4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
11 #include <linux/syscalls.h>
12 #include <linux/export.h>
13 #include <linux/capability.h>
14 #include <linux/mnt_namespace.h>
15 #include <linux/user_namespace.h>
16 #include <linux/namei.h>
17 #include <linux/security.h>
18 #include <linux/cred.h>
19 #include <linux/idr.h>
20 #include <linux/init.h> /* init_rootfs */
21 #include <linux/fs_struct.h> /* get_fs_root et.al. */
22 #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
23 #include <linux/uaccess.h>
24 #include <linux/proc_ns.h>
25 #include <linux/magic.h>
26 #include <linux/bootmem.h>
27 #include <linux/task_work.h>
28 #include <linux/sched/task.h>
33 /* Maximum number of mounts in a mount namespace */
34 unsigned int sysctl_mount_max __read_mostly
= 100000;
36 static unsigned int m_hash_mask __read_mostly
;
37 static unsigned int m_hash_shift __read_mostly
;
38 static unsigned int mp_hash_mask __read_mostly
;
39 static unsigned int mp_hash_shift __read_mostly
;
41 static __initdata
unsigned long mhash_entries
;
42 static int __init
set_mhash_entries(char *str
)
46 mhash_entries
= simple_strtoul(str
, &str
, 0);
49 __setup("mhash_entries=", set_mhash_entries
);
51 static __initdata
unsigned long mphash_entries
;
52 static int __init
set_mphash_entries(char *str
)
56 mphash_entries
= simple_strtoul(str
, &str
, 0);
59 __setup("mphash_entries=", set_mphash_entries
);
62 static DEFINE_IDA(mnt_id_ida
);
63 static DEFINE_IDA(mnt_group_ida
);
64 static DEFINE_SPINLOCK(mnt_id_lock
);
65 static int mnt_id_start
= 0;
66 static int mnt_group_start
= 1;
68 static struct hlist_head
*mount_hashtable __read_mostly
;
69 static struct hlist_head
*mountpoint_hashtable __read_mostly
;
70 static struct kmem_cache
*mnt_cache __read_mostly
;
71 static DECLARE_RWSEM(namespace_sem
);
74 struct kobject
*fs_kobj
;
75 EXPORT_SYMBOL_GPL(fs_kobj
);
78 * vfsmount lock may be taken for read to prevent changes to the
79 * vfsmount hash, ie. during mountpoint lookups or walking back
82 * It should be taken for write in all cases where the vfsmount
83 * tree or hash is modified or when a vfsmount structure is modified.
85 __cacheline_aligned_in_smp
DEFINE_SEQLOCK(mount_lock
);
87 static inline struct hlist_head
*m_hash(struct vfsmount
*mnt
, struct dentry
*dentry
)
89 unsigned long tmp
= ((unsigned long)mnt
/ L1_CACHE_BYTES
);
90 tmp
+= ((unsigned long)dentry
/ L1_CACHE_BYTES
);
91 tmp
= tmp
+ (tmp
>> m_hash_shift
);
92 return &mount_hashtable
[tmp
& m_hash_mask
];
95 static inline struct hlist_head
*mp_hash(struct dentry
*dentry
)
97 unsigned long tmp
= ((unsigned long)dentry
/ L1_CACHE_BYTES
);
98 tmp
= tmp
+ (tmp
>> mp_hash_shift
);
99 return &mountpoint_hashtable
[tmp
& mp_hash_mask
];
102 static int mnt_alloc_id(struct mount
*mnt
)
107 ida_pre_get(&mnt_id_ida
, GFP_KERNEL
);
108 spin_lock(&mnt_id_lock
);
109 res
= ida_get_new_above(&mnt_id_ida
, mnt_id_start
, &mnt
->mnt_id
);
111 mnt_id_start
= mnt
->mnt_id
+ 1;
112 spin_unlock(&mnt_id_lock
);
119 static void mnt_free_id(struct mount
*mnt
)
121 int id
= mnt
->mnt_id
;
122 spin_lock(&mnt_id_lock
);
123 ida_remove(&mnt_id_ida
, id
);
124 if (mnt_id_start
> id
)
126 spin_unlock(&mnt_id_lock
);
130 * Allocate a new peer group ID
132 * mnt_group_ida is protected by namespace_sem
134 static int mnt_alloc_group_id(struct mount
*mnt
)
138 if (!ida_pre_get(&mnt_group_ida
, GFP_KERNEL
))
141 res
= ida_get_new_above(&mnt_group_ida
,
145 mnt_group_start
= mnt
->mnt_group_id
+ 1;
151 * Release a peer group ID
153 void mnt_release_group_id(struct mount
*mnt
)
155 int id
= mnt
->mnt_group_id
;
156 ida_remove(&mnt_group_ida
, id
);
157 if (mnt_group_start
> id
)
158 mnt_group_start
= id
;
159 mnt
->mnt_group_id
= 0;
163 * vfsmount lock must be held for read
165 static inline void mnt_add_count(struct mount
*mnt
, int n
)
168 this_cpu_add(mnt
->mnt_pcp
->mnt_count
, n
);
177 * vfsmount lock must be held for write
179 unsigned int mnt_get_count(struct mount
*mnt
)
182 unsigned int count
= 0;
185 for_each_possible_cpu(cpu
) {
186 count
+= per_cpu_ptr(mnt
->mnt_pcp
, cpu
)->mnt_count
;
191 return mnt
->mnt_count
;
195 static void drop_mountpoint(struct fs_pin
*p
)
197 struct mount
*m
= container_of(p
, struct mount
, mnt_umount
);
198 dput(m
->mnt_ex_mountpoint
);
203 static struct mount
*alloc_vfsmnt(const char *name
)
205 struct mount
*mnt
= kmem_cache_zalloc(mnt_cache
, GFP_KERNEL
);
209 err
= mnt_alloc_id(mnt
);
214 mnt
->mnt_devname
= kstrdup_const(name
, GFP_KERNEL
);
215 if (!mnt
->mnt_devname
)
220 mnt
->mnt_pcp
= alloc_percpu(struct mnt_pcp
);
222 goto out_free_devname
;
224 this_cpu_add(mnt
->mnt_pcp
->mnt_count
, 1);
227 mnt
->mnt_writers
= 0;
230 INIT_HLIST_NODE(&mnt
->mnt_hash
);
231 INIT_LIST_HEAD(&mnt
->mnt_child
);
232 INIT_LIST_HEAD(&mnt
->mnt_mounts
);
233 INIT_LIST_HEAD(&mnt
->mnt_list
);
234 INIT_LIST_HEAD(&mnt
->mnt_expire
);
235 INIT_LIST_HEAD(&mnt
->mnt_share
);
236 INIT_LIST_HEAD(&mnt
->mnt_slave_list
);
237 INIT_LIST_HEAD(&mnt
->mnt_slave
);
238 INIT_HLIST_NODE(&mnt
->mnt_mp_list
);
239 INIT_LIST_HEAD(&mnt
->mnt_umounting
);
240 init_fs_pin(&mnt
->mnt_umount
, drop_mountpoint
);
246 kfree_const(mnt
->mnt_devname
);
251 kmem_cache_free(mnt_cache
, mnt
);
256 * Most r/o checks on a fs are for operations that take
257 * discrete amounts of time, like a write() or unlink().
258 * We must keep track of when those operations start
259 * (for permission checks) and when they end, so that
260 * we can determine when writes are able to occur to
264 * __mnt_is_readonly: check whether a mount is read-only
265 * @mnt: the mount to check for its write status
267 * This shouldn't be used directly ouside of the VFS.
268 * It does not guarantee that the filesystem will stay
269 * r/w, just that it is right *now*. This can not and
270 * should not be used in place of IS_RDONLY(inode).
271 * mnt_want/drop_write() will _keep_ the filesystem
274 int __mnt_is_readonly(struct vfsmount
*mnt
)
276 if (mnt
->mnt_flags
& MNT_READONLY
)
278 if (sb_rdonly(mnt
->mnt_sb
))
282 EXPORT_SYMBOL_GPL(__mnt_is_readonly
);
284 static inline void mnt_inc_writers(struct mount
*mnt
)
287 this_cpu_inc(mnt
->mnt_pcp
->mnt_writers
);
293 static inline void mnt_dec_writers(struct mount
*mnt
)
296 this_cpu_dec(mnt
->mnt_pcp
->mnt_writers
);
302 static unsigned int mnt_get_writers(struct mount
*mnt
)
305 unsigned int count
= 0;
308 for_each_possible_cpu(cpu
) {
309 count
+= per_cpu_ptr(mnt
->mnt_pcp
, cpu
)->mnt_writers
;
314 return mnt
->mnt_writers
;
318 static int mnt_is_readonly(struct vfsmount
*mnt
)
320 if (mnt
->mnt_sb
->s_readonly_remount
)
322 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
324 return __mnt_is_readonly(mnt
);
328 * Most r/o & frozen checks on a fs are for operations that take discrete
329 * amounts of time, like a write() or unlink(). We must keep track of when
330 * those operations start (for permission checks) and when they end, so that we
331 * can determine when writes are able to occur to a filesystem.
334 * __mnt_want_write - get write access to a mount without freeze protection
335 * @m: the mount on which to take a write
337 * This tells the low-level filesystem that a write is about to be performed to
338 * it, and makes sure that writes are allowed (mnt it read-write) before
339 * returning success. This operation does not protect against filesystem being
340 * frozen. When the write operation is finished, __mnt_drop_write() must be
341 * called. This is effectively a refcount.
343 int __mnt_want_write(struct vfsmount
*m
)
345 struct mount
*mnt
= real_mount(m
);
349 mnt_inc_writers(mnt
);
351 * The store to mnt_inc_writers must be visible before we pass
352 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
353 * incremented count after it has set MNT_WRITE_HOLD.
356 while (ACCESS_ONCE(mnt
->mnt
.mnt_flags
) & MNT_WRITE_HOLD
)
359 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
360 * be set to match its requirements. So we must not load that until
361 * MNT_WRITE_HOLD is cleared.
364 if (mnt_is_readonly(m
)) {
365 mnt_dec_writers(mnt
);
374 * mnt_want_write - get write access to a mount
375 * @m: the mount on which to take a write
377 * This tells the low-level filesystem that a write is about to be performed to
378 * it, and makes sure that writes are allowed (mount is read-write, filesystem
379 * is not frozen) before returning success. When the write operation is
380 * finished, mnt_drop_write() must be called. This is effectively a refcount.
382 int mnt_want_write(struct vfsmount
*m
)
386 sb_start_write(m
->mnt_sb
);
387 ret
= __mnt_want_write(m
);
389 sb_end_write(m
->mnt_sb
);
392 EXPORT_SYMBOL_GPL(mnt_want_write
);
395 * mnt_clone_write - get write access to a mount
396 * @mnt: the mount on which to take a write
398 * This is effectively like mnt_want_write, except
399 * it must only be used to take an extra write reference
400 * on a mountpoint that we already know has a write reference
401 * on it. This allows some optimisation.
403 * After finished, mnt_drop_write must be called as usual to
404 * drop the reference.
406 int mnt_clone_write(struct vfsmount
*mnt
)
408 /* superblock may be r/o */
409 if (__mnt_is_readonly(mnt
))
412 mnt_inc_writers(real_mount(mnt
));
416 EXPORT_SYMBOL_GPL(mnt_clone_write
);
419 * __mnt_want_write_file - get write access to a file's mount
420 * @file: the file who's mount on which to take a write
422 * This is like __mnt_want_write, but it takes a file and can
423 * do some optimisations if the file is open for write already
425 int __mnt_want_write_file(struct file
*file
)
427 if (!(file
->f_mode
& FMODE_WRITER
))
428 return __mnt_want_write(file
->f_path
.mnt
);
430 return mnt_clone_write(file
->f_path
.mnt
);
434 * mnt_want_write_file_path - get write access to a file's mount
435 * @file: the file who's mount on which to take a write
437 * This is like mnt_want_write, but it takes a file and can
438 * do some optimisations if the file is open for write already
440 * Called by the vfs for cases when we have an open file at hand, but will do an
441 * inode operation on it (important distinction for files opened on overlayfs,
442 * since the file operations will come from the real underlying file, while
443 * inode operations come from the overlay).
445 int mnt_want_write_file_path(struct file
*file
)
449 sb_start_write(file
->f_path
.mnt
->mnt_sb
);
450 ret
= __mnt_want_write_file(file
);
452 sb_end_write(file
->f_path
.mnt
->mnt_sb
);
456 static inline int may_write_real(struct file
*file
)
458 struct dentry
*dentry
= file
->f_path
.dentry
;
459 struct dentry
*upperdentry
;
462 if (file
->f_mode
& FMODE_WRITER
)
466 if (likely(!(dentry
->d_flags
& DCACHE_OP_REAL
)))
469 /* File refers to upper, writable layer? */
470 upperdentry
= d_real(dentry
, NULL
, 0, D_REAL_UPPER
);
471 if (upperdentry
&& file_inode(file
) == d_inode(upperdentry
))
474 /* Lower layer: can't write to real file, sorry... */
479 * mnt_want_write_file - get write access to a file's mount
480 * @file: the file who's mount on which to take a write
482 * This is like mnt_want_write, but it takes a file and can
483 * do some optimisations if the file is open for write already
485 * Mostly called by filesystems from their ioctl operation before performing
486 * modification. On overlayfs this needs to check if the file is on a read-only
487 * lower layer and deny access in that case.
489 int mnt_want_write_file(struct file
*file
)
493 ret
= may_write_real(file
);
495 sb_start_write(file_inode(file
)->i_sb
);
496 ret
= __mnt_want_write_file(file
);
498 sb_end_write(file_inode(file
)->i_sb
);
502 EXPORT_SYMBOL_GPL(mnt_want_write_file
);
505 * __mnt_drop_write - give up write access to a mount
506 * @mnt: the mount on which to give up write access
508 * Tells the low-level filesystem that we are done
509 * performing writes to it. Must be matched with
510 * __mnt_want_write() call above.
512 void __mnt_drop_write(struct vfsmount
*mnt
)
515 mnt_dec_writers(real_mount(mnt
));
520 * mnt_drop_write - give up write access to a mount
521 * @mnt: the mount on which to give up write access
523 * Tells the low-level filesystem that we are done performing writes to it and
524 * also allows filesystem to be frozen again. Must be matched with
525 * mnt_want_write() call above.
527 void mnt_drop_write(struct vfsmount
*mnt
)
529 __mnt_drop_write(mnt
);
530 sb_end_write(mnt
->mnt_sb
);
532 EXPORT_SYMBOL_GPL(mnt_drop_write
);
534 void __mnt_drop_write_file(struct file
*file
)
536 __mnt_drop_write(file
->f_path
.mnt
);
539 void mnt_drop_write_file_path(struct file
*file
)
541 mnt_drop_write(file
->f_path
.mnt
);
544 void mnt_drop_write_file(struct file
*file
)
546 __mnt_drop_write(file
->f_path
.mnt
);
547 sb_end_write(file_inode(file
)->i_sb
);
549 EXPORT_SYMBOL(mnt_drop_write_file
);
551 static int mnt_make_readonly(struct mount
*mnt
)
556 mnt
->mnt
.mnt_flags
|= MNT_WRITE_HOLD
;
558 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
559 * should be visible before we do.
564 * With writers on hold, if this value is zero, then there are
565 * definitely no active writers (although held writers may subsequently
566 * increment the count, they'll have to wait, and decrement it after
567 * seeing MNT_READONLY).
569 * It is OK to have counter incremented on one CPU and decremented on
570 * another: the sum will add up correctly. The danger would be when we
571 * sum up each counter, if we read a counter before it is incremented,
572 * but then read another CPU's count which it has been subsequently
573 * decremented from -- we would see more decrements than we should.
574 * MNT_WRITE_HOLD protects against this scenario, because
575 * mnt_want_write first increments count, then smp_mb, then spins on
576 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
577 * we're counting up here.
579 if (mnt_get_writers(mnt
) > 0)
582 mnt
->mnt
.mnt_flags
|= MNT_READONLY
;
584 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
585 * that become unheld will see MNT_READONLY.
588 mnt
->mnt
.mnt_flags
&= ~MNT_WRITE_HOLD
;
593 static void __mnt_unmake_readonly(struct mount
*mnt
)
596 mnt
->mnt
.mnt_flags
&= ~MNT_READONLY
;
600 int sb_prepare_remount_readonly(struct super_block
*sb
)
605 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
606 if (atomic_long_read(&sb
->s_remove_count
))
610 list_for_each_entry(mnt
, &sb
->s_mounts
, mnt_instance
) {
611 if (!(mnt
->mnt
.mnt_flags
& MNT_READONLY
)) {
612 mnt
->mnt
.mnt_flags
|= MNT_WRITE_HOLD
;
614 if (mnt_get_writers(mnt
) > 0) {
620 if (!err
&& atomic_long_read(&sb
->s_remove_count
))
624 sb
->s_readonly_remount
= 1;
627 list_for_each_entry(mnt
, &sb
->s_mounts
, mnt_instance
) {
628 if (mnt
->mnt
.mnt_flags
& MNT_WRITE_HOLD
)
629 mnt
->mnt
.mnt_flags
&= ~MNT_WRITE_HOLD
;
636 static void free_vfsmnt(struct mount
*mnt
)
638 kfree_const(mnt
->mnt_devname
);
640 free_percpu(mnt
->mnt_pcp
);
642 kmem_cache_free(mnt_cache
, mnt
);
645 static void delayed_free_vfsmnt(struct rcu_head
*head
)
647 free_vfsmnt(container_of(head
, struct mount
, mnt_rcu
));
650 /* call under rcu_read_lock */
651 int __legitimize_mnt(struct vfsmount
*bastard
, unsigned seq
)
654 if (read_seqretry(&mount_lock
, seq
))
658 mnt
= real_mount(bastard
);
659 mnt_add_count(mnt
, 1);
660 if (likely(!read_seqretry(&mount_lock
, seq
)))
662 if (bastard
->mnt_flags
& MNT_SYNC_UMOUNT
) {
663 mnt_add_count(mnt
, -1);
669 /* call under rcu_read_lock */
670 bool legitimize_mnt(struct vfsmount
*bastard
, unsigned seq
)
672 int res
= __legitimize_mnt(bastard
, seq
);
675 if (unlikely(res
< 0)) {
684 * find the first mount at @dentry on vfsmount @mnt.
685 * call under rcu_read_lock()
687 struct mount
*__lookup_mnt(struct vfsmount
*mnt
, struct dentry
*dentry
)
689 struct hlist_head
*head
= m_hash(mnt
, dentry
);
692 hlist_for_each_entry_rcu(p
, head
, mnt_hash
)
693 if (&p
->mnt_parent
->mnt
== mnt
&& p
->mnt_mountpoint
== dentry
)
699 * lookup_mnt - Return the first child mount mounted at path
701 * "First" means first mounted chronologically. If you create the
704 * mount /dev/sda1 /mnt
705 * mount /dev/sda2 /mnt
706 * mount /dev/sda3 /mnt
708 * Then lookup_mnt() on the base /mnt dentry in the root mount will
709 * return successively the root dentry and vfsmount of /dev/sda1, then
710 * /dev/sda2, then /dev/sda3, then NULL.
712 * lookup_mnt takes a reference to the found vfsmount.
714 struct vfsmount
*lookup_mnt(const struct path
*path
)
716 struct mount
*child_mnt
;
722 seq
= read_seqbegin(&mount_lock
);
723 child_mnt
= __lookup_mnt(path
->mnt
, path
->dentry
);
724 m
= child_mnt
? &child_mnt
->mnt
: NULL
;
725 } while (!legitimize_mnt(m
, seq
));
731 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
732 * current mount namespace.
734 * The common case is dentries are not mountpoints at all and that
735 * test is handled inline. For the slow case when we are actually
736 * dealing with a mountpoint of some kind, walk through all of the
737 * mounts in the current mount namespace and test to see if the dentry
740 * The mount_hashtable is not usable in the context because we
741 * need to identify all mounts that may be in the current mount
742 * namespace not just a mount that happens to have some specified
745 bool __is_local_mountpoint(struct dentry
*dentry
)
747 struct mnt_namespace
*ns
= current
->nsproxy
->mnt_ns
;
749 bool is_covered
= false;
751 if (!d_mountpoint(dentry
))
754 down_read(&namespace_sem
);
755 list_for_each_entry(mnt
, &ns
->list
, mnt_list
) {
756 is_covered
= (mnt
->mnt_mountpoint
== dentry
);
760 up_read(&namespace_sem
);
765 static struct mountpoint
*lookup_mountpoint(struct dentry
*dentry
)
767 struct hlist_head
*chain
= mp_hash(dentry
);
768 struct mountpoint
*mp
;
770 hlist_for_each_entry(mp
, chain
, m_hash
) {
771 if (mp
->m_dentry
== dentry
) {
772 /* might be worth a WARN_ON() */
773 if (d_unlinked(dentry
))
774 return ERR_PTR(-ENOENT
);
782 static struct mountpoint
*get_mountpoint(struct dentry
*dentry
)
784 struct mountpoint
*mp
, *new = NULL
;
787 if (d_mountpoint(dentry
)) {
789 read_seqlock_excl(&mount_lock
);
790 mp
= lookup_mountpoint(dentry
);
791 read_sequnlock_excl(&mount_lock
);
797 new = kmalloc(sizeof(struct mountpoint
), GFP_KERNEL
);
799 return ERR_PTR(-ENOMEM
);
802 /* Exactly one processes may set d_mounted */
803 ret
= d_set_mounted(dentry
);
805 /* Someone else set d_mounted? */
809 /* The dentry is not available as a mountpoint? */
814 /* Add the new mountpoint to the hash table */
815 read_seqlock_excl(&mount_lock
);
816 new->m_dentry
= dentry
;
818 hlist_add_head(&new->m_hash
, mp_hash(dentry
));
819 INIT_HLIST_HEAD(&new->m_list
);
820 read_sequnlock_excl(&mount_lock
);
829 static void put_mountpoint(struct mountpoint
*mp
)
831 if (!--mp
->m_count
) {
832 struct dentry
*dentry
= mp
->m_dentry
;
833 BUG_ON(!hlist_empty(&mp
->m_list
));
834 spin_lock(&dentry
->d_lock
);
835 dentry
->d_flags
&= ~DCACHE_MOUNTED
;
836 spin_unlock(&dentry
->d_lock
);
837 hlist_del(&mp
->m_hash
);
842 static inline int check_mnt(struct mount
*mnt
)
844 return mnt
->mnt_ns
== current
->nsproxy
->mnt_ns
;
848 * vfsmount lock must be held for write
850 static void touch_mnt_namespace(struct mnt_namespace
*ns
)
854 wake_up_interruptible(&ns
->poll
);
859 * vfsmount lock must be held for write
861 static void __touch_mnt_namespace(struct mnt_namespace
*ns
)
863 if (ns
&& ns
->event
!= event
) {
865 wake_up_interruptible(&ns
->poll
);
870 * vfsmount lock must be held for write
872 static void unhash_mnt(struct mount
*mnt
)
874 mnt
->mnt_parent
= mnt
;
875 mnt
->mnt_mountpoint
= mnt
->mnt
.mnt_root
;
876 list_del_init(&mnt
->mnt_child
);
877 hlist_del_init_rcu(&mnt
->mnt_hash
);
878 hlist_del_init(&mnt
->mnt_mp_list
);
879 put_mountpoint(mnt
->mnt_mp
);
884 * vfsmount lock must be held for write
886 static void detach_mnt(struct mount
*mnt
, struct path
*old_path
)
888 old_path
->dentry
= mnt
->mnt_mountpoint
;
889 old_path
->mnt
= &mnt
->mnt_parent
->mnt
;
894 * vfsmount lock must be held for write
896 static void umount_mnt(struct mount
*mnt
)
898 /* old mountpoint will be dropped when we can do that */
899 mnt
->mnt_ex_mountpoint
= mnt
->mnt_mountpoint
;
904 * vfsmount lock must be held for write
906 void mnt_set_mountpoint(struct mount
*mnt
,
907 struct mountpoint
*mp
,
908 struct mount
*child_mnt
)
911 mnt_add_count(mnt
, 1); /* essentially, that's mntget */
912 child_mnt
->mnt_mountpoint
= dget(mp
->m_dentry
);
913 child_mnt
->mnt_parent
= mnt
;
914 child_mnt
->mnt_mp
= mp
;
915 hlist_add_head(&child_mnt
->mnt_mp_list
, &mp
->m_list
);
918 static void __attach_mnt(struct mount
*mnt
, struct mount
*parent
)
920 hlist_add_head_rcu(&mnt
->mnt_hash
,
921 m_hash(&parent
->mnt
, mnt
->mnt_mountpoint
));
922 list_add_tail(&mnt
->mnt_child
, &parent
->mnt_mounts
);
926 * vfsmount lock must be held for write
928 static void attach_mnt(struct mount
*mnt
,
929 struct mount
*parent
,
930 struct mountpoint
*mp
)
932 mnt_set_mountpoint(parent
, mp
, mnt
);
933 __attach_mnt(mnt
, parent
);
936 void mnt_change_mountpoint(struct mount
*parent
, struct mountpoint
*mp
, struct mount
*mnt
)
938 struct mountpoint
*old_mp
= mnt
->mnt_mp
;
939 struct dentry
*old_mountpoint
= mnt
->mnt_mountpoint
;
940 struct mount
*old_parent
= mnt
->mnt_parent
;
942 list_del_init(&mnt
->mnt_child
);
943 hlist_del_init(&mnt
->mnt_mp_list
);
944 hlist_del_init_rcu(&mnt
->mnt_hash
);
946 attach_mnt(mnt
, parent
, mp
);
948 put_mountpoint(old_mp
);
951 * Safely avoid even the suggestion this code might sleep or
952 * lock the mount hash by taking advantage of the knowledge that
953 * mnt_change_mountpoint will not release the final reference
956 * During mounting, the mount passed in as the parent mount will
957 * continue to use the old mountpoint and during unmounting, the
958 * old mountpoint will continue to exist until namespace_unlock,
959 * which happens well after mnt_change_mountpoint.
961 spin_lock(&old_mountpoint
->d_lock
);
962 old_mountpoint
->d_lockref
.count
--;
963 spin_unlock(&old_mountpoint
->d_lock
);
965 mnt_add_count(old_parent
, -1);
969 * vfsmount lock must be held for write
971 static void commit_tree(struct mount
*mnt
)
973 struct mount
*parent
= mnt
->mnt_parent
;
976 struct mnt_namespace
*n
= parent
->mnt_ns
;
978 BUG_ON(parent
== mnt
);
980 list_add_tail(&head
, &mnt
->mnt_list
);
981 list_for_each_entry(m
, &head
, mnt_list
)
984 list_splice(&head
, n
->list
.prev
);
986 n
->mounts
+= n
->pending_mounts
;
987 n
->pending_mounts
= 0;
989 __attach_mnt(mnt
, parent
);
990 touch_mnt_namespace(n
);
993 static struct mount
*next_mnt(struct mount
*p
, struct mount
*root
)
995 struct list_head
*next
= p
->mnt_mounts
.next
;
996 if (next
== &p
->mnt_mounts
) {
1000 next
= p
->mnt_child
.next
;
1001 if (next
!= &p
->mnt_parent
->mnt_mounts
)
1006 return list_entry(next
, struct mount
, mnt_child
);
1009 static struct mount
*skip_mnt_tree(struct mount
*p
)
1011 struct list_head
*prev
= p
->mnt_mounts
.prev
;
1012 while (prev
!= &p
->mnt_mounts
) {
1013 p
= list_entry(prev
, struct mount
, mnt_child
);
1014 prev
= p
->mnt_mounts
.prev
;
1020 vfs_kern_mount(struct file_system_type
*type
, int flags
, const char *name
, void *data
)
1023 struct dentry
*root
;
1026 return ERR_PTR(-ENODEV
);
1028 mnt
= alloc_vfsmnt(name
);
1030 return ERR_PTR(-ENOMEM
);
1032 if (flags
& SB_KERNMOUNT
)
1033 mnt
->mnt
.mnt_flags
= MNT_INTERNAL
;
1035 root
= mount_fs(type
, flags
, name
, data
);
1039 return ERR_CAST(root
);
1042 mnt
->mnt
.mnt_root
= root
;
1043 mnt
->mnt
.mnt_sb
= root
->d_sb
;
1044 mnt
->mnt_mountpoint
= mnt
->mnt
.mnt_root
;
1045 mnt
->mnt_parent
= mnt
;
1047 list_add_tail(&mnt
->mnt_instance
, &root
->d_sb
->s_mounts
);
1048 unlock_mount_hash();
1051 EXPORT_SYMBOL_GPL(vfs_kern_mount
);
1054 vfs_submount(const struct dentry
*mountpoint
, struct file_system_type
*type
,
1055 const char *name
, void *data
)
1057 /* Until it is worked out how to pass the user namespace
1058 * through from the parent mount to the submount don't support
1059 * unprivileged mounts with submounts.
1061 if (mountpoint
->d_sb
->s_user_ns
!= &init_user_ns
)
1062 return ERR_PTR(-EPERM
);
1064 return vfs_kern_mount(type
, SB_SUBMOUNT
, name
, data
);
1066 EXPORT_SYMBOL_GPL(vfs_submount
);
1068 static struct mount
*clone_mnt(struct mount
*old
, struct dentry
*root
,
1071 struct super_block
*sb
= old
->mnt
.mnt_sb
;
1075 mnt
= alloc_vfsmnt(old
->mnt_devname
);
1077 return ERR_PTR(-ENOMEM
);
1079 if (flag
& (CL_SLAVE
| CL_PRIVATE
| CL_SHARED_TO_SLAVE
))
1080 mnt
->mnt_group_id
= 0; /* not a peer of original */
1082 mnt
->mnt_group_id
= old
->mnt_group_id
;
1084 if ((flag
& CL_MAKE_SHARED
) && !mnt
->mnt_group_id
) {
1085 err
= mnt_alloc_group_id(mnt
);
1090 mnt
->mnt
.mnt_flags
= old
->mnt
.mnt_flags
& ~(MNT_WRITE_HOLD
|MNT_MARKED
);
1091 /* Don't allow unprivileged users to change mount flags */
1092 if (flag
& CL_UNPRIVILEGED
) {
1093 mnt
->mnt
.mnt_flags
|= MNT_LOCK_ATIME
;
1095 if (mnt
->mnt
.mnt_flags
& MNT_READONLY
)
1096 mnt
->mnt
.mnt_flags
|= MNT_LOCK_READONLY
;
1098 if (mnt
->mnt
.mnt_flags
& MNT_NODEV
)
1099 mnt
->mnt
.mnt_flags
|= MNT_LOCK_NODEV
;
1101 if (mnt
->mnt
.mnt_flags
& MNT_NOSUID
)
1102 mnt
->mnt
.mnt_flags
|= MNT_LOCK_NOSUID
;
1104 if (mnt
->mnt
.mnt_flags
& MNT_NOEXEC
)
1105 mnt
->mnt
.mnt_flags
|= MNT_LOCK_NOEXEC
;
1108 /* Don't allow unprivileged users to reveal what is under a mount */
1109 if ((flag
& CL_UNPRIVILEGED
) &&
1110 (!(flag
& CL_EXPIRE
) || list_empty(&old
->mnt_expire
)))
1111 mnt
->mnt
.mnt_flags
|= MNT_LOCKED
;
1113 atomic_inc(&sb
->s_active
);
1114 mnt
->mnt
.mnt_sb
= sb
;
1115 mnt
->mnt
.mnt_root
= dget(root
);
1116 mnt
->mnt_mountpoint
= mnt
->mnt
.mnt_root
;
1117 mnt
->mnt_parent
= mnt
;
1119 list_add_tail(&mnt
->mnt_instance
, &sb
->s_mounts
);
1120 unlock_mount_hash();
1122 if ((flag
& CL_SLAVE
) ||
1123 ((flag
& CL_SHARED_TO_SLAVE
) && IS_MNT_SHARED(old
))) {
1124 list_add(&mnt
->mnt_slave
, &old
->mnt_slave_list
);
1125 mnt
->mnt_master
= old
;
1126 CLEAR_MNT_SHARED(mnt
);
1127 } else if (!(flag
& CL_PRIVATE
)) {
1128 if ((flag
& CL_MAKE_SHARED
) || IS_MNT_SHARED(old
))
1129 list_add(&mnt
->mnt_share
, &old
->mnt_share
);
1130 if (IS_MNT_SLAVE(old
))
1131 list_add(&mnt
->mnt_slave
, &old
->mnt_slave
);
1132 mnt
->mnt_master
= old
->mnt_master
;
1134 CLEAR_MNT_SHARED(mnt
);
1136 if (flag
& CL_MAKE_SHARED
)
1137 set_mnt_shared(mnt
);
1139 /* stick the duplicate mount on the same expiry list
1140 * as the original if that was on one */
1141 if (flag
& CL_EXPIRE
) {
1142 if (!list_empty(&old
->mnt_expire
))
1143 list_add(&mnt
->mnt_expire
, &old
->mnt_expire
);
1151 return ERR_PTR(err
);
1154 static void cleanup_mnt(struct mount
*mnt
)
1157 * This probably indicates that somebody messed
1158 * up a mnt_want/drop_write() pair. If this
1159 * happens, the filesystem was probably unable
1160 * to make r/w->r/o transitions.
1163 * The locking used to deal with mnt_count decrement provides barriers,
1164 * so mnt_get_writers() below is safe.
1166 WARN_ON(mnt_get_writers(mnt
));
1167 if (unlikely(mnt
->mnt_pins
.first
))
1169 fsnotify_vfsmount_delete(&mnt
->mnt
);
1170 dput(mnt
->mnt
.mnt_root
);
1171 deactivate_super(mnt
->mnt
.mnt_sb
);
1173 call_rcu(&mnt
->mnt_rcu
, delayed_free_vfsmnt
);
1176 static void __cleanup_mnt(struct rcu_head
*head
)
1178 cleanup_mnt(container_of(head
, struct mount
, mnt_rcu
));
1181 static LLIST_HEAD(delayed_mntput_list
);
1182 static void delayed_mntput(struct work_struct
*unused
)
1184 struct llist_node
*node
= llist_del_all(&delayed_mntput_list
);
1185 struct mount
*m
, *t
;
1187 llist_for_each_entry_safe(m
, t
, node
, mnt_llist
)
1190 static DECLARE_DELAYED_WORK(delayed_mntput_work
, delayed_mntput
);
1192 static void mntput_no_expire(struct mount
*mnt
)
1195 mnt_add_count(mnt
, -1);
1196 if (likely(mnt
->mnt_ns
)) { /* shouldn't be the last one */
1201 if (mnt_get_count(mnt
)) {
1203 unlock_mount_hash();
1206 if (unlikely(mnt
->mnt
.mnt_flags
& MNT_DOOMED
)) {
1208 unlock_mount_hash();
1211 mnt
->mnt
.mnt_flags
|= MNT_DOOMED
;
1214 list_del(&mnt
->mnt_instance
);
1216 if (unlikely(!list_empty(&mnt
->mnt_mounts
))) {
1217 struct mount
*p
, *tmp
;
1218 list_for_each_entry_safe(p
, tmp
, &mnt
->mnt_mounts
, mnt_child
) {
1222 unlock_mount_hash();
1224 if (likely(!(mnt
->mnt
.mnt_flags
& MNT_INTERNAL
))) {
1225 struct task_struct
*task
= current
;
1226 if (likely(!(task
->flags
& PF_KTHREAD
))) {
1227 init_task_work(&mnt
->mnt_rcu
, __cleanup_mnt
);
1228 if (!task_work_add(task
, &mnt
->mnt_rcu
, true))
1231 if (llist_add(&mnt
->mnt_llist
, &delayed_mntput_list
))
1232 schedule_delayed_work(&delayed_mntput_work
, 1);
1238 void mntput(struct vfsmount
*mnt
)
1241 struct mount
*m
= real_mount(mnt
);
1242 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
1243 if (unlikely(m
->mnt_expiry_mark
))
1244 m
->mnt_expiry_mark
= 0;
1245 mntput_no_expire(m
);
1248 EXPORT_SYMBOL(mntput
);
1250 struct vfsmount
*mntget(struct vfsmount
*mnt
)
1253 mnt_add_count(real_mount(mnt
), 1);
1256 EXPORT_SYMBOL(mntget
);
1258 /* path_is_mountpoint() - Check if path is a mount in the current
1261 * d_mountpoint() can only be used reliably to establish if a dentry is
1262 * not mounted in any namespace and that common case is handled inline.
1263 * d_mountpoint() isn't aware of the possibility there may be multiple
1264 * mounts using a given dentry in a different namespace. This function
1265 * checks if the passed in path is a mountpoint rather than the dentry
1268 bool path_is_mountpoint(const struct path
*path
)
1273 if (!d_mountpoint(path
->dentry
))
1278 seq
= read_seqbegin(&mount_lock
);
1279 res
= __path_is_mountpoint(path
);
1280 } while (read_seqretry(&mount_lock
, seq
));
1285 EXPORT_SYMBOL(path_is_mountpoint
);
1287 struct vfsmount
*mnt_clone_internal(const struct path
*path
)
1290 p
= clone_mnt(real_mount(path
->mnt
), path
->dentry
, CL_PRIVATE
);
1293 p
->mnt
.mnt_flags
|= MNT_INTERNAL
;
1297 #ifdef CONFIG_PROC_FS
1298 /* iterator; we want it to have access to namespace_sem, thus here... */
1299 static void *m_start(struct seq_file
*m
, loff_t
*pos
)
1301 struct proc_mounts
*p
= m
->private;
1303 down_read(&namespace_sem
);
1304 if (p
->cached_event
== p
->ns
->event
) {
1305 void *v
= p
->cached_mount
;
1306 if (*pos
== p
->cached_index
)
1308 if (*pos
== p
->cached_index
+ 1) {
1309 v
= seq_list_next(v
, &p
->ns
->list
, &p
->cached_index
);
1310 return p
->cached_mount
= v
;
1314 p
->cached_event
= p
->ns
->event
;
1315 p
->cached_mount
= seq_list_start(&p
->ns
->list
, *pos
);
1316 p
->cached_index
= *pos
;
1317 return p
->cached_mount
;
1320 static void *m_next(struct seq_file
*m
, void *v
, loff_t
*pos
)
1322 struct proc_mounts
*p
= m
->private;
1324 p
->cached_mount
= seq_list_next(v
, &p
->ns
->list
, pos
);
1325 p
->cached_index
= *pos
;
1326 return p
->cached_mount
;
1329 static void m_stop(struct seq_file
*m
, void *v
)
1331 up_read(&namespace_sem
);
1334 static int m_show(struct seq_file
*m
, void *v
)
1336 struct proc_mounts
*p
= m
->private;
1337 struct mount
*r
= list_entry(v
, struct mount
, mnt_list
);
1338 return p
->show(m
, &r
->mnt
);
1341 const struct seq_operations mounts_op
= {
1347 #endif /* CONFIG_PROC_FS */
1350 * may_umount_tree - check if a mount tree is busy
1351 * @mnt: root of mount tree
1353 * This is called to check if a tree of mounts has any
1354 * open files, pwds, chroots or sub mounts that are
1357 int may_umount_tree(struct vfsmount
*m
)
1359 struct mount
*mnt
= real_mount(m
);
1360 int actual_refs
= 0;
1361 int minimum_refs
= 0;
1365 /* write lock needed for mnt_get_count */
1367 for (p
= mnt
; p
; p
= next_mnt(p
, mnt
)) {
1368 actual_refs
+= mnt_get_count(p
);
1371 unlock_mount_hash();
1373 if (actual_refs
> minimum_refs
)
1379 EXPORT_SYMBOL(may_umount_tree
);
1382 * may_umount - check if a mount point is busy
1383 * @mnt: root of mount
1385 * This is called to check if a mount point has any
1386 * open files, pwds, chroots or sub mounts. If the
1387 * mount has sub mounts this will return busy
1388 * regardless of whether the sub mounts are busy.
1390 * Doesn't take quota and stuff into account. IOW, in some cases it will
1391 * give false negatives. The main reason why it's here is that we need
1392 * a non-destructive way to look for easily umountable filesystems.
1394 int may_umount(struct vfsmount
*mnt
)
1397 down_read(&namespace_sem
);
1399 if (propagate_mount_busy(real_mount(mnt
), 2))
1401 unlock_mount_hash();
1402 up_read(&namespace_sem
);
1406 EXPORT_SYMBOL(may_umount
);
1408 static HLIST_HEAD(unmounted
); /* protected by namespace_sem */
1410 static void namespace_unlock(void)
1412 struct hlist_head head
;
1414 hlist_move_list(&unmounted
, &head
);
1416 up_write(&namespace_sem
);
1418 if (likely(hlist_empty(&head
)))
1423 group_pin_kill(&head
);
1426 static inline void namespace_lock(void)
1428 down_write(&namespace_sem
);
1431 enum umount_tree_flags
{
1433 UMOUNT_PROPAGATE
= 2,
1434 UMOUNT_CONNECTED
= 4,
1437 static bool disconnect_mount(struct mount
*mnt
, enum umount_tree_flags how
)
1439 /* Leaving mounts connected is only valid for lazy umounts */
1440 if (how
& UMOUNT_SYNC
)
1443 /* A mount without a parent has nothing to be connected to */
1444 if (!mnt_has_parent(mnt
))
1447 /* Because the reference counting rules change when mounts are
1448 * unmounted and connected, umounted mounts may not be
1449 * connected to mounted mounts.
1451 if (!(mnt
->mnt_parent
->mnt
.mnt_flags
& MNT_UMOUNT
))
1454 /* Has it been requested that the mount remain connected? */
1455 if (how
& UMOUNT_CONNECTED
)
1458 /* Is the mount locked such that it needs to remain connected? */
1459 if (IS_MNT_LOCKED(mnt
))
1462 /* By default disconnect the mount */
1467 * mount_lock must be held
1468 * namespace_sem must be held for write
1470 static void umount_tree(struct mount
*mnt
, enum umount_tree_flags how
)
1472 LIST_HEAD(tmp_list
);
1475 if (how
& UMOUNT_PROPAGATE
)
1476 propagate_mount_unlock(mnt
);
1478 /* Gather the mounts to umount */
1479 for (p
= mnt
; p
; p
= next_mnt(p
, mnt
)) {
1480 p
->mnt
.mnt_flags
|= MNT_UMOUNT
;
1481 list_move(&p
->mnt_list
, &tmp_list
);
1484 /* Hide the mounts from mnt_mounts */
1485 list_for_each_entry(p
, &tmp_list
, mnt_list
) {
1486 list_del_init(&p
->mnt_child
);
1489 /* Add propogated mounts to the tmp_list */
1490 if (how
& UMOUNT_PROPAGATE
)
1491 propagate_umount(&tmp_list
);
1493 while (!list_empty(&tmp_list
)) {
1494 struct mnt_namespace
*ns
;
1496 p
= list_first_entry(&tmp_list
, struct mount
, mnt_list
);
1497 list_del_init(&p
->mnt_expire
);
1498 list_del_init(&p
->mnt_list
);
1502 __touch_mnt_namespace(ns
);
1505 if (how
& UMOUNT_SYNC
)
1506 p
->mnt
.mnt_flags
|= MNT_SYNC_UMOUNT
;
1508 disconnect
= disconnect_mount(p
, how
);
1510 pin_insert_group(&p
->mnt_umount
, &p
->mnt_parent
->mnt
,
1511 disconnect
? &unmounted
: NULL
);
1512 if (mnt_has_parent(p
)) {
1513 mnt_add_count(p
->mnt_parent
, -1);
1515 /* Don't forget about p */
1516 list_add_tail(&p
->mnt_child
, &p
->mnt_parent
->mnt_mounts
);
1521 change_mnt_propagation(p
, MS_PRIVATE
);
1525 static void shrink_submounts(struct mount
*mnt
);
1527 static int do_umount(struct mount
*mnt
, int flags
)
1529 struct super_block
*sb
= mnt
->mnt
.mnt_sb
;
1532 retval
= security_sb_umount(&mnt
->mnt
, flags
);
1537 * Allow userspace to request a mountpoint be expired rather than
1538 * unmounting unconditionally. Unmount only happens if:
1539 * (1) the mark is already set (the mark is cleared by mntput())
1540 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1542 if (flags
& MNT_EXPIRE
) {
1543 if (&mnt
->mnt
== current
->fs
->root
.mnt
||
1544 flags
& (MNT_FORCE
| MNT_DETACH
))
1548 * probably don't strictly need the lock here if we examined
1549 * all race cases, but it's a slowpath.
1552 if (mnt_get_count(mnt
) != 2) {
1553 unlock_mount_hash();
1556 unlock_mount_hash();
1558 if (!xchg(&mnt
->mnt_expiry_mark
, 1))
1563 * If we may have to abort operations to get out of this
1564 * mount, and they will themselves hold resources we must
1565 * allow the fs to do things. In the Unix tradition of
1566 * 'Gee thats tricky lets do it in userspace' the umount_begin
1567 * might fail to complete on the first run through as other tasks
1568 * must return, and the like. Thats for the mount program to worry
1569 * about for the moment.
1572 if (flags
& MNT_FORCE
&& sb
->s_op
->umount_begin
) {
1573 sb
->s_op
->umount_begin(sb
);
1577 * No sense to grab the lock for this test, but test itself looks
1578 * somewhat bogus. Suggestions for better replacement?
1579 * Ho-hum... In principle, we might treat that as umount + switch
1580 * to rootfs. GC would eventually take care of the old vfsmount.
1581 * Actually it makes sense, especially if rootfs would contain a
1582 * /reboot - static binary that would close all descriptors and
1583 * call reboot(9). Then init(8) could umount root and exec /reboot.
1585 if (&mnt
->mnt
== current
->fs
->root
.mnt
&& !(flags
& MNT_DETACH
)) {
1587 * Special case for "unmounting" root ...
1588 * we just try to remount it readonly.
1590 if (!capable(CAP_SYS_ADMIN
))
1592 down_write(&sb
->s_umount
);
1594 retval
= do_remount_sb(sb
, SB_RDONLY
, NULL
, 0);
1595 up_write(&sb
->s_umount
);
1603 if (flags
& MNT_DETACH
) {
1604 if (!list_empty(&mnt
->mnt_list
))
1605 umount_tree(mnt
, UMOUNT_PROPAGATE
);
1608 shrink_submounts(mnt
);
1610 if (!propagate_mount_busy(mnt
, 2)) {
1611 if (!list_empty(&mnt
->mnt_list
))
1612 umount_tree(mnt
, UMOUNT_PROPAGATE
|UMOUNT_SYNC
);
1616 unlock_mount_hash();
1622 * __detach_mounts - lazily unmount all mounts on the specified dentry
1624 * During unlink, rmdir, and d_drop it is possible to loose the path
1625 * to an existing mountpoint, and wind up leaking the mount.
1626 * detach_mounts allows lazily unmounting those mounts instead of
1629 * The caller may hold dentry->d_inode->i_mutex.
1631 void __detach_mounts(struct dentry
*dentry
)
1633 struct mountpoint
*mp
;
1638 mp
= lookup_mountpoint(dentry
);
1639 if (IS_ERR_OR_NULL(mp
))
1643 while (!hlist_empty(&mp
->m_list
)) {
1644 mnt
= hlist_entry(mp
->m_list
.first
, struct mount
, mnt_mp_list
);
1645 if (mnt
->mnt
.mnt_flags
& MNT_UMOUNT
) {
1646 hlist_add_head(&mnt
->mnt_umount
.s_list
, &unmounted
);
1649 else umount_tree(mnt
, UMOUNT_CONNECTED
);
1653 unlock_mount_hash();
1658 * Is the caller allowed to modify his namespace?
1660 static inline bool may_mount(void)
1662 return ns_capable(current
->nsproxy
->mnt_ns
->user_ns
, CAP_SYS_ADMIN
);
1665 static inline bool may_mandlock(void)
1667 #ifndef CONFIG_MANDATORY_FILE_LOCKING
1670 return capable(CAP_SYS_ADMIN
);
1674 * Now umount can handle mount points as well as block devices.
1675 * This is important for filesystems which use unnamed block devices.
1677 * We now support a flag for forced unmount like the other 'big iron'
1678 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1681 SYSCALL_DEFINE2(umount
, char __user
*, name
, int, flags
)
1686 int lookup_flags
= 0;
1688 if (flags
& ~(MNT_FORCE
| MNT_DETACH
| MNT_EXPIRE
| UMOUNT_NOFOLLOW
))
1694 if (!(flags
& UMOUNT_NOFOLLOW
))
1695 lookup_flags
|= LOOKUP_FOLLOW
;
1697 retval
= user_path_mountpoint_at(AT_FDCWD
, name
, lookup_flags
, &path
);
1700 mnt
= real_mount(path
.mnt
);
1702 if (path
.dentry
!= path
.mnt
->mnt_root
)
1704 if (!check_mnt(mnt
))
1706 if (mnt
->mnt
.mnt_flags
& MNT_LOCKED
)
1709 if (flags
& MNT_FORCE
&& !capable(CAP_SYS_ADMIN
))
1712 retval
= do_umount(mnt
, flags
);
1714 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
1716 mntput_no_expire(mnt
);
1721 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1724 * The 2.0 compatible umount. No flags.
1726 SYSCALL_DEFINE1(oldumount
, char __user
*, name
)
1728 return sys_umount(name
, 0);
1733 static bool is_mnt_ns_file(struct dentry
*dentry
)
1735 /* Is this a proxy for a mount namespace? */
1736 return dentry
->d_op
== &ns_dentry_operations
&&
1737 dentry
->d_fsdata
== &mntns_operations
;
1740 struct mnt_namespace
*to_mnt_ns(struct ns_common
*ns
)
1742 return container_of(ns
, struct mnt_namespace
, ns
);
1745 static bool mnt_ns_loop(struct dentry
*dentry
)
1747 /* Could bind mounting the mount namespace inode cause a
1748 * mount namespace loop?
1750 struct mnt_namespace
*mnt_ns
;
1751 if (!is_mnt_ns_file(dentry
))
1754 mnt_ns
= to_mnt_ns(get_proc_ns(dentry
->d_inode
));
1755 return current
->nsproxy
->mnt_ns
->seq
>= mnt_ns
->seq
;
1758 struct mount
*copy_tree(struct mount
*mnt
, struct dentry
*dentry
,
1761 struct mount
*res
, *p
, *q
, *r
, *parent
;
1763 if (!(flag
& CL_COPY_UNBINDABLE
) && IS_MNT_UNBINDABLE(mnt
))
1764 return ERR_PTR(-EINVAL
);
1766 if (!(flag
& CL_COPY_MNT_NS_FILE
) && is_mnt_ns_file(dentry
))
1767 return ERR_PTR(-EINVAL
);
1769 res
= q
= clone_mnt(mnt
, dentry
, flag
);
1773 q
->mnt_mountpoint
= mnt
->mnt_mountpoint
;
1776 list_for_each_entry(r
, &mnt
->mnt_mounts
, mnt_child
) {
1778 if (!is_subdir(r
->mnt_mountpoint
, dentry
))
1781 for (s
= r
; s
; s
= next_mnt(s
, r
)) {
1782 if (!(flag
& CL_COPY_UNBINDABLE
) &&
1783 IS_MNT_UNBINDABLE(s
)) {
1784 s
= skip_mnt_tree(s
);
1787 if (!(flag
& CL_COPY_MNT_NS_FILE
) &&
1788 is_mnt_ns_file(s
->mnt
.mnt_root
)) {
1789 s
= skip_mnt_tree(s
);
1792 while (p
!= s
->mnt_parent
) {
1798 q
= clone_mnt(p
, p
->mnt
.mnt_root
, flag
);
1802 list_add_tail(&q
->mnt_list
, &res
->mnt_list
);
1803 attach_mnt(q
, parent
, p
->mnt_mp
);
1804 unlock_mount_hash();
1811 umount_tree(res
, UMOUNT_SYNC
);
1812 unlock_mount_hash();
1817 /* Caller should check returned pointer for errors */
1819 struct vfsmount
*collect_mounts(const struct path
*path
)
1823 if (!check_mnt(real_mount(path
->mnt
)))
1824 tree
= ERR_PTR(-EINVAL
);
1826 tree
= copy_tree(real_mount(path
->mnt
), path
->dentry
,
1827 CL_COPY_ALL
| CL_PRIVATE
);
1830 return ERR_CAST(tree
);
1834 void drop_collected_mounts(struct vfsmount
*mnt
)
1838 umount_tree(real_mount(mnt
), UMOUNT_SYNC
);
1839 unlock_mount_hash();
1844 * clone_private_mount - create a private clone of a path
1846 * This creates a new vfsmount, which will be the clone of @path. The new will
1847 * not be attached anywhere in the namespace and will be private (i.e. changes
1848 * to the originating mount won't be propagated into this).
1850 * Release with mntput().
1852 struct vfsmount
*clone_private_mount(const struct path
*path
)
1854 struct mount
*old_mnt
= real_mount(path
->mnt
);
1855 struct mount
*new_mnt
;
1857 if (IS_MNT_UNBINDABLE(old_mnt
))
1858 return ERR_PTR(-EINVAL
);
1860 new_mnt
= clone_mnt(old_mnt
, path
->dentry
, CL_PRIVATE
);
1861 if (IS_ERR(new_mnt
))
1862 return ERR_CAST(new_mnt
);
1864 return &new_mnt
->mnt
;
1866 EXPORT_SYMBOL_GPL(clone_private_mount
);
1868 int iterate_mounts(int (*f
)(struct vfsmount
*, void *), void *arg
,
1869 struct vfsmount
*root
)
1872 int res
= f(root
, arg
);
1875 list_for_each_entry(mnt
, &real_mount(root
)->mnt_list
, mnt_list
) {
1876 res
= f(&mnt
->mnt
, arg
);
1883 static void cleanup_group_ids(struct mount
*mnt
, struct mount
*end
)
1887 for (p
= mnt
; p
!= end
; p
= next_mnt(p
, mnt
)) {
1888 if (p
->mnt_group_id
&& !IS_MNT_SHARED(p
))
1889 mnt_release_group_id(p
);
1893 static int invent_group_ids(struct mount
*mnt
, bool recurse
)
1897 for (p
= mnt
; p
; p
= recurse
? next_mnt(p
, mnt
) : NULL
) {
1898 if (!p
->mnt_group_id
&& !IS_MNT_SHARED(p
)) {
1899 int err
= mnt_alloc_group_id(p
);
1901 cleanup_group_ids(mnt
, p
);
1910 int count_mounts(struct mnt_namespace
*ns
, struct mount
*mnt
)
1912 unsigned int max
= READ_ONCE(sysctl_mount_max
);
1913 unsigned int mounts
= 0, old
, pending
, sum
;
1916 for (p
= mnt
; p
; p
= next_mnt(p
, mnt
))
1920 pending
= ns
->pending_mounts
;
1921 sum
= old
+ pending
;
1925 (mounts
> (max
- sum
)))
1928 ns
->pending_mounts
= pending
+ mounts
;
1933 * @source_mnt : mount tree to be attached
1934 * @nd : place the mount tree @source_mnt is attached
1935 * @parent_nd : if non-null, detach the source_mnt from its parent and
1936 * store the parent mount and mountpoint dentry.
1937 * (done when source_mnt is moved)
1939 * NOTE: in the table below explains the semantics when a source mount
1940 * of a given type is attached to a destination mount of a given type.
1941 * ---------------------------------------------------------------------------
1942 * | BIND MOUNT OPERATION |
1943 * |**************************************************************************
1944 * | source-->| shared | private | slave | unbindable |
1948 * |**************************************************************************
1949 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1951 * |non-shared| shared (+) | private | slave (*) | invalid |
1952 * ***************************************************************************
1953 * A bind operation clones the source mount and mounts the clone on the
1954 * destination mount.
1956 * (++) the cloned mount is propagated to all the mounts in the propagation
1957 * tree of the destination mount and the cloned mount is added to
1958 * the peer group of the source mount.
1959 * (+) the cloned mount is created under the destination mount and is marked
1960 * as shared. The cloned mount is added to the peer group of the source
1962 * (+++) the mount is propagated to all the mounts in the propagation tree
1963 * of the destination mount and the cloned mount is made slave
1964 * of the same master as that of the source mount. The cloned mount
1965 * is marked as 'shared and slave'.
1966 * (*) the cloned mount is made a slave of the same master as that of the
1969 * ---------------------------------------------------------------------------
1970 * | MOVE MOUNT OPERATION |
1971 * |**************************************************************************
1972 * | source-->| shared | private | slave | unbindable |
1976 * |**************************************************************************
1977 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1979 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1980 * ***************************************************************************
1982 * (+) the mount is moved to the destination. And is then propagated to
1983 * all the mounts in the propagation tree of the destination mount.
1984 * (+*) the mount is moved to the destination.
1985 * (+++) the mount is moved to the destination and is then propagated to
1986 * all the mounts belonging to the destination mount's propagation tree.
1987 * the mount is marked as 'shared and slave'.
1988 * (*) the mount continues to be a slave at the new location.
1990 * if the source mount is a tree, the operations explained above is
1991 * applied to each mount in the tree.
1992 * Must be called without spinlocks held, since this function can sleep
1995 static int attach_recursive_mnt(struct mount
*source_mnt
,
1996 struct mount
*dest_mnt
,
1997 struct mountpoint
*dest_mp
,
1998 struct path
*parent_path
)
2000 HLIST_HEAD(tree_list
);
2001 struct mnt_namespace
*ns
= dest_mnt
->mnt_ns
;
2002 struct mountpoint
*smp
;
2003 struct mount
*child
, *p
;
2004 struct hlist_node
*n
;
2007 /* Preallocate a mountpoint in case the new mounts need
2008 * to be tucked under other mounts.
2010 smp
= get_mountpoint(source_mnt
->mnt
.mnt_root
);
2012 return PTR_ERR(smp
);
2014 /* Is there space to add these mounts to the mount namespace? */
2016 err
= count_mounts(ns
, source_mnt
);
2021 if (IS_MNT_SHARED(dest_mnt
)) {
2022 err
= invent_group_ids(source_mnt
, true);
2025 err
= propagate_mnt(dest_mnt
, dest_mp
, source_mnt
, &tree_list
);
2028 goto out_cleanup_ids
;
2029 for (p
= source_mnt
; p
; p
= next_mnt(p
, source_mnt
))
2035 detach_mnt(source_mnt
, parent_path
);
2036 attach_mnt(source_mnt
, dest_mnt
, dest_mp
);
2037 touch_mnt_namespace(source_mnt
->mnt_ns
);
2039 mnt_set_mountpoint(dest_mnt
, dest_mp
, source_mnt
);
2040 commit_tree(source_mnt
);
2043 hlist_for_each_entry_safe(child
, n
, &tree_list
, mnt_hash
) {
2045 hlist_del_init(&child
->mnt_hash
);
2046 q
= __lookup_mnt(&child
->mnt_parent
->mnt
,
2047 child
->mnt_mountpoint
);
2049 mnt_change_mountpoint(child
, smp
, q
);
2052 put_mountpoint(smp
);
2053 unlock_mount_hash();
2058 while (!hlist_empty(&tree_list
)) {
2059 child
= hlist_entry(tree_list
.first
, struct mount
, mnt_hash
);
2060 child
->mnt_parent
->mnt_ns
->pending_mounts
= 0;
2061 umount_tree(child
, UMOUNT_SYNC
);
2063 unlock_mount_hash();
2064 cleanup_group_ids(source_mnt
, NULL
);
2066 ns
->pending_mounts
= 0;
2068 read_seqlock_excl(&mount_lock
);
2069 put_mountpoint(smp
);
2070 read_sequnlock_excl(&mount_lock
);
2075 static struct mountpoint
*lock_mount(struct path
*path
)
2077 struct vfsmount
*mnt
;
2078 struct dentry
*dentry
= path
->dentry
;
2080 inode_lock(dentry
->d_inode
);
2081 if (unlikely(cant_mount(dentry
))) {
2082 inode_unlock(dentry
->d_inode
);
2083 return ERR_PTR(-ENOENT
);
2086 mnt
= lookup_mnt(path
);
2088 struct mountpoint
*mp
= get_mountpoint(dentry
);
2091 inode_unlock(dentry
->d_inode
);
2097 inode_unlock(path
->dentry
->d_inode
);
2100 dentry
= path
->dentry
= dget(mnt
->mnt_root
);
2104 static void unlock_mount(struct mountpoint
*where
)
2106 struct dentry
*dentry
= where
->m_dentry
;
2108 read_seqlock_excl(&mount_lock
);
2109 put_mountpoint(where
);
2110 read_sequnlock_excl(&mount_lock
);
2113 inode_unlock(dentry
->d_inode
);
2116 static int graft_tree(struct mount
*mnt
, struct mount
*p
, struct mountpoint
*mp
)
2118 if (mnt
->mnt
.mnt_sb
->s_flags
& SB_NOUSER
)
2121 if (d_is_dir(mp
->m_dentry
) !=
2122 d_is_dir(mnt
->mnt
.mnt_root
))
2125 return attach_recursive_mnt(mnt
, p
, mp
, NULL
);
2129 * Sanity check the flags to change_mnt_propagation.
2132 static int flags_to_propagation_type(int ms_flags
)
2134 int type
= ms_flags
& ~(MS_REC
| MS_SILENT
);
2136 /* Fail if any non-propagation flags are set */
2137 if (type
& ~(MS_SHARED
| MS_PRIVATE
| MS_SLAVE
| MS_UNBINDABLE
))
2139 /* Only one propagation flag should be set */
2140 if (!is_power_of_2(type
))
2146 * recursively change the type of the mountpoint.
2148 static int do_change_type(struct path
*path
, int ms_flags
)
2151 struct mount
*mnt
= real_mount(path
->mnt
);
2152 int recurse
= ms_flags
& MS_REC
;
2156 if (path
->dentry
!= path
->mnt
->mnt_root
)
2159 type
= flags_to_propagation_type(ms_flags
);
2164 if (type
== MS_SHARED
) {
2165 err
= invent_group_ids(mnt
, recurse
);
2171 for (m
= mnt
; m
; m
= (recurse
? next_mnt(m
, mnt
) : NULL
))
2172 change_mnt_propagation(m
, type
);
2173 unlock_mount_hash();
2180 static bool has_locked_children(struct mount
*mnt
, struct dentry
*dentry
)
2182 struct mount
*child
;
2183 list_for_each_entry(child
, &mnt
->mnt_mounts
, mnt_child
) {
2184 if (!is_subdir(child
->mnt_mountpoint
, dentry
))
2187 if (child
->mnt
.mnt_flags
& MNT_LOCKED
)
2194 * do loopback mount.
2196 static int do_loopback(struct path
*path
, const char *old_name
,
2199 struct path old_path
;
2200 struct mount
*mnt
= NULL
, *old
, *parent
;
2201 struct mountpoint
*mp
;
2203 if (!old_name
|| !*old_name
)
2205 err
= kern_path(old_name
, LOOKUP_FOLLOW
|LOOKUP_AUTOMOUNT
, &old_path
);
2210 if (mnt_ns_loop(old_path
.dentry
))
2213 mp
= lock_mount(path
);
2218 old
= real_mount(old_path
.mnt
);
2219 parent
= real_mount(path
->mnt
);
2222 if (IS_MNT_UNBINDABLE(old
))
2225 if (!check_mnt(parent
))
2228 if (!check_mnt(old
) && old_path
.dentry
->d_op
!= &ns_dentry_operations
)
2231 if (!recurse
&& has_locked_children(old
, old_path
.dentry
))
2235 mnt
= copy_tree(old
, old_path
.dentry
, CL_COPY_MNT_NS_FILE
);
2237 mnt
= clone_mnt(old
, old_path
.dentry
, 0);
2244 mnt
->mnt
.mnt_flags
&= ~MNT_LOCKED
;
2246 err
= graft_tree(mnt
, parent
, mp
);
2249 umount_tree(mnt
, UMOUNT_SYNC
);
2250 unlock_mount_hash();
2255 path_put(&old_path
);
2259 static int change_mount_flags(struct vfsmount
*mnt
, int ms_flags
)
2262 int readonly_request
= 0;
2264 if (ms_flags
& MS_RDONLY
)
2265 readonly_request
= 1;
2266 if (readonly_request
== __mnt_is_readonly(mnt
))
2269 if (readonly_request
)
2270 error
= mnt_make_readonly(real_mount(mnt
));
2272 __mnt_unmake_readonly(real_mount(mnt
));
2277 * change filesystem flags. dir should be a physical root of filesystem.
2278 * If you've mounted a non-root directory somewhere and want to do remount
2279 * on it - tough luck.
2281 static int do_remount(struct path
*path
, int ms_flags
, int sb_flags
,
2282 int mnt_flags
, void *data
)
2285 struct super_block
*sb
= path
->mnt
->mnt_sb
;
2286 struct mount
*mnt
= real_mount(path
->mnt
);
2288 if (!check_mnt(mnt
))
2291 if (path
->dentry
!= path
->mnt
->mnt_root
)
2294 /* Don't allow changing of locked mnt flags.
2296 * No locks need to be held here while testing the various
2297 * MNT_LOCK flags because those flags can never be cleared
2298 * once they are set.
2300 if ((mnt
->mnt
.mnt_flags
& MNT_LOCK_READONLY
) &&
2301 !(mnt_flags
& MNT_READONLY
)) {
2304 if ((mnt
->mnt
.mnt_flags
& MNT_LOCK_NODEV
) &&
2305 !(mnt_flags
& MNT_NODEV
)) {
2308 if ((mnt
->mnt
.mnt_flags
& MNT_LOCK_NOSUID
) &&
2309 !(mnt_flags
& MNT_NOSUID
)) {
2312 if ((mnt
->mnt
.mnt_flags
& MNT_LOCK_NOEXEC
) &&
2313 !(mnt_flags
& MNT_NOEXEC
)) {
2316 if ((mnt
->mnt
.mnt_flags
& MNT_LOCK_ATIME
) &&
2317 ((mnt
->mnt
.mnt_flags
& MNT_ATIME_MASK
) != (mnt_flags
& MNT_ATIME_MASK
))) {
2321 err
= security_sb_remount(sb
, data
);
2325 down_write(&sb
->s_umount
);
2326 if (ms_flags
& MS_BIND
)
2327 err
= change_mount_flags(path
->mnt
, ms_flags
);
2328 else if (!capable(CAP_SYS_ADMIN
))
2331 err
= do_remount_sb(sb
, sb_flags
, data
, 0);
2334 mnt_flags
|= mnt
->mnt
.mnt_flags
& ~MNT_USER_SETTABLE_MASK
;
2335 mnt
->mnt
.mnt_flags
= mnt_flags
;
2336 touch_mnt_namespace(mnt
->mnt_ns
);
2337 unlock_mount_hash();
2339 up_write(&sb
->s_umount
);
2343 static inline int tree_contains_unbindable(struct mount
*mnt
)
2346 for (p
= mnt
; p
; p
= next_mnt(p
, mnt
)) {
2347 if (IS_MNT_UNBINDABLE(p
))
2353 static int do_move_mount(struct path
*path
, const char *old_name
)
2355 struct path old_path
, parent_path
;
2358 struct mountpoint
*mp
;
2360 if (!old_name
|| !*old_name
)
2362 err
= kern_path(old_name
, LOOKUP_FOLLOW
, &old_path
);
2366 mp
= lock_mount(path
);
2371 old
= real_mount(old_path
.mnt
);
2372 p
= real_mount(path
->mnt
);
2375 if (!check_mnt(p
) || !check_mnt(old
))
2378 if (old
->mnt
.mnt_flags
& MNT_LOCKED
)
2382 if (old_path
.dentry
!= old_path
.mnt
->mnt_root
)
2385 if (!mnt_has_parent(old
))
2388 if (d_is_dir(path
->dentry
) !=
2389 d_is_dir(old_path
.dentry
))
2392 * Don't move a mount residing in a shared parent.
2394 if (IS_MNT_SHARED(old
->mnt_parent
))
2397 * Don't move a mount tree containing unbindable mounts to a destination
2398 * mount which is shared.
2400 if (IS_MNT_SHARED(p
) && tree_contains_unbindable(old
))
2403 for (; mnt_has_parent(p
); p
= p
->mnt_parent
)
2407 err
= attach_recursive_mnt(old
, real_mount(path
->mnt
), mp
, &parent_path
);
2411 /* if the mount is moved, it should no longer be expire
2413 list_del_init(&old
->mnt_expire
);
2418 path_put(&parent_path
);
2419 path_put(&old_path
);
2423 static struct vfsmount
*fs_set_subtype(struct vfsmount
*mnt
, const char *fstype
)
2426 const char *subtype
= strchr(fstype
, '.');
2435 mnt
->mnt_sb
->s_subtype
= kstrdup(subtype
, GFP_KERNEL
);
2437 if (!mnt
->mnt_sb
->s_subtype
)
2443 return ERR_PTR(err
);
2447 * add a mount into a namespace's mount tree
2449 static int do_add_mount(struct mount
*newmnt
, struct path
*path
, int mnt_flags
)
2451 struct mountpoint
*mp
;
2452 struct mount
*parent
;
2455 mnt_flags
&= ~MNT_INTERNAL_FLAGS
;
2457 mp
= lock_mount(path
);
2461 parent
= real_mount(path
->mnt
);
2463 if (unlikely(!check_mnt(parent
))) {
2464 /* that's acceptable only for automounts done in private ns */
2465 if (!(mnt_flags
& MNT_SHRINKABLE
))
2467 /* ... and for those we'd better have mountpoint still alive */
2468 if (!parent
->mnt_ns
)
2472 /* Refuse the same filesystem on the same mount point */
2474 if (path
->mnt
->mnt_sb
== newmnt
->mnt
.mnt_sb
&&
2475 path
->mnt
->mnt_root
== path
->dentry
)
2479 if (d_is_symlink(newmnt
->mnt
.mnt_root
))
2482 newmnt
->mnt
.mnt_flags
= mnt_flags
;
2483 err
= graft_tree(newmnt
, parent
, mp
);
2490 static bool mount_too_revealing(struct vfsmount
*mnt
, int *new_mnt_flags
);
2493 * create a new mount for userspace and request it to be added into the
2496 static int do_new_mount(struct path
*path
, const char *fstype
, int sb_flags
,
2497 int mnt_flags
, const char *name
, void *data
)
2499 struct file_system_type
*type
;
2500 struct vfsmount
*mnt
;
2506 type
= get_fs_type(fstype
);
2510 mnt
= vfs_kern_mount(type
, sb_flags
, name
, data
);
2511 if (!IS_ERR(mnt
) && (type
->fs_flags
& FS_HAS_SUBTYPE
) &&
2512 !mnt
->mnt_sb
->s_subtype
)
2513 mnt
= fs_set_subtype(mnt
, fstype
);
2515 put_filesystem(type
);
2517 return PTR_ERR(mnt
);
2519 if (mount_too_revealing(mnt
, &mnt_flags
)) {
2524 err
= do_add_mount(real_mount(mnt
), path
, mnt_flags
);
2530 int finish_automount(struct vfsmount
*m
, struct path
*path
)
2532 struct mount
*mnt
= real_mount(m
);
2534 /* The new mount record should have at least 2 refs to prevent it being
2535 * expired before we get a chance to add it
2537 BUG_ON(mnt_get_count(mnt
) < 2);
2539 if (m
->mnt_sb
== path
->mnt
->mnt_sb
&&
2540 m
->mnt_root
== path
->dentry
) {
2545 err
= do_add_mount(mnt
, path
, path
->mnt
->mnt_flags
| MNT_SHRINKABLE
);
2549 /* remove m from any expiration list it may be on */
2550 if (!list_empty(&mnt
->mnt_expire
)) {
2552 list_del_init(&mnt
->mnt_expire
);
2561 * mnt_set_expiry - Put a mount on an expiration list
2562 * @mnt: The mount to list.
2563 * @expiry_list: The list to add the mount to.
2565 void mnt_set_expiry(struct vfsmount
*mnt
, struct list_head
*expiry_list
)
2569 list_add_tail(&real_mount(mnt
)->mnt_expire
, expiry_list
);
2573 EXPORT_SYMBOL(mnt_set_expiry
);
2576 * process a list of expirable mountpoints with the intent of discarding any
2577 * mountpoints that aren't in use and haven't been touched since last we came
2580 void mark_mounts_for_expiry(struct list_head
*mounts
)
2582 struct mount
*mnt
, *next
;
2583 LIST_HEAD(graveyard
);
2585 if (list_empty(mounts
))
2591 /* extract from the expiration list every vfsmount that matches the
2592 * following criteria:
2593 * - only referenced by its parent vfsmount
2594 * - still marked for expiry (marked on the last call here; marks are
2595 * cleared by mntput())
2597 list_for_each_entry_safe(mnt
, next
, mounts
, mnt_expire
) {
2598 if (!xchg(&mnt
->mnt_expiry_mark
, 1) ||
2599 propagate_mount_busy(mnt
, 1))
2601 list_move(&mnt
->mnt_expire
, &graveyard
);
2603 while (!list_empty(&graveyard
)) {
2604 mnt
= list_first_entry(&graveyard
, struct mount
, mnt_expire
);
2605 touch_mnt_namespace(mnt
->mnt_ns
);
2606 umount_tree(mnt
, UMOUNT_PROPAGATE
|UMOUNT_SYNC
);
2608 unlock_mount_hash();
2612 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry
);
2615 * Ripoff of 'select_parent()'
2617 * search the list of submounts for a given mountpoint, and move any
2618 * shrinkable submounts to the 'graveyard' list.
2620 static int select_submounts(struct mount
*parent
, struct list_head
*graveyard
)
2622 struct mount
*this_parent
= parent
;
2623 struct list_head
*next
;
2627 next
= this_parent
->mnt_mounts
.next
;
2629 while (next
!= &this_parent
->mnt_mounts
) {
2630 struct list_head
*tmp
= next
;
2631 struct mount
*mnt
= list_entry(tmp
, struct mount
, mnt_child
);
2634 if (!(mnt
->mnt
.mnt_flags
& MNT_SHRINKABLE
))
2637 * Descend a level if the d_mounts list is non-empty.
2639 if (!list_empty(&mnt
->mnt_mounts
)) {
2644 if (!propagate_mount_busy(mnt
, 1)) {
2645 list_move_tail(&mnt
->mnt_expire
, graveyard
);
2650 * All done at this level ... ascend and resume the search
2652 if (this_parent
!= parent
) {
2653 next
= this_parent
->mnt_child
.next
;
2654 this_parent
= this_parent
->mnt_parent
;
2661 * process a list of expirable mountpoints with the intent of discarding any
2662 * submounts of a specific parent mountpoint
2664 * mount_lock must be held for write
2666 static void shrink_submounts(struct mount
*mnt
)
2668 LIST_HEAD(graveyard
);
2671 /* extract submounts of 'mountpoint' from the expiration list */
2672 while (select_submounts(mnt
, &graveyard
)) {
2673 while (!list_empty(&graveyard
)) {
2674 m
= list_first_entry(&graveyard
, struct mount
,
2676 touch_mnt_namespace(m
->mnt_ns
);
2677 umount_tree(m
, UMOUNT_PROPAGATE
|UMOUNT_SYNC
);
2683 * Some copy_from_user() implementations do not return the exact number of
2684 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
2685 * Note that this function differs from copy_from_user() in that it will oops
2686 * on bad values of `to', rather than returning a short copy.
2688 static long exact_copy_from_user(void *to
, const void __user
* from
,
2692 const char __user
*f
= from
;
2695 if (!access_ok(VERIFY_READ
, from
, n
))
2699 if (__get_user(c
, f
)) {
2710 void *copy_mount_options(const void __user
* data
)
2719 copy
= kmalloc(PAGE_SIZE
, GFP_KERNEL
);
2721 return ERR_PTR(-ENOMEM
);
2723 /* We only care that *some* data at the address the user
2724 * gave us is valid. Just in case, we'll zero
2725 * the remainder of the page.
2727 /* copy_from_user cannot cross TASK_SIZE ! */
2728 size
= TASK_SIZE
- (unsigned long)data
;
2729 if (size
> PAGE_SIZE
)
2732 i
= size
- exact_copy_from_user(copy
, data
, size
);
2735 return ERR_PTR(-EFAULT
);
2738 memset(copy
+ i
, 0, PAGE_SIZE
- i
);
2742 char *copy_mount_string(const void __user
*data
)
2744 return data
? strndup_user(data
, PAGE_SIZE
) : NULL
;
2748 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2749 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2751 * data is a (void *) that can point to any structure up to
2752 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2753 * information (or be NULL).
2755 * Pre-0.97 versions of mount() didn't have a flags word.
2756 * When the flags word was introduced its top half was required
2757 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2758 * Therefore, if this magic number is present, it carries no information
2759 * and must be discarded.
2761 long do_mount(const char *dev_name
, const char __user
*dir_name
,
2762 const char *type_page
, unsigned long flags
, void *data_page
)
2765 unsigned int mnt_flags
= 0, sb_flags
;
2769 if ((flags
& MS_MGC_MSK
) == MS_MGC_VAL
)
2770 flags
&= ~MS_MGC_MSK
;
2772 /* Basic sanity checks */
2774 ((char *)data_page
)[PAGE_SIZE
- 1] = 0;
2776 if (flags
& MS_NOUSER
)
2779 /* ... and get the mountpoint */
2780 retval
= user_path(dir_name
, &path
);
2784 retval
= security_sb_mount(dev_name
, &path
,
2785 type_page
, flags
, data_page
);
2786 if (!retval
&& !may_mount())
2788 if (!retval
&& (flags
& SB_MANDLOCK
) && !may_mandlock())
2793 /* Default to relatime unless overriden */
2794 if (!(flags
& MS_NOATIME
))
2795 mnt_flags
|= MNT_RELATIME
;
2797 /* Separate the per-mountpoint flags */
2798 if (flags
& MS_NOSUID
)
2799 mnt_flags
|= MNT_NOSUID
;
2800 if (flags
& MS_NODEV
)
2801 mnt_flags
|= MNT_NODEV
;
2802 if (flags
& MS_NOEXEC
)
2803 mnt_flags
|= MNT_NOEXEC
;
2804 if (flags
& MS_NOATIME
)
2805 mnt_flags
|= MNT_NOATIME
;
2806 if (flags
& MS_NODIRATIME
)
2807 mnt_flags
|= MNT_NODIRATIME
;
2808 if (flags
& MS_STRICTATIME
)
2809 mnt_flags
&= ~(MNT_RELATIME
| MNT_NOATIME
);
2810 if (flags
& SB_RDONLY
)
2811 mnt_flags
|= MNT_READONLY
;
2813 /* The default atime for remount is preservation */
2814 if ((flags
& MS_REMOUNT
) &&
2815 ((flags
& (MS_NOATIME
| MS_NODIRATIME
| MS_RELATIME
|
2816 MS_STRICTATIME
)) == 0)) {
2817 mnt_flags
&= ~MNT_ATIME_MASK
;
2818 mnt_flags
|= path
.mnt
->mnt_flags
& MNT_ATIME_MASK
;
2821 sb_flags
= flags
& (SB_RDONLY
|
2828 if (flags
& MS_REMOUNT
)
2829 retval
= do_remount(&path
, flags
, sb_flags
, mnt_flags
,
2831 else if (flags
& MS_BIND
)
2832 retval
= do_loopback(&path
, dev_name
, flags
& MS_REC
);
2833 else if (flags
& (MS_SHARED
| MS_PRIVATE
| MS_SLAVE
| MS_UNBINDABLE
))
2834 retval
= do_change_type(&path
, flags
);
2835 else if (flags
& MS_MOVE
)
2836 retval
= do_move_mount(&path
, dev_name
);
2838 retval
= do_new_mount(&path
, type_page
, sb_flags
, mnt_flags
,
2839 dev_name
, data_page
);
2845 static struct ucounts
*inc_mnt_namespaces(struct user_namespace
*ns
)
2847 return inc_ucount(ns
, current_euid(), UCOUNT_MNT_NAMESPACES
);
2850 static void dec_mnt_namespaces(struct ucounts
*ucounts
)
2852 dec_ucount(ucounts
, UCOUNT_MNT_NAMESPACES
);
2855 static void free_mnt_ns(struct mnt_namespace
*ns
)
2857 ns_free_inum(&ns
->ns
);
2858 dec_mnt_namespaces(ns
->ucounts
);
2859 put_user_ns(ns
->user_ns
);
2864 * Assign a sequence number so we can detect when we attempt to bind
2865 * mount a reference to an older mount namespace into the current
2866 * mount namespace, preventing reference counting loops. A 64bit
2867 * number incrementing at 10Ghz will take 12,427 years to wrap which
2868 * is effectively never, so we can ignore the possibility.
2870 static atomic64_t mnt_ns_seq
= ATOMIC64_INIT(1);
2872 static struct mnt_namespace
*alloc_mnt_ns(struct user_namespace
*user_ns
)
2874 struct mnt_namespace
*new_ns
;
2875 struct ucounts
*ucounts
;
2878 ucounts
= inc_mnt_namespaces(user_ns
);
2880 return ERR_PTR(-ENOSPC
);
2882 new_ns
= kmalloc(sizeof(struct mnt_namespace
), GFP_KERNEL
);
2884 dec_mnt_namespaces(ucounts
);
2885 return ERR_PTR(-ENOMEM
);
2887 ret
= ns_alloc_inum(&new_ns
->ns
);
2890 dec_mnt_namespaces(ucounts
);
2891 return ERR_PTR(ret
);
2893 new_ns
->ns
.ops
= &mntns_operations
;
2894 new_ns
->seq
= atomic64_add_return(1, &mnt_ns_seq
);
2895 atomic_set(&new_ns
->count
, 1);
2896 new_ns
->root
= NULL
;
2897 INIT_LIST_HEAD(&new_ns
->list
);
2898 init_waitqueue_head(&new_ns
->poll
);
2900 new_ns
->user_ns
= get_user_ns(user_ns
);
2901 new_ns
->ucounts
= ucounts
;
2903 new_ns
->pending_mounts
= 0;
2908 struct mnt_namespace
*copy_mnt_ns(unsigned long flags
, struct mnt_namespace
*ns
,
2909 struct user_namespace
*user_ns
, struct fs_struct
*new_fs
)
2911 struct mnt_namespace
*new_ns
;
2912 struct vfsmount
*rootmnt
= NULL
, *pwdmnt
= NULL
;
2913 struct mount
*p
, *q
;
2920 if (likely(!(flags
& CLONE_NEWNS
))) {
2927 new_ns
= alloc_mnt_ns(user_ns
);
2932 /* First pass: copy the tree topology */
2933 copy_flags
= CL_COPY_UNBINDABLE
| CL_EXPIRE
;
2934 if (user_ns
!= ns
->user_ns
)
2935 copy_flags
|= CL_SHARED_TO_SLAVE
| CL_UNPRIVILEGED
;
2936 new = copy_tree(old
, old
->mnt
.mnt_root
, copy_flags
);
2939 free_mnt_ns(new_ns
);
2940 return ERR_CAST(new);
2943 list_add_tail(&new_ns
->list
, &new->mnt_list
);
2946 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2947 * as belonging to new namespace. We have already acquired a private
2948 * fs_struct, so tsk->fs->lock is not needed.
2956 if (&p
->mnt
== new_fs
->root
.mnt
) {
2957 new_fs
->root
.mnt
= mntget(&q
->mnt
);
2960 if (&p
->mnt
== new_fs
->pwd
.mnt
) {
2961 new_fs
->pwd
.mnt
= mntget(&q
->mnt
);
2965 p
= next_mnt(p
, old
);
2966 q
= next_mnt(q
, new);
2969 while (p
->mnt
.mnt_root
!= q
->mnt
.mnt_root
)
2970 p
= next_mnt(p
, old
);
2983 * create_mnt_ns - creates a private namespace and adds a root filesystem
2984 * @mnt: pointer to the new root filesystem mountpoint
2986 static struct mnt_namespace
*create_mnt_ns(struct vfsmount
*m
)
2988 struct mnt_namespace
*new_ns
= alloc_mnt_ns(&init_user_ns
);
2989 if (!IS_ERR(new_ns
)) {
2990 struct mount
*mnt
= real_mount(m
);
2991 mnt
->mnt_ns
= new_ns
;
2994 list_add(&mnt
->mnt_list
, &new_ns
->list
);
3001 struct dentry
*mount_subtree(struct vfsmount
*mnt
, const char *name
)
3003 struct mnt_namespace
*ns
;
3004 struct super_block
*s
;
3008 ns
= create_mnt_ns(mnt
);
3010 return ERR_CAST(ns
);
3012 err
= vfs_path_lookup(mnt
->mnt_root
, mnt
,
3013 name
, LOOKUP_FOLLOW
|LOOKUP_AUTOMOUNT
, &path
);
3018 return ERR_PTR(err
);
3020 /* trade a vfsmount reference for active sb one */
3021 s
= path
.mnt
->mnt_sb
;
3022 atomic_inc(&s
->s_active
);
3024 /* lock the sucker */
3025 down_write(&s
->s_umount
);
3026 /* ... and return the root of (sub)tree on it */
3029 EXPORT_SYMBOL(mount_subtree
);
3031 SYSCALL_DEFINE5(mount
, char __user
*, dev_name
, char __user
*, dir_name
,
3032 char __user
*, type
, unsigned long, flags
, void __user
*, data
)
3039 kernel_type
= copy_mount_string(type
);
3040 ret
= PTR_ERR(kernel_type
);
3041 if (IS_ERR(kernel_type
))
3044 kernel_dev
= copy_mount_string(dev_name
);
3045 ret
= PTR_ERR(kernel_dev
);
3046 if (IS_ERR(kernel_dev
))
3049 options
= copy_mount_options(data
);
3050 ret
= PTR_ERR(options
);
3051 if (IS_ERR(options
))
3054 ret
= do_mount(kernel_dev
, dir_name
, kernel_type
, flags
, options
);
3066 * Return true if path is reachable from root
3068 * namespace_sem or mount_lock is held
3070 bool is_path_reachable(struct mount
*mnt
, struct dentry
*dentry
,
3071 const struct path
*root
)
3073 while (&mnt
->mnt
!= root
->mnt
&& mnt_has_parent(mnt
)) {
3074 dentry
= mnt
->mnt_mountpoint
;
3075 mnt
= mnt
->mnt_parent
;
3077 return &mnt
->mnt
== root
->mnt
&& is_subdir(dentry
, root
->dentry
);
3080 bool path_is_under(const struct path
*path1
, const struct path
*path2
)
3083 read_seqlock_excl(&mount_lock
);
3084 res
= is_path_reachable(real_mount(path1
->mnt
), path1
->dentry
, path2
);
3085 read_sequnlock_excl(&mount_lock
);
3088 EXPORT_SYMBOL(path_is_under
);
3091 * pivot_root Semantics:
3092 * Moves the root file system of the current process to the directory put_old,
3093 * makes new_root as the new root file system of the current process, and sets
3094 * root/cwd of all processes which had them on the current root to new_root.
3097 * The new_root and put_old must be directories, and must not be on the
3098 * same file system as the current process root. The put_old must be
3099 * underneath new_root, i.e. adding a non-zero number of /.. to the string
3100 * pointed to by put_old must yield the same directory as new_root. No other
3101 * file system may be mounted on put_old. After all, new_root is a mountpoint.
3103 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
3104 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
3105 * in this situation.
3108 * - we don't move root/cwd if they are not at the root (reason: if something
3109 * cared enough to change them, it's probably wrong to force them elsewhere)
3110 * - it's okay to pick a root that isn't the root of a file system, e.g.
3111 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
3112 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
3115 SYSCALL_DEFINE2(pivot_root
, const char __user
*, new_root
,
3116 const char __user
*, put_old
)
3118 struct path
new, old
, parent_path
, root_parent
, root
;
3119 struct mount
*new_mnt
, *root_mnt
, *old_mnt
;
3120 struct mountpoint
*old_mp
, *root_mp
;
3126 error
= user_path_dir(new_root
, &new);
3130 error
= user_path_dir(put_old
, &old
);
3134 error
= security_sb_pivotroot(&old
, &new);
3138 get_fs_root(current
->fs
, &root
);
3139 old_mp
= lock_mount(&old
);
3140 error
= PTR_ERR(old_mp
);
3145 new_mnt
= real_mount(new.mnt
);
3146 root_mnt
= real_mount(root
.mnt
);
3147 old_mnt
= real_mount(old
.mnt
);
3148 if (IS_MNT_SHARED(old_mnt
) ||
3149 IS_MNT_SHARED(new_mnt
->mnt_parent
) ||
3150 IS_MNT_SHARED(root_mnt
->mnt_parent
))
3152 if (!check_mnt(root_mnt
) || !check_mnt(new_mnt
))
3154 if (new_mnt
->mnt
.mnt_flags
& MNT_LOCKED
)
3157 if (d_unlinked(new.dentry
))
3160 if (new_mnt
== root_mnt
|| old_mnt
== root_mnt
)
3161 goto out4
; /* loop, on the same file system */
3163 if (root
.mnt
->mnt_root
!= root
.dentry
)
3164 goto out4
; /* not a mountpoint */
3165 if (!mnt_has_parent(root_mnt
))
3166 goto out4
; /* not attached */
3167 root_mp
= root_mnt
->mnt_mp
;
3168 if (new.mnt
->mnt_root
!= new.dentry
)
3169 goto out4
; /* not a mountpoint */
3170 if (!mnt_has_parent(new_mnt
))
3171 goto out4
; /* not attached */
3172 /* make sure we can reach put_old from new_root */
3173 if (!is_path_reachable(old_mnt
, old
.dentry
, &new))
3175 /* make certain new is below the root */
3176 if (!is_path_reachable(new_mnt
, new.dentry
, &root
))
3178 root_mp
->m_count
++; /* pin it so it won't go away */
3180 detach_mnt(new_mnt
, &parent_path
);
3181 detach_mnt(root_mnt
, &root_parent
);
3182 if (root_mnt
->mnt
.mnt_flags
& MNT_LOCKED
) {
3183 new_mnt
->mnt
.mnt_flags
|= MNT_LOCKED
;
3184 root_mnt
->mnt
.mnt_flags
&= ~MNT_LOCKED
;
3186 /* mount old root on put_old */
3187 attach_mnt(root_mnt
, old_mnt
, old_mp
);
3188 /* mount new_root on / */
3189 attach_mnt(new_mnt
, real_mount(root_parent
.mnt
), root_mp
);
3190 touch_mnt_namespace(current
->nsproxy
->mnt_ns
);
3191 /* A moved mount should not expire automatically */
3192 list_del_init(&new_mnt
->mnt_expire
);
3193 put_mountpoint(root_mp
);
3194 unlock_mount_hash();
3195 chroot_fs_refs(&root
, &new);
3198 unlock_mount(old_mp
);
3200 path_put(&root_parent
);
3201 path_put(&parent_path
);
3213 static void __init
init_mount_tree(void)
3215 struct vfsmount
*mnt
;
3216 struct mnt_namespace
*ns
;
3218 struct file_system_type
*type
;
3220 type
= get_fs_type("rootfs");
3222 panic("Can't find rootfs type");
3223 mnt
= vfs_kern_mount(type
, 0, "rootfs", NULL
);
3224 put_filesystem(type
);
3226 panic("Can't create rootfs");
3228 ns
= create_mnt_ns(mnt
);
3230 panic("Can't allocate initial namespace");
3232 init_task
.nsproxy
->mnt_ns
= ns
;
3236 root
.dentry
= mnt
->mnt_root
;
3237 mnt
->mnt_flags
|= MNT_LOCKED
;
3239 set_fs_pwd(current
->fs
, &root
);
3240 set_fs_root(current
->fs
, &root
);
3243 void __init
mnt_init(void)
3247 mnt_cache
= kmem_cache_create("mnt_cache", sizeof(struct mount
),
3248 0, SLAB_HWCACHE_ALIGN
| SLAB_PANIC
, NULL
);
3250 mount_hashtable
= alloc_large_system_hash("Mount-cache",
3251 sizeof(struct hlist_head
),
3254 &m_hash_shift
, &m_hash_mask
, 0, 0);
3255 mountpoint_hashtable
= alloc_large_system_hash("Mountpoint-cache",
3256 sizeof(struct hlist_head
),
3259 &mp_hash_shift
, &mp_hash_mask
, 0, 0);
3261 if (!mount_hashtable
|| !mountpoint_hashtable
)
3262 panic("Failed to allocate mount hash table\n");
3268 printk(KERN_WARNING
"%s: sysfs_init error: %d\n",
3270 fs_kobj
= kobject_create_and_add("fs", NULL
);
3272 printk(KERN_WARNING
"%s: kobj create error\n", __func__
);
3277 void put_mnt_ns(struct mnt_namespace
*ns
)
3279 if (!atomic_dec_and_test(&ns
->count
))
3281 drop_collected_mounts(&ns
->root
->mnt
);
3285 struct vfsmount
*kern_mount_data(struct file_system_type
*type
, void *data
)
3287 struct vfsmount
*mnt
;
3288 mnt
= vfs_kern_mount(type
, SB_KERNMOUNT
, type
->name
, data
);
3291 * it is a longterm mount, don't release mnt until
3292 * we unmount before file sys is unregistered
3294 real_mount(mnt
)->mnt_ns
= MNT_NS_INTERNAL
;
3298 EXPORT_SYMBOL_GPL(kern_mount_data
);
3300 void kern_unmount(struct vfsmount
*mnt
)
3302 /* release long term mount so mount point can be released */
3303 if (!IS_ERR_OR_NULL(mnt
)) {
3304 real_mount(mnt
)->mnt_ns
= NULL
;
3305 synchronize_rcu(); /* yecchhh... */
3309 EXPORT_SYMBOL(kern_unmount
);
3311 bool our_mnt(struct vfsmount
*mnt
)
3313 return check_mnt(real_mount(mnt
));
3316 bool current_chrooted(void)
3318 /* Does the current process have a non-standard root */
3319 struct path ns_root
;
3320 struct path fs_root
;
3323 /* Find the namespace root */
3324 ns_root
.mnt
= ¤t
->nsproxy
->mnt_ns
->root
->mnt
;
3325 ns_root
.dentry
= ns_root
.mnt
->mnt_root
;
3327 while (d_mountpoint(ns_root
.dentry
) && follow_down_one(&ns_root
))
3330 get_fs_root(current
->fs
, &fs_root
);
3332 chrooted
= !path_equal(&fs_root
, &ns_root
);
3340 static bool mnt_already_visible(struct mnt_namespace
*ns
, struct vfsmount
*new,
3343 int new_flags
= *new_mnt_flags
;
3345 bool visible
= false;
3347 down_read(&namespace_sem
);
3348 list_for_each_entry(mnt
, &ns
->list
, mnt_list
) {
3349 struct mount
*child
;
3352 if (mnt
->mnt
.mnt_sb
->s_type
!= new->mnt_sb
->s_type
)
3355 /* This mount is not fully visible if it's root directory
3356 * is not the root directory of the filesystem.
3358 if (mnt
->mnt
.mnt_root
!= mnt
->mnt
.mnt_sb
->s_root
)
3361 /* A local view of the mount flags */
3362 mnt_flags
= mnt
->mnt
.mnt_flags
;
3364 /* Don't miss readonly hidden in the superblock flags */
3365 if (sb_rdonly(mnt
->mnt
.mnt_sb
))
3366 mnt_flags
|= MNT_LOCK_READONLY
;
3368 /* Verify the mount flags are equal to or more permissive
3369 * than the proposed new mount.
3371 if ((mnt_flags
& MNT_LOCK_READONLY
) &&
3372 !(new_flags
& MNT_READONLY
))
3374 if ((mnt_flags
& MNT_LOCK_ATIME
) &&
3375 ((mnt_flags
& MNT_ATIME_MASK
) != (new_flags
& MNT_ATIME_MASK
)))
3378 /* This mount is not fully visible if there are any
3379 * locked child mounts that cover anything except for
3380 * empty directories.
3382 list_for_each_entry(child
, &mnt
->mnt_mounts
, mnt_child
) {
3383 struct inode
*inode
= child
->mnt_mountpoint
->d_inode
;
3384 /* Only worry about locked mounts */
3385 if (!(child
->mnt
.mnt_flags
& MNT_LOCKED
))
3387 /* Is the directory permanetly empty? */
3388 if (!is_empty_dir_inode(inode
))
3391 /* Preserve the locked attributes */
3392 *new_mnt_flags
|= mnt_flags
& (MNT_LOCK_READONLY
| \
3399 up_read(&namespace_sem
);
3403 static bool mount_too_revealing(struct vfsmount
*mnt
, int *new_mnt_flags
)
3405 const unsigned long required_iflags
= SB_I_NOEXEC
| SB_I_NODEV
;
3406 struct mnt_namespace
*ns
= current
->nsproxy
->mnt_ns
;
3407 unsigned long s_iflags
;
3409 if (ns
->user_ns
== &init_user_ns
)
3412 /* Can this filesystem be too revealing? */
3413 s_iflags
= mnt
->mnt_sb
->s_iflags
;
3414 if (!(s_iflags
& SB_I_USERNS_VISIBLE
))
3417 if ((s_iflags
& required_iflags
) != required_iflags
) {
3418 WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n",
3423 return !mnt_already_visible(ns
, mnt
, new_mnt_flags
);
3426 bool mnt_may_suid(struct vfsmount
*mnt
)
3429 * Foreign mounts (accessed via fchdir or through /proc
3430 * symlinks) are always treated as if they are nosuid. This
3431 * prevents namespaces from trusting potentially unsafe
3432 * suid/sgid bits, file caps, or security labels that originate
3433 * in other namespaces.
3435 return !(mnt
->mnt_flags
& MNT_NOSUID
) && check_mnt(real_mount(mnt
)) &&
3436 current_in_userns(mnt
->mnt_sb
->s_user_ns
);
3439 static struct ns_common
*mntns_get(struct task_struct
*task
)
3441 struct ns_common
*ns
= NULL
;
3442 struct nsproxy
*nsproxy
;
3445 nsproxy
= task
->nsproxy
;
3447 ns
= &nsproxy
->mnt_ns
->ns
;
3448 get_mnt_ns(to_mnt_ns(ns
));
3455 static void mntns_put(struct ns_common
*ns
)
3457 put_mnt_ns(to_mnt_ns(ns
));
3460 static int mntns_install(struct nsproxy
*nsproxy
, struct ns_common
*ns
)
3462 struct fs_struct
*fs
= current
->fs
;
3463 struct mnt_namespace
*mnt_ns
= to_mnt_ns(ns
), *old_mnt_ns
;
3467 if (!ns_capable(mnt_ns
->user_ns
, CAP_SYS_ADMIN
) ||
3468 !ns_capable(current_user_ns(), CAP_SYS_CHROOT
) ||
3469 !ns_capable(current_user_ns(), CAP_SYS_ADMIN
))
3476 old_mnt_ns
= nsproxy
->mnt_ns
;
3477 nsproxy
->mnt_ns
= mnt_ns
;
3480 err
= vfs_path_lookup(mnt_ns
->root
->mnt
.mnt_root
, &mnt_ns
->root
->mnt
,
3481 "/", LOOKUP_DOWN
, &root
);
3483 /* revert to old namespace */
3484 nsproxy
->mnt_ns
= old_mnt_ns
;
3489 put_mnt_ns(old_mnt_ns
);
3491 /* Update the pwd and root */
3492 set_fs_pwd(fs
, &root
);
3493 set_fs_root(fs
, &root
);
3499 static struct user_namespace
*mntns_owner(struct ns_common
*ns
)
3501 return to_mnt_ns(ns
)->user_ns
;
3504 const struct proc_ns_operations mntns_operations
= {
3506 .type
= CLONE_NEWNS
,
3509 .install
= mntns_install
,
3510 .owner
= mntns_owner
,