Linux 4.14.136
[linux-stable.git] / mm / mmap.c
blob59fd53b41c9cb800bce92abe08af4396b05d9b77
1 /*
2 * mm/mmap.c
4 * Written by obz.
6 * Address space accounting code <alan@lxorguk.ukuu.org.uk>
7 */
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 #include <linux/kernel.h>
12 #include <linux/slab.h>
13 #include <linux/backing-dev.h>
14 #include <linux/mm.h>
15 #include <linux/vmacache.h>
16 #include <linux/shm.h>
17 #include <linux/mman.h>
18 #include <linux/pagemap.h>
19 #include <linux/swap.h>
20 #include <linux/syscalls.h>
21 #include <linux/capability.h>
22 #include <linux/init.h>
23 #include <linux/file.h>
24 #include <linux/fs.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/hugetlb.h>
28 #include <linux/shmem_fs.h>
29 #include <linux/profile.h>
30 #include <linux/export.h>
31 #include <linux/mount.h>
32 #include <linux/mempolicy.h>
33 #include <linux/rmap.h>
34 #include <linux/mmu_notifier.h>
35 #include <linux/mmdebug.h>
36 #include <linux/perf_event.h>
37 #include <linux/audit.h>
38 #include <linux/khugepaged.h>
39 #include <linux/uprobes.h>
40 #include <linux/rbtree_augmented.h>
41 #include <linux/notifier.h>
42 #include <linux/memory.h>
43 #include <linux/printk.h>
44 #include <linux/userfaultfd_k.h>
45 #include <linux/moduleparam.h>
46 #include <linux/pkeys.h>
47 #include <linux/oom.h>
48 #include <linux/sched/mm.h>
50 #include <linux/uaccess.h>
51 #include <asm/cacheflush.h>
52 #include <asm/tlb.h>
53 #include <asm/mmu_context.h>
55 #include "internal.h"
57 #ifndef arch_mmap_check
58 #define arch_mmap_check(addr, len, flags) (0)
59 #endif
61 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
62 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
63 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
64 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
65 #endif
66 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
67 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
68 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
69 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
70 #endif
72 static bool ignore_rlimit_data;
73 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
75 static void unmap_region(struct mm_struct *mm,
76 struct vm_area_struct *vma, struct vm_area_struct *prev,
77 unsigned long start, unsigned long end);
79 /* description of effects of mapping type and prot in current implementation.
80 * this is due to the limited x86 page protection hardware. The expected
81 * behavior is in parens:
83 * map_type prot
84 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC
85 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes
86 * w: (no) no w: (no) no w: (yes) yes w: (no) no
87 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
89 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes
90 * w: (no) no w: (no) no w: (copy) copy w: (no) no
91 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
93 * On arm64, PROT_EXEC has the following behaviour for both MAP_SHARED and
94 * MAP_PRIVATE:
95 * r: (no) no
96 * w: (no) no
97 * x: (yes) yes
99 pgprot_t protection_map[16] __ro_after_init = {
100 __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
101 __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
104 pgprot_t vm_get_page_prot(unsigned long vm_flags)
106 return __pgprot(pgprot_val(protection_map[vm_flags &
107 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
108 pgprot_val(arch_vm_get_page_prot(vm_flags)));
110 EXPORT_SYMBOL(vm_get_page_prot);
112 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
114 return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
117 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
118 void vma_set_page_prot(struct vm_area_struct *vma)
120 unsigned long vm_flags = vma->vm_flags;
121 pgprot_t vm_page_prot;
123 vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
124 if (vma_wants_writenotify(vma, vm_page_prot)) {
125 vm_flags &= ~VM_SHARED;
126 vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
128 /* remove_protection_ptes reads vma->vm_page_prot without mmap_sem */
129 WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
133 * Requires inode->i_mapping->i_mmap_rwsem
135 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
136 struct file *file, struct address_space *mapping)
138 if (vma->vm_flags & VM_DENYWRITE)
139 atomic_inc(&file_inode(file)->i_writecount);
140 if (vma->vm_flags & VM_SHARED)
141 mapping_unmap_writable(mapping);
143 flush_dcache_mmap_lock(mapping);
144 vma_interval_tree_remove(vma, &mapping->i_mmap);
145 flush_dcache_mmap_unlock(mapping);
149 * Unlink a file-based vm structure from its interval tree, to hide
150 * vma from rmap and vmtruncate before freeing its page tables.
152 void unlink_file_vma(struct vm_area_struct *vma)
154 struct file *file = vma->vm_file;
156 if (file) {
157 struct address_space *mapping = file->f_mapping;
158 i_mmap_lock_write(mapping);
159 __remove_shared_vm_struct(vma, file, mapping);
160 i_mmap_unlock_write(mapping);
165 * Close a vm structure and free it, returning the next.
167 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
169 struct vm_area_struct *next = vma->vm_next;
171 might_sleep();
172 if (vma->vm_ops && vma->vm_ops->close)
173 vma->vm_ops->close(vma);
174 if (vma->vm_file)
175 fput(vma->vm_file);
176 mpol_put(vma_policy(vma));
177 kmem_cache_free(vm_area_cachep, vma);
178 return next;
181 static int do_brk_flags(unsigned long addr, unsigned long request, unsigned long flags,
182 struct list_head *uf);
183 SYSCALL_DEFINE1(brk, unsigned long, brk)
185 unsigned long retval;
186 unsigned long newbrk, oldbrk;
187 struct mm_struct *mm = current->mm;
188 struct vm_area_struct *next;
189 unsigned long min_brk;
190 bool populate;
191 LIST_HEAD(uf);
193 if (down_write_killable(&mm->mmap_sem))
194 return -EINTR;
196 #ifdef CONFIG_COMPAT_BRK
198 * CONFIG_COMPAT_BRK can still be overridden by setting
199 * randomize_va_space to 2, which will still cause mm->start_brk
200 * to be arbitrarily shifted
202 if (current->brk_randomized)
203 min_brk = mm->start_brk;
204 else
205 min_brk = mm->end_data;
206 #else
207 min_brk = mm->start_brk;
208 #endif
209 if (brk < min_brk)
210 goto out;
213 * Check against rlimit here. If this check is done later after the test
214 * of oldbrk with newbrk then it can escape the test and let the data
215 * segment grow beyond its set limit the in case where the limit is
216 * not page aligned -Ram Gupta
218 if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
219 mm->end_data, mm->start_data))
220 goto out;
222 newbrk = PAGE_ALIGN(brk);
223 oldbrk = PAGE_ALIGN(mm->brk);
224 if (oldbrk == newbrk)
225 goto set_brk;
227 /* Always allow shrinking brk. */
228 if (brk <= mm->brk) {
229 if (!do_munmap(mm, newbrk, oldbrk-newbrk, &uf))
230 goto set_brk;
231 goto out;
234 /* Check against existing mmap mappings. */
235 next = find_vma(mm, oldbrk);
236 if (next && newbrk + PAGE_SIZE > vm_start_gap(next))
237 goto out;
239 /* Ok, looks good - let it rip. */
240 if (do_brk_flags(oldbrk, newbrk-oldbrk, 0, &uf) < 0)
241 goto out;
243 set_brk:
244 mm->brk = brk;
245 populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
246 up_write(&mm->mmap_sem);
247 userfaultfd_unmap_complete(mm, &uf);
248 if (populate)
249 mm_populate(oldbrk, newbrk - oldbrk);
250 return brk;
252 out:
253 retval = mm->brk;
254 up_write(&mm->mmap_sem);
255 return retval;
258 static long vma_compute_subtree_gap(struct vm_area_struct *vma)
260 unsigned long max, prev_end, subtree_gap;
263 * Note: in the rare case of a VM_GROWSDOWN above a VM_GROWSUP, we
264 * allow two stack_guard_gaps between them here, and when choosing
265 * an unmapped area; whereas when expanding we only require one.
266 * That's a little inconsistent, but keeps the code here simpler.
268 max = vm_start_gap(vma);
269 if (vma->vm_prev) {
270 prev_end = vm_end_gap(vma->vm_prev);
271 if (max > prev_end)
272 max -= prev_end;
273 else
274 max = 0;
276 if (vma->vm_rb.rb_left) {
277 subtree_gap = rb_entry(vma->vm_rb.rb_left,
278 struct vm_area_struct, vm_rb)->rb_subtree_gap;
279 if (subtree_gap > max)
280 max = subtree_gap;
282 if (vma->vm_rb.rb_right) {
283 subtree_gap = rb_entry(vma->vm_rb.rb_right,
284 struct vm_area_struct, vm_rb)->rb_subtree_gap;
285 if (subtree_gap > max)
286 max = subtree_gap;
288 return max;
291 #ifdef CONFIG_DEBUG_VM_RB
292 static int browse_rb(struct mm_struct *mm)
294 struct rb_root *root = &mm->mm_rb;
295 int i = 0, j, bug = 0;
296 struct rb_node *nd, *pn = NULL;
297 unsigned long prev = 0, pend = 0;
299 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
300 struct vm_area_struct *vma;
301 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
302 if (vma->vm_start < prev) {
303 pr_emerg("vm_start %lx < prev %lx\n",
304 vma->vm_start, prev);
305 bug = 1;
307 if (vma->vm_start < pend) {
308 pr_emerg("vm_start %lx < pend %lx\n",
309 vma->vm_start, pend);
310 bug = 1;
312 if (vma->vm_start > vma->vm_end) {
313 pr_emerg("vm_start %lx > vm_end %lx\n",
314 vma->vm_start, vma->vm_end);
315 bug = 1;
317 spin_lock(&mm->page_table_lock);
318 if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
319 pr_emerg("free gap %lx, correct %lx\n",
320 vma->rb_subtree_gap,
321 vma_compute_subtree_gap(vma));
322 bug = 1;
324 spin_unlock(&mm->page_table_lock);
325 i++;
326 pn = nd;
327 prev = vma->vm_start;
328 pend = vma->vm_end;
330 j = 0;
331 for (nd = pn; nd; nd = rb_prev(nd))
332 j++;
333 if (i != j) {
334 pr_emerg("backwards %d, forwards %d\n", j, i);
335 bug = 1;
337 return bug ? -1 : i;
340 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
342 struct rb_node *nd;
344 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
345 struct vm_area_struct *vma;
346 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
347 VM_BUG_ON_VMA(vma != ignore &&
348 vma->rb_subtree_gap != vma_compute_subtree_gap(vma),
349 vma);
353 static void validate_mm(struct mm_struct *mm)
355 int bug = 0;
356 int i = 0;
357 unsigned long highest_address = 0;
358 struct vm_area_struct *vma = mm->mmap;
360 while (vma) {
361 struct anon_vma *anon_vma = vma->anon_vma;
362 struct anon_vma_chain *avc;
364 if (anon_vma) {
365 anon_vma_lock_read(anon_vma);
366 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
367 anon_vma_interval_tree_verify(avc);
368 anon_vma_unlock_read(anon_vma);
371 highest_address = vm_end_gap(vma);
372 vma = vma->vm_next;
373 i++;
375 if (i != mm->map_count) {
376 pr_emerg("map_count %d vm_next %d\n", mm->map_count, i);
377 bug = 1;
379 if (highest_address != mm->highest_vm_end) {
380 pr_emerg("mm->highest_vm_end %lx, found %lx\n",
381 mm->highest_vm_end, highest_address);
382 bug = 1;
384 i = browse_rb(mm);
385 if (i != mm->map_count) {
386 if (i != -1)
387 pr_emerg("map_count %d rb %d\n", mm->map_count, i);
388 bug = 1;
390 VM_BUG_ON_MM(bug, mm);
392 #else
393 #define validate_mm_rb(root, ignore) do { } while (0)
394 #define validate_mm(mm) do { } while (0)
395 #endif
397 RB_DECLARE_CALLBACKS(static, vma_gap_callbacks, struct vm_area_struct, vm_rb,
398 unsigned long, rb_subtree_gap, vma_compute_subtree_gap)
401 * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
402 * vma->vm_prev->vm_end values changed, without modifying the vma's position
403 * in the rbtree.
405 static void vma_gap_update(struct vm_area_struct *vma)
408 * As it turns out, RB_DECLARE_CALLBACKS() already created a callback
409 * function that does exacltly what we want.
411 vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
414 static inline void vma_rb_insert(struct vm_area_struct *vma,
415 struct rb_root *root)
417 /* All rb_subtree_gap values must be consistent prior to insertion */
418 validate_mm_rb(root, NULL);
420 rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
423 static void __vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
426 * Note rb_erase_augmented is a fairly large inline function,
427 * so make sure we instantiate it only once with our desired
428 * augmented rbtree callbacks.
430 rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
433 static __always_inline void vma_rb_erase_ignore(struct vm_area_struct *vma,
434 struct rb_root *root,
435 struct vm_area_struct *ignore)
438 * All rb_subtree_gap values must be consistent prior to erase,
439 * with the possible exception of the "next" vma being erased if
440 * next->vm_start was reduced.
442 validate_mm_rb(root, ignore);
444 __vma_rb_erase(vma, root);
447 static __always_inline void vma_rb_erase(struct vm_area_struct *vma,
448 struct rb_root *root)
451 * All rb_subtree_gap values must be consistent prior to erase,
452 * with the possible exception of the vma being erased.
454 validate_mm_rb(root, vma);
456 __vma_rb_erase(vma, root);
460 * vma has some anon_vma assigned, and is already inserted on that
461 * anon_vma's interval trees.
463 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
464 * vma must be removed from the anon_vma's interval trees using
465 * anon_vma_interval_tree_pre_update_vma().
467 * After the update, the vma will be reinserted using
468 * anon_vma_interval_tree_post_update_vma().
470 * The entire update must be protected by exclusive mmap_sem and by
471 * the root anon_vma's mutex.
473 static inline void
474 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
476 struct anon_vma_chain *avc;
478 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
479 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
482 static inline void
483 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
485 struct anon_vma_chain *avc;
487 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
488 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
491 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
492 unsigned long end, struct vm_area_struct **pprev,
493 struct rb_node ***rb_link, struct rb_node **rb_parent)
495 struct rb_node **__rb_link, *__rb_parent, *rb_prev;
497 __rb_link = &mm->mm_rb.rb_node;
498 rb_prev = __rb_parent = NULL;
500 while (*__rb_link) {
501 struct vm_area_struct *vma_tmp;
503 __rb_parent = *__rb_link;
504 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
506 if (vma_tmp->vm_end > addr) {
507 /* Fail if an existing vma overlaps the area */
508 if (vma_tmp->vm_start < end)
509 return -ENOMEM;
510 __rb_link = &__rb_parent->rb_left;
511 } else {
512 rb_prev = __rb_parent;
513 __rb_link = &__rb_parent->rb_right;
517 *pprev = NULL;
518 if (rb_prev)
519 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
520 *rb_link = __rb_link;
521 *rb_parent = __rb_parent;
522 return 0;
525 static unsigned long count_vma_pages_range(struct mm_struct *mm,
526 unsigned long addr, unsigned long end)
528 unsigned long nr_pages = 0;
529 struct vm_area_struct *vma;
531 /* Find first overlaping mapping */
532 vma = find_vma_intersection(mm, addr, end);
533 if (!vma)
534 return 0;
536 nr_pages = (min(end, vma->vm_end) -
537 max(addr, vma->vm_start)) >> PAGE_SHIFT;
539 /* Iterate over the rest of the overlaps */
540 for (vma = vma->vm_next; vma; vma = vma->vm_next) {
541 unsigned long overlap_len;
543 if (vma->vm_start > end)
544 break;
546 overlap_len = min(end, vma->vm_end) - vma->vm_start;
547 nr_pages += overlap_len >> PAGE_SHIFT;
550 return nr_pages;
553 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
554 struct rb_node **rb_link, struct rb_node *rb_parent)
556 /* Update tracking information for the gap following the new vma. */
557 if (vma->vm_next)
558 vma_gap_update(vma->vm_next);
559 else
560 mm->highest_vm_end = vm_end_gap(vma);
563 * vma->vm_prev wasn't known when we followed the rbtree to find the
564 * correct insertion point for that vma. As a result, we could not
565 * update the vma vm_rb parents rb_subtree_gap values on the way down.
566 * So, we first insert the vma with a zero rb_subtree_gap value
567 * (to be consistent with what we did on the way down), and then
568 * immediately update the gap to the correct value. Finally we
569 * rebalance the rbtree after all augmented values have been set.
571 rb_link_node(&vma->vm_rb, rb_parent, rb_link);
572 vma->rb_subtree_gap = 0;
573 vma_gap_update(vma);
574 vma_rb_insert(vma, &mm->mm_rb);
577 static void __vma_link_file(struct vm_area_struct *vma)
579 struct file *file;
581 file = vma->vm_file;
582 if (file) {
583 struct address_space *mapping = file->f_mapping;
585 if (vma->vm_flags & VM_DENYWRITE)
586 atomic_dec(&file_inode(file)->i_writecount);
587 if (vma->vm_flags & VM_SHARED)
588 atomic_inc(&mapping->i_mmap_writable);
590 flush_dcache_mmap_lock(mapping);
591 vma_interval_tree_insert(vma, &mapping->i_mmap);
592 flush_dcache_mmap_unlock(mapping);
596 static void
597 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
598 struct vm_area_struct *prev, struct rb_node **rb_link,
599 struct rb_node *rb_parent)
601 __vma_link_list(mm, vma, prev, rb_parent);
602 __vma_link_rb(mm, vma, rb_link, rb_parent);
605 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
606 struct vm_area_struct *prev, struct rb_node **rb_link,
607 struct rb_node *rb_parent)
609 struct address_space *mapping = NULL;
611 if (vma->vm_file) {
612 mapping = vma->vm_file->f_mapping;
613 i_mmap_lock_write(mapping);
616 __vma_link(mm, vma, prev, rb_link, rb_parent);
617 __vma_link_file(vma);
619 if (mapping)
620 i_mmap_unlock_write(mapping);
622 mm->map_count++;
623 validate_mm(mm);
627 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
628 * mm's list and rbtree. It has already been inserted into the interval tree.
630 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
632 struct vm_area_struct *prev;
633 struct rb_node **rb_link, *rb_parent;
635 if (find_vma_links(mm, vma->vm_start, vma->vm_end,
636 &prev, &rb_link, &rb_parent))
637 BUG();
638 __vma_link(mm, vma, prev, rb_link, rb_parent);
639 mm->map_count++;
642 static __always_inline void __vma_unlink_common(struct mm_struct *mm,
643 struct vm_area_struct *vma,
644 struct vm_area_struct *prev,
645 bool has_prev,
646 struct vm_area_struct *ignore)
648 struct vm_area_struct *next;
650 vma_rb_erase_ignore(vma, &mm->mm_rb, ignore);
651 next = vma->vm_next;
652 if (has_prev)
653 prev->vm_next = next;
654 else {
655 prev = vma->vm_prev;
656 if (prev)
657 prev->vm_next = next;
658 else
659 mm->mmap = next;
661 if (next)
662 next->vm_prev = prev;
664 /* Kill the cache */
665 vmacache_invalidate(mm);
668 static inline void __vma_unlink_prev(struct mm_struct *mm,
669 struct vm_area_struct *vma,
670 struct vm_area_struct *prev)
672 __vma_unlink_common(mm, vma, prev, true, vma);
676 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
677 * is already present in an i_mmap tree without adjusting the tree.
678 * The following helper function should be used when such adjustments
679 * are necessary. The "insert" vma (if any) is to be inserted
680 * before we drop the necessary locks.
682 int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
683 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
684 struct vm_area_struct *expand)
686 struct mm_struct *mm = vma->vm_mm;
687 struct vm_area_struct *next = vma->vm_next, *orig_vma = vma;
688 struct address_space *mapping = NULL;
689 struct rb_root_cached *root = NULL;
690 struct anon_vma *anon_vma = NULL;
691 struct file *file = vma->vm_file;
692 bool start_changed = false, end_changed = false;
693 long adjust_next = 0;
694 int remove_next = 0;
696 if (next && !insert) {
697 struct vm_area_struct *exporter = NULL, *importer = NULL;
699 if (end >= next->vm_end) {
701 * vma expands, overlapping all the next, and
702 * perhaps the one after too (mprotect case 6).
703 * The only other cases that gets here are
704 * case 1, case 7 and case 8.
706 if (next == expand) {
708 * The only case where we don't expand "vma"
709 * and we expand "next" instead is case 8.
711 VM_WARN_ON(end != next->vm_end);
713 * remove_next == 3 means we're
714 * removing "vma" and that to do so we
715 * swapped "vma" and "next".
717 remove_next = 3;
718 VM_WARN_ON(file != next->vm_file);
719 swap(vma, next);
720 } else {
721 VM_WARN_ON(expand != vma);
723 * case 1, 6, 7, remove_next == 2 is case 6,
724 * remove_next == 1 is case 1 or 7.
726 remove_next = 1 + (end > next->vm_end);
727 VM_WARN_ON(remove_next == 2 &&
728 end != next->vm_next->vm_end);
729 VM_WARN_ON(remove_next == 1 &&
730 end != next->vm_end);
731 /* trim end to next, for case 6 first pass */
732 end = next->vm_end;
735 exporter = next;
736 importer = vma;
739 * If next doesn't have anon_vma, import from vma after
740 * next, if the vma overlaps with it.
742 if (remove_next == 2 && !next->anon_vma)
743 exporter = next->vm_next;
745 } else if (end > next->vm_start) {
747 * vma expands, overlapping part of the next:
748 * mprotect case 5 shifting the boundary up.
750 adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
751 exporter = next;
752 importer = vma;
753 VM_WARN_ON(expand != importer);
754 } else if (end < vma->vm_end) {
756 * vma shrinks, and !insert tells it's not
757 * split_vma inserting another: so it must be
758 * mprotect case 4 shifting the boundary down.
760 adjust_next = -((vma->vm_end - end) >> PAGE_SHIFT);
761 exporter = vma;
762 importer = next;
763 VM_WARN_ON(expand != importer);
767 * Easily overlooked: when mprotect shifts the boundary,
768 * make sure the expanding vma has anon_vma set if the
769 * shrinking vma had, to cover any anon pages imported.
771 if (exporter && exporter->anon_vma && !importer->anon_vma) {
772 int error;
774 importer->anon_vma = exporter->anon_vma;
775 error = anon_vma_clone(importer, exporter);
776 if (error)
777 return error;
780 again:
781 vma_adjust_trans_huge(orig_vma, start, end, adjust_next);
783 if (file) {
784 mapping = file->f_mapping;
785 root = &mapping->i_mmap;
786 uprobe_munmap(vma, vma->vm_start, vma->vm_end);
788 if (adjust_next)
789 uprobe_munmap(next, next->vm_start, next->vm_end);
791 i_mmap_lock_write(mapping);
792 if (insert) {
794 * Put into interval tree now, so instantiated pages
795 * are visible to arm/parisc __flush_dcache_page
796 * throughout; but we cannot insert into address
797 * space until vma start or end is updated.
799 __vma_link_file(insert);
803 anon_vma = vma->anon_vma;
804 if (!anon_vma && adjust_next)
805 anon_vma = next->anon_vma;
806 if (anon_vma) {
807 VM_WARN_ON(adjust_next && next->anon_vma &&
808 anon_vma != next->anon_vma);
809 anon_vma_lock_write(anon_vma);
810 anon_vma_interval_tree_pre_update_vma(vma);
811 if (adjust_next)
812 anon_vma_interval_tree_pre_update_vma(next);
815 if (root) {
816 flush_dcache_mmap_lock(mapping);
817 vma_interval_tree_remove(vma, root);
818 if (adjust_next)
819 vma_interval_tree_remove(next, root);
822 if (start != vma->vm_start) {
823 vma->vm_start = start;
824 start_changed = true;
826 if (end != vma->vm_end) {
827 vma->vm_end = end;
828 end_changed = true;
830 vma->vm_pgoff = pgoff;
831 if (adjust_next) {
832 next->vm_start += adjust_next << PAGE_SHIFT;
833 next->vm_pgoff += adjust_next;
836 if (root) {
837 if (adjust_next)
838 vma_interval_tree_insert(next, root);
839 vma_interval_tree_insert(vma, root);
840 flush_dcache_mmap_unlock(mapping);
843 if (remove_next) {
845 * vma_merge has merged next into vma, and needs
846 * us to remove next before dropping the locks.
848 if (remove_next != 3)
849 __vma_unlink_prev(mm, next, vma);
850 else
852 * vma is not before next if they've been
853 * swapped.
855 * pre-swap() next->vm_start was reduced so
856 * tell validate_mm_rb to ignore pre-swap()
857 * "next" (which is stored in post-swap()
858 * "vma").
860 __vma_unlink_common(mm, next, NULL, false, vma);
861 if (file)
862 __remove_shared_vm_struct(next, file, mapping);
863 } else if (insert) {
865 * split_vma has split insert from vma, and needs
866 * us to insert it before dropping the locks
867 * (it may either follow vma or precede it).
869 __insert_vm_struct(mm, insert);
870 } else {
871 if (start_changed)
872 vma_gap_update(vma);
873 if (end_changed) {
874 if (!next)
875 mm->highest_vm_end = vm_end_gap(vma);
876 else if (!adjust_next)
877 vma_gap_update(next);
881 if (anon_vma) {
882 anon_vma_interval_tree_post_update_vma(vma);
883 if (adjust_next)
884 anon_vma_interval_tree_post_update_vma(next);
885 anon_vma_unlock_write(anon_vma);
887 if (mapping)
888 i_mmap_unlock_write(mapping);
890 if (root) {
891 uprobe_mmap(vma);
893 if (adjust_next)
894 uprobe_mmap(next);
897 if (remove_next) {
898 if (file) {
899 uprobe_munmap(next, next->vm_start, next->vm_end);
900 fput(file);
902 if (next->anon_vma)
903 anon_vma_merge(vma, next);
904 mm->map_count--;
905 mpol_put(vma_policy(next));
906 kmem_cache_free(vm_area_cachep, next);
908 * In mprotect's case 6 (see comments on vma_merge),
909 * we must remove another next too. It would clutter
910 * up the code too much to do both in one go.
912 if (remove_next != 3) {
914 * If "next" was removed and vma->vm_end was
915 * expanded (up) over it, in turn
916 * "next->vm_prev->vm_end" changed and the
917 * "vma->vm_next" gap must be updated.
919 next = vma->vm_next;
920 } else {
922 * For the scope of the comment "next" and
923 * "vma" considered pre-swap(): if "vma" was
924 * removed, next->vm_start was expanded (down)
925 * over it and the "next" gap must be updated.
926 * Because of the swap() the post-swap() "vma"
927 * actually points to pre-swap() "next"
928 * (post-swap() "next" as opposed is now a
929 * dangling pointer).
931 next = vma;
933 if (remove_next == 2) {
934 remove_next = 1;
935 end = next->vm_end;
936 goto again;
938 else if (next)
939 vma_gap_update(next);
940 else {
942 * If remove_next == 2 we obviously can't
943 * reach this path.
945 * If remove_next == 3 we can't reach this
946 * path because pre-swap() next is always not
947 * NULL. pre-swap() "next" is not being
948 * removed and its next->vm_end is not altered
949 * (and furthermore "end" already matches
950 * next->vm_end in remove_next == 3).
952 * We reach this only in the remove_next == 1
953 * case if the "next" vma that was removed was
954 * the highest vma of the mm. However in such
955 * case next->vm_end == "end" and the extended
956 * "vma" has vma->vm_end == next->vm_end so
957 * mm->highest_vm_end doesn't need any update
958 * in remove_next == 1 case.
960 VM_WARN_ON(mm->highest_vm_end != vm_end_gap(vma));
963 if (insert && file)
964 uprobe_mmap(insert);
966 validate_mm(mm);
968 return 0;
972 * If the vma has a ->close operation then the driver probably needs to release
973 * per-vma resources, so we don't attempt to merge those.
975 static inline int is_mergeable_vma(struct vm_area_struct *vma,
976 struct file *file, unsigned long vm_flags,
977 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
980 * VM_SOFTDIRTY should not prevent from VMA merging, if we
981 * match the flags but dirty bit -- the caller should mark
982 * merged VMA as dirty. If dirty bit won't be excluded from
983 * comparison, we increase pressue on the memory system forcing
984 * the kernel to generate new VMAs when old one could be
985 * extended instead.
987 if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
988 return 0;
989 if (vma->vm_file != file)
990 return 0;
991 if (vma->vm_ops && vma->vm_ops->close)
992 return 0;
993 if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
994 return 0;
995 return 1;
998 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
999 struct anon_vma *anon_vma2,
1000 struct vm_area_struct *vma)
1003 * The list_is_singular() test is to avoid merging VMA cloned from
1004 * parents. This can improve scalability caused by anon_vma lock.
1006 if ((!anon_vma1 || !anon_vma2) && (!vma ||
1007 list_is_singular(&vma->anon_vma_chain)))
1008 return 1;
1009 return anon_vma1 == anon_vma2;
1013 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1014 * in front of (at a lower virtual address and file offset than) the vma.
1016 * We cannot merge two vmas if they have differently assigned (non-NULL)
1017 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1019 * We don't check here for the merged mmap wrapping around the end of pagecache
1020 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
1021 * wrap, nor mmaps which cover the final page at index -1UL.
1023 static int
1024 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
1025 struct anon_vma *anon_vma, struct file *file,
1026 pgoff_t vm_pgoff,
1027 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1029 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1030 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1031 if (vma->vm_pgoff == vm_pgoff)
1032 return 1;
1034 return 0;
1038 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1039 * beyond (at a higher virtual address and file offset than) the vma.
1041 * We cannot merge two vmas if they have differently assigned (non-NULL)
1042 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1044 static int
1045 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
1046 struct anon_vma *anon_vma, struct file *file,
1047 pgoff_t vm_pgoff,
1048 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1050 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1051 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1052 pgoff_t vm_pglen;
1053 vm_pglen = vma_pages(vma);
1054 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
1055 return 1;
1057 return 0;
1061 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
1062 * whether that can be merged with its predecessor or its successor.
1063 * Or both (it neatly fills a hole).
1065 * In most cases - when called for mmap, brk or mremap - [addr,end) is
1066 * certain not to be mapped by the time vma_merge is called; but when
1067 * called for mprotect, it is certain to be already mapped (either at
1068 * an offset within prev, or at the start of next), and the flags of
1069 * this area are about to be changed to vm_flags - and the no-change
1070 * case has already been eliminated.
1072 * The following mprotect cases have to be considered, where AAAA is
1073 * the area passed down from mprotect_fixup, never extending beyond one
1074 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
1076 * AAAA AAAA AAAA AAAA
1077 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX
1078 * cannot merge might become might become might become
1079 * PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or
1080 * mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or
1081 * mremap move: PPPPXXXXXXXX 8
1082 * AAAA
1083 * PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN
1084 * might become case 1 below case 2 below case 3 below
1086 * It is important for case 8 that the the vma NNNN overlapping the
1087 * region AAAA is never going to extended over XXXX. Instead XXXX must
1088 * be extended in region AAAA and NNNN must be removed. This way in
1089 * all cases where vma_merge succeeds, the moment vma_adjust drops the
1090 * rmap_locks, the properties of the merged vma will be already
1091 * correct for the whole merged range. Some of those properties like
1092 * vm_page_prot/vm_flags may be accessed by rmap_walks and they must
1093 * be correct for the whole merged range immediately after the
1094 * rmap_locks are released. Otherwise if XXXX would be removed and
1095 * NNNN would be extended over the XXXX range, remove_migration_ptes
1096 * or other rmap walkers (if working on addresses beyond the "end"
1097 * parameter) may establish ptes with the wrong permissions of NNNN
1098 * instead of the right permissions of XXXX.
1100 struct vm_area_struct *vma_merge(struct mm_struct *mm,
1101 struct vm_area_struct *prev, unsigned long addr,
1102 unsigned long end, unsigned long vm_flags,
1103 struct anon_vma *anon_vma, struct file *file,
1104 pgoff_t pgoff, struct mempolicy *policy,
1105 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1107 pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1108 struct vm_area_struct *area, *next;
1109 int err;
1112 * We later require that vma->vm_flags == vm_flags,
1113 * so this tests vma->vm_flags & VM_SPECIAL, too.
1115 if (vm_flags & VM_SPECIAL)
1116 return NULL;
1118 if (prev)
1119 next = prev->vm_next;
1120 else
1121 next = mm->mmap;
1122 area = next;
1123 if (area && area->vm_end == end) /* cases 6, 7, 8 */
1124 next = next->vm_next;
1126 /* verify some invariant that must be enforced by the caller */
1127 VM_WARN_ON(prev && addr <= prev->vm_start);
1128 VM_WARN_ON(area && end > area->vm_end);
1129 VM_WARN_ON(addr >= end);
1132 * Can it merge with the predecessor?
1134 if (prev && prev->vm_end == addr &&
1135 mpol_equal(vma_policy(prev), policy) &&
1136 can_vma_merge_after(prev, vm_flags,
1137 anon_vma, file, pgoff,
1138 vm_userfaultfd_ctx)) {
1140 * OK, it can. Can we now merge in the successor as well?
1142 if (next && end == next->vm_start &&
1143 mpol_equal(policy, vma_policy(next)) &&
1144 can_vma_merge_before(next, vm_flags,
1145 anon_vma, file,
1146 pgoff+pglen,
1147 vm_userfaultfd_ctx) &&
1148 is_mergeable_anon_vma(prev->anon_vma,
1149 next->anon_vma, NULL)) {
1150 /* cases 1, 6 */
1151 err = __vma_adjust(prev, prev->vm_start,
1152 next->vm_end, prev->vm_pgoff, NULL,
1153 prev);
1154 } else /* cases 2, 5, 7 */
1155 err = __vma_adjust(prev, prev->vm_start,
1156 end, prev->vm_pgoff, NULL, prev);
1157 if (err)
1158 return NULL;
1159 khugepaged_enter_vma_merge(prev, vm_flags);
1160 return prev;
1164 * Can this new request be merged in front of next?
1166 if (next && end == next->vm_start &&
1167 mpol_equal(policy, vma_policy(next)) &&
1168 can_vma_merge_before(next, vm_flags,
1169 anon_vma, file, pgoff+pglen,
1170 vm_userfaultfd_ctx)) {
1171 if (prev && addr < prev->vm_end) /* case 4 */
1172 err = __vma_adjust(prev, prev->vm_start,
1173 addr, prev->vm_pgoff, NULL, next);
1174 else { /* cases 3, 8 */
1175 err = __vma_adjust(area, addr, next->vm_end,
1176 next->vm_pgoff - pglen, NULL, next);
1178 * In case 3 area is already equal to next and
1179 * this is a noop, but in case 8 "area" has
1180 * been removed and next was expanded over it.
1182 area = next;
1184 if (err)
1185 return NULL;
1186 khugepaged_enter_vma_merge(area, vm_flags);
1187 return area;
1190 return NULL;
1194 * Rough compatbility check to quickly see if it's even worth looking
1195 * at sharing an anon_vma.
1197 * They need to have the same vm_file, and the flags can only differ
1198 * in things that mprotect may change.
1200 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1201 * we can merge the two vma's. For example, we refuse to merge a vma if
1202 * there is a vm_ops->close() function, because that indicates that the
1203 * driver is doing some kind of reference counting. But that doesn't
1204 * really matter for the anon_vma sharing case.
1206 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1208 return a->vm_end == b->vm_start &&
1209 mpol_equal(vma_policy(a), vma_policy(b)) &&
1210 a->vm_file == b->vm_file &&
1211 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC|VM_SOFTDIRTY)) &&
1212 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1216 * Do some basic sanity checking to see if we can re-use the anon_vma
1217 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1218 * the same as 'old', the other will be the new one that is trying
1219 * to share the anon_vma.
1221 * NOTE! This runs with mm_sem held for reading, so it is possible that
1222 * the anon_vma of 'old' is concurrently in the process of being set up
1223 * by another page fault trying to merge _that_. But that's ok: if it
1224 * is being set up, that automatically means that it will be a singleton
1225 * acceptable for merging, so we can do all of this optimistically. But
1226 * we do that READ_ONCE() to make sure that we never re-load the pointer.
1228 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1229 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1230 * is to return an anon_vma that is "complex" due to having gone through
1231 * a fork).
1233 * We also make sure that the two vma's are compatible (adjacent,
1234 * and with the same memory policies). That's all stable, even with just
1235 * a read lock on the mm_sem.
1237 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1239 if (anon_vma_compatible(a, b)) {
1240 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1242 if (anon_vma && list_is_singular(&old->anon_vma_chain))
1243 return anon_vma;
1245 return NULL;
1249 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1250 * neighbouring vmas for a suitable anon_vma, before it goes off
1251 * to allocate a new anon_vma. It checks because a repetitive
1252 * sequence of mprotects and faults may otherwise lead to distinct
1253 * anon_vmas being allocated, preventing vma merge in subsequent
1254 * mprotect.
1256 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1258 struct anon_vma *anon_vma;
1259 struct vm_area_struct *near;
1261 near = vma->vm_next;
1262 if (!near)
1263 goto try_prev;
1265 anon_vma = reusable_anon_vma(near, vma, near);
1266 if (anon_vma)
1267 return anon_vma;
1268 try_prev:
1269 near = vma->vm_prev;
1270 if (!near)
1271 goto none;
1273 anon_vma = reusable_anon_vma(near, near, vma);
1274 if (anon_vma)
1275 return anon_vma;
1276 none:
1278 * There's no absolute need to look only at touching neighbours:
1279 * we could search further afield for "compatible" anon_vmas.
1280 * But it would probably just be a waste of time searching,
1281 * or lead to too many vmas hanging off the same anon_vma.
1282 * We're trying to allow mprotect remerging later on,
1283 * not trying to minimize memory used for anon_vmas.
1285 return NULL;
1289 * If a hint addr is less than mmap_min_addr change hint to be as
1290 * low as possible but still greater than mmap_min_addr
1292 static inline unsigned long round_hint_to_min(unsigned long hint)
1294 hint &= PAGE_MASK;
1295 if (((void *)hint != NULL) &&
1296 (hint < mmap_min_addr))
1297 return PAGE_ALIGN(mmap_min_addr);
1298 return hint;
1301 static inline int mlock_future_check(struct mm_struct *mm,
1302 unsigned long flags,
1303 unsigned long len)
1305 unsigned long locked, lock_limit;
1307 /* mlock MCL_FUTURE? */
1308 if (flags & VM_LOCKED) {
1309 locked = len >> PAGE_SHIFT;
1310 locked += mm->locked_vm;
1311 lock_limit = rlimit(RLIMIT_MEMLOCK);
1312 lock_limit >>= PAGE_SHIFT;
1313 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1314 return -EAGAIN;
1316 return 0;
1319 static inline u64 file_mmap_size_max(struct file *file, struct inode *inode)
1321 if (S_ISREG(inode->i_mode))
1322 return MAX_LFS_FILESIZE;
1324 if (S_ISBLK(inode->i_mode))
1325 return MAX_LFS_FILESIZE;
1327 /* Special "we do even unsigned file positions" case */
1328 if (file->f_mode & FMODE_UNSIGNED_OFFSET)
1329 return 0;
1331 /* Yes, random drivers might want more. But I'm tired of buggy drivers */
1332 return ULONG_MAX;
1335 static inline bool file_mmap_ok(struct file *file, struct inode *inode,
1336 unsigned long pgoff, unsigned long len)
1338 u64 maxsize = file_mmap_size_max(file, inode);
1340 if (maxsize && len > maxsize)
1341 return false;
1342 maxsize -= len;
1343 if (pgoff > maxsize >> PAGE_SHIFT)
1344 return false;
1345 return true;
1349 * The caller must hold down_write(&current->mm->mmap_sem).
1351 unsigned long do_mmap(struct file *file, unsigned long addr,
1352 unsigned long len, unsigned long prot,
1353 unsigned long flags, vm_flags_t vm_flags,
1354 unsigned long pgoff, unsigned long *populate,
1355 struct list_head *uf)
1357 struct mm_struct *mm = current->mm;
1358 int pkey = 0;
1360 *populate = 0;
1362 if (!len)
1363 return -EINVAL;
1366 * Does the application expect PROT_READ to imply PROT_EXEC?
1368 * (the exception is when the underlying filesystem is noexec
1369 * mounted, in which case we dont add PROT_EXEC.)
1371 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1372 if (!(file && path_noexec(&file->f_path)))
1373 prot |= PROT_EXEC;
1375 if (!(flags & MAP_FIXED))
1376 addr = round_hint_to_min(addr);
1378 /* Careful about overflows.. */
1379 len = PAGE_ALIGN(len);
1380 if (!len)
1381 return -ENOMEM;
1383 /* offset overflow? */
1384 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1385 return -EOVERFLOW;
1387 /* Too many mappings? */
1388 if (mm->map_count > sysctl_max_map_count)
1389 return -ENOMEM;
1391 /* Obtain the address to map to. we verify (or select) it and ensure
1392 * that it represents a valid section of the address space.
1394 addr = get_unmapped_area(file, addr, len, pgoff, flags);
1395 if (offset_in_page(addr))
1396 return addr;
1398 if (prot == PROT_EXEC) {
1399 pkey = execute_only_pkey(mm);
1400 if (pkey < 0)
1401 pkey = 0;
1404 /* Do simple checking here so the lower-level routines won't have
1405 * to. we assume access permissions have been handled by the open
1406 * of the memory object, so we don't do any here.
1408 vm_flags |= calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
1409 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1411 if (flags & MAP_LOCKED)
1412 if (!can_do_mlock())
1413 return -EPERM;
1415 if (mlock_future_check(mm, vm_flags, len))
1416 return -EAGAIN;
1418 if (file) {
1419 struct inode *inode = file_inode(file);
1421 if (!file_mmap_ok(file, inode, pgoff, len))
1422 return -EOVERFLOW;
1424 switch (flags & MAP_TYPE) {
1425 case MAP_SHARED:
1426 if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1427 return -EACCES;
1430 * Make sure we don't allow writing to an append-only
1431 * file..
1433 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1434 return -EACCES;
1437 * Make sure there are no mandatory locks on the file.
1439 if (locks_verify_locked(file))
1440 return -EAGAIN;
1442 vm_flags |= VM_SHARED | VM_MAYSHARE;
1443 if (!(file->f_mode & FMODE_WRITE))
1444 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1446 /* fall through */
1447 case MAP_PRIVATE:
1448 if (!(file->f_mode & FMODE_READ))
1449 return -EACCES;
1450 if (path_noexec(&file->f_path)) {
1451 if (vm_flags & VM_EXEC)
1452 return -EPERM;
1453 vm_flags &= ~VM_MAYEXEC;
1456 if (!file->f_op->mmap)
1457 return -ENODEV;
1458 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1459 return -EINVAL;
1460 break;
1462 default:
1463 return -EINVAL;
1465 } else {
1466 switch (flags & MAP_TYPE) {
1467 case MAP_SHARED:
1468 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1469 return -EINVAL;
1471 * Ignore pgoff.
1473 pgoff = 0;
1474 vm_flags |= VM_SHARED | VM_MAYSHARE;
1475 break;
1476 case MAP_PRIVATE:
1478 * Set pgoff according to addr for anon_vma.
1480 pgoff = addr >> PAGE_SHIFT;
1481 break;
1482 default:
1483 return -EINVAL;
1488 * Set 'VM_NORESERVE' if we should not account for the
1489 * memory use of this mapping.
1491 if (flags & MAP_NORESERVE) {
1492 /* We honor MAP_NORESERVE if allowed to overcommit */
1493 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1494 vm_flags |= VM_NORESERVE;
1496 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1497 if (file && is_file_hugepages(file))
1498 vm_flags |= VM_NORESERVE;
1501 addr = mmap_region(file, addr, len, vm_flags, pgoff, uf);
1502 if (!IS_ERR_VALUE(addr) &&
1503 ((vm_flags & VM_LOCKED) ||
1504 (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1505 *populate = len;
1506 return addr;
1509 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1510 unsigned long, prot, unsigned long, flags,
1511 unsigned long, fd, unsigned long, pgoff)
1513 struct file *file = NULL;
1514 unsigned long retval;
1516 if (!(flags & MAP_ANONYMOUS)) {
1517 audit_mmap_fd(fd, flags);
1518 file = fget(fd);
1519 if (!file)
1520 return -EBADF;
1521 if (is_file_hugepages(file))
1522 len = ALIGN(len, huge_page_size(hstate_file(file)));
1523 retval = -EINVAL;
1524 if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file)))
1525 goto out_fput;
1526 } else if (flags & MAP_HUGETLB) {
1527 struct user_struct *user = NULL;
1528 struct hstate *hs;
1530 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1531 if (!hs)
1532 return -EINVAL;
1534 len = ALIGN(len, huge_page_size(hs));
1536 * VM_NORESERVE is used because the reservations will be
1537 * taken when vm_ops->mmap() is called
1538 * A dummy user value is used because we are not locking
1539 * memory so no accounting is necessary
1541 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1542 VM_NORESERVE,
1543 &user, HUGETLB_ANONHUGE_INODE,
1544 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1545 if (IS_ERR(file))
1546 return PTR_ERR(file);
1549 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1551 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1552 out_fput:
1553 if (file)
1554 fput(file);
1555 return retval;
1558 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1559 struct mmap_arg_struct {
1560 unsigned long addr;
1561 unsigned long len;
1562 unsigned long prot;
1563 unsigned long flags;
1564 unsigned long fd;
1565 unsigned long offset;
1568 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1570 struct mmap_arg_struct a;
1572 if (copy_from_user(&a, arg, sizeof(a)))
1573 return -EFAULT;
1574 if (offset_in_page(a.offset))
1575 return -EINVAL;
1577 return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1578 a.offset >> PAGE_SHIFT);
1580 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1583 * Some shared mappigns will want the pages marked read-only
1584 * to track write events. If so, we'll downgrade vm_page_prot
1585 * to the private version (using protection_map[] without the
1586 * VM_SHARED bit).
1588 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
1590 vm_flags_t vm_flags = vma->vm_flags;
1591 const struct vm_operations_struct *vm_ops = vma->vm_ops;
1593 /* If it was private or non-writable, the write bit is already clear */
1594 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1595 return 0;
1597 /* The backer wishes to know when pages are first written to? */
1598 if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite))
1599 return 1;
1601 /* The open routine did something to the protections that pgprot_modify
1602 * won't preserve? */
1603 if (pgprot_val(vm_page_prot) !=
1604 pgprot_val(vm_pgprot_modify(vm_page_prot, vm_flags)))
1605 return 0;
1607 /* Do we need to track softdirty? */
1608 if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY))
1609 return 1;
1611 /* Specialty mapping? */
1612 if (vm_flags & VM_PFNMAP)
1613 return 0;
1615 /* Can the mapping track the dirty pages? */
1616 return vma->vm_file && vma->vm_file->f_mapping &&
1617 mapping_cap_account_dirty(vma->vm_file->f_mapping);
1621 * We account for memory if it's a private writeable mapping,
1622 * not hugepages and VM_NORESERVE wasn't set.
1624 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1627 * hugetlb has its own accounting separate from the core VM
1628 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1630 if (file && is_file_hugepages(file))
1631 return 0;
1633 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1636 unsigned long mmap_region(struct file *file, unsigned long addr,
1637 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
1638 struct list_head *uf)
1640 struct mm_struct *mm = current->mm;
1641 struct vm_area_struct *vma, *prev;
1642 int error;
1643 struct rb_node **rb_link, *rb_parent;
1644 unsigned long charged = 0;
1646 /* Check against address space limit. */
1647 if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
1648 unsigned long nr_pages;
1651 * MAP_FIXED may remove pages of mappings that intersects with
1652 * requested mapping. Account for the pages it would unmap.
1654 nr_pages = count_vma_pages_range(mm, addr, addr + len);
1656 if (!may_expand_vm(mm, vm_flags,
1657 (len >> PAGE_SHIFT) - nr_pages))
1658 return -ENOMEM;
1661 /* Clear old maps */
1662 while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
1663 &rb_parent)) {
1664 if (do_munmap(mm, addr, len, uf))
1665 return -ENOMEM;
1669 * Private writable mapping: check memory availability
1671 if (accountable_mapping(file, vm_flags)) {
1672 charged = len >> PAGE_SHIFT;
1673 if (security_vm_enough_memory_mm(mm, charged))
1674 return -ENOMEM;
1675 vm_flags |= VM_ACCOUNT;
1679 * Can we just expand an old mapping?
1681 vma = vma_merge(mm, prev, addr, addr + len, vm_flags,
1682 NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX);
1683 if (vma)
1684 goto out;
1687 * Determine the object being mapped and call the appropriate
1688 * specific mapper. the address has already been validated, but
1689 * not unmapped, but the maps are removed from the list.
1691 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1692 if (!vma) {
1693 error = -ENOMEM;
1694 goto unacct_error;
1697 vma->vm_mm = mm;
1698 vma->vm_start = addr;
1699 vma->vm_end = addr + len;
1700 vma->vm_flags = vm_flags;
1701 vma->vm_page_prot = vm_get_page_prot(vm_flags);
1702 vma->vm_pgoff = pgoff;
1703 INIT_LIST_HEAD(&vma->anon_vma_chain);
1705 if (file) {
1706 if (vm_flags & VM_DENYWRITE) {
1707 error = deny_write_access(file);
1708 if (error)
1709 goto free_vma;
1711 if (vm_flags & VM_SHARED) {
1712 error = mapping_map_writable(file->f_mapping);
1713 if (error)
1714 goto allow_write_and_free_vma;
1717 /* ->mmap() can change vma->vm_file, but must guarantee that
1718 * vma_link() below can deny write-access if VM_DENYWRITE is set
1719 * and map writably if VM_SHARED is set. This usually means the
1720 * new file must not have been exposed to user-space, yet.
1722 vma->vm_file = get_file(file);
1723 error = call_mmap(file, vma);
1724 if (error)
1725 goto unmap_and_free_vma;
1727 /* Can addr have changed??
1729 * Answer: Yes, several device drivers can do it in their
1730 * f_op->mmap method. -DaveM
1731 * Bug: If addr is changed, prev, rb_link, rb_parent should
1732 * be updated for vma_link()
1734 WARN_ON_ONCE(addr != vma->vm_start);
1736 addr = vma->vm_start;
1737 vm_flags = vma->vm_flags;
1738 } else if (vm_flags & VM_SHARED) {
1739 error = shmem_zero_setup(vma);
1740 if (error)
1741 goto free_vma;
1744 vma_link(mm, vma, prev, rb_link, rb_parent);
1745 /* Once vma denies write, undo our temporary denial count */
1746 if (file) {
1747 if (vm_flags & VM_SHARED)
1748 mapping_unmap_writable(file->f_mapping);
1749 if (vm_flags & VM_DENYWRITE)
1750 allow_write_access(file);
1752 file = vma->vm_file;
1753 out:
1754 perf_event_mmap(vma);
1756 vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
1757 if (vm_flags & VM_LOCKED) {
1758 if (!((vm_flags & VM_SPECIAL) || is_vm_hugetlb_page(vma) ||
1759 vma == get_gate_vma(current->mm)))
1760 mm->locked_vm += (len >> PAGE_SHIFT);
1761 else
1762 vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
1765 if (file)
1766 uprobe_mmap(vma);
1769 * New (or expanded) vma always get soft dirty status.
1770 * Otherwise user-space soft-dirty page tracker won't
1771 * be able to distinguish situation when vma area unmapped,
1772 * then new mapped in-place (which must be aimed as
1773 * a completely new data area).
1775 vma->vm_flags |= VM_SOFTDIRTY;
1777 vma_set_page_prot(vma);
1779 return addr;
1781 unmap_and_free_vma:
1782 vma->vm_file = NULL;
1783 fput(file);
1785 /* Undo any partial mapping done by a device driver. */
1786 unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1787 charged = 0;
1788 if (vm_flags & VM_SHARED)
1789 mapping_unmap_writable(file->f_mapping);
1790 allow_write_and_free_vma:
1791 if (vm_flags & VM_DENYWRITE)
1792 allow_write_access(file);
1793 free_vma:
1794 kmem_cache_free(vm_area_cachep, vma);
1795 unacct_error:
1796 if (charged)
1797 vm_unacct_memory(charged);
1798 return error;
1801 unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1804 * We implement the search by looking for an rbtree node that
1805 * immediately follows a suitable gap. That is,
1806 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1807 * - gap_end = vma->vm_start >= info->low_limit + length;
1808 * - gap_end - gap_start >= length
1811 struct mm_struct *mm = current->mm;
1812 struct vm_area_struct *vma;
1813 unsigned long length, low_limit, high_limit, gap_start, gap_end;
1815 /* Adjust search length to account for worst case alignment overhead */
1816 length = info->length + info->align_mask;
1817 if (length < info->length)
1818 return -ENOMEM;
1820 /* Adjust search limits by the desired length */
1821 if (info->high_limit < length)
1822 return -ENOMEM;
1823 high_limit = info->high_limit - length;
1825 if (info->low_limit > high_limit)
1826 return -ENOMEM;
1827 low_limit = info->low_limit + length;
1829 /* Check if rbtree root looks promising */
1830 if (RB_EMPTY_ROOT(&mm->mm_rb))
1831 goto check_highest;
1832 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1833 if (vma->rb_subtree_gap < length)
1834 goto check_highest;
1836 while (true) {
1837 /* Visit left subtree if it looks promising */
1838 gap_end = vm_start_gap(vma);
1839 if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1840 struct vm_area_struct *left =
1841 rb_entry(vma->vm_rb.rb_left,
1842 struct vm_area_struct, vm_rb);
1843 if (left->rb_subtree_gap >= length) {
1844 vma = left;
1845 continue;
1849 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
1850 check_current:
1851 /* Check if current node has a suitable gap */
1852 if (gap_start > high_limit)
1853 return -ENOMEM;
1854 if (gap_end >= low_limit &&
1855 gap_end > gap_start && gap_end - gap_start >= length)
1856 goto found;
1858 /* Visit right subtree if it looks promising */
1859 if (vma->vm_rb.rb_right) {
1860 struct vm_area_struct *right =
1861 rb_entry(vma->vm_rb.rb_right,
1862 struct vm_area_struct, vm_rb);
1863 if (right->rb_subtree_gap >= length) {
1864 vma = right;
1865 continue;
1869 /* Go back up the rbtree to find next candidate node */
1870 while (true) {
1871 struct rb_node *prev = &vma->vm_rb;
1872 if (!rb_parent(prev))
1873 goto check_highest;
1874 vma = rb_entry(rb_parent(prev),
1875 struct vm_area_struct, vm_rb);
1876 if (prev == vma->vm_rb.rb_left) {
1877 gap_start = vm_end_gap(vma->vm_prev);
1878 gap_end = vm_start_gap(vma);
1879 goto check_current;
1884 check_highest:
1885 /* Check highest gap, which does not precede any rbtree node */
1886 gap_start = mm->highest_vm_end;
1887 gap_end = ULONG_MAX; /* Only for VM_BUG_ON below */
1888 if (gap_start > high_limit)
1889 return -ENOMEM;
1891 found:
1892 /* We found a suitable gap. Clip it with the original low_limit. */
1893 if (gap_start < info->low_limit)
1894 gap_start = info->low_limit;
1896 /* Adjust gap address to the desired alignment */
1897 gap_start += (info->align_offset - gap_start) & info->align_mask;
1899 VM_BUG_ON(gap_start + info->length > info->high_limit);
1900 VM_BUG_ON(gap_start + info->length > gap_end);
1901 return gap_start;
1904 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1906 struct mm_struct *mm = current->mm;
1907 struct vm_area_struct *vma;
1908 unsigned long length, low_limit, high_limit, gap_start, gap_end;
1910 /* Adjust search length to account for worst case alignment overhead */
1911 length = info->length + info->align_mask;
1912 if (length < info->length)
1913 return -ENOMEM;
1916 * Adjust search limits by the desired length.
1917 * See implementation comment at top of unmapped_area().
1919 gap_end = info->high_limit;
1920 if (gap_end < length)
1921 return -ENOMEM;
1922 high_limit = gap_end - length;
1924 if (info->low_limit > high_limit)
1925 return -ENOMEM;
1926 low_limit = info->low_limit + length;
1928 /* Check highest gap, which does not precede any rbtree node */
1929 gap_start = mm->highest_vm_end;
1930 if (gap_start <= high_limit)
1931 goto found_highest;
1933 /* Check if rbtree root looks promising */
1934 if (RB_EMPTY_ROOT(&mm->mm_rb))
1935 return -ENOMEM;
1936 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1937 if (vma->rb_subtree_gap < length)
1938 return -ENOMEM;
1940 while (true) {
1941 /* Visit right subtree if it looks promising */
1942 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
1943 if (gap_start <= high_limit && vma->vm_rb.rb_right) {
1944 struct vm_area_struct *right =
1945 rb_entry(vma->vm_rb.rb_right,
1946 struct vm_area_struct, vm_rb);
1947 if (right->rb_subtree_gap >= length) {
1948 vma = right;
1949 continue;
1953 check_current:
1954 /* Check if current node has a suitable gap */
1955 gap_end = vm_start_gap(vma);
1956 if (gap_end < low_limit)
1957 return -ENOMEM;
1958 if (gap_start <= high_limit &&
1959 gap_end > gap_start && gap_end - gap_start >= length)
1960 goto found;
1962 /* Visit left subtree if it looks promising */
1963 if (vma->vm_rb.rb_left) {
1964 struct vm_area_struct *left =
1965 rb_entry(vma->vm_rb.rb_left,
1966 struct vm_area_struct, vm_rb);
1967 if (left->rb_subtree_gap >= length) {
1968 vma = left;
1969 continue;
1973 /* Go back up the rbtree to find next candidate node */
1974 while (true) {
1975 struct rb_node *prev = &vma->vm_rb;
1976 if (!rb_parent(prev))
1977 return -ENOMEM;
1978 vma = rb_entry(rb_parent(prev),
1979 struct vm_area_struct, vm_rb);
1980 if (prev == vma->vm_rb.rb_right) {
1981 gap_start = vma->vm_prev ?
1982 vm_end_gap(vma->vm_prev) : 0;
1983 goto check_current;
1988 found:
1989 /* We found a suitable gap. Clip it with the original high_limit. */
1990 if (gap_end > info->high_limit)
1991 gap_end = info->high_limit;
1993 found_highest:
1994 /* Compute highest gap address at the desired alignment */
1995 gap_end -= info->length;
1996 gap_end -= (gap_end - info->align_offset) & info->align_mask;
1998 VM_BUG_ON(gap_end < info->low_limit);
1999 VM_BUG_ON(gap_end < gap_start);
2000 return gap_end;
2003 /* Get an address range which is currently unmapped.
2004 * For shmat() with addr=0.
2006 * Ugly calling convention alert:
2007 * Return value with the low bits set means error value,
2008 * ie
2009 * if (ret & ~PAGE_MASK)
2010 * error = ret;
2012 * This function "knows" that -ENOMEM has the bits set.
2014 #ifndef HAVE_ARCH_UNMAPPED_AREA
2015 unsigned long
2016 arch_get_unmapped_area(struct file *filp, unsigned long addr,
2017 unsigned long len, unsigned long pgoff, unsigned long flags)
2019 struct mm_struct *mm = current->mm;
2020 struct vm_area_struct *vma, *prev;
2021 struct vm_unmapped_area_info info;
2023 if (len > TASK_SIZE - mmap_min_addr)
2024 return -ENOMEM;
2026 if (flags & MAP_FIXED)
2027 return addr;
2029 if (addr) {
2030 addr = PAGE_ALIGN(addr);
2031 vma = find_vma_prev(mm, addr, &prev);
2032 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
2033 (!vma || addr + len <= vm_start_gap(vma)) &&
2034 (!prev || addr >= vm_end_gap(prev)))
2035 return addr;
2038 info.flags = 0;
2039 info.length = len;
2040 info.low_limit = mm->mmap_base;
2041 info.high_limit = TASK_SIZE;
2042 info.align_mask = 0;
2043 return vm_unmapped_area(&info);
2045 #endif
2048 * This mmap-allocator allocates new areas top-down from below the
2049 * stack's low limit (the base):
2051 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
2052 unsigned long
2053 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
2054 const unsigned long len, const unsigned long pgoff,
2055 const unsigned long flags)
2057 struct vm_area_struct *vma, *prev;
2058 struct mm_struct *mm = current->mm;
2059 unsigned long addr = addr0;
2060 struct vm_unmapped_area_info info;
2062 /* requested length too big for entire address space */
2063 if (len > TASK_SIZE - mmap_min_addr)
2064 return -ENOMEM;
2066 if (flags & MAP_FIXED)
2067 return addr;
2069 /* requesting a specific address */
2070 if (addr) {
2071 addr = PAGE_ALIGN(addr);
2072 vma = find_vma_prev(mm, addr, &prev);
2073 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
2074 (!vma || addr + len <= vm_start_gap(vma)) &&
2075 (!prev || addr >= vm_end_gap(prev)))
2076 return addr;
2079 info.flags = VM_UNMAPPED_AREA_TOPDOWN;
2080 info.length = len;
2081 info.low_limit = max(PAGE_SIZE, mmap_min_addr);
2082 info.high_limit = mm->mmap_base;
2083 info.align_mask = 0;
2084 addr = vm_unmapped_area(&info);
2087 * A failed mmap() very likely causes application failure,
2088 * so fall back to the bottom-up function here. This scenario
2089 * can happen with large stack limits and large mmap()
2090 * allocations.
2092 if (offset_in_page(addr)) {
2093 VM_BUG_ON(addr != -ENOMEM);
2094 info.flags = 0;
2095 info.low_limit = TASK_UNMAPPED_BASE;
2096 info.high_limit = TASK_SIZE;
2097 addr = vm_unmapped_area(&info);
2100 return addr;
2102 #endif
2104 unsigned long
2105 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
2106 unsigned long pgoff, unsigned long flags)
2108 unsigned long (*get_area)(struct file *, unsigned long,
2109 unsigned long, unsigned long, unsigned long);
2111 unsigned long error = arch_mmap_check(addr, len, flags);
2112 if (error)
2113 return error;
2115 /* Careful about overflows.. */
2116 if (len > TASK_SIZE)
2117 return -ENOMEM;
2119 get_area = current->mm->get_unmapped_area;
2120 if (file) {
2121 if (file->f_op->get_unmapped_area)
2122 get_area = file->f_op->get_unmapped_area;
2123 } else if (flags & MAP_SHARED) {
2125 * mmap_region() will call shmem_zero_setup() to create a file,
2126 * so use shmem's get_unmapped_area in case it can be huge.
2127 * do_mmap_pgoff() will clear pgoff, so match alignment.
2129 pgoff = 0;
2130 get_area = shmem_get_unmapped_area;
2133 addr = get_area(file, addr, len, pgoff, flags);
2134 if (IS_ERR_VALUE(addr))
2135 return addr;
2137 if (addr > TASK_SIZE - len)
2138 return -ENOMEM;
2139 if (offset_in_page(addr))
2140 return -EINVAL;
2142 error = security_mmap_addr(addr);
2143 return error ? error : addr;
2146 EXPORT_SYMBOL(get_unmapped_area);
2148 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2149 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
2151 struct rb_node *rb_node;
2152 struct vm_area_struct *vma;
2154 /* Check the cache first. */
2155 vma = vmacache_find(mm, addr);
2156 if (likely(vma))
2157 return vma;
2159 rb_node = mm->mm_rb.rb_node;
2161 while (rb_node) {
2162 struct vm_area_struct *tmp;
2164 tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2166 if (tmp->vm_end > addr) {
2167 vma = tmp;
2168 if (tmp->vm_start <= addr)
2169 break;
2170 rb_node = rb_node->rb_left;
2171 } else
2172 rb_node = rb_node->rb_right;
2175 if (vma)
2176 vmacache_update(addr, vma);
2177 return vma;
2180 EXPORT_SYMBOL(find_vma);
2183 * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2185 struct vm_area_struct *
2186 find_vma_prev(struct mm_struct *mm, unsigned long addr,
2187 struct vm_area_struct **pprev)
2189 struct vm_area_struct *vma;
2191 vma = find_vma(mm, addr);
2192 if (vma) {
2193 *pprev = vma->vm_prev;
2194 } else {
2195 struct rb_node *rb_node = mm->mm_rb.rb_node;
2196 *pprev = NULL;
2197 while (rb_node) {
2198 *pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2199 rb_node = rb_node->rb_right;
2202 return vma;
2206 * Verify that the stack growth is acceptable and
2207 * update accounting. This is shared with both the
2208 * grow-up and grow-down cases.
2210 static int acct_stack_growth(struct vm_area_struct *vma,
2211 unsigned long size, unsigned long grow)
2213 struct mm_struct *mm = vma->vm_mm;
2214 unsigned long new_start;
2216 /* address space limit tests */
2217 if (!may_expand_vm(mm, vma->vm_flags, grow))
2218 return -ENOMEM;
2220 /* Stack limit test */
2221 if (size > rlimit(RLIMIT_STACK))
2222 return -ENOMEM;
2224 /* mlock limit tests */
2225 if (vma->vm_flags & VM_LOCKED) {
2226 unsigned long locked;
2227 unsigned long limit;
2228 locked = mm->locked_vm + grow;
2229 limit = rlimit(RLIMIT_MEMLOCK);
2230 limit >>= PAGE_SHIFT;
2231 if (locked > limit && !capable(CAP_IPC_LOCK))
2232 return -ENOMEM;
2235 /* Check to ensure the stack will not grow into a hugetlb-only region */
2236 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2237 vma->vm_end - size;
2238 if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2239 return -EFAULT;
2242 * Overcommit.. This must be the final test, as it will
2243 * update security statistics.
2245 if (security_vm_enough_memory_mm(mm, grow))
2246 return -ENOMEM;
2248 return 0;
2251 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2253 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2254 * vma is the last one with address > vma->vm_end. Have to extend vma.
2256 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2258 struct mm_struct *mm = vma->vm_mm;
2259 struct vm_area_struct *next;
2260 unsigned long gap_addr;
2261 int error = 0;
2263 if (!(vma->vm_flags & VM_GROWSUP))
2264 return -EFAULT;
2266 /* Guard against exceeding limits of the address space. */
2267 address &= PAGE_MASK;
2268 if (address >= (TASK_SIZE & PAGE_MASK))
2269 return -ENOMEM;
2270 address += PAGE_SIZE;
2272 /* Enforce stack_guard_gap */
2273 gap_addr = address + stack_guard_gap;
2275 /* Guard against overflow */
2276 if (gap_addr < address || gap_addr > TASK_SIZE)
2277 gap_addr = TASK_SIZE;
2279 next = vma->vm_next;
2280 if (next && next->vm_start < gap_addr &&
2281 (next->vm_flags & (VM_WRITE|VM_READ|VM_EXEC))) {
2282 if (!(next->vm_flags & VM_GROWSUP))
2283 return -ENOMEM;
2284 /* Check that both stack segments have the same anon_vma? */
2287 /* We must make sure the anon_vma is allocated. */
2288 if (unlikely(anon_vma_prepare(vma)))
2289 return -ENOMEM;
2292 * vma->vm_start/vm_end cannot change under us because the caller
2293 * is required to hold the mmap_sem in read mode. We need the
2294 * anon_vma lock to serialize against concurrent expand_stacks.
2296 anon_vma_lock_write(vma->anon_vma);
2298 /* Somebody else might have raced and expanded it already */
2299 if (address > vma->vm_end) {
2300 unsigned long size, grow;
2302 size = address - vma->vm_start;
2303 grow = (address - vma->vm_end) >> PAGE_SHIFT;
2305 error = -ENOMEM;
2306 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2307 error = acct_stack_growth(vma, size, grow);
2308 if (!error) {
2310 * vma_gap_update() doesn't support concurrent
2311 * updates, but we only hold a shared mmap_sem
2312 * lock here, so we need to protect against
2313 * concurrent vma expansions.
2314 * anon_vma_lock_write() doesn't help here, as
2315 * we don't guarantee that all growable vmas
2316 * in a mm share the same root anon vma.
2317 * So, we reuse mm->page_table_lock to guard
2318 * against concurrent vma expansions.
2320 spin_lock(&mm->page_table_lock);
2321 if (vma->vm_flags & VM_LOCKED)
2322 mm->locked_vm += grow;
2323 vm_stat_account(mm, vma->vm_flags, grow);
2324 anon_vma_interval_tree_pre_update_vma(vma);
2325 vma->vm_end = address;
2326 anon_vma_interval_tree_post_update_vma(vma);
2327 if (vma->vm_next)
2328 vma_gap_update(vma->vm_next);
2329 else
2330 mm->highest_vm_end = vm_end_gap(vma);
2331 spin_unlock(&mm->page_table_lock);
2333 perf_event_mmap(vma);
2337 anon_vma_unlock_write(vma->anon_vma);
2338 khugepaged_enter_vma_merge(vma, vma->vm_flags);
2339 validate_mm(mm);
2340 return error;
2342 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2345 * vma is the first one with address < vma->vm_start. Have to extend vma.
2347 int expand_downwards(struct vm_area_struct *vma,
2348 unsigned long address)
2350 struct mm_struct *mm = vma->vm_mm;
2351 struct vm_area_struct *prev;
2352 int error = 0;
2354 address &= PAGE_MASK;
2355 if (address < mmap_min_addr)
2356 return -EPERM;
2358 /* Enforce stack_guard_gap */
2359 prev = vma->vm_prev;
2360 /* Check that both stack segments have the same anon_vma? */
2361 if (prev && !(prev->vm_flags & VM_GROWSDOWN) &&
2362 (prev->vm_flags & (VM_WRITE|VM_READ|VM_EXEC))) {
2363 if (address - prev->vm_end < stack_guard_gap)
2364 return -ENOMEM;
2367 /* We must make sure the anon_vma is allocated. */
2368 if (unlikely(anon_vma_prepare(vma)))
2369 return -ENOMEM;
2372 * vma->vm_start/vm_end cannot change under us because the caller
2373 * is required to hold the mmap_sem in read mode. We need the
2374 * anon_vma lock to serialize against concurrent expand_stacks.
2376 anon_vma_lock_write(vma->anon_vma);
2378 /* Somebody else might have raced and expanded it already */
2379 if (address < vma->vm_start) {
2380 unsigned long size, grow;
2382 size = vma->vm_end - address;
2383 grow = (vma->vm_start - address) >> PAGE_SHIFT;
2385 error = -ENOMEM;
2386 if (grow <= vma->vm_pgoff) {
2387 error = acct_stack_growth(vma, size, grow);
2388 if (!error) {
2390 * vma_gap_update() doesn't support concurrent
2391 * updates, but we only hold a shared mmap_sem
2392 * lock here, so we need to protect against
2393 * concurrent vma expansions.
2394 * anon_vma_lock_write() doesn't help here, as
2395 * we don't guarantee that all growable vmas
2396 * in a mm share the same root anon vma.
2397 * So, we reuse mm->page_table_lock to guard
2398 * against concurrent vma expansions.
2400 spin_lock(&mm->page_table_lock);
2401 if (vma->vm_flags & VM_LOCKED)
2402 mm->locked_vm += grow;
2403 vm_stat_account(mm, vma->vm_flags, grow);
2404 anon_vma_interval_tree_pre_update_vma(vma);
2405 vma->vm_start = address;
2406 vma->vm_pgoff -= grow;
2407 anon_vma_interval_tree_post_update_vma(vma);
2408 vma_gap_update(vma);
2409 spin_unlock(&mm->page_table_lock);
2411 perf_event_mmap(vma);
2415 anon_vma_unlock_write(vma->anon_vma);
2416 khugepaged_enter_vma_merge(vma, vma->vm_flags);
2417 validate_mm(mm);
2418 return error;
2421 /* enforced gap between the expanding stack and other mappings. */
2422 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
2424 static int __init cmdline_parse_stack_guard_gap(char *p)
2426 unsigned long val;
2427 char *endptr;
2429 val = simple_strtoul(p, &endptr, 10);
2430 if (!*endptr)
2431 stack_guard_gap = val << PAGE_SHIFT;
2433 return 0;
2435 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
2437 #ifdef CONFIG_STACK_GROWSUP
2438 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2440 return expand_upwards(vma, address);
2443 struct vm_area_struct *
2444 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2446 struct vm_area_struct *vma, *prev;
2448 addr &= PAGE_MASK;
2449 vma = find_vma_prev(mm, addr, &prev);
2450 if (vma && (vma->vm_start <= addr))
2451 return vma;
2452 /* don't alter vm_end if the coredump is running */
2453 if (!prev || !mmget_still_valid(mm) || expand_stack(prev, addr))
2454 return NULL;
2455 if (prev->vm_flags & VM_LOCKED)
2456 populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2457 return prev;
2459 #else
2460 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2462 return expand_downwards(vma, address);
2465 struct vm_area_struct *
2466 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2468 struct vm_area_struct *vma;
2469 unsigned long start;
2471 addr &= PAGE_MASK;
2472 vma = find_vma(mm, addr);
2473 if (!vma)
2474 return NULL;
2475 if (vma->vm_start <= addr)
2476 return vma;
2477 if (!(vma->vm_flags & VM_GROWSDOWN))
2478 return NULL;
2479 /* don't alter vm_start if the coredump is running */
2480 if (!mmget_still_valid(mm))
2481 return NULL;
2482 start = vma->vm_start;
2483 if (expand_stack(vma, addr))
2484 return NULL;
2485 if (vma->vm_flags & VM_LOCKED)
2486 populate_vma_page_range(vma, addr, start, NULL);
2487 return vma;
2489 #endif
2491 EXPORT_SYMBOL_GPL(find_extend_vma);
2494 * Ok - we have the memory areas we should free on the vma list,
2495 * so release them, and do the vma updates.
2497 * Called with the mm semaphore held.
2499 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2501 unsigned long nr_accounted = 0;
2503 /* Update high watermark before we lower total_vm */
2504 update_hiwater_vm(mm);
2505 do {
2506 long nrpages = vma_pages(vma);
2508 if (vma->vm_flags & VM_ACCOUNT)
2509 nr_accounted += nrpages;
2510 vm_stat_account(mm, vma->vm_flags, -nrpages);
2511 vma = remove_vma(vma);
2512 } while (vma);
2513 vm_unacct_memory(nr_accounted);
2514 validate_mm(mm);
2518 * Get rid of page table information in the indicated region.
2520 * Called with the mm semaphore held.
2522 static void unmap_region(struct mm_struct *mm,
2523 struct vm_area_struct *vma, struct vm_area_struct *prev,
2524 unsigned long start, unsigned long end)
2526 struct vm_area_struct *next = prev ? prev->vm_next : mm->mmap;
2527 struct mmu_gather tlb;
2529 lru_add_drain();
2530 tlb_gather_mmu(&tlb, mm, start, end);
2531 update_hiwater_rss(mm);
2532 unmap_vmas(&tlb, vma, start, end);
2533 free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2534 next ? next->vm_start : USER_PGTABLES_CEILING);
2535 tlb_finish_mmu(&tlb, start, end);
2539 * Create a list of vma's touched by the unmap, removing them from the mm's
2540 * vma list as we go..
2542 static void
2543 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2544 struct vm_area_struct *prev, unsigned long end)
2546 struct vm_area_struct **insertion_point;
2547 struct vm_area_struct *tail_vma = NULL;
2549 insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2550 vma->vm_prev = NULL;
2551 do {
2552 vma_rb_erase(vma, &mm->mm_rb);
2553 mm->map_count--;
2554 tail_vma = vma;
2555 vma = vma->vm_next;
2556 } while (vma && vma->vm_start < end);
2557 *insertion_point = vma;
2558 if (vma) {
2559 vma->vm_prev = prev;
2560 vma_gap_update(vma);
2561 } else
2562 mm->highest_vm_end = prev ? vm_end_gap(prev) : 0;
2563 tail_vma->vm_next = NULL;
2565 /* Kill the cache */
2566 vmacache_invalidate(mm);
2570 * __split_vma() bypasses sysctl_max_map_count checking. We use this where it
2571 * has already been checked or doesn't make sense to fail.
2573 int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2574 unsigned long addr, int new_below)
2576 struct vm_area_struct *new;
2577 int err;
2579 if (vma->vm_ops && vma->vm_ops->split) {
2580 err = vma->vm_ops->split(vma, addr);
2581 if (err)
2582 return err;
2585 new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2586 if (!new)
2587 return -ENOMEM;
2589 /* most fields are the same, copy all, and then fixup */
2590 *new = *vma;
2592 INIT_LIST_HEAD(&new->anon_vma_chain);
2594 if (new_below)
2595 new->vm_end = addr;
2596 else {
2597 new->vm_start = addr;
2598 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2601 err = vma_dup_policy(vma, new);
2602 if (err)
2603 goto out_free_vma;
2605 err = anon_vma_clone(new, vma);
2606 if (err)
2607 goto out_free_mpol;
2609 if (new->vm_file)
2610 get_file(new->vm_file);
2612 if (new->vm_ops && new->vm_ops->open)
2613 new->vm_ops->open(new);
2615 if (new_below)
2616 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2617 ((addr - new->vm_start) >> PAGE_SHIFT), new);
2618 else
2619 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2621 /* Success. */
2622 if (!err)
2623 return 0;
2625 /* Clean everything up if vma_adjust failed. */
2626 if (new->vm_ops && new->vm_ops->close)
2627 new->vm_ops->close(new);
2628 if (new->vm_file)
2629 fput(new->vm_file);
2630 unlink_anon_vmas(new);
2631 out_free_mpol:
2632 mpol_put(vma_policy(new));
2633 out_free_vma:
2634 kmem_cache_free(vm_area_cachep, new);
2635 return err;
2639 * Split a vma into two pieces at address 'addr', a new vma is allocated
2640 * either for the first part or the tail.
2642 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2643 unsigned long addr, int new_below)
2645 if (mm->map_count >= sysctl_max_map_count)
2646 return -ENOMEM;
2648 return __split_vma(mm, vma, addr, new_below);
2651 /* Munmap is split into 2 main parts -- this part which finds
2652 * what needs doing, and the areas themselves, which do the
2653 * work. This now handles partial unmappings.
2654 * Jeremy Fitzhardinge <jeremy@goop.org>
2656 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2657 struct list_head *uf)
2659 unsigned long end;
2660 struct vm_area_struct *vma, *prev, *last;
2662 if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2663 return -EINVAL;
2665 len = PAGE_ALIGN(len);
2666 if (len == 0)
2667 return -EINVAL;
2669 /* Find the first overlapping VMA */
2670 vma = find_vma(mm, start);
2671 if (!vma)
2672 return 0;
2673 prev = vma->vm_prev;
2674 /* we have start < vma->vm_end */
2676 /* if it doesn't overlap, we have nothing.. */
2677 end = start + len;
2678 if (vma->vm_start >= end)
2679 return 0;
2682 * If we need to split any vma, do it now to save pain later.
2684 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2685 * unmapped vm_area_struct will remain in use: so lower split_vma
2686 * places tmp vma above, and higher split_vma places tmp vma below.
2688 if (start > vma->vm_start) {
2689 int error;
2692 * Make sure that map_count on return from munmap() will
2693 * not exceed its limit; but let map_count go just above
2694 * its limit temporarily, to help free resources as expected.
2696 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2697 return -ENOMEM;
2699 error = __split_vma(mm, vma, start, 0);
2700 if (error)
2701 return error;
2702 prev = vma;
2705 /* Does it split the last one? */
2706 last = find_vma(mm, end);
2707 if (last && end > last->vm_start) {
2708 int error = __split_vma(mm, last, end, 1);
2709 if (error)
2710 return error;
2712 vma = prev ? prev->vm_next : mm->mmap;
2714 if (unlikely(uf)) {
2716 * If userfaultfd_unmap_prep returns an error the vmas
2717 * will remain splitted, but userland will get a
2718 * highly unexpected error anyway. This is no
2719 * different than the case where the first of the two
2720 * __split_vma fails, but we don't undo the first
2721 * split, despite we could. This is unlikely enough
2722 * failure that it's not worth optimizing it for.
2724 int error = userfaultfd_unmap_prep(vma, start, end, uf);
2725 if (error)
2726 return error;
2730 * unlock any mlock()ed ranges before detaching vmas
2732 if (mm->locked_vm) {
2733 struct vm_area_struct *tmp = vma;
2734 while (tmp && tmp->vm_start < end) {
2735 if (tmp->vm_flags & VM_LOCKED) {
2736 mm->locked_vm -= vma_pages(tmp);
2737 munlock_vma_pages_all(tmp);
2739 tmp = tmp->vm_next;
2744 * Remove the vma's, and unmap the actual pages
2746 detach_vmas_to_be_unmapped(mm, vma, prev, end);
2747 unmap_region(mm, vma, prev, start, end);
2749 arch_unmap(mm, vma, start, end);
2751 /* Fix up all other VM information */
2752 remove_vma_list(mm, vma);
2754 return 0;
2757 int vm_munmap(unsigned long start, size_t len)
2759 int ret;
2760 struct mm_struct *mm = current->mm;
2761 LIST_HEAD(uf);
2763 if (down_write_killable(&mm->mmap_sem))
2764 return -EINTR;
2766 ret = do_munmap(mm, start, len, &uf);
2767 up_write(&mm->mmap_sem);
2768 userfaultfd_unmap_complete(mm, &uf);
2769 return ret;
2771 EXPORT_SYMBOL(vm_munmap);
2773 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2775 profile_munmap(addr);
2776 return vm_munmap(addr, len);
2781 * Emulation of deprecated remap_file_pages() syscall.
2783 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2784 unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2787 struct mm_struct *mm = current->mm;
2788 struct vm_area_struct *vma;
2789 unsigned long populate = 0;
2790 unsigned long ret = -EINVAL;
2791 struct file *file;
2793 pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/vm/remap_file_pages.txt.\n",
2794 current->comm, current->pid);
2796 if (prot)
2797 return ret;
2798 start = start & PAGE_MASK;
2799 size = size & PAGE_MASK;
2801 if (start + size <= start)
2802 return ret;
2804 /* Does pgoff wrap? */
2805 if (pgoff + (size >> PAGE_SHIFT) < pgoff)
2806 return ret;
2808 if (down_write_killable(&mm->mmap_sem))
2809 return -EINTR;
2811 vma = find_vma(mm, start);
2813 if (!vma || !(vma->vm_flags & VM_SHARED))
2814 goto out;
2816 if (start < vma->vm_start)
2817 goto out;
2819 if (start + size > vma->vm_end) {
2820 struct vm_area_struct *next;
2822 for (next = vma->vm_next; next; next = next->vm_next) {
2823 /* hole between vmas ? */
2824 if (next->vm_start != next->vm_prev->vm_end)
2825 goto out;
2827 if (next->vm_file != vma->vm_file)
2828 goto out;
2830 if (next->vm_flags != vma->vm_flags)
2831 goto out;
2833 if (start + size <= next->vm_end)
2834 break;
2837 if (!next)
2838 goto out;
2841 prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
2842 prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
2843 prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
2845 flags &= MAP_NONBLOCK;
2846 flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
2847 if (vma->vm_flags & VM_LOCKED) {
2848 struct vm_area_struct *tmp;
2849 flags |= MAP_LOCKED;
2851 /* drop PG_Mlocked flag for over-mapped range */
2852 for (tmp = vma; tmp->vm_start >= start + size;
2853 tmp = tmp->vm_next) {
2855 * Split pmd and munlock page on the border
2856 * of the range.
2858 vma_adjust_trans_huge(tmp, start, start + size, 0);
2860 munlock_vma_pages_range(tmp,
2861 max(tmp->vm_start, start),
2862 min(tmp->vm_end, start + size));
2866 file = get_file(vma->vm_file);
2867 ret = do_mmap_pgoff(vma->vm_file, start, size,
2868 prot, flags, pgoff, &populate, NULL);
2869 fput(file);
2870 out:
2871 up_write(&mm->mmap_sem);
2872 if (populate)
2873 mm_populate(ret, populate);
2874 if (!IS_ERR_VALUE(ret))
2875 ret = 0;
2876 return ret;
2879 static inline void verify_mm_writelocked(struct mm_struct *mm)
2881 #ifdef CONFIG_DEBUG_VM
2882 if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2883 WARN_ON(1);
2884 up_read(&mm->mmap_sem);
2886 #endif
2890 * this is really a simplified "do_mmap". it only handles
2891 * anonymous maps. eventually we may be able to do some
2892 * brk-specific accounting here.
2894 static int do_brk_flags(unsigned long addr, unsigned long len, unsigned long flags, struct list_head *uf)
2896 struct mm_struct *mm = current->mm;
2897 struct vm_area_struct *vma, *prev;
2898 struct rb_node **rb_link, *rb_parent;
2899 pgoff_t pgoff = addr >> PAGE_SHIFT;
2900 int error;
2902 /* Until we need other flags, refuse anything except VM_EXEC. */
2903 if ((flags & (~VM_EXEC)) != 0)
2904 return -EINVAL;
2905 flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2907 error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2908 if (offset_in_page(error))
2909 return error;
2911 error = mlock_future_check(mm, mm->def_flags, len);
2912 if (error)
2913 return error;
2916 * mm->mmap_sem is required to protect against another thread
2917 * changing the mappings in case we sleep.
2919 verify_mm_writelocked(mm);
2922 * Clear old maps. this also does some error checking for us
2924 while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
2925 &rb_parent)) {
2926 if (do_munmap(mm, addr, len, uf))
2927 return -ENOMEM;
2930 /* Check against address space limits *after* clearing old maps... */
2931 if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
2932 return -ENOMEM;
2934 if (mm->map_count > sysctl_max_map_count)
2935 return -ENOMEM;
2937 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2938 return -ENOMEM;
2940 /* Can we just expand an old private anonymous mapping? */
2941 vma = vma_merge(mm, prev, addr, addr + len, flags,
2942 NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX);
2943 if (vma)
2944 goto out;
2947 * create a vma struct for an anonymous mapping
2949 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2950 if (!vma) {
2951 vm_unacct_memory(len >> PAGE_SHIFT);
2952 return -ENOMEM;
2955 INIT_LIST_HEAD(&vma->anon_vma_chain);
2956 vma->vm_mm = mm;
2957 vma->vm_start = addr;
2958 vma->vm_end = addr + len;
2959 vma->vm_pgoff = pgoff;
2960 vma->vm_flags = flags;
2961 vma->vm_page_prot = vm_get_page_prot(flags);
2962 vma_link(mm, vma, prev, rb_link, rb_parent);
2963 out:
2964 perf_event_mmap(vma);
2965 mm->total_vm += len >> PAGE_SHIFT;
2966 mm->data_vm += len >> PAGE_SHIFT;
2967 if (flags & VM_LOCKED)
2968 mm->locked_vm += (len >> PAGE_SHIFT);
2969 vma->vm_flags |= VM_SOFTDIRTY;
2970 return 0;
2973 int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags)
2975 struct mm_struct *mm = current->mm;
2976 unsigned long len;
2977 int ret;
2978 bool populate;
2979 LIST_HEAD(uf);
2981 len = PAGE_ALIGN(request);
2982 if (len < request)
2983 return -ENOMEM;
2984 if (!len)
2985 return 0;
2987 if (down_write_killable(&mm->mmap_sem))
2988 return -EINTR;
2990 ret = do_brk_flags(addr, len, flags, &uf);
2991 populate = ((mm->def_flags & VM_LOCKED) != 0);
2992 up_write(&mm->mmap_sem);
2993 userfaultfd_unmap_complete(mm, &uf);
2994 if (populate && !ret)
2995 mm_populate(addr, len);
2996 return ret;
2998 EXPORT_SYMBOL(vm_brk_flags);
3000 int vm_brk(unsigned long addr, unsigned long len)
3002 return vm_brk_flags(addr, len, 0);
3004 EXPORT_SYMBOL(vm_brk);
3006 /* Release all mmaps. */
3007 void exit_mmap(struct mm_struct *mm)
3009 struct mmu_gather tlb;
3010 struct vm_area_struct *vma;
3011 unsigned long nr_accounted = 0;
3013 /* mm's last user has gone, and its about to be pulled down */
3014 mmu_notifier_release(mm);
3016 if (unlikely(mm_is_oom_victim(mm))) {
3018 * Manually reap the mm to free as much memory as possible.
3019 * Then, as the oom reaper does, set MMF_OOM_SKIP to disregard
3020 * this mm from further consideration. Taking mm->mmap_sem for
3021 * write after setting MMF_OOM_SKIP will guarantee that the oom
3022 * reaper will not run on this mm again after mmap_sem is
3023 * dropped.
3025 * Nothing can be holding mm->mmap_sem here and the above call
3026 * to mmu_notifier_release(mm) ensures mmu notifier callbacks in
3027 * __oom_reap_task_mm() will not block.
3029 * This needs to be done before calling munlock_vma_pages_all(),
3030 * which clears VM_LOCKED, otherwise the oom reaper cannot
3031 * reliably test it.
3033 mutex_lock(&oom_lock);
3034 __oom_reap_task_mm(mm);
3035 mutex_unlock(&oom_lock);
3037 set_bit(MMF_OOM_SKIP, &mm->flags);
3038 down_write(&mm->mmap_sem);
3039 up_write(&mm->mmap_sem);
3042 if (mm->locked_vm) {
3043 vma = mm->mmap;
3044 while (vma) {
3045 if (vma->vm_flags & VM_LOCKED)
3046 munlock_vma_pages_all(vma);
3047 vma = vma->vm_next;
3051 arch_exit_mmap(mm);
3053 vma = mm->mmap;
3054 if (!vma) /* Can happen if dup_mmap() received an OOM */
3055 return;
3057 lru_add_drain();
3058 flush_cache_mm(mm);
3059 tlb_gather_mmu(&tlb, mm, 0, -1);
3060 /* update_hiwater_rss(mm) here? but nobody should be looking */
3061 /* Use -1 here to ensure all VMAs in the mm are unmapped */
3062 unmap_vmas(&tlb, vma, 0, -1);
3063 free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
3064 tlb_finish_mmu(&tlb, 0, -1);
3067 * Walk the list again, actually closing and freeing it,
3068 * with preemption enabled, without holding any MM locks.
3070 while (vma) {
3071 if (vma->vm_flags & VM_ACCOUNT)
3072 nr_accounted += vma_pages(vma);
3073 vma = remove_vma(vma);
3075 vm_unacct_memory(nr_accounted);
3078 /* Insert vm structure into process list sorted by address
3079 * and into the inode's i_mmap tree. If vm_file is non-NULL
3080 * then i_mmap_rwsem is taken here.
3082 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
3084 struct vm_area_struct *prev;
3085 struct rb_node **rb_link, *rb_parent;
3087 if (find_vma_links(mm, vma->vm_start, vma->vm_end,
3088 &prev, &rb_link, &rb_parent))
3089 return -ENOMEM;
3090 if ((vma->vm_flags & VM_ACCOUNT) &&
3091 security_vm_enough_memory_mm(mm, vma_pages(vma)))
3092 return -ENOMEM;
3095 * The vm_pgoff of a purely anonymous vma should be irrelevant
3096 * until its first write fault, when page's anon_vma and index
3097 * are set. But now set the vm_pgoff it will almost certainly
3098 * end up with (unless mremap moves it elsewhere before that
3099 * first wfault), so /proc/pid/maps tells a consistent story.
3101 * By setting it to reflect the virtual start address of the
3102 * vma, merges and splits can happen in a seamless way, just
3103 * using the existing file pgoff checks and manipulations.
3104 * Similarly in do_mmap_pgoff and in do_brk.
3106 if (vma_is_anonymous(vma)) {
3107 BUG_ON(vma->anon_vma);
3108 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
3111 vma_link(mm, vma, prev, rb_link, rb_parent);
3112 return 0;
3116 * Copy the vma structure to a new location in the same mm,
3117 * prior to moving page table entries, to effect an mremap move.
3119 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
3120 unsigned long addr, unsigned long len, pgoff_t pgoff,
3121 bool *need_rmap_locks)
3123 struct vm_area_struct *vma = *vmap;
3124 unsigned long vma_start = vma->vm_start;
3125 struct mm_struct *mm = vma->vm_mm;
3126 struct vm_area_struct *new_vma, *prev;
3127 struct rb_node **rb_link, *rb_parent;
3128 bool faulted_in_anon_vma = true;
3131 * If anonymous vma has not yet been faulted, update new pgoff
3132 * to match new location, to increase its chance of merging.
3134 if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
3135 pgoff = addr >> PAGE_SHIFT;
3136 faulted_in_anon_vma = false;
3139 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
3140 return NULL; /* should never get here */
3141 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
3142 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
3143 vma->vm_userfaultfd_ctx);
3144 if (new_vma) {
3146 * Source vma may have been merged into new_vma
3148 if (unlikely(vma_start >= new_vma->vm_start &&
3149 vma_start < new_vma->vm_end)) {
3151 * The only way we can get a vma_merge with
3152 * self during an mremap is if the vma hasn't
3153 * been faulted in yet and we were allowed to
3154 * reset the dst vma->vm_pgoff to the
3155 * destination address of the mremap to allow
3156 * the merge to happen. mremap must change the
3157 * vm_pgoff linearity between src and dst vmas
3158 * (in turn preventing a vma_merge) to be
3159 * safe. It is only safe to keep the vm_pgoff
3160 * linear if there are no pages mapped yet.
3162 VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
3163 *vmap = vma = new_vma;
3165 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
3166 } else {
3167 new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
3168 if (!new_vma)
3169 goto out;
3170 *new_vma = *vma;
3171 new_vma->vm_start = addr;
3172 new_vma->vm_end = addr + len;
3173 new_vma->vm_pgoff = pgoff;
3174 if (vma_dup_policy(vma, new_vma))
3175 goto out_free_vma;
3176 INIT_LIST_HEAD(&new_vma->anon_vma_chain);
3177 if (anon_vma_clone(new_vma, vma))
3178 goto out_free_mempol;
3179 if (new_vma->vm_file)
3180 get_file(new_vma->vm_file);
3181 if (new_vma->vm_ops && new_vma->vm_ops->open)
3182 new_vma->vm_ops->open(new_vma);
3183 vma_link(mm, new_vma, prev, rb_link, rb_parent);
3184 *need_rmap_locks = false;
3186 return new_vma;
3188 out_free_mempol:
3189 mpol_put(vma_policy(new_vma));
3190 out_free_vma:
3191 kmem_cache_free(vm_area_cachep, new_vma);
3192 out:
3193 return NULL;
3197 * Return true if the calling process may expand its vm space by the passed
3198 * number of pages
3200 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
3202 if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
3203 return false;
3205 if (is_data_mapping(flags) &&
3206 mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
3207 /* Workaround for Valgrind */
3208 if (rlimit(RLIMIT_DATA) == 0 &&
3209 mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
3210 return true;
3211 if (!ignore_rlimit_data) {
3212 pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits or use boot option ignore_rlimit_data.\n",
3213 current->comm, current->pid,
3214 (mm->data_vm + npages) << PAGE_SHIFT,
3215 rlimit(RLIMIT_DATA));
3216 return false;
3220 return true;
3223 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
3225 mm->total_vm += npages;
3227 if (is_exec_mapping(flags))
3228 mm->exec_vm += npages;
3229 else if (is_stack_mapping(flags))
3230 mm->stack_vm += npages;
3231 else if (is_data_mapping(flags))
3232 mm->data_vm += npages;
3235 static int special_mapping_fault(struct vm_fault *vmf);
3238 * Having a close hook prevents vma merging regardless of flags.
3240 static void special_mapping_close(struct vm_area_struct *vma)
3244 static const char *special_mapping_name(struct vm_area_struct *vma)
3246 return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3249 static int special_mapping_mremap(struct vm_area_struct *new_vma)
3251 struct vm_special_mapping *sm = new_vma->vm_private_data;
3253 if (WARN_ON_ONCE(current->mm != new_vma->vm_mm))
3254 return -EFAULT;
3256 if (sm->mremap)
3257 return sm->mremap(sm, new_vma);
3259 return 0;
3262 static const struct vm_operations_struct special_mapping_vmops = {
3263 .close = special_mapping_close,
3264 .fault = special_mapping_fault,
3265 .mremap = special_mapping_mremap,
3266 .name = special_mapping_name,
3269 static const struct vm_operations_struct legacy_special_mapping_vmops = {
3270 .close = special_mapping_close,
3271 .fault = special_mapping_fault,
3274 static int special_mapping_fault(struct vm_fault *vmf)
3276 struct vm_area_struct *vma = vmf->vma;
3277 pgoff_t pgoff;
3278 struct page **pages;
3280 if (vma->vm_ops == &legacy_special_mapping_vmops) {
3281 pages = vma->vm_private_data;
3282 } else {
3283 struct vm_special_mapping *sm = vma->vm_private_data;
3285 if (sm->fault)
3286 return sm->fault(sm, vmf->vma, vmf);
3288 pages = sm->pages;
3291 for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3292 pgoff--;
3294 if (*pages) {
3295 struct page *page = *pages;
3296 get_page(page);
3297 vmf->page = page;
3298 return 0;
3301 return VM_FAULT_SIGBUS;
3304 static struct vm_area_struct *__install_special_mapping(
3305 struct mm_struct *mm,
3306 unsigned long addr, unsigned long len,
3307 unsigned long vm_flags, void *priv,
3308 const struct vm_operations_struct *ops)
3310 int ret;
3311 struct vm_area_struct *vma;
3313 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
3314 if (unlikely(vma == NULL))
3315 return ERR_PTR(-ENOMEM);
3317 INIT_LIST_HEAD(&vma->anon_vma_chain);
3318 vma->vm_mm = mm;
3319 vma->vm_start = addr;
3320 vma->vm_end = addr + len;
3322 vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
3323 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3325 vma->vm_ops = ops;
3326 vma->vm_private_data = priv;
3328 ret = insert_vm_struct(mm, vma);
3329 if (ret)
3330 goto out;
3332 vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3334 perf_event_mmap(vma);
3336 return vma;
3338 out:
3339 kmem_cache_free(vm_area_cachep, vma);
3340 return ERR_PTR(ret);
3343 bool vma_is_special_mapping(const struct vm_area_struct *vma,
3344 const struct vm_special_mapping *sm)
3346 return vma->vm_private_data == sm &&
3347 (vma->vm_ops == &special_mapping_vmops ||
3348 vma->vm_ops == &legacy_special_mapping_vmops);
3352 * Called with mm->mmap_sem held for writing.
3353 * Insert a new vma covering the given region, with the given flags.
3354 * Its pages are supplied by the given array of struct page *.
3355 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3356 * The region past the last page supplied will always produce SIGBUS.
3357 * The array pointer and the pages it points to are assumed to stay alive
3358 * for as long as this mapping might exist.
3360 struct vm_area_struct *_install_special_mapping(
3361 struct mm_struct *mm,
3362 unsigned long addr, unsigned long len,
3363 unsigned long vm_flags, const struct vm_special_mapping *spec)
3365 return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3366 &special_mapping_vmops);
3369 int install_special_mapping(struct mm_struct *mm,
3370 unsigned long addr, unsigned long len,
3371 unsigned long vm_flags, struct page **pages)
3373 struct vm_area_struct *vma = __install_special_mapping(
3374 mm, addr, len, vm_flags, (void *)pages,
3375 &legacy_special_mapping_vmops);
3377 return PTR_ERR_OR_ZERO(vma);
3380 static DEFINE_MUTEX(mm_all_locks_mutex);
3382 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3384 if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3386 * The LSB of head.next can't change from under us
3387 * because we hold the mm_all_locks_mutex.
3389 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem);
3391 * We can safely modify head.next after taking the
3392 * anon_vma->root->rwsem. If some other vma in this mm shares
3393 * the same anon_vma we won't take it again.
3395 * No need of atomic instructions here, head.next
3396 * can't change from under us thanks to the
3397 * anon_vma->root->rwsem.
3399 if (__test_and_set_bit(0, (unsigned long *)
3400 &anon_vma->root->rb_root.rb_root.rb_node))
3401 BUG();
3405 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3407 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3409 * AS_MM_ALL_LOCKS can't change from under us because
3410 * we hold the mm_all_locks_mutex.
3412 * Operations on ->flags have to be atomic because
3413 * even if AS_MM_ALL_LOCKS is stable thanks to the
3414 * mm_all_locks_mutex, there may be other cpus
3415 * changing other bitflags in parallel to us.
3417 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3418 BUG();
3419 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_sem);
3424 * This operation locks against the VM for all pte/vma/mm related
3425 * operations that could ever happen on a certain mm. This includes
3426 * vmtruncate, try_to_unmap, and all page faults.
3428 * The caller must take the mmap_sem in write mode before calling
3429 * mm_take_all_locks(). The caller isn't allowed to release the
3430 * mmap_sem until mm_drop_all_locks() returns.
3432 * mmap_sem in write mode is required in order to block all operations
3433 * that could modify pagetables and free pages without need of
3434 * altering the vma layout. It's also needed in write mode to avoid new
3435 * anon_vmas to be associated with existing vmas.
3437 * A single task can't take more than one mm_take_all_locks() in a row
3438 * or it would deadlock.
3440 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3441 * mapping->flags avoid to take the same lock twice, if more than one
3442 * vma in this mm is backed by the same anon_vma or address_space.
3444 * We take locks in following order, accordingly to comment at beginning
3445 * of mm/rmap.c:
3446 * - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3447 * hugetlb mapping);
3448 * - all i_mmap_rwsem locks;
3449 * - all anon_vma->rwseml
3451 * We can take all locks within these types randomly because the VM code
3452 * doesn't nest them and we protected from parallel mm_take_all_locks() by
3453 * mm_all_locks_mutex.
3455 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3456 * that may have to take thousand of locks.
3458 * mm_take_all_locks() can fail if it's interrupted by signals.
3460 int mm_take_all_locks(struct mm_struct *mm)
3462 struct vm_area_struct *vma;
3463 struct anon_vma_chain *avc;
3465 BUG_ON(down_read_trylock(&mm->mmap_sem));
3467 mutex_lock(&mm_all_locks_mutex);
3469 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3470 if (signal_pending(current))
3471 goto out_unlock;
3472 if (vma->vm_file && vma->vm_file->f_mapping &&
3473 is_vm_hugetlb_page(vma))
3474 vm_lock_mapping(mm, vma->vm_file->f_mapping);
3477 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3478 if (signal_pending(current))
3479 goto out_unlock;
3480 if (vma->vm_file && vma->vm_file->f_mapping &&
3481 !is_vm_hugetlb_page(vma))
3482 vm_lock_mapping(mm, vma->vm_file->f_mapping);
3485 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3486 if (signal_pending(current))
3487 goto out_unlock;
3488 if (vma->anon_vma)
3489 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3490 vm_lock_anon_vma(mm, avc->anon_vma);
3493 return 0;
3495 out_unlock:
3496 mm_drop_all_locks(mm);
3497 return -EINTR;
3500 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3502 if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3504 * The LSB of head.next can't change to 0 from under
3505 * us because we hold the mm_all_locks_mutex.
3507 * We must however clear the bitflag before unlocking
3508 * the vma so the users using the anon_vma->rb_root will
3509 * never see our bitflag.
3511 * No need of atomic instructions here, head.next
3512 * can't change from under us until we release the
3513 * anon_vma->root->rwsem.
3515 if (!__test_and_clear_bit(0, (unsigned long *)
3516 &anon_vma->root->rb_root.rb_root.rb_node))
3517 BUG();
3518 anon_vma_unlock_write(anon_vma);
3522 static void vm_unlock_mapping(struct address_space *mapping)
3524 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3526 * AS_MM_ALL_LOCKS can't change to 0 from under us
3527 * because we hold the mm_all_locks_mutex.
3529 i_mmap_unlock_write(mapping);
3530 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3531 &mapping->flags))
3532 BUG();
3537 * The mmap_sem cannot be released by the caller until
3538 * mm_drop_all_locks() returns.
3540 void mm_drop_all_locks(struct mm_struct *mm)
3542 struct vm_area_struct *vma;
3543 struct anon_vma_chain *avc;
3545 BUG_ON(down_read_trylock(&mm->mmap_sem));
3546 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3548 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3549 if (vma->anon_vma)
3550 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3551 vm_unlock_anon_vma(avc->anon_vma);
3552 if (vma->vm_file && vma->vm_file->f_mapping)
3553 vm_unlock_mapping(vma->vm_file->f_mapping);
3556 mutex_unlock(&mm_all_locks_mutex);
3560 * initialise the percpu counter for VM
3562 void __init mmap_init(void)
3564 int ret;
3566 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3567 VM_BUG_ON(ret);
3571 * Initialise sysctl_user_reserve_kbytes.
3573 * This is intended to prevent a user from starting a single memory hogging
3574 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3575 * mode.
3577 * The default value is min(3% of free memory, 128MB)
3578 * 128MB is enough to recover with sshd/login, bash, and top/kill.
3580 static int init_user_reserve(void)
3582 unsigned long free_kbytes;
3584 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3586 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3587 return 0;
3589 subsys_initcall(init_user_reserve);
3592 * Initialise sysctl_admin_reserve_kbytes.
3594 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3595 * to log in and kill a memory hogging process.
3597 * Systems with more than 256MB will reserve 8MB, enough to recover
3598 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3599 * only reserve 3% of free pages by default.
3601 static int init_admin_reserve(void)
3603 unsigned long free_kbytes;
3605 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3607 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3608 return 0;
3610 subsys_initcall(init_admin_reserve);
3613 * Reinititalise user and admin reserves if memory is added or removed.
3615 * The default user reserve max is 128MB, and the default max for the
3616 * admin reserve is 8MB. These are usually, but not always, enough to
3617 * enable recovery from a memory hogging process using login/sshd, a shell,
3618 * and tools like top. It may make sense to increase or even disable the
3619 * reserve depending on the existence of swap or variations in the recovery
3620 * tools. So, the admin may have changed them.
3622 * If memory is added and the reserves have been eliminated or increased above
3623 * the default max, then we'll trust the admin.
3625 * If memory is removed and there isn't enough free memory, then we
3626 * need to reset the reserves.
3628 * Otherwise keep the reserve set by the admin.
3630 static int reserve_mem_notifier(struct notifier_block *nb,
3631 unsigned long action, void *data)
3633 unsigned long tmp, free_kbytes;
3635 switch (action) {
3636 case MEM_ONLINE:
3637 /* Default max is 128MB. Leave alone if modified by operator. */
3638 tmp = sysctl_user_reserve_kbytes;
3639 if (0 < tmp && tmp < (1UL << 17))
3640 init_user_reserve();
3642 /* Default max is 8MB. Leave alone if modified by operator. */
3643 tmp = sysctl_admin_reserve_kbytes;
3644 if (0 < tmp && tmp < (1UL << 13))
3645 init_admin_reserve();
3647 break;
3648 case MEM_OFFLINE:
3649 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3651 if (sysctl_user_reserve_kbytes > free_kbytes) {
3652 init_user_reserve();
3653 pr_info("vm.user_reserve_kbytes reset to %lu\n",
3654 sysctl_user_reserve_kbytes);
3657 if (sysctl_admin_reserve_kbytes > free_kbytes) {
3658 init_admin_reserve();
3659 pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3660 sysctl_admin_reserve_kbytes);
3662 break;
3663 default:
3664 break;
3666 return NOTIFY_OK;
3669 static struct notifier_block reserve_mem_nb = {
3670 .notifier_call = reserve_mem_notifier,
3673 static int __meminit init_reserve_notifier(void)
3675 if (register_hotmemory_notifier(&reserve_mem_nb))
3676 pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3678 return 0;
3680 subsys_initcall(init_reserve_notifier);