2 * blk-mq scheduling framework
4 * Copyright (C) 2016 Jens Axboe
6 #include <linux/kernel.h>
7 #include <linux/module.h>
8 #include <linux/blk-mq.h>
10 #include <trace/events/block.h>
14 #include "blk-mq-debugfs.h"
15 #include "blk-mq-sched.h"
16 #include "blk-mq-tag.h"
19 void blk_mq_sched_free_hctx_data(struct request_queue
*q
,
20 void (*exit
)(struct blk_mq_hw_ctx
*))
22 struct blk_mq_hw_ctx
*hctx
;
25 queue_for_each_hw_ctx(q
, hctx
, i
) {
26 if (exit
&& hctx
->sched_data
)
28 kfree(hctx
->sched_data
);
29 hctx
->sched_data
= NULL
;
32 EXPORT_SYMBOL_GPL(blk_mq_sched_free_hctx_data
);
34 void blk_mq_sched_assign_ioc(struct request
*rq
, struct bio
*bio
)
36 struct request_queue
*q
= rq
->q
;
37 struct io_context
*ioc
= rq_ioc(bio
);
40 spin_lock_irq(q
->queue_lock
);
41 icq
= ioc_lookup_icq(ioc
, q
);
42 spin_unlock_irq(q
->queue_lock
);
45 icq
= ioc_create_icq(ioc
, q
, GFP_ATOMIC
);
49 get_io_context(icq
->ioc
);
54 * Mark a hardware queue as needing a restart. For shared queues, maintain
55 * a count of how many hardware queues are marked for restart.
57 static void blk_mq_sched_mark_restart_hctx(struct blk_mq_hw_ctx
*hctx
)
59 if (test_bit(BLK_MQ_S_SCHED_RESTART
, &hctx
->state
))
62 if (hctx
->flags
& BLK_MQ_F_TAG_SHARED
) {
63 struct request_queue
*q
= hctx
->queue
;
65 if (!test_and_set_bit(BLK_MQ_S_SCHED_RESTART
, &hctx
->state
))
66 atomic_inc(&q
->shared_hctx_restart
);
68 set_bit(BLK_MQ_S_SCHED_RESTART
, &hctx
->state
);
71 static bool blk_mq_sched_restart_hctx(struct blk_mq_hw_ctx
*hctx
)
73 if (!test_bit(BLK_MQ_S_SCHED_RESTART
, &hctx
->state
))
76 if (hctx
->flags
& BLK_MQ_F_TAG_SHARED
) {
77 struct request_queue
*q
= hctx
->queue
;
79 if (test_and_clear_bit(BLK_MQ_S_SCHED_RESTART
, &hctx
->state
))
80 atomic_dec(&q
->shared_hctx_restart
);
82 clear_bit(BLK_MQ_S_SCHED_RESTART
, &hctx
->state
);
84 if (blk_mq_hctx_has_pending(hctx
)) {
85 blk_mq_run_hw_queue(hctx
, true);
92 void blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx
*hctx
)
94 struct request_queue
*q
= hctx
->queue
;
95 struct elevator_queue
*e
= q
->elevator
;
96 const bool has_sched_dispatch
= e
&& e
->type
->ops
.mq
.dispatch_request
;
97 bool do_sched_dispatch
= true;
100 /* RCU or SRCU read lock is needed before checking quiesced flag */
101 if (unlikely(blk_mq_hctx_stopped(hctx
) || blk_queue_quiesced(q
)))
107 * If we have previous entries on our dispatch list, grab them first for
108 * more fair dispatch.
110 if (!list_empty_careful(&hctx
->dispatch
)) {
111 spin_lock(&hctx
->lock
);
112 if (!list_empty(&hctx
->dispatch
))
113 list_splice_init(&hctx
->dispatch
, &rq_list
);
114 spin_unlock(&hctx
->lock
);
118 * Only ask the scheduler for requests, if we didn't have residual
119 * requests from the dispatch list. This is to avoid the case where
120 * we only ever dispatch a fraction of the requests available because
121 * of low device queue depth. Once we pull requests out of the IO
122 * scheduler, we can no longer merge or sort them. So it's best to
123 * leave them there for as long as we can. Mark the hw queue as
124 * needing a restart in that case.
126 if (!list_empty(&rq_list
)) {
127 blk_mq_sched_mark_restart_hctx(hctx
);
128 do_sched_dispatch
= blk_mq_dispatch_rq_list(q
, &rq_list
);
129 } else if (!has_sched_dispatch
) {
130 blk_mq_flush_busy_ctxs(hctx
, &rq_list
);
131 blk_mq_dispatch_rq_list(q
, &rq_list
);
135 * We want to dispatch from the scheduler if there was nothing
136 * on the dispatch list or we were able to dispatch from the
139 if (do_sched_dispatch
&& has_sched_dispatch
) {
143 rq
= e
->type
->ops
.mq
.dispatch_request(hctx
);
146 list_add(&rq
->queuelist
, &rq_list
);
147 } while (blk_mq_dispatch_rq_list(q
, &rq_list
));
151 bool blk_mq_sched_try_merge(struct request_queue
*q
, struct bio
*bio
,
152 struct request
**merged_request
)
156 switch (elv_merge(q
, &rq
, bio
)) {
157 case ELEVATOR_BACK_MERGE
:
158 if (!blk_mq_sched_allow_merge(q
, rq
, bio
))
160 if (!bio_attempt_back_merge(q
, rq
, bio
))
162 *merged_request
= attempt_back_merge(q
, rq
);
163 if (!*merged_request
)
164 elv_merged_request(q
, rq
, ELEVATOR_BACK_MERGE
);
166 case ELEVATOR_FRONT_MERGE
:
167 if (!blk_mq_sched_allow_merge(q
, rq
, bio
))
169 if (!bio_attempt_front_merge(q
, rq
, bio
))
171 *merged_request
= attempt_front_merge(q
, rq
);
172 if (!*merged_request
)
173 elv_merged_request(q
, rq
, ELEVATOR_FRONT_MERGE
);
179 EXPORT_SYMBOL_GPL(blk_mq_sched_try_merge
);
182 * Reverse check our software queue for entries that we could potentially
183 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
184 * too much time checking for merges.
186 static bool blk_mq_attempt_merge(struct request_queue
*q
,
187 struct blk_mq_ctx
*ctx
, struct bio
*bio
)
192 lockdep_assert_held(&ctx
->lock
);
194 list_for_each_entry_reverse(rq
, &ctx
->rq_list
, queuelist
) {
200 if (!blk_rq_merge_ok(rq
, bio
))
203 switch (blk_try_merge(rq
, bio
)) {
204 case ELEVATOR_BACK_MERGE
:
205 if (blk_mq_sched_allow_merge(q
, rq
, bio
))
206 merged
= bio_attempt_back_merge(q
, rq
, bio
);
208 case ELEVATOR_FRONT_MERGE
:
209 if (blk_mq_sched_allow_merge(q
, rq
, bio
))
210 merged
= bio_attempt_front_merge(q
, rq
, bio
);
212 case ELEVATOR_DISCARD_MERGE
:
213 merged
= bio_attempt_discard_merge(q
, rq
, bio
);
227 bool __blk_mq_sched_bio_merge(struct request_queue
*q
, struct bio
*bio
)
229 struct elevator_queue
*e
= q
->elevator
;
230 struct blk_mq_ctx
*ctx
= blk_mq_get_ctx(q
);
231 struct blk_mq_hw_ctx
*hctx
= blk_mq_map_queue(q
, ctx
->cpu
);
234 if (e
&& e
->type
->ops
.mq
.bio_merge
) {
236 return e
->type
->ops
.mq
.bio_merge(hctx
, bio
);
239 if ((hctx
->flags
& BLK_MQ_F_SHOULD_MERGE
) &&
240 !list_empty_careful(&ctx
->rq_list
)) {
241 /* default per sw-queue merge */
242 spin_lock(&ctx
->lock
);
243 ret
= blk_mq_attempt_merge(q
, ctx
, bio
);
244 spin_unlock(&ctx
->lock
);
251 bool blk_mq_sched_try_insert_merge(struct request_queue
*q
, struct request
*rq
)
253 return rq_mergeable(rq
) && elv_attempt_insert_merge(q
, rq
);
255 EXPORT_SYMBOL_GPL(blk_mq_sched_try_insert_merge
);
257 void blk_mq_sched_request_inserted(struct request
*rq
)
259 trace_block_rq_insert(rq
->q
, rq
);
261 EXPORT_SYMBOL_GPL(blk_mq_sched_request_inserted
);
263 static bool blk_mq_sched_bypass_insert(struct blk_mq_hw_ctx
*hctx
,
267 rq
->rq_flags
|= RQF_SORTED
;
272 * If we already have a real request tag, send directly to
275 spin_lock(&hctx
->lock
);
276 list_add(&rq
->queuelist
, &hctx
->dispatch
);
277 spin_unlock(&hctx
->lock
);
282 * list_for_each_entry_rcu_rr - iterate in a round-robin fashion over rcu list
284 * @skip: the list element that will not be examined. Iteration starts at
286 * @head: head of the list to examine. This list must have at least one
287 * element, namely @skip.
288 * @member: name of the list_head structure within typeof(*pos).
290 #define list_for_each_entry_rcu_rr(pos, skip, head, member) \
291 for ((pos) = (skip); \
292 (pos = (pos)->member.next != (head) ? list_entry_rcu( \
293 (pos)->member.next, typeof(*pos), member) : \
294 list_entry_rcu((pos)->member.next->next, typeof(*pos), member)), \
298 * Called after a driver tag has been freed to check whether a hctx needs to
299 * be restarted. Restarts @hctx if its tag set is not shared. Restarts hardware
300 * queues in a round-robin fashion if the tag set of @hctx is shared with other
303 void blk_mq_sched_restart(struct blk_mq_hw_ctx
*const hctx
)
305 struct blk_mq_tags
*const tags
= hctx
->tags
;
306 struct blk_mq_tag_set
*const set
= hctx
->queue
->tag_set
;
307 struct request_queue
*const queue
= hctx
->queue
, *q
;
308 struct blk_mq_hw_ctx
*hctx2
;
311 if (set
->flags
& BLK_MQ_F_TAG_SHARED
) {
313 * If this is 0, then we know that no hardware queues
314 * have RESTART marked. We're done.
316 if (!atomic_read(&queue
->shared_hctx_restart
))
320 list_for_each_entry_rcu_rr(q
, queue
, &set
->tag_list
,
322 queue_for_each_hw_ctx(q
, hctx2
, i
)
323 if (hctx2
->tags
== tags
&&
324 blk_mq_sched_restart_hctx(hctx2
))
327 j
= hctx
->queue_num
+ 1;
328 for (i
= 0; i
< queue
->nr_hw_queues
; i
++, j
++) {
329 if (j
== queue
->nr_hw_queues
)
331 hctx2
= queue
->queue_hw_ctx
[j
];
332 if (hctx2
->tags
== tags
&&
333 blk_mq_sched_restart_hctx(hctx2
))
339 blk_mq_sched_restart_hctx(hctx
);
344 * Add flush/fua to the queue. If we fail getting a driver tag, then
345 * punt to the requeue list. Requeue will re-invoke us from a context
346 * that's safe to block from.
348 static void blk_mq_sched_insert_flush(struct blk_mq_hw_ctx
*hctx
,
349 struct request
*rq
, bool can_block
)
351 if (blk_mq_get_driver_tag(rq
, &hctx
, can_block
)) {
352 blk_insert_flush(rq
);
353 blk_mq_run_hw_queue(hctx
, true);
355 blk_mq_add_to_requeue_list(rq
, false, true);
358 void blk_mq_sched_insert_request(struct request
*rq
, bool at_head
,
359 bool run_queue
, bool async
, bool can_block
)
361 struct request_queue
*q
= rq
->q
;
362 struct elevator_queue
*e
= q
->elevator
;
363 struct blk_mq_ctx
*ctx
= rq
->mq_ctx
;
364 struct blk_mq_hw_ctx
*hctx
= blk_mq_map_queue(q
, ctx
->cpu
);
366 if (rq
->tag
== -1 && op_is_flush(rq
->cmd_flags
)) {
367 blk_mq_sched_insert_flush(hctx
, rq
, can_block
);
371 if (e
&& blk_mq_sched_bypass_insert(hctx
, rq
))
374 if (e
&& e
->type
->ops
.mq
.insert_requests
) {
377 list_add(&rq
->queuelist
, &list
);
378 e
->type
->ops
.mq
.insert_requests(hctx
, &list
, at_head
);
380 spin_lock(&ctx
->lock
);
381 __blk_mq_insert_request(hctx
, rq
, at_head
);
382 spin_unlock(&ctx
->lock
);
387 blk_mq_run_hw_queue(hctx
, async
);
390 void blk_mq_sched_insert_requests(struct request_queue
*q
,
391 struct blk_mq_ctx
*ctx
,
392 struct list_head
*list
, bool run_queue_async
)
394 struct blk_mq_hw_ctx
*hctx
= blk_mq_map_queue(q
, ctx
->cpu
);
395 struct elevator_queue
*e
= hctx
->queue
->elevator
;
398 struct request
*rq
, *next
;
401 * We bypass requests that already have a driver tag assigned,
402 * which should only be flushes. Flushes are only ever inserted
403 * as single requests, so we shouldn't ever hit the
404 * WARN_ON_ONCE() below (but let's handle it just in case).
406 list_for_each_entry_safe(rq
, next
, list
, queuelist
) {
407 if (WARN_ON_ONCE(rq
->tag
!= -1)) {
408 list_del_init(&rq
->queuelist
);
409 blk_mq_sched_bypass_insert(hctx
, rq
);
414 if (e
&& e
->type
->ops
.mq
.insert_requests
)
415 e
->type
->ops
.mq
.insert_requests(hctx
, list
, false);
417 blk_mq_insert_requests(hctx
, ctx
, list
);
419 blk_mq_run_hw_queue(hctx
, run_queue_async
);
422 static void blk_mq_sched_free_tags(struct blk_mq_tag_set
*set
,
423 struct blk_mq_hw_ctx
*hctx
,
424 unsigned int hctx_idx
)
426 if (hctx
->sched_tags
) {
427 blk_mq_free_rqs(set
, hctx
->sched_tags
, hctx_idx
);
428 blk_mq_free_rq_map(hctx
->sched_tags
);
429 hctx
->sched_tags
= NULL
;
433 static int blk_mq_sched_alloc_tags(struct request_queue
*q
,
434 struct blk_mq_hw_ctx
*hctx
,
435 unsigned int hctx_idx
)
437 struct blk_mq_tag_set
*set
= q
->tag_set
;
440 hctx
->sched_tags
= blk_mq_alloc_rq_map(set
, hctx_idx
, q
->nr_requests
,
442 if (!hctx
->sched_tags
)
445 ret
= blk_mq_alloc_rqs(set
, hctx
->sched_tags
, hctx_idx
, q
->nr_requests
);
447 blk_mq_sched_free_tags(set
, hctx
, hctx_idx
);
452 static void blk_mq_sched_tags_teardown(struct request_queue
*q
)
454 struct blk_mq_tag_set
*set
= q
->tag_set
;
455 struct blk_mq_hw_ctx
*hctx
;
458 queue_for_each_hw_ctx(q
, hctx
, i
)
459 blk_mq_sched_free_tags(set
, hctx
, i
);
462 int blk_mq_sched_init_hctx(struct request_queue
*q
, struct blk_mq_hw_ctx
*hctx
,
463 unsigned int hctx_idx
)
465 struct elevator_queue
*e
= q
->elevator
;
471 ret
= blk_mq_sched_alloc_tags(q
, hctx
, hctx_idx
);
475 if (e
->type
->ops
.mq
.init_hctx
) {
476 ret
= e
->type
->ops
.mq
.init_hctx(hctx
, hctx_idx
);
478 blk_mq_sched_free_tags(q
->tag_set
, hctx
, hctx_idx
);
483 blk_mq_debugfs_register_sched_hctx(q
, hctx
);
488 void blk_mq_sched_exit_hctx(struct request_queue
*q
, struct blk_mq_hw_ctx
*hctx
,
489 unsigned int hctx_idx
)
491 struct elevator_queue
*e
= q
->elevator
;
496 blk_mq_debugfs_unregister_sched_hctx(hctx
);
498 if (e
->type
->ops
.mq
.exit_hctx
&& hctx
->sched_data
) {
499 e
->type
->ops
.mq
.exit_hctx(hctx
, hctx_idx
);
500 hctx
->sched_data
= NULL
;
503 blk_mq_sched_free_tags(q
->tag_set
, hctx
, hctx_idx
);
506 int blk_mq_init_sched(struct request_queue
*q
, struct elevator_type
*e
)
508 struct blk_mq_hw_ctx
*hctx
;
509 struct elevator_queue
*eq
;
519 * Default to double of smaller one between hw queue_depth and 128,
520 * since we don't split into sync/async like the old code did.
521 * Additionally, this is a per-hw queue depth.
523 q
->nr_requests
= 2 * min_t(unsigned int, q
->tag_set
->queue_depth
,
526 queue_for_each_hw_ctx(q
, hctx
, i
) {
527 ret
= blk_mq_sched_alloc_tags(q
, hctx
, i
);
532 ret
= e
->ops
.mq
.init_sched(q
, e
);
536 blk_mq_debugfs_register_sched(q
);
538 queue_for_each_hw_ctx(q
, hctx
, i
) {
539 if (e
->ops
.mq
.init_hctx
) {
540 ret
= e
->ops
.mq
.init_hctx(hctx
, i
);
543 blk_mq_exit_sched(q
, eq
);
544 kobject_put(&eq
->kobj
);
548 blk_mq_debugfs_register_sched_hctx(q
, hctx
);
554 blk_mq_sched_tags_teardown(q
);
559 void blk_mq_exit_sched(struct request_queue
*q
, struct elevator_queue
*e
)
561 struct blk_mq_hw_ctx
*hctx
;
564 queue_for_each_hw_ctx(q
, hctx
, i
) {
565 blk_mq_debugfs_unregister_sched_hctx(hctx
);
566 if (e
->type
->ops
.mq
.exit_hctx
&& hctx
->sched_data
) {
567 e
->type
->ops
.mq
.exit_hctx(hctx
, i
);
568 hctx
->sched_data
= NULL
;
571 blk_mq_debugfs_unregister_sched(q
);
572 if (e
->type
->ops
.mq
.exit_sched
)
573 e
->type
->ops
.mq
.exit_sched(e
);
574 blk_mq_sched_tags_teardown(q
);
578 int blk_mq_sched_init(struct request_queue
*q
)
582 mutex_lock(&q
->sysfs_lock
);
583 ret
= elevator_init(q
, NULL
);
584 mutex_unlock(&q
->sysfs_lock
);