int i;
2925 bool wmark_ok;
2927 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
2928 return true;
2930 for (i = 0; i <= ZONE_NORMAL; i++) {
2931 zone = &pgdat->node_zones[i];
2932 if (!managed_zone(zone))
2933 continue;
2935 if (!zone_reclaimable_pages(zone))
2936 continue;
2938 pfmemalloc_reserve += min_wmark_pages(zone);
2939 free_pages += zone_page_state(zone, NR_FREE_PAGES);
2942 /* If there are no reserves (unexpected config) then do not throttle */
2943 if (!pfmemalloc_reserve)
2944 return true;
2946 wmark_ok = free_pages > pfmemalloc_reserve / 2;
2948 /* kswapd must be awake if processes are being throttled */
2949 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2950 pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx,
2951 (enum zone_type)ZONE_NORMAL);
2952 wake_up_interruptible(&pgdat->kswapd_wait);
2955 return wmark_ok;
2959 * Throttle direct reclaimers if backing storage is backed by the network
2960 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2961 * depleted. kswapd will continue to make progress and wake the processes
2962 * when the low watermark is reached.
2964 * Returns true if a fatal signal was delivered during throttling. If this
2965 * happens, the page allocator should not consider triggering the OOM killer.
2967 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2968 nodemask_t *nodemask)
2970 struct zoneref *z;
2971 struct zone *zone;
2972 pg_data_t *pgdat = NULL;
2975 * Kernel threads should not be throttled as they may be indirectly
2976 * responsible for cleaning pages necessary for reclaim to make forward
2977 * progress. kjournald for example may enter direct reclaim while
2978 * committing a transaction where throttling it could forcing other
2979 * processes to block on log_wait_commit().
2981 if (current->flags & PF_KTHREAD)
2982 goto out;
2985 * If a fatal signal is pending, this process should not throttle.
2986 * It should return quickly so it can exit and free its memory
2988 if (fatal_signal_pending(current))
2989 goto out;
2992 * Check if the pfmemalloc reserves are ok by finding the first node
2993 * with a usable ZONE_NORMAL or lower zone. The expectation is that
2994 * GFP_KERNEL will be required for allocating network buffers when
2995 * swapping over the network so ZONE_HIGHMEM is unusable.
2997 * Throttling is based on the first usable node and throttled processes
2998 * wait on a queue until kswapd makes progress and wakes them. There
2999 * is an affinity then between processes waking up and where reclaim
3000 * progress has been made assuming the process wakes on the same node.
3001 * More importantly, processes running on remote nodes will not compete
3002 * for remote pfmemalloc reserves and processes on different nodes
3003 * should make reasonable progress.
3005 for_each_zone_zonelist_nodemask(zone, z, zonelist,
3006 gfp_zone(gfp_mask), nodemask) {
3007 if (zone_idx(zone) > ZONE_NORMAL)
3008 continue;
3010 /* Throttle based on the first usable node */
3011 pgdat = zone->zone_pgdat;
3012 if (allow_direct_reclaim(pgdat))
3013 goto out;
3014 break;
3017 /* If no zone was usable by the allocation flags then do not throttle */
3018 if (!pgdat)
3019 goto out;
3021 /* Account for the throttling */
3022 count_vm_event(PGSCAN_DIRECT_THROTTLE);
3025 * If the caller cannot enter the filesystem, it's possible that it
3026 * is due to the caller holding an FS lock or performing a journal
3027 * transaction in the case of a filesystem like ext[3|4]. In this case,
3028 * it is not safe to block on pfmemalloc_wait as kswapd could be
3029 * blocked waiting on the same lock. Instead, throttle for up to a
3030 * second before continuing.
3032 if (!(gfp_mask & __GFP_FS)) {
3033 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
3034 allow_direct_reclaim(pgdat), HZ);
3036 goto check_pending;
3039 /* Throttle until kswapd wakes the process */
3040 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
3041 allow_direct_reclaim(pgdat));
3043 check_pending:
3044 if (fatal_signal_pending(current))
3045 return true;
3047 out:
3048 return false;
3051 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
3052 gfp_t gfp_mask, nodemask_t *nodemask)
3054 unsigned long nr_reclaimed;
3055 struct scan_control sc = {
3056 .nr_to_reclaim = SWAP_CLUSTER_MAX,
3057 .gfp_mask = current_gfp_context(gfp_mask),
3058 .reclaim_idx = gfp_zone(gfp_mask),
3059 .order = order,
3060 .nodemask = nodemask,
3061 .priority = DEF_PRIORITY,
3062 .may_writepage = !laptop_mode,
3063 .may_unmap = 1,
3064 .may_swap = 1,
3068 * Do not enter reclaim if fatal signal was delivered while throttled.
3069 * 1 is returned so that the page allocator does not OOM kill at this
3070 * point.
3072 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
3073 return 1;
3075 trace_mm_vmscan_direct_reclaim_begin(order,
3076 sc.may_writepage,
3077 sc.gfp_mask,
3078 sc.reclaim_idx);
3080 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3082 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
3084 return nr_reclaimed;
3087 #ifdef CONFIG_MEMCG
3089 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
3090 gfp_t gfp_mask, bool noswap,
3091 pg_data_t *pgdat,
3092 unsigned long *nr_scanned)
3094 struct scan_control sc = {
3095 .nr_to_reclaim = SWAP_CLUSTER_MAX,
3096 .target_mem_cgroup = memcg,
3097 .may_writepage = !laptop_mode,
3098 .may_unmap = 1,
3099 .reclaim_idx = MAX_NR_ZONES - 1,
3100 .may_swap = !noswap,
3102 unsigned long lru_pages;
3104 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3105 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
3107 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3108 sc.may_writepage,
3109 sc.gfp_mask,
3110 sc.reclaim_idx);
3113 * NOTE: Although we can get the priority field, using it
3114 * here is not a good idea, since it limits the pages we can scan.
3115 * if we don't reclaim here, the shrink_node from balance_pgdat
3116 * will pick up pages from other mem cgroup's as well. We hack
3117 * the priority and make it zero.
3119 shrink_node_memcg(pgdat, memcg, &sc, &lru_pages);
3121 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
3123 *nr_scanned = sc.nr_scanned;
3124 return sc.nr_reclaimed;
3127 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
3128 unsigned long nr_pages,
3129 gfp_t gfp_mask,
3130 bool may_swap)
3132 struct zonelist *zonelist;
3133 unsigned long nr_reclaimed;
3134 int nid;
3135 unsigned int noreclaim_flag;
3136 struct scan_control sc = {
3137 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3138 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
3139 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
3140 .reclaim_idx = MAX_NR_ZONES - 1,
3141 .target_mem_cgroup = memcg,
3142 .priority = DEF_PRIORITY,
3143 .may_writepage = !laptop_mode,
3144 .may_unmap = 1,
3145 .may_swap = may_swap,
3149 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
3150 * take care of from where we get pages. So the node where we start the
3151 * scan does not need to be the current node.
3153 nid = mem_cgroup_select_victim_node(memcg);
3155 zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
3157 trace_mm_vmscan_memcg_reclaim_begin(0,
3158 sc.may_writepage,
3159 sc.gfp_mask,
3160 sc.reclaim_idx);
3162 noreclaim_flag = memalloc_noreclaim_save();
3163 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3164 memalloc_noreclaim_restore(noreclaim_flag);
3166 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
3168 return nr_reclaimed;
3170 #endif
3172 static void age_active_anon(struct pglist_data *pgdat,
3173 struct scan_control *sc)
3175 struct mem_cgroup *memcg;
3177 if (!total_swap_pages)
3178 return;
3180 memcg = mem_cgroup_iter(NULL, NULL, NULL);
3181 do {
3182 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
3184 if (inactive_list_is_low(lruvec, false, sc, true))
3185 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3186 sc, LRU_ACTIVE_ANON);
3188 memcg = mem_cgroup_iter(NULL, memcg, NULL);
3189 } while (memcg);
3193 * Returns true if there is an eligible zone balanced for the request order
3194 * and classzone_idx
3196 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
3198 int i;
3199 unsigned long mark = -1;
3200 struct zone *zone;
3202 for (i = 0; i <= classzone_idx; i++) {
3203 zone = pgdat->node_zones + i;
3205 if (!managed_zone(zone))
3206 continue;
3208 mark = high_wmark_pages(zone);
3209 if (zone_watermark_ok_safe(zone, order, mark, classzone_idx))
3210 return true;
3214 * If a node has no populated zone within classzone_idx, it does not
3215 * need balancing by definition. This can happen if a zone-restricted
3216 * allocation tries to wake a remote kswapd.
3218 if (mark == -1)
3219 return true;
3221 return false;
3224 /* Clear pgdat state for congested, dirty or under writeback. */
3225 static void clear_pgdat_congested(pg_data_t *pgdat)
3227 clear_bit(PGDAT_CONGESTED, &pgdat->flags);
3228 clear_bit(PGDAT_DIRTY, &pgdat->flags);
3229 clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
3233 * Prepare kswapd for sleeping. This verifies that there are no processes
3234 * waiting in throttle_direct_reclaim() and that watermarks have been met.
3236 * Returns true if kswapd is ready to sleep
3238 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3241 * The throttled processes are normally woken up in balance_pgdat() as
3242 * soon as allow_direct_reclaim() is true. But there is a potential
3243 * race between when kswapd checks the watermarks and a process gets
3244 * throttled. There is also a potential race if processes get
3245 * throttled, kswapd wakes, a large process exits thereby balancing the
3246 * zones, which causes kswapd to exit balance_pgdat() before reaching
3247 * the wake up checks. If kswapd is going to sleep, no process should
3248 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3249 * the wake up is premature, processes will wake kswapd and get
3250 * throttled again. The difference from wake ups in balance_pgdat() is
3251 * that here we are under prepare_to_wait().
3253 if (waitqueue_active(&pgdat->pfmemalloc_wait))
3254 wake_up_all(&pgdat->pfmemalloc_wait);
3256 /* Hopeless node, leave it to direct reclaim */
3257 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3258 return true;
3260 if (pgdat_balanced(pgdat, order, classzone_idx)) {
3261 clear_pgdat_congested(pgdat);
3262 return true;
3265 return false;
3269 * kswapd shrinks a node of pages that are at or below the highest usable
3270 * zone that is currently unbalanced.
3272 * Returns true if kswapd scanned at least the requested number of pages to
3273 * reclaim or if the lack of progress was due to pages under writeback.
3274 * This is used to determine if the scanning priority needs to be raised.
3276 static bool kswapd_shrink_node(pg_data_t *pgdat,
3277 struct scan_control *sc)
3279 struct zone *zone;
3280 int z;
3282 /* Reclaim a number of pages proportional to the number of zones */
3283 sc->nr_to_reclaim = 0;
3284 for (z = 0; z <= sc->reclaim_idx; z++) {
3285 zone = pgdat->node_zones + z;
3286 if (!managed_zone(zone))
3287 continue;
3289 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
3293 * Historically care was taken to put equal pressure on all zones but
3294 * now pressure is applied based on node LRU order.
3296 shrink_node(pgdat, sc);
3299 * Fragmentation may mean that the system cannot be rebalanced for
3300 * high-order allocations. If twice the allocation size has been
3301 * reclaimed then recheck watermarks only at order-0 to prevent
3302 * excessive reclaim. Assume that a process requested a high-order
3303 * can direct reclaim/compact.
3305 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
3306 sc->order = 0;
3308 return sc->nr_scanned >= sc->nr_to_reclaim;
3312 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
3313 * that are eligible for use by the caller until at least one zone is
3314 * balanced.
3316 * Returns the order kswapd finished reclaiming at.
3318 * kswapd scans the zones in the highmem->normal->dma direction. It skips
3319 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3320 * found to have free_pages <= high_wmark_pages(zone), any page is that zone
3321 * or lower is eligible for reclaim until at least one usable zone is
3322 * balanced.
3324 static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx)
3326 int i;
3327 unsigned long nr_soft_reclaimed;
3328 unsigned long nr_soft_scanned;
3329 struct zone *zone;
3330 struct scan_control sc = {
3331 .gfp_mask = GFP_KERNEL,
3332 .order = order,
3333 .priority = DEF_PRIORITY,
3334 .may_writepage = !laptop_mode,
3335 .may_unmap = 1,
3336 .may_swap = 1,
3338 count_vm_event(PAGEOUTRUN);
3340 do {
3341 unsigned long nr_reclaimed = sc.nr_reclaimed;
3342 bool raise_priority = true;
3344 sc.reclaim_idx = classzone_idx;
3347 * If the number of buffer_heads exceeds the maximum allowed
3348 * then consider reclaiming from all zones. This has a dual
3349 * purpose -- on 64-bit systems it is expected that
3350 * buffer_heads are stripped during active rotation. On 32-bit
3351 * systems, highmem pages can pin lowmem memory and shrinking
3352 * buffers can relieve lowmem pressure. Reclaim may still not
3353 * go ahead if all eligible zones for the original allocation
3354 * request are balanced to avoid excessive reclaim from kswapd.
3356 if (buffer_heads_over_limit) {
3357 for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
3358 zone = pgdat->node_zones + i;
3359 if (!managed_zone(zone))
3360 continue;
3362 sc.reclaim_idx = i;
3363 break;
3368 * Only reclaim if there are no eligible zones. Note that
3369 * sc.reclaim_idx is not used as buffer_heads_over_limit may
3370 * have adjusted it.
3372 if (pgdat_balanced(pgdat, sc.order, classzone_idx))
3373 goto out;
3376 * Do some background aging of the anon list, to give
3377 * pages a chance to be referenced before reclaiming. All
3378 * pages are rotated regardless of classzone as this is
3379 * about consistent aging.
3381 age_active_anon(pgdat, &sc);
3384 * If we're getting trouble reclaiming, start doing writepage
3385 * even in laptop mode.
3387 if (sc.priority < DEF_PRIORITY - 2)
3388 sc.may_writepage = 1;
3390 /* Call soft limit reclaim before calling shrink_node. */
3391 sc.nr_scanned = 0;
3392 nr_soft_scanned = 0;
3393 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
3394 sc.gfp_mask, &nr_soft_scanned);
3395 sc.nr_reclaimed += nr_soft_reclaimed;
3398 * There should be no need to raise the scanning priority if
3399 * enough pages are already being scanned that that high
3400 * watermark would be met at 100% efficiency.
3402 if (kswapd_shrink_node(pgdat, &sc))
3403 raise_priority = false;
3406 * If the low watermark is met there is no need for processes
3407 * to be throttled on pfmemalloc_wait as they should not be
3408 * able to safely make forward progress. Wake them
3410 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3411 allow_direct_reclaim(pgdat))
3412 wake_up_all(&pgdat->pfmemalloc_wait);
3414 /* Check if kswapd should be suspending */
3415 if (try_to_freeze() || kthread_should_stop())
3416 break;
3419 * Raise priority if scanning rate is too low or there was no
3420 * progress in reclaiming pages
3422 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
3423 if (raise_priority || !nr_reclaimed)
3424 sc.priority--;
3425 } while (sc.priority >= 1);
3427 if (!sc.nr_reclaimed)
3428 pgdat->kswapd_failures++;
3430 out:
3431 snapshot_refaults(NULL, pgdat);
3433 * Return the order kswapd stopped reclaiming at as
3434 * prepare_kswapd_sleep() takes it into account. If another caller
3435 * entered the allocator slow path while kswapd was awake, order will
3436 * remain at the higher level.
3438 return sc.order;
3442 * The pgdat->kswapd_classzone_idx is used to pass the highest zone index to be
3443 * reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is not
3444 * a valid index then either kswapd runs for first time or kswapd couldn't sleep
3445 * after previous reclaim attempt (node is still unbalanced). In that case
3446 * return the zone index of the previous kswapd reclaim cycle.
3448 static enum zone_type kswapd_classzone_idx(pg_data_t *pgdat,
3449 enum zone_type prev_classzone_idx)
3451 if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES)
3452 return prev_classzone_idx;
3453 return pgdat->kswapd_classzone_idx;
3456 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
3457 unsigned int classzone_idx)
3459 long remaining = 0;
3460 DEFINE_WAIT(wait);
3462 if (freezing(current) || kthread_should_stop())
3463 return;
3465 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3468 * Try to sleep for a short interval. Note that kcompactd will only be
3469 * woken if it is possible to sleep for a short interval. This is
3470 * deliberate on the assumption that if reclaim cannot keep an
3471 * eligible zone balanced that it's also unlikely that compaction will
3472 * succeed.
3474 if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3476 * Compaction records what page blocks it recently failed to
3477 * isolate pages from and skips them in the future scanning.
3478 * When kswapd is going to sleep, it is reasonable to assume
3479 * that pages and compaction may succeed so reset the cache.
3481 reset_isolation_suitable(pgdat);
3484 * We have freed the memory, now we should compact it to make
3485 * allocation of the requested order possible.
3487 wakeup_kcompactd(pgdat, alloc_order, classzone_idx);
3489 remaining = schedule_timeout(HZ/10);
3492 * If woken prematurely then reset kswapd_classzone_idx and
3493 * order. The values will either be from a wakeup request or
3494 * the previous request that slept prematurely.
3496 if (remaining) {
3497 pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3498 pgdat->kswapd_order = max(pgdat->kswapd_order, reclaim_order);
3501 finish_wait(&pgdat->kswapd_wait, &wait);
3502 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3506 * After a short sleep, check if it was a premature sleep. If not, then
3507 * go fully to sleep until explicitly woken up.
3509 if (!remaining &&
3510 prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3511 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3514 * vmstat counters are not perfectly accurate and the estimated
3515 * value for counters such as NR_FREE_PAGES can deviate from the
3516 * true value by nr_online_cpus * threshold. To avoid the zone
3517 * watermarks being breached while under pressure, we reduce the
3518 * per-cpu vmstat threshold while kswapd is awake and restore
3519 * them before going back to sleep.
3521 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3523 if (!kthread_should_stop())
3524 schedule();
3526 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3527 } else {
3528 if (remaining)
3529 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3530 else
3531 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3533 finish_wait(&pgdat->kswapd_wait, &wait);
3537 * The background pageout daemon, started as a kernel thread
3538 * from the init process.
3540 * This basically trickles out pages so that we have _some_
3541 * free memory available even if there is no other activity
3542 * that frees anything up. This is needed for things like routing
3543 * etc, where we otherwise might have all activity going on in
3544 * asynchronous contexts that cannot page things out.
3546 * If there are applications that are active memory-allocators
3547 * (most normal use), this basically shouldn't matter.
3549 static int kswapd(void *p)
3551 unsigned int alloc_order, reclaim_order;
3552 unsigned int classzone_idx = MAX_NR_ZONES - 1;
3553 pg_data_t *pgdat = (pg_data_t*)p;
3554 struct task_struct *tsk = current;
3556 struct reclaim_state reclaim_state = {
3557 .reclaimed_slab = 0,
3559 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3561 if (!cpumask_empty(cpumask))
3562 set_cpus_allowed_ptr(tsk, cpumask);
3563 current->reclaim_state = &reclaim_state;
3566 * Tell the memory management that we're a "memory allocator",
3567 * and that if we need more memory we should get access to it
3568 * regardless (see "__alloc_pages()"). "kswapd" should
3569 * never get caught in the normal page freeing logic.
3571 * (Kswapd normally doesn't need memory anyway, but sometimes
3572 * you need a small amount of memory in order to be able to
3573 * page out something else, and this flag essentially protects
3574 * us from recursively trying to free more memory as we're
3575 * trying to free the first piece of memory in the first place).
3577 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3578 set_freezable();
3580 pgdat->kswapd_order = 0;
3581 pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
3582 for ( ; ; ) {
3583 bool ret;
3585 alloc_order = reclaim_order = pgdat->kswapd_order;
3586 classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3588 kswapd_try_sleep:
3589 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
3590 classzone_idx);
3592 /* Read the new order and classzone_idx */
3593 alloc_order = reclaim_order = pgdat->kswapd_order;
3594 classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3595 pgdat->kswapd_order = 0;
3596 pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
3598 ret = try_to_freeze();
3599 if (kthread_should_stop())
3600 break;
3603 * We can speed up thawing tasks if we don't call balance_pgdat
3604 * after returning from the refrigerator
3606 if (ret)
3607 continue;
3610 * Reclaim begins at the requested order but if a high-order
3611 * reclaim fails then kswapd falls back to reclaiming for
3612 * order-0. If that happens, kswapd will consider sleeping
3613 * for the order it finished reclaiming at (reclaim_order)
3614 * but kcompactd is woken to compact for the original
3615 * request (alloc_order).
3617 trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx,
3618 alloc_order);
3619 fs_reclaim_acquire(GFP_KERNEL);
3620 reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx);
3621 fs_reclaim_release(GFP_KERNEL);
3622 if (reclaim_order < alloc_order)
3623 goto kswapd_try_sleep;
3626 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3627 current->reclaim_state = NULL;
3629 return 0;
3633 * A zone is low on free memory, so wake its kswapd task to service it.
3635 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
3637 pg_data_t *pgdat;
3639 if (!managed_zone(zone))
3640 return;
3642 if (!cpuset_zone_allowed(zone, GFP_KERNEL | __GFP_HARDWALL))
3643 return;
3644 pgdat = zone->zone_pgdat;
3646 if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES)
3647 pgdat->kswapd_classzone_idx = classzone_idx;
3648 else
3649 pgdat->kswapd_classzone_idx = max(pgdat->kswapd_classzone_idx,
3650 classzone_idx);
3651 pgdat->kswapd_order = max(pgdat->kswapd_order, order);
3652 if (!waitqueue_active(&pgdat->kswapd_wait))
3653 return;
3655 /* Hopeless node, leave it to direct reclaim */
3656 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3657 return;
3659 if (pgdat_balanced(pgdat, order, classzone_idx))
3660 return;
3662 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, classzone_idx, order);
3663 wake_up_interruptible(&pgdat->kswapd_wait);
3666 #ifdef CONFIG_HIBERNATION
3668 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3669 * freed pages.
3671 * Rather than trying to age LRUs the aim is to preserve the overall
3672 * LRU order by reclaiming preferentially
3673 * inactive > active > active referenced > active mapped
3675 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3677 struct reclaim_state reclaim_state;
3678 struct scan_control sc = {
3679 .nr_to_reclaim = nr_to_reclaim,
3680 .gfp_mask = GFP_HIGHUSER_MOVABLE,
3681 .reclaim_idx = MAX_NR_ZONES - 1,
3682 .priority = DEF_PRIORITY,
3683 .may_writepage = 1,
3684 .may_unmap = 1,
3685 .may_swap = 1,
3686 .hibernation_mode = 1,
3688 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3689 struct task_struct *p = current;
3690 unsigned long nr_reclaimed;
3691 unsigned int noreclaim_flag;
3693 noreclaim_flag = memalloc_noreclaim_save();
3694 fs_reclaim_acquire(sc.gfp_mask);
3695 reclaim_state.reclaimed_slab = 0;
3696 p->reclaim_state = &reclaim_state;
3698 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3700 p->reclaim_state = NULL;
3701 fs_reclaim_release(sc.gfp_mask);
3702 memalloc_noreclaim_restore(noreclaim_flag);
3704 return nr_reclaimed;
3706 #endif /* CONFIG_HIBERNATION */
3708 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3709 not required for correctness. So if the last cpu in a node goes
3710 away, we get changed to run anywhere: as the first one comes back,
3711 restore their cpu bindings. */
3712 static int kswapd_cpu_online(unsigned int cpu)
3714 int nid;
3716 for_each_node_state(nid, N_MEMORY) {
3717 pg_data_t *pgdat = NODE_DATA(nid);
3718 const struct cpumask *mask;
3720 mask = cpumask_of_node(pgdat->node_id);
3722 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3723 /* One of our CPUs online: restore mask */
3724 set_cpus_allowed_ptr(pgdat->kswapd, mask);
3726 return 0;
3730 * This kswapd start function will be called by init and node-hot-add.
3731 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3733 int kswapd_run(int nid)
3735 pg_data_t *pgdat = NODE_DATA(nid);
3736 int ret = 0;
3738 if (pgdat->kswapd)
3739 return 0;
3741 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3742 if (IS_ERR(pgdat->kswapd)) {
3743 /* failure at boot is fatal */
3744 BUG_ON(system_state < SYSTEM_RUNNING);
3745 pr_err("Failed to start kswapd on node %d\n", nid);
3746 ret = PTR_ERR(pgdat->kswapd);
3747 pgdat->kswapd = NULL;
3749 return ret;
3753 * Called by memory hotplug when all memory in a node is offlined. Caller must
3754 * hold mem_hotplug_begin/end().
3756 void kswapd_stop(int nid)
3758 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3760 if (kswapd) {
3761 kthread_stop(kswapd);
3762 NODE_DATA(nid)->kswapd = NULL;
3766 static int __init kswapd_init(void)
3768 int nid, ret;
3770 swap_setup();
3771 for_each_node_state(nid, N_MEMORY)
3772 kswapd_run(nid);
3773 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
3774 "mm/vmscan:online", kswapd_cpu_online,
3775 NULL);
3776 WARN_ON(ret < 0);
3777 return 0;
3780 module_init(kswapd_init)
3782 #ifdef CONFIG_NUMA
3784 * Node reclaim mode
3786 * If non-zero call node_reclaim when the number of free pages falls below
3787 * the watermarks.
3789 int node_reclaim_mode __read_mostly;
3791 #define RECLAIM_OFF 0
3792 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
3793 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
3794 #define RECLAIM_UNMAP (1<<2) /* Unmap pages during reclaim */
3797 * Priority for NODE_RECLAIM. This determines the fraction of pages
3798 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3799 * a zone.
3801 #define NODE_RECLAIM_PRIORITY 4
3804 * Percentage of pages in a zone that must be unmapped for node_reclaim to
3805 * occur.
3807 int sysctl_min_unmapped_ratio = 1;
3810 * If the number of slab pages in a zone grows beyond this percentage then
3811 * slab reclaim needs to occur.
3813 int sysctl_min_slab_ratio = 5;
3815 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
3817 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
3818 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
3819 node_page_state(pgdat, NR_ACTIVE_FILE);
3822 * It's possible for there to be more file mapped pages than
3823 * accounted for by the pages on the file LRU lists because
3824 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3826 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3829 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3830 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
3832 unsigned long nr_pagecache_reclaimable;
3833 unsigned long delta = 0;
3836 * If RECLAIM_UNMAP is set, then all file pages are considered
3837 * potentially reclaimable. Otherwise, we have to worry about
3838 * pages like swapcache and node_unmapped_file_pages() provides
3839 * a better estimate
3841 if (node_reclaim_mode & RECLAIM_UNMAP)
3842 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
3843 else
3844 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
3846 /* If we can't clean pages, remove dirty pages from consideration */
3847 if (!(node_reclaim_mode & RECLAIM_WRITE))
3848 delta += node_page_state(pgdat, NR_FILE_DIRTY);
3850 /* Watch for any possible underflows due to delta */
3851 if (unlikely(delta > nr_pagecache_reclaimable))
3852 delta = nr_pagecache_reclaimable;
3854 return nr_pagecache_reclaimable - delta;
3858 * Try to free up some pages from this node through reclaim.
3860 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
3862 /* Minimum pages needed in order to stay on node */
3863 const unsigned long nr_pages = 1 << order;
3864 struct task_struct *p = current;
3865 struct reclaim_state reclaim_state;
3866 unsigned int noreclaim_flag;
3867 struct scan_control sc = {
3868 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3869 .gfp_mask = current_gfp_context(gfp_mask),
3870 .order = order,
3871 .priority = NODE_RECLAIM_PRIORITY,
3872 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
3873 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
3874 .may_swap = 1,
3875 .reclaim_idx = gfp_zone(gfp_mask),
3878 cond_resched();
3880 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
3881 * and we also need to be able to write out pages for RECLAIM_WRITE
3882 * and RECLAIM_UNMAP.
3884 noreclaim_flag = memalloc_noreclaim_save();
3885 p->flags |= PF_SWAPWRITE;
3886 fs_reclaim_acquire(sc.gfp_mask);
3887 reclaim_state.reclaimed_slab = 0;
3888 p->reclaim_state = &reclaim_state;
3890 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
3892 * Free memory by calling shrink zone with increasing
3893 * priorities until we have enough memory freed.
3895 do {
3896 shrink_node(pgdat, &sc);
3897 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3900 p->reclaim_state = NULL;
3901 fs_reclaim_release(gfp_mask);
3902 current->flags &= ~PF_SWAPWRITE;
3903 memalloc_noreclaim_restore(noreclaim_flag);
3904 return sc.nr_reclaimed >= nr_pages;
3907 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
3909 int ret;
3912 * Node reclaim reclaims unmapped file backed pages and
3913 * slab pages if we are over the defined limits.
3915 * A small portion of unmapped file backed pages is needed for
3916 * file I/O otherwise pages read by file I/O will be immediately
3917 * thrown out if the node is overallocated. So we do not reclaim
3918 * if less than a specified percentage of the node is used by
3919 * unmapped file backed pages.
3921 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
3922 node_page_state(pgdat, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages)
3923 return NODE_RECLAIM_FULL;
3926 * Do not scan if the allocation should not be delayed.
3928 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
3929 return NODE_RECLAIM_NOSCAN;
3932 * Only run node reclaim on the local node or on nodes that do not
3933 * have associated processors. This will favor the local processor
3934 * over remote processors and spread off node memory allocations
3935 * as wide as possible.
3937 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
3938 return NODE_RECLAIM_NOSCAN;
3940 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
3941 return NODE_RECLAIM_NOSCAN;
3943 ret = __node_reclaim(pgdat, gfp_mask, order);
3944 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
3946 if (!ret)
3947 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3949 return ret;
3951 #endif
3954 * page_evictable - test whether a page is evictable
3955 * @page: the page to test
3957 * Test whether page is evictable--i.e., should be placed on active/inactive
3958 * lists vs unevictable list.
3960 * Reasons page might not be evictable:
3961 * (1) page's mapping marked unevictable
3962 * (2) page is part of an mlocked VMA
3965 int page_evictable(struct page *page)
3967 int ret;
3969 /* Prevent address_space of inode and swap cache from being freed */
3970 rcu_read_lock();
3971 ret = !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
3972 rcu_read_unlock();
3973 return ret;
3976 #ifdef CONFIG_SHMEM
3978 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3979 * @pages: array of pages to check
3980 * @nr_pages: number of pages to check
3982 * Checks pages for evictability and moves them to the appropriate lru list.
3984 * This function is only used for SysV IPC SHM_UNLOCK.
3986 void check_move_unevictable_pages(struct page **pages, int nr_pages)
3988 struct lruvec *lruvec;
3989 struct pglist_data *pgdat = NULL;
3990 int pgscanned = 0;
3991 int pgrescued = 0;
3992 int i;
3994 for (i = 0; i < nr_pages; i++) {
3995 struct page *page = pages[i];
3996 struct pglist_data *pagepgdat = page_pgdat(page);
3998 pgscanned++;
3999 if (pagepgdat != pgdat) {
4000 if (pgdat)
4001 spin_unlock_irq(&pgdat->lru_lock);
4002 pgdat = pagepgdat;
4003 spin_lock_irq(&pgdat->lru_lock);
4005 lruvec = mem_cgroup_page_lruvec(page, pgdat);
4007 if (!PageLRU(page) || !PageUnevictable(page))
4008 continue;
4010 if (page_evictable(page)) {
4011 enum lru_list lru = page_lru_base_type(page);
4013 VM_BUG_ON_PAGE(PageActive(page), page);
4014 ClearPageUnevictable(page);
4015 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
4016 add_page_to_lru_list(page, lruvec, lru);
4017 pgrescued++;
4021 if (pgdat) {
4022 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
4023 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
4024 spin_unlock_irq(&pgdat->lru_lock);
4027 #endif /* CONFIG_SHMEM */