4 * Copyright (C) 1994-1999 Linus Torvalds
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
12 #include <linux/export.h>
13 #include <linux/compiler.h>
14 #include <linux/dax.h>
16 #include <linux/sched/signal.h>
17 #include <linux/uaccess.h>
18 #include <linux/capability.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/gfp.h>
22 #include <linux/swap.h>
23 #include <linux/mman.h>
24 #include <linux/pagemap.h>
25 #include <linux/file.h>
26 #include <linux/uio.h>
27 #include <linux/hash.h>
28 #include <linux/writeback.h>
29 #include <linux/backing-dev.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/security.h>
33 #include <linux/cpuset.h>
34 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
35 #include <linux/hugetlb.h>
36 #include <linux/memcontrol.h>
37 #include <linux/cleancache.h>
38 #include <linux/rmap.h>
41 #define CREATE_TRACE_POINTS
42 #include <trace/events/filemap.h>
45 * FIXME: remove all knowledge of the buffer layer from the core VM
47 #include <linux/buffer_head.h> /* for try_to_free_buffers */
52 * Shared mappings implemented 30.11.1994. It's not fully working yet,
55 * Shared mappings now work. 15.8.1995 Bruno.
57 * finished 'unifying' the page and buffer cache and SMP-threaded the
58 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
60 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
66 * ->i_mmap_rwsem (truncate_pagecache)
67 * ->private_lock (__free_pte->__set_page_dirty_buffers)
68 * ->swap_lock (exclusive_swap_page, others)
69 * ->mapping->tree_lock
72 * ->i_mmap_rwsem (truncate->unmap_mapping_range)
76 * ->page_table_lock or pte_lock (various, mainly in memory.c)
77 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
80 * ->lock_page (access_process_vm)
82 * ->i_mutex (generic_perform_write)
83 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
86 * sb_lock (fs/fs-writeback.c)
87 * ->mapping->tree_lock (__sync_single_inode)
90 * ->anon_vma.lock (vma_adjust)
93 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
95 * ->page_table_lock or pte_lock
96 * ->swap_lock (try_to_unmap_one)
97 * ->private_lock (try_to_unmap_one)
98 * ->tree_lock (try_to_unmap_one)
99 * ->zone_lru_lock(zone) (follow_page->mark_page_accessed)
100 * ->zone_lru_lock(zone) (check_pte_range->isolate_lru_page)
101 * ->private_lock (page_remove_rmap->set_page_dirty)
102 * ->tree_lock (page_remove_rmap->set_page_dirty)
103 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
104 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
105 * ->memcg->move_lock (page_remove_rmap->lock_page_memcg)
106 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
107 * ->inode->i_lock (zap_pte_range->set_page_dirty)
108 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
111 * ->tasklist_lock (memory_failure, collect_procs_ao)
114 static int page_cache_tree_insert(struct address_space
*mapping
,
115 struct page
*page
, void **shadowp
)
117 struct radix_tree_node
*node
;
121 error
= __radix_tree_create(&mapping
->page_tree
, page
->index
, 0,
128 p
= radix_tree_deref_slot_protected(slot
, &mapping
->tree_lock
);
129 if (!radix_tree_exceptional_entry(p
))
132 mapping
->nrexceptional
--;
136 __radix_tree_replace(&mapping
->page_tree
, node
, slot
, page
,
137 workingset_update_node
, mapping
);
142 static void page_cache_tree_delete(struct address_space
*mapping
,
143 struct page
*page
, void *shadow
)
147 /* hugetlb pages are represented by one entry in the radix tree */
148 nr
= PageHuge(page
) ? 1 : hpage_nr_pages(page
);
150 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
151 VM_BUG_ON_PAGE(PageTail(page
), page
);
152 VM_BUG_ON_PAGE(nr
!= 1 && shadow
, page
);
154 for (i
= 0; i
< nr
; i
++) {
155 struct radix_tree_node
*node
;
158 __radix_tree_lookup(&mapping
->page_tree
, page
->index
+ i
,
161 VM_BUG_ON_PAGE(!node
&& nr
!= 1, page
);
163 radix_tree_clear_tags(&mapping
->page_tree
, node
, slot
);
164 __radix_tree_replace(&mapping
->page_tree
, node
, slot
, shadow
,
165 workingset_update_node
, mapping
);
169 mapping
->nrexceptional
+= nr
;
171 * Make sure the nrexceptional update is committed before
172 * the nrpages update so that final truncate racing
173 * with reclaim does not see both counters 0 at the
174 * same time and miss a shadow entry.
178 mapping
->nrpages
-= nr
;
182 * Delete a page from the page cache and free it. Caller has to make
183 * sure the page is locked and that nobody else uses it - or that usage
184 * is safe. The caller must hold the mapping's tree_lock.
186 void __delete_from_page_cache(struct page
*page
, void *shadow
)
188 struct address_space
*mapping
= page
->mapping
;
189 int nr
= hpage_nr_pages(page
);
191 trace_mm_filemap_delete_from_page_cache(page
);
193 * if we're uptodate, flush out into the cleancache, otherwise
194 * invalidate any existing cleancache entries. We can't leave
195 * stale data around in the cleancache once our page is gone
197 if (PageUptodate(page
) && PageMappedToDisk(page
))
198 cleancache_put_page(page
);
200 cleancache_invalidate_page(mapping
, page
);
202 VM_BUG_ON_PAGE(PageTail(page
), page
);
203 VM_BUG_ON_PAGE(page_mapped(page
), page
);
204 if (!IS_ENABLED(CONFIG_DEBUG_VM
) && unlikely(page_mapped(page
))) {
207 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n",
208 current
->comm
, page_to_pfn(page
));
209 dump_page(page
, "still mapped when deleted");
211 add_taint(TAINT_BAD_PAGE
, LOCKDEP_NOW_UNRELIABLE
);
213 mapcount
= page_mapcount(page
);
214 if (mapping_exiting(mapping
) &&
215 page_count(page
) >= mapcount
+ 2) {
217 * All vmas have already been torn down, so it's
218 * a good bet that actually the page is unmapped,
219 * and we'd prefer not to leak it: if we're wrong,
220 * some other bad page check should catch it later.
222 page_mapcount_reset(page
);
223 page_ref_sub(page
, mapcount
);
227 page_cache_tree_delete(mapping
, page
, shadow
);
229 page
->mapping
= NULL
;
230 /* Leave page->index set: truncation lookup relies upon it */
232 /* hugetlb pages do not participate in page cache accounting. */
236 __mod_node_page_state(page_pgdat(page
), NR_FILE_PAGES
, -nr
);
237 if (PageSwapBacked(page
)) {
238 __mod_node_page_state(page_pgdat(page
), NR_SHMEM
, -nr
);
239 if (PageTransHuge(page
))
240 __dec_node_page_state(page
, NR_SHMEM_THPS
);
242 VM_BUG_ON_PAGE(PageTransHuge(page
), page
);
246 * At this point page must be either written or cleaned by truncate.
247 * Dirty page here signals a bug and loss of unwritten data.
249 * This fixes dirty accounting after removing the page entirely but
250 * leaves PageDirty set: it has no effect for truncated page and
251 * anyway will be cleared before returning page into buddy allocator.
253 if (WARN_ON_ONCE(PageDirty(page
)))
254 account_page_cleaned(page
, mapping
, inode_to_wb(mapping
->host
));
258 * delete_from_page_cache - delete page from page cache
259 * @page: the page which the kernel is trying to remove from page cache
261 * This must be called only on pages that have been verified to be in the page
262 * cache and locked. It will never put the page into the free list, the caller
263 * has a reference on the page.
265 void delete_from_page_cache(struct page
*page
)
267 struct address_space
*mapping
= page_mapping(page
);
269 void (*freepage
)(struct page
*);
271 BUG_ON(!PageLocked(page
));
273 freepage
= mapping
->a_ops
->freepage
;
275 spin_lock_irqsave(&mapping
->tree_lock
, flags
);
276 __delete_from_page_cache(page
, NULL
);
277 spin_unlock_irqrestore(&mapping
->tree_lock
, flags
);
282 if (PageTransHuge(page
) && !PageHuge(page
)) {
283 page_ref_sub(page
, HPAGE_PMD_NR
);
284 VM_BUG_ON_PAGE(page_count(page
) <= 0, page
);
289 EXPORT_SYMBOL(delete_from_page_cache
);
291 int filemap_check_errors(struct address_space
*mapping
)
294 /* Check for outstanding write errors */
295 if (test_bit(AS_ENOSPC
, &mapping
->flags
) &&
296 test_and_clear_bit(AS_ENOSPC
, &mapping
->flags
))
298 if (test_bit(AS_EIO
, &mapping
->flags
) &&
299 test_and_clear_bit(AS_EIO
, &mapping
->flags
))
303 EXPORT_SYMBOL(filemap_check_errors
);
305 static int filemap_check_and_keep_errors(struct address_space
*mapping
)
307 /* Check for outstanding write errors */
308 if (test_bit(AS_EIO
, &mapping
->flags
))
310 if (test_bit(AS_ENOSPC
, &mapping
->flags
))
316 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
317 * @mapping: address space structure to write
318 * @start: offset in bytes where the range starts
319 * @end: offset in bytes where the range ends (inclusive)
320 * @sync_mode: enable synchronous operation
322 * Start writeback against all of a mapping's dirty pages that lie
323 * within the byte offsets <start, end> inclusive.
325 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
326 * opposed to a regular memory cleansing writeback. The difference between
327 * these two operations is that if a dirty page/buffer is encountered, it must
328 * be waited upon, and not just skipped over.
330 int __filemap_fdatawrite_range(struct address_space
*mapping
, loff_t start
,
331 loff_t end
, int sync_mode
)
334 struct writeback_control wbc
= {
335 .sync_mode
= sync_mode
,
336 .nr_to_write
= LONG_MAX
,
337 .range_start
= start
,
341 if (!mapping_cap_writeback_dirty(mapping
))
344 wbc_attach_fdatawrite_inode(&wbc
, mapping
->host
);
345 ret
= do_writepages(mapping
, &wbc
);
346 wbc_detach_inode(&wbc
);
350 static inline int __filemap_fdatawrite(struct address_space
*mapping
,
353 return __filemap_fdatawrite_range(mapping
, 0, LLONG_MAX
, sync_mode
);
356 int filemap_fdatawrite(struct address_space
*mapping
)
358 return __filemap_fdatawrite(mapping
, WB_SYNC_ALL
);
360 EXPORT_SYMBOL(filemap_fdatawrite
);
362 int filemap_fdatawrite_range(struct address_space
*mapping
, loff_t start
,
365 return __filemap_fdatawrite_range(mapping
, start
, end
, WB_SYNC_ALL
);
367 EXPORT_SYMBOL(filemap_fdatawrite_range
);
370 * filemap_flush - mostly a non-blocking flush
371 * @mapping: target address_space
373 * This is a mostly non-blocking flush. Not suitable for data-integrity
374 * purposes - I/O may not be started against all dirty pages.
376 int filemap_flush(struct address_space
*mapping
)
378 return __filemap_fdatawrite(mapping
, WB_SYNC_NONE
);
380 EXPORT_SYMBOL(filemap_flush
);
383 * filemap_range_has_page - check if a page exists in range.
384 * @mapping: address space within which to check
385 * @start_byte: offset in bytes where the range starts
386 * @end_byte: offset in bytes where the range ends (inclusive)
388 * Find at least one page in the range supplied, usually used to check if
389 * direct writing in this range will trigger a writeback.
391 bool filemap_range_has_page(struct address_space
*mapping
,
392 loff_t start_byte
, loff_t end_byte
)
394 pgoff_t index
= start_byte
>> PAGE_SHIFT
;
395 pgoff_t end
= end_byte
>> PAGE_SHIFT
;
398 if (end_byte
< start_byte
)
401 if (mapping
->nrpages
== 0)
404 if (!find_get_pages_range(mapping
, &index
, end
, 1, &page
))
409 EXPORT_SYMBOL(filemap_range_has_page
);
411 static void __filemap_fdatawait_range(struct address_space
*mapping
,
412 loff_t start_byte
, loff_t end_byte
)
414 pgoff_t index
= start_byte
>> PAGE_SHIFT
;
415 pgoff_t end
= end_byte
>> PAGE_SHIFT
;
419 if (end_byte
< start_byte
)
422 pagevec_init(&pvec
, 0);
423 while ((index
<= end
) &&
424 (nr_pages
= pagevec_lookup_tag(&pvec
, mapping
, &index
,
425 PAGECACHE_TAG_WRITEBACK
,
426 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
-1) + 1)) != 0) {
429 for (i
= 0; i
< nr_pages
; i
++) {
430 struct page
*page
= pvec
.pages
[i
];
432 /* until radix tree lookup accepts end_index */
433 if (page
->index
> end
)
436 wait_on_page_writeback(page
);
437 ClearPageError(page
);
439 pagevec_release(&pvec
);
445 * filemap_fdatawait_range - wait for writeback to complete
446 * @mapping: address space structure to wait for
447 * @start_byte: offset in bytes where the range starts
448 * @end_byte: offset in bytes where the range ends (inclusive)
450 * Walk the list of under-writeback pages of the given address space
451 * in the given range and wait for all of them. Check error status of
452 * the address space and return it.
454 * Since the error status of the address space is cleared by this function,
455 * callers are responsible for checking the return value and handling and/or
456 * reporting the error.
458 int filemap_fdatawait_range(struct address_space
*mapping
, loff_t start_byte
,
461 __filemap_fdatawait_range(mapping
, start_byte
, end_byte
);
462 return filemap_check_errors(mapping
);
464 EXPORT_SYMBOL(filemap_fdatawait_range
);
467 * filemap_fdatawait_range_keep_errors - wait for writeback to complete
468 * @mapping: address space structure to wait for
469 * @start_byte: offset in bytes where the range starts
470 * @end_byte: offset in bytes where the range ends (inclusive)
472 * Walk the list of under-writeback pages of the given address space in the
473 * given range and wait for all of them. Unlike filemap_fdatawait_range(),
474 * this function does not clear error status of the address space.
476 * Use this function if callers don't handle errors themselves. Expected
477 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
480 int filemap_fdatawait_range_keep_errors(struct address_space
*mapping
,
481 loff_t start_byte
, loff_t end_byte
)
483 __filemap_fdatawait_range(mapping
, start_byte
, end_byte
);
484 return filemap_check_and_keep_errors(mapping
);
486 EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors
);
489 * file_fdatawait_range - wait for writeback to complete
490 * @file: file pointing to address space structure to wait for
491 * @start_byte: offset in bytes where the range starts
492 * @end_byte: offset in bytes where the range ends (inclusive)
494 * Walk the list of under-writeback pages of the address space that file
495 * refers to, in the given range and wait for all of them. Check error
496 * status of the address space vs. the file->f_wb_err cursor and return it.
498 * Since the error status of the file is advanced by this function,
499 * callers are responsible for checking the return value and handling and/or
500 * reporting the error.
502 int file_fdatawait_range(struct file
*file
, loff_t start_byte
, loff_t end_byte
)
504 struct address_space
*mapping
= file
->f_mapping
;
506 __filemap_fdatawait_range(mapping
, start_byte
, end_byte
);
507 return file_check_and_advance_wb_err(file
);
509 EXPORT_SYMBOL(file_fdatawait_range
);
512 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
513 * @mapping: address space structure to wait for
515 * Walk the list of under-writeback pages of the given address space
516 * and wait for all of them. Unlike filemap_fdatawait(), this function
517 * does not clear error status of the address space.
519 * Use this function if callers don't handle errors themselves. Expected
520 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
523 int filemap_fdatawait_keep_errors(struct address_space
*mapping
)
525 __filemap_fdatawait_range(mapping
, 0, LLONG_MAX
);
526 return filemap_check_and_keep_errors(mapping
);
528 EXPORT_SYMBOL(filemap_fdatawait_keep_errors
);
530 static bool mapping_needs_writeback(struct address_space
*mapping
)
532 return (!dax_mapping(mapping
) && mapping
->nrpages
) ||
533 (dax_mapping(mapping
) && mapping
->nrexceptional
);
536 int filemap_write_and_wait(struct address_space
*mapping
)
540 if (mapping_needs_writeback(mapping
)) {
541 err
= filemap_fdatawrite(mapping
);
543 * Even if the above returned error, the pages may be
544 * written partially (e.g. -ENOSPC), so we wait for it.
545 * But the -EIO is special case, it may indicate the worst
546 * thing (e.g. bug) happened, so we avoid waiting for it.
549 int err2
= filemap_fdatawait(mapping
);
553 /* Clear any previously stored errors */
554 filemap_check_errors(mapping
);
557 err
= filemap_check_errors(mapping
);
561 EXPORT_SYMBOL(filemap_write_and_wait
);
564 * filemap_write_and_wait_range - write out & wait on a file range
565 * @mapping: the address_space for the pages
566 * @lstart: offset in bytes where the range starts
567 * @lend: offset in bytes where the range ends (inclusive)
569 * Write out and wait upon file offsets lstart->lend, inclusive.
571 * Note that @lend is inclusive (describes the last byte to be written) so
572 * that this function can be used to write to the very end-of-file (end = -1).
574 int filemap_write_and_wait_range(struct address_space
*mapping
,
575 loff_t lstart
, loff_t lend
)
579 if (mapping_needs_writeback(mapping
)) {
580 err
= __filemap_fdatawrite_range(mapping
, lstart
, lend
,
582 /* See comment of filemap_write_and_wait() */
584 int err2
= filemap_fdatawait_range(mapping
,
589 /* Clear any previously stored errors */
590 filemap_check_errors(mapping
);
593 err
= filemap_check_errors(mapping
);
597 EXPORT_SYMBOL(filemap_write_and_wait_range
);
599 void __filemap_set_wb_err(struct address_space
*mapping
, int err
)
601 errseq_t eseq
= errseq_set(&mapping
->wb_err
, err
);
603 trace_filemap_set_wb_err(mapping
, eseq
);
605 EXPORT_SYMBOL(__filemap_set_wb_err
);
608 * file_check_and_advance_wb_err - report wb error (if any) that was previously
609 * and advance wb_err to current one
610 * @file: struct file on which the error is being reported
612 * When userland calls fsync (or something like nfsd does the equivalent), we
613 * want to report any writeback errors that occurred since the last fsync (or
614 * since the file was opened if there haven't been any).
616 * Grab the wb_err from the mapping. If it matches what we have in the file,
617 * then just quickly return 0. The file is all caught up.
619 * If it doesn't match, then take the mapping value, set the "seen" flag in
620 * it and try to swap it into place. If it works, or another task beat us
621 * to it with the new value, then update the f_wb_err and return the error
622 * portion. The error at this point must be reported via proper channels
623 * (a'la fsync, or NFS COMMIT operation, etc.).
625 * While we handle mapping->wb_err with atomic operations, the f_wb_err
626 * value is protected by the f_lock since we must ensure that it reflects
627 * the latest value swapped in for this file descriptor.
629 int file_check_and_advance_wb_err(struct file
*file
)
632 errseq_t old
= READ_ONCE(file
->f_wb_err
);
633 struct address_space
*mapping
= file
->f_mapping
;
635 /* Locklessly handle the common case where nothing has changed */
636 if (errseq_check(&mapping
->wb_err
, old
)) {
637 /* Something changed, must use slow path */
638 spin_lock(&file
->f_lock
);
639 old
= file
->f_wb_err
;
640 err
= errseq_check_and_advance(&mapping
->wb_err
,
642 trace_file_check_and_advance_wb_err(file
, old
);
643 spin_unlock(&file
->f_lock
);
647 * We're mostly using this function as a drop in replacement for
648 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
649 * that the legacy code would have had on these flags.
651 clear_bit(AS_EIO
, &mapping
->flags
);
652 clear_bit(AS_ENOSPC
, &mapping
->flags
);
655 EXPORT_SYMBOL(file_check_and_advance_wb_err
);
658 * file_write_and_wait_range - write out & wait on a file range
659 * @file: file pointing to address_space with pages
660 * @lstart: offset in bytes where the range starts
661 * @lend: offset in bytes where the range ends (inclusive)
663 * Write out and wait upon file offsets lstart->lend, inclusive.
665 * Note that @lend is inclusive (describes the last byte to be written) so
666 * that this function can be used to write to the very end-of-file (end = -1).
668 * After writing out and waiting on the data, we check and advance the
669 * f_wb_err cursor to the latest value, and return any errors detected there.
671 int file_write_and_wait_range(struct file
*file
, loff_t lstart
, loff_t lend
)
674 struct address_space
*mapping
= file
->f_mapping
;
676 if (mapping_needs_writeback(mapping
)) {
677 err
= __filemap_fdatawrite_range(mapping
, lstart
, lend
,
679 /* See comment of filemap_write_and_wait() */
681 __filemap_fdatawait_range(mapping
, lstart
, lend
);
683 err2
= file_check_and_advance_wb_err(file
);
688 EXPORT_SYMBOL(file_write_and_wait_range
);
691 * replace_page_cache_page - replace a pagecache page with a new one
692 * @old: page to be replaced
693 * @new: page to replace with
694 * @gfp_mask: allocation mode
696 * This function replaces a page in the pagecache with a new one. On
697 * success it acquires the pagecache reference for the new page and
698 * drops it for the old page. Both the old and new pages must be
699 * locked. This function does not add the new page to the LRU, the
700 * caller must do that.
702 * The remove + add is atomic. The only way this function can fail is
703 * memory allocation failure.
705 int replace_page_cache_page(struct page
*old
, struct page
*new, gfp_t gfp_mask
)
709 VM_BUG_ON_PAGE(!PageLocked(old
), old
);
710 VM_BUG_ON_PAGE(!PageLocked(new), new);
711 VM_BUG_ON_PAGE(new->mapping
, new);
713 error
= radix_tree_preload(gfp_mask
& GFP_RECLAIM_MASK
);
715 struct address_space
*mapping
= old
->mapping
;
716 void (*freepage
)(struct page
*);
719 pgoff_t offset
= old
->index
;
720 freepage
= mapping
->a_ops
->freepage
;
723 new->mapping
= mapping
;
726 spin_lock_irqsave(&mapping
->tree_lock
, flags
);
727 __delete_from_page_cache(old
, NULL
);
728 error
= page_cache_tree_insert(mapping
, new, NULL
);
732 * hugetlb pages do not participate in page cache accounting.
735 __inc_node_page_state(new, NR_FILE_PAGES
);
736 if (PageSwapBacked(new))
737 __inc_node_page_state(new, NR_SHMEM
);
738 spin_unlock_irqrestore(&mapping
->tree_lock
, flags
);
739 mem_cgroup_migrate(old
, new);
740 radix_tree_preload_end();
748 EXPORT_SYMBOL_GPL(replace_page_cache_page
);
750 static int __add_to_page_cache_locked(struct page
*page
,
751 struct address_space
*mapping
,
752 pgoff_t offset
, gfp_t gfp_mask
,
755 int huge
= PageHuge(page
);
756 struct mem_cgroup
*memcg
;
759 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
760 VM_BUG_ON_PAGE(PageSwapBacked(page
), page
);
763 error
= mem_cgroup_try_charge(page
, current
->mm
,
764 gfp_mask
, &memcg
, false);
769 error
= radix_tree_maybe_preload(gfp_mask
& GFP_RECLAIM_MASK
);
772 mem_cgroup_cancel_charge(page
, memcg
, false);
777 page
->mapping
= mapping
;
778 page
->index
= offset
;
780 spin_lock_irq(&mapping
->tree_lock
);
781 error
= page_cache_tree_insert(mapping
, page
, shadowp
);
782 radix_tree_preload_end();
786 /* hugetlb pages do not participate in page cache accounting. */
788 __inc_node_page_state(page
, NR_FILE_PAGES
);
789 spin_unlock_irq(&mapping
->tree_lock
);
791 mem_cgroup_commit_charge(page
, memcg
, false, false);
792 trace_mm_filemap_add_to_page_cache(page
);
795 page
->mapping
= NULL
;
796 /* Leave page->index set: truncation relies upon it */
797 spin_unlock_irq(&mapping
->tree_lock
);
799 mem_cgroup_cancel_charge(page
, memcg
, false);
805 * add_to_page_cache_locked - add a locked page to the pagecache
807 * @mapping: the page's address_space
808 * @offset: page index
809 * @gfp_mask: page allocation mode
811 * This function is used to add a page to the pagecache. It must be locked.
812 * This function does not add the page to the LRU. The caller must do that.
814 int add_to_page_cache_locked(struct page
*page
, struct address_space
*mapping
,
815 pgoff_t offset
, gfp_t gfp_mask
)
817 return __add_to_page_cache_locked(page
, mapping
, offset
,
820 EXPORT_SYMBOL(add_to_page_cache_locked
);
822 int add_to_page_cache_lru(struct page
*page
, struct address_space
*mapping
,
823 pgoff_t offset
, gfp_t gfp_mask
)
828 __SetPageLocked(page
);
829 ret
= __add_to_page_cache_locked(page
, mapping
, offset
,
832 __ClearPageLocked(page
);
835 * The page might have been evicted from cache only
836 * recently, in which case it should be activated like
837 * any other repeatedly accessed page.
838 * The exception is pages getting rewritten; evicting other
839 * data from the working set, only to cache data that will
840 * get overwritten with something else, is a waste of memory.
842 if (!(gfp_mask
& __GFP_WRITE
) &&
843 shadow
&& workingset_refault(shadow
)) {
845 workingset_activation(page
);
847 ClearPageActive(page
);
852 EXPORT_SYMBOL_GPL(add_to_page_cache_lru
);
855 struct page
*__page_cache_alloc(gfp_t gfp
)
860 if (cpuset_do_page_mem_spread()) {
861 unsigned int cpuset_mems_cookie
;
863 cpuset_mems_cookie
= read_mems_allowed_begin();
864 n
= cpuset_mem_spread_node();
865 page
= __alloc_pages_node(n
, gfp
, 0);
866 } while (!page
&& read_mems_allowed_retry(cpuset_mems_cookie
));
870 return alloc_pages(gfp
, 0);
872 EXPORT_SYMBOL(__page_cache_alloc
);
876 * In order to wait for pages to become available there must be
877 * waitqueues associated with pages. By using a hash table of
878 * waitqueues where the bucket discipline is to maintain all
879 * waiters on the same queue and wake all when any of the pages
880 * become available, and for the woken contexts to check to be
881 * sure the appropriate page became available, this saves space
882 * at a cost of "thundering herd" phenomena during rare hash
885 #define PAGE_WAIT_TABLE_BITS 8
886 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
887 static wait_queue_head_t page_wait_table
[PAGE_WAIT_TABLE_SIZE
] __cacheline_aligned
;
889 static wait_queue_head_t
*page_waitqueue(struct page
*page
)
891 return &page_wait_table
[hash_ptr(page
, PAGE_WAIT_TABLE_BITS
)];
894 void __init
pagecache_init(void)
898 for (i
= 0; i
< PAGE_WAIT_TABLE_SIZE
; i
++)
899 init_waitqueue_head(&page_wait_table
[i
]);
901 page_writeback_init();
904 /* This has the same layout as wait_bit_key - see fs/cachefiles/rdwr.c */
905 struct wait_page_key
{
911 struct wait_page_queue
{
914 wait_queue_entry_t wait
;
917 static int wake_page_function(wait_queue_entry_t
*wait
, unsigned mode
, int sync
, void *arg
)
919 struct wait_page_key
*key
= arg
;
920 struct wait_page_queue
*wait_page
921 = container_of(wait
, struct wait_page_queue
, wait
);
923 if (wait_page
->page
!= key
->page
)
927 if (wait_page
->bit_nr
!= key
->bit_nr
)
930 /* Stop walking if it's locked */
931 if (test_bit(key
->bit_nr
, &key
->page
->flags
))
934 return autoremove_wake_function(wait
, mode
, sync
, key
);
937 static void wake_up_page_bit(struct page
*page
, int bit_nr
)
939 wait_queue_head_t
*q
= page_waitqueue(page
);
940 struct wait_page_key key
;
942 wait_queue_entry_t bookmark
;
949 bookmark
.private = NULL
;
950 bookmark
.func
= NULL
;
951 INIT_LIST_HEAD(&bookmark
.entry
);
953 spin_lock_irqsave(&q
->lock
, flags
);
954 __wake_up_locked_key_bookmark(q
, TASK_NORMAL
, &key
, &bookmark
);
956 while (bookmark
.flags
& WQ_FLAG_BOOKMARK
) {
958 * Take a breather from holding the lock,
959 * allow pages that finish wake up asynchronously
960 * to acquire the lock and remove themselves
963 spin_unlock_irqrestore(&q
->lock
, flags
);
965 spin_lock_irqsave(&q
->lock
, flags
);
966 __wake_up_locked_key_bookmark(q
, TASK_NORMAL
, &key
, &bookmark
);
970 * It is possible for other pages to have collided on the waitqueue
971 * hash, so in that case check for a page match. That prevents a long-
974 * It is still possible to miss a case here, when we woke page waiters
975 * and removed them from the waitqueue, but there are still other
978 if (!waitqueue_active(q
) || !key
.page_match
) {
979 ClearPageWaiters(page
);
981 * It's possible to miss clearing Waiters here, when we woke
982 * our page waiters, but the hashed waitqueue has waiters for
985 * That's okay, it's a rare case. The next waker will clear it.
988 spin_unlock_irqrestore(&q
->lock
, flags
);
991 static void wake_up_page(struct page
*page
, int bit
)
993 if (!PageWaiters(page
))
995 wake_up_page_bit(page
, bit
);
998 static inline int wait_on_page_bit_common(wait_queue_head_t
*q
,
999 struct page
*page
, int bit_nr
, int state
, bool lock
)
1001 struct wait_page_queue wait_page
;
1002 wait_queue_entry_t
*wait
= &wait_page
.wait
;
1006 wait
->flags
= lock
? WQ_FLAG_EXCLUSIVE
: 0;
1007 wait
->func
= wake_page_function
;
1008 wait_page
.page
= page
;
1009 wait_page
.bit_nr
= bit_nr
;
1012 spin_lock_irq(&q
->lock
);
1014 if (likely(list_empty(&wait
->entry
))) {
1015 __add_wait_queue_entry_tail(q
, wait
);
1016 SetPageWaiters(page
);
1019 set_current_state(state
);
1021 spin_unlock_irq(&q
->lock
);
1023 if (likely(test_bit(bit_nr
, &page
->flags
))) {
1028 if (!test_and_set_bit_lock(bit_nr
, &page
->flags
))
1031 if (!test_bit(bit_nr
, &page
->flags
))
1035 if (unlikely(signal_pending_state(state
, current
))) {
1041 finish_wait(q
, wait
);
1044 * A signal could leave PageWaiters set. Clearing it here if
1045 * !waitqueue_active would be possible (by open-coding finish_wait),
1046 * but still fail to catch it in the case of wait hash collision. We
1047 * already can fail to clear wait hash collision cases, so don't
1048 * bother with signals either.
1054 void wait_on_page_bit(struct page
*page
, int bit_nr
)
1056 wait_queue_head_t
*q
= page_waitqueue(page
);
1057 wait_on_page_bit_common(q
, page
, bit_nr
, TASK_UNINTERRUPTIBLE
, false);
1059 EXPORT_SYMBOL(wait_on_page_bit
);
1061 int wait_on_page_bit_killable(struct page
*page
, int bit_nr
)
1063 wait_queue_head_t
*q
= page_waitqueue(page
);
1064 return wait_on_page_bit_common(q
, page
, bit_nr
, TASK_KILLABLE
, false);
1068 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
1069 * @page: Page defining the wait queue of interest
1070 * @waiter: Waiter to add to the queue
1072 * Add an arbitrary @waiter to the wait queue for the nominated @page.
1074 void add_page_wait_queue(struct page
*page
, wait_queue_entry_t
*waiter
)
1076 wait_queue_head_t
*q
= page_waitqueue(page
);
1077 unsigned long flags
;
1079 spin_lock_irqsave(&q
->lock
, flags
);
1080 __add_wait_queue_entry_tail(q
, waiter
);
1081 SetPageWaiters(page
);
1082 spin_unlock_irqrestore(&q
->lock
, flags
);
1084 EXPORT_SYMBOL_GPL(add_page_wait_queue
);
1086 #ifndef clear_bit_unlock_is_negative_byte
1089 * PG_waiters is the high bit in the same byte as PG_lock.
1091 * On x86 (and on many other architectures), we can clear PG_lock and
1092 * test the sign bit at the same time. But if the architecture does
1093 * not support that special operation, we just do this all by hand
1096 * The read of PG_waiters has to be after (or concurrently with) PG_locked
1097 * being cleared, but a memory barrier should be unneccssary since it is
1098 * in the same byte as PG_locked.
1100 static inline bool clear_bit_unlock_is_negative_byte(long nr
, volatile void *mem
)
1102 clear_bit_unlock(nr
, mem
);
1103 /* smp_mb__after_atomic(); */
1104 return test_bit(PG_waiters
, mem
);
1110 * unlock_page - unlock a locked page
1113 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
1114 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
1115 * mechanism between PageLocked pages and PageWriteback pages is shared.
1116 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
1118 * Note that this depends on PG_waiters being the sign bit in the byte
1119 * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to
1120 * clear the PG_locked bit and test PG_waiters at the same time fairly
1121 * portably (architectures that do LL/SC can test any bit, while x86 can
1122 * test the sign bit).
1124 void unlock_page(struct page
*page
)
1126 BUILD_BUG_ON(PG_waiters
!= 7);
1127 page
= compound_head(page
);
1128 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
1129 if (clear_bit_unlock_is_negative_byte(PG_locked
, &page
->flags
))
1130 wake_up_page_bit(page
, PG_locked
);
1132 EXPORT_SYMBOL(unlock_page
);
1135 * end_page_writeback - end writeback against a page
1138 void end_page_writeback(struct page
*page
)
1141 * TestClearPageReclaim could be used here but it is an atomic
1142 * operation and overkill in this particular case. Failing to
1143 * shuffle a page marked for immediate reclaim is too mild to
1144 * justify taking an atomic operation penalty at the end of
1145 * ever page writeback.
1147 if (PageReclaim(page
)) {
1148 ClearPageReclaim(page
);
1149 rotate_reclaimable_page(page
);
1152 if (!test_clear_page_writeback(page
))
1155 smp_mb__after_atomic();
1156 wake_up_page(page
, PG_writeback
);
1158 EXPORT_SYMBOL(end_page_writeback
);
1161 * After completing I/O on a page, call this routine to update the page
1162 * flags appropriately
1164 void page_endio(struct page
*page
, bool is_write
, int err
)
1168 SetPageUptodate(page
);
1170 ClearPageUptodate(page
);
1176 struct address_space
*mapping
;
1179 mapping
= page_mapping(page
);
1181 mapping_set_error(mapping
, err
);
1183 end_page_writeback(page
);
1186 EXPORT_SYMBOL_GPL(page_endio
);
1189 * __lock_page - get a lock on the page, assuming we need to sleep to get it
1190 * @__page: the page to lock
1192 void __lock_page(struct page
*__page
)
1194 struct page
*page
= compound_head(__page
);
1195 wait_queue_head_t
*q
= page_waitqueue(page
);
1196 wait_on_page_bit_common(q
, page
, PG_locked
, TASK_UNINTERRUPTIBLE
, true);
1198 EXPORT_SYMBOL(__lock_page
);
1200 int __lock_page_killable(struct page
*__page
)
1202 struct page
*page
= compound_head(__page
);
1203 wait_queue_head_t
*q
= page_waitqueue(page
);
1204 return wait_on_page_bit_common(q
, page
, PG_locked
, TASK_KILLABLE
, true);
1206 EXPORT_SYMBOL_GPL(__lock_page_killable
);
1210 * 1 - page is locked; mmap_sem is still held.
1211 * 0 - page is not locked.
1212 * mmap_sem has been released (up_read()), unless flags had both
1213 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
1214 * which case mmap_sem is still held.
1216 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
1217 * with the page locked and the mmap_sem unperturbed.
1219 int __lock_page_or_retry(struct page
*page
, struct mm_struct
*mm
,
1222 if (flags
& FAULT_FLAG_ALLOW_RETRY
) {
1224 * CAUTION! In this case, mmap_sem is not released
1225 * even though return 0.
1227 if (flags
& FAULT_FLAG_RETRY_NOWAIT
)
1230 up_read(&mm
->mmap_sem
);
1231 if (flags
& FAULT_FLAG_KILLABLE
)
1232 wait_on_page_locked_killable(page
);
1234 wait_on_page_locked(page
);
1237 if (flags
& FAULT_FLAG_KILLABLE
) {
1240 ret
= __lock_page_killable(page
);
1242 up_read(&mm
->mmap_sem
);
1252 * page_cache_next_hole - find the next hole (not-present entry)
1255 * @max_scan: maximum range to search
1257 * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
1258 * lowest indexed hole.
1260 * Returns: the index of the hole if found, otherwise returns an index
1261 * outside of the set specified (in which case 'return - index >=
1262 * max_scan' will be true). In rare cases of index wrap-around, 0 will
1265 * page_cache_next_hole may be called under rcu_read_lock. However,
1266 * like radix_tree_gang_lookup, this will not atomically search a
1267 * snapshot of the tree at a single point in time. For example, if a
1268 * hole is created at index 5, then subsequently a hole is created at
1269 * index 10, page_cache_next_hole covering both indexes may return 10
1270 * if called under rcu_read_lock.
1272 pgoff_t
page_cache_next_hole(struct address_space
*mapping
,
1273 pgoff_t index
, unsigned long max_scan
)
1277 for (i
= 0; i
< max_scan
; i
++) {
1280 page
= radix_tree_lookup(&mapping
->page_tree
, index
);
1281 if (!page
|| radix_tree_exceptional_entry(page
))
1290 EXPORT_SYMBOL(page_cache_next_hole
);
1293 * page_cache_prev_hole - find the prev hole (not-present entry)
1296 * @max_scan: maximum range to search
1298 * Search backwards in the range [max(index-max_scan+1, 0), index] for
1301 * Returns: the index of the hole if found, otherwise returns an index
1302 * outside of the set specified (in which case 'index - return >=
1303 * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
1306 * page_cache_prev_hole may be called under rcu_read_lock. However,
1307 * like radix_tree_gang_lookup, this will not atomically search a
1308 * snapshot of the tree at a single point in time. For example, if a
1309 * hole is created at index 10, then subsequently a hole is created at
1310 * index 5, page_cache_prev_hole covering both indexes may return 5 if
1311 * called under rcu_read_lock.
1313 pgoff_t
page_cache_prev_hole(struct address_space
*mapping
,
1314 pgoff_t index
, unsigned long max_scan
)
1318 for (i
= 0; i
< max_scan
; i
++) {
1321 page
= radix_tree_lookup(&mapping
->page_tree
, index
);
1322 if (!page
|| radix_tree_exceptional_entry(page
))
1325 if (index
== ULONG_MAX
)
1331 EXPORT_SYMBOL(page_cache_prev_hole
);
1334 * find_get_entry - find and get a page cache entry
1335 * @mapping: the address_space to search
1336 * @offset: the page cache index
1338 * Looks up the page cache slot at @mapping & @offset. If there is a
1339 * page cache page, it is returned with an increased refcount.
1341 * If the slot holds a shadow entry of a previously evicted page, or a
1342 * swap entry from shmem/tmpfs, it is returned.
1344 * Otherwise, %NULL is returned.
1346 struct page
*find_get_entry(struct address_space
*mapping
, pgoff_t offset
)
1349 struct page
*head
, *page
;
1354 pagep
= radix_tree_lookup_slot(&mapping
->page_tree
, offset
);
1356 page
= radix_tree_deref_slot(pagep
);
1357 if (unlikely(!page
))
1359 if (radix_tree_exception(page
)) {
1360 if (radix_tree_deref_retry(page
))
1363 * A shadow entry of a recently evicted page,
1364 * or a swap entry from shmem/tmpfs. Return
1365 * it without attempting to raise page count.
1370 head
= compound_head(page
);
1371 if (!page_cache_get_speculative(head
))
1374 /* The page was split under us? */
1375 if (compound_head(page
) != head
) {
1381 * Has the page moved?
1382 * This is part of the lockless pagecache protocol. See
1383 * include/linux/pagemap.h for details.
1385 if (unlikely(page
!= *pagep
)) {
1395 EXPORT_SYMBOL(find_get_entry
);
1398 * find_lock_entry - locate, pin and lock a page cache entry
1399 * @mapping: the address_space to search
1400 * @offset: the page cache index
1402 * Looks up the page cache slot at @mapping & @offset. If there is a
1403 * page cache page, it is returned locked and with an increased
1406 * If the slot holds a shadow entry of a previously evicted page, or a
1407 * swap entry from shmem/tmpfs, it is returned.
1409 * Otherwise, %NULL is returned.
1411 * find_lock_entry() may sleep.
1413 struct page
*find_lock_entry(struct address_space
*mapping
, pgoff_t offset
)
1418 page
= find_get_entry(mapping
, offset
);
1419 if (page
&& !radix_tree_exception(page
)) {
1421 /* Has the page been truncated? */
1422 if (unlikely(page_mapping(page
) != mapping
)) {
1427 VM_BUG_ON_PAGE(page_to_pgoff(page
) != offset
, page
);
1431 EXPORT_SYMBOL(find_lock_entry
);
1434 * pagecache_get_page - find and get a page reference
1435 * @mapping: the address_space to search
1436 * @offset: the page index
1437 * @fgp_flags: PCG flags
1438 * @gfp_mask: gfp mask to use for the page cache data page allocation
1440 * Looks up the page cache slot at @mapping & @offset.
1442 * PCG flags modify how the page is returned.
1444 * @fgp_flags can be:
1446 * - FGP_ACCESSED: the page will be marked accessed
1447 * - FGP_LOCK: Page is return locked
1448 * - FGP_CREAT: If page is not present then a new page is allocated using
1449 * @gfp_mask and added to the page cache and the VM's LRU
1450 * list. The page is returned locked and with an increased
1451 * refcount. Otherwise, NULL is returned.
1453 * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1454 * if the GFP flags specified for FGP_CREAT are atomic.
1456 * If there is a page cache page, it is returned with an increased refcount.
1458 struct page
*pagecache_get_page(struct address_space
*mapping
, pgoff_t offset
,
1459 int fgp_flags
, gfp_t gfp_mask
)
1464 page
= find_get_entry(mapping
, offset
);
1465 if (radix_tree_exceptional_entry(page
))
1470 if (fgp_flags
& FGP_LOCK
) {
1471 if (fgp_flags
& FGP_NOWAIT
) {
1472 if (!trylock_page(page
)) {
1480 /* Has the page been truncated? */
1481 if (unlikely(page
->mapping
!= mapping
)) {
1486 VM_BUG_ON_PAGE(page
->index
!= offset
, page
);
1489 if (page
&& (fgp_flags
& FGP_ACCESSED
))
1490 mark_page_accessed(page
);
1493 if (!page
&& (fgp_flags
& FGP_CREAT
)) {
1495 if ((fgp_flags
& FGP_WRITE
) && mapping_cap_account_dirty(mapping
))
1496 gfp_mask
|= __GFP_WRITE
;
1497 if (fgp_flags
& FGP_NOFS
)
1498 gfp_mask
&= ~__GFP_FS
;
1500 page
= __page_cache_alloc(gfp_mask
);
1504 if (WARN_ON_ONCE(!(fgp_flags
& FGP_LOCK
)))
1505 fgp_flags
|= FGP_LOCK
;
1507 /* Init accessed so avoid atomic mark_page_accessed later */
1508 if (fgp_flags
& FGP_ACCESSED
)
1509 __SetPageReferenced(page
);
1511 err
= add_to_page_cache_lru(page
, mapping
, offset
, gfp_mask
);
1512 if (unlikely(err
)) {
1522 EXPORT_SYMBOL(pagecache_get_page
);
1525 * find_get_entries - gang pagecache lookup
1526 * @mapping: The address_space to search
1527 * @start: The starting page cache index
1528 * @nr_entries: The maximum number of entries
1529 * @entries: Where the resulting entries are placed
1530 * @indices: The cache indices corresponding to the entries in @entries
1532 * find_get_entries() will search for and return a group of up to
1533 * @nr_entries entries in the mapping. The entries are placed at
1534 * @entries. find_get_entries() takes a reference against any actual
1537 * The search returns a group of mapping-contiguous page cache entries
1538 * with ascending indexes. There may be holes in the indices due to
1539 * not-present pages.
1541 * Any shadow entries of evicted pages, or swap entries from
1542 * shmem/tmpfs, are included in the returned array.
1544 * find_get_entries() returns the number of pages and shadow entries
1547 unsigned find_get_entries(struct address_space
*mapping
,
1548 pgoff_t start
, unsigned int nr_entries
,
1549 struct page
**entries
, pgoff_t
*indices
)
1552 unsigned int ret
= 0;
1553 struct radix_tree_iter iter
;
1559 radix_tree_for_each_slot(slot
, &mapping
->page_tree
, &iter
, start
) {
1560 struct page
*head
, *page
;
1562 page
= radix_tree_deref_slot(slot
);
1563 if (unlikely(!page
))
1565 if (radix_tree_exception(page
)) {
1566 if (radix_tree_deref_retry(page
)) {
1567 slot
= radix_tree_iter_retry(&iter
);
1571 * A shadow entry of a recently evicted page, a swap
1572 * entry from shmem/tmpfs or a DAX entry. Return it
1573 * without attempting to raise page count.
1578 head
= compound_head(page
);
1579 if (!page_cache_get_speculative(head
))
1582 /* The page was split under us? */
1583 if (compound_head(page
) != head
) {
1588 /* Has the page moved? */
1589 if (unlikely(page
!= *slot
)) {
1594 indices
[ret
] = iter
.index
;
1595 entries
[ret
] = page
;
1596 if (++ret
== nr_entries
)
1604 * find_get_pages_range - gang pagecache lookup
1605 * @mapping: The address_space to search
1606 * @start: The starting page index
1607 * @end: The final page index (inclusive)
1608 * @nr_pages: The maximum number of pages
1609 * @pages: Where the resulting pages are placed
1611 * find_get_pages_range() will search for and return a group of up to @nr_pages
1612 * pages in the mapping starting at index @start and up to index @end
1613 * (inclusive). The pages are placed at @pages. find_get_pages_range() takes
1614 * a reference against the returned pages.
1616 * The search returns a group of mapping-contiguous pages with ascending
1617 * indexes. There may be holes in the indices due to not-present pages.
1618 * We also update @start to index the next page for the traversal.
1620 * find_get_pages_range() returns the number of pages which were found. If this
1621 * number is smaller than @nr_pages, the end of specified range has been
1624 unsigned find_get_pages_range(struct address_space
*mapping
, pgoff_t
*start
,
1625 pgoff_t end
, unsigned int nr_pages
,
1626 struct page
**pages
)
1628 struct radix_tree_iter iter
;
1632 if (unlikely(!nr_pages
))
1636 radix_tree_for_each_slot(slot
, &mapping
->page_tree
, &iter
, *start
) {
1637 struct page
*head
, *page
;
1639 if (iter
.index
> end
)
1642 page
= radix_tree_deref_slot(slot
);
1643 if (unlikely(!page
))
1646 if (radix_tree_exception(page
)) {
1647 if (radix_tree_deref_retry(page
)) {
1648 slot
= radix_tree_iter_retry(&iter
);
1652 * A shadow entry of a recently evicted page,
1653 * or a swap entry from shmem/tmpfs. Skip
1659 head
= compound_head(page
);
1660 if (!page_cache_get_speculative(head
))
1663 /* The page was split under us? */
1664 if (compound_head(page
) != head
) {
1669 /* Has the page moved? */
1670 if (unlikely(page
!= *slot
)) {
1676 if (++ret
== nr_pages
) {
1677 *start
= pages
[ret
- 1]->index
+ 1;
1683 * We come here when there is no page beyond @end. We take care to not
1684 * overflow the index @start as it confuses some of the callers. This
1685 * breaks the iteration when there is page at index -1 but that is
1686 * already broken anyway.
1688 if (end
== (pgoff_t
)-1)
1689 *start
= (pgoff_t
)-1;
1699 * find_get_pages_contig - gang contiguous pagecache lookup
1700 * @mapping: The address_space to search
1701 * @index: The starting page index
1702 * @nr_pages: The maximum number of pages
1703 * @pages: Where the resulting pages are placed
1705 * find_get_pages_contig() works exactly like find_get_pages(), except
1706 * that the returned number of pages are guaranteed to be contiguous.
1708 * find_get_pages_contig() returns the number of pages which were found.
1710 unsigned find_get_pages_contig(struct address_space
*mapping
, pgoff_t index
,
1711 unsigned int nr_pages
, struct page
**pages
)
1713 struct radix_tree_iter iter
;
1715 unsigned int ret
= 0;
1717 if (unlikely(!nr_pages
))
1721 radix_tree_for_each_contig(slot
, &mapping
->page_tree
, &iter
, index
) {
1722 struct page
*head
, *page
;
1724 page
= radix_tree_deref_slot(slot
);
1725 /* The hole, there no reason to continue */
1726 if (unlikely(!page
))
1729 if (radix_tree_exception(page
)) {
1730 if (radix_tree_deref_retry(page
)) {
1731 slot
= radix_tree_iter_retry(&iter
);
1735 * A shadow entry of a recently evicted page,
1736 * or a swap entry from shmem/tmpfs. Stop
1737 * looking for contiguous pages.
1742 head
= compound_head(page
);
1743 if (!page_cache_get_speculative(head
))
1746 /* The page was split under us? */
1747 if (compound_head(page
) != head
) {
1752 /* Has the page moved? */
1753 if (unlikely(page
!= *slot
)) {
1759 * must check mapping and index after taking the ref.
1760 * otherwise we can get both false positives and false
1761 * negatives, which is just confusing to the caller.
1763 if (page
->mapping
== NULL
|| page_to_pgoff(page
) != iter
.index
) {
1769 if (++ret
== nr_pages
)
1775 EXPORT_SYMBOL(find_get_pages_contig
);
1778 * find_get_pages_tag - find and return pages that match @tag
1779 * @mapping: the address_space to search
1780 * @index: the starting page index
1781 * @tag: the tag index
1782 * @nr_pages: the maximum number of pages
1783 * @pages: where the resulting pages are placed
1785 * Like find_get_pages, except we only return pages which are tagged with
1786 * @tag. We update @index to index the next page for the traversal.
1788 unsigned find_get_pages_tag(struct address_space
*mapping
, pgoff_t
*index
,
1789 int tag
, unsigned int nr_pages
, struct page
**pages
)
1791 struct radix_tree_iter iter
;
1795 if (unlikely(!nr_pages
))
1799 radix_tree_for_each_tagged(slot
, &mapping
->page_tree
,
1800 &iter
, *index
, tag
) {
1801 struct page
*head
, *page
;
1803 page
= radix_tree_deref_slot(slot
);
1804 if (unlikely(!page
))
1807 if (radix_tree_exception(page
)) {
1808 if (radix_tree_deref_retry(page
)) {
1809 slot
= radix_tree_iter_retry(&iter
);
1813 * A shadow entry of a recently evicted page.
1815 * Those entries should never be tagged, but
1816 * this tree walk is lockless and the tags are
1817 * looked up in bulk, one radix tree node at a
1818 * time, so there is a sizable window for page
1819 * reclaim to evict a page we saw tagged.
1826 head
= compound_head(page
);
1827 if (!page_cache_get_speculative(head
))
1830 /* The page was split under us? */
1831 if (compound_head(page
) != head
) {
1836 /* Has the page moved? */
1837 if (unlikely(page
!= *slot
)) {
1843 if (++ret
== nr_pages
)
1850 *index
= pages
[ret
- 1]->index
+ 1;
1854 EXPORT_SYMBOL(find_get_pages_tag
);
1857 * find_get_entries_tag - find and return entries that match @tag
1858 * @mapping: the address_space to search
1859 * @start: the starting page cache index
1860 * @tag: the tag index
1861 * @nr_entries: the maximum number of entries
1862 * @entries: where the resulting entries are placed
1863 * @indices: the cache indices corresponding to the entries in @entries
1865 * Like find_get_entries, except we only return entries which are tagged with
1868 unsigned find_get_entries_tag(struct address_space
*mapping
, pgoff_t start
,
1869 int tag
, unsigned int nr_entries
,
1870 struct page
**entries
, pgoff_t
*indices
)
1873 unsigned int ret
= 0;
1874 struct radix_tree_iter iter
;
1880 radix_tree_for_each_tagged(slot
, &mapping
->page_tree
,
1881 &iter
, start
, tag
) {
1882 struct page
*head
, *page
;
1884 page
= radix_tree_deref_slot(slot
);
1885 if (unlikely(!page
))
1887 if (radix_tree_exception(page
)) {
1888 if (radix_tree_deref_retry(page
)) {
1889 slot
= radix_tree_iter_retry(&iter
);
1894 * A shadow entry of a recently evicted page, a swap
1895 * entry from shmem/tmpfs or a DAX entry. Return it
1896 * without attempting to raise page count.
1901 head
= compound_head(page
);
1902 if (!page_cache_get_speculative(head
))
1905 /* The page was split under us? */
1906 if (compound_head(page
) != head
) {
1911 /* Has the page moved? */
1912 if (unlikely(page
!= *slot
)) {
1917 indices
[ret
] = iter
.index
;
1918 entries
[ret
] = page
;
1919 if (++ret
== nr_entries
)
1925 EXPORT_SYMBOL(find_get_entries_tag
);
1928 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1929 * a _large_ part of the i/o request. Imagine the worst scenario:
1931 * ---R__________________________________________B__________
1932 * ^ reading here ^ bad block(assume 4k)
1934 * read(R) => miss => readahead(R...B) => media error => frustrating retries
1935 * => failing the whole request => read(R) => read(R+1) =>
1936 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1937 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1938 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1940 * It is going insane. Fix it by quickly scaling down the readahead size.
1942 static void shrink_readahead_size_eio(struct file
*filp
,
1943 struct file_ra_state
*ra
)
1949 * generic_file_buffered_read - generic file read routine
1950 * @iocb: the iocb to read
1951 * @iter: data destination
1952 * @written: already copied
1954 * This is a generic file read routine, and uses the
1955 * mapping->a_ops->readpage() function for the actual low-level stuff.
1957 * This is really ugly. But the goto's actually try to clarify some
1958 * of the logic when it comes to error handling etc.
1960 static ssize_t
generic_file_buffered_read(struct kiocb
*iocb
,
1961 struct iov_iter
*iter
, ssize_t written
)
1963 struct file
*filp
= iocb
->ki_filp
;
1964 struct address_space
*mapping
= filp
->f_mapping
;
1965 struct inode
*inode
= mapping
->host
;
1966 struct file_ra_state
*ra
= &filp
->f_ra
;
1967 loff_t
*ppos
= &iocb
->ki_pos
;
1971 unsigned long offset
; /* offset into pagecache page */
1972 unsigned int prev_offset
;
1975 if (unlikely(*ppos
>= inode
->i_sb
->s_maxbytes
))
1977 iov_iter_truncate(iter
, inode
->i_sb
->s_maxbytes
);
1979 index
= *ppos
>> PAGE_SHIFT
;
1980 prev_index
= ra
->prev_pos
>> PAGE_SHIFT
;
1981 prev_offset
= ra
->prev_pos
& (PAGE_SIZE
-1);
1982 last_index
= (*ppos
+ iter
->count
+ PAGE_SIZE
-1) >> PAGE_SHIFT
;
1983 offset
= *ppos
& ~PAGE_MASK
;
1989 unsigned long nr
, ret
;
1993 if (fatal_signal_pending(current
)) {
1998 page
= find_get_page(mapping
, index
);
2000 if (iocb
->ki_flags
& IOCB_NOWAIT
)
2002 page_cache_sync_readahead(mapping
,
2004 index
, last_index
- index
);
2005 page
= find_get_page(mapping
, index
);
2006 if (unlikely(page
== NULL
))
2007 goto no_cached_page
;
2009 if (PageReadahead(page
)) {
2010 page_cache_async_readahead(mapping
,
2012 index
, last_index
- index
);
2014 if (!PageUptodate(page
)) {
2015 if (iocb
->ki_flags
& IOCB_NOWAIT
) {
2021 * See comment in do_read_cache_page on why
2022 * wait_on_page_locked is used to avoid unnecessarily
2023 * serialisations and why it's safe.
2025 error
= wait_on_page_locked_killable(page
);
2026 if (unlikely(error
))
2027 goto readpage_error
;
2028 if (PageUptodate(page
))
2031 if (inode
->i_blkbits
== PAGE_SHIFT
||
2032 !mapping
->a_ops
->is_partially_uptodate
)
2033 goto page_not_up_to_date
;
2034 /* pipes can't handle partially uptodate pages */
2035 if (unlikely(iter
->type
& ITER_PIPE
))
2036 goto page_not_up_to_date
;
2037 if (!trylock_page(page
))
2038 goto page_not_up_to_date
;
2039 /* Did it get truncated before we got the lock? */
2041 goto page_not_up_to_date_locked
;
2042 if (!mapping
->a_ops
->is_partially_uptodate(page
,
2043 offset
, iter
->count
))
2044 goto page_not_up_to_date_locked
;
2049 * i_size must be checked after we know the page is Uptodate.
2051 * Checking i_size after the check allows us to calculate
2052 * the correct value for "nr", which means the zero-filled
2053 * part of the page is not copied back to userspace (unless
2054 * another truncate extends the file - this is desired though).
2057 isize
= i_size_read(inode
);
2058 end_index
= (isize
- 1) >> PAGE_SHIFT
;
2059 if (unlikely(!isize
|| index
> end_index
)) {
2064 /* nr is the maximum number of bytes to copy from this page */
2066 if (index
== end_index
) {
2067 nr
= ((isize
- 1) & ~PAGE_MASK
) + 1;
2075 /* If users can be writing to this page using arbitrary
2076 * virtual addresses, take care about potential aliasing
2077 * before reading the page on the kernel side.
2079 if (mapping_writably_mapped(mapping
))
2080 flush_dcache_page(page
);
2083 * When a sequential read accesses a page several times,
2084 * only mark it as accessed the first time.
2086 if (prev_index
!= index
|| offset
!= prev_offset
)
2087 mark_page_accessed(page
);
2091 * Ok, we have the page, and it's up-to-date, so
2092 * now we can copy it to user space...
2095 ret
= copy_page_to_iter(page
, offset
, nr
, iter
);
2097 index
+= offset
>> PAGE_SHIFT
;
2098 offset
&= ~PAGE_MASK
;
2099 prev_offset
= offset
;
2103 if (!iov_iter_count(iter
))
2111 page_not_up_to_date
:
2112 /* Get exclusive access to the page ... */
2113 error
= lock_page_killable(page
);
2114 if (unlikely(error
))
2115 goto readpage_error
;
2117 page_not_up_to_date_locked
:
2118 /* Did it get truncated before we got the lock? */
2119 if (!page
->mapping
) {
2125 /* Did somebody else fill it already? */
2126 if (PageUptodate(page
)) {
2133 * A previous I/O error may have been due to temporary
2134 * failures, eg. multipath errors.
2135 * PG_error will be set again if readpage fails.
2137 ClearPageError(page
);
2138 /* Start the actual read. The read will unlock the page. */
2139 error
= mapping
->a_ops
->readpage(filp
, page
);
2141 if (unlikely(error
)) {
2142 if (error
== AOP_TRUNCATED_PAGE
) {
2147 goto readpage_error
;
2150 if (!PageUptodate(page
)) {
2151 error
= lock_page_killable(page
);
2152 if (unlikely(error
))
2153 goto readpage_error
;
2154 if (!PageUptodate(page
)) {
2155 if (page
->mapping
== NULL
) {
2157 * invalidate_mapping_pages got it
2164 shrink_readahead_size_eio(filp
, ra
);
2166 goto readpage_error
;
2174 /* UHHUH! A synchronous read error occurred. Report it */
2180 * Ok, it wasn't cached, so we need to create a new
2183 page
= page_cache_alloc_cold(mapping
);
2188 error
= add_to_page_cache_lru(page
, mapping
, index
,
2189 mapping_gfp_constraint(mapping
, GFP_KERNEL
));
2192 if (error
== -EEXIST
) {
2204 ra
->prev_pos
= prev_index
;
2205 ra
->prev_pos
<<= PAGE_SHIFT
;
2206 ra
->prev_pos
|= prev_offset
;
2208 *ppos
= ((loff_t
)index
<< PAGE_SHIFT
) + offset
;
2209 file_accessed(filp
);
2210 return written
? written
: error
;
2214 * generic_file_read_iter - generic filesystem read routine
2215 * @iocb: kernel I/O control block
2216 * @iter: destination for the data read
2218 * This is the "read_iter()" routine for all filesystems
2219 * that can use the page cache directly.
2222 generic_file_read_iter(struct kiocb
*iocb
, struct iov_iter
*iter
)
2224 size_t count
= iov_iter_count(iter
);
2228 goto out
; /* skip atime */
2230 if (iocb
->ki_flags
& IOCB_DIRECT
) {
2231 struct file
*file
= iocb
->ki_filp
;
2232 struct address_space
*mapping
= file
->f_mapping
;
2233 struct inode
*inode
= mapping
->host
;
2236 size
= i_size_read(inode
);
2237 if (iocb
->ki_flags
& IOCB_NOWAIT
) {
2238 if (filemap_range_has_page(mapping
, iocb
->ki_pos
,
2239 iocb
->ki_pos
+ count
- 1))
2242 retval
= filemap_write_and_wait_range(mapping
,
2244 iocb
->ki_pos
+ count
- 1);
2249 file_accessed(file
);
2251 retval
= mapping
->a_ops
->direct_IO(iocb
, iter
);
2253 iocb
->ki_pos
+= retval
;
2256 iov_iter_revert(iter
, count
- iov_iter_count(iter
));
2259 * Btrfs can have a short DIO read if we encounter
2260 * compressed extents, so if there was an error, or if
2261 * we've already read everything we wanted to, or if
2262 * there was a short read because we hit EOF, go ahead
2263 * and return. Otherwise fallthrough to buffered io for
2264 * the rest of the read. Buffered reads will not work for
2265 * DAX files, so don't bother trying.
2267 if (retval
< 0 || !count
|| iocb
->ki_pos
>= size
||
2272 retval
= generic_file_buffered_read(iocb
, iter
, retval
);
2276 EXPORT_SYMBOL(generic_file_read_iter
);
2280 * page_cache_read - adds requested page to the page cache if not already there
2281 * @file: file to read
2282 * @offset: page index
2283 * @gfp_mask: memory allocation flags
2285 * This adds the requested page to the page cache if it isn't already there,
2286 * and schedules an I/O to read in its contents from disk.
2288 static int page_cache_read(struct file
*file
, pgoff_t offset
, gfp_t gfp_mask
)
2290 struct address_space
*mapping
= file
->f_mapping
;
2295 page
= __page_cache_alloc(gfp_mask
|__GFP_COLD
);
2299 ret
= add_to_page_cache_lru(page
, mapping
, offset
, gfp_mask
);
2301 ret
= mapping
->a_ops
->readpage(file
, page
);
2302 else if (ret
== -EEXIST
)
2303 ret
= 0; /* losing race to add is OK */
2307 } while (ret
== AOP_TRUNCATED_PAGE
);
2312 #define MMAP_LOTSAMISS (100)
2315 * Synchronous readahead happens when we don't even find
2316 * a page in the page cache at all.
2318 static void do_sync_mmap_readahead(struct vm_area_struct
*vma
,
2319 struct file_ra_state
*ra
,
2323 struct address_space
*mapping
= file
->f_mapping
;
2325 /* If we don't want any read-ahead, don't bother */
2326 if (vma
->vm_flags
& VM_RAND_READ
)
2331 if (vma
->vm_flags
& VM_SEQ_READ
) {
2332 page_cache_sync_readahead(mapping
, ra
, file
, offset
,
2337 /* Avoid banging the cache line if not needed */
2338 if (ra
->mmap_miss
< MMAP_LOTSAMISS
* 10)
2342 * Do we miss much more than hit in this file? If so,
2343 * stop bothering with read-ahead. It will only hurt.
2345 if (ra
->mmap_miss
> MMAP_LOTSAMISS
)
2351 ra
->start
= max_t(long, 0, offset
- ra
->ra_pages
/ 2);
2352 ra
->size
= ra
->ra_pages
;
2353 ra
->async_size
= ra
->ra_pages
/ 4;
2354 ra_submit(ra
, mapping
, file
);
2358 * Asynchronous readahead happens when we find the page and PG_readahead,
2359 * so we want to possibly extend the readahead further..
2361 static void do_async_mmap_readahead(struct vm_area_struct
*vma
,
2362 struct file_ra_state
*ra
,
2367 struct address_space
*mapping
= file
->f_mapping
;
2369 /* If we don't want any read-ahead, don't bother */
2370 if (vma
->vm_flags
& VM_RAND_READ
)
2372 if (ra
->mmap_miss
> 0)
2374 if (PageReadahead(page
))
2375 page_cache_async_readahead(mapping
, ra
, file
,
2376 page
, offset
, ra
->ra_pages
);
2380 * filemap_fault - read in file data for page fault handling
2381 * @vmf: struct vm_fault containing details of the fault
2383 * filemap_fault() is invoked via the vma operations vector for a
2384 * mapped memory region to read in file data during a page fault.
2386 * The goto's are kind of ugly, but this streamlines the normal case of having
2387 * it in the page cache, and handles the special cases reasonably without
2388 * having a lot of duplicated code.
2390 * vma->vm_mm->mmap_sem must be held on entry.
2392 * If our return value has VM_FAULT_RETRY set, it's because
2393 * lock_page_or_retry() returned 0.
2394 * The mmap_sem has usually been released in this case.
2395 * See __lock_page_or_retry() for the exception.
2397 * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
2398 * has not been released.
2400 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
2402 int filemap_fault(struct vm_fault
*vmf
)
2405 struct file
*file
= vmf
->vma
->vm_file
;
2406 struct address_space
*mapping
= file
->f_mapping
;
2407 struct file_ra_state
*ra
= &file
->f_ra
;
2408 struct inode
*inode
= mapping
->host
;
2409 pgoff_t offset
= vmf
->pgoff
;
2414 max_off
= DIV_ROUND_UP(i_size_read(inode
), PAGE_SIZE
);
2415 if (unlikely(offset
>= max_off
))
2416 return VM_FAULT_SIGBUS
;
2419 * Do we have something in the page cache already?
2421 page
= find_get_page(mapping
, offset
);
2422 if (likely(page
) && !(vmf
->flags
& FAULT_FLAG_TRIED
)) {
2424 * We found the page, so try async readahead before
2425 * waiting for the lock.
2427 do_async_mmap_readahead(vmf
->vma
, ra
, file
, page
, offset
);
2429 /* No page in the page cache at all */
2430 do_sync_mmap_readahead(vmf
->vma
, ra
, file
, offset
);
2431 count_vm_event(PGMAJFAULT
);
2432 count_memcg_event_mm(vmf
->vma
->vm_mm
, PGMAJFAULT
);
2433 ret
= VM_FAULT_MAJOR
;
2435 page
= find_get_page(mapping
, offset
);
2437 goto no_cached_page
;
2440 if (!lock_page_or_retry(page
, vmf
->vma
->vm_mm
, vmf
->flags
)) {
2442 return ret
| VM_FAULT_RETRY
;
2445 /* Did it get truncated? */
2446 if (unlikely(page
->mapping
!= mapping
)) {
2451 VM_BUG_ON_PAGE(page
->index
!= offset
, page
);
2454 * We have a locked page in the page cache, now we need to check
2455 * that it's up-to-date. If not, it is going to be due to an error.
2457 if (unlikely(!PageUptodate(page
)))
2458 goto page_not_uptodate
;
2461 * Found the page and have a reference on it.
2462 * We must recheck i_size under page lock.
2464 max_off
= DIV_ROUND_UP(i_size_read(inode
), PAGE_SIZE
);
2465 if (unlikely(offset
>= max_off
)) {
2468 return VM_FAULT_SIGBUS
;
2472 return ret
| VM_FAULT_LOCKED
;
2476 * We're only likely to ever get here if MADV_RANDOM is in
2479 error
= page_cache_read(file
, offset
, vmf
->gfp_mask
);
2482 * The page we want has now been added to the page cache.
2483 * In the unlikely event that someone removed it in the
2484 * meantime, we'll just come back here and read it again.
2490 * An error return from page_cache_read can result if the
2491 * system is low on memory, or a problem occurs while trying
2494 if (error
== -ENOMEM
)
2495 return VM_FAULT_OOM
;
2496 return VM_FAULT_SIGBUS
;
2500 * Umm, take care of errors if the page isn't up-to-date.
2501 * Try to re-read it _once_. We do this synchronously,
2502 * because there really aren't any performance issues here
2503 * and we need to check for errors.
2505 ClearPageError(page
);
2506 error
= mapping
->a_ops
->readpage(file
, page
);
2508 wait_on_page_locked(page
);
2509 if (!PageUptodate(page
))
2514 if (!error
|| error
== AOP_TRUNCATED_PAGE
)
2517 /* Things didn't work out. Return zero to tell the mm layer so. */
2518 shrink_readahead_size_eio(file
, ra
);
2519 return VM_FAULT_SIGBUS
;
2521 EXPORT_SYMBOL(filemap_fault
);
2523 void filemap_map_pages(struct vm_fault
*vmf
,
2524 pgoff_t start_pgoff
, pgoff_t end_pgoff
)
2526 struct radix_tree_iter iter
;
2528 struct file
*file
= vmf
->vma
->vm_file
;
2529 struct address_space
*mapping
= file
->f_mapping
;
2530 pgoff_t last_pgoff
= start_pgoff
;
2531 unsigned long max_idx
;
2532 struct page
*head
, *page
;
2535 radix_tree_for_each_slot(slot
, &mapping
->page_tree
, &iter
,
2537 if (iter
.index
> end_pgoff
)
2540 page
= radix_tree_deref_slot(slot
);
2541 if (unlikely(!page
))
2543 if (radix_tree_exception(page
)) {
2544 if (radix_tree_deref_retry(page
)) {
2545 slot
= radix_tree_iter_retry(&iter
);
2551 head
= compound_head(page
);
2552 if (!page_cache_get_speculative(head
))
2555 /* The page was split under us? */
2556 if (compound_head(page
) != head
) {
2561 /* Has the page moved? */
2562 if (unlikely(page
!= *slot
)) {
2567 if (!PageUptodate(page
) ||
2568 PageReadahead(page
) ||
2571 if (!trylock_page(page
))
2574 if (page
->mapping
!= mapping
|| !PageUptodate(page
))
2577 max_idx
= DIV_ROUND_UP(i_size_read(mapping
->host
), PAGE_SIZE
);
2578 if (page
->index
>= max_idx
)
2581 if (file
->f_ra
.mmap_miss
> 0)
2582 file
->f_ra
.mmap_miss
--;
2584 vmf
->address
+= (iter
.index
- last_pgoff
) << PAGE_SHIFT
;
2586 vmf
->pte
+= iter
.index
- last_pgoff
;
2587 last_pgoff
= iter
.index
;
2588 if (alloc_set_pte(vmf
, NULL
, page
))
2597 /* Huge page is mapped? No need to proceed. */
2598 if (pmd_trans_huge(*vmf
->pmd
))
2600 if (iter
.index
== end_pgoff
)
2605 EXPORT_SYMBOL(filemap_map_pages
);
2607 int filemap_page_mkwrite(struct vm_fault
*vmf
)
2609 struct page
*page
= vmf
->page
;
2610 struct inode
*inode
= file_inode(vmf
->vma
->vm_file
);
2611 int ret
= VM_FAULT_LOCKED
;
2613 sb_start_pagefault(inode
->i_sb
);
2614 file_update_time(vmf
->vma
->vm_file
);
2616 if (page
->mapping
!= inode
->i_mapping
) {
2618 ret
= VM_FAULT_NOPAGE
;
2622 * We mark the page dirty already here so that when freeze is in
2623 * progress, we are guaranteed that writeback during freezing will
2624 * see the dirty page and writeprotect it again.
2626 set_page_dirty(page
);
2627 wait_for_stable_page(page
);
2629 sb_end_pagefault(inode
->i_sb
);
2632 EXPORT_SYMBOL(filemap_page_mkwrite
);
2634 const struct vm_operations_struct generic_file_vm_ops
= {
2635 .fault
= filemap_fault
,
2636 .map_pages
= filemap_map_pages
,
2637 .page_mkwrite
= filemap_page_mkwrite
,
2640 /* This is used for a general mmap of a disk file */
2642 int generic_file_mmap(struct file
* file
, struct vm_area_struct
* vma
)
2644 struct address_space
*mapping
= file
->f_mapping
;
2646 if (!mapping
->a_ops
->readpage
)
2648 file_accessed(file
);
2649 vma
->vm_ops
= &generic_file_vm_ops
;
2654 * This is for filesystems which do not implement ->writepage.
2656 int generic_file_readonly_mmap(struct file
*file
, struct vm_area_struct
*vma
)
2658 if ((vma
->vm_flags
& VM_SHARED
) && (vma
->vm_flags
& VM_MAYWRITE
))
2660 return generic_file_mmap(file
, vma
);
2663 int generic_file_mmap(struct file
* file
, struct vm_area_struct
* vma
)
2667 int generic_file_readonly_mmap(struct file
* file
, struct vm_area_struct
* vma
)
2671 #endif /* CONFIG_MMU */
2673 EXPORT_SYMBOL(generic_file_mmap
);
2674 EXPORT_SYMBOL(generic_file_readonly_mmap
);
2676 static struct page
*wait_on_page_read(struct page
*page
)
2678 if (!IS_ERR(page
)) {
2679 wait_on_page_locked(page
);
2680 if (!PageUptodate(page
)) {
2682 page
= ERR_PTR(-EIO
);
2688 static struct page
*do_read_cache_page(struct address_space
*mapping
,
2690 int (*filler
)(void *, struct page
*),
2697 page
= find_get_page(mapping
, index
);
2699 page
= __page_cache_alloc(gfp
| __GFP_COLD
);
2701 return ERR_PTR(-ENOMEM
);
2702 err
= add_to_page_cache_lru(page
, mapping
, index
, gfp
);
2703 if (unlikely(err
)) {
2707 /* Presumably ENOMEM for radix tree node */
2708 return ERR_PTR(err
);
2712 err
= filler(data
, page
);
2715 return ERR_PTR(err
);
2718 page
= wait_on_page_read(page
);
2723 if (PageUptodate(page
))
2727 * Page is not up to date and may be locked due one of the following
2728 * case a: Page is being filled and the page lock is held
2729 * case b: Read/write error clearing the page uptodate status
2730 * case c: Truncation in progress (page locked)
2731 * case d: Reclaim in progress
2733 * Case a, the page will be up to date when the page is unlocked.
2734 * There is no need to serialise on the page lock here as the page
2735 * is pinned so the lock gives no additional protection. Even if the
2736 * the page is truncated, the data is still valid if PageUptodate as
2737 * it's a race vs truncate race.
2738 * Case b, the page will not be up to date
2739 * Case c, the page may be truncated but in itself, the data may still
2740 * be valid after IO completes as it's a read vs truncate race. The
2741 * operation must restart if the page is not uptodate on unlock but
2742 * otherwise serialising on page lock to stabilise the mapping gives
2743 * no additional guarantees to the caller as the page lock is
2744 * released before return.
2745 * Case d, similar to truncation. If reclaim holds the page lock, it
2746 * will be a race with remove_mapping that determines if the mapping
2747 * is valid on unlock but otherwise the data is valid and there is
2748 * no need to serialise with page lock.
2750 * As the page lock gives no additional guarantee, we optimistically
2751 * wait on the page to be unlocked and check if it's up to date and
2752 * use the page if it is. Otherwise, the page lock is required to
2753 * distinguish between the different cases. The motivation is that we
2754 * avoid spurious serialisations and wakeups when multiple processes
2755 * wait on the same page for IO to complete.
2757 wait_on_page_locked(page
);
2758 if (PageUptodate(page
))
2761 /* Distinguish between all the cases under the safety of the lock */
2764 /* Case c or d, restart the operation */
2765 if (!page
->mapping
) {
2771 /* Someone else locked and filled the page in a very small window */
2772 if (PageUptodate(page
)) {
2779 mark_page_accessed(page
);
2784 * read_cache_page - read into page cache, fill it if needed
2785 * @mapping: the page's address_space
2786 * @index: the page index
2787 * @filler: function to perform the read
2788 * @data: first arg to filler(data, page) function, often left as NULL
2790 * Read into the page cache. If a page already exists, and PageUptodate() is
2791 * not set, try to fill the page and wait for it to become unlocked.
2793 * If the page does not get brought uptodate, return -EIO.
2795 struct page
*read_cache_page(struct address_space
*mapping
,
2797 int (*filler
)(void *, struct page
*),
2800 return do_read_cache_page(mapping
, index
, filler
, data
, mapping_gfp_mask(mapping
));
2802 EXPORT_SYMBOL(read_cache_page
);
2805 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2806 * @mapping: the page's address_space
2807 * @index: the page index
2808 * @gfp: the page allocator flags to use if allocating
2810 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2811 * any new page allocations done using the specified allocation flags.
2813 * If the page does not get brought uptodate, return -EIO.
2815 struct page
*read_cache_page_gfp(struct address_space
*mapping
,
2819 filler_t
*filler
= (filler_t
*)mapping
->a_ops
->readpage
;
2821 return do_read_cache_page(mapping
, index
, filler
, NULL
, gfp
);
2823 EXPORT_SYMBOL(read_cache_page_gfp
);
2826 * Performs necessary checks before doing a write
2828 * Can adjust writing position or amount of bytes to write.
2829 * Returns appropriate error code that caller should return or
2830 * zero in case that write should be allowed.
2832 inline ssize_t
generic_write_checks(struct kiocb
*iocb
, struct iov_iter
*from
)
2834 struct file
*file
= iocb
->ki_filp
;
2835 struct inode
*inode
= file
->f_mapping
->host
;
2836 unsigned long limit
= rlimit(RLIMIT_FSIZE
);
2839 if (!iov_iter_count(from
))
2842 /* FIXME: this is for backwards compatibility with 2.4 */
2843 if (iocb
->ki_flags
& IOCB_APPEND
)
2844 iocb
->ki_pos
= i_size_read(inode
);
2848 if ((iocb
->ki_flags
& IOCB_NOWAIT
) && !(iocb
->ki_flags
& IOCB_DIRECT
))
2851 if (limit
!= RLIM_INFINITY
) {
2852 if (iocb
->ki_pos
>= limit
) {
2853 send_sig(SIGXFSZ
, current
, 0);
2856 iov_iter_truncate(from
, limit
- (unsigned long)pos
);
2862 if (unlikely(pos
+ iov_iter_count(from
) > MAX_NON_LFS
&&
2863 !(file
->f_flags
& O_LARGEFILE
))) {
2864 if (pos
>= MAX_NON_LFS
)
2866 iov_iter_truncate(from
, MAX_NON_LFS
- (unsigned long)pos
);
2870 * Are we about to exceed the fs block limit ?
2872 * If we have written data it becomes a short write. If we have
2873 * exceeded without writing data we send a signal and return EFBIG.
2874 * Linus frestrict idea will clean these up nicely..
2876 if (unlikely(pos
>= inode
->i_sb
->s_maxbytes
))
2879 iov_iter_truncate(from
, inode
->i_sb
->s_maxbytes
- pos
);
2880 return iov_iter_count(from
);
2882 EXPORT_SYMBOL(generic_write_checks
);
2884 int pagecache_write_begin(struct file
*file
, struct address_space
*mapping
,
2885 loff_t pos
, unsigned len
, unsigned flags
,
2886 struct page
**pagep
, void **fsdata
)
2888 const struct address_space_operations
*aops
= mapping
->a_ops
;
2890 return aops
->write_begin(file
, mapping
, pos
, len
, flags
,
2893 EXPORT_SYMBOL(pagecache_write_begin
);
2895 int pagecache_write_end(struct file
*file
, struct address_space
*mapping
,
2896 loff_t pos
, unsigned len
, unsigned copied
,
2897 struct page
*page
, void *fsdata
)
2899 const struct address_space_operations
*aops
= mapping
->a_ops
;
2901 return aops
->write_end(file
, mapping
, pos
, len
, copied
, page
, fsdata
);
2903 EXPORT_SYMBOL(pagecache_write_end
);
2906 generic_file_direct_write(struct kiocb
*iocb
, struct iov_iter
*from
)
2908 struct file
*file
= iocb
->ki_filp
;
2909 struct address_space
*mapping
= file
->f_mapping
;
2910 struct inode
*inode
= mapping
->host
;
2911 loff_t pos
= iocb
->ki_pos
;
2916 write_len
= iov_iter_count(from
);
2917 end
= (pos
+ write_len
- 1) >> PAGE_SHIFT
;
2919 if (iocb
->ki_flags
& IOCB_NOWAIT
) {
2920 /* If there are pages to writeback, return */
2921 if (filemap_range_has_page(inode
->i_mapping
, pos
,
2922 pos
+ iov_iter_count(from
)))
2925 written
= filemap_write_and_wait_range(mapping
, pos
,
2926 pos
+ write_len
- 1);
2932 * After a write we want buffered reads to be sure to go to disk to get
2933 * the new data. We invalidate clean cached page from the region we're
2934 * about to write. We do this *before* the write so that we can return
2935 * without clobbering -EIOCBQUEUED from ->direct_IO().
2937 written
= invalidate_inode_pages2_range(mapping
,
2938 pos
>> PAGE_SHIFT
, end
);
2940 * If a page can not be invalidated, return 0 to fall back
2941 * to buffered write.
2944 if (written
== -EBUSY
)
2949 written
= mapping
->a_ops
->direct_IO(iocb
, from
);
2952 * Finally, try again to invalidate clean pages which might have been
2953 * cached by non-direct readahead, or faulted in by get_user_pages()
2954 * if the source of the write was an mmap'ed region of the file
2955 * we're writing. Either one is a pretty crazy thing to do,
2956 * so we don't support it 100%. If this invalidation
2957 * fails, tough, the write still worked...
2959 * Most of the time we do not need this since dio_complete() will do
2960 * the invalidation for us. However there are some file systems that
2961 * do not end up with dio_complete() being called, so let's not break
2962 * them by removing it completely
2964 if (mapping
->nrpages
)
2965 invalidate_inode_pages2_range(mapping
,
2966 pos
>> PAGE_SHIFT
, end
);
2970 write_len
-= written
;
2971 if (pos
> i_size_read(inode
) && !S_ISBLK(inode
->i_mode
)) {
2972 i_size_write(inode
, pos
);
2973 mark_inode_dirty(inode
);
2977 iov_iter_revert(from
, write_len
- iov_iter_count(from
));
2981 EXPORT_SYMBOL(generic_file_direct_write
);
2984 * Find or create a page at the given pagecache position. Return the locked
2985 * page. This function is specifically for buffered writes.
2987 struct page
*grab_cache_page_write_begin(struct address_space
*mapping
,
2988 pgoff_t index
, unsigned flags
)
2991 int fgp_flags
= FGP_LOCK
|FGP_WRITE
|FGP_CREAT
;
2993 if (flags
& AOP_FLAG_NOFS
)
2994 fgp_flags
|= FGP_NOFS
;
2996 page
= pagecache_get_page(mapping
, index
, fgp_flags
,
2997 mapping_gfp_mask(mapping
));
2999 wait_for_stable_page(page
);
3003 EXPORT_SYMBOL(grab_cache_page_write_begin
);
3005 ssize_t
generic_perform_write(struct file
*file
,
3006 struct iov_iter
*i
, loff_t pos
)
3008 struct address_space
*mapping
= file
->f_mapping
;
3009 const struct address_space_operations
*a_ops
= mapping
->a_ops
;
3011 ssize_t written
= 0;
3012 unsigned int flags
= 0;
3016 unsigned long offset
; /* Offset into pagecache page */
3017 unsigned long bytes
; /* Bytes to write to page */
3018 size_t copied
; /* Bytes copied from user */
3021 offset
= (pos
& (PAGE_SIZE
- 1));
3022 bytes
= min_t(unsigned long, PAGE_SIZE
- offset
,
3027 * Bring in the user page that we will copy from _first_.
3028 * Otherwise there's a nasty deadlock on copying from the
3029 * same page as we're writing to, without it being marked
3032 * Not only is this an optimisation, but it is also required
3033 * to check that the address is actually valid, when atomic
3034 * usercopies are used, below.
3036 if (unlikely(iov_iter_fault_in_readable(i
, bytes
))) {
3041 if (fatal_signal_pending(current
)) {
3046 status
= a_ops
->write_begin(file
, mapping
, pos
, bytes
, flags
,
3048 if (unlikely(status
< 0))
3051 if (mapping_writably_mapped(mapping
))
3052 flush_dcache_page(page
);
3054 copied
= iov_iter_copy_from_user_atomic(page
, i
, offset
, bytes
);
3055 flush_dcache_page(page
);
3057 status
= a_ops
->write_end(file
, mapping
, pos
, bytes
, copied
,
3059 if (unlikely(status
< 0))
3065 iov_iter_advance(i
, copied
);
3066 if (unlikely(copied
== 0)) {
3068 * If we were unable to copy any data at all, we must
3069 * fall back to a single segment length write.
3071 * If we didn't fallback here, we could livelock
3072 * because not all segments in the iov can be copied at
3073 * once without a pagefault.
3075 bytes
= min_t(unsigned long, PAGE_SIZE
- offset
,
3076 iov_iter_single_seg_count(i
));
3082 balance_dirty_pages_ratelimited(mapping
);
3083 } while (iov_iter_count(i
));
3085 return written
? written
: status
;
3087 EXPORT_SYMBOL(generic_perform_write
);
3090 * __generic_file_write_iter - write data to a file
3091 * @iocb: IO state structure (file, offset, etc.)
3092 * @from: iov_iter with data to write
3094 * This function does all the work needed for actually writing data to a
3095 * file. It does all basic checks, removes SUID from the file, updates
3096 * modification times and calls proper subroutines depending on whether we
3097 * do direct IO or a standard buffered write.
3099 * It expects i_mutex to be grabbed unless we work on a block device or similar
3100 * object which does not need locking at all.
3102 * This function does *not* take care of syncing data in case of O_SYNC write.
3103 * A caller has to handle it. This is mainly due to the fact that we want to
3104 * avoid syncing under i_mutex.
3106 ssize_t
__generic_file_write_iter(struct kiocb
*iocb
, struct iov_iter
*from
)
3108 struct file
*file
= iocb
->ki_filp
;
3109 struct address_space
* mapping
= file
->f_mapping
;
3110 struct inode
*inode
= mapping
->host
;
3111 ssize_t written
= 0;
3115 /* We can write back this queue in page reclaim */
3116 current
->backing_dev_info
= inode_to_bdi(inode
);
3117 err
= file_remove_privs(file
);
3121 err
= file_update_time(file
);
3125 if (iocb
->ki_flags
& IOCB_DIRECT
) {
3126 loff_t pos
, endbyte
;
3128 written
= generic_file_direct_write(iocb
, from
);
3130 * If the write stopped short of completing, fall back to
3131 * buffered writes. Some filesystems do this for writes to
3132 * holes, for example. For DAX files, a buffered write will
3133 * not succeed (even if it did, DAX does not handle dirty
3134 * page-cache pages correctly).
3136 if (written
< 0 || !iov_iter_count(from
) || IS_DAX(inode
))
3139 status
= generic_perform_write(file
, from
, pos
= iocb
->ki_pos
);
3141 * If generic_perform_write() returned a synchronous error
3142 * then we want to return the number of bytes which were
3143 * direct-written, or the error code if that was zero. Note
3144 * that this differs from normal direct-io semantics, which
3145 * will return -EFOO even if some bytes were written.
3147 if (unlikely(status
< 0)) {
3152 * We need to ensure that the page cache pages are written to
3153 * disk and invalidated to preserve the expected O_DIRECT
3156 endbyte
= pos
+ status
- 1;
3157 err
= filemap_write_and_wait_range(mapping
, pos
, endbyte
);
3159 iocb
->ki_pos
= endbyte
+ 1;
3161 invalidate_mapping_pages(mapping
,
3163 endbyte
>> PAGE_SHIFT
);
3166 * We don't know how much we wrote, so just return
3167 * the number of bytes which were direct-written
3171 written
= generic_perform_write(file
, from
, iocb
->ki_pos
);
3172 if (likely(written
> 0))
3173 iocb
->ki_pos
+= written
;
3176 current
->backing_dev_info
= NULL
;
3177 return written
? written
: err
;
3179 EXPORT_SYMBOL(__generic_file_write_iter
);
3182 * generic_file_write_iter - write data to a file
3183 * @iocb: IO state structure
3184 * @from: iov_iter with data to write
3186 * This is a wrapper around __generic_file_write_iter() to be used by most
3187 * filesystems. It takes care of syncing the file in case of O_SYNC file
3188 * and acquires i_mutex as needed.
3190 ssize_t
generic_file_write_iter(struct kiocb
*iocb
, struct iov_iter
*from
)
3192 struct file
*file
= iocb
->ki_filp
;
3193 struct inode
*inode
= file
->f_mapping
->host
;
3197 ret
= generic_write_checks(iocb
, from
);
3199 ret
= __generic_file_write_iter(iocb
, from
);
3200 inode_unlock(inode
);
3203 ret
= generic_write_sync(iocb
, ret
);
3206 EXPORT_SYMBOL(generic_file_write_iter
);
3209 * try_to_release_page() - release old fs-specific metadata on a page
3211 * @page: the page which the kernel is trying to free
3212 * @gfp_mask: memory allocation flags (and I/O mode)
3214 * The address_space is to try to release any data against the page
3215 * (presumably at page->private). If the release was successful, return '1'.
3216 * Otherwise return zero.
3218 * This may also be called if PG_fscache is set on a page, indicating that the
3219 * page is known to the local caching routines.
3221 * The @gfp_mask argument specifies whether I/O may be performed to release
3222 * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
3225 int try_to_release_page(struct page
*page
, gfp_t gfp_mask
)
3227 struct address_space
* const mapping
= page
->mapping
;
3229 BUG_ON(!PageLocked(page
));
3230 if (PageWriteback(page
))
3233 if (mapping
&& mapping
->a_ops
->releasepage
)
3234 return mapping
->a_ops
->releasepage(page
, gfp_mask
);
3235 return try_to_free_buffers(page
);
3238 EXPORT_SYMBOL(try_to_release_page
);