2 * Resizable virtual memory filesystem for Linux.
4 * Copyright (C) 2000 Linus Torvalds.
6 * 2000-2001 Christoph Rohland
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
21 * This file is released under the GPL.
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
32 #include <linux/sched/signal.h>
33 #include <linux/export.h>
34 #include <linux/swap.h>
35 #include <linux/uio.h>
36 #include <linux/khugepaged.h>
37 #include <linux/hugetlb.h>
39 #include <asm/tlbflush.h> /* for arch/microblaze update_mmu_cache() */
41 static struct vfsmount
*shm_mnt
;
45 * This virtual memory filesystem is heavily based on the ramfs. It
46 * extends ramfs by the ability to use swap and honor resource limits
47 * which makes it a completely usable filesystem.
50 #include <linux/xattr.h>
51 #include <linux/exportfs.h>
52 #include <linux/posix_acl.h>
53 #include <linux/posix_acl_xattr.h>
54 #include <linux/mman.h>
55 #include <linux/string.h>
56 #include <linux/slab.h>
57 #include <linux/backing-dev.h>
58 #include <linux/shmem_fs.h>
59 #include <linux/writeback.h>
60 #include <linux/blkdev.h>
61 #include <linux/pagevec.h>
62 #include <linux/percpu_counter.h>
63 #include <linux/falloc.h>
64 #include <linux/splice.h>
65 #include <linux/security.h>
66 #include <linux/swapops.h>
67 #include <linux/mempolicy.h>
68 #include <linux/namei.h>
69 #include <linux/ctype.h>
70 #include <linux/migrate.h>
71 #include <linux/highmem.h>
72 #include <linux/seq_file.h>
73 #include <linux/magic.h>
74 #include <linux/syscalls.h>
75 #include <linux/fcntl.h>
76 #include <uapi/linux/memfd.h>
77 #include <linux/userfaultfd_k.h>
78 #include <linux/rmap.h>
79 #include <linux/uuid.h>
81 #include <linux/uaccess.h>
82 #include <asm/pgtable.h>
86 #define BLOCKS_PER_PAGE (PAGE_SIZE/512)
87 #define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT)
89 /* Pretend that each entry is of this size in directory's i_size */
90 #define BOGO_DIRENT_SIZE 20
92 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
93 #define SHORT_SYMLINK_LEN 128
96 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
97 * inode->i_private (with i_mutex making sure that it has only one user at
98 * a time): we would prefer not to enlarge the shmem inode just for that.
100 struct shmem_falloc
{
101 wait_queue_head_t
*waitq
; /* faults into hole wait for punch to end */
102 pgoff_t start
; /* start of range currently being fallocated */
103 pgoff_t next
; /* the next page offset to be fallocated */
104 pgoff_t nr_falloced
; /* how many new pages have been fallocated */
105 pgoff_t nr_unswapped
; /* how often writepage refused to swap out */
109 static unsigned long shmem_default_max_blocks(void)
111 return totalram_pages
/ 2;
114 static unsigned long shmem_default_max_inodes(void)
116 return min(totalram_pages
- totalhigh_pages
, totalram_pages
/ 2);
120 static bool shmem_should_replace_page(struct page
*page
, gfp_t gfp
);
121 static int shmem_replace_page(struct page
**pagep
, gfp_t gfp
,
122 struct shmem_inode_info
*info
, pgoff_t index
);
123 static int shmem_getpage_gfp(struct inode
*inode
, pgoff_t index
,
124 struct page
**pagep
, enum sgp_type sgp
,
125 gfp_t gfp
, struct vm_area_struct
*vma
,
126 struct vm_fault
*vmf
, int *fault_type
);
128 int shmem_getpage(struct inode
*inode
, pgoff_t index
,
129 struct page
**pagep
, enum sgp_type sgp
)
131 return shmem_getpage_gfp(inode
, index
, pagep
, sgp
,
132 mapping_gfp_mask(inode
->i_mapping
), NULL
, NULL
, NULL
);
135 static inline struct shmem_sb_info
*SHMEM_SB(struct super_block
*sb
)
137 return sb
->s_fs_info
;
141 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
142 * for shared memory and for shared anonymous (/dev/zero) mappings
143 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
144 * consistent with the pre-accounting of private mappings ...
146 static inline int shmem_acct_size(unsigned long flags
, loff_t size
)
148 return (flags
& VM_NORESERVE
) ?
149 0 : security_vm_enough_memory_mm(current
->mm
, VM_ACCT(size
));
152 static inline void shmem_unacct_size(unsigned long flags
, loff_t size
)
154 if (!(flags
& VM_NORESERVE
))
155 vm_unacct_memory(VM_ACCT(size
));
158 static inline int shmem_reacct_size(unsigned long flags
,
159 loff_t oldsize
, loff_t newsize
)
161 if (!(flags
& VM_NORESERVE
)) {
162 if (VM_ACCT(newsize
) > VM_ACCT(oldsize
))
163 return security_vm_enough_memory_mm(current
->mm
,
164 VM_ACCT(newsize
) - VM_ACCT(oldsize
));
165 else if (VM_ACCT(newsize
) < VM_ACCT(oldsize
))
166 vm_unacct_memory(VM_ACCT(oldsize
) - VM_ACCT(newsize
));
172 * ... whereas tmpfs objects are accounted incrementally as
173 * pages are allocated, in order to allow large sparse files.
174 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
175 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
177 static inline int shmem_acct_block(unsigned long flags
, long pages
)
179 if (!(flags
& VM_NORESERVE
))
182 return security_vm_enough_memory_mm(current
->mm
,
183 pages
* VM_ACCT(PAGE_SIZE
));
186 static inline void shmem_unacct_blocks(unsigned long flags
, long pages
)
188 if (flags
& VM_NORESERVE
)
189 vm_unacct_memory(pages
* VM_ACCT(PAGE_SIZE
));
192 static inline bool shmem_inode_acct_block(struct inode
*inode
, long pages
)
194 struct shmem_inode_info
*info
= SHMEM_I(inode
);
195 struct shmem_sb_info
*sbinfo
= SHMEM_SB(inode
->i_sb
);
197 if (shmem_acct_block(info
->flags
, pages
))
200 if (sbinfo
->max_blocks
) {
201 if (percpu_counter_compare(&sbinfo
->used_blocks
,
202 sbinfo
->max_blocks
- pages
) > 0)
204 percpu_counter_add(&sbinfo
->used_blocks
, pages
);
210 shmem_unacct_blocks(info
->flags
, pages
);
214 static inline void shmem_inode_unacct_blocks(struct inode
*inode
, long pages
)
216 struct shmem_inode_info
*info
= SHMEM_I(inode
);
217 struct shmem_sb_info
*sbinfo
= SHMEM_SB(inode
->i_sb
);
219 if (sbinfo
->max_blocks
)
220 percpu_counter_sub(&sbinfo
->used_blocks
, pages
);
221 shmem_unacct_blocks(info
->flags
, pages
);
224 static const struct super_operations shmem_ops
;
225 static const struct address_space_operations shmem_aops
;
226 static const struct file_operations shmem_file_operations
;
227 static const struct inode_operations shmem_inode_operations
;
228 static const struct inode_operations shmem_dir_inode_operations
;
229 static const struct inode_operations shmem_special_inode_operations
;
230 static const struct vm_operations_struct shmem_vm_ops
;
231 static struct file_system_type shmem_fs_type
;
233 bool vma_is_shmem(struct vm_area_struct
*vma
)
235 return vma
->vm_ops
== &shmem_vm_ops
;
238 static LIST_HEAD(shmem_swaplist
);
239 static DEFINE_MUTEX(shmem_swaplist_mutex
);
241 static int shmem_reserve_inode(struct super_block
*sb
)
243 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
244 if (sbinfo
->max_inodes
) {
245 spin_lock(&sbinfo
->stat_lock
);
246 if (!sbinfo
->free_inodes
) {
247 spin_unlock(&sbinfo
->stat_lock
);
250 sbinfo
->free_inodes
--;
251 spin_unlock(&sbinfo
->stat_lock
);
256 static void shmem_free_inode(struct super_block
*sb
)
258 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
259 if (sbinfo
->max_inodes
) {
260 spin_lock(&sbinfo
->stat_lock
);
261 sbinfo
->free_inodes
++;
262 spin_unlock(&sbinfo
->stat_lock
);
267 * shmem_recalc_inode - recalculate the block usage of an inode
268 * @inode: inode to recalc
270 * We have to calculate the free blocks since the mm can drop
271 * undirtied hole pages behind our back.
273 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
274 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
276 * It has to be called with the spinlock held.
278 static void shmem_recalc_inode(struct inode
*inode
)
280 struct shmem_inode_info
*info
= SHMEM_I(inode
);
283 freed
= info
->alloced
- info
->swapped
- inode
->i_mapping
->nrpages
;
285 info
->alloced
-= freed
;
286 inode
->i_blocks
-= freed
* BLOCKS_PER_PAGE
;
287 shmem_inode_unacct_blocks(inode
, freed
);
291 bool shmem_charge(struct inode
*inode
, long pages
)
293 struct shmem_inode_info
*info
= SHMEM_I(inode
);
296 if (!shmem_inode_acct_block(inode
, pages
))
299 /* nrpages adjustment first, then shmem_recalc_inode() when balanced */
300 inode
->i_mapping
->nrpages
+= pages
;
302 spin_lock_irqsave(&info
->lock
, flags
);
303 info
->alloced
+= pages
;
304 inode
->i_blocks
+= pages
* BLOCKS_PER_PAGE
;
305 shmem_recalc_inode(inode
);
306 spin_unlock_irqrestore(&info
->lock
, flags
);
311 void shmem_uncharge(struct inode
*inode
, long pages
)
313 struct shmem_inode_info
*info
= SHMEM_I(inode
);
316 /* nrpages adjustment done by __delete_from_page_cache() or caller */
318 spin_lock_irqsave(&info
->lock
, flags
);
319 info
->alloced
-= pages
;
320 inode
->i_blocks
-= pages
* BLOCKS_PER_PAGE
;
321 shmem_recalc_inode(inode
);
322 spin_unlock_irqrestore(&info
->lock
, flags
);
324 shmem_inode_unacct_blocks(inode
, pages
);
328 * Replace item expected in radix tree by a new item, while holding tree lock.
330 static int shmem_radix_tree_replace(struct address_space
*mapping
,
331 pgoff_t index
, void *expected
, void *replacement
)
333 struct radix_tree_node
*node
;
337 VM_BUG_ON(!expected
);
338 VM_BUG_ON(!replacement
);
339 item
= __radix_tree_lookup(&mapping
->page_tree
, index
, &node
, &pslot
);
342 if (item
!= expected
)
344 __radix_tree_replace(&mapping
->page_tree
, node
, pslot
,
345 replacement
, NULL
, NULL
);
350 * Sometimes, before we decide whether to proceed or to fail, we must check
351 * that an entry was not already brought back from swap by a racing thread.
353 * Checking page is not enough: by the time a SwapCache page is locked, it
354 * might be reused, and again be SwapCache, using the same swap as before.
356 static bool shmem_confirm_swap(struct address_space
*mapping
,
357 pgoff_t index
, swp_entry_t swap
)
362 item
= radix_tree_lookup(&mapping
->page_tree
, index
);
364 return item
== swp_to_radix_entry(swap
);
368 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
371 * disables huge pages for the mount;
373 * enables huge pages for the mount;
374 * SHMEM_HUGE_WITHIN_SIZE:
375 * only allocate huge pages if the page will be fully within i_size,
376 * also respect fadvise()/madvise() hints;
378 * only allocate huge pages if requested with fadvise()/madvise();
381 #define SHMEM_HUGE_NEVER 0
382 #define SHMEM_HUGE_ALWAYS 1
383 #define SHMEM_HUGE_WITHIN_SIZE 2
384 #define SHMEM_HUGE_ADVISE 3
388 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
391 * disables huge on shm_mnt and all mounts, for emergency use;
393 * enables huge on shm_mnt and all mounts, w/o needing option, for testing;
396 #define SHMEM_HUGE_DENY (-1)
397 #define SHMEM_HUGE_FORCE (-2)
399 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
400 /* ifdef here to avoid bloating shmem.o when not necessary */
402 int shmem_huge __read_mostly
;
404 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
405 static int shmem_parse_huge(const char *str
)
407 if (!strcmp(str
, "never"))
408 return SHMEM_HUGE_NEVER
;
409 if (!strcmp(str
, "always"))
410 return SHMEM_HUGE_ALWAYS
;
411 if (!strcmp(str
, "within_size"))
412 return SHMEM_HUGE_WITHIN_SIZE
;
413 if (!strcmp(str
, "advise"))
414 return SHMEM_HUGE_ADVISE
;
415 if (!strcmp(str
, "deny"))
416 return SHMEM_HUGE_DENY
;
417 if (!strcmp(str
, "force"))
418 return SHMEM_HUGE_FORCE
;
422 static const char *shmem_format_huge(int huge
)
425 case SHMEM_HUGE_NEVER
:
427 case SHMEM_HUGE_ALWAYS
:
429 case SHMEM_HUGE_WITHIN_SIZE
:
430 return "within_size";
431 case SHMEM_HUGE_ADVISE
:
433 case SHMEM_HUGE_DENY
:
435 case SHMEM_HUGE_FORCE
:
444 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info
*sbinfo
,
445 struct shrink_control
*sc
, unsigned long nr_to_split
)
447 LIST_HEAD(list
), *pos
, *next
;
448 LIST_HEAD(to_remove
);
450 struct shmem_inode_info
*info
;
452 unsigned long batch
= sc
? sc
->nr_to_scan
: 128;
453 int removed
= 0, split
= 0;
455 if (list_empty(&sbinfo
->shrinklist
))
458 spin_lock(&sbinfo
->shrinklist_lock
);
459 list_for_each_safe(pos
, next
, &sbinfo
->shrinklist
) {
460 info
= list_entry(pos
, struct shmem_inode_info
, shrinklist
);
463 inode
= igrab(&info
->vfs_inode
);
465 /* inode is about to be evicted */
467 list_del_init(&info
->shrinklist
);
472 /* Check if there's anything to gain */
473 if (round_up(inode
->i_size
, PAGE_SIZE
) ==
474 round_up(inode
->i_size
, HPAGE_PMD_SIZE
)) {
475 list_move(&info
->shrinklist
, &to_remove
);
480 list_move(&info
->shrinklist
, &list
);
485 spin_unlock(&sbinfo
->shrinklist_lock
);
487 list_for_each_safe(pos
, next
, &to_remove
) {
488 info
= list_entry(pos
, struct shmem_inode_info
, shrinklist
);
489 inode
= &info
->vfs_inode
;
490 list_del_init(&info
->shrinklist
);
494 list_for_each_safe(pos
, next
, &list
) {
497 info
= list_entry(pos
, struct shmem_inode_info
, shrinklist
);
498 inode
= &info
->vfs_inode
;
500 if (nr_to_split
&& split
>= nr_to_split
)
503 page
= find_get_page(inode
->i_mapping
,
504 (inode
->i_size
& HPAGE_PMD_MASK
) >> PAGE_SHIFT
);
508 /* No huge page at the end of the file: nothing to split */
509 if (!PageTransHuge(page
)) {
515 * Leave the inode on the list if we failed to lock
516 * the page at this time.
518 * Waiting for the lock may lead to deadlock in the
521 if (!trylock_page(page
)) {
526 ret
= split_huge_page(page
);
530 /* If split failed leave the inode on the list */
536 list_del_init(&info
->shrinklist
);
542 spin_lock(&sbinfo
->shrinklist_lock
);
543 list_splice_tail(&list
, &sbinfo
->shrinklist
);
544 sbinfo
->shrinklist_len
-= removed
;
545 spin_unlock(&sbinfo
->shrinklist_lock
);
550 static long shmem_unused_huge_scan(struct super_block
*sb
,
551 struct shrink_control
*sc
)
553 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
555 if (!READ_ONCE(sbinfo
->shrinklist_len
))
558 return shmem_unused_huge_shrink(sbinfo
, sc
, 0);
561 static long shmem_unused_huge_count(struct super_block
*sb
,
562 struct shrink_control
*sc
)
564 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
565 return READ_ONCE(sbinfo
->shrinklist_len
);
567 #else /* !CONFIG_TRANSPARENT_HUGE_PAGECACHE */
569 #define shmem_huge SHMEM_HUGE_DENY
571 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info
*sbinfo
,
572 struct shrink_control
*sc
, unsigned long nr_to_split
)
576 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
579 * Like add_to_page_cache_locked, but error if expected item has gone.
581 static int shmem_add_to_page_cache(struct page
*page
,
582 struct address_space
*mapping
,
583 pgoff_t index
, void *expected
)
585 int error
, nr
= hpage_nr_pages(page
);
587 VM_BUG_ON_PAGE(PageTail(page
), page
);
588 VM_BUG_ON_PAGE(index
!= round_down(index
, nr
), page
);
589 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
590 VM_BUG_ON_PAGE(!PageSwapBacked(page
), page
);
591 VM_BUG_ON(expected
&& PageTransHuge(page
));
593 page_ref_add(page
, nr
);
594 page
->mapping
= mapping
;
597 spin_lock_irq(&mapping
->tree_lock
);
598 if (PageTransHuge(page
)) {
599 void __rcu
**results
;
604 if (radix_tree_gang_lookup_slot(&mapping
->page_tree
,
605 &results
, &idx
, index
, 1) &&
606 idx
< index
+ HPAGE_PMD_NR
) {
611 for (i
= 0; i
< HPAGE_PMD_NR
; i
++) {
612 error
= radix_tree_insert(&mapping
->page_tree
,
613 index
+ i
, page
+ i
);
616 count_vm_event(THP_FILE_ALLOC
);
618 } else if (!expected
) {
619 error
= radix_tree_insert(&mapping
->page_tree
, index
, page
);
621 error
= shmem_radix_tree_replace(mapping
, index
, expected
,
626 mapping
->nrpages
+= nr
;
627 if (PageTransHuge(page
))
628 __inc_node_page_state(page
, NR_SHMEM_THPS
);
629 __mod_node_page_state(page_pgdat(page
), NR_FILE_PAGES
, nr
);
630 __mod_node_page_state(page_pgdat(page
), NR_SHMEM
, nr
);
631 spin_unlock_irq(&mapping
->tree_lock
);
633 page
->mapping
= NULL
;
634 spin_unlock_irq(&mapping
->tree_lock
);
635 page_ref_sub(page
, nr
);
641 * Like delete_from_page_cache, but substitutes swap for page.
643 static void shmem_delete_from_page_cache(struct page
*page
, void *radswap
)
645 struct address_space
*mapping
= page
->mapping
;
648 VM_BUG_ON_PAGE(PageCompound(page
), page
);
650 spin_lock_irq(&mapping
->tree_lock
);
651 error
= shmem_radix_tree_replace(mapping
, page
->index
, page
, radswap
);
652 page
->mapping
= NULL
;
654 __dec_node_page_state(page
, NR_FILE_PAGES
);
655 __dec_node_page_state(page
, NR_SHMEM
);
656 spin_unlock_irq(&mapping
->tree_lock
);
662 * Remove swap entry from radix tree, free the swap and its page cache.
664 static int shmem_free_swap(struct address_space
*mapping
,
665 pgoff_t index
, void *radswap
)
669 spin_lock_irq(&mapping
->tree_lock
);
670 old
= radix_tree_delete_item(&mapping
->page_tree
, index
, radswap
);
671 spin_unlock_irq(&mapping
->tree_lock
);
674 free_swap_and_cache(radix_to_swp_entry(radswap
));
679 * Determine (in bytes) how many of the shmem object's pages mapped by the
680 * given offsets are swapped out.
682 * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
683 * as long as the inode doesn't go away and racy results are not a problem.
685 unsigned long shmem_partial_swap_usage(struct address_space
*mapping
,
686 pgoff_t start
, pgoff_t end
)
688 struct radix_tree_iter iter
;
691 unsigned long swapped
= 0;
695 radix_tree_for_each_slot(slot
, &mapping
->page_tree
, &iter
, start
) {
696 if (iter
.index
>= end
)
699 page
= radix_tree_deref_slot(slot
);
701 if (radix_tree_deref_retry(page
)) {
702 slot
= radix_tree_iter_retry(&iter
);
706 if (radix_tree_exceptional_entry(page
))
709 if (need_resched()) {
710 slot
= radix_tree_iter_resume(slot
, &iter
);
717 return swapped
<< PAGE_SHIFT
;
721 * Determine (in bytes) how many of the shmem object's pages mapped by the
722 * given vma is swapped out.
724 * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
725 * as long as the inode doesn't go away and racy results are not a problem.
727 unsigned long shmem_swap_usage(struct vm_area_struct
*vma
)
729 struct inode
*inode
= file_inode(vma
->vm_file
);
730 struct shmem_inode_info
*info
= SHMEM_I(inode
);
731 struct address_space
*mapping
= inode
->i_mapping
;
732 unsigned long swapped
;
734 /* Be careful as we don't hold info->lock */
735 swapped
= READ_ONCE(info
->swapped
);
738 * The easier cases are when the shmem object has nothing in swap, or
739 * the vma maps it whole. Then we can simply use the stats that we
745 if (!vma
->vm_pgoff
&& vma
->vm_end
- vma
->vm_start
>= inode
->i_size
)
746 return swapped
<< PAGE_SHIFT
;
748 /* Here comes the more involved part */
749 return shmem_partial_swap_usage(mapping
,
750 linear_page_index(vma
, vma
->vm_start
),
751 linear_page_index(vma
, vma
->vm_end
));
755 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
757 void shmem_unlock_mapping(struct address_space
*mapping
)
760 pgoff_t indices
[PAGEVEC_SIZE
];
763 pagevec_init(&pvec
, 0);
765 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
767 while (!mapping_unevictable(mapping
)) {
769 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
770 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
772 pvec
.nr
= find_get_entries(mapping
, index
,
773 PAGEVEC_SIZE
, pvec
.pages
, indices
);
776 index
= indices
[pvec
.nr
- 1] + 1;
777 pagevec_remove_exceptionals(&pvec
);
778 check_move_unevictable_pages(pvec
.pages
, pvec
.nr
);
779 pagevec_release(&pvec
);
785 * Remove range of pages and swap entries from radix tree, and free them.
786 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
788 static void shmem_undo_range(struct inode
*inode
, loff_t lstart
, loff_t lend
,
791 struct address_space
*mapping
= inode
->i_mapping
;
792 struct shmem_inode_info
*info
= SHMEM_I(inode
);
793 pgoff_t start
= (lstart
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
794 pgoff_t end
= (lend
+ 1) >> PAGE_SHIFT
;
795 unsigned int partial_start
= lstart
& (PAGE_SIZE
- 1);
796 unsigned int partial_end
= (lend
+ 1) & (PAGE_SIZE
- 1);
798 pgoff_t indices
[PAGEVEC_SIZE
];
799 long nr_swaps_freed
= 0;
804 end
= -1; /* unsigned, so actually very big */
806 pagevec_init(&pvec
, 0);
808 while (index
< end
) {
809 pvec
.nr
= find_get_entries(mapping
, index
,
810 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
),
811 pvec
.pages
, indices
);
814 for (i
= 0; i
< pagevec_count(&pvec
); i
++) {
815 struct page
*page
= pvec
.pages
[i
];
821 if (radix_tree_exceptional_entry(page
)) {
824 nr_swaps_freed
+= !shmem_free_swap(mapping
,
829 VM_BUG_ON_PAGE(page_to_pgoff(page
) != index
, page
);
831 if (!trylock_page(page
))
834 if (PageTransTail(page
)) {
835 /* Middle of THP: zero out the page */
836 clear_highpage(page
);
839 } else if (PageTransHuge(page
)) {
840 if (index
== round_down(end
, HPAGE_PMD_NR
)) {
842 * Range ends in the middle of THP:
845 clear_highpage(page
);
849 index
+= HPAGE_PMD_NR
- 1;
850 i
+= HPAGE_PMD_NR
- 1;
853 if (!unfalloc
|| !PageUptodate(page
)) {
854 VM_BUG_ON_PAGE(PageTail(page
), page
);
855 if (page_mapping(page
) == mapping
) {
856 VM_BUG_ON_PAGE(PageWriteback(page
), page
);
857 truncate_inode_page(mapping
, page
);
862 pagevec_remove_exceptionals(&pvec
);
863 pagevec_release(&pvec
);
869 struct page
*page
= NULL
;
870 shmem_getpage(inode
, start
- 1, &page
, SGP_READ
);
872 unsigned int top
= PAGE_SIZE
;
877 zero_user_segment(page
, partial_start
, top
);
878 set_page_dirty(page
);
884 struct page
*page
= NULL
;
885 shmem_getpage(inode
, end
, &page
, SGP_READ
);
887 zero_user_segment(page
, 0, partial_end
);
888 set_page_dirty(page
);
897 while (index
< end
) {
900 pvec
.nr
= find_get_entries(mapping
, index
,
901 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
),
902 pvec
.pages
, indices
);
904 /* If all gone or hole-punch or unfalloc, we're done */
905 if (index
== start
|| end
!= -1)
907 /* But if truncating, restart to make sure all gone */
911 for (i
= 0; i
< pagevec_count(&pvec
); i
++) {
912 struct page
*page
= pvec
.pages
[i
];
918 if (radix_tree_exceptional_entry(page
)) {
921 if (shmem_free_swap(mapping
, index
, page
)) {
922 /* Swap was replaced by page: retry */
932 if (PageTransTail(page
)) {
933 /* Middle of THP: zero out the page */
934 clear_highpage(page
);
937 * Partial thp truncate due 'start' in middle
938 * of THP: don't need to look on these pages
939 * again on !pvec.nr restart.
941 if (index
!= round_down(end
, HPAGE_PMD_NR
))
944 } else if (PageTransHuge(page
)) {
945 if (index
== round_down(end
, HPAGE_PMD_NR
)) {
947 * Range ends in the middle of THP:
950 clear_highpage(page
);
954 index
+= HPAGE_PMD_NR
- 1;
955 i
+= HPAGE_PMD_NR
- 1;
958 if (!unfalloc
|| !PageUptodate(page
)) {
959 VM_BUG_ON_PAGE(PageTail(page
), page
);
960 if (page_mapping(page
) == mapping
) {
961 VM_BUG_ON_PAGE(PageWriteback(page
), page
);
962 truncate_inode_page(mapping
, page
);
964 /* Page was replaced by swap: retry */
972 pagevec_remove_exceptionals(&pvec
);
973 pagevec_release(&pvec
);
977 spin_lock_irq(&info
->lock
);
978 info
->swapped
-= nr_swaps_freed
;
979 shmem_recalc_inode(inode
);
980 spin_unlock_irq(&info
->lock
);
983 void shmem_truncate_range(struct inode
*inode
, loff_t lstart
, loff_t lend
)
985 shmem_undo_range(inode
, lstart
, lend
, false);
986 inode
->i_ctime
= inode
->i_mtime
= current_time(inode
);
988 EXPORT_SYMBOL_GPL(shmem_truncate_range
);
990 static int shmem_getattr(const struct path
*path
, struct kstat
*stat
,
991 u32 request_mask
, unsigned int query_flags
)
993 struct inode
*inode
= path
->dentry
->d_inode
;
994 struct shmem_inode_info
*info
= SHMEM_I(inode
);
996 if (info
->alloced
- info
->swapped
!= inode
->i_mapping
->nrpages
) {
997 spin_lock_irq(&info
->lock
);
998 shmem_recalc_inode(inode
);
999 spin_unlock_irq(&info
->lock
);
1001 generic_fillattr(inode
, stat
);
1005 static int shmem_setattr(struct dentry
*dentry
, struct iattr
*attr
)
1007 struct inode
*inode
= d_inode(dentry
);
1008 struct shmem_inode_info
*info
= SHMEM_I(inode
);
1009 struct shmem_sb_info
*sbinfo
= SHMEM_SB(inode
->i_sb
);
1012 error
= setattr_prepare(dentry
, attr
);
1016 if (S_ISREG(inode
->i_mode
) && (attr
->ia_valid
& ATTR_SIZE
)) {
1017 loff_t oldsize
= inode
->i_size
;
1018 loff_t newsize
= attr
->ia_size
;
1020 /* protected by i_mutex */
1021 if ((newsize
< oldsize
&& (info
->seals
& F_SEAL_SHRINK
)) ||
1022 (newsize
> oldsize
&& (info
->seals
& F_SEAL_GROW
)))
1025 if (newsize
!= oldsize
) {
1026 error
= shmem_reacct_size(SHMEM_I(inode
)->flags
,
1030 i_size_write(inode
, newsize
);
1031 inode
->i_ctime
= inode
->i_mtime
= current_time(inode
);
1033 if (newsize
<= oldsize
) {
1034 loff_t holebegin
= round_up(newsize
, PAGE_SIZE
);
1035 if (oldsize
> holebegin
)
1036 unmap_mapping_range(inode
->i_mapping
,
1039 shmem_truncate_range(inode
,
1040 newsize
, (loff_t
)-1);
1041 /* unmap again to remove racily COWed private pages */
1042 if (oldsize
> holebegin
)
1043 unmap_mapping_range(inode
->i_mapping
,
1047 * Part of the huge page can be beyond i_size: subject
1048 * to shrink under memory pressure.
1050 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE
)) {
1051 spin_lock(&sbinfo
->shrinklist_lock
);
1053 * _careful to defend against unlocked access to
1054 * ->shrink_list in shmem_unused_huge_shrink()
1056 if (list_empty_careful(&info
->shrinklist
)) {
1057 list_add_tail(&info
->shrinklist
,
1058 &sbinfo
->shrinklist
);
1059 sbinfo
->shrinklist_len
++;
1061 spin_unlock(&sbinfo
->shrinklist_lock
);
1066 setattr_copy(inode
, attr
);
1067 if (attr
->ia_valid
& ATTR_MODE
)
1068 error
= posix_acl_chmod(inode
, inode
->i_mode
);
1072 static void shmem_evict_inode(struct inode
*inode
)
1074 struct shmem_inode_info
*info
= SHMEM_I(inode
);
1075 struct shmem_sb_info
*sbinfo
= SHMEM_SB(inode
->i_sb
);
1077 if (inode
->i_mapping
->a_ops
== &shmem_aops
) {
1078 shmem_unacct_size(info
->flags
, inode
->i_size
);
1080 shmem_truncate_range(inode
, 0, (loff_t
)-1);
1081 if (!list_empty(&info
->shrinklist
)) {
1082 spin_lock(&sbinfo
->shrinklist_lock
);
1083 if (!list_empty(&info
->shrinklist
)) {
1084 list_del_init(&info
->shrinklist
);
1085 sbinfo
->shrinklist_len
--;
1087 spin_unlock(&sbinfo
->shrinklist_lock
);
1089 if (!list_empty(&info
->swaplist
)) {
1090 mutex_lock(&shmem_swaplist_mutex
);
1091 list_del_init(&info
->swaplist
);
1092 mutex_unlock(&shmem_swaplist_mutex
);
1096 simple_xattrs_free(&info
->xattrs
);
1097 WARN_ON(inode
->i_blocks
);
1098 shmem_free_inode(inode
->i_sb
);
1102 static unsigned long find_swap_entry(struct radix_tree_root
*root
, void *item
)
1104 struct radix_tree_iter iter
;
1106 unsigned long found
= -1;
1107 unsigned int checked
= 0;
1110 radix_tree_for_each_slot(slot
, root
, &iter
, 0) {
1111 if (*slot
== item
) {
1116 if ((checked
% 4096) != 0)
1118 slot
= radix_tree_iter_resume(slot
, &iter
);
1127 * If swap found in inode, free it and move page from swapcache to filecache.
1129 static int shmem_unuse_inode(struct shmem_inode_info
*info
,
1130 swp_entry_t swap
, struct page
**pagep
)
1132 struct address_space
*mapping
= info
->vfs_inode
.i_mapping
;
1138 radswap
= swp_to_radix_entry(swap
);
1139 index
= find_swap_entry(&mapping
->page_tree
, radswap
);
1141 return -EAGAIN
; /* tell shmem_unuse we found nothing */
1144 * Move _head_ to start search for next from here.
1145 * But be careful: shmem_evict_inode checks list_empty without taking
1146 * mutex, and there's an instant in list_move_tail when info->swaplist
1147 * would appear empty, if it were the only one on shmem_swaplist.
1149 if (shmem_swaplist
.next
!= &info
->swaplist
)
1150 list_move_tail(&shmem_swaplist
, &info
->swaplist
);
1152 gfp
= mapping_gfp_mask(mapping
);
1153 if (shmem_should_replace_page(*pagep
, gfp
)) {
1154 mutex_unlock(&shmem_swaplist_mutex
);
1155 error
= shmem_replace_page(pagep
, gfp
, info
, index
);
1156 mutex_lock(&shmem_swaplist_mutex
);
1158 * We needed to drop mutex to make that restrictive page
1159 * allocation, but the inode might have been freed while we
1160 * dropped it: although a racing shmem_evict_inode() cannot
1161 * complete without emptying the radix_tree, our page lock
1162 * on this swapcache page is not enough to prevent that -
1163 * free_swap_and_cache() of our swap entry will only
1164 * trylock_page(), removing swap from radix_tree whatever.
1166 * We must not proceed to shmem_add_to_page_cache() if the
1167 * inode has been freed, but of course we cannot rely on
1168 * inode or mapping or info to check that. However, we can
1169 * safely check if our swap entry is still in use (and here
1170 * it can't have got reused for another page): if it's still
1171 * in use, then the inode cannot have been freed yet, and we
1172 * can safely proceed (if it's no longer in use, that tells
1173 * nothing about the inode, but we don't need to unuse swap).
1175 if (!page_swapcount(*pagep
))
1180 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
1181 * but also to hold up shmem_evict_inode(): so inode cannot be freed
1182 * beneath us (pagelock doesn't help until the page is in pagecache).
1185 error
= shmem_add_to_page_cache(*pagep
, mapping
, index
,
1187 if (error
!= -ENOMEM
) {
1189 * Truncation and eviction use free_swap_and_cache(), which
1190 * only does trylock page: if we raced, best clean up here.
1192 delete_from_swap_cache(*pagep
);
1193 set_page_dirty(*pagep
);
1195 spin_lock_irq(&info
->lock
);
1197 spin_unlock_irq(&info
->lock
);
1205 * Search through swapped inodes to find and replace swap by page.
1207 int shmem_unuse(swp_entry_t swap
, struct page
*page
)
1209 struct list_head
*this, *next
;
1210 struct shmem_inode_info
*info
;
1211 struct mem_cgroup
*memcg
;
1215 * There's a faint possibility that swap page was replaced before
1216 * caller locked it: caller will come back later with the right page.
1218 if (unlikely(!PageSwapCache(page
) || page_private(page
) != swap
.val
))
1222 * Charge page using GFP_KERNEL while we can wait, before taking
1223 * the shmem_swaplist_mutex which might hold up shmem_writepage().
1224 * Charged back to the user (not to caller) when swap account is used.
1226 error
= mem_cgroup_try_charge(page
, current
->mm
, GFP_KERNEL
, &memcg
,
1230 /* No radix_tree_preload: swap entry keeps a place for page in tree */
1233 mutex_lock(&shmem_swaplist_mutex
);
1234 list_for_each_safe(this, next
, &shmem_swaplist
) {
1235 info
= list_entry(this, struct shmem_inode_info
, swaplist
);
1237 error
= shmem_unuse_inode(info
, swap
, &page
);
1239 list_del_init(&info
->swaplist
);
1241 if (error
!= -EAGAIN
)
1243 /* found nothing in this: move on to search the next */
1245 mutex_unlock(&shmem_swaplist_mutex
);
1248 if (error
!= -ENOMEM
)
1250 mem_cgroup_cancel_charge(page
, memcg
, false);
1252 mem_cgroup_commit_charge(page
, memcg
, true, false);
1260 * Move the page from the page cache to the swap cache.
1262 static int shmem_writepage(struct page
*page
, struct writeback_control
*wbc
)
1264 struct shmem_inode_info
*info
;
1265 struct address_space
*mapping
;
1266 struct inode
*inode
;
1270 VM_BUG_ON_PAGE(PageCompound(page
), page
);
1271 BUG_ON(!PageLocked(page
));
1272 mapping
= page
->mapping
;
1273 index
= page
->index
;
1274 inode
= mapping
->host
;
1275 info
= SHMEM_I(inode
);
1276 if (info
->flags
& VM_LOCKED
)
1278 if (!total_swap_pages
)
1282 * Our capabilities prevent regular writeback or sync from ever calling
1283 * shmem_writepage; but a stacking filesystem might use ->writepage of
1284 * its underlying filesystem, in which case tmpfs should write out to
1285 * swap only in response to memory pressure, and not for the writeback
1288 if (!wbc
->for_reclaim
) {
1289 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
1294 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1295 * value into swapfile.c, the only way we can correctly account for a
1296 * fallocated page arriving here is now to initialize it and write it.
1298 * That's okay for a page already fallocated earlier, but if we have
1299 * not yet completed the fallocation, then (a) we want to keep track
1300 * of this page in case we have to undo it, and (b) it may not be a
1301 * good idea to continue anyway, once we're pushing into swap. So
1302 * reactivate the page, and let shmem_fallocate() quit when too many.
1304 if (!PageUptodate(page
)) {
1305 if (inode
->i_private
) {
1306 struct shmem_falloc
*shmem_falloc
;
1307 spin_lock(&inode
->i_lock
);
1308 shmem_falloc
= inode
->i_private
;
1310 !shmem_falloc
->waitq
&&
1311 index
>= shmem_falloc
->start
&&
1312 index
< shmem_falloc
->next
)
1313 shmem_falloc
->nr_unswapped
++;
1315 shmem_falloc
= NULL
;
1316 spin_unlock(&inode
->i_lock
);
1320 clear_highpage(page
);
1321 flush_dcache_page(page
);
1322 SetPageUptodate(page
);
1325 swap
= get_swap_page(page
);
1329 if (mem_cgroup_try_charge_swap(page
, swap
))
1333 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1334 * if it's not already there. Do it now before the page is
1335 * moved to swap cache, when its pagelock no longer protects
1336 * the inode from eviction. But don't unlock the mutex until
1337 * we've incremented swapped, because shmem_unuse_inode() will
1338 * prune a !swapped inode from the swaplist under this mutex.
1340 mutex_lock(&shmem_swaplist_mutex
);
1341 if (list_empty(&info
->swaplist
))
1342 list_add_tail(&info
->swaplist
, &shmem_swaplist
);
1344 if (add_to_swap_cache(page
, swap
, GFP_ATOMIC
) == 0) {
1345 spin_lock_irq(&info
->lock
);
1346 shmem_recalc_inode(inode
);
1348 spin_unlock_irq(&info
->lock
);
1350 swap_shmem_alloc(swap
);
1351 shmem_delete_from_page_cache(page
, swp_to_radix_entry(swap
));
1353 mutex_unlock(&shmem_swaplist_mutex
);
1354 BUG_ON(page_mapped(page
));
1355 swap_writepage(page
, wbc
);
1359 mutex_unlock(&shmem_swaplist_mutex
);
1361 put_swap_page(page
, swap
);
1363 set_page_dirty(page
);
1364 if (wbc
->for_reclaim
)
1365 return AOP_WRITEPAGE_ACTIVATE
; /* Return with page locked */
1370 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1371 static void shmem_show_mpol(struct seq_file
*seq
, struct mempolicy
*mpol
)
1375 if (!mpol
|| mpol
->mode
== MPOL_DEFAULT
)
1376 return; /* show nothing */
1378 mpol_to_str(buffer
, sizeof(buffer
), mpol
);
1380 seq_printf(seq
, ",mpol=%s", buffer
);
1383 static struct mempolicy
*shmem_get_sbmpol(struct shmem_sb_info
*sbinfo
)
1385 struct mempolicy
*mpol
= NULL
;
1387 spin_lock(&sbinfo
->stat_lock
); /* prevent replace/use races */
1388 mpol
= sbinfo
->mpol
;
1390 spin_unlock(&sbinfo
->stat_lock
);
1394 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1395 static inline void shmem_show_mpol(struct seq_file
*seq
, struct mempolicy
*mpol
)
1398 static inline struct mempolicy
*shmem_get_sbmpol(struct shmem_sb_info
*sbinfo
)
1402 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1404 #define vm_policy vm_private_data
1407 static void shmem_pseudo_vma_init(struct vm_area_struct
*vma
,
1408 struct shmem_inode_info
*info
, pgoff_t index
)
1410 /* Create a pseudo vma that just contains the policy */
1412 /* Bias interleave by inode number to distribute better across nodes */
1413 vma
->vm_pgoff
= index
+ info
->vfs_inode
.i_ino
;
1415 vma
->vm_policy
= mpol_shared_policy_lookup(&info
->policy
, index
);
1418 static void shmem_pseudo_vma_destroy(struct vm_area_struct
*vma
)
1420 /* Drop reference taken by mpol_shared_policy_lookup() */
1421 mpol_cond_put(vma
->vm_policy
);
1424 static struct page
*shmem_swapin(swp_entry_t swap
, gfp_t gfp
,
1425 struct shmem_inode_info
*info
, pgoff_t index
)
1427 struct vm_area_struct pvma
;
1430 shmem_pseudo_vma_init(&pvma
, info
, index
);
1431 page
= swapin_readahead(swap
, gfp
, &pvma
, 0);
1432 shmem_pseudo_vma_destroy(&pvma
);
1437 static struct page
*shmem_alloc_hugepage(gfp_t gfp
,
1438 struct shmem_inode_info
*info
, pgoff_t index
)
1440 struct vm_area_struct pvma
;
1441 struct inode
*inode
= &info
->vfs_inode
;
1442 struct address_space
*mapping
= inode
->i_mapping
;
1443 pgoff_t idx
, hindex
;
1444 void __rcu
**results
;
1447 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE
))
1450 hindex
= round_down(index
, HPAGE_PMD_NR
);
1452 if (radix_tree_gang_lookup_slot(&mapping
->page_tree
, &results
, &idx
,
1453 hindex
, 1) && idx
< hindex
+ HPAGE_PMD_NR
) {
1459 shmem_pseudo_vma_init(&pvma
, info
, hindex
);
1460 page
= alloc_pages_vma(gfp
| __GFP_COMP
| __GFP_NORETRY
| __GFP_NOWARN
,
1461 HPAGE_PMD_ORDER
, &pvma
, 0, numa_node_id(), true);
1462 shmem_pseudo_vma_destroy(&pvma
);
1464 prep_transhuge_page(page
);
1468 static struct page
*shmem_alloc_page(gfp_t gfp
,
1469 struct shmem_inode_info
*info
, pgoff_t index
)
1471 struct vm_area_struct pvma
;
1474 shmem_pseudo_vma_init(&pvma
, info
, index
);
1475 page
= alloc_page_vma(gfp
, &pvma
, 0);
1476 shmem_pseudo_vma_destroy(&pvma
);
1481 static struct page
*shmem_alloc_and_acct_page(gfp_t gfp
,
1482 struct inode
*inode
,
1483 pgoff_t index
, bool huge
)
1485 struct shmem_inode_info
*info
= SHMEM_I(inode
);
1490 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE
))
1492 nr
= huge
? HPAGE_PMD_NR
: 1;
1494 if (!shmem_inode_acct_block(inode
, nr
))
1498 page
= shmem_alloc_hugepage(gfp
, info
, index
);
1500 page
= shmem_alloc_page(gfp
, info
, index
);
1502 __SetPageLocked(page
);
1503 __SetPageSwapBacked(page
);
1508 shmem_inode_unacct_blocks(inode
, nr
);
1510 return ERR_PTR(err
);
1514 * When a page is moved from swapcache to shmem filecache (either by the
1515 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1516 * shmem_unuse_inode()), it may have been read in earlier from swap, in
1517 * ignorance of the mapping it belongs to. If that mapping has special
1518 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1519 * we may need to copy to a suitable page before moving to filecache.
1521 * In a future release, this may well be extended to respect cpuset and
1522 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1523 * but for now it is a simple matter of zone.
1525 static bool shmem_should_replace_page(struct page
*page
, gfp_t gfp
)
1527 return page_zonenum(page
) > gfp_zone(gfp
);
1530 static int shmem_replace_page(struct page
**pagep
, gfp_t gfp
,
1531 struct shmem_inode_info
*info
, pgoff_t index
)
1533 struct page
*oldpage
, *newpage
;
1534 struct address_space
*swap_mapping
;
1540 entry
.val
= page_private(oldpage
);
1541 swap_index
= swp_offset(entry
);
1542 swap_mapping
= page_mapping(oldpage
);
1545 * We have arrived here because our zones are constrained, so don't
1546 * limit chance of success by further cpuset and node constraints.
1548 gfp
&= ~GFP_CONSTRAINT_MASK
;
1549 newpage
= shmem_alloc_page(gfp
, info
, index
);
1554 copy_highpage(newpage
, oldpage
);
1555 flush_dcache_page(newpage
);
1557 __SetPageLocked(newpage
);
1558 __SetPageSwapBacked(newpage
);
1559 SetPageUptodate(newpage
);
1560 set_page_private(newpage
, entry
.val
);
1561 SetPageSwapCache(newpage
);
1564 * Our caller will very soon move newpage out of swapcache, but it's
1565 * a nice clean interface for us to replace oldpage by newpage there.
1567 spin_lock_irq(&swap_mapping
->tree_lock
);
1568 error
= shmem_radix_tree_replace(swap_mapping
, swap_index
, oldpage
,
1571 __inc_node_page_state(newpage
, NR_FILE_PAGES
);
1572 __dec_node_page_state(oldpage
, NR_FILE_PAGES
);
1574 spin_unlock_irq(&swap_mapping
->tree_lock
);
1576 if (unlikely(error
)) {
1578 * Is this possible? I think not, now that our callers check
1579 * both PageSwapCache and page_private after getting page lock;
1580 * but be defensive. Reverse old to newpage for clear and free.
1584 mem_cgroup_migrate(oldpage
, newpage
);
1585 lru_cache_add_anon(newpage
);
1589 ClearPageSwapCache(oldpage
);
1590 set_page_private(oldpage
, 0);
1592 unlock_page(oldpage
);
1599 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1601 * If we allocate a new one we do not mark it dirty. That's up to the
1602 * vm. If we swap it in we mark it dirty since we also free the swap
1603 * entry since a page cannot live in both the swap and page cache.
1605 * fault_mm and fault_type are only supplied by shmem_fault:
1606 * otherwise they are NULL.
1608 static int shmem_getpage_gfp(struct inode
*inode
, pgoff_t index
,
1609 struct page
**pagep
, enum sgp_type sgp
, gfp_t gfp
,
1610 struct vm_area_struct
*vma
, struct vm_fault
*vmf
, int *fault_type
)
1612 struct address_space
*mapping
= inode
->i_mapping
;
1613 struct shmem_inode_info
*info
= SHMEM_I(inode
);
1614 struct shmem_sb_info
*sbinfo
;
1615 struct mm_struct
*charge_mm
;
1616 struct mem_cgroup
*memcg
;
1619 enum sgp_type sgp_huge
= sgp
;
1620 pgoff_t hindex
= index
;
1625 if (index
> (MAX_LFS_FILESIZE
>> PAGE_SHIFT
))
1627 if (sgp
== SGP_NOHUGE
|| sgp
== SGP_HUGE
)
1631 page
= find_lock_entry(mapping
, index
);
1632 if (radix_tree_exceptional_entry(page
)) {
1633 swap
= radix_to_swp_entry(page
);
1637 if (sgp
<= SGP_CACHE
&&
1638 ((loff_t
)index
<< PAGE_SHIFT
) >= i_size_read(inode
)) {
1643 if (page
&& sgp
== SGP_WRITE
)
1644 mark_page_accessed(page
);
1646 /* fallocated page? */
1647 if (page
&& !PageUptodate(page
)) {
1648 if (sgp
!= SGP_READ
)
1654 if (page
|| (sgp
== SGP_READ
&& !swap
.val
)) {
1660 * Fast cache lookup did not find it:
1661 * bring it back from swap or allocate.
1663 sbinfo
= SHMEM_SB(inode
->i_sb
);
1664 charge_mm
= vma
? vma
->vm_mm
: current
->mm
;
1667 /* Look it up and read it in.. */
1668 page
= lookup_swap_cache(swap
, NULL
, 0);
1670 /* Or update major stats only when swapin succeeds?? */
1672 *fault_type
|= VM_FAULT_MAJOR
;
1673 count_vm_event(PGMAJFAULT
);
1674 count_memcg_event_mm(charge_mm
, PGMAJFAULT
);
1676 /* Here we actually start the io */
1677 page
= shmem_swapin(swap
, gfp
, info
, index
);
1684 /* We have to do this with page locked to prevent races */
1686 if (!PageSwapCache(page
) || page_private(page
) != swap
.val
||
1687 !shmem_confirm_swap(mapping
, index
, swap
)) {
1688 error
= -EEXIST
; /* try again */
1691 if (!PageUptodate(page
)) {
1695 wait_on_page_writeback(page
);
1697 if (shmem_should_replace_page(page
, gfp
)) {
1698 error
= shmem_replace_page(&page
, gfp
, info
, index
);
1703 error
= mem_cgroup_try_charge(page
, charge_mm
, gfp
, &memcg
,
1706 error
= shmem_add_to_page_cache(page
, mapping
, index
,
1707 swp_to_radix_entry(swap
));
1709 * We already confirmed swap under page lock, and make
1710 * no memory allocation here, so usually no possibility
1711 * of error; but free_swap_and_cache() only trylocks a
1712 * page, so it is just possible that the entry has been
1713 * truncated or holepunched since swap was confirmed.
1714 * shmem_undo_range() will have done some of the
1715 * unaccounting, now delete_from_swap_cache() will do
1717 * Reset swap.val? No, leave it so "failed" goes back to
1718 * "repeat": reading a hole and writing should succeed.
1721 mem_cgroup_cancel_charge(page
, memcg
, false);
1722 delete_from_swap_cache(page
);
1728 mem_cgroup_commit_charge(page
, memcg
, true, false);
1730 spin_lock_irq(&info
->lock
);
1732 shmem_recalc_inode(inode
);
1733 spin_unlock_irq(&info
->lock
);
1735 if (sgp
== SGP_WRITE
)
1736 mark_page_accessed(page
);
1738 delete_from_swap_cache(page
);
1739 set_page_dirty(page
);
1743 if (vma
&& userfaultfd_missing(vma
)) {
1744 *fault_type
= handle_userfault(vmf
, VM_UFFD_MISSING
);
1748 /* shmem_symlink() */
1749 if (mapping
->a_ops
!= &shmem_aops
)
1751 if (shmem_huge
== SHMEM_HUGE_DENY
|| sgp_huge
== SGP_NOHUGE
)
1753 if (shmem_huge
== SHMEM_HUGE_FORCE
)
1755 switch (sbinfo
->huge
) {
1758 case SHMEM_HUGE_NEVER
:
1760 case SHMEM_HUGE_WITHIN_SIZE
:
1761 off
= round_up(index
, HPAGE_PMD_NR
);
1762 i_size
= round_up(i_size_read(inode
), PAGE_SIZE
);
1763 if (i_size
>= HPAGE_PMD_SIZE
&&
1764 i_size
>> PAGE_SHIFT
>= off
)
1767 case SHMEM_HUGE_ADVISE
:
1768 if (sgp_huge
== SGP_HUGE
)
1770 /* TODO: implement fadvise() hints */
1775 page
= shmem_alloc_and_acct_page(gfp
, inode
, index
, true);
1777 alloc_nohuge
: page
= shmem_alloc_and_acct_page(gfp
, inode
,
1782 error
= PTR_ERR(page
);
1784 if (error
!= -ENOSPC
)
1787 * Try to reclaim some spece by splitting a huge page
1788 * beyond i_size on the filesystem.
1792 ret
= shmem_unused_huge_shrink(sbinfo
, NULL
, 1);
1793 if (ret
== SHRINK_STOP
)
1801 if (PageTransHuge(page
))
1802 hindex
= round_down(index
, HPAGE_PMD_NR
);
1806 if (sgp
== SGP_WRITE
)
1807 __SetPageReferenced(page
);
1809 error
= mem_cgroup_try_charge(page
, charge_mm
, gfp
, &memcg
,
1810 PageTransHuge(page
));
1813 error
= radix_tree_maybe_preload_order(gfp
& GFP_RECLAIM_MASK
,
1814 compound_order(page
));
1816 error
= shmem_add_to_page_cache(page
, mapping
, hindex
,
1818 radix_tree_preload_end();
1821 mem_cgroup_cancel_charge(page
, memcg
,
1822 PageTransHuge(page
));
1825 mem_cgroup_commit_charge(page
, memcg
, false,
1826 PageTransHuge(page
));
1827 lru_cache_add_anon(page
);
1829 spin_lock_irq(&info
->lock
);
1830 info
->alloced
+= 1 << compound_order(page
);
1831 inode
->i_blocks
+= BLOCKS_PER_PAGE
<< compound_order(page
);
1832 shmem_recalc_inode(inode
);
1833 spin_unlock_irq(&info
->lock
);
1836 if (PageTransHuge(page
) &&
1837 DIV_ROUND_UP(i_size_read(inode
), PAGE_SIZE
) <
1838 hindex
+ HPAGE_PMD_NR
- 1) {
1840 * Part of the huge page is beyond i_size: subject
1841 * to shrink under memory pressure.
1843 spin_lock(&sbinfo
->shrinklist_lock
);
1845 * _careful to defend against unlocked access to
1846 * ->shrink_list in shmem_unused_huge_shrink()
1848 if (list_empty_careful(&info
->shrinklist
)) {
1849 list_add_tail(&info
->shrinklist
,
1850 &sbinfo
->shrinklist
);
1851 sbinfo
->shrinklist_len
++;
1853 spin_unlock(&sbinfo
->shrinklist_lock
);
1857 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1859 if (sgp
== SGP_FALLOC
)
1863 * Let SGP_WRITE caller clear ends if write does not fill page;
1864 * but SGP_FALLOC on a page fallocated earlier must initialize
1865 * it now, lest undo on failure cancel our earlier guarantee.
1867 if (sgp
!= SGP_WRITE
&& !PageUptodate(page
)) {
1868 struct page
*head
= compound_head(page
);
1871 for (i
= 0; i
< (1 << compound_order(head
)); i
++) {
1872 clear_highpage(head
+ i
);
1873 flush_dcache_page(head
+ i
);
1875 SetPageUptodate(head
);
1879 /* Perhaps the file has been truncated since we checked */
1880 if (sgp
<= SGP_CACHE
&&
1881 ((loff_t
)index
<< PAGE_SHIFT
) >= i_size_read(inode
)) {
1883 ClearPageDirty(page
);
1884 delete_from_page_cache(page
);
1885 spin_lock_irq(&info
->lock
);
1886 shmem_recalc_inode(inode
);
1887 spin_unlock_irq(&info
->lock
);
1892 *pagep
= page
+ index
- hindex
;
1899 shmem_inode_unacct_blocks(inode
, 1 << compound_order(page
));
1901 if (PageTransHuge(page
)) {
1907 if (swap
.val
&& !shmem_confirm_swap(mapping
, index
, swap
))
1914 if (error
== -ENOSPC
&& !once
++) {
1915 spin_lock_irq(&info
->lock
);
1916 shmem_recalc_inode(inode
);
1917 spin_unlock_irq(&info
->lock
);
1920 if (error
== -EEXIST
) /* from above or from radix_tree_insert */
1926 * This is like autoremove_wake_function, but it removes the wait queue
1927 * entry unconditionally - even if something else had already woken the
1930 static int synchronous_wake_function(wait_queue_entry_t
*wait
, unsigned mode
, int sync
, void *key
)
1932 int ret
= default_wake_function(wait
, mode
, sync
, key
);
1933 list_del_init(&wait
->entry
);
1937 static int shmem_fault(struct vm_fault
*vmf
)
1939 struct vm_area_struct
*vma
= vmf
->vma
;
1940 struct inode
*inode
= file_inode(vma
->vm_file
);
1941 gfp_t gfp
= mapping_gfp_mask(inode
->i_mapping
);
1944 int ret
= VM_FAULT_LOCKED
;
1947 * Trinity finds that probing a hole which tmpfs is punching can
1948 * prevent the hole-punch from ever completing: which in turn
1949 * locks writers out with its hold on i_mutex. So refrain from
1950 * faulting pages into the hole while it's being punched. Although
1951 * shmem_undo_range() does remove the additions, it may be unable to
1952 * keep up, as each new page needs its own unmap_mapping_range() call,
1953 * and the i_mmap tree grows ever slower to scan if new vmas are added.
1955 * It does not matter if we sometimes reach this check just before the
1956 * hole-punch begins, so that one fault then races with the punch:
1957 * we just need to make racing faults a rare case.
1959 * The implementation below would be much simpler if we just used a
1960 * standard mutex or completion: but we cannot take i_mutex in fault,
1961 * and bloating every shmem inode for this unlikely case would be sad.
1963 if (unlikely(inode
->i_private
)) {
1964 struct shmem_falloc
*shmem_falloc
;
1966 spin_lock(&inode
->i_lock
);
1967 shmem_falloc
= inode
->i_private
;
1969 shmem_falloc
->waitq
&&
1970 vmf
->pgoff
>= shmem_falloc
->start
&&
1971 vmf
->pgoff
< shmem_falloc
->next
) {
1972 wait_queue_head_t
*shmem_falloc_waitq
;
1973 DEFINE_WAIT_FUNC(shmem_fault_wait
, synchronous_wake_function
);
1975 ret
= VM_FAULT_NOPAGE
;
1976 if ((vmf
->flags
& FAULT_FLAG_ALLOW_RETRY
) &&
1977 !(vmf
->flags
& FAULT_FLAG_RETRY_NOWAIT
)) {
1978 /* It's polite to up mmap_sem if we can */
1979 up_read(&vma
->vm_mm
->mmap_sem
);
1980 ret
= VM_FAULT_RETRY
;
1983 shmem_falloc_waitq
= shmem_falloc
->waitq
;
1984 prepare_to_wait(shmem_falloc_waitq
, &shmem_fault_wait
,
1985 TASK_UNINTERRUPTIBLE
);
1986 spin_unlock(&inode
->i_lock
);
1990 * shmem_falloc_waitq points into the shmem_fallocate()
1991 * stack of the hole-punching task: shmem_falloc_waitq
1992 * is usually invalid by the time we reach here, but
1993 * finish_wait() does not dereference it in that case;
1994 * though i_lock needed lest racing with wake_up_all().
1996 spin_lock(&inode
->i_lock
);
1997 finish_wait(shmem_falloc_waitq
, &shmem_fault_wait
);
1998 spin_unlock(&inode
->i_lock
);
2001 spin_unlock(&inode
->i_lock
);
2006 if ((vma
->vm_flags
& VM_NOHUGEPAGE
) ||
2007 test_bit(MMF_DISABLE_THP
, &vma
->vm_mm
->flags
))
2009 else if (vma
->vm_flags
& VM_HUGEPAGE
)
2012 error
= shmem_getpage_gfp(inode
, vmf
->pgoff
, &vmf
->page
, sgp
,
2013 gfp
, vma
, vmf
, &ret
);
2015 return ((error
== -ENOMEM
) ? VM_FAULT_OOM
: VM_FAULT_SIGBUS
);
2019 unsigned long shmem_get_unmapped_area(struct file
*file
,
2020 unsigned long uaddr
, unsigned long len
,
2021 unsigned long pgoff
, unsigned long flags
)
2023 unsigned long (*get_area
)(struct file
*,
2024 unsigned long, unsigned long, unsigned long, unsigned long);
2026 unsigned long offset
;
2027 unsigned long inflated_len
;
2028 unsigned long inflated_addr
;
2029 unsigned long inflated_offset
;
2031 if (len
> TASK_SIZE
)
2034 get_area
= current
->mm
->get_unmapped_area
;
2035 addr
= get_area(file
, uaddr
, len
, pgoff
, flags
);
2037 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE
))
2039 if (IS_ERR_VALUE(addr
))
2041 if (addr
& ~PAGE_MASK
)
2043 if (addr
> TASK_SIZE
- len
)
2046 if (shmem_huge
== SHMEM_HUGE_DENY
)
2048 if (len
< HPAGE_PMD_SIZE
)
2050 if (flags
& MAP_FIXED
)
2053 * Our priority is to support MAP_SHARED mapped hugely;
2054 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2055 * But if caller specified an address hint, respect that as before.
2060 if (shmem_huge
!= SHMEM_HUGE_FORCE
) {
2061 struct super_block
*sb
;
2064 VM_BUG_ON(file
->f_op
!= &shmem_file_operations
);
2065 sb
= file_inode(file
)->i_sb
;
2068 * Called directly from mm/mmap.c, or drivers/char/mem.c
2069 * for "/dev/zero", to create a shared anonymous object.
2071 if (IS_ERR(shm_mnt
))
2073 sb
= shm_mnt
->mnt_sb
;
2075 if (SHMEM_SB(sb
)->huge
== SHMEM_HUGE_NEVER
)
2079 offset
= (pgoff
<< PAGE_SHIFT
) & (HPAGE_PMD_SIZE
-1);
2080 if (offset
&& offset
+ len
< 2 * HPAGE_PMD_SIZE
)
2082 if ((addr
& (HPAGE_PMD_SIZE
-1)) == offset
)
2085 inflated_len
= len
+ HPAGE_PMD_SIZE
- PAGE_SIZE
;
2086 if (inflated_len
> TASK_SIZE
)
2088 if (inflated_len
< len
)
2091 inflated_addr
= get_area(NULL
, 0, inflated_len
, 0, flags
);
2092 if (IS_ERR_VALUE(inflated_addr
))
2094 if (inflated_addr
& ~PAGE_MASK
)
2097 inflated_offset
= inflated_addr
& (HPAGE_PMD_SIZE
-1);
2098 inflated_addr
+= offset
- inflated_offset
;
2099 if (inflated_offset
> offset
)
2100 inflated_addr
+= HPAGE_PMD_SIZE
;
2102 if (inflated_addr
> TASK_SIZE
- len
)
2104 return inflated_addr
;
2108 static int shmem_set_policy(struct vm_area_struct
*vma
, struct mempolicy
*mpol
)
2110 struct inode
*inode
= file_inode(vma
->vm_file
);
2111 return mpol_set_shared_policy(&SHMEM_I(inode
)->policy
, vma
, mpol
);
2114 static struct mempolicy
*shmem_get_policy(struct vm_area_struct
*vma
,
2117 struct inode
*inode
= file_inode(vma
->vm_file
);
2120 index
= ((addr
- vma
->vm_start
) >> PAGE_SHIFT
) + vma
->vm_pgoff
;
2121 return mpol_shared_policy_lookup(&SHMEM_I(inode
)->policy
, index
);
2125 int shmem_lock(struct file
*file
, int lock
, struct user_struct
*user
)
2127 struct inode
*inode
= file_inode(file
);
2128 struct shmem_inode_info
*info
= SHMEM_I(inode
);
2129 int retval
= -ENOMEM
;
2131 spin_lock_irq(&info
->lock
);
2132 if (lock
&& !(info
->flags
& VM_LOCKED
)) {
2133 if (!user_shm_lock(inode
->i_size
, user
))
2135 info
->flags
|= VM_LOCKED
;
2136 mapping_set_unevictable(file
->f_mapping
);
2138 if (!lock
&& (info
->flags
& VM_LOCKED
) && user
) {
2139 user_shm_unlock(inode
->i_size
, user
);
2140 info
->flags
&= ~VM_LOCKED
;
2141 mapping_clear_unevictable(file
->f_mapping
);
2146 spin_unlock_irq(&info
->lock
);
2150 static int shmem_mmap(struct file
*file
, struct vm_area_struct
*vma
)
2152 file_accessed(file
);
2153 vma
->vm_ops
= &shmem_vm_ops
;
2154 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE
) &&
2155 ((vma
->vm_start
+ ~HPAGE_PMD_MASK
) & HPAGE_PMD_MASK
) <
2156 (vma
->vm_end
& HPAGE_PMD_MASK
)) {
2157 khugepaged_enter(vma
, vma
->vm_flags
);
2162 static struct inode
*shmem_get_inode(struct super_block
*sb
, const struct inode
*dir
,
2163 umode_t mode
, dev_t dev
, unsigned long flags
)
2165 struct inode
*inode
;
2166 struct shmem_inode_info
*info
;
2167 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
2169 if (shmem_reserve_inode(sb
))
2172 inode
= new_inode(sb
);
2174 inode
->i_ino
= get_next_ino();
2175 inode_init_owner(inode
, dir
, mode
);
2176 inode
->i_blocks
= 0;
2177 inode
->i_atime
= inode
->i_mtime
= inode
->i_ctime
= current_time(inode
);
2178 inode
->i_generation
= get_seconds();
2179 info
= SHMEM_I(inode
);
2180 memset(info
, 0, (char *)inode
- (char *)info
);
2181 spin_lock_init(&info
->lock
);
2182 info
->seals
= F_SEAL_SEAL
;
2183 info
->flags
= flags
& VM_NORESERVE
;
2184 INIT_LIST_HEAD(&info
->shrinklist
);
2185 INIT_LIST_HEAD(&info
->swaplist
);
2186 simple_xattrs_init(&info
->xattrs
);
2187 cache_no_acl(inode
);
2189 switch (mode
& S_IFMT
) {
2191 inode
->i_op
= &shmem_special_inode_operations
;
2192 init_special_inode(inode
, mode
, dev
);
2195 inode
->i_mapping
->a_ops
= &shmem_aops
;
2196 inode
->i_op
= &shmem_inode_operations
;
2197 inode
->i_fop
= &shmem_file_operations
;
2198 mpol_shared_policy_init(&info
->policy
,
2199 shmem_get_sbmpol(sbinfo
));
2203 /* Some things misbehave if size == 0 on a directory */
2204 inode
->i_size
= 2 * BOGO_DIRENT_SIZE
;
2205 inode
->i_op
= &shmem_dir_inode_operations
;
2206 inode
->i_fop
= &simple_dir_operations
;
2210 * Must not load anything in the rbtree,
2211 * mpol_free_shared_policy will not be called.
2213 mpol_shared_policy_init(&info
->policy
, NULL
);
2217 lockdep_annotate_inode_mutex_key(inode
);
2219 shmem_free_inode(sb
);
2223 bool shmem_mapping(struct address_space
*mapping
)
2225 return mapping
->a_ops
== &shmem_aops
;
2228 static int shmem_mfill_atomic_pte(struct mm_struct
*dst_mm
,
2230 struct vm_area_struct
*dst_vma
,
2231 unsigned long dst_addr
,
2232 unsigned long src_addr
,
2234 struct page
**pagep
)
2236 struct inode
*inode
= file_inode(dst_vma
->vm_file
);
2237 struct shmem_inode_info
*info
= SHMEM_I(inode
);
2238 struct address_space
*mapping
= inode
->i_mapping
;
2239 gfp_t gfp
= mapping_gfp_mask(mapping
);
2240 pgoff_t pgoff
= linear_page_index(dst_vma
, dst_addr
);
2241 struct mem_cgroup
*memcg
;
2245 pte_t _dst_pte
, *dst_pte
;
2247 pgoff_t offset
, max_off
;
2250 if (!shmem_inode_acct_block(inode
, 1))
2254 page
= shmem_alloc_page(gfp
, info
, pgoff
);
2256 goto out_unacct_blocks
;
2258 if (!zeropage
) { /* mcopy_atomic */
2259 page_kaddr
= kmap_atomic(page
);
2260 ret
= copy_from_user(page_kaddr
,
2261 (const void __user
*)src_addr
,
2263 kunmap_atomic(page_kaddr
);
2265 /* fallback to copy_from_user outside mmap_sem */
2266 if (unlikely(ret
)) {
2268 shmem_inode_unacct_blocks(inode
, 1);
2269 /* don't free the page */
2272 } else { /* mfill_zeropage_atomic */
2273 clear_highpage(page
);
2280 VM_BUG_ON(PageLocked(page
) || PageSwapBacked(page
));
2281 __SetPageLocked(page
);
2282 __SetPageSwapBacked(page
);
2283 __SetPageUptodate(page
);
2286 offset
= linear_page_index(dst_vma
, dst_addr
);
2287 max_off
= DIV_ROUND_UP(i_size_read(inode
), PAGE_SIZE
);
2288 if (unlikely(offset
>= max_off
))
2291 ret
= mem_cgroup_try_charge(page
, dst_mm
, gfp
, &memcg
, false);
2295 ret
= radix_tree_maybe_preload(gfp
& GFP_RECLAIM_MASK
);
2297 ret
= shmem_add_to_page_cache(page
, mapping
, pgoff
, NULL
);
2298 radix_tree_preload_end();
2301 goto out_release_uncharge
;
2303 mem_cgroup_commit_charge(page
, memcg
, false, false);
2305 _dst_pte
= mk_pte(page
, dst_vma
->vm_page_prot
);
2306 if (dst_vma
->vm_flags
& VM_WRITE
)
2307 _dst_pte
= pte_mkwrite(pte_mkdirty(_dst_pte
));
2310 * We don't set the pte dirty if the vma has no
2311 * VM_WRITE permission, so mark the page dirty or it
2312 * could be freed from under us. We could do it
2313 * unconditionally before unlock_page(), but doing it
2314 * only if VM_WRITE is not set is faster.
2316 set_page_dirty(page
);
2319 dst_pte
= pte_offset_map_lock(dst_mm
, dst_pmd
, dst_addr
, &ptl
);
2322 max_off
= DIV_ROUND_UP(i_size_read(inode
), PAGE_SIZE
);
2323 if (unlikely(offset
>= max_off
))
2324 goto out_release_uncharge_unlock
;
2327 if (!pte_none(*dst_pte
))
2328 goto out_release_uncharge_unlock
;
2330 lru_cache_add_anon(page
);
2332 spin_lock(&info
->lock
);
2334 inode
->i_blocks
+= BLOCKS_PER_PAGE
;
2335 shmem_recalc_inode(inode
);
2336 spin_unlock(&info
->lock
);
2338 inc_mm_counter(dst_mm
, mm_counter_file(page
));
2339 page_add_file_rmap(page
, false);
2340 set_pte_at(dst_mm
, dst_addr
, dst_pte
, _dst_pte
);
2342 /* No need to invalidate - it was non-present before */
2343 update_mmu_cache(dst_vma
, dst_addr
, dst_pte
);
2344 pte_unmap_unlock(dst_pte
, ptl
);
2349 out_release_uncharge_unlock
:
2350 pte_unmap_unlock(dst_pte
, ptl
);
2351 ClearPageDirty(page
);
2352 delete_from_page_cache(page
);
2353 out_release_uncharge
:
2354 mem_cgroup_cancel_charge(page
, memcg
, false);
2359 shmem_inode_unacct_blocks(inode
, 1);
2363 int shmem_mcopy_atomic_pte(struct mm_struct
*dst_mm
,
2365 struct vm_area_struct
*dst_vma
,
2366 unsigned long dst_addr
,
2367 unsigned long src_addr
,
2368 struct page
**pagep
)
2370 return shmem_mfill_atomic_pte(dst_mm
, dst_pmd
, dst_vma
,
2371 dst_addr
, src_addr
, false, pagep
);
2374 int shmem_mfill_zeropage_pte(struct mm_struct
*dst_mm
,
2376 struct vm_area_struct
*dst_vma
,
2377 unsigned long dst_addr
)
2379 struct page
*page
= NULL
;
2381 return shmem_mfill_atomic_pte(dst_mm
, dst_pmd
, dst_vma
,
2382 dst_addr
, 0, true, &page
);
2386 static const struct inode_operations shmem_symlink_inode_operations
;
2387 static const struct inode_operations shmem_short_symlink_operations
;
2389 #ifdef CONFIG_TMPFS_XATTR
2390 static int shmem_initxattrs(struct inode
*, const struct xattr
*, void *);
2392 #define shmem_initxattrs NULL
2396 shmem_write_begin(struct file
*file
, struct address_space
*mapping
,
2397 loff_t pos
, unsigned len
, unsigned flags
,
2398 struct page
**pagep
, void **fsdata
)
2400 struct inode
*inode
= mapping
->host
;
2401 struct shmem_inode_info
*info
= SHMEM_I(inode
);
2402 pgoff_t index
= pos
>> PAGE_SHIFT
;
2404 /* i_mutex is held by caller */
2405 if (unlikely(info
->seals
& (F_SEAL_WRITE
| F_SEAL_GROW
))) {
2406 if (info
->seals
& F_SEAL_WRITE
)
2408 if ((info
->seals
& F_SEAL_GROW
) && pos
+ len
> inode
->i_size
)
2412 return shmem_getpage(inode
, index
, pagep
, SGP_WRITE
);
2416 shmem_write_end(struct file
*file
, struct address_space
*mapping
,
2417 loff_t pos
, unsigned len
, unsigned copied
,
2418 struct page
*page
, void *fsdata
)
2420 struct inode
*inode
= mapping
->host
;
2422 if (pos
+ copied
> inode
->i_size
)
2423 i_size_write(inode
, pos
+ copied
);
2425 if (!PageUptodate(page
)) {
2426 struct page
*head
= compound_head(page
);
2427 if (PageTransCompound(page
)) {
2430 for (i
= 0; i
< HPAGE_PMD_NR
; i
++) {
2431 if (head
+ i
== page
)
2433 clear_highpage(head
+ i
);
2434 flush_dcache_page(head
+ i
);
2437 if (copied
< PAGE_SIZE
) {
2438 unsigned from
= pos
& (PAGE_SIZE
- 1);
2439 zero_user_segments(page
, 0, from
,
2440 from
+ copied
, PAGE_SIZE
);
2442 SetPageUptodate(head
);
2444 set_page_dirty(page
);
2451 static ssize_t
shmem_file_read_iter(struct kiocb
*iocb
, struct iov_iter
*to
)
2453 struct file
*file
= iocb
->ki_filp
;
2454 struct inode
*inode
= file_inode(file
);
2455 struct address_space
*mapping
= inode
->i_mapping
;
2457 unsigned long offset
;
2458 enum sgp_type sgp
= SGP_READ
;
2461 loff_t
*ppos
= &iocb
->ki_pos
;
2464 * Might this read be for a stacking filesystem? Then when reading
2465 * holes of a sparse file, we actually need to allocate those pages,
2466 * and even mark them dirty, so it cannot exceed the max_blocks limit.
2468 if (!iter_is_iovec(to
))
2471 index
= *ppos
>> PAGE_SHIFT
;
2472 offset
= *ppos
& ~PAGE_MASK
;
2475 struct page
*page
= NULL
;
2477 unsigned long nr
, ret
;
2478 loff_t i_size
= i_size_read(inode
);
2480 end_index
= i_size
>> PAGE_SHIFT
;
2481 if (index
> end_index
)
2483 if (index
== end_index
) {
2484 nr
= i_size
& ~PAGE_MASK
;
2489 error
= shmem_getpage(inode
, index
, &page
, sgp
);
2491 if (error
== -EINVAL
)
2496 if (sgp
== SGP_CACHE
)
2497 set_page_dirty(page
);
2502 * We must evaluate after, since reads (unlike writes)
2503 * are called without i_mutex protection against truncate
2506 i_size
= i_size_read(inode
);
2507 end_index
= i_size
>> PAGE_SHIFT
;
2508 if (index
== end_index
) {
2509 nr
= i_size
& ~PAGE_MASK
;
2520 * If users can be writing to this page using arbitrary
2521 * virtual addresses, take care about potential aliasing
2522 * before reading the page on the kernel side.
2524 if (mapping_writably_mapped(mapping
))
2525 flush_dcache_page(page
);
2527 * Mark the page accessed if we read the beginning.
2530 mark_page_accessed(page
);
2532 page
= ZERO_PAGE(0);
2537 * Ok, we have the page, and it's up-to-date, so
2538 * now we can copy it to user space...
2540 ret
= copy_page_to_iter(page
, offset
, nr
, to
);
2543 index
+= offset
>> PAGE_SHIFT
;
2544 offset
&= ~PAGE_MASK
;
2547 if (!iov_iter_count(to
))
2556 *ppos
= ((loff_t
) index
<< PAGE_SHIFT
) + offset
;
2557 file_accessed(file
);
2558 return retval
? retval
: error
;
2562 * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
2564 static pgoff_t
shmem_seek_hole_data(struct address_space
*mapping
,
2565 pgoff_t index
, pgoff_t end
, int whence
)
2568 struct pagevec pvec
;
2569 pgoff_t indices
[PAGEVEC_SIZE
];
2573 pagevec_init(&pvec
, 0);
2574 pvec
.nr
= 1; /* start small: we may be there already */
2576 pvec
.nr
= find_get_entries(mapping
, index
,
2577 pvec
.nr
, pvec
.pages
, indices
);
2579 if (whence
== SEEK_DATA
)
2583 for (i
= 0; i
< pvec
.nr
; i
++, index
++) {
2584 if (index
< indices
[i
]) {
2585 if (whence
== SEEK_HOLE
) {
2591 page
= pvec
.pages
[i
];
2592 if (page
&& !radix_tree_exceptional_entry(page
)) {
2593 if (!PageUptodate(page
))
2597 (page
&& whence
== SEEK_DATA
) ||
2598 (!page
&& whence
== SEEK_HOLE
)) {
2603 pagevec_remove_exceptionals(&pvec
);
2604 pagevec_release(&pvec
);
2605 pvec
.nr
= PAGEVEC_SIZE
;
2611 static loff_t
shmem_file_llseek(struct file
*file
, loff_t offset
, int whence
)
2613 struct address_space
*mapping
= file
->f_mapping
;
2614 struct inode
*inode
= mapping
->host
;
2618 if (whence
!= SEEK_DATA
&& whence
!= SEEK_HOLE
)
2619 return generic_file_llseek_size(file
, offset
, whence
,
2620 MAX_LFS_FILESIZE
, i_size_read(inode
));
2622 /* We're holding i_mutex so we can access i_size directly */
2624 if (offset
< 0 || offset
>= inode
->i_size
)
2627 start
= offset
>> PAGE_SHIFT
;
2628 end
= (inode
->i_size
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
2629 new_offset
= shmem_seek_hole_data(mapping
, start
, end
, whence
);
2630 new_offset
<<= PAGE_SHIFT
;
2631 if (new_offset
> offset
) {
2632 if (new_offset
< inode
->i_size
)
2633 offset
= new_offset
;
2634 else if (whence
== SEEK_DATA
)
2637 offset
= inode
->i_size
;
2642 offset
= vfs_setpos(file
, offset
, MAX_LFS_FILESIZE
);
2643 inode_unlock(inode
);
2648 * We need a tag: a new tag would expand every radix_tree_node by 8 bytes,
2649 * so reuse a tag which we firmly believe is never set or cleared on shmem.
2651 #define SHMEM_TAG_PINNED PAGECACHE_TAG_TOWRITE
2652 #define LAST_SCAN 4 /* about 150ms max */
2654 static void shmem_tag_pins(struct address_space
*mapping
)
2656 struct radix_tree_iter iter
;
2665 radix_tree_for_each_slot(slot
, &mapping
->page_tree
, &iter
, start
) {
2666 page
= radix_tree_deref_slot(slot
);
2667 if (!page
|| radix_tree_exception(page
)) {
2668 if (radix_tree_deref_retry(page
)) {
2669 slot
= radix_tree_iter_retry(&iter
);
2672 } else if (page_count(page
) - page_mapcount(page
) > 1) {
2673 spin_lock_irq(&mapping
->tree_lock
);
2674 radix_tree_tag_set(&mapping
->page_tree
, iter
.index
,
2676 spin_unlock_irq(&mapping
->tree_lock
);
2679 if (need_resched()) {
2680 slot
= radix_tree_iter_resume(slot
, &iter
);
2688 * Setting SEAL_WRITE requires us to verify there's no pending writer. However,
2689 * via get_user_pages(), drivers might have some pending I/O without any active
2690 * user-space mappings (eg., direct-IO, AIO). Therefore, we look at all pages
2691 * and see whether it has an elevated ref-count. If so, we tag them and wait for
2692 * them to be dropped.
2693 * The caller must guarantee that no new user will acquire writable references
2694 * to those pages to avoid races.
2696 static int shmem_wait_for_pins(struct address_space
*mapping
)
2698 struct radix_tree_iter iter
;
2704 shmem_tag_pins(mapping
);
2707 for (scan
= 0; scan
<= LAST_SCAN
; scan
++) {
2708 if (!radix_tree_tagged(&mapping
->page_tree
, SHMEM_TAG_PINNED
))
2712 lru_add_drain_all();
2713 else if (schedule_timeout_killable((HZ
<< scan
) / 200))
2718 radix_tree_for_each_tagged(slot
, &mapping
->page_tree
, &iter
,
2719 start
, SHMEM_TAG_PINNED
) {
2721 page
= radix_tree_deref_slot(slot
);
2722 if (radix_tree_exception(page
)) {
2723 if (radix_tree_deref_retry(page
)) {
2724 slot
= radix_tree_iter_retry(&iter
);
2732 page_count(page
) - page_mapcount(page
) != 1) {
2733 if (scan
< LAST_SCAN
)
2734 goto continue_resched
;
2737 * On the last scan, we clean up all those tags
2738 * we inserted; but make a note that we still
2739 * found pages pinned.
2744 spin_lock_irq(&mapping
->tree_lock
);
2745 radix_tree_tag_clear(&mapping
->page_tree
,
2746 iter
.index
, SHMEM_TAG_PINNED
);
2747 spin_unlock_irq(&mapping
->tree_lock
);
2749 if (need_resched()) {
2750 slot
= radix_tree_iter_resume(slot
, &iter
);
2760 #define F_ALL_SEALS (F_SEAL_SEAL | \
2765 int shmem_add_seals(struct file
*file
, unsigned int seals
)
2767 struct inode
*inode
= file_inode(file
);
2768 struct shmem_inode_info
*info
= SHMEM_I(inode
);
2773 * Sealing allows multiple parties to share a shmem-file but restrict
2774 * access to a specific subset of file operations. Seals can only be
2775 * added, but never removed. This way, mutually untrusted parties can
2776 * share common memory regions with a well-defined policy. A malicious
2777 * peer can thus never perform unwanted operations on a shared object.
2779 * Seals are only supported on special shmem-files and always affect
2780 * the whole underlying inode. Once a seal is set, it may prevent some
2781 * kinds of access to the file. Currently, the following seals are
2783 * SEAL_SEAL: Prevent further seals from being set on this file
2784 * SEAL_SHRINK: Prevent the file from shrinking
2785 * SEAL_GROW: Prevent the file from growing
2786 * SEAL_WRITE: Prevent write access to the file
2788 * As we don't require any trust relationship between two parties, we
2789 * must prevent seals from being removed. Therefore, sealing a file
2790 * only adds a given set of seals to the file, it never touches
2791 * existing seals. Furthermore, the "setting seals"-operation can be
2792 * sealed itself, which basically prevents any further seal from being
2795 * Semantics of sealing are only defined on volatile files. Only
2796 * anonymous shmem files support sealing. More importantly, seals are
2797 * never written to disk. Therefore, there's no plan to support it on
2801 if (file
->f_op
!= &shmem_file_operations
)
2803 if (!(file
->f_mode
& FMODE_WRITE
))
2805 if (seals
& ~(unsigned int)F_ALL_SEALS
)
2810 if (info
->seals
& F_SEAL_SEAL
) {
2815 if ((seals
& F_SEAL_WRITE
) && !(info
->seals
& F_SEAL_WRITE
)) {
2816 error
= mapping_deny_writable(file
->f_mapping
);
2820 error
= shmem_wait_for_pins(file
->f_mapping
);
2822 mapping_allow_writable(file
->f_mapping
);
2827 info
->seals
|= seals
;
2831 inode_unlock(inode
);
2834 EXPORT_SYMBOL_GPL(shmem_add_seals
);
2836 int shmem_get_seals(struct file
*file
)
2838 if (file
->f_op
!= &shmem_file_operations
)
2841 return SHMEM_I(file_inode(file
))->seals
;
2843 EXPORT_SYMBOL_GPL(shmem_get_seals
);
2845 long shmem_fcntl(struct file
*file
, unsigned int cmd
, unsigned long arg
)
2851 /* disallow upper 32bit */
2855 error
= shmem_add_seals(file
, arg
);
2858 error
= shmem_get_seals(file
);
2868 static long shmem_fallocate(struct file
*file
, int mode
, loff_t offset
,
2871 struct inode
*inode
= file_inode(file
);
2872 struct shmem_sb_info
*sbinfo
= SHMEM_SB(inode
->i_sb
);
2873 struct shmem_inode_info
*info
= SHMEM_I(inode
);
2874 struct shmem_falloc shmem_falloc
;
2875 pgoff_t start
, index
, end
;
2878 if (mode
& ~(FALLOC_FL_KEEP_SIZE
| FALLOC_FL_PUNCH_HOLE
))
2883 if (mode
& FALLOC_FL_PUNCH_HOLE
) {
2884 struct address_space
*mapping
= file
->f_mapping
;
2885 loff_t unmap_start
= round_up(offset
, PAGE_SIZE
);
2886 loff_t unmap_end
= round_down(offset
+ len
, PAGE_SIZE
) - 1;
2887 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq
);
2889 /* protected by i_mutex */
2890 if (info
->seals
& F_SEAL_WRITE
) {
2895 shmem_falloc
.waitq
= &shmem_falloc_waitq
;
2896 shmem_falloc
.start
= unmap_start
>> PAGE_SHIFT
;
2897 shmem_falloc
.next
= (unmap_end
+ 1) >> PAGE_SHIFT
;
2898 spin_lock(&inode
->i_lock
);
2899 inode
->i_private
= &shmem_falloc
;
2900 spin_unlock(&inode
->i_lock
);
2902 if ((u64
)unmap_end
> (u64
)unmap_start
)
2903 unmap_mapping_range(mapping
, unmap_start
,
2904 1 + unmap_end
- unmap_start
, 0);
2905 shmem_truncate_range(inode
, offset
, offset
+ len
- 1);
2906 /* No need to unmap again: hole-punching leaves COWed pages */
2908 spin_lock(&inode
->i_lock
);
2909 inode
->i_private
= NULL
;
2910 wake_up_all(&shmem_falloc_waitq
);
2911 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq
.head
));
2912 spin_unlock(&inode
->i_lock
);
2917 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2918 error
= inode_newsize_ok(inode
, offset
+ len
);
2922 if ((info
->seals
& F_SEAL_GROW
) && offset
+ len
> inode
->i_size
) {
2927 start
= offset
>> PAGE_SHIFT
;
2928 end
= (offset
+ len
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
2929 /* Try to avoid a swapstorm if len is impossible to satisfy */
2930 if (sbinfo
->max_blocks
&& end
- start
> sbinfo
->max_blocks
) {
2935 shmem_falloc
.waitq
= NULL
;
2936 shmem_falloc
.start
= start
;
2937 shmem_falloc
.next
= start
;
2938 shmem_falloc
.nr_falloced
= 0;
2939 shmem_falloc
.nr_unswapped
= 0;
2940 spin_lock(&inode
->i_lock
);
2941 inode
->i_private
= &shmem_falloc
;
2942 spin_unlock(&inode
->i_lock
);
2944 for (index
= start
; index
< end
; index
++) {
2948 * Good, the fallocate(2) manpage permits EINTR: we may have
2949 * been interrupted because we are using up too much memory.
2951 if (signal_pending(current
))
2953 else if (shmem_falloc
.nr_unswapped
> shmem_falloc
.nr_falloced
)
2956 error
= shmem_getpage(inode
, index
, &page
, SGP_FALLOC
);
2958 /* Remove the !PageUptodate pages we added */
2959 if (index
> start
) {
2960 shmem_undo_range(inode
,
2961 (loff_t
)start
<< PAGE_SHIFT
,
2962 ((loff_t
)index
<< PAGE_SHIFT
) - 1, true);
2968 * Inform shmem_writepage() how far we have reached.
2969 * No need for lock or barrier: we have the page lock.
2971 shmem_falloc
.next
++;
2972 if (!PageUptodate(page
))
2973 shmem_falloc
.nr_falloced
++;
2976 * If !PageUptodate, leave it that way so that freeable pages
2977 * can be recognized if we need to rollback on error later.
2978 * But set_page_dirty so that memory pressure will swap rather
2979 * than free the pages we are allocating (and SGP_CACHE pages
2980 * might still be clean: we now need to mark those dirty too).
2982 set_page_dirty(page
);
2988 if (!(mode
& FALLOC_FL_KEEP_SIZE
) && offset
+ len
> inode
->i_size
)
2989 i_size_write(inode
, offset
+ len
);
2990 inode
->i_ctime
= current_time(inode
);
2992 spin_lock(&inode
->i_lock
);
2993 inode
->i_private
= NULL
;
2994 spin_unlock(&inode
->i_lock
);
2996 inode_unlock(inode
);
3000 static int shmem_statfs(struct dentry
*dentry
, struct kstatfs
*buf
)
3002 struct shmem_sb_info
*sbinfo
= SHMEM_SB(dentry
->d_sb
);
3004 buf
->f_type
= TMPFS_MAGIC
;
3005 buf
->f_bsize
= PAGE_SIZE
;
3006 buf
->f_namelen
= NAME_MAX
;
3007 if (sbinfo
->max_blocks
) {
3008 buf
->f_blocks
= sbinfo
->max_blocks
;
3010 buf
->f_bfree
= sbinfo
->max_blocks
-
3011 percpu_counter_sum(&sbinfo
->used_blocks
);
3013 if (sbinfo
->max_inodes
) {
3014 buf
->f_files
= sbinfo
->max_inodes
;
3015 buf
->f_ffree
= sbinfo
->free_inodes
;
3017 /* else leave those fields 0 like simple_statfs */
3022 * File creation. Allocate an inode, and we're done..
3025 shmem_mknod(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
, dev_t dev
)
3027 struct inode
*inode
;
3028 int error
= -ENOSPC
;
3030 inode
= shmem_get_inode(dir
->i_sb
, dir
, mode
, dev
, VM_NORESERVE
);
3032 error
= simple_acl_create(dir
, inode
);
3035 error
= security_inode_init_security(inode
, dir
,
3037 shmem_initxattrs
, NULL
);
3038 if (error
&& error
!= -EOPNOTSUPP
)
3042 dir
->i_size
+= BOGO_DIRENT_SIZE
;
3043 dir
->i_ctime
= dir
->i_mtime
= current_time(dir
);
3044 d_instantiate(dentry
, inode
);
3045 dget(dentry
); /* Extra count - pin the dentry in core */
3054 shmem_tmpfile(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
)
3056 struct inode
*inode
;
3057 int error
= -ENOSPC
;
3059 inode
= shmem_get_inode(dir
->i_sb
, dir
, mode
, 0, VM_NORESERVE
);
3061 error
= security_inode_init_security(inode
, dir
,
3063 shmem_initxattrs
, NULL
);
3064 if (error
&& error
!= -EOPNOTSUPP
)
3066 error
= simple_acl_create(dir
, inode
);
3069 d_tmpfile(dentry
, inode
);
3077 static int shmem_mkdir(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
)
3081 if ((error
= shmem_mknod(dir
, dentry
, mode
| S_IFDIR
, 0)))
3087 static int shmem_create(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
,
3090 return shmem_mknod(dir
, dentry
, mode
| S_IFREG
, 0);
3096 static int shmem_link(struct dentry
*old_dentry
, struct inode
*dir
, struct dentry
*dentry
)
3098 struct inode
*inode
= d_inode(old_dentry
);
3102 * No ordinary (disk based) filesystem counts links as inodes;
3103 * but each new link needs a new dentry, pinning lowmem, and
3104 * tmpfs dentries cannot be pruned until they are unlinked.
3105 * But if an O_TMPFILE file is linked into the tmpfs, the
3106 * first link must skip that, to get the accounting right.
3108 if (inode
->i_nlink
) {
3109 ret
= shmem_reserve_inode(inode
->i_sb
);
3114 dir
->i_size
+= BOGO_DIRENT_SIZE
;
3115 inode
->i_ctime
= dir
->i_ctime
= dir
->i_mtime
= current_time(inode
);
3117 ihold(inode
); /* New dentry reference */
3118 dget(dentry
); /* Extra pinning count for the created dentry */
3119 d_instantiate(dentry
, inode
);
3124 static int shmem_unlink(struct inode
*dir
, struct dentry
*dentry
)
3126 struct inode
*inode
= d_inode(dentry
);
3128 if (inode
->i_nlink
> 1 && !S_ISDIR(inode
->i_mode
))
3129 shmem_free_inode(inode
->i_sb
);
3131 dir
->i_size
-= BOGO_DIRENT_SIZE
;
3132 inode
->i_ctime
= dir
->i_ctime
= dir
->i_mtime
= current_time(inode
);
3134 dput(dentry
); /* Undo the count from "create" - this does all the work */
3138 static int shmem_rmdir(struct inode
*dir
, struct dentry
*dentry
)
3140 if (!simple_empty(dentry
))
3143 drop_nlink(d_inode(dentry
));
3145 return shmem_unlink(dir
, dentry
);
3148 static int shmem_exchange(struct inode
*old_dir
, struct dentry
*old_dentry
, struct inode
*new_dir
, struct dentry
*new_dentry
)
3150 bool old_is_dir
= d_is_dir(old_dentry
);
3151 bool new_is_dir
= d_is_dir(new_dentry
);
3153 if (old_dir
!= new_dir
&& old_is_dir
!= new_is_dir
) {
3155 drop_nlink(old_dir
);
3158 drop_nlink(new_dir
);
3162 old_dir
->i_ctime
= old_dir
->i_mtime
=
3163 new_dir
->i_ctime
= new_dir
->i_mtime
=
3164 d_inode(old_dentry
)->i_ctime
=
3165 d_inode(new_dentry
)->i_ctime
= current_time(old_dir
);
3170 static int shmem_whiteout(struct inode
*old_dir
, struct dentry
*old_dentry
)
3172 struct dentry
*whiteout
;
3175 whiteout
= d_alloc(old_dentry
->d_parent
, &old_dentry
->d_name
);
3179 error
= shmem_mknod(old_dir
, whiteout
,
3180 S_IFCHR
| WHITEOUT_MODE
, WHITEOUT_DEV
);
3186 * Cheat and hash the whiteout while the old dentry is still in
3187 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
3189 * d_lookup() will consistently find one of them at this point,
3190 * not sure which one, but that isn't even important.
3197 * The VFS layer already does all the dentry stuff for rename,
3198 * we just have to decrement the usage count for the target if
3199 * it exists so that the VFS layer correctly free's it when it
3202 static int shmem_rename2(struct inode
*old_dir
, struct dentry
*old_dentry
, struct inode
*new_dir
, struct dentry
*new_dentry
, unsigned int flags
)
3204 struct inode
*inode
= d_inode(old_dentry
);
3205 int they_are_dirs
= S_ISDIR(inode
->i_mode
);
3207 if (flags
& ~(RENAME_NOREPLACE
| RENAME_EXCHANGE
| RENAME_WHITEOUT
))
3210 if (flags
& RENAME_EXCHANGE
)
3211 return shmem_exchange(old_dir
, old_dentry
, new_dir
, new_dentry
);
3213 if (!simple_empty(new_dentry
))
3216 if (flags
& RENAME_WHITEOUT
) {
3219 error
= shmem_whiteout(old_dir
, old_dentry
);
3224 if (d_really_is_positive(new_dentry
)) {
3225 (void) shmem_unlink(new_dir
, new_dentry
);
3226 if (they_are_dirs
) {
3227 drop_nlink(d_inode(new_dentry
));
3228 drop_nlink(old_dir
);
3230 } else if (they_are_dirs
) {
3231 drop_nlink(old_dir
);
3235 old_dir
->i_size
-= BOGO_DIRENT_SIZE
;
3236 new_dir
->i_size
+= BOGO_DIRENT_SIZE
;
3237 old_dir
->i_ctime
= old_dir
->i_mtime
=
3238 new_dir
->i_ctime
= new_dir
->i_mtime
=
3239 inode
->i_ctime
= current_time(old_dir
);
3243 static int shmem_symlink(struct inode
*dir
, struct dentry
*dentry
, const char *symname
)
3247 struct inode
*inode
;
3249 struct shmem_inode_info
*info
;
3251 len
= strlen(symname
) + 1;
3252 if (len
> PAGE_SIZE
)
3253 return -ENAMETOOLONG
;
3255 inode
= shmem_get_inode(dir
->i_sb
, dir
, S_IFLNK
|S_IRWXUGO
, 0, VM_NORESERVE
);
3259 error
= security_inode_init_security(inode
, dir
, &dentry
->d_name
,
3260 shmem_initxattrs
, NULL
);
3262 if (error
!= -EOPNOTSUPP
) {
3269 info
= SHMEM_I(inode
);
3270 inode
->i_size
= len
-1;
3271 if (len
<= SHORT_SYMLINK_LEN
) {
3272 inode
->i_link
= kmemdup(symname
, len
, GFP_KERNEL
);
3273 if (!inode
->i_link
) {
3277 inode
->i_op
= &shmem_short_symlink_operations
;
3279 inode_nohighmem(inode
);
3280 error
= shmem_getpage(inode
, 0, &page
, SGP_WRITE
);
3285 inode
->i_mapping
->a_ops
= &shmem_aops
;
3286 inode
->i_op
= &shmem_symlink_inode_operations
;
3287 memcpy(page_address(page
), symname
, len
);
3288 SetPageUptodate(page
);
3289 set_page_dirty(page
);
3293 dir
->i_size
+= BOGO_DIRENT_SIZE
;
3294 dir
->i_ctime
= dir
->i_mtime
= current_time(dir
);
3295 d_instantiate(dentry
, inode
);
3300 static void shmem_put_link(void *arg
)
3302 mark_page_accessed(arg
);
3306 static const char *shmem_get_link(struct dentry
*dentry
,
3307 struct inode
*inode
,
3308 struct delayed_call
*done
)
3310 struct page
*page
= NULL
;
3313 page
= find_get_page(inode
->i_mapping
, 0);
3315 return ERR_PTR(-ECHILD
);
3316 if (!PageUptodate(page
)) {
3318 return ERR_PTR(-ECHILD
);
3321 error
= shmem_getpage(inode
, 0, &page
, SGP_READ
);
3323 return ERR_PTR(error
);
3326 set_delayed_call(done
, shmem_put_link
, page
);
3327 return page_address(page
);
3330 #ifdef CONFIG_TMPFS_XATTR
3332 * Superblocks without xattr inode operations may get some security.* xattr
3333 * support from the LSM "for free". As soon as we have any other xattrs
3334 * like ACLs, we also need to implement the security.* handlers at
3335 * filesystem level, though.
3339 * Callback for security_inode_init_security() for acquiring xattrs.
3341 static int shmem_initxattrs(struct inode
*inode
,
3342 const struct xattr
*xattr_array
,
3345 struct shmem_inode_info
*info
= SHMEM_I(inode
);
3346 const struct xattr
*xattr
;
3347 struct simple_xattr
*new_xattr
;
3350 for (xattr
= xattr_array
; xattr
->name
!= NULL
; xattr
++) {
3351 new_xattr
= simple_xattr_alloc(xattr
->value
, xattr
->value_len
);
3355 len
= strlen(xattr
->name
) + 1;
3356 new_xattr
->name
= kmalloc(XATTR_SECURITY_PREFIX_LEN
+ len
,
3358 if (!new_xattr
->name
) {
3363 memcpy(new_xattr
->name
, XATTR_SECURITY_PREFIX
,
3364 XATTR_SECURITY_PREFIX_LEN
);
3365 memcpy(new_xattr
->name
+ XATTR_SECURITY_PREFIX_LEN
,
3368 simple_xattr_list_add(&info
->xattrs
, new_xattr
);
3374 static int shmem_xattr_handler_get(const struct xattr_handler
*handler
,
3375 struct dentry
*unused
, struct inode
*inode
,
3376 const char *name
, void *buffer
, size_t size
)
3378 struct shmem_inode_info
*info
= SHMEM_I(inode
);
3380 name
= xattr_full_name(handler
, name
);
3381 return simple_xattr_get(&info
->xattrs
, name
, buffer
, size
);
3384 static int shmem_xattr_handler_set(const struct xattr_handler
*handler
,
3385 struct dentry
*unused
, struct inode
*inode
,
3386 const char *name
, const void *value
,
3387 size_t size
, int flags
)
3389 struct shmem_inode_info
*info
= SHMEM_I(inode
);
3391 name
= xattr_full_name(handler
, name
);
3392 return simple_xattr_set(&info
->xattrs
, name
, value
, size
, flags
);
3395 static const struct xattr_handler shmem_security_xattr_handler
= {
3396 .prefix
= XATTR_SECURITY_PREFIX
,
3397 .get
= shmem_xattr_handler_get
,
3398 .set
= shmem_xattr_handler_set
,
3401 static const struct xattr_handler shmem_trusted_xattr_handler
= {
3402 .prefix
= XATTR_TRUSTED_PREFIX
,
3403 .get
= shmem_xattr_handler_get
,
3404 .set
= shmem_xattr_handler_set
,
3407 static const struct xattr_handler
*shmem_xattr_handlers
[] = {
3408 #ifdef CONFIG_TMPFS_POSIX_ACL
3409 &posix_acl_access_xattr_handler
,
3410 &posix_acl_default_xattr_handler
,
3412 &shmem_security_xattr_handler
,
3413 &shmem_trusted_xattr_handler
,
3417 static ssize_t
shmem_listxattr(struct dentry
*dentry
, char *buffer
, size_t size
)
3419 struct shmem_inode_info
*info
= SHMEM_I(d_inode(dentry
));
3420 return simple_xattr_list(d_inode(dentry
), &info
->xattrs
, buffer
, size
);
3422 #endif /* CONFIG_TMPFS_XATTR */
3424 static const struct inode_operations shmem_short_symlink_operations
= {
3425 .get_link
= simple_get_link
,
3426 #ifdef CONFIG_TMPFS_XATTR
3427 .listxattr
= shmem_listxattr
,
3431 static const struct inode_operations shmem_symlink_inode_operations
= {
3432 .get_link
= shmem_get_link
,
3433 #ifdef CONFIG_TMPFS_XATTR
3434 .listxattr
= shmem_listxattr
,
3438 static struct dentry
*shmem_get_parent(struct dentry
*child
)
3440 return ERR_PTR(-ESTALE
);
3443 static int shmem_match(struct inode
*ino
, void *vfh
)
3447 inum
= (inum
<< 32) | fh
[1];
3448 return ino
->i_ino
== inum
&& fh
[0] == ino
->i_generation
;
3451 static struct dentry
*shmem_fh_to_dentry(struct super_block
*sb
,
3452 struct fid
*fid
, int fh_len
, int fh_type
)
3454 struct inode
*inode
;
3455 struct dentry
*dentry
= NULL
;
3462 inum
= (inum
<< 32) | fid
->raw
[1];
3464 inode
= ilookup5(sb
, (unsigned long)(inum
+ fid
->raw
[0]),
3465 shmem_match
, fid
->raw
);
3467 dentry
= d_find_alias(inode
);
3474 static int shmem_encode_fh(struct inode
*inode
, __u32
*fh
, int *len
,
3475 struct inode
*parent
)
3479 return FILEID_INVALID
;
3482 if (inode_unhashed(inode
)) {
3483 /* Unfortunately insert_inode_hash is not idempotent,
3484 * so as we hash inodes here rather than at creation
3485 * time, we need a lock to ensure we only try
3488 static DEFINE_SPINLOCK(lock
);
3490 if (inode_unhashed(inode
))
3491 __insert_inode_hash(inode
,
3492 inode
->i_ino
+ inode
->i_generation
);
3496 fh
[0] = inode
->i_generation
;
3497 fh
[1] = inode
->i_ino
;
3498 fh
[2] = ((__u64
)inode
->i_ino
) >> 32;
3504 static const struct export_operations shmem_export_ops
= {
3505 .get_parent
= shmem_get_parent
,
3506 .encode_fh
= shmem_encode_fh
,
3507 .fh_to_dentry
= shmem_fh_to_dentry
,
3510 static int shmem_parse_options(char *options
, struct shmem_sb_info
*sbinfo
,
3513 char *this_char
, *value
, *rest
;
3514 struct mempolicy
*mpol
= NULL
;
3518 while (options
!= NULL
) {
3519 this_char
= options
;
3522 * NUL-terminate this option: unfortunately,
3523 * mount options form a comma-separated list,
3524 * but mpol's nodelist may also contain commas.
3526 options
= strchr(options
, ',');
3527 if (options
== NULL
)
3530 if (!isdigit(*options
)) {
3537 if ((value
= strchr(this_char
,'=')) != NULL
) {
3540 pr_err("tmpfs: No value for mount option '%s'\n",
3545 if (!strcmp(this_char
,"size")) {
3546 unsigned long long size
;
3547 size
= memparse(value
,&rest
);
3549 size
<<= PAGE_SHIFT
;
3550 size
*= totalram_pages
;
3556 sbinfo
->max_blocks
=
3557 DIV_ROUND_UP(size
, PAGE_SIZE
);
3558 } else if (!strcmp(this_char
,"nr_blocks")) {
3559 sbinfo
->max_blocks
= memparse(value
, &rest
);
3562 } else if (!strcmp(this_char
,"nr_inodes")) {
3563 sbinfo
->max_inodes
= memparse(value
, &rest
);
3566 } else if (!strcmp(this_char
,"mode")) {
3569 sbinfo
->mode
= simple_strtoul(value
, &rest
, 8) & 07777;
3572 } else if (!strcmp(this_char
,"uid")) {
3575 uid
= simple_strtoul(value
, &rest
, 0);
3578 sbinfo
->uid
= make_kuid(current_user_ns(), uid
);
3579 if (!uid_valid(sbinfo
->uid
))
3581 } else if (!strcmp(this_char
,"gid")) {
3584 gid
= simple_strtoul(value
, &rest
, 0);
3587 sbinfo
->gid
= make_kgid(current_user_ns(), gid
);
3588 if (!gid_valid(sbinfo
->gid
))
3590 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3591 } else if (!strcmp(this_char
, "huge")) {
3593 huge
= shmem_parse_huge(value
);
3596 if (!has_transparent_hugepage() &&
3597 huge
!= SHMEM_HUGE_NEVER
)
3599 sbinfo
->huge
= huge
;
3602 } else if (!strcmp(this_char
,"mpol")) {
3605 if (mpol_parse_str(value
, &mpol
))
3609 pr_err("tmpfs: Bad mount option %s\n", this_char
);
3613 sbinfo
->mpol
= mpol
;
3617 pr_err("tmpfs: Bad value '%s' for mount option '%s'\n",
3625 static int shmem_remount_fs(struct super_block
*sb
, int *flags
, char *data
)
3627 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
3628 struct shmem_sb_info config
= *sbinfo
;
3629 unsigned long inodes
;
3630 int error
= -EINVAL
;
3633 if (shmem_parse_options(data
, &config
, true))
3636 spin_lock(&sbinfo
->stat_lock
);
3637 inodes
= sbinfo
->max_inodes
- sbinfo
->free_inodes
;
3638 if (percpu_counter_compare(&sbinfo
->used_blocks
, config
.max_blocks
) > 0)
3640 if (config
.max_inodes
< inodes
)
3643 * Those tests disallow limited->unlimited while any are in use;
3644 * but we must separately disallow unlimited->limited, because
3645 * in that case we have no record of how much is already in use.
3647 if (config
.max_blocks
&& !sbinfo
->max_blocks
)
3649 if (config
.max_inodes
&& !sbinfo
->max_inodes
)
3653 sbinfo
->huge
= config
.huge
;
3654 sbinfo
->max_blocks
= config
.max_blocks
;
3655 sbinfo
->max_inodes
= config
.max_inodes
;
3656 sbinfo
->free_inodes
= config
.max_inodes
- inodes
;
3659 * Preserve previous mempolicy unless mpol remount option was specified.
3662 mpol_put(sbinfo
->mpol
);
3663 sbinfo
->mpol
= config
.mpol
; /* transfers initial ref */
3666 spin_unlock(&sbinfo
->stat_lock
);
3670 static int shmem_show_options(struct seq_file
*seq
, struct dentry
*root
)
3672 struct shmem_sb_info
*sbinfo
= SHMEM_SB(root
->d_sb
);
3674 if (sbinfo
->max_blocks
!= shmem_default_max_blocks())
3675 seq_printf(seq
, ",size=%luk",
3676 sbinfo
->max_blocks
<< (PAGE_SHIFT
- 10));
3677 if (sbinfo
->max_inodes
!= shmem_default_max_inodes())
3678 seq_printf(seq
, ",nr_inodes=%lu", sbinfo
->max_inodes
);
3679 if (sbinfo
->mode
!= (S_IRWXUGO
| S_ISVTX
))
3680 seq_printf(seq
, ",mode=%03ho", sbinfo
->mode
);
3681 if (!uid_eq(sbinfo
->uid
, GLOBAL_ROOT_UID
))
3682 seq_printf(seq
, ",uid=%u",
3683 from_kuid_munged(&init_user_ns
, sbinfo
->uid
));
3684 if (!gid_eq(sbinfo
->gid
, GLOBAL_ROOT_GID
))
3685 seq_printf(seq
, ",gid=%u",
3686 from_kgid_munged(&init_user_ns
, sbinfo
->gid
));
3687 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3688 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3690 seq_printf(seq
, ",huge=%s", shmem_format_huge(sbinfo
->huge
));
3692 shmem_show_mpol(seq
, sbinfo
->mpol
);
3696 #define MFD_NAME_PREFIX "memfd:"
3697 #define MFD_NAME_PREFIX_LEN (sizeof(MFD_NAME_PREFIX) - 1)
3698 #define MFD_NAME_MAX_LEN (NAME_MAX - MFD_NAME_PREFIX_LEN)
3700 #define MFD_ALL_FLAGS (MFD_CLOEXEC | MFD_ALLOW_SEALING | MFD_HUGETLB)
3702 SYSCALL_DEFINE2(memfd_create
,
3703 const char __user
*, uname
,
3704 unsigned int, flags
)
3706 struct shmem_inode_info
*info
;
3712 if (!(flags
& MFD_HUGETLB
)) {
3713 if (flags
& ~(unsigned int)MFD_ALL_FLAGS
)
3716 /* Sealing not supported in hugetlbfs (MFD_HUGETLB) */
3717 if (flags
& MFD_ALLOW_SEALING
)
3719 /* Allow huge page size encoding in flags. */
3720 if (flags
& ~(unsigned int)(MFD_ALL_FLAGS
|
3721 (MFD_HUGE_MASK
<< MFD_HUGE_SHIFT
)))
3725 /* length includes terminating zero */
3726 len
= strnlen_user(uname
, MFD_NAME_MAX_LEN
+ 1);
3729 if (len
> MFD_NAME_MAX_LEN
+ 1)
3732 name
= kmalloc(len
+ MFD_NAME_PREFIX_LEN
, GFP_KERNEL
);
3736 strcpy(name
, MFD_NAME_PREFIX
);
3737 if (copy_from_user(&name
[MFD_NAME_PREFIX_LEN
], uname
, len
)) {
3742 /* terminating-zero may have changed after strnlen_user() returned */
3743 if (name
[len
+ MFD_NAME_PREFIX_LEN
- 1]) {
3748 fd
= get_unused_fd_flags((flags
& MFD_CLOEXEC
) ? O_CLOEXEC
: 0);
3754 if (flags
& MFD_HUGETLB
) {
3755 struct user_struct
*user
= NULL
;
3757 file
= hugetlb_file_setup(name
, 0, VM_NORESERVE
, &user
,
3758 HUGETLB_ANONHUGE_INODE
,
3759 (flags
>> MFD_HUGE_SHIFT
) &
3762 file
= shmem_file_setup(name
, 0, VM_NORESERVE
);
3764 error
= PTR_ERR(file
);
3767 file
->f_mode
|= FMODE_LSEEK
| FMODE_PREAD
| FMODE_PWRITE
;
3768 file
->f_flags
|= O_RDWR
| O_LARGEFILE
;
3770 if (flags
& MFD_ALLOW_SEALING
) {
3772 * flags check at beginning of function ensures
3773 * this is not a hugetlbfs (MFD_HUGETLB) file.
3775 info
= SHMEM_I(file_inode(file
));
3776 info
->seals
&= ~F_SEAL_SEAL
;
3779 fd_install(fd
, file
);
3790 #endif /* CONFIG_TMPFS */
3792 static void shmem_put_super(struct super_block
*sb
)
3794 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
3796 percpu_counter_destroy(&sbinfo
->used_blocks
);
3797 mpol_put(sbinfo
->mpol
);
3799 sb
->s_fs_info
= NULL
;
3802 int shmem_fill_super(struct super_block
*sb
, void *data
, int silent
)
3804 struct inode
*inode
;
3805 struct shmem_sb_info
*sbinfo
;
3808 /* Round up to L1_CACHE_BYTES to resist false sharing */
3809 sbinfo
= kzalloc(max((int)sizeof(struct shmem_sb_info
),
3810 L1_CACHE_BYTES
), GFP_KERNEL
);
3814 sbinfo
->mode
= S_IRWXUGO
| S_ISVTX
;
3815 sbinfo
->uid
= current_fsuid();
3816 sbinfo
->gid
= current_fsgid();
3817 sb
->s_fs_info
= sbinfo
;
3821 * Per default we only allow half of the physical ram per
3822 * tmpfs instance, limiting inodes to one per page of lowmem;
3823 * but the internal instance is left unlimited.
3825 if (!(sb
->s_flags
& MS_KERNMOUNT
)) {
3826 sbinfo
->max_blocks
= shmem_default_max_blocks();
3827 sbinfo
->max_inodes
= shmem_default_max_inodes();
3828 if (shmem_parse_options(data
, sbinfo
, false)) {
3833 sb
->s_flags
|= MS_NOUSER
;
3835 sb
->s_export_op
= &shmem_export_ops
;
3836 sb
->s_flags
|= MS_NOSEC
;
3838 sb
->s_flags
|= MS_NOUSER
;
3841 spin_lock_init(&sbinfo
->stat_lock
);
3842 if (percpu_counter_init(&sbinfo
->used_blocks
, 0, GFP_KERNEL
))
3844 sbinfo
->free_inodes
= sbinfo
->max_inodes
;
3845 spin_lock_init(&sbinfo
->shrinklist_lock
);
3846 INIT_LIST_HEAD(&sbinfo
->shrinklist
);
3848 sb
->s_maxbytes
= MAX_LFS_FILESIZE
;
3849 sb
->s_blocksize
= PAGE_SIZE
;
3850 sb
->s_blocksize_bits
= PAGE_SHIFT
;
3851 sb
->s_magic
= TMPFS_MAGIC
;
3852 sb
->s_op
= &shmem_ops
;
3853 sb
->s_time_gran
= 1;
3854 #ifdef CONFIG_TMPFS_XATTR
3855 sb
->s_xattr
= shmem_xattr_handlers
;
3857 #ifdef CONFIG_TMPFS_POSIX_ACL
3858 sb
->s_flags
|= MS_POSIXACL
;
3860 uuid_gen(&sb
->s_uuid
);
3862 inode
= shmem_get_inode(sb
, NULL
, S_IFDIR
| sbinfo
->mode
, 0, VM_NORESERVE
);
3865 inode
->i_uid
= sbinfo
->uid
;
3866 inode
->i_gid
= sbinfo
->gid
;
3867 sb
->s_root
= d_make_root(inode
);
3873 shmem_put_super(sb
);
3877 static struct kmem_cache
*shmem_inode_cachep
;
3879 static struct inode
*shmem_alloc_inode(struct super_block
*sb
)
3881 struct shmem_inode_info
*info
;
3882 info
= kmem_cache_alloc(shmem_inode_cachep
, GFP_KERNEL
);
3885 return &info
->vfs_inode
;
3888 static void shmem_destroy_callback(struct rcu_head
*head
)
3890 struct inode
*inode
= container_of(head
, struct inode
, i_rcu
);
3891 if (S_ISLNK(inode
->i_mode
))
3892 kfree(inode
->i_link
);
3893 kmem_cache_free(shmem_inode_cachep
, SHMEM_I(inode
));
3896 static void shmem_destroy_inode(struct inode
*inode
)
3898 if (S_ISREG(inode
->i_mode
))
3899 mpol_free_shared_policy(&SHMEM_I(inode
)->policy
);
3900 call_rcu(&inode
->i_rcu
, shmem_destroy_callback
);
3903 static void shmem_init_inode(void *foo
)
3905 struct shmem_inode_info
*info
= foo
;
3906 inode_init_once(&info
->vfs_inode
);
3909 static int shmem_init_inodecache(void)
3911 shmem_inode_cachep
= kmem_cache_create("shmem_inode_cache",
3912 sizeof(struct shmem_inode_info
),
3913 0, SLAB_PANIC
|SLAB_ACCOUNT
, shmem_init_inode
);
3917 static void shmem_destroy_inodecache(void)
3919 kmem_cache_destroy(shmem_inode_cachep
);
3922 static const struct address_space_operations shmem_aops
= {
3923 .writepage
= shmem_writepage
,
3924 .set_page_dirty
= __set_page_dirty_no_writeback
,
3926 .write_begin
= shmem_write_begin
,
3927 .write_end
= shmem_write_end
,
3929 #ifdef CONFIG_MIGRATION
3930 .migratepage
= migrate_page
,
3932 .error_remove_page
= generic_error_remove_page
,
3935 static const struct file_operations shmem_file_operations
= {
3937 .get_unmapped_area
= shmem_get_unmapped_area
,
3939 .llseek
= shmem_file_llseek
,
3940 .read_iter
= shmem_file_read_iter
,
3941 .write_iter
= generic_file_write_iter
,
3942 .fsync
= noop_fsync
,
3943 .splice_read
= generic_file_splice_read
,
3944 .splice_write
= iter_file_splice_write
,
3945 .fallocate
= shmem_fallocate
,
3949 static const struct inode_operations shmem_inode_operations
= {
3950 .getattr
= shmem_getattr
,
3951 .setattr
= shmem_setattr
,
3952 #ifdef CONFIG_TMPFS_XATTR
3953 .listxattr
= shmem_listxattr
,
3954 .set_acl
= simple_set_acl
,
3958 static const struct inode_operations shmem_dir_inode_operations
= {
3960 .create
= shmem_create
,
3961 .lookup
= simple_lookup
,
3963 .unlink
= shmem_unlink
,
3964 .symlink
= shmem_symlink
,
3965 .mkdir
= shmem_mkdir
,
3966 .rmdir
= shmem_rmdir
,
3967 .mknod
= shmem_mknod
,
3968 .rename
= shmem_rename2
,
3969 .tmpfile
= shmem_tmpfile
,
3971 #ifdef CONFIG_TMPFS_XATTR
3972 .listxattr
= shmem_listxattr
,
3974 #ifdef CONFIG_TMPFS_POSIX_ACL
3975 .setattr
= shmem_setattr
,
3976 .set_acl
= simple_set_acl
,
3980 static const struct inode_operations shmem_special_inode_operations
= {
3981 #ifdef CONFIG_TMPFS_XATTR
3982 .listxattr
= shmem_listxattr
,
3984 #ifdef CONFIG_TMPFS_POSIX_ACL
3985 .setattr
= shmem_setattr
,
3986 .set_acl
= simple_set_acl
,
3990 static const struct super_operations shmem_ops
= {
3991 .alloc_inode
= shmem_alloc_inode
,
3992 .destroy_inode
= shmem_destroy_inode
,
3994 .statfs
= shmem_statfs
,
3995 .remount_fs
= shmem_remount_fs
,
3996 .show_options
= shmem_show_options
,
3998 .evict_inode
= shmem_evict_inode
,
3999 .drop_inode
= generic_delete_inode
,
4000 .put_super
= shmem_put_super
,
4001 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
4002 .nr_cached_objects
= shmem_unused_huge_count
,
4003 .free_cached_objects
= shmem_unused_huge_scan
,
4007 static const struct vm_operations_struct shmem_vm_ops
= {
4008 .fault
= shmem_fault
,
4009 .map_pages
= filemap_map_pages
,
4011 .set_policy
= shmem_set_policy
,
4012 .get_policy
= shmem_get_policy
,
4016 static struct dentry
*shmem_mount(struct file_system_type
*fs_type
,
4017 int flags
, const char *dev_name
, void *data
)
4019 return mount_nodev(fs_type
, flags
, data
, shmem_fill_super
);
4022 static struct file_system_type shmem_fs_type
= {
4023 .owner
= THIS_MODULE
,
4025 .mount
= shmem_mount
,
4026 .kill_sb
= kill_litter_super
,
4027 .fs_flags
= FS_USERNS_MOUNT
,
4030 int __init
shmem_init(void)
4034 /* If rootfs called this, don't re-init */
4035 if (shmem_inode_cachep
)
4038 error
= shmem_init_inodecache();
4042 error
= register_filesystem(&shmem_fs_type
);
4044 pr_err("Could not register tmpfs\n");
4048 shm_mnt
= kern_mount(&shmem_fs_type
);
4049 if (IS_ERR(shm_mnt
)) {
4050 error
= PTR_ERR(shm_mnt
);
4051 pr_err("Could not kern_mount tmpfs\n");
4055 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
4056 if (has_transparent_hugepage() && shmem_huge
> SHMEM_HUGE_DENY
)
4057 SHMEM_SB(shm_mnt
->mnt_sb
)->huge
= shmem_huge
;
4059 shmem_huge
= 0; /* just in case it was patched */
4064 unregister_filesystem(&shmem_fs_type
);
4066 shmem_destroy_inodecache();
4068 shm_mnt
= ERR_PTR(error
);
4072 #if defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && defined(CONFIG_SYSFS)
4073 static ssize_t
shmem_enabled_show(struct kobject
*kobj
,
4074 struct kobj_attribute
*attr
, char *buf
)
4078 SHMEM_HUGE_WITHIN_SIZE
,
4086 for (i
= 0, count
= 0; i
< ARRAY_SIZE(values
); i
++) {
4087 const char *fmt
= shmem_huge
== values
[i
] ? "[%s] " : "%s ";
4089 count
+= sprintf(buf
+ count
, fmt
,
4090 shmem_format_huge(values
[i
]));
4092 buf
[count
- 1] = '\n';
4096 static ssize_t
shmem_enabled_store(struct kobject
*kobj
,
4097 struct kobj_attribute
*attr
, const char *buf
, size_t count
)
4102 if (count
+ 1 > sizeof(tmp
))
4104 memcpy(tmp
, buf
, count
);
4106 if (count
&& tmp
[count
- 1] == '\n')
4107 tmp
[count
- 1] = '\0';
4109 huge
= shmem_parse_huge(tmp
);
4110 if (huge
== -EINVAL
)
4112 if (!has_transparent_hugepage() &&
4113 huge
!= SHMEM_HUGE_NEVER
&& huge
!= SHMEM_HUGE_DENY
)
4117 if (shmem_huge
> SHMEM_HUGE_DENY
)
4118 SHMEM_SB(shm_mnt
->mnt_sb
)->huge
= shmem_huge
;
4122 struct kobj_attribute shmem_enabled_attr
=
4123 __ATTR(shmem_enabled
, 0644, shmem_enabled_show
, shmem_enabled_store
);
4124 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE && CONFIG_SYSFS */
4126 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
4127 bool shmem_huge_enabled(struct vm_area_struct
*vma
)
4129 struct inode
*inode
= file_inode(vma
->vm_file
);
4130 struct shmem_sb_info
*sbinfo
= SHMEM_SB(inode
->i_sb
);
4134 if (shmem_huge
== SHMEM_HUGE_FORCE
)
4136 if (shmem_huge
== SHMEM_HUGE_DENY
)
4138 switch (sbinfo
->huge
) {
4139 case SHMEM_HUGE_NEVER
:
4141 case SHMEM_HUGE_ALWAYS
:
4143 case SHMEM_HUGE_WITHIN_SIZE
:
4144 off
= round_up(vma
->vm_pgoff
, HPAGE_PMD_NR
);
4145 i_size
= round_up(i_size_read(inode
), PAGE_SIZE
);
4146 if (i_size
>= HPAGE_PMD_SIZE
&&
4147 i_size
>> PAGE_SHIFT
>= off
)
4149 case SHMEM_HUGE_ADVISE
:
4150 /* TODO: implement fadvise() hints */
4151 return (vma
->vm_flags
& VM_HUGEPAGE
);
4157 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
4159 #else /* !CONFIG_SHMEM */
4162 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
4164 * This is intended for small system where the benefits of the full
4165 * shmem code (swap-backed and resource-limited) are outweighed by
4166 * their complexity. On systems without swap this code should be
4167 * effectively equivalent, but much lighter weight.
4170 static struct file_system_type shmem_fs_type
= {
4172 .mount
= ramfs_mount
,
4173 .kill_sb
= kill_litter_super
,
4174 .fs_flags
= FS_USERNS_MOUNT
,
4177 int __init
shmem_init(void)
4179 BUG_ON(register_filesystem(&shmem_fs_type
) != 0);
4181 shm_mnt
= kern_mount(&shmem_fs_type
);
4182 BUG_ON(IS_ERR(shm_mnt
));
4187 int shmem_unuse(swp_entry_t swap
, struct page
*page
)
4192 int shmem_lock(struct file
*file
, int lock
, struct user_struct
*user
)
4197 void shmem_unlock_mapping(struct address_space
*mapping
)
4202 unsigned long shmem_get_unmapped_area(struct file
*file
,
4203 unsigned long addr
, unsigned long len
,
4204 unsigned long pgoff
, unsigned long flags
)
4206 return current
->mm
->get_unmapped_area(file
, addr
, len
, pgoff
, flags
);
4210 void shmem_truncate_range(struct inode
*inode
, loff_t lstart
, loff_t lend
)
4212 truncate_inode_pages_range(inode
->i_mapping
, lstart
, lend
);
4214 EXPORT_SYMBOL_GPL(shmem_truncate_range
);
4216 #define shmem_vm_ops generic_file_vm_ops
4217 #define shmem_file_operations ramfs_file_operations
4218 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
4219 #define shmem_acct_size(flags, size) 0
4220 #define shmem_unacct_size(flags, size) do {} while (0)
4222 #endif /* CONFIG_SHMEM */
4226 static const struct dentry_operations anon_ops
= {
4227 .d_dname
= simple_dname
4230 static struct file
*__shmem_file_setup(const char *name
, loff_t size
,
4231 unsigned long flags
, unsigned int i_flags
)
4234 struct inode
*inode
;
4236 struct super_block
*sb
;
4239 if (IS_ERR(shm_mnt
))
4240 return ERR_CAST(shm_mnt
);
4242 if (size
< 0 || size
> MAX_LFS_FILESIZE
)
4243 return ERR_PTR(-EINVAL
);
4245 if (shmem_acct_size(flags
, size
))
4246 return ERR_PTR(-ENOMEM
);
4248 res
= ERR_PTR(-ENOMEM
);
4250 this.len
= strlen(name
);
4251 this.hash
= 0; /* will go */
4252 sb
= shm_mnt
->mnt_sb
;
4253 path
.mnt
= mntget(shm_mnt
);
4254 path
.dentry
= d_alloc_pseudo(sb
, &this);
4257 d_set_d_op(path
.dentry
, &anon_ops
);
4259 res
= ERR_PTR(-ENOSPC
);
4260 inode
= shmem_get_inode(sb
, NULL
, S_IFREG
| S_IRWXUGO
, 0, flags
);
4264 inode
->i_flags
|= i_flags
;
4265 d_instantiate(path
.dentry
, inode
);
4266 inode
->i_size
= size
;
4267 clear_nlink(inode
); /* It is unlinked */
4268 res
= ERR_PTR(ramfs_nommu_expand_for_mapping(inode
, size
));
4272 res
= alloc_file(&path
, FMODE_WRITE
| FMODE_READ
,
4273 &shmem_file_operations
);
4280 shmem_unacct_size(flags
, size
);
4287 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4288 * kernel internal. There will be NO LSM permission checks against the
4289 * underlying inode. So users of this interface must do LSM checks at a
4290 * higher layer. The users are the big_key and shm implementations. LSM
4291 * checks are provided at the key or shm level rather than the inode.
4292 * @name: name for dentry (to be seen in /proc/<pid>/maps
4293 * @size: size to be set for the file
4294 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4296 struct file
*shmem_kernel_file_setup(const char *name
, loff_t size
, unsigned long flags
)
4298 return __shmem_file_setup(name
, size
, flags
, S_PRIVATE
);
4302 * shmem_file_setup - get an unlinked file living in tmpfs
4303 * @name: name for dentry (to be seen in /proc/<pid>/maps
4304 * @size: size to be set for the file
4305 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4307 struct file
*shmem_file_setup(const char *name
, loff_t size
, unsigned long flags
)
4309 return __shmem_file_setup(name
, size
, flags
, 0);
4311 EXPORT_SYMBOL_GPL(shmem_file_setup
);
4314 * shmem_zero_setup - setup a shared anonymous mapping
4315 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
4317 int shmem_zero_setup(struct vm_area_struct
*vma
)
4320 loff_t size
= vma
->vm_end
- vma
->vm_start
;
4323 * Cloning a new file under mmap_sem leads to a lock ordering conflict
4324 * between XFS directory reading and selinux: since this file is only
4325 * accessible to the user through its mapping, use S_PRIVATE flag to
4326 * bypass file security, in the same way as shmem_kernel_file_setup().
4328 file
= __shmem_file_setup("dev/zero", size
, vma
->vm_flags
, S_PRIVATE
);
4330 return PTR_ERR(file
);
4334 vma
->vm_file
= file
;
4335 vma
->vm_ops
= &shmem_vm_ops
;
4337 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE
) &&
4338 ((vma
->vm_start
+ ~HPAGE_PMD_MASK
) & HPAGE_PMD_MASK
) <
4339 (vma
->vm_end
& HPAGE_PMD_MASK
)) {
4340 khugepaged_enter(vma
, vma
->vm_flags
);
4347 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4348 * @mapping: the page's address_space
4349 * @index: the page index
4350 * @gfp: the page allocator flags to use if allocating
4352 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4353 * with any new page allocations done using the specified allocation flags.
4354 * But read_cache_page_gfp() uses the ->readpage() method: which does not
4355 * suit tmpfs, since it may have pages in swapcache, and needs to find those
4356 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4358 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4359 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4361 struct page
*shmem_read_mapping_page_gfp(struct address_space
*mapping
,
4362 pgoff_t index
, gfp_t gfp
)
4365 struct inode
*inode
= mapping
->host
;
4369 BUG_ON(mapping
->a_ops
!= &shmem_aops
);
4370 error
= shmem_getpage_gfp(inode
, index
, &page
, SGP_CACHE
,
4371 gfp
, NULL
, NULL
, NULL
);
4373 page
= ERR_PTR(error
);
4379 * The tiny !SHMEM case uses ramfs without swap
4381 return read_cache_page_gfp(mapping
, index
, gfp
);
4384 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp
);