5 * (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
6 * (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
7 * Many thanks to Oleg Nesterov for comments and help
11 #include <linux/pid.h>
12 #include <linux/pid_namespace.h>
13 #include <linux/user_namespace.h>
14 #include <linux/syscalls.h>
15 #include <linux/cred.h>
16 #include <linux/err.h>
17 #include <linux/acct.h>
18 #include <linux/slab.h>
19 #include <linux/proc_ns.h>
20 #include <linux/reboot.h>
21 #include <linux/export.h>
22 #include <linux/sched/task.h>
23 #include <linux/sched/signal.h>
28 struct kmem_cache
*cachep
;
29 struct list_head list
;
32 static LIST_HEAD(pid_caches_lh
);
33 static DEFINE_MUTEX(pid_caches_mutex
);
34 static struct kmem_cache
*pid_ns_cachep
;
37 * creates the kmem cache to allocate pids from.
38 * @nr_ids: the number of numerical ids this pid will have to carry
41 static struct kmem_cache
*create_pid_cachep(int nr_ids
)
43 struct pid_cache
*pcache
;
44 struct kmem_cache
*cachep
;
46 mutex_lock(&pid_caches_mutex
);
47 list_for_each_entry(pcache
, &pid_caches_lh
, list
)
48 if (pcache
->nr_ids
== nr_ids
)
51 pcache
= kmalloc(sizeof(struct pid_cache
), GFP_KERNEL
);
55 snprintf(pcache
->name
, sizeof(pcache
->name
), "pid_%d", nr_ids
);
56 cachep
= kmem_cache_create(pcache
->name
,
57 sizeof(struct pid
) + (nr_ids
- 1) * sizeof(struct upid
),
58 0, SLAB_HWCACHE_ALIGN
, NULL
);
62 pcache
->nr_ids
= nr_ids
;
63 pcache
->cachep
= cachep
;
64 list_add(&pcache
->list
, &pid_caches_lh
);
66 mutex_unlock(&pid_caches_mutex
);
67 return pcache
->cachep
;
72 mutex_unlock(&pid_caches_mutex
);
76 static void proc_cleanup_work(struct work_struct
*work
)
78 struct pid_namespace
*ns
= container_of(work
, struct pid_namespace
, proc_work
);
79 pid_ns_release_proc(ns
);
82 /* MAX_PID_NS_LEVEL is needed for limiting size of 'struct pid' */
83 #define MAX_PID_NS_LEVEL 32
85 static struct ucounts
*inc_pid_namespaces(struct user_namespace
*ns
)
87 return inc_ucount(ns
, current_euid(), UCOUNT_PID_NAMESPACES
);
90 static void dec_pid_namespaces(struct ucounts
*ucounts
)
92 dec_ucount(ucounts
, UCOUNT_PID_NAMESPACES
);
95 static struct pid_namespace
*create_pid_namespace(struct user_namespace
*user_ns
,
96 struct pid_namespace
*parent_pid_ns
)
98 struct pid_namespace
*ns
;
99 unsigned int level
= parent_pid_ns
->level
+ 1;
100 struct ucounts
*ucounts
;
105 if (!in_userns(parent_pid_ns
->user_ns
, user_ns
))
109 if (level
> MAX_PID_NS_LEVEL
)
111 ucounts
= inc_pid_namespaces(user_ns
);
116 ns
= kmem_cache_zalloc(pid_ns_cachep
, GFP_KERNEL
);
120 ns
->pidmap
[0].page
= kzalloc(PAGE_SIZE
, GFP_KERNEL
);
121 if (!ns
->pidmap
[0].page
)
124 ns
->pid_cachep
= create_pid_cachep(level
+ 1);
125 if (ns
->pid_cachep
== NULL
)
128 err
= ns_alloc_inum(&ns
->ns
);
131 ns
->ns
.ops
= &pidns_operations
;
133 kref_init(&ns
->kref
);
135 ns
->parent
= get_pid_ns(parent_pid_ns
);
136 ns
->user_ns
= get_user_ns(user_ns
);
137 ns
->ucounts
= ucounts
;
138 ns
->nr_hashed
= PIDNS_HASH_ADDING
;
139 INIT_WORK(&ns
->proc_work
, proc_cleanup_work
);
141 set_bit(0, ns
->pidmap
[0].page
);
142 atomic_set(&ns
->pidmap
[0].nr_free
, BITS_PER_PAGE
- 1);
144 for (i
= 1; i
< PIDMAP_ENTRIES
; i
++)
145 atomic_set(&ns
->pidmap
[i
].nr_free
, BITS_PER_PAGE
);
150 kfree(ns
->pidmap
[0].page
);
152 kmem_cache_free(pid_ns_cachep
, ns
);
154 dec_pid_namespaces(ucounts
);
159 static void delayed_free_pidns(struct rcu_head
*p
)
161 struct pid_namespace
*ns
= container_of(p
, struct pid_namespace
, rcu
);
163 dec_pid_namespaces(ns
->ucounts
);
164 put_user_ns(ns
->user_ns
);
166 kmem_cache_free(pid_ns_cachep
, ns
);
169 static void destroy_pid_namespace(struct pid_namespace
*ns
)
173 ns_free_inum(&ns
->ns
);
174 for (i
= 0; i
< PIDMAP_ENTRIES
; i
++)
175 kfree(ns
->pidmap
[i
].page
);
176 call_rcu(&ns
->rcu
, delayed_free_pidns
);
179 struct pid_namespace
*copy_pid_ns(unsigned long flags
,
180 struct user_namespace
*user_ns
, struct pid_namespace
*old_ns
)
182 if (!(flags
& CLONE_NEWPID
))
183 return get_pid_ns(old_ns
);
184 if (task_active_pid_ns(current
) != old_ns
)
185 return ERR_PTR(-EINVAL
);
186 return create_pid_namespace(user_ns
, old_ns
);
189 static void free_pid_ns(struct kref
*kref
)
191 struct pid_namespace
*ns
;
193 ns
= container_of(kref
, struct pid_namespace
, kref
);
194 destroy_pid_namespace(ns
);
197 void put_pid_ns(struct pid_namespace
*ns
)
199 struct pid_namespace
*parent
;
201 while (ns
!= &init_pid_ns
) {
203 if (!kref_put(&ns
->kref
, free_pid_ns
))
208 EXPORT_SYMBOL_GPL(put_pid_ns
);
210 void zap_pid_ns_processes(struct pid_namespace
*pid_ns
)
214 struct task_struct
*task
, *me
= current
;
215 int init_pids
= thread_group_leader(me
) ? 1 : 2;
217 /* Don't allow any more processes into the pid namespace */
218 disable_pid_allocation(pid_ns
);
221 * Ignore SIGCHLD causing any terminated children to autoreap.
222 * This speeds up the namespace shutdown, plus see the comment
225 spin_lock_irq(&me
->sighand
->siglock
);
226 me
->sighand
->action
[SIGCHLD
- 1].sa
.sa_handler
= SIG_IGN
;
227 spin_unlock_irq(&me
->sighand
->siglock
);
230 * The last thread in the cgroup-init thread group is terminating.
231 * Find remaining pid_ts in the namespace, signal and wait for them
234 * Note: This signals each threads in the namespace - even those that
235 * belong to the same thread group, To avoid this, we would have
236 * to walk the entire tasklist looking a processes in this
237 * namespace, but that could be unnecessarily expensive if the
238 * pid namespace has just a few processes. Or we need to
239 * maintain a tasklist for each pid namespace.
242 read_lock(&tasklist_lock
);
243 nr
= next_pidmap(pid_ns
, 1);
247 task
= pid_task(find_vpid(nr
), PIDTYPE_PID
);
248 if (task
&& !__fatal_signal_pending(task
))
249 send_sig_info(SIGKILL
, SEND_SIG_FORCED
, task
);
253 nr
= next_pidmap(pid_ns
, nr
);
255 read_unlock(&tasklist_lock
);
258 * Reap the EXIT_ZOMBIE children we had before we ignored SIGCHLD.
259 * sys_wait4() will also block until our children traced from the
260 * parent namespace are detached and become EXIT_DEAD.
263 clear_thread_flag(TIF_SIGPENDING
);
264 rc
= sys_wait4(-1, NULL
, __WALL
, NULL
);
265 } while (rc
!= -ECHILD
);
268 * sys_wait4() above can't reap the EXIT_DEAD children but we do not
269 * really care, we could reparent them to the global init. We could
270 * exit and reap ->child_reaper even if it is not the last thread in
271 * this pid_ns, free_pid(nr_hashed == 0) calls proc_cleanup_work(),
272 * pid_ns can not go away until proc_kill_sb() drops the reference.
274 * But this ns can also have other tasks injected by setns()+fork().
275 * Again, ignoring the user visible semantics we do not really need
276 * to wait until they are all reaped, but they can be reparented to
277 * us and thus we need to ensure that pid->child_reaper stays valid
278 * until they all go away. See free_pid()->wake_up_process().
280 * We rely on ignored SIGCHLD, an injected zombie must be autoreaped
284 set_current_state(TASK_INTERRUPTIBLE
);
285 if (pid_ns
->nr_hashed
== init_pids
)
289 __set_current_state(TASK_RUNNING
);
292 current
->signal
->group_exit_code
= pid_ns
->reboot
;
294 acct_exit_ns(pid_ns
);
298 #ifdef CONFIG_CHECKPOINT_RESTORE
299 static int pid_ns_ctl_handler(struct ctl_table
*table
, int write
,
300 void __user
*buffer
, size_t *lenp
, loff_t
*ppos
)
302 struct pid_namespace
*pid_ns
= task_active_pid_ns(current
);
303 struct ctl_table tmp
= *table
;
305 if (write
&& !ns_capable(pid_ns
->user_ns
, CAP_SYS_ADMIN
))
309 * Writing directly to ns' last_pid field is OK, since this field
310 * is volatile in a living namespace anyway and a code writing to
311 * it should synchronize its usage with external means.
314 tmp
.data
= &pid_ns
->last_pid
;
315 return proc_dointvec_minmax(&tmp
, write
, buffer
, lenp
, ppos
);
320 static struct ctl_table pid_ns_ctl_table
[] = {
322 .procname
= "ns_last_pid",
323 .maxlen
= sizeof(int),
324 .mode
= 0666, /* permissions are checked in the handler */
325 .proc_handler
= pid_ns_ctl_handler
,
331 static struct ctl_path kern_path
[] = { { .procname
= "kernel", }, { } };
332 #endif /* CONFIG_CHECKPOINT_RESTORE */
334 int reboot_pid_ns(struct pid_namespace
*pid_ns
, int cmd
)
336 if (pid_ns
== &init_pid_ns
)
340 case LINUX_REBOOT_CMD_RESTART2
:
341 case LINUX_REBOOT_CMD_RESTART
:
342 pid_ns
->reboot
= SIGHUP
;
345 case LINUX_REBOOT_CMD_POWER_OFF
:
346 case LINUX_REBOOT_CMD_HALT
:
347 pid_ns
->reboot
= SIGINT
;
353 read_lock(&tasklist_lock
);
354 force_sig(SIGKILL
, pid_ns
->child_reaper
);
355 read_unlock(&tasklist_lock
);
363 static inline struct pid_namespace
*to_pid_ns(struct ns_common
*ns
)
365 return container_of(ns
, struct pid_namespace
, ns
);
368 static struct ns_common
*pidns_get(struct task_struct
*task
)
370 struct pid_namespace
*ns
;
373 ns
= task_active_pid_ns(task
);
378 return ns
? &ns
->ns
: NULL
;
381 static struct ns_common
*pidns_for_children_get(struct task_struct
*task
)
383 struct pid_namespace
*ns
= NULL
;
387 ns
= task
->nsproxy
->pid_ns_for_children
;
393 read_lock(&tasklist_lock
);
394 if (!ns
->child_reaper
) {
398 read_unlock(&tasklist_lock
);
401 return ns
? &ns
->ns
: NULL
;
404 static void pidns_put(struct ns_common
*ns
)
406 put_pid_ns(to_pid_ns(ns
));
409 static int pidns_install(struct nsproxy
*nsproxy
, struct ns_common
*ns
)
411 struct pid_namespace
*active
= task_active_pid_ns(current
);
412 struct pid_namespace
*ancestor
, *new = to_pid_ns(ns
);
414 if (!ns_capable(new->user_ns
, CAP_SYS_ADMIN
) ||
415 !ns_capable(current_user_ns(), CAP_SYS_ADMIN
))
419 * Only allow entering the current active pid namespace
420 * or a child of the current active pid namespace.
422 * This is required for fork to return a usable pid value and
423 * this maintains the property that processes and their
424 * children can not escape their current pid namespace.
426 if (new->level
< active
->level
)
430 while (ancestor
->level
> active
->level
)
431 ancestor
= ancestor
->parent
;
432 if (ancestor
!= active
)
435 put_pid_ns(nsproxy
->pid_ns_for_children
);
436 nsproxy
->pid_ns_for_children
= get_pid_ns(new);
440 static struct ns_common
*pidns_get_parent(struct ns_common
*ns
)
442 struct pid_namespace
*active
= task_active_pid_ns(current
);
443 struct pid_namespace
*pid_ns
, *p
;
445 /* See if the parent is in the current namespace */
446 pid_ns
= p
= to_pid_ns(ns
)->parent
;
449 return ERR_PTR(-EPERM
);
455 return &get_pid_ns(pid_ns
)->ns
;
458 static struct user_namespace
*pidns_owner(struct ns_common
*ns
)
460 return to_pid_ns(ns
)->user_ns
;
463 const struct proc_ns_operations pidns_operations
= {
465 .type
= CLONE_NEWPID
,
468 .install
= pidns_install
,
469 .owner
= pidns_owner
,
470 .get_parent
= pidns_get_parent
,
473 const struct proc_ns_operations pidns_for_children_operations
= {
474 .name
= "pid_for_children",
475 .real_ns_name
= "pid",
476 .type
= CLONE_NEWPID
,
477 .get
= pidns_for_children_get
,
479 .install
= pidns_install
,
480 .owner
= pidns_owner
,
481 .get_parent
= pidns_get_parent
,
484 static __init
int pid_namespaces_init(void)
486 pid_ns_cachep
= KMEM_CACHE(pid_namespace
, SLAB_PANIC
);
488 #ifdef CONFIG_CHECKPOINT_RESTORE
489 register_sysctl_paths(kern_path
, pid_ns_ctl_table
);
494 __initcall(pid_namespaces_init
);