4 * Copyright (C) 2008 ARM Limited
5 * Written by Catalin Marinas <catalin.marinas@arm.com>
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
21 * For more information on the algorithm and kmemleak usage, please see
22 * Documentation/dev-tools/kmemleak.rst.
27 * The following locks and mutexes are used by kmemleak:
29 * - kmemleak_lock (rwlock): protects the object_list modifications and
30 * accesses to the object_tree_root. The object_list is the main list
31 * holding the metadata (struct kmemleak_object) for the allocated memory
32 * blocks. The object_tree_root is a red black tree used to look-up
33 * metadata based on a pointer to the corresponding memory block. The
34 * kmemleak_object structures are added to the object_list and
35 * object_tree_root in the create_object() function called from the
36 * kmemleak_alloc() callback and removed in delete_object() called from the
37 * kmemleak_free() callback
38 * - kmemleak_object.lock (spinlock): protects a kmemleak_object. Accesses to
39 * the metadata (e.g. count) are protected by this lock. Note that some
40 * members of this structure may be protected by other means (atomic or
41 * kmemleak_lock). This lock is also held when scanning the corresponding
42 * memory block to avoid the kernel freeing it via the kmemleak_free()
43 * callback. This is less heavyweight than holding a global lock like
44 * kmemleak_lock during scanning
45 * - scan_mutex (mutex): ensures that only one thread may scan the memory for
46 * unreferenced objects at a time. The gray_list contains the objects which
47 * are already referenced or marked as false positives and need to be
48 * scanned. This list is only modified during a scanning episode when the
49 * scan_mutex is held. At the end of a scan, the gray_list is always empty.
50 * Note that the kmemleak_object.use_count is incremented when an object is
51 * added to the gray_list and therefore cannot be freed. This mutex also
52 * prevents multiple users of the "kmemleak" debugfs file together with
53 * modifications to the memory scanning parameters including the scan_thread
56 * Locks and mutexes are acquired/nested in the following order:
58 * scan_mutex [-> object->lock] -> kmemleak_lock -> other_object->lock (SINGLE_DEPTH_NESTING)
60 * No kmemleak_lock and object->lock nesting is allowed outside scan_mutex
63 * The kmemleak_object structures have a use_count incremented or decremented
64 * using the get_object()/put_object() functions. When the use_count becomes
65 * 0, this count can no longer be incremented and put_object() schedules the
66 * kmemleak_object freeing via an RCU callback. All calls to the get_object()
67 * function must be protected by rcu_read_lock() to avoid accessing a freed
71 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
73 #include <linux/init.h>
74 #include <linux/kernel.h>
75 #include <linux/list.h>
76 #include <linux/sched/signal.h>
77 #include <linux/sched/task.h>
78 #include <linux/sched/task_stack.h>
79 #include <linux/jiffies.h>
80 #include <linux/delay.h>
81 #include <linux/export.h>
82 #include <linux/kthread.h>
83 #include <linux/rbtree.h>
85 #include <linux/debugfs.h>
86 #include <linux/seq_file.h>
87 #include <linux/cpumask.h>
88 #include <linux/spinlock.h>
89 #include <linux/mutex.h>
90 #include <linux/rcupdate.h>
91 #include <linux/stacktrace.h>
92 #include <linux/cache.h>
93 #include <linux/percpu.h>
94 #include <linux/hardirq.h>
95 #include <linux/bootmem.h>
96 #include <linux/pfn.h>
97 #include <linux/mmzone.h>
98 #include <linux/slab.h>
99 #include <linux/thread_info.h>
100 #include <linux/err.h>
101 #include <linux/uaccess.h>
102 #include <linux/string.h>
103 #include <linux/nodemask.h>
104 #include <linux/mm.h>
105 #include <linux/workqueue.h>
106 #include <linux/crc32.h>
108 #include <asm/sections.h>
109 #include <asm/processor.h>
110 #include <linux/atomic.h>
112 #include <linux/kasan.h>
113 #include <linux/kmemleak.h>
114 #include <linux/memory_hotplug.h>
117 * Kmemleak configuration and common defines.
119 #define MAX_TRACE 16 /* stack trace length */
120 #define MSECS_MIN_AGE 5000 /* minimum object age for reporting */
121 #define SECS_FIRST_SCAN 60 /* delay before the first scan */
122 #define SECS_SCAN_WAIT 600 /* subsequent auto scanning delay */
123 #define MAX_SCAN_SIZE 4096 /* maximum size of a scanned block */
125 #define BYTES_PER_POINTER sizeof(void *)
127 /* GFP bitmask for kmemleak internal allocations */
128 #define gfp_kmemleak_mask(gfp) (((gfp) & (GFP_KERNEL | GFP_ATOMIC)) | \
129 __GFP_NORETRY | __GFP_NOMEMALLOC | \
132 /* scanning area inside a memory block */
133 struct kmemleak_scan_area
{
134 struct hlist_node node
;
139 #define KMEMLEAK_GREY 0
140 #define KMEMLEAK_BLACK -1
143 * Structure holding the metadata for each allocated memory block.
144 * Modifications to such objects should be made while holding the
145 * object->lock. Insertions or deletions from object_list, gray_list or
146 * rb_node are already protected by the corresponding locks or mutex (see
147 * the notes on locking above). These objects are reference-counted
148 * (use_count) and freed using the RCU mechanism.
150 struct kmemleak_object
{
152 unsigned int flags
; /* object status flags */
153 struct list_head object_list
;
154 struct list_head gray_list
;
155 struct rb_node rb_node
;
156 struct rcu_head rcu
; /* object_list lockless traversal */
157 /* object usage count; object freed when use_count == 0 */
159 unsigned long pointer
;
161 /* pass surplus references to this pointer */
162 unsigned long excess_ref
;
163 /* minimum number of a pointers found before it is considered leak */
165 /* the total number of pointers found pointing to this object */
167 /* checksum for detecting modified objects */
169 /* memory ranges to be scanned inside an object (empty for all) */
170 struct hlist_head area_list
;
171 unsigned long trace
[MAX_TRACE
];
172 unsigned int trace_len
;
173 unsigned long jiffies
; /* creation timestamp */
174 pid_t pid
; /* pid of the current task */
175 char comm
[TASK_COMM_LEN
]; /* executable name */
178 /* flag representing the memory block allocation status */
179 #define OBJECT_ALLOCATED (1 << 0)
180 /* flag set after the first reporting of an unreference object */
181 #define OBJECT_REPORTED (1 << 1)
182 /* flag set to not scan the object */
183 #define OBJECT_NO_SCAN (1 << 2)
185 /* number of bytes to print per line; must be 16 or 32 */
186 #define HEX_ROW_SIZE 16
187 /* number of bytes to print at a time (1, 2, 4, 8) */
188 #define HEX_GROUP_SIZE 1
189 /* include ASCII after the hex output */
191 /* max number of lines to be printed */
192 #define HEX_MAX_LINES 2
194 /* the list of all allocated objects */
195 static LIST_HEAD(object_list
);
196 /* the list of gray-colored objects (see color_gray comment below) */
197 static LIST_HEAD(gray_list
);
198 /* search tree for object boundaries */
199 static struct rb_root object_tree_root
= RB_ROOT
;
200 /* rw_lock protecting the access to object_list and object_tree_root */
201 static DEFINE_RWLOCK(kmemleak_lock
);
203 /* allocation caches for kmemleak internal data */
204 static struct kmem_cache
*object_cache
;
205 static struct kmem_cache
*scan_area_cache
;
207 /* set if tracing memory operations is enabled */
208 static int kmemleak_enabled
;
209 /* same as above but only for the kmemleak_free() callback */
210 static int kmemleak_free_enabled
;
211 /* set in the late_initcall if there were no errors */
212 static int kmemleak_initialized
;
213 /* enables or disables early logging of the memory operations */
214 static int kmemleak_early_log
= 1;
215 /* set if a kmemleak warning was issued */
216 static int kmemleak_warning
;
217 /* set if a fatal kmemleak error has occurred */
218 static int kmemleak_error
;
220 /* minimum and maximum address that may be valid pointers */
221 static unsigned long min_addr
= ULONG_MAX
;
222 static unsigned long max_addr
;
224 static struct task_struct
*scan_thread
;
225 /* used to avoid reporting of recently allocated objects */
226 static unsigned long jiffies_min_age
;
227 static unsigned long jiffies_last_scan
;
228 /* delay between automatic memory scannings */
229 static signed long jiffies_scan_wait
;
230 /* enables or disables the task stacks scanning */
231 static int kmemleak_stack_scan
= 1;
232 /* protects the memory scanning, parameters and debug/kmemleak file access */
233 static DEFINE_MUTEX(scan_mutex
);
234 /* setting kmemleak=on, will set this var, skipping the disable */
235 static int kmemleak_skip_disable
;
236 /* If there are leaks that can be reported */
237 static bool kmemleak_found_leaks
;
240 * Early object allocation/freeing logging. Kmemleak is initialized after the
241 * kernel allocator. However, both the kernel allocator and kmemleak may
242 * allocate memory blocks which need to be tracked. Kmemleak defines an
243 * arbitrary buffer to hold the allocation/freeing information before it is
247 /* kmemleak operation type for early logging */
250 KMEMLEAK_ALLOC_PERCPU
,
253 KMEMLEAK_FREE_PERCPU
,
258 KMEMLEAK_SET_EXCESS_REF
262 * Structure holding the information passed to kmemleak callbacks during the
266 int op_type
; /* kmemleak operation type */
267 int min_count
; /* minimum reference count */
268 const void *ptr
; /* allocated/freed memory block */
270 size_t size
; /* memory block size */
271 unsigned long excess_ref
; /* surplus reference passing */
273 unsigned long trace
[MAX_TRACE
]; /* stack trace */
274 unsigned int trace_len
; /* stack trace length */
277 /* early logging buffer and current position */
278 static struct early_log
279 early_log
[CONFIG_DEBUG_KMEMLEAK_EARLY_LOG_SIZE
] __initdata
;
280 static int crt_early_log __initdata
;
282 static void kmemleak_disable(void);
285 * Print a warning and dump the stack trace.
287 #define kmemleak_warn(x...) do { \
290 kmemleak_warning = 1; \
294 * Macro invoked when a serious kmemleak condition occurred and cannot be
295 * recovered from. Kmemleak will be disabled and further allocation/freeing
296 * tracing no longer available.
298 #define kmemleak_stop(x...) do { \
300 kmemleak_disable(); \
304 * Printing of the objects hex dump to the seq file. The number of lines to be
305 * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The
306 * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called
307 * with the object->lock held.
309 static void hex_dump_object(struct seq_file
*seq
,
310 struct kmemleak_object
*object
)
312 const u8
*ptr
= (const u8
*)object
->pointer
;
315 /* limit the number of lines to HEX_MAX_LINES */
316 len
= min_t(size_t, object
->size
, HEX_MAX_LINES
* HEX_ROW_SIZE
);
318 seq_printf(seq
, " hex dump (first %zu bytes):\n", len
);
319 kasan_disable_current();
320 seq_hex_dump(seq
, " ", DUMP_PREFIX_NONE
, HEX_ROW_SIZE
,
321 HEX_GROUP_SIZE
, ptr
, len
, HEX_ASCII
);
322 kasan_enable_current();
326 * Object colors, encoded with count and min_count:
327 * - white - orphan object, not enough references to it (count < min_count)
328 * - gray - not orphan, not marked as false positive (min_count == 0) or
329 * sufficient references to it (count >= min_count)
330 * - black - ignore, it doesn't contain references (e.g. text section)
331 * (min_count == -1). No function defined for this color.
332 * Newly created objects don't have any color assigned (object->count == -1)
333 * before the next memory scan when they become white.
335 static bool color_white(const struct kmemleak_object
*object
)
337 return object
->count
!= KMEMLEAK_BLACK
&&
338 object
->count
< object
->min_count
;
341 static bool color_gray(const struct kmemleak_object
*object
)
343 return object
->min_count
!= KMEMLEAK_BLACK
&&
344 object
->count
>= object
->min_count
;
348 * Objects are considered unreferenced only if their color is white, they have
349 * not be deleted and have a minimum age to avoid false positives caused by
350 * pointers temporarily stored in CPU registers.
352 static bool unreferenced_object(struct kmemleak_object
*object
)
354 return (color_white(object
) && object
->flags
& OBJECT_ALLOCATED
) &&
355 time_before_eq(object
->jiffies
+ jiffies_min_age
,
360 * Printing of the unreferenced objects information to the seq file. The
361 * print_unreferenced function must be called with the object->lock held.
363 static void print_unreferenced(struct seq_file
*seq
,
364 struct kmemleak_object
*object
)
367 unsigned int msecs_age
= jiffies_to_msecs(jiffies
- object
->jiffies
);
369 seq_printf(seq
, "unreferenced object 0x%08lx (size %zu):\n",
370 object
->pointer
, object
->size
);
371 seq_printf(seq
, " comm \"%s\", pid %d, jiffies %lu (age %d.%03ds)\n",
372 object
->comm
, object
->pid
, object
->jiffies
,
373 msecs_age
/ 1000, msecs_age
% 1000);
374 hex_dump_object(seq
, object
);
375 seq_printf(seq
, " backtrace:\n");
377 for (i
= 0; i
< object
->trace_len
; i
++) {
378 void *ptr
= (void *)object
->trace
[i
];
379 seq_printf(seq
, " [<%p>] %pS\n", ptr
, ptr
);
384 * Print the kmemleak_object information. This function is used mainly for
385 * debugging special cases when kmemleak operations. It must be called with
386 * the object->lock held.
388 static void dump_object_info(struct kmemleak_object
*object
)
390 struct stack_trace trace
;
392 trace
.nr_entries
= object
->trace_len
;
393 trace
.entries
= object
->trace
;
395 pr_notice("Object 0x%08lx (size %zu):\n",
396 object
->pointer
, object
->size
);
397 pr_notice(" comm \"%s\", pid %d, jiffies %lu\n",
398 object
->comm
, object
->pid
, object
->jiffies
);
399 pr_notice(" min_count = %d\n", object
->min_count
);
400 pr_notice(" count = %d\n", object
->count
);
401 pr_notice(" flags = 0x%x\n", object
->flags
);
402 pr_notice(" checksum = %u\n", object
->checksum
);
403 pr_notice(" backtrace:\n");
404 print_stack_trace(&trace
, 4);
408 * Look-up a memory block metadata (kmemleak_object) in the object search
409 * tree based on a pointer value. If alias is 0, only values pointing to the
410 * beginning of the memory block are allowed. The kmemleak_lock must be held
411 * when calling this function.
413 static struct kmemleak_object
*lookup_object(unsigned long ptr
, int alias
)
415 struct rb_node
*rb
= object_tree_root
.rb_node
;
418 struct kmemleak_object
*object
=
419 rb_entry(rb
, struct kmemleak_object
, rb_node
);
420 if (ptr
< object
->pointer
)
421 rb
= object
->rb_node
.rb_left
;
422 else if (object
->pointer
+ object
->size
<= ptr
)
423 rb
= object
->rb_node
.rb_right
;
424 else if (object
->pointer
== ptr
|| alias
)
427 kmemleak_warn("Found object by alias at 0x%08lx\n",
429 dump_object_info(object
);
437 * Increment the object use_count. Return 1 if successful or 0 otherwise. Note
438 * that once an object's use_count reached 0, the RCU freeing was already
439 * registered and the object should no longer be used. This function must be
440 * called under the protection of rcu_read_lock().
442 static int get_object(struct kmemleak_object
*object
)
444 return atomic_inc_not_zero(&object
->use_count
);
448 * RCU callback to free a kmemleak_object.
450 static void free_object_rcu(struct rcu_head
*rcu
)
452 struct hlist_node
*tmp
;
453 struct kmemleak_scan_area
*area
;
454 struct kmemleak_object
*object
=
455 container_of(rcu
, struct kmemleak_object
, rcu
);
458 * Once use_count is 0 (guaranteed by put_object), there is no other
459 * code accessing this object, hence no need for locking.
461 hlist_for_each_entry_safe(area
, tmp
, &object
->area_list
, node
) {
462 hlist_del(&area
->node
);
463 kmem_cache_free(scan_area_cache
, area
);
465 kmem_cache_free(object_cache
, object
);
469 * Decrement the object use_count. Once the count is 0, free the object using
470 * an RCU callback. Since put_object() may be called via the kmemleak_free() ->
471 * delete_object() path, the delayed RCU freeing ensures that there is no
472 * recursive call to the kernel allocator. Lock-less RCU object_list traversal
475 static void put_object(struct kmemleak_object
*object
)
477 if (!atomic_dec_and_test(&object
->use_count
))
480 /* should only get here after delete_object was called */
481 WARN_ON(object
->flags
& OBJECT_ALLOCATED
);
483 call_rcu(&object
->rcu
, free_object_rcu
);
487 * Look up an object in the object search tree and increase its use_count.
489 static struct kmemleak_object
*find_and_get_object(unsigned long ptr
, int alias
)
492 struct kmemleak_object
*object
;
495 read_lock_irqsave(&kmemleak_lock
, flags
);
496 object
= lookup_object(ptr
, alias
);
497 read_unlock_irqrestore(&kmemleak_lock
, flags
);
499 /* check whether the object is still available */
500 if (object
&& !get_object(object
))
508 * Look up an object in the object search tree and remove it from both
509 * object_tree_root and object_list. The returned object's use_count should be
510 * at least 1, as initially set by create_object().
512 static struct kmemleak_object
*find_and_remove_object(unsigned long ptr
, int alias
)
515 struct kmemleak_object
*object
;
517 write_lock_irqsave(&kmemleak_lock
, flags
);
518 object
= lookup_object(ptr
, alias
);
520 rb_erase(&object
->rb_node
, &object_tree_root
);
521 list_del_rcu(&object
->object_list
);
523 write_unlock_irqrestore(&kmemleak_lock
, flags
);
529 * Save stack trace to the given array of MAX_TRACE size.
531 static int __save_stack_trace(unsigned long *trace
)
533 struct stack_trace stack_trace
;
535 stack_trace
.max_entries
= MAX_TRACE
;
536 stack_trace
.nr_entries
= 0;
537 stack_trace
.entries
= trace
;
538 stack_trace
.skip
= 2;
539 save_stack_trace(&stack_trace
);
541 return stack_trace
.nr_entries
;
545 * Create the metadata (struct kmemleak_object) corresponding to an allocated
546 * memory block and add it to the object_list and object_tree_root.
548 static struct kmemleak_object
*create_object(unsigned long ptr
, size_t size
,
549 int min_count
, gfp_t gfp
)
552 struct kmemleak_object
*object
, *parent
;
553 struct rb_node
**link
, *rb_parent
;
555 object
= kmem_cache_alloc(object_cache
, gfp_kmemleak_mask(gfp
));
557 pr_warn("Cannot allocate a kmemleak_object structure\n");
562 INIT_LIST_HEAD(&object
->object_list
);
563 INIT_LIST_HEAD(&object
->gray_list
);
564 INIT_HLIST_HEAD(&object
->area_list
);
565 spin_lock_init(&object
->lock
);
566 atomic_set(&object
->use_count
, 1);
567 object
->flags
= OBJECT_ALLOCATED
;
568 object
->pointer
= ptr
;
570 object
->excess_ref
= 0;
571 object
->min_count
= min_count
;
572 object
->count
= 0; /* white color initially */
573 object
->jiffies
= jiffies
;
574 object
->checksum
= 0;
576 /* task information */
579 strncpy(object
->comm
, "hardirq", sizeof(object
->comm
));
580 } else if (in_softirq()) {
582 strncpy(object
->comm
, "softirq", sizeof(object
->comm
));
584 object
->pid
= current
->pid
;
586 * There is a small chance of a race with set_task_comm(),
587 * however using get_task_comm() here may cause locking
588 * dependency issues with current->alloc_lock. In the worst
589 * case, the command line is not correct.
591 strncpy(object
->comm
, current
->comm
, sizeof(object
->comm
));
594 /* kernel backtrace */
595 object
->trace_len
= __save_stack_trace(object
->trace
);
597 write_lock_irqsave(&kmemleak_lock
, flags
);
599 min_addr
= min(min_addr
, ptr
);
600 max_addr
= max(max_addr
, ptr
+ size
);
601 link
= &object_tree_root
.rb_node
;
605 parent
= rb_entry(rb_parent
, struct kmemleak_object
, rb_node
);
606 if (ptr
+ size
<= parent
->pointer
)
607 link
= &parent
->rb_node
.rb_left
;
608 else if (parent
->pointer
+ parent
->size
<= ptr
)
609 link
= &parent
->rb_node
.rb_right
;
611 kmemleak_stop("Cannot insert 0x%lx into the object search tree (overlaps existing)\n",
614 * No need for parent->lock here since "parent" cannot
615 * be freed while the kmemleak_lock is held.
617 dump_object_info(parent
);
618 kmem_cache_free(object_cache
, object
);
623 rb_link_node(&object
->rb_node
, rb_parent
, link
);
624 rb_insert_color(&object
->rb_node
, &object_tree_root
);
626 list_add_tail_rcu(&object
->object_list
, &object_list
);
628 write_unlock_irqrestore(&kmemleak_lock
, flags
);
633 * Mark the object as not allocated and schedule RCU freeing via put_object().
635 static void __delete_object(struct kmemleak_object
*object
)
639 WARN_ON(!(object
->flags
& OBJECT_ALLOCATED
));
640 WARN_ON(atomic_read(&object
->use_count
) < 1);
643 * Locking here also ensures that the corresponding memory block
644 * cannot be freed when it is being scanned.
646 spin_lock_irqsave(&object
->lock
, flags
);
647 object
->flags
&= ~OBJECT_ALLOCATED
;
648 spin_unlock_irqrestore(&object
->lock
, flags
);
653 * Look up the metadata (struct kmemleak_object) corresponding to ptr and
656 static void delete_object_full(unsigned long ptr
)
658 struct kmemleak_object
*object
;
660 object
= find_and_remove_object(ptr
, 0);
663 kmemleak_warn("Freeing unknown object at 0x%08lx\n",
668 __delete_object(object
);
672 * Look up the metadata (struct kmemleak_object) corresponding to ptr and
673 * delete it. If the memory block is partially freed, the function may create
674 * additional metadata for the remaining parts of the block.
676 static void delete_object_part(unsigned long ptr
, size_t size
)
678 struct kmemleak_object
*object
;
679 unsigned long start
, end
;
681 object
= find_and_remove_object(ptr
, 1);
684 kmemleak_warn("Partially freeing unknown object at 0x%08lx (size %zu)\n",
691 * Create one or two objects that may result from the memory block
692 * split. Note that partial freeing is only done by free_bootmem() and
693 * this happens before kmemleak_init() is called. The path below is
694 * only executed during early log recording in kmemleak_init(), so
695 * GFP_KERNEL is enough.
697 start
= object
->pointer
;
698 end
= object
->pointer
+ object
->size
;
700 create_object(start
, ptr
- start
, object
->min_count
,
702 if (ptr
+ size
< end
)
703 create_object(ptr
+ size
, end
- ptr
- size
, object
->min_count
,
706 __delete_object(object
);
709 static void __paint_it(struct kmemleak_object
*object
, int color
)
711 object
->min_count
= color
;
712 if (color
== KMEMLEAK_BLACK
)
713 object
->flags
|= OBJECT_NO_SCAN
;
716 static void paint_it(struct kmemleak_object
*object
, int color
)
720 spin_lock_irqsave(&object
->lock
, flags
);
721 __paint_it(object
, color
);
722 spin_unlock_irqrestore(&object
->lock
, flags
);
725 static void paint_ptr(unsigned long ptr
, int color
)
727 struct kmemleak_object
*object
;
729 object
= find_and_get_object(ptr
, 0);
731 kmemleak_warn("Trying to color unknown object at 0x%08lx as %s\n",
733 (color
== KMEMLEAK_GREY
) ? "Grey" :
734 (color
== KMEMLEAK_BLACK
) ? "Black" : "Unknown");
737 paint_it(object
, color
);
742 * Mark an object permanently as gray-colored so that it can no longer be
743 * reported as a leak. This is used in general to mark a false positive.
745 static void make_gray_object(unsigned long ptr
)
747 paint_ptr(ptr
, KMEMLEAK_GREY
);
751 * Mark the object as black-colored so that it is ignored from scans and
754 static void make_black_object(unsigned long ptr
)
756 paint_ptr(ptr
, KMEMLEAK_BLACK
);
760 * Add a scanning area to the object. If at least one such area is added,
761 * kmemleak will only scan these ranges rather than the whole memory block.
763 static void add_scan_area(unsigned long ptr
, size_t size
, gfp_t gfp
)
766 struct kmemleak_object
*object
;
767 struct kmemleak_scan_area
*area
;
769 object
= find_and_get_object(ptr
, 1);
771 kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n",
776 area
= kmem_cache_alloc(scan_area_cache
, gfp_kmemleak_mask(gfp
));
778 pr_warn("Cannot allocate a scan area\n");
782 spin_lock_irqsave(&object
->lock
, flags
);
783 if (size
== SIZE_MAX
) {
784 size
= object
->pointer
+ object
->size
- ptr
;
785 } else if (ptr
+ size
> object
->pointer
+ object
->size
) {
786 kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr
);
787 dump_object_info(object
);
788 kmem_cache_free(scan_area_cache
, area
);
792 INIT_HLIST_NODE(&area
->node
);
796 hlist_add_head(&area
->node
, &object
->area_list
);
798 spin_unlock_irqrestore(&object
->lock
, flags
);
804 * Any surplus references (object already gray) to 'ptr' are passed to
805 * 'excess_ref'. This is used in the vmalloc() case where a pointer to
806 * vm_struct may be used as an alternative reference to the vmalloc'ed object
807 * (see free_thread_stack()).
809 static void object_set_excess_ref(unsigned long ptr
, unsigned long excess_ref
)
812 struct kmemleak_object
*object
;
814 object
= find_and_get_object(ptr
, 0);
816 kmemleak_warn("Setting excess_ref on unknown object at 0x%08lx\n",
821 spin_lock_irqsave(&object
->lock
, flags
);
822 object
->excess_ref
= excess_ref
;
823 spin_unlock_irqrestore(&object
->lock
, flags
);
828 * Set the OBJECT_NO_SCAN flag for the object corresponding to the give
829 * pointer. Such object will not be scanned by kmemleak but references to it
832 static void object_no_scan(unsigned long ptr
)
835 struct kmemleak_object
*object
;
837 object
= find_and_get_object(ptr
, 0);
839 kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr
);
843 spin_lock_irqsave(&object
->lock
, flags
);
844 object
->flags
|= OBJECT_NO_SCAN
;
845 spin_unlock_irqrestore(&object
->lock
, flags
);
850 * Log an early kmemleak_* call to the early_log buffer. These calls will be
851 * processed later once kmemleak is fully initialized.
853 static void __init
log_early(int op_type
, const void *ptr
, size_t size
,
857 struct early_log
*log
;
859 if (kmemleak_error
) {
860 /* kmemleak stopped recording, just count the requests */
865 if (crt_early_log
>= ARRAY_SIZE(early_log
)) {
872 * There is no need for locking since the kernel is still in UP mode
873 * at this stage. Disabling the IRQs is enough.
875 local_irq_save(flags
);
876 log
= &early_log
[crt_early_log
];
877 log
->op_type
= op_type
;
880 log
->min_count
= min_count
;
881 log
->trace_len
= __save_stack_trace(log
->trace
);
883 local_irq_restore(flags
);
887 * Log an early allocated block and populate the stack trace.
889 static void early_alloc(struct early_log
*log
)
891 struct kmemleak_object
*object
;
895 if (!kmemleak_enabled
|| !log
->ptr
|| IS_ERR(log
->ptr
))
899 * RCU locking needed to ensure object is not freed via put_object().
902 object
= create_object((unsigned long)log
->ptr
, log
->size
,
903 log
->min_count
, GFP_ATOMIC
);
906 spin_lock_irqsave(&object
->lock
, flags
);
907 for (i
= 0; i
< log
->trace_len
; i
++)
908 object
->trace
[i
] = log
->trace
[i
];
909 object
->trace_len
= log
->trace_len
;
910 spin_unlock_irqrestore(&object
->lock
, flags
);
916 * Log an early allocated block and populate the stack trace.
918 static void early_alloc_percpu(struct early_log
*log
)
921 const void __percpu
*ptr
= log
->ptr
;
923 for_each_possible_cpu(cpu
) {
924 log
->ptr
= per_cpu_ptr(ptr
, cpu
);
930 * kmemleak_alloc - register a newly allocated object
931 * @ptr: pointer to beginning of the object
932 * @size: size of the object
933 * @min_count: minimum number of references to this object. If during memory
934 * scanning a number of references less than @min_count is found,
935 * the object is reported as a memory leak. If @min_count is 0,
936 * the object is never reported as a leak. If @min_count is -1,
937 * the object is ignored (not scanned and not reported as a leak)
938 * @gfp: kmalloc() flags used for kmemleak internal memory allocations
940 * This function is called from the kernel allocators when a new object
941 * (memory block) is allocated (kmem_cache_alloc, kmalloc etc.).
943 void __ref
kmemleak_alloc(const void *ptr
, size_t size
, int min_count
,
946 pr_debug("%s(0x%p, %zu, %d)\n", __func__
, ptr
, size
, min_count
);
948 if (kmemleak_enabled
&& ptr
&& !IS_ERR(ptr
))
949 create_object((unsigned long)ptr
, size
, min_count
, gfp
);
950 else if (kmemleak_early_log
)
951 log_early(KMEMLEAK_ALLOC
, ptr
, size
, min_count
);
953 EXPORT_SYMBOL_GPL(kmemleak_alloc
);
956 * kmemleak_alloc_percpu - register a newly allocated __percpu object
957 * @ptr: __percpu pointer to beginning of the object
958 * @size: size of the object
959 * @gfp: flags used for kmemleak internal memory allocations
961 * This function is called from the kernel percpu allocator when a new object
962 * (memory block) is allocated (alloc_percpu).
964 void __ref
kmemleak_alloc_percpu(const void __percpu
*ptr
, size_t size
,
969 pr_debug("%s(0x%p, %zu)\n", __func__
, ptr
, size
);
972 * Percpu allocations are only scanned and not reported as leaks
973 * (min_count is set to 0).
975 if (kmemleak_enabled
&& ptr
&& !IS_ERR(ptr
))
976 for_each_possible_cpu(cpu
)
977 create_object((unsigned long)per_cpu_ptr(ptr
, cpu
),
979 else if (kmemleak_early_log
)
980 log_early(KMEMLEAK_ALLOC_PERCPU
, ptr
, size
, 0);
982 EXPORT_SYMBOL_GPL(kmemleak_alloc_percpu
);
985 * kmemleak_vmalloc - register a newly vmalloc'ed object
986 * @area: pointer to vm_struct
987 * @size: size of the object
988 * @gfp: __vmalloc() flags used for kmemleak internal memory allocations
990 * This function is called from the vmalloc() kernel allocator when a new
991 * object (memory block) is allocated.
993 void __ref
kmemleak_vmalloc(const struct vm_struct
*area
, size_t size
, gfp_t gfp
)
995 pr_debug("%s(0x%p, %zu)\n", __func__
, area
, size
);
998 * A min_count = 2 is needed because vm_struct contains a reference to
999 * the virtual address of the vmalloc'ed block.
1001 if (kmemleak_enabled
) {
1002 create_object((unsigned long)area
->addr
, size
, 2, gfp
);
1003 object_set_excess_ref((unsigned long)area
,
1004 (unsigned long)area
->addr
);
1005 } else if (kmemleak_early_log
) {
1006 log_early(KMEMLEAK_ALLOC
, area
->addr
, size
, 2);
1007 /* reusing early_log.size for storing area->addr */
1008 log_early(KMEMLEAK_SET_EXCESS_REF
,
1009 area
, (unsigned long)area
->addr
, 0);
1012 EXPORT_SYMBOL_GPL(kmemleak_vmalloc
);
1015 * kmemleak_free - unregister a previously registered object
1016 * @ptr: pointer to beginning of the object
1018 * This function is called from the kernel allocators when an object (memory
1019 * block) is freed (kmem_cache_free, kfree, vfree etc.).
1021 void __ref
kmemleak_free(const void *ptr
)
1023 pr_debug("%s(0x%p)\n", __func__
, ptr
);
1025 if (kmemleak_free_enabled
&& ptr
&& !IS_ERR(ptr
))
1026 delete_object_full((unsigned long)ptr
);
1027 else if (kmemleak_early_log
)
1028 log_early(KMEMLEAK_FREE
, ptr
, 0, 0);
1030 EXPORT_SYMBOL_GPL(kmemleak_free
);
1033 * kmemleak_free_part - partially unregister a previously registered object
1034 * @ptr: pointer to the beginning or inside the object. This also
1035 * represents the start of the range to be freed
1036 * @size: size to be unregistered
1038 * This function is called when only a part of a memory block is freed
1039 * (usually from the bootmem allocator).
1041 void __ref
kmemleak_free_part(const void *ptr
, size_t size
)
1043 pr_debug("%s(0x%p)\n", __func__
, ptr
);
1045 if (kmemleak_enabled
&& ptr
&& !IS_ERR(ptr
))
1046 delete_object_part((unsigned long)ptr
, size
);
1047 else if (kmemleak_early_log
)
1048 log_early(KMEMLEAK_FREE_PART
, ptr
, size
, 0);
1050 EXPORT_SYMBOL_GPL(kmemleak_free_part
);
1053 * kmemleak_free_percpu - unregister a previously registered __percpu object
1054 * @ptr: __percpu pointer to beginning of the object
1056 * This function is called from the kernel percpu allocator when an object
1057 * (memory block) is freed (free_percpu).
1059 void __ref
kmemleak_free_percpu(const void __percpu
*ptr
)
1063 pr_debug("%s(0x%p)\n", __func__
, ptr
);
1065 if (kmemleak_free_enabled
&& ptr
&& !IS_ERR(ptr
))
1066 for_each_possible_cpu(cpu
)
1067 delete_object_full((unsigned long)per_cpu_ptr(ptr
,
1069 else if (kmemleak_early_log
)
1070 log_early(KMEMLEAK_FREE_PERCPU
, ptr
, 0, 0);
1072 EXPORT_SYMBOL_GPL(kmemleak_free_percpu
);
1075 * kmemleak_update_trace - update object allocation stack trace
1076 * @ptr: pointer to beginning of the object
1078 * Override the object allocation stack trace for cases where the actual
1079 * allocation place is not always useful.
1081 void __ref
kmemleak_update_trace(const void *ptr
)
1083 struct kmemleak_object
*object
;
1084 unsigned long flags
;
1086 pr_debug("%s(0x%p)\n", __func__
, ptr
);
1088 if (!kmemleak_enabled
|| IS_ERR_OR_NULL(ptr
))
1091 object
= find_and_get_object((unsigned long)ptr
, 1);
1094 kmemleak_warn("Updating stack trace for unknown object at %p\n",
1100 spin_lock_irqsave(&object
->lock
, flags
);
1101 object
->trace_len
= __save_stack_trace(object
->trace
);
1102 spin_unlock_irqrestore(&object
->lock
, flags
);
1106 EXPORT_SYMBOL(kmemleak_update_trace
);
1109 * kmemleak_not_leak - mark an allocated object as false positive
1110 * @ptr: pointer to beginning of the object
1112 * Calling this function on an object will cause the memory block to no longer
1113 * be reported as leak and always be scanned.
1115 void __ref
kmemleak_not_leak(const void *ptr
)
1117 pr_debug("%s(0x%p)\n", __func__
, ptr
);
1119 if (kmemleak_enabled
&& ptr
&& !IS_ERR(ptr
))
1120 make_gray_object((unsigned long)ptr
);
1121 else if (kmemleak_early_log
)
1122 log_early(KMEMLEAK_NOT_LEAK
, ptr
, 0, 0);
1124 EXPORT_SYMBOL(kmemleak_not_leak
);
1127 * kmemleak_ignore - ignore an allocated object
1128 * @ptr: pointer to beginning of the object
1130 * Calling this function on an object will cause the memory block to be
1131 * ignored (not scanned and not reported as a leak). This is usually done when
1132 * it is known that the corresponding block is not a leak and does not contain
1133 * any references to other allocated memory blocks.
1135 void __ref
kmemleak_ignore(const void *ptr
)
1137 pr_debug("%s(0x%p)\n", __func__
, ptr
);
1139 if (kmemleak_enabled
&& ptr
&& !IS_ERR(ptr
))
1140 make_black_object((unsigned long)ptr
);
1141 else if (kmemleak_early_log
)
1142 log_early(KMEMLEAK_IGNORE
, ptr
, 0, 0);
1144 EXPORT_SYMBOL(kmemleak_ignore
);
1147 * kmemleak_scan_area - limit the range to be scanned in an allocated object
1148 * @ptr: pointer to beginning or inside the object. This also
1149 * represents the start of the scan area
1150 * @size: size of the scan area
1151 * @gfp: kmalloc() flags used for kmemleak internal memory allocations
1153 * This function is used when it is known that only certain parts of an object
1154 * contain references to other objects. Kmemleak will only scan these areas
1155 * reducing the number false negatives.
1157 void __ref
kmemleak_scan_area(const void *ptr
, size_t size
, gfp_t gfp
)
1159 pr_debug("%s(0x%p)\n", __func__
, ptr
);
1161 if (kmemleak_enabled
&& ptr
&& size
&& !IS_ERR(ptr
))
1162 add_scan_area((unsigned long)ptr
, size
, gfp
);
1163 else if (kmemleak_early_log
)
1164 log_early(KMEMLEAK_SCAN_AREA
, ptr
, size
, 0);
1166 EXPORT_SYMBOL(kmemleak_scan_area
);
1169 * kmemleak_no_scan - do not scan an allocated object
1170 * @ptr: pointer to beginning of the object
1172 * This function notifies kmemleak not to scan the given memory block. Useful
1173 * in situations where it is known that the given object does not contain any
1174 * references to other objects. Kmemleak will not scan such objects reducing
1175 * the number of false negatives.
1177 void __ref
kmemleak_no_scan(const void *ptr
)
1179 pr_debug("%s(0x%p)\n", __func__
, ptr
);
1181 if (kmemleak_enabled
&& ptr
&& !IS_ERR(ptr
))
1182 object_no_scan((unsigned long)ptr
);
1183 else if (kmemleak_early_log
)
1184 log_early(KMEMLEAK_NO_SCAN
, ptr
, 0, 0);
1186 EXPORT_SYMBOL(kmemleak_no_scan
);
1189 * kmemleak_alloc_phys - similar to kmemleak_alloc but taking a physical
1192 void __ref
kmemleak_alloc_phys(phys_addr_t phys
, size_t size
, int min_count
,
1195 if (!IS_ENABLED(CONFIG_HIGHMEM
) || PHYS_PFN(phys
) < max_low_pfn
)
1196 kmemleak_alloc(__va(phys
), size
, min_count
, gfp
);
1198 EXPORT_SYMBOL(kmemleak_alloc_phys
);
1201 * kmemleak_free_part_phys - similar to kmemleak_free_part but taking a
1202 * physical address argument
1204 void __ref
kmemleak_free_part_phys(phys_addr_t phys
, size_t size
)
1206 if (!IS_ENABLED(CONFIG_HIGHMEM
) || PHYS_PFN(phys
) < max_low_pfn
)
1207 kmemleak_free_part(__va(phys
), size
);
1209 EXPORT_SYMBOL(kmemleak_free_part_phys
);
1212 * kmemleak_not_leak_phys - similar to kmemleak_not_leak but taking a physical
1215 void __ref
kmemleak_not_leak_phys(phys_addr_t phys
)
1217 if (!IS_ENABLED(CONFIG_HIGHMEM
) || PHYS_PFN(phys
) < max_low_pfn
)
1218 kmemleak_not_leak(__va(phys
));
1220 EXPORT_SYMBOL(kmemleak_not_leak_phys
);
1223 * kmemleak_ignore_phys - similar to kmemleak_ignore but taking a physical
1226 void __ref
kmemleak_ignore_phys(phys_addr_t phys
)
1228 if (!IS_ENABLED(CONFIG_HIGHMEM
) || PHYS_PFN(phys
) < max_low_pfn
)
1229 kmemleak_ignore(__va(phys
));
1231 EXPORT_SYMBOL(kmemleak_ignore_phys
);
1234 * Update an object's checksum and return true if it was modified.
1236 static bool update_checksum(struct kmemleak_object
*object
)
1238 u32 old_csum
= object
->checksum
;
1240 kasan_disable_current();
1241 object
->checksum
= crc32(0, (void *)object
->pointer
, object
->size
);
1242 kasan_enable_current();
1244 return object
->checksum
!= old_csum
;
1248 * Update an object's references. object->lock must be held by the caller.
1250 static void update_refs(struct kmemleak_object
*object
)
1252 if (!color_white(object
)) {
1253 /* non-orphan, ignored or new */
1258 * Increase the object's reference count (number of pointers to the
1259 * memory block). If this count reaches the required minimum, the
1260 * object's color will become gray and it will be added to the
1264 if (color_gray(object
)) {
1265 /* put_object() called when removing from gray_list */
1266 WARN_ON(!get_object(object
));
1267 list_add_tail(&object
->gray_list
, &gray_list
);
1272 * Memory scanning is a long process and it needs to be interruptable. This
1273 * function checks whether such interrupt condition occurred.
1275 static int scan_should_stop(void)
1277 if (!kmemleak_enabled
)
1281 * This function may be called from either process or kthread context,
1282 * hence the need to check for both stop conditions.
1285 return signal_pending(current
);
1287 return kthread_should_stop();
1293 * Scan a memory block (exclusive range) for valid pointers and add those
1294 * found to the gray list.
1296 static void scan_block(void *_start
, void *_end
,
1297 struct kmemleak_object
*scanned
)
1300 unsigned long *start
= PTR_ALIGN(_start
, BYTES_PER_POINTER
);
1301 unsigned long *end
= _end
- (BYTES_PER_POINTER
- 1);
1302 unsigned long flags
;
1304 read_lock_irqsave(&kmemleak_lock
, flags
);
1305 for (ptr
= start
; ptr
< end
; ptr
++) {
1306 struct kmemleak_object
*object
;
1307 unsigned long pointer
;
1308 unsigned long excess_ref
;
1310 if (scan_should_stop())
1313 kasan_disable_current();
1315 kasan_enable_current();
1317 if (pointer
< min_addr
|| pointer
>= max_addr
)
1321 * No need for get_object() here since we hold kmemleak_lock.
1322 * object->use_count cannot be dropped to 0 while the object
1323 * is still present in object_tree_root and object_list
1324 * (with updates protected by kmemleak_lock).
1326 object
= lookup_object(pointer
, 1);
1329 if (object
== scanned
)
1330 /* self referenced, ignore */
1334 * Avoid the lockdep recursive warning on object->lock being
1335 * previously acquired in scan_object(). These locks are
1336 * enclosed by scan_mutex.
1338 spin_lock_nested(&object
->lock
, SINGLE_DEPTH_NESTING
);
1339 /* only pass surplus references (object already gray) */
1340 if (color_gray(object
)) {
1341 excess_ref
= object
->excess_ref
;
1342 /* no need for update_refs() if object already gray */
1345 update_refs(object
);
1347 spin_unlock(&object
->lock
);
1350 object
= lookup_object(excess_ref
, 0);
1353 if (object
== scanned
)
1354 /* circular reference, ignore */
1356 spin_lock_nested(&object
->lock
, SINGLE_DEPTH_NESTING
);
1357 update_refs(object
);
1358 spin_unlock(&object
->lock
);
1361 read_unlock_irqrestore(&kmemleak_lock
, flags
);
1365 * Scan a large memory block in MAX_SCAN_SIZE chunks to reduce the latency.
1368 static void scan_large_block(void *start
, void *end
)
1372 while (start
< end
) {
1373 next
= min(start
+ MAX_SCAN_SIZE
, end
);
1374 scan_block(start
, next
, NULL
);
1382 * Scan a memory block corresponding to a kmemleak_object. A condition is
1383 * that object->use_count >= 1.
1385 static void scan_object(struct kmemleak_object
*object
)
1387 struct kmemleak_scan_area
*area
;
1388 unsigned long flags
;
1391 * Once the object->lock is acquired, the corresponding memory block
1392 * cannot be freed (the same lock is acquired in delete_object).
1394 spin_lock_irqsave(&object
->lock
, flags
);
1395 if (object
->flags
& OBJECT_NO_SCAN
)
1397 if (!(object
->flags
& OBJECT_ALLOCATED
))
1398 /* already freed object */
1400 if (hlist_empty(&object
->area_list
)) {
1401 void *start
= (void *)object
->pointer
;
1402 void *end
= (void *)(object
->pointer
+ object
->size
);
1406 next
= min(start
+ MAX_SCAN_SIZE
, end
);
1407 scan_block(start
, next
, object
);
1413 spin_unlock_irqrestore(&object
->lock
, flags
);
1415 spin_lock_irqsave(&object
->lock
, flags
);
1416 } while (object
->flags
& OBJECT_ALLOCATED
);
1418 hlist_for_each_entry(area
, &object
->area_list
, node
)
1419 scan_block((void *)area
->start
,
1420 (void *)(area
->start
+ area
->size
),
1423 spin_unlock_irqrestore(&object
->lock
, flags
);
1427 * Scan the objects already referenced (gray objects). More objects will be
1428 * referenced and, if there are no memory leaks, all the objects are scanned.
1430 static void scan_gray_list(void)
1432 struct kmemleak_object
*object
, *tmp
;
1435 * The list traversal is safe for both tail additions and removals
1436 * from inside the loop. The kmemleak objects cannot be freed from
1437 * outside the loop because their use_count was incremented.
1439 object
= list_entry(gray_list
.next
, typeof(*object
), gray_list
);
1440 while (&object
->gray_list
!= &gray_list
) {
1443 /* may add new objects to the list */
1444 if (!scan_should_stop())
1445 scan_object(object
);
1447 tmp
= list_entry(object
->gray_list
.next
, typeof(*object
),
1450 /* remove the object from the list and release it */
1451 list_del(&object
->gray_list
);
1456 WARN_ON(!list_empty(&gray_list
));
1460 * Scan data sections and all the referenced memory blocks allocated via the
1461 * kernel's standard allocators. This function must be called with the
1464 static void kmemleak_scan(void)
1466 unsigned long flags
;
1467 struct kmemleak_object
*object
;
1471 jiffies_last_scan
= jiffies
;
1473 /* prepare the kmemleak_object's */
1475 list_for_each_entry_rcu(object
, &object_list
, object_list
) {
1476 spin_lock_irqsave(&object
->lock
, flags
);
1479 * With a few exceptions there should be a maximum of
1480 * 1 reference to any object at this point.
1482 if (atomic_read(&object
->use_count
) > 1) {
1483 pr_debug("object->use_count = %d\n",
1484 atomic_read(&object
->use_count
));
1485 dump_object_info(object
);
1488 /* reset the reference count (whiten the object) */
1490 if (color_gray(object
) && get_object(object
))
1491 list_add_tail(&object
->gray_list
, &gray_list
);
1493 spin_unlock_irqrestore(&object
->lock
, flags
);
1498 /* per-cpu sections scanning */
1499 for_each_possible_cpu(i
)
1500 scan_large_block(__per_cpu_start
+ per_cpu_offset(i
),
1501 __per_cpu_end
+ per_cpu_offset(i
));
1505 * Struct page scanning for each node.
1508 for_each_online_node(i
) {
1509 unsigned long start_pfn
= node_start_pfn(i
);
1510 unsigned long end_pfn
= node_end_pfn(i
);
1513 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++) {
1516 if (!pfn_valid(pfn
))
1518 page
= pfn_to_page(pfn
);
1519 /* only scan if page is in use */
1520 if (page_count(page
) == 0)
1522 scan_block(page
, page
+ 1, NULL
);
1523 if (!(pfn
% (MAX_SCAN_SIZE
/ sizeof(*page
))))
1530 * Scanning the task stacks (may introduce false negatives).
1532 if (kmemleak_stack_scan
) {
1533 struct task_struct
*p
, *g
;
1535 read_lock(&tasklist_lock
);
1536 do_each_thread(g
, p
) {
1537 void *stack
= try_get_task_stack(p
);
1539 scan_block(stack
, stack
+ THREAD_SIZE
, NULL
);
1542 } while_each_thread(g
, p
);
1543 read_unlock(&tasklist_lock
);
1547 * Scan the objects already referenced from the sections scanned
1553 * Check for new or unreferenced objects modified since the previous
1554 * scan and color them gray until the next scan.
1557 list_for_each_entry_rcu(object
, &object_list
, object_list
) {
1558 spin_lock_irqsave(&object
->lock
, flags
);
1559 if (color_white(object
) && (object
->flags
& OBJECT_ALLOCATED
)
1560 && update_checksum(object
) && get_object(object
)) {
1561 /* color it gray temporarily */
1562 object
->count
= object
->min_count
;
1563 list_add_tail(&object
->gray_list
, &gray_list
);
1565 spin_unlock_irqrestore(&object
->lock
, flags
);
1570 * Re-scan the gray list for modified unreferenced objects.
1575 * If scanning was stopped do not report any new unreferenced objects.
1577 if (scan_should_stop())
1581 * Scanning result reporting.
1584 list_for_each_entry_rcu(object
, &object_list
, object_list
) {
1585 spin_lock_irqsave(&object
->lock
, flags
);
1586 if (unreferenced_object(object
) &&
1587 !(object
->flags
& OBJECT_REPORTED
)) {
1588 object
->flags
|= OBJECT_REPORTED
;
1591 spin_unlock_irqrestore(&object
->lock
, flags
);
1596 kmemleak_found_leaks
= true;
1598 pr_info("%d new suspected memory leaks (see /sys/kernel/debug/kmemleak)\n",
1605 * Thread function performing automatic memory scanning. Unreferenced objects
1606 * at the end of a memory scan are reported but only the first time.
1608 static int kmemleak_scan_thread(void *arg
)
1610 static int first_run
= 1;
1612 pr_info("Automatic memory scanning thread started\n");
1613 set_user_nice(current
, 10);
1616 * Wait before the first scan to allow the system to fully initialize.
1619 signed long timeout
= msecs_to_jiffies(SECS_FIRST_SCAN
* 1000);
1621 while (timeout
&& !kthread_should_stop())
1622 timeout
= schedule_timeout_interruptible(timeout
);
1625 while (!kthread_should_stop()) {
1626 signed long timeout
= jiffies_scan_wait
;
1628 mutex_lock(&scan_mutex
);
1630 mutex_unlock(&scan_mutex
);
1632 /* wait before the next scan */
1633 while (timeout
&& !kthread_should_stop())
1634 timeout
= schedule_timeout_interruptible(timeout
);
1637 pr_info("Automatic memory scanning thread ended\n");
1643 * Start the automatic memory scanning thread. This function must be called
1644 * with the scan_mutex held.
1646 static void start_scan_thread(void)
1650 scan_thread
= kthread_run(kmemleak_scan_thread
, NULL
, "kmemleak");
1651 if (IS_ERR(scan_thread
)) {
1652 pr_warn("Failed to create the scan thread\n");
1658 * Stop the automatic memory scanning thread.
1660 static void stop_scan_thread(void)
1663 kthread_stop(scan_thread
);
1669 * Iterate over the object_list and return the first valid object at or after
1670 * the required position with its use_count incremented. The function triggers
1671 * a memory scanning when the pos argument points to the first position.
1673 static void *kmemleak_seq_start(struct seq_file
*seq
, loff_t
*pos
)
1675 struct kmemleak_object
*object
;
1679 err
= mutex_lock_interruptible(&scan_mutex
);
1681 return ERR_PTR(err
);
1684 list_for_each_entry_rcu(object
, &object_list
, object_list
) {
1687 if (get_object(object
))
1696 * Return the next object in the object_list. The function decrements the
1697 * use_count of the previous object and increases that of the next one.
1699 static void *kmemleak_seq_next(struct seq_file
*seq
, void *v
, loff_t
*pos
)
1701 struct kmemleak_object
*prev_obj
= v
;
1702 struct kmemleak_object
*next_obj
= NULL
;
1703 struct kmemleak_object
*obj
= prev_obj
;
1707 list_for_each_entry_continue_rcu(obj
, &object_list
, object_list
) {
1708 if (get_object(obj
)) {
1714 put_object(prev_obj
);
1719 * Decrement the use_count of the last object required, if any.
1721 static void kmemleak_seq_stop(struct seq_file
*seq
, void *v
)
1725 * kmemleak_seq_start may return ERR_PTR if the scan_mutex
1726 * waiting was interrupted, so only release it if !IS_ERR.
1729 mutex_unlock(&scan_mutex
);
1736 * Print the information for an unreferenced object to the seq file.
1738 static int kmemleak_seq_show(struct seq_file
*seq
, void *v
)
1740 struct kmemleak_object
*object
= v
;
1741 unsigned long flags
;
1743 spin_lock_irqsave(&object
->lock
, flags
);
1744 if ((object
->flags
& OBJECT_REPORTED
) && unreferenced_object(object
))
1745 print_unreferenced(seq
, object
);
1746 spin_unlock_irqrestore(&object
->lock
, flags
);
1750 static const struct seq_operations kmemleak_seq_ops
= {
1751 .start
= kmemleak_seq_start
,
1752 .next
= kmemleak_seq_next
,
1753 .stop
= kmemleak_seq_stop
,
1754 .show
= kmemleak_seq_show
,
1757 static int kmemleak_open(struct inode
*inode
, struct file
*file
)
1759 return seq_open(file
, &kmemleak_seq_ops
);
1762 static int dump_str_object_info(const char *str
)
1764 unsigned long flags
;
1765 struct kmemleak_object
*object
;
1768 if (kstrtoul(str
, 0, &addr
))
1770 object
= find_and_get_object(addr
, 0);
1772 pr_info("Unknown object at 0x%08lx\n", addr
);
1776 spin_lock_irqsave(&object
->lock
, flags
);
1777 dump_object_info(object
);
1778 spin_unlock_irqrestore(&object
->lock
, flags
);
1785 * We use grey instead of black to ensure we can do future scans on the same
1786 * objects. If we did not do future scans these black objects could
1787 * potentially contain references to newly allocated objects in the future and
1788 * we'd end up with false positives.
1790 static void kmemleak_clear(void)
1792 struct kmemleak_object
*object
;
1793 unsigned long flags
;
1796 list_for_each_entry_rcu(object
, &object_list
, object_list
) {
1797 spin_lock_irqsave(&object
->lock
, flags
);
1798 if ((object
->flags
& OBJECT_REPORTED
) &&
1799 unreferenced_object(object
))
1800 __paint_it(object
, KMEMLEAK_GREY
);
1801 spin_unlock_irqrestore(&object
->lock
, flags
);
1805 kmemleak_found_leaks
= false;
1808 static void __kmemleak_do_cleanup(void);
1811 * File write operation to configure kmemleak at run-time. The following
1812 * commands can be written to the /sys/kernel/debug/kmemleak file:
1813 * off - disable kmemleak (irreversible)
1814 * stack=on - enable the task stacks scanning
1815 * stack=off - disable the tasks stacks scanning
1816 * scan=on - start the automatic memory scanning thread
1817 * scan=off - stop the automatic memory scanning thread
1818 * scan=... - set the automatic memory scanning period in seconds (0 to
1820 * scan - trigger a memory scan
1821 * clear - mark all current reported unreferenced kmemleak objects as
1822 * grey to ignore printing them, or free all kmemleak objects
1823 * if kmemleak has been disabled.
1824 * dump=... - dump information about the object found at the given address
1826 static ssize_t
kmemleak_write(struct file
*file
, const char __user
*user_buf
,
1827 size_t size
, loff_t
*ppos
)
1833 buf_size
= min(size
, (sizeof(buf
) - 1));
1834 if (strncpy_from_user(buf
, user_buf
, buf_size
) < 0)
1838 ret
= mutex_lock_interruptible(&scan_mutex
);
1842 if (strncmp(buf
, "clear", 5) == 0) {
1843 if (kmemleak_enabled
)
1846 __kmemleak_do_cleanup();
1850 if (!kmemleak_enabled
) {
1855 if (strncmp(buf
, "off", 3) == 0)
1857 else if (strncmp(buf
, "stack=on", 8) == 0)
1858 kmemleak_stack_scan
= 1;
1859 else if (strncmp(buf
, "stack=off", 9) == 0)
1860 kmemleak_stack_scan
= 0;
1861 else if (strncmp(buf
, "scan=on", 7) == 0)
1862 start_scan_thread();
1863 else if (strncmp(buf
, "scan=off", 8) == 0)
1865 else if (strncmp(buf
, "scan=", 5) == 0) {
1868 ret
= kstrtoul(buf
+ 5, 0, &secs
);
1873 jiffies_scan_wait
= msecs_to_jiffies(secs
* 1000);
1874 start_scan_thread();
1876 } else if (strncmp(buf
, "scan", 4) == 0)
1878 else if (strncmp(buf
, "dump=", 5) == 0)
1879 ret
= dump_str_object_info(buf
+ 5);
1884 mutex_unlock(&scan_mutex
);
1888 /* ignore the rest of the buffer, only one command at a time */
1893 static const struct file_operations kmemleak_fops
= {
1894 .owner
= THIS_MODULE
,
1895 .open
= kmemleak_open
,
1897 .write
= kmemleak_write
,
1898 .llseek
= seq_lseek
,
1899 .release
= seq_release
,
1902 static void __kmemleak_do_cleanup(void)
1904 struct kmemleak_object
*object
;
1907 list_for_each_entry_rcu(object
, &object_list
, object_list
)
1908 delete_object_full(object
->pointer
);
1913 * Stop the memory scanning thread and free the kmemleak internal objects if
1914 * no previous scan thread (otherwise, kmemleak may still have some useful
1915 * information on memory leaks).
1917 static void kmemleak_do_cleanup(struct work_struct
*work
)
1921 mutex_lock(&scan_mutex
);
1923 * Once it is made sure that kmemleak_scan has stopped, it is safe to no
1924 * longer track object freeing. Ordering of the scan thread stopping and
1925 * the memory accesses below is guaranteed by the kthread_stop()
1928 kmemleak_free_enabled
= 0;
1929 mutex_unlock(&scan_mutex
);
1931 if (!kmemleak_found_leaks
)
1932 __kmemleak_do_cleanup();
1934 pr_info("Kmemleak disabled without freeing internal data. Reclaim the memory with \"echo clear > /sys/kernel/debug/kmemleak\".\n");
1937 static DECLARE_WORK(cleanup_work
, kmemleak_do_cleanup
);
1940 * Disable kmemleak. No memory allocation/freeing will be traced once this
1941 * function is called. Disabling kmemleak is an irreversible operation.
1943 static void kmemleak_disable(void)
1945 /* atomically check whether it was already invoked */
1946 if (cmpxchg(&kmemleak_error
, 0, 1))
1949 /* stop any memory operation tracing */
1950 kmemleak_enabled
= 0;
1952 /* check whether it is too early for a kernel thread */
1953 if (kmemleak_initialized
)
1954 schedule_work(&cleanup_work
);
1956 kmemleak_free_enabled
= 0;
1958 pr_info("Kernel memory leak detector disabled\n");
1962 * Allow boot-time kmemleak disabling (enabled by default).
1964 static int kmemleak_boot_config(char *str
)
1968 if (strcmp(str
, "off") == 0)
1970 else if (strcmp(str
, "on") == 0)
1971 kmemleak_skip_disable
= 1;
1976 early_param("kmemleak", kmemleak_boot_config
);
1978 static void __init
print_log_trace(struct early_log
*log
)
1980 struct stack_trace trace
;
1982 trace
.nr_entries
= log
->trace_len
;
1983 trace
.entries
= log
->trace
;
1985 pr_notice("Early log backtrace:\n");
1986 print_stack_trace(&trace
, 2);
1990 * Kmemleak initialization.
1992 void __init
kmemleak_init(void)
1995 unsigned long flags
;
1997 #ifdef CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF
1998 if (!kmemleak_skip_disable
) {
1999 kmemleak_early_log
= 0;
2005 jiffies_min_age
= msecs_to_jiffies(MSECS_MIN_AGE
);
2006 jiffies_scan_wait
= msecs_to_jiffies(SECS_SCAN_WAIT
* 1000);
2008 object_cache
= KMEM_CACHE(kmemleak_object
, SLAB_NOLEAKTRACE
);
2009 scan_area_cache
= KMEM_CACHE(kmemleak_scan_area
, SLAB_NOLEAKTRACE
);
2011 if (crt_early_log
> ARRAY_SIZE(early_log
))
2012 pr_warn("Early log buffer exceeded (%d), please increase DEBUG_KMEMLEAK_EARLY_LOG_SIZE\n",
2015 /* the kernel is still in UP mode, so disabling the IRQs is enough */
2016 local_irq_save(flags
);
2017 kmemleak_early_log
= 0;
2018 if (kmemleak_error
) {
2019 local_irq_restore(flags
);
2022 kmemleak_enabled
= 1;
2023 kmemleak_free_enabled
= 1;
2025 local_irq_restore(flags
);
2027 /* register the data/bss sections */
2028 create_object((unsigned long)_sdata
, _edata
- _sdata
,
2029 KMEMLEAK_GREY
, GFP_ATOMIC
);
2030 create_object((unsigned long)__bss_start
, __bss_stop
- __bss_start
,
2031 KMEMLEAK_GREY
, GFP_ATOMIC
);
2032 /* only register .data..ro_after_init if not within .data */
2033 if (__start_ro_after_init
< _sdata
|| __end_ro_after_init
> _edata
)
2034 create_object((unsigned long)__start_ro_after_init
,
2035 __end_ro_after_init
- __start_ro_after_init
,
2036 KMEMLEAK_GREY
, GFP_ATOMIC
);
2039 * This is the point where tracking allocations is safe. Automatic
2040 * scanning is started during the late initcall. Add the early logged
2041 * callbacks to the kmemleak infrastructure.
2043 for (i
= 0; i
< crt_early_log
; i
++) {
2044 struct early_log
*log
= &early_log
[i
];
2046 switch (log
->op_type
) {
2047 case KMEMLEAK_ALLOC
:
2050 case KMEMLEAK_ALLOC_PERCPU
:
2051 early_alloc_percpu(log
);
2054 kmemleak_free(log
->ptr
);
2056 case KMEMLEAK_FREE_PART
:
2057 kmemleak_free_part(log
->ptr
, log
->size
);
2059 case KMEMLEAK_FREE_PERCPU
:
2060 kmemleak_free_percpu(log
->ptr
);
2062 case KMEMLEAK_NOT_LEAK
:
2063 kmemleak_not_leak(log
->ptr
);
2065 case KMEMLEAK_IGNORE
:
2066 kmemleak_ignore(log
->ptr
);
2068 case KMEMLEAK_SCAN_AREA
:
2069 kmemleak_scan_area(log
->ptr
, log
->size
, GFP_KERNEL
);
2071 case KMEMLEAK_NO_SCAN
:
2072 kmemleak_no_scan(log
->ptr
);
2074 case KMEMLEAK_SET_EXCESS_REF
:
2075 object_set_excess_ref((unsigned long)log
->ptr
,
2079 kmemleak_warn("Unknown early log operation: %d\n",
2083 if (kmemleak_warning
) {
2084 print_log_trace(log
);
2085 kmemleak_warning
= 0;
2091 * Late initialization function.
2093 static int __init
kmemleak_late_init(void)
2095 struct dentry
*dentry
;
2097 kmemleak_initialized
= 1;
2099 if (kmemleak_error
) {
2101 * Some error occurred and kmemleak was disabled. There is a
2102 * small chance that kmemleak_disable() was called immediately
2103 * after setting kmemleak_initialized and we may end up with
2104 * two clean-up threads but serialized by scan_mutex.
2106 schedule_work(&cleanup_work
);
2110 dentry
= debugfs_create_file("kmemleak", S_IRUGO
, NULL
, NULL
,
2113 pr_warn("Failed to create the debugfs kmemleak file\n");
2114 mutex_lock(&scan_mutex
);
2115 start_scan_thread();
2116 mutex_unlock(&scan_mutex
);
2118 pr_info("Kernel memory leak detector initialized\n");
2122 late_initcall(kmemleak_late_init
);