4 * Copyright (C) 1991, 1992 Linus Torvalds
8 #include <linux/slab.h>
9 #include <linux/sched/autogroup.h>
10 #include <linux/sched/mm.h>
11 #include <linux/sched/stat.h>
12 #include <linux/sched/task.h>
13 #include <linux/sched/task_stack.h>
14 #include <linux/sched/cputime.h>
15 #include <linux/interrupt.h>
16 #include <linux/module.h>
17 #include <linux/capability.h>
18 #include <linux/completion.h>
19 #include <linux/personality.h>
20 #include <linux/tty.h>
21 #include <linux/iocontext.h>
22 #include <linux/key.h>
23 #include <linux/cpu.h>
24 #include <linux/acct.h>
25 #include <linux/tsacct_kern.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
28 #include <linux/freezer.h>
29 #include <linux/binfmts.h>
30 #include <linux/nsproxy.h>
31 #include <linux/pid_namespace.h>
32 #include <linux/ptrace.h>
33 #include <linux/profile.h>
34 #include <linux/mount.h>
35 #include <linux/proc_fs.h>
36 #include <linux/kthread.h>
37 #include <linux/mempolicy.h>
38 #include <linux/taskstats_kern.h>
39 #include <linux/delayacct.h>
40 #include <linux/cgroup.h>
41 #include <linux/syscalls.h>
42 #include <linux/signal.h>
43 #include <linux/posix-timers.h>
44 #include <linux/cn_proc.h>
45 #include <linux/mutex.h>
46 #include <linux/futex.h>
47 #include <linux/pipe_fs_i.h>
48 #include <linux/audit.h> /* for audit_free() */
49 #include <linux/resource.h>
50 #include <linux/blkdev.h>
51 #include <linux/task_io_accounting_ops.h>
52 #include <linux/tracehook.h>
53 #include <linux/fs_struct.h>
54 #include <linux/init_task.h>
55 #include <linux/perf_event.h>
56 #include <trace/events/sched.h>
57 #include <linux/hw_breakpoint.h>
58 #include <linux/oom.h>
59 #include <linux/writeback.h>
60 #include <linux/shm.h>
61 #include <linux/kcov.h>
62 #include <linux/random.h>
63 #include <linux/rcuwait.h>
64 #include <linux/compat.h>
66 #include <linux/uaccess.h>
67 #include <asm/unistd.h>
68 #include <asm/pgtable.h>
69 #include <asm/mmu_context.h>
71 static void __unhash_process(struct task_struct
*p
, bool group_dead
)
74 detach_pid(p
, PIDTYPE_PID
);
76 detach_pid(p
, PIDTYPE_PGID
);
77 detach_pid(p
, PIDTYPE_SID
);
79 list_del_rcu(&p
->tasks
);
80 list_del_init(&p
->sibling
);
81 __this_cpu_dec(process_counts
);
83 list_del_rcu(&p
->thread_group
);
84 list_del_rcu(&p
->thread_node
);
88 * This function expects the tasklist_lock write-locked.
90 static void __exit_signal(struct task_struct
*tsk
)
92 struct signal_struct
*sig
= tsk
->signal
;
93 bool group_dead
= thread_group_leader(tsk
);
94 struct sighand_struct
*sighand
;
95 struct tty_struct
*uninitialized_var(tty
);
98 sighand
= rcu_dereference_check(tsk
->sighand
,
99 lockdep_tasklist_lock_is_held());
100 spin_lock(&sighand
->siglock
);
102 #ifdef CONFIG_POSIX_TIMERS
103 posix_cpu_timers_exit(tsk
);
105 posix_cpu_timers_exit_group(tsk
);
108 * This can only happen if the caller is de_thread().
109 * FIXME: this is the temporary hack, we should teach
110 * posix-cpu-timers to handle this case correctly.
112 if (unlikely(has_group_leader_pid(tsk
)))
113 posix_cpu_timers_exit_group(tsk
);
122 * If there is any task waiting for the group exit
125 if (sig
->notify_count
> 0 && !--sig
->notify_count
)
126 wake_up_process(sig
->group_exit_task
);
128 if (tsk
== sig
->curr_target
)
129 sig
->curr_target
= next_thread(tsk
);
132 add_device_randomness((const void*) &tsk
->se
.sum_exec_runtime
,
133 sizeof(unsigned long long));
136 * Accumulate here the counters for all threads as they die. We could
137 * skip the group leader because it is the last user of signal_struct,
138 * but we want to avoid the race with thread_group_cputime() which can
139 * see the empty ->thread_head list.
141 task_cputime(tsk
, &utime
, &stime
);
142 write_seqlock(&sig
->stats_lock
);
145 sig
->gtime
+= task_gtime(tsk
);
146 sig
->min_flt
+= tsk
->min_flt
;
147 sig
->maj_flt
+= tsk
->maj_flt
;
148 sig
->nvcsw
+= tsk
->nvcsw
;
149 sig
->nivcsw
+= tsk
->nivcsw
;
150 sig
->inblock
+= task_io_get_inblock(tsk
);
151 sig
->oublock
+= task_io_get_oublock(tsk
);
152 task_io_accounting_add(&sig
->ioac
, &tsk
->ioac
);
153 sig
->sum_sched_runtime
+= tsk
->se
.sum_exec_runtime
;
155 __unhash_process(tsk
, group_dead
);
156 write_sequnlock(&sig
->stats_lock
);
159 * Do this under ->siglock, we can race with another thread
160 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
162 flush_sigqueue(&tsk
->pending
);
164 spin_unlock(&sighand
->siglock
);
166 __cleanup_sighand(sighand
);
167 clear_tsk_thread_flag(tsk
, TIF_SIGPENDING
);
169 flush_sigqueue(&sig
->shared_pending
);
174 static void delayed_put_task_struct(struct rcu_head
*rhp
)
176 struct task_struct
*tsk
= container_of(rhp
, struct task_struct
, rcu
);
178 perf_event_delayed_put(tsk
);
179 trace_sched_process_free(tsk
);
180 put_task_struct(tsk
);
184 void release_task(struct task_struct
*p
)
186 struct task_struct
*leader
;
189 /* don't need to get the RCU readlock here - the process is dead and
190 * can't be modifying its own credentials. But shut RCU-lockdep up */
192 atomic_dec(&__task_cred(p
)->user
->processes
);
197 write_lock_irq(&tasklist_lock
);
198 ptrace_release_task(p
);
202 * If we are the last non-leader member of the thread
203 * group, and the leader is zombie, then notify the
204 * group leader's parent process. (if it wants notification.)
207 leader
= p
->group_leader
;
208 if (leader
!= p
&& thread_group_empty(leader
)
209 && leader
->exit_state
== EXIT_ZOMBIE
) {
211 * If we were the last child thread and the leader has
212 * exited already, and the leader's parent ignores SIGCHLD,
213 * then we are the one who should release the leader.
215 zap_leader
= do_notify_parent(leader
, leader
->exit_signal
);
217 leader
->exit_state
= EXIT_DEAD
;
220 write_unlock_irq(&tasklist_lock
);
222 call_rcu(&p
->rcu
, delayed_put_task_struct
);
225 if (unlikely(zap_leader
))
230 * Note that if this function returns a valid task_struct pointer (!NULL)
231 * task->usage must remain >0 for the duration of the RCU critical section.
233 struct task_struct
*task_rcu_dereference(struct task_struct
**ptask
)
235 struct sighand_struct
*sighand
;
236 struct task_struct
*task
;
239 * We need to verify that release_task() was not called and thus
240 * delayed_put_task_struct() can't run and drop the last reference
241 * before rcu_read_unlock(). We check task->sighand != NULL,
242 * but we can read the already freed and reused memory.
245 task
= rcu_dereference(*ptask
);
249 probe_kernel_address(&task
->sighand
, sighand
);
252 * Pairs with atomic_dec_and_test() in put_task_struct(). If this task
253 * was already freed we can not miss the preceding update of this
257 if (unlikely(task
!= READ_ONCE(*ptask
)))
261 * We've re-checked that "task == *ptask", now we have two different
264 * 1. This is actually the same task/task_struct. In this case
265 * sighand != NULL tells us it is still alive.
267 * 2. This is another task which got the same memory for task_struct.
268 * We can't know this of course, and we can not trust
271 * In this case we actually return a random value, but this is
274 * If we return NULL - we can pretend that we actually noticed that
275 * *ptask was updated when the previous task has exited. Or pretend
276 * that probe_slab_address(&sighand) reads NULL.
278 * If we return the new task (because sighand is not NULL for any
279 * reason) - this is fine too. This (new) task can't go away before
282 * And note: We could even eliminate the false positive if re-read
283 * task->sighand once again to avoid the falsely NULL. But this case
284 * is very unlikely so we don't care.
292 void rcuwait_wake_up(struct rcuwait
*w
)
294 struct task_struct
*task
;
299 * Order condition vs @task, such that everything prior to the load
300 * of @task is visible. This is the condition as to why the user called
301 * rcuwait_trywake() in the first place. Pairs with set_current_state()
302 * barrier (A) in rcuwait_wait_event().
305 * [S] tsk = current [S] cond = true
312 * Avoid using task_rcu_dereference() magic as long as we are careful,
313 * see comment in rcuwait_wait_event() regarding ->exit_state.
315 task
= rcu_dereference(w
->task
);
317 wake_up_process(task
);
322 * Determine if a process group is "orphaned", according to the POSIX
323 * definition in 2.2.2.52. Orphaned process groups are not to be affected
324 * by terminal-generated stop signals. Newly orphaned process groups are
325 * to receive a SIGHUP and a SIGCONT.
327 * "I ask you, have you ever known what it is to be an orphan?"
329 static int will_become_orphaned_pgrp(struct pid
*pgrp
,
330 struct task_struct
*ignored_task
)
332 struct task_struct
*p
;
334 do_each_pid_task(pgrp
, PIDTYPE_PGID
, p
) {
335 if ((p
== ignored_task
) ||
336 (p
->exit_state
&& thread_group_empty(p
)) ||
337 is_global_init(p
->real_parent
))
340 if (task_pgrp(p
->real_parent
) != pgrp
&&
341 task_session(p
->real_parent
) == task_session(p
))
343 } while_each_pid_task(pgrp
, PIDTYPE_PGID
, p
);
348 int is_current_pgrp_orphaned(void)
352 read_lock(&tasklist_lock
);
353 retval
= will_become_orphaned_pgrp(task_pgrp(current
), NULL
);
354 read_unlock(&tasklist_lock
);
359 static bool has_stopped_jobs(struct pid
*pgrp
)
361 struct task_struct
*p
;
363 do_each_pid_task(pgrp
, PIDTYPE_PGID
, p
) {
364 if (p
->signal
->flags
& SIGNAL_STOP_STOPPED
)
366 } while_each_pid_task(pgrp
, PIDTYPE_PGID
, p
);
372 * Check to see if any process groups have become orphaned as
373 * a result of our exiting, and if they have any stopped jobs,
374 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
377 kill_orphaned_pgrp(struct task_struct
*tsk
, struct task_struct
*parent
)
379 struct pid
*pgrp
= task_pgrp(tsk
);
380 struct task_struct
*ignored_task
= tsk
;
383 /* exit: our father is in a different pgrp than
384 * we are and we were the only connection outside.
386 parent
= tsk
->real_parent
;
388 /* reparent: our child is in a different pgrp than
389 * we are, and it was the only connection outside.
393 if (task_pgrp(parent
) != pgrp
&&
394 task_session(parent
) == task_session(tsk
) &&
395 will_become_orphaned_pgrp(pgrp
, ignored_task
) &&
396 has_stopped_jobs(pgrp
)) {
397 __kill_pgrp_info(SIGHUP
, SEND_SIG_PRIV
, pgrp
);
398 __kill_pgrp_info(SIGCONT
, SEND_SIG_PRIV
, pgrp
);
404 * A task is exiting. If it owned this mm, find a new owner for the mm.
406 void mm_update_next_owner(struct mm_struct
*mm
)
408 struct task_struct
*c
, *g
, *p
= current
;
412 * If the exiting or execing task is not the owner, it's
413 * someone else's problem.
418 * The current owner is exiting/execing and there are no other
419 * candidates. Do not leave the mm pointing to a possibly
420 * freed task structure.
422 if (atomic_read(&mm
->mm_users
) <= 1) {
427 read_lock(&tasklist_lock
);
429 * Search in the children
431 list_for_each_entry(c
, &p
->children
, sibling
) {
433 goto assign_new_owner
;
437 * Search in the siblings
439 list_for_each_entry(c
, &p
->real_parent
->children
, sibling
) {
441 goto assign_new_owner
;
445 * Search through everything else, we should not get here often.
447 for_each_process(g
) {
448 if (g
->flags
& PF_KTHREAD
)
450 for_each_thread(g
, c
) {
452 goto assign_new_owner
;
457 read_unlock(&tasklist_lock
);
459 * We found no owner yet mm_users > 1: this implies that we are
460 * most likely racing with swapoff (try_to_unuse()) or /proc or
461 * ptrace or page migration (get_task_mm()). Mark owner as NULL.
470 * The task_lock protects c->mm from changing.
471 * We always want mm->owner->mm == mm
475 * Delay read_unlock() till we have the task_lock()
476 * to ensure that c does not slip away underneath us
478 read_unlock(&tasklist_lock
);
488 #endif /* CONFIG_MEMCG */
491 * Turn us into a lazy TLB process if we
494 static void exit_mm(void)
496 struct mm_struct
*mm
= current
->mm
;
497 struct core_state
*core_state
;
499 mm_release(current
, mm
);
504 * Serialize with any possible pending coredump.
505 * We must hold mmap_sem around checking core_state
506 * and clearing tsk->mm. The core-inducing thread
507 * will increment ->nr_threads for each thread in the
508 * group with ->mm != NULL.
510 down_read(&mm
->mmap_sem
);
511 core_state
= mm
->core_state
;
513 struct core_thread self
;
515 up_read(&mm
->mmap_sem
);
518 self
.next
= xchg(&core_state
->dumper
.next
, &self
);
520 * Implies mb(), the result of xchg() must be visible
521 * to core_state->dumper.
523 if (atomic_dec_and_test(&core_state
->nr_threads
))
524 complete(&core_state
->startup
);
527 set_current_state(TASK_UNINTERRUPTIBLE
);
528 if (!self
.task
) /* see coredump_finish() */
530 freezable_schedule();
532 __set_current_state(TASK_RUNNING
);
533 down_read(&mm
->mmap_sem
);
536 BUG_ON(mm
!= current
->active_mm
);
537 /* more a memory barrier than a real lock */
540 up_read(&mm
->mmap_sem
);
541 enter_lazy_tlb(mm
, current
);
542 task_unlock(current
);
543 mm_update_next_owner(mm
);
545 if (test_thread_flag(TIF_MEMDIE
))
549 static struct task_struct
*find_alive_thread(struct task_struct
*p
)
551 struct task_struct
*t
;
553 for_each_thread(p
, t
) {
554 if (!(t
->flags
& PF_EXITING
))
560 static struct task_struct
*find_child_reaper(struct task_struct
*father
,
561 struct list_head
*dead
)
562 __releases(&tasklist_lock
)
563 __acquires(&tasklist_lock
)
565 struct pid_namespace
*pid_ns
= task_active_pid_ns(father
);
566 struct task_struct
*reaper
= pid_ns
->child_reaper
;
567 struct task_struct
*p
, *n
;
569 if (likely(reaper
!= father
))
572 reaper
= find_alive_thread(father
);
574 pid_ns
->child_reaper
= reaper
;
578 write_unlock_irq(&tasklist_lock
);
579 if (unlikely(pid_ns
== &init_pid_ns
)) {
580 panic("Attempted to kill init! exitcode=0x%08x\n",
581 father
->signal
->group_exit_code
?: father
->exit_code
);
584 list_for_each_entry_safe(p
, n
, dead
, ptrace_entry
) {
585 list_del_init(&p
->ptrace_entry
);
589 zap_pid_ns_processes(pid_ns
);
590 write_lock_irq(&tasklist_lock
);
596 * When we die, we re-parent all our children, and try to:
597 * 1. give them to another thread in our thread group, if such a member exists
598 * 2. give it to the first ancestor process which prctl'd itself as a
599 * child_subreaper for its children (like a service manager)
600 * 3. give it to the init process (PID 1) in our pid namespace
602 static struct task_struct
*find_new_reaper(struct task_struct
*father
,
603 struct task_struct
*child_reaper
)
605 struct task_struct
*thread
, *reaper
;
607 thread
= find_alive_thread(father
);
611 if (father
->signal
->has_child_subreaper
) {
612 unsigned int ns_level
= task_pid(father
)->level
;
614 * Find the first ->is_child_subreaper ancestor in our pid_ns.
615 * We can't check reaper != child_reaper to ensure we do not
616 * cross the namespaces, the exiting parent could be injected
617 * by setns() + fork().
618 * We check pid->level, this is slightly more efficient than
619 * task_active_pid_ns(reaper) != task_active_pid_ns(father).
621 for (reaper
= father
->real_parent
;
622 task_pid(reaper
)->level
== ns_level
;
623 reaper
= reaper
->real_parent
) {
624 if (reaper
== &init_task
)
626 if (!reaper
->signal
->is_child_subreaper
)
628 thread
= find_alive_thread(reaper
);
638 * Any that need to be release_task'd are put on the @dead list.
640 static void reparent_leader(struct task_struct
*father
, struct task_struct
*p
,
641 struct list_head
*dead
)
643 if (unlikely(p
->exit_state
== EXIT_DEAD
))
646 /* We don't want people slaying init. */
647 p
->exit_signal
= SIGCHLD
;
649 /* If it has exited notify the new parent about this child's death. */
651 p
->exit_state
== EXIT_ZOMBIE
&& thread_group_empty(p
)) {
652 if (do_notify_parent(p
, p
->exit_signal
)) {
653 p
->exit_state
= EXIT_DEAD
;
654 list_add(&p
->ptrace_entry
, dead
);
658 kill_orphaned_pgrp(p
, father
);
662 * This does two things:
664 * A. Make init inherit all the child processes
665 * B. Check to see if any process groups have become orphaned
666 * as a result of our exiting, and if they have any stopped
667 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
669 static void forget_original_parent(struct task_struct
*father
,
670 struct list_head
*dead
)
672 struct task_struct
*p
, *t
, *reaper
;
674 if (unlikely(!list_empty(&father
->ptraced
)))
675 exit_ptrace(father
, dead
);
677 /* Can drop and reacquire tasklist_lock */
678 reaper
= find_child_reaper(father
, dead
);
679 if (list_empty(&father
->children
))
682 reaper
= find_new_reaper(father
, reaper
);
683 list_for_each_entry(p
, &father
->children
, sibling
) {
684 for_each_thread(p
, t
) {
685 t
->real_parent
= reaper
;
686 BUG_ON((!t
->ptrace
) != (t
->parent
== father
));
687 if (likely(!t
->ptrace
))
688 t
->parent
= t
->real_parent
;
689 if (t
->pdeath_signal
)
690 group_send_sig_info(t
->pdeath_signal
,
694 * If this is a threaded reparent there is no need to
695 * notify anyone anything has happened.
697 if (!same_thread_group(reaper
, father
))
698 reparent_leader(father
, p
, dead
);
700 list_splice_tail_init(&father
->children
, &reaper
->children
);
704 * Send signals to all our closest relatives so that they know
705 * to properly mourn us..
707 static void exit_notify(struct task_struct
*tsk
, int group_dead
)
710 struct task_struct
*p
, *n
;
713 write_lock_irq(&tasklist_lock
);
714 forget_original_parent(tsk
, &dead
);
717 kill_orphaned_pgrp(tsk
->group_leader
, NULL
);
719 if (unlikely(tsk
->ptrace
)) {
720 int sig
= thread_group_leader(tsk
) &&
721 thread_group_empty(tsk
) &&
722 !ptrace_reparented(tsk
) ?
723 tsk
->exit_signal
: SIGCHLD
;
724 autoreap
= do_notify_parent(tsk
, sig
);
725 } else if (thread_group_leader(tsk
)) {
726 autoreap
= thread_group_empty(tsk
) &&
727 do_notify_parent(tsk
, tsk
->exit_signal
);
732 tsk
->exit_state
= autoreap
? EXIT_DEAD
: EXIT_ZOMBIE
;
733 if (tsk
->exit_state
== EXIT_DEAD
)
734 list_add(&tsk
->ptrace_entry
, &dead
);
736 /* mt-exec, de_thread() is waiting for group leader */
737 if (unlikely(tsk
->signal
->notify_count
< 0))
738 wake_up_process(tsk
->signal
->group_exit_task
);
739 write_unlock_irq(&tasklist_lock
);
741 list_for_each_entry_safe(p
, n
, &dead
, ptrace_entry
) {
742 list_del_init(&p
->ptrace_entry
);
747 #ifdef CONFIG_DEBUG_STACK_USAGE
748 static void check_stack_usage(void)
750 static DEFINE_SPINLOCK(low_water_lock
);
751 static int lowest_to_date
= THREAD_SIZE
;
754 free
= stack_not_used(current
);
756 if (free
>= lowest_to_date
)
759 spin_lock(&low_water_lock
);
760 if (free
< lowest_to_date
) {
761 pr_info("%s (%d) used greatest stack depth: %lu bytes left\n",
762 current
->comm
, task_pid_nr(current
), free
);
763 lowest_to_date
= free
;
765 spin_unlock(&low_water_lock
);
768 static inline void check_stack_usage(void) {}
771 void __noreturn
do_exit(long code
)
773 struct task_struct
*tsk
= current
;
776 profile_task_exit(tsk
);
779 WARN_ON(blk_needs_flush_plug(tsk
));
781 if (unlikely(in_interrupt()))
782 panic("Aiee, killing interrupt handler!");
783 if (unlikely(!tsk
->pid
))
784 panic("Attempted to kill the idle task!");
787 * If do_exit is called because this processes oopsed, it's possible
788 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
789 * continuing. Amongst other possible reasons, this is to prevent
790 * mm_release()->clear_child_tid() from writing to a user-controlled
795 ptrace_event(PTRACE_EVENT_EXIT
, code
);
797 validate_creds_for_do_exit(tsk
);
800 * We're taking recursive faults here in do_exit. Safest is to just
801 * leave this task alone and wait for reboot.
803 if (unlikely(tsk
->flags
& PF_EXITING
)) {
804 pr_alert("Fixing recursive fault but reboot is needed!\n");
806 * We can do this unlocked here. The futex code uses
807 * this flag just to verify whether the pi state
808 * cleanup has been done or not. In the worst case it
809 * loops once more. We pretend that the cleanup was
810 * done as there is no way to return. Either the
811 * OWNER_DIED bit is set by now or we push the blocked
812 * task into the wait for ever nirwana as well.
814 tsk
->flags
|= PF_EXITPIDONE
;
815 set_current_state(TASK_UNINTERRUPTIBLE
);
819 exit_signals(tsk
); /* sets PF_EXITING */
821 * Ensure that all new tsk->pi_lock acquisitions must observe
822 * PF_EXITING. Serializes against futex.c:attach_to_pi_owner().
826 * Ensure that we must observe the pi_state in exit_mm() ->
827 * mm_release() -> exit_pi_state_list().
829 raw_spin_lock_irq(&tsk
->pi_lock
);
830 raw_spin_unlock_irq(&tsk
->pi_lock
);
832 if (unlikely(in_atomic())) {
833 pr_info("note: %s[%d] exited with preempt_count %d\n",
834 current
->comm
, task_pid_nr(current
),
836 preempt_count_set(PREEMPT_ENABLED
);
839 /* sync mm's RSS info before statistics gathering */
841 sync_mm_rss(tsk
->mm
);
842 acct_update_integrals(tsk
);
843 group_dead
= atomic_dec_and_test(&tsk
->signal
->live
);
845 #ifdef CONFIG_POSIX_TIMERS
846 hrtimer_cancel(&tsk
->signal
->real_timer
);
847 exit_itimers(tsk
->signal
);
850 setmax_mm_hiwater_rss(&tsk
->signal
->maxrss
, tsk
->mm
);
852 acct_collect(code
, group_dead
);
857 tsk
->exit_code
= code
;
858 taskstats_exit(tsk
, group_dead
);
864 trace_sched_process_exit(tsk
);
871 disassociate_ctty(1);
872 exit_task_namespaces(tsk
);
877 * Flush inherited counters to the parent - before the parent
878 * gets woken up by child-exit notifications.
880 * because of cgroup mode, must be called before cgroup_exit()
882 perf_event_exit_task(tsk
);
884 sched_autogroup_exit_task(tsk
);
888 * FIXME: do that only when needed, using sched_exit tracepoint
890 flush_ptrace_hw_breakpoint(tsk
);
892 exit_tasks_rcu_start();
893 exit_notify(tsk
, group_dead
);
894 proc_exit_connector(tsk
);
895 mpol_put_task_policy(tsk
);
897 if (unlikely(current
->pi_state_cache
))
898 kfree(current
->pi_state_cache
);
901 * Make sure we are holding no locks:
903 debug_check_no_locks_held();
905 * We can do this unlocked here. The futex code uses this flag
906 * just to verify whether the pi state cleanup has been done
907 * or not. In the worst case it loops once more.
909 tsk
->flags
|= PF_EXITPIDONE
;
912 exit_io_context(tsk
);
914 if (tsk
->splice_pipe
)
915 free_pipe_info(tsk
->splice_pipe
);
917 if (tsk
->task_frag
.page
)
918 put_page(tsk
->task_frag
.page
);
920 validate_creds_for_do_exit(tsk
);
925 __this_cpu_add(dirty_throttle_leaks
, tsk
->nr_dirtied
);
927 exit_tasks_rcu_finish();
929 lockdep_free_task(tsk
);
932 EXPORT_SYMBOL_GPL(do_exit
);
934 void complete_and_exit(struct completion
*comp
, long code
)
941 EXPORT_SYMBOL(complete_and_exit
);
943 SYSCALL_DEFINE1(exit
, int, error_code
)
945 do_exit((error_code
&0xff)<<8);
949 * Take down every thread in the group. This is called by fatal signals
950 * as well as by sys_exit_group (below).
953 do_group_exit(int exit_code
)
955 struct signal_struct
*sig
= current
->signal
;
957 BUG_ON(exit_code
& 0x80); /* core dumps don't get here */
959 if (signal_group_exit(sig
))
960 exit_code
= sig
->group_exit_code
;
961 else if (!thread_group_empty(current
)) {
962 struct sighand_struct
*const sighand
= current
->sighand
;
964 spin_lock_irq(&sighand
->siglock
);
965 if (signal_group_exit(sig
))
966 /* Another thread got here before we took the lock. */
967 exit_code
= sig
->group_exit_code
;
969 sig
->group_exit_code
= exit_code
;
970 sig
->flags
= SIGNAL_GROUP_EXIT
;
971 zap_other_threads(current
);
973 spin_unlock_irq(&sighand
->siglock
);
981 * this kills every thread in the thread group. Note that any externally
982 * wait4()-ing process will get the correct exit code - even if this
983 * thread is not the thread group leader.
985 SYSCALL_DEFINE1(exit_group
, int, error_code
)
987 do_group_exit((error_code
& 0xff) << 8);
1000 enum pid_type wo_type
;
1004 struct waitid_info
*wo_info
;
1006 struct rusage
*wo_rusage
;
1008 wait_queue_entry_t child_wait
;
1013 struct pid
*task_pid_type(struct task_struct
*task
, enum pid_type type
)
1015 if (type
!= PIDTYPE_PID
)
1016 task
= task
->group_leader
;
1017 return task
->pids
[type
].pid
;
1020 static int eligible_pid(struct wait_opts
*wo
, struct task_struct
*p
)
1022 return wo
->wo_type
== PIDTYPE_MAX
||
1023 task_pid_type(p
, wo
->wo_type
) == wo
->wo_pid
;
1027 eligible_child(struct wait_opts
*wo
, bool ptrace
, struct task_struct
*p
)
1029 if (!eligible_pid(wo
, p
))
1033 * Wait for all children (clone and not) if __WALL is set or
1034 * if it is traced by us.
1036 if (ptrace
|| (wo
->wo_flags
& __WALL
))
1040 * Otherwise, wait for clone children *only* if __WCLONE is set;
1041 * otherwise, wait for non-clone children *only*.
1043 * Note: a "clone" child here is one that reports to its parent
1044 * using a signal other than SIGCHLD, or a non-leader thread which
1045 * we can only see if it is traced by us.
1047 if ((p
->exit_signal
!= SIGCHLD
) ^ !!(wo
->wo_flags
& __WCLONE
))
1054 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
1055 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1056 * the lock and this task is uninteresting. If we return nonzero, we have
1057 * released the lock and the system call should return.
1059 static int wait_task_zombie(struct wait_opts
*wo
, struct task_struct
*p
)
1062 pid_t pid
= task_pid_vnr(p
);
1063 uid_t uid
= from_kuid_munged(current_user_ns(), task_uid(p
));
1064 struct waitid_info
*infop
;
1066 if (!likely(wo
->wo_flags
& WEXITED
))
1069 if (unlikely(wo
->wo_flags
& WNOWAIT
)) {
1070 status
= p
->exit_code
;
1072 read_unlock(&tasklist_lock
);
1073 sched_annotate_sleep();
1075 getrusage(p
, RUSAGE_BOTH
, wo
->wo_rusage
);
1080 * Move the task's state to DEAD/TRACE, only one thread can do this.
1082 state
= (ptrace_reparented(p
) && thread_group_leader(p
)) ?
1083 EXIT_TRACE
: EXIT_DEAD
;
1084 if (cmpxchg(&p
->exit_state
, EXIT_ZOMBIE
, state
) != EXIT_ZOMBIE
)
1087 * We own this thread, nobody else can reap it.
1089 read_unlock(&tasklist_lock
);
1090 sched_annotate_sleep();
1093 * Check thread_group_leader() to exclude the traced sub-threads.
1095 if (state
== EXIT_DEAD
&& thread_group_leader(p
)) {
1096 struct signal_struct
*sig
= p
->signal
;
1097 struct signal_struct
*psig
= current
->signal
;
1098 unsigned long maxrss
;
1099 u64 tgutime
, tgstime
;
1102 * The resource counters for the group leader are in its
1103 * own task_struct. Those for dead threads in the group
1104 * are in its signal_struct, as are those for the child
1105 * processes it has previously reaped. All these
1106 * accumulate in the parent's signal_struct c* fields.
1108 * We don't bother to take a lock here to protect these
1109 * p->signal fields because the whole thread group is dead
1110 * and nobody can change them.
1112 * psig->stats_lock also protects us from our sub-theads
1113 * which can reap other children at the same time. Until
1114 * we change k_getrusage()-like users to rely on this lock
1115 * we have to take ->siglock as well.
1117 * We use thread_group_cputime_adjusted() to get times for
1118 * the thread group, which consolidates times for all threads
1119 * in the group including the group leader.
1121 thread_group_cputime_adjusted(p
, &tgutime
, &tgstime
);
1122 spin_lock_irq(¤t
->sighand
->siglock
);
1123 write_seqlock(&psig
->stats_lock
);
1124 psig
->cutime
+= tgutime
+ sig
->cutime
;
1125 psig
->cstime
+= tgstime
+ sig
->cstime
;
1126 psig
->cgtime
+= task_gtime(p
) + sig
->gtime
+ sig
->cgtime
;
1128 p
->min_flt
+ sig
->min_flt
+ sig
->cmin_flt
;
1130 p
->maj_flt
+ sig
->maj_flt
+ sig
->cmaj_flt
;
1132 p
->nvcsw
+ sig
->nvcsw
+ sig
->cnvcsw
;
1134 p
->nivcsw
+ sig
->nivcsw
+ sig
->cnivcsw
;
1136 task_io_get_inblock(p
) +
1137 sig
->inblock
+ sig
->cinblock
;
1139 task_io_get_oublock(p
) +
1140 sig
->oublock
+ sig
->coublock
;
1141 maxrss
= max(sig
->maxrss
, sig
->cmaxrss
);
1142 if (psig
->cmaxrss
< maxrss
)
1143 psig
->cmaxrss
= maxrss
;
1144 task_io_accounting_add(&psig
->ioac
, &p
->ioac
);
1145 task_io_accounting_add(&psig
->ioac
, &sig
->ioac
);
1146 write_sequnlock(&psig
->stats_lock
);
1147 spin_unlock_irq(¤t
->sighand
->siglock
);
1151 getrusage(p
, RUSAGE_BOTH
, wo
->wo_rusage
);
1152 status
= (p
->signal
->flags
& SIGNAL_GROUP_EXIT
)
1153 ? p
->signal
->group_exit_code
: p
->exit_code
;
1154 wo
->wo_stat
= status
;
1156 if (state
== EXIT_TRACE
) {
1157 write_lock_irq(&tasklist_lock
);
1158 /* We dropped tasklist, ptracer could die and untrace */
1161 /* If parent wants a zombie, don't release it now */
1162 state
= EXIT_ZOMBIE
;
1163 if (do_notify_parent(p
, p
->exit_signal
))
1165 p
->exit_state
= state
;
1166 write_unlock_irq(&tasklist_lock
);
1168 if (state
== EXIT_DEAD
)
1172 infop
= wo
->wo_info
;
1174 if ((status
& 0x7f) == 0) {
1175 infop
->cause
= CLD_EXITED
;
1176 infop
->status
= status
>> 8;
1178 infop
->cause
= (status
& 0x80) ? CLD_DUMPED
: CLD_KILLED
;
1179 infop
->status
= status
& 0x7f;
1188 static int *task_stopped_code(struct task_struct
*p
, bool ptrace
)
1191 if (task_is_traced(p
) && !(p
->jobctl
& JOBCTL_LISTENING
))
1192 return &p
->exit_code
;
1194 if (p
->signal
->flags
& SIGNAL_STOP_STOPPED
)
1195 return &p
->signal
->group_exit_code
;
1201 * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1203 * @ptrace: is the wait for ptrace
1204 * @p: task to wait for
1206 * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1209 * read_lock(&tasklist_lock), which is released if return value is
1210 * non-zero. Also, grabs and releases @p->sighand->siglock.
1213 * 0 if wait condition didn't exist and search for other wait conditions
1214 * should continue. Non-zero return, -errno on failure and @p's pid on
1215 * success, implies that tasklist_lock is released and wait condition
1216 * search should terminate.
1218 static int wait_task_stopped(struct wait_opts
*wo
,
1219 int ptrace
, struct task_struct
*p
)
1221 struct waitid_info
*infop
;
1222 int exit_code
, *p_code
, why
;
1223 uid_t uid
= 0; /* unneeded, required by compiler */
1227 * Traditionally we see ptrace'd stopped tasks regardless of options.
1229 if (!ptrace
&& !(wo
->wo_flags
& WUNTRACED
))
1232 if (!task_stopped_code(p
, ptrace
))
1236 spin_lock_irq(&p
->sighand
->siglock
);
1238 p_code
= task_stopped_code(p
, ptrace
);
1239 if (unlikely(!p_code
))
1242 exit_code
= *p_code
;
1246 if (!unlikely(wo
->wo_flags
& WNOWAIT
))
1249 uid
= from_kuid_munged(current_user_ns(), task_uid(p
));
1251 spin_unlock_irq(&p
->sighand
->siglock
);
1256 * Now we are pretty sure this task is interesting.
1257 * Make sure it doesn't get reaped out from under us while we
1258 * give up the lock and then examine it below. We don't want to
1259 * keep holding onto the tasklist_lock while we call getrusage and
1260 * possibly take page faults for user memory.
1263 pid
= task_pid_vnr(p
);
1264 why
= ptrace
? CLD_TRAPPED
: CLD_STOPPED
;
1265 read_unlock(&tasklist_lock
);
1266 sched_annotate_sleep();
1268 getrusage(p
, RUSAGE_BOTH
, wo
->wo_rusage
);
1271 if (likely(!(wo
->wo_flags
& WNOWAIT
)))
1272 wo
->wo_stat
= (exit_code
<< 8) | 0x7f;
1274 infop
= wo
->wo_info
;
1277 infop
->status
= exit_code
;
1285 * Handle do_wait work for one task in a live, non-stopped state.
1286 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1287 * the lock and this task is uninteresting. If we return nonzero, we have
1288 * released the lock and the system call should return.
1290 static int wait_task_continued(struct wait_opts
*wo
, struct task_struct
*p
)
1292 struct waitid_info
*infop
;
1296 if (!unlikely(wo
->wo_flags
& WCONTINUED
))
1299 if (!(p
->signal
->flags
& SIGNAL_STOP_CONTINUED
))
1302 spin_lock_irq(&p
->sighand
->siglock
);
1303 /* Re-check with the lock held. */
1304 if (!(p
->signal
->flags
& SIGNAL_STOP_CONTINUED
)) {
1305 spin_unlock_irq(&p
->sighand
->siglock
);
1308 if (!unlikely(wo
->wo_flags
& WNOWAIT
))
1309 p
->signal
->flags
&= ~SIGNAL_STOP_CONTINUED
;
1310 uid
= from_kuid_munged(current_user_ns(), task_uid(p
));
1311 spin_unlock_irq(&p
->sighand
->siglock
);
1313 pid
= task_pid_vnr(p
);
1315 read_unlock(&tasklist_lock
);
1316 sched_annotate_sleep();
1318 getrusage(p
, RUSAGE_BOTH
, wo
->wo_rusage
);
1321 infop
= wo
->wo_info
;
1323 wo
->wo_stat
= 0xffff;
1325 infop
->cause
= CLD_CONTINUED
;
1328 infop
->status
= SIGCONT
;
1334 * Consider @p for a wait by @parent.
1336 * -ECHILD should be in ->notask_error before the first call.
1337 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1338 * Returns zero if the search for a child should continue;
1339 * then ->notask_error is 0 if @p is an eligible child,
1342 static int wait_consider_task(struct wait_opts
*wo
, int ptrace
,
1343 struct task_struct
*p
)
1346 * We can race with wait_task_zombie() from another thread.
1347 * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
1348 * can't confuse the checks below.
1350 int exit_state
= ACCESS_ONCE(p
->exit_state
);
1353 if (unlikely(exit_state
== EXIT_DEAD
))
1356 ret
= eligible_child(wo
, ptrace
, p
);
1360 if (unlikely(exit_state
== EXIT_TRACE
)) {
1362 * ptrace == 0 means we are the natural parent. In this case
1363 * we should clear notask_error, debugger will notify us.
1365 if (likely(!ptrace
))
1366 wo
->notask_error
= 0;
1370 if (likely(!ptrace
) && unlikely(p
->ptrace
)) {
1372 * If it is traced by its real parent's group, just pretend
1373 * the caller is ptrace_do_wait() and reap this child if it
1376 * This also hides group stop state from real parent; otherwise
1377 * a single stop can be reported twice as group and ptrace stop.
1378 * If a ptracer wants to distinguish these two events for its
1379 * own children it should create a separate process which takes
1380 * the role of real parent.
1382 if (!ptrace_reparented(p
))
1387 if (exit_state
== EXIT_ZOMBIE
) {
1388 /* we don't reap group leaders with subthreads */
1389 if (!delay_group_leader(p
)) {
1391 * A zombie ptracee is only visible to its ptracer.
1392 * Notification and reaping will be cascaded to the
1393 * real parent when the ptracer detaches.
1395 if (unlikely(ptrace
) || likely(!p
->ptrace
))
1396 return wait_task_zombie(wo
, p
);
1400 * Allow access to stopped/continued state via zombie by
1401 * falling through. Clearing of notask_error is complex.
1405 * If WEXITED is set, notask_error should naturally be
1406 * cleared. If not, subset of WSTOPPED|WCONTINUED is set,
1407 * so, if there are live subthreads, there are events to
1408 * wait for. If all subthreads are dead, it's still safe
1409 * to clear - this function will be called again in finite
1410 * amount time once all the subthreads are released and
1411 * will then return without clearing.
1415 * Stopped state is per-task and thus can't change once the
1416 * target task dies. Only continued and exited can happen.
1417 * Clear notask_error if WCONTINUED | WEXITED.
1419 if (likely(!ptrace
) || (wo
->wo_flags
& (WCONTINUED
| WEXITED
)))
1420 wo
->notask_error
= 0;
1423 * @p is alive and it's gonna stop, continue or exit, so
1424 * there always is something to wait for.
1426 wo
->notask_error
= 0;
1430 * Wait for stopped. Depending on @ptrace, different stopped state
1431 * is used and the two don't interact with each other.
1433 ret
= wait_task_stopped(wo
, ptrace
, p
);
1438 * Wait for continued. There's only one continued state and the
1439 * ptracer can consume it which can confuse the real parent. Don't
1440 * use WCONTINUED from ptracer. You don't need or want it.
1442 return wait_task_continued(wo
, p
);
1446 * Do the work of do_wait() for one thread in the group, @tsk.
1448 * -ECHILD should be in ->notask_error before the first call.
1449 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1450 * Returns zero if the search for a child should continue; then
1451 * ->notask_error is 0 if there were any eligible children,
1454 static int do_wait_thread(struct wait_opts
*wo
, struct task_struct
*tsk
)
1456 struct task_struct
*p
;
1458 list_for_each_entry(p
, &tsk
->children
, sibling
) {
1459 int ret
= wait_consider_task(wo
, 0, p
);
1468 static int ptrace_do_wait(struct wait_opts
*wo
, struct task_struct
*tsk
)
1470 struct task_struct
*p
;
1472 list_for_each_entry(p
, &tsk
->ptraced
, ptrace_entry
) {
1473 int ret
= wait_consider_task(wo
, 1, p
);
1482 static int child_wait_callback(wait_queue_entry_t
*wait
, unsigned mode
,
1483 int sync
, void *key
)
1485 struct wait_opts
*wo
= container_of(wait
, struct wait_opts
,
1487 struct task_struct
*p
= key
;
1489 if (!eligible_pid(wo
, p
))
1492 if ((wo
->wo_flags
& __WNOTHREAD
) && wait
->private != p
->parent
)
1495 return default_wake_function(wait
, mode
, sync
, key
);
1498 void __wake_up_parent(struct task_struct
*p
, struct task_struct
*parent
)
1500 __wake_up_sync_key(&parent
->signal
->wait_chldexit
,
1501 TASK_INTERRUPTIBLE
, 1, p
);
1504 static long do_wait(struct wait_opts
*wo
)
1506 struct task_struct
*tsk
;
1509 trace_sched_process_wait(wo
->wo_pid
);
1511 init_waitqueue_func_entry(&wo
->child_wait
, child_wait_callback
);
1512 wo
->child_wait
.private = current
;
1513 add_wait_queue(¤t
->signal
->wait_chldexit
, &wo
->child_wait
);
1516 * If there is nothing that can match our criteria, just get out.
1517 * We will clear ->notask_error to zero if we see any child that
1518 * might later match our criteria, even if we are not able to reap
1521 wo
->notask_error
= -ECHILD
;
1522 if ((wo
->wo_type
< PIDTYPE_MAX
) &&
1523 (!wo
->wo_pid
|| hlist_empty(&wo
->wo_pid
->tasks
[wo
->wo_type
])))
1526 set_current_state(TASK_INTERRUPTIBLE
);
1527 read_lock(&tasklist_lock
);
1530 retval
= do_wait_thread(wo
, tsk
);
1534 retval
= ptrace_do_wait(wo
, tsk
);
1538 if (wo
->wo_flags
& __WNOTHREAD
)
1540 } while_each_thread(current
, tsk
);
1541 read_unlock(&tasklist_lock
);
1544 retval
= wo
->notask_error
;
1545 if (!retval
&& !(wo
->wo_flags
& WNOHANG
)) {
1546 retval
= -ERESTARTSYS
;
1547 if (!signal_pending(current
)) {
1553 __set_current_state(TASK_RUNNING
);
1554 remove_wait_queue(¤t
->signal
->wait_chldexit
, &wo
->child_wait
);
1558 static long kernel_waitid(int which
, pid_t upid
, struct waitid_info
*infop
,
1559 int options
, struct rusage
*ru
)
1561 struct wait_opts wo
;
1562 struct pid
*pid
= NULL
;
1566 if (options
& ~(WNOHANG
|WNOWAIT
|WEXITED
|WSTOPPED
|WCONTINUED
|
1567 __WNOTHREAD
|__WCLONE
|__WALL
))
1569 if (!(options
& (WEXITED
|WSTOPPED
|WCONTINUED
)))
1582 type
= PIDTYPE_PGID
;
1590 if (type
< PIDTYPE_MAX
)
1591 pid
= find_get_pid(upid
);
1595 wo
.wo_flags
= options
;
1604 SYSCALL_DEFINE5(waitid
, int, which
, pid_t
, upid
, struct siginfo __user
*,
1605 infop
, int, options
, struct rusage __user
*, ru
)
1608 struct waitid_info info
= {.status
= 0};
1609 long err
= kernel_waitid(which
, upid
, &info
, options
, ru
? &r
: NULL
);
1615 if (ru
&& copy_to_user(ru
, &r
, sizeof(struct rusage
)))
1621 if (!access_ok(VERIFY_WRITE
, infop
, sizeof(*infop
)))
1624 user_access_begin();
1625 unsafe_put_user(signo
, &infop
->si_signo
, Efault
);
1626 unsafe_put_user(0, &infop
->si_errno
, Efault
);
1627 unsafe_put_user(info
.cause
, &infop
->si_code
, Efault
);
1628 unsafe_put_user(info
.pid
, &infop
->si_pid
, Efault
);
1629 unsafe_put_user(info
.uid
, &infop
->si_uid
, Efault
);
1630 unsafe_put_user(info
.status
, &infop
->si_status
, Efault
);
1638 long kernel_wait4(pid_t upid
, int __user
*stat_addr
, int options
,
1641 struct wait_opts wo
;
1642 struct pid
*pid
= NULL
;
1646 if (options
& ~(WNOHANG
|WUNTRACED
|WCONTINUED
|
1647 __WNOTHREAD
|__WCLONE
|__WALL
))
1650 /* -INT_MIN is not defined */
1651 if (upid
== INT_MIN
)
1656 else if (upid
< 0) {
1657 type
= PIDTYPE_PGID
;
1658 pid
= find_get_pid(-upid
);
1659 } else if (upid
== 0) {
1660 type
= PIDTYPE_PGID
;
1661 pid
= get_task_pid(current
, PIDTYPE_PGID
);
1662 } else /* upid > 0 */ {
1664 pid
= find_get_pid(upid
);
1669 wo
.wo_flags
= options
| WEXITED
;
1675 if (ret
> 0 && stat_addr
&& put_user(wo
.wo_stat
, stat_addr
))
1681 SYSCALL_DEFINE4(wait4
, pid_t
, upid
, int __user
*, stat_addr
,
1682 int, options
, struct rusage __user
*, ru
)
1685 long err
= kernel_wait4(upid
, stat_addr
, options
, ru
? &r
: NULL
);
1688 if (ru
&& copy_to_user(ru
, &r
, sizeof(struct rusage
)))
1694 #ifdef __ARCH_WANT_SYS_WAITPID
1697 * sys_waitpid() remains for compatibility. waitpid() should be
1698 * implemented by calling sys_wait4() from libc.a.
1700 SYSCALL_DEFINE3(waitpid
, pid_t
, pid
, int __user
*, stat_addr
, int, options
)
1702 return sys_wait4(pid
, stat_addr
, options
, NULL
);
1707 #ifdef CONFIG_COMPAT
1708 COMPAT_SYSCALL_DEFINE4(wait4
,
1710 compat_uint_t __user
*, stat_addr
,
1712 struct compat_rusage __user
*, ru
)
1715 long err
= kernel_wait4(pid
, stat_addr
, options
, ru
? &r
: NULL
);
1717 if (ru
&& put_compat_rusage(&r
, ru
))
1723 COMPAT_SYSCALL_DEFINE5(waitid
,
1724 int, which
, compat_pid_t
, pid
,
1725 struct compat_siginfo __user
*, infop
, int, options
,
1726 struct compat_rusage __user
*, uru
)
1729 struct waitid_info info
= {.status
= 0};
1730 long err
= kernel_waitid(which
, pid
, &info
, options
, uru
? &ru
: NULL
);
1736 /* kernel_waitid() overwrites everything in ru */
1737 if (COMPAT_USE_64BIT_TIME
)
1738 err
= copy_to_user(uru
, &ru
, sizeof(ru
));
1740 err
= put_compat_rusage(&ru
, uru
);
1749 if (!access_ok(VERIFY_WRITE
, infop
, sizeof(*infop
)))
1752 user_access_begin();
1753 unsafe_put_user(signo
, &infop
->si_signo
, Efault
);
1754 unsafe_put_user(0, &infop
->si_errno
, Efault
);
1755 unsafe_put_user(info
.cause
, &infop
->si_code
, Efault
);
1756 unsafe_put_user(info
.pid
, &infop
->si_pid
, Efault
);
1757 unsafe_put_user(info
.uid
, &infop
->si_uid
, Efault
);
1758 unsafe_put_user(info
.status
, &infop
->si_status
, Efault
);
1767 __weak
void abort(void)
1771 /* if that doesn't kill us, halt */
1772 panic("Oops failed to kill thread");
1774 EXPORT_SYMBOL(abort
);