4 * Copyright (C) 1991, 1992 Linus Torvalds
8 #include <linux/slab.h>
9 #include <linux/interrupt.h>
10 #include <linux/module.h>
11 #include <linux/capability.h>
12 #include <linux/completion.h>
13 #include <linux/personality.h>
14 #include <linux/tty.h>
15 #include <linux/iocontext.h>
16 #include <linux/key.h>
17 #include <linux/security.h>
18 #include <linux/cpu.h>
19 #include <linux/acct.h>
20 #include <linux/tsacct_kern.h>
21 #include <linux/file.h>
22 #include <linux/fdtable.h>
23 #include <linux/freezer.h>
24 #include <linux/binfmts.h>
25 #include <linux/nsproxy.h>
26 #include <linux/pid_namespace.h>
27 #include <linux/ptrace.h>
28 #include <linux/profile.h>
29 #include <linux/mount.h>
30 #include <linux/proc_fs.h>
31 #include <linux/kthread.h>
32 #include <linux/mempolicy.h>
33 #include <linux/taskstats_kern.h>
34 #include <linux/delayacct.h>
35 #include <linux/cgroup.h>
36 #include <linux/syscalls.h>
37 #include <linux/signal.h>
38 #include <linux/posix-timers.h>
39 #include <linux/cn_proc.h>
40 #include <linux/mutex.h>
41 #include <linux/futex.h>
42 #include <linux/pipe_fs_i.h>
43 #include <linux/audit.h> /* for audit_free() */
44 #include <linux/resource.h>
45 #include <linux/blkdev.h>
46 #include <linux/task_io_accounting_ops.h>
47 #include <linux/tracehook.h>
48 #include <linux/fs_struct.h>
49 #include <linux/init_task.h>
50 #include <linux/perf_event.h>
51 #include <trace/events/sched.h>
52 #include <linux/hw_breakpoint.h>
53 #include <linux/oom.h>
54 #include <linux/writeback.h>
55 #include <linux/shm.h>
56 #include <linux/kcov.h>
58 #include <asm/uaccess.h>
59 #include <asm/unistd.h>
60 #include <asm/pgtable.h>
61 #include <asm/mmu_context.h>
63 static void __unhash_process(struct task_struct
*p
, bool group_dead
)
66 detach_pid(p
, PIDTYPE_PID
);
68 detach_pid(p
, PIDTYPE_PGID
);
69 detach_pid(p
, PIDTYPE_SID
);
71 list_del_rcu(&p
->tasks
);
72 list_del_init(&p
->sibling
);
73 __this_cpu_dec(process_counts
);
75 list_del_rcu(&p
->thread_group
);
76 list_del_rcu(&p
->thread_node
);
80 * This function expects the tasklist_lock write-locked.
82 static void __exit_signal(struct task_struct
*tsk
)
84 struct signal_struct
*sig
= tsk
->signal
;
85 bool group_dead
= thread_group_leader(tsk
);
86 struct sighand_struct
*sighand
;
87 struct tty_struct
*uninitialized_var(tty
);
88 cputime_t utime
, stime
;
90 sighand
= rcu_dereference_check(tsk
->sighand
,
91 lockdep_tasklist_lock_is_held());
92 spin_lock(&sighand
->siglock
);
94 posix_cpu_timers_exit(tsk
);
96 posix_cpu_timers_exit_group(tsk
);
101 * This can only happen if the caller is de_thread().
102 * FIXME: this is the temporary hack, we should teach
103 * posix-cpu-timers to handle this case correctly.
105 if (unlikely(has_group_leader_pid(tsk
)))
106 posix_cpu_timers_exit_group(tsk
);
109 * If there is any task waiting for the group exit
112 if (sig
->notify_count
> 0 && !--sig
->notify_count
)
113 wake_up_process(sig
->group_exit_task
);
115 if (tsk
== sig
->curr_target
)
116 sig
->curr_target
= next_thread(tsk
);
120 * Accumulate here the counters for all threads as they die. We could
121 * skip the group leader because it is the last user of signal_struct,
122 * but we want to avoid the race with thread_group_cputime() which can
123 * see the empty ->thread_head list.
125 task_cputime(tsk
, &utime
, &stime
);
126 write_seqlock(&sig
->stats_lock
);
129 sig
->gtime
+= task_gtime(tsk
);
130 sig
->min_flt
+= tsk
->min_flt
;
131 sig
->maj_flt
+= tsk
->maj_flt
;
132 sig
->nvcsw
+= tsk
->nvcsw
;
133 sig
->nivcsw
+= tsk
->nivcsw
;
134 sig
->inblock
+= task_io_get_inblock(tsk
);
135 sig
->oublock
+= task_io_get_oublock(tsk
);
136 task_io_accounting_add(&sig
->ioac
, &tsk
->ioac
);
137 sig
->sum_sched_runtime
+= tsk
->se
.sum_exec_runtime
;
139 __unhash_process(tsk
, group_dead
);
140 write_sequnlock(&sig
->stats_lock
);
143 * Do this under ->siglock, we can race with another thread
144 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
146 flush_sigqueue(&tsk
->pending
);
148 spin_unlock(&sighand
->siglock
);
150 __cleanup_sighand(sighand
);
151 clear_tsk_thread_flag(tsk
, TIF_SIGPENDING
);
153 flush_sigqueue(&sig
->shared_pending
);
158 static void delayed_put_task_struct(struct rcu_head
*rhp
)
160 struct task_struct
*tsk
= container_of(rhp
, struct task_struct
, rcu
);
162 perf_event_delayed_put(tsk
);
163 trace_sched_process_free(tsk
);
164 put_task_struct(tsk
);
168 void release_task(struct task_struct
*p
)
170 struct task_struct
*leader
;
173 /* don't need to get the RCU readlock here - the process is dead and
174 * can't be modifying its own credentials. But shut RCU-lockdep up */
176 atomic_dec(&__task_cred(p
)->user
->processes
);
181 write_lock_irq(&tasklist_lock
);
182 ptrace_release_task(p
);
186 * If we are the last non-leader member of the thread
187 * group, and the leader is zombie, then notify the
188 * group leader's parent process. (if it wants notification.)
191 leader
= p
->group_leader
;
192 if (leader
!= p
&& thread_group_empty(leader
)
193 && leader
->exit_state
== EXIT_ZOMBIE
) {
195 * If we were the last child thread and the leader has
196 * exited already, and the leader's parent ignores SIGCHLD,
197 * then we are the one who should release the leader.
199 zap_leader
= do_notify_parent(leader
, leader
->exit_signal
);
201 leader
->exit_state
= EXIT_DEAD
;
204 write_unlock_irq(&tasklist_lock
);
206 call_rcu(&p
->rcu
, delayed_put_task_struct
);
209 if (unlikely(zap_leader
))
214 * Note that if this function returns a valid task_struct pointer (!NULL)
215 * task->usage must remain >0 for the duration of the RCU critical section.
217 struct task_struct
*task_rcu_dereference(struct task_struct
**ptask
)
219 struct sighand_struct
*sighand
;
220 struct task_struct
*task
;
223 * We need to verify that release_task() was not called and thus
224 * delayed_put_task_struct() can't run and drop the last reference
225 * before rcu_read_unlock(). We check task->sighand != NULL,
226 * but we can read the already freed and reused memory.
229 task
= rcu_dereference(*ptask
);
233 probe_kernel_address(&task
->sighand
, sighand
);
236 * Pairs with atomic_dec_and_test() in put_task_struct(). If this task
237 * was already freed we can not miss the preceding update of this
241 if (unlikely(task
!= READ_ONCE(*ptask
)))
245 * We've re-checked that "task == *ptask", now we have two different
248 * 1. This is actually the same task/task_struct. In this case
249 * sighand != NULL tells us it is still alive.
251 * 2. This is another task which got the same memory for task_struct.
252 * We can't know this of course, and we can not trust
255 * In this case we actually return a random value, but this is
258 * If we return NULL - we can pretend that we actually noticed that
259 * *ptask was updated when the previous task has exited. Or pretend
260 * that probe_slab_address(&sighand) reads NULL.
262 * If we return the new task (because sighand is not NULL for any
263 * reason) - this is fine too. This (new) task can't go away before
266 * And note: We could even eliminate the false positive if re-read
267 * task->sighand once again to avoid the falsely NULL. But this case
268 * is very unlikely so we don't care.
276 struct task_struct
*try_get_task_struct(struct task_struct
**ptask
)
278 struct task_struct
*task
;
281 task
= task_rcu_dereference(ptask
);
283 get_task_struct(task
);
290 * Determine if a process group is "orphaned", according to the POSIX
291 * definition in 2.2.2.52. Orphaned process groups are not to be affected
292 * by terminal-generated stop signals. Newly orphaned process groups are
293 * to receive a SIGHUP and a SIGCONT.
295 * "I ask you, have you ever known what it is to be an orphan?"
297 static int will_become_orphaned_pgrp(struct pid
*pgrp
,
298 struct task_struct
*ignored_task
)
300 struct task_struct
*p
;
302 do_each_pid_task(pgrp
, PIDTYPE_PGID
, p
) {
303 if ((p
== ignored_task
) ||
304 (p
->exit_state
&& thread_group_empty(p
)) ||
305 is_global_init(p
->real_parent
))
308 if (task_pgrp(p
->real_parent
) != pgrp
&&
309 task_session(p
->real_parent
) == task_session(p
))
311 } while_each_pid_task(pgrp
, PIDTYPE_PGID
, p
);
316 int is_current_pgrp_orphaned(void)
320 read_lock(&tasklist_lock
);
321 retval
= will_become_orphaned_pgrp(task_pgrp(current
), NULL
);
322 read_unlock(&tasklist_lock
);
327 static bool has_stopped_jobs(struct pid
*pgrp
)
329 struct task_struct
*p
;
331 do_each_pid_task(pgrp
, PIDTYPE_PGID
, p
) {
332 if (p
->signal
->flags
& SIGNAL_STOP_STOPPED
)
334 } while_each_pid_task(pgrp
, PIDTYPE_PGID
, p
);
340 * Check to see if any process groups have become orphaned as
341 * a result of our exiting, and if they have any stopped jobs,
342 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
345 kill_orphaned_pgrp(struct task_struct
*tsk
, struct task_struct
*parent
)
347 struct pid
*pgrp
= task_pgrp(tsk
);
348 struct task_struct
*ignored_task
= tsk
;
351 /* exit: our father is in a different pgrp than
352 * we are and we were the only connection outside.
354 parent
= tsk
->real_parent
;
356 /* reparent: our child is in a different pgrp than
357 * we are, and it was the only connection outside.
361 if (task_pgrp(parent
) != pgrp
&&
362 task_session(parent
) == task_session(tsk
) &&
363 will_become_orphaned_pgrp(pgrp
, ignored_task
) &&
364 has_stopped_jobs(pgrp
)) {
365 __kill_pgrp_info(SIGHUP
, SEND_SIG_PRIV
, pgrp
);
366 __kill_pgrp_info(SIGCONT
, SEND_SIG_PRIV
, pgrp
);
372 * A task is exiting. If it owned this mm, find a new owner for the mm.
374 void mm_update_next_owner(struct mm_struct
*mm
)
376 struct task_struct
*c
, *g
, *p
= current
;
380 * If the exiting or execing task is not the owner, it's
381 * someone else's problem.
386 * The current owner is exiting/execing and there are no other
387 * candidates. Do not leave the mm pointing to a possibly
388 * freed task structure.
390 if (atomic_read(&mm
->mm_users
) <= 1) {
395 read_lock(&tasklist_lock
);
397 * Search in the children
399 list_for_each_entry(c
, &p
->children
, sibling
) {
401 goto assign_new_owner
;
405 * Search in the siblings
407 list_for_each_entry(c
, &p
->real_parent
->children
, sibling
) {
409 goto assign_new_owner
;
413 * Search through everything else, we should not get here often.
415 for_each_process(g
) {
416 if (g
->flags
& PF_KTHREAD
)
418 for_each_thread(g
, c
) {
420 goto assign_new_owner
;
425 read_unlock(&tasklist_lock
);
427 * We found no owner yet mm_users > 1: this implies that we are
428 * most likely racing with swapoff (try_to_unuse()) or /proc or
429 * ptrace or page migration (get_task_mm()). Mark owner as NULL.
438 * The task_lock protects c->mm from changing.
439 * We always want mm->owner->mm == mm
443 * Delay read_unlock() till we have the task_lock()
444 * to ensure that c does not slip away underneath us
446 read_unlock(&tasklist_lock
);
456 #endif /* CONFIG_MEMCG */
459 * Turn us into a lazy TLB process if we
462 static void exit_mm(struct task_struct
*tsk
)
464 struct mm_struct
*mm
= tsk
->mm
;
465 struct core_state
*core_state
;
472 * Serialize with any possible pending coredump.
473 * We must hold mmap_sem around checking core_state
474 * and clearing tsk->mm. The core-inducing thread
475 * will increment ->nr_threads for each thread in the
476 * group with ->mm != NULL.
478 down_read(&mm
->mmap_sem
);
479 core_state
= mm
->core_state
;
481 struct core_thread self
;
483 up_read(&mm
->mmap_sem
);
486 self
.next
= xchg(&core_state
->dumper
.next
, &self
);
488 * Implies mb(), the result of xchg() must be visible
489 * to core_state->dumper.
491 if (atomic_dec_and_test(&core_state
->nr_threads
))
492 complete(&core_state
->startup
);
495 set_task_state(tsk
, TASK_UNINTERRUPTIBLE
);
496 if (!self
.task
) /* see coredump_finish() */
498 freezable_schedule();
500 __set_task_state(tsk
, TASK_RUNNING
);
501 down_read(&mm
->mmap_sem
);
503 atomic_inc(&mm
->mm_count
);
504 BUG_ON(mm
!= tsk
->active_mm
);
505 /* more a memory barrier than a real lock */
508 up_read(&mm
->mmap_sem
);
509 enter_lazy_tlb(mm
, current
);
511 mm_update_next_owner(mm
);
513 if (test_thread_flag(TIF_MEMDIE
))
517 static struct task_struct
*find_alive_thread(struct task_struct
*p
)
519 struct task_struct
*t
;
521 for_each_thread(p
, t
) {
522 if (!(t
->flags
& PF_EXITING
))
528 static struct task_struct
*find_child_reaper(struct task_struct
*father
)
529 __releases(&tasklist_lock
)
530 __acquires(&tasklist_lock
)
532 struct pid_namespace
*pid_ns
= task_active_pid_ns(father
);
533 struct task_struct
*reaper
= pid_ns
->child_reaper
;
535 if (likely(reaper
!= father
))
538 reaper
= find_alive_thread(father
);
540 pid_ns
->child_reaper
= reaper
;
544 write_unlock_irq(&tasklist_lock
);
545 if (unlikely(pid_ns
== &init_pid_ns
)) {
546 panic("Attempted to kill init! exitcode=0x%08x\n",
547 father
->signal
->group_exit_code
?: father
->exit_code
);
549 zap_pid_ns_processes(pid_ns
);
550 write_lock_irq(&tasklist_lock
);
556 * When we die, we re-parent all our children, and try to:
557 * 1. give them to another thread in our thread group, if such a member exists
558 * 2. give it to the first ancestor process which prctl'd itself as a
559 * child_subreaper for its children (like a service manager)
560 * 3. give it to the init process (PID 1) in our pid namespace
562 static struct task_struct
*find_new_reaper(struct task_struct
*father
,
563 struct task_struct
*child_reaper
)
565 struct task_struct
*thread
, *reaper
;
567 thread
= find_alive_thread(father
);
571 if (father
->signal
->has_child_subreaper
) {
573 * Find the first ->is_child_subreaper ancestor in our pid_ns.
574 * We start from father to ensure we can not look into another
575 * namespace, this is safe because all its threads are dead.
577 for (reaper
= father
;
578 !same_thread_group(reaper
, child_reaper
);
579 reaper
= reaper
->real_parent
) {
580 /* call_usermodehelper() descendants need this check */
581 if (reaper
== &init_task
)
583 if (!reaper
->signal
->is_child_subreaper
)
585 thread
= find_alive_thread(reaper
);
595 * Any that need to be release_task'd are put on the @dead list.
597 static void reparent_leader(struct task_struct
*father
, struct task_struct
*p
,
598 struct list_head
*dead
)
600 if (unlikely(p
->exit_state
== EXIT_DEAD
))
603 /* We don't want people slaying init. */
604 p
->exit_signal
= SIGCHLD
;
606 /* If it has exited notify the new parent about this child's death. */
608 p
->exit_state
== EXIT_ZOMBIE
&& thread_group_empty(p
)) {
609 if (do_notify_parent(p
, p
->exit_signal
)) {
610 p
->exit_state
= EXIT_DEAD
;
611 list_add(&p
->ptrace_entry
, dead
);
615 kill_orphaned_pgrp(p
, father
);
619 * This does two things:
621 * A. Make init inherit all the child processes
622 * B. Check to see if any process groups have become orphaned
623 * as a result of our exiting, and if they have any stopped
624 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
626 static void forget_original_parent(struct task_struct
*father
,
627 struct list_head
*dead
)
629 struct task_struct
*p
, *t
, *reaper
;
631 if (unlikely(!list_empty(&father
->ptraced
)))
632 exit_ptrace(father
, dead
);
634 /* Can drop and reacquire tasklist_lock */
635 reaper
= find_child_reaper(father
);
636 if (list_empty(&father
->children
))
639 reaper
= find_new_reaper(father
, reaper
);
640 list_for_each_entry(p
, &father
->children
, sibling
) {
641 for_each_thread(p
, t
) {
642 t
->real_parent
= reaper
;
643 BUG_ON((!t
->ptrace
) != (t
->parent
== father
));
644 if (likely(!t
->ptrace
))
645 t
->parent
= t
->real_parent
;
646 if (t
->pdeath_signal
)
647 group_send_sig_info(t
->pdeath_signal
,
651 * If this is a threaded reparent there is no need to
652 * notify anyone anything has happened.
654 if (!same_thread_group(reaper
, father
))
655 reparent_leader(father
, p
, dead
);
657 list_splice_tail_init(&father
->children
, &reaper
->children
);
661 * Send signals to all our closest relatives so that they know
662 * to properly mourn us..
664 static void exit_notify(struct task_struct
*tsk
, int group_dead
)
667 struct task_struct
*p
, *n
;
670 write_lock_irq(&tasklist_lock
);
671 forget_original_parent(tsk
, &dead
);
674 kill_orphaned_pgrp(tsk
->group_leader
, NULL
);
676 if (unlikely(tsk
->ptrace
)) {
677 int sig
= thread_group_leader(tsk
) &&
678 thread_group_empty(tsk
) &&
679 !ptrace_reparented(tsk
) ?
680 tsk
->exit_signal
: SIGCHLD
;
681 autoreap
= do_notify_parent(tsk
, sig
);
682 } else if (thread_group_leader(tsk
)) {
683 autoreap
= thread_group_empty(tsk
) &&
684 do_notify_parent(tsk
, tsk
->exit_signal
);
689 tsk
->exit_state
= autoreap
? EXIT_DEAD
: EXIT_ZOMBIE
;
690 if (tsk
->exit_state
== EXIT_DEAD
)
691 list_add(&tsk
->ptrace_entry
, &dead
);
693 /* mt-exec, de_thread() is waiting for group leader */
694 if (unlikely(tsk
->signal
->notify_count
< 0))
695 wake_up_process(tsk
->signal
->group_exit_task
);
696 write_unlock_irq(&tasklist_lock
);
698 list_for_each_entry_safe(p
, n
, &dead
, ptrace_entry
) {
699 list_del_init(&p
->ptrace_entry
);
704 #ifdef CONFIG_DEBUG_STACK_USAGE
705 static void check_stack_usage(void)
707 static DEFINE_SPINLOCK(low_water_lock
);
708 static int lowest_to_date
= THREAD_SIZE
;
711 free
= stack_not_used(current
);
713 if (free
>= lowest_to_date
)
716 spin_lock(&low_water_lock
);
717 if (free
< lowest_to_date
) {
718 pr_info("%s (%d) used greatest stack depth: %lu bytes left\n",
719 current
->comm
, task_pid_nr(current
), free
);
720 lowest_to_date
= free
;
722 spin_unlock(&low_water_lock
);
725 static inline void check_stack_usage(void) {}
728 void __noreturn
do_exit(long code
)
730 struct task_struct
*tsk
= current
;
732 TASKS_RCU(int tasks_rcu_i
);
734 profile_task_exit(tsk
);
737 WARN_ON(blk_needs_flush_plug(tsk
));
739 if (unlikely(in_interrupt()))
740 panic("Aiee, killing interrupt handler!");
741 if (unlikely(!tsk
->pid
))
742 panic("Attempted to kill the idle task!");
745 * If do_exit is called because this processes oopsed, it's possible
746 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
747 * continuing. Amongst other possible reasons, this is to prevent
748 * mm_release()->clear_child_tid() from writing to a user-controlled
753 ptrace_event(PTRACE_EVENT_EXIT
, code
);
755 validate_creds_for_do_exit(tsk
);
758 * We're taking recursive faults here in do_exit. Safest is to just
759 * leave this task alone and wait for reboot.
761 if (unlikely(tsk
->flags
& PF_EXITING
)) {
762 pr_alert("Fixing recursive fault but reboot is needed!\n");
764 * We can do this unlocked here. The futex code uses
765 * this flag just to verify whether the pi state
766 * cleanup has been done or not. In the worst case it
767 * loops once more. We pretend that the cleanup was
768 * done as there is no way to return. Either the
769 * OWNER_DIED bit is set by now or we push the blocked
770 * task into the wait for ever nirwana as well.
772 tsk
->flags
|= PF_EXITPIDONE
;
773 set_current_state(TASK_UNINTERRUPTIBLE
);
777 exit_signals(tsk
); /* sets PF_EXITING */
779 * Ensure that all new tsk->pi_lock acquisitions must observe
780 * PF_EXITING. Serializes against futex.c:attach_to_pi_owner().
784 * Ensure that we must observe the pi_state in exit_mm() ->
785 * mm_release() -> exit_pi_state_list().
787 raw_spin_unlock_wait(&tsk
->pi_lock
);
789 if (unlikely(in_atomic())) {
790 pr_info("note: %s[%d] exited with preempt_count %d\n",
791 current
->comm
, task_pid_nr(current
),
793 preempt_count_set(PREEMPT_ENABLED
);
796 /* sync mm's RSS info before statistics gathering */
798 sync_mm_rss(tsk
->mm
);
799 acct_update_integrals(tsk
);
800 group_dead
= atomic_dec_and_test(&tsk
->signal
->live
);
802 hrtimer_cancel(&tsk
->signal
->real_timer
);
803 exit_itimers(tsk
->signal
);
805 setmax_mm_hiwater_rss(&tsk
->signal
->maxrss
, tsk
->mm
);
807 acct_collect(code
, group_dead
);
812 tsk
->exit_code
= code
;
813 taskstats_exit(tsk
, group_dead
);
819 trace_sched_process_exit(tsk
);
826 disassociate_ctty(1);
827 exit_task_namespaces(tsk
);
832 * Flush inherited counters to the parent - before the parent
833 * gets woken up by child-exit notifications.
835 * because of cgroup mode, must be called before cgroup_exit()
837 perf_event_exit_task(tsk
);
842 * FIXME: do that only when needed, using sched_exit tracepoint
844 flush_ptrace_hw_breakpoint(tsk
);
846 TASKS_RCU(preempt_disable());
847 TASKS_RCU(tasks_rcu_i
= __srcu_read_lock(&tasks_rcu_exit_srcu
));
848 TASKS_RCU(preempt_enable());
849 exit_notify(tsk
, group_dead
);
850 proc_exit_connector(tsk
);
851 mpol_put_task_policy(tsk
);
853 if (unlikely(current
->pi_state_cache
))
854 kfree(current
->pi_state_cache
);
857 * Make sure we are holding no locks:
859 debug_check_no_locks_held();
861 * We can do this unlocked here. The futex code uses this flag
862 * just to verify whether the pi state cleanup has been done
863 * or not. In the worst case it loops once more.
865 tsk
->flags
|= PF_EXITPIDONE
;
868 exit_io_context(tsk
);
870 if (tsk
->splice_pipe
)
871 free_pipe_info(tsk
->splice_pipe
);
873 if (tsk
->task_frag
.page
)
874 put_page(tsk
->task_frag
.page
);
876 validate_creds_for_do_exit(tsk
);
881 __this_cpu_add(dirty_throttle_leaks
, tsk
->nr_dirtied
);
883 TASKS_RCU(__srcu_read_unlock(&tasks_rcu_exit_srcu
, tasks_rcu_i
));
887 EXPORT_SYMBOL_GPL(do_exit
);
889 void complete_and_exit(struct completion
*comp
, long code
)
896 EXPORT_SYMBOL(complete_and_exit
);
898 SYSCALL_DEFINE1(exit
, int, error_code
)
900 do_exit((error_code
&0xff)<<8);
904 * Take down every thread in the group. This is called by fatal signals
905 * as well as by sys_exit_group (below).
908 do_group_exit(int exit_code
)
910 struct signal_struct
*sig
= current
->signal
;
912 BUG_ON(exit_code
& 0x80); /* core dumps don't get here */
914 if (signal_group_exit(sig
))
915 exit_code
= sig
->group_exit_code
;
916 else if (!thread_group_empty(current
)) {
917 struct sighand_struct
*const sighand
= current
->sighand
;
919 spin_lock_irq(&sighand
->siglock
);
920 if (signal_group_exit(sig
))
921 /* Another thread got here before we took the lock. */
922 exit_code
= sig
->group_exit_code
;
924 sig
->group_exit_code
= exit_code
;
925 sig
->flags
= SIGNAL_GROUP_EXIT
;
926 zap_other_threads(current
);
928 spin_unlock_irq(&sighand
->siglock
);
936 * this kills every thread in the thread group. Note that any externally
937 * wait4()-ing process will get the correct exit code - even if this
938 * thread is not the thread group leader.
940 SYSCALL_DEFINE1(exit_group
, int, error_code
)
942 do_group_exit((error_code
& 0xff) << 8);
948 enum pid_type wo_type
;
952 struct siginfo __user
*wo_info
;
954 struct rusage __user
*wo_rusage
;
956 wait_queue_t child_wait
;
961 struct pid
*task_pid_type(struct task_struct
*task
, enum pid_type type
)
963 if (type
!= PIDTYPE_PID
)
964 task
= task
->group_leader
;
965 return task
->pids
[type
].pid
;
968 static int eligible_pid(struct wait_opts
*wo
, struct task_struct
*p
)
970 return wo
->wo_type
== PIDTYPE_MAX
||
971 task_pid_type(p
, wo
->wo_type
) == wo
->wo_pid
;
975 eligible_child(struct wait_opts
*wo
, bool ptrace
, struct task_struct
*p
)
977 if (!eligible_pid(wo
, p
))
981 * Wait for all children (clone and not) if __WALL is set or
982 * if it is traced by us.
984 if (ptrace
|| (wo
->wo_flags
& __WALL
))
988 * Otherwise, wait for clone children *only* if __WCLONE is set;
989 * otherwise, wait for non-clone children *only*.
991 * Note: a "clone" child here is one that reports to its parent
992 * using a signal other than SIGCHLD, or a non-leader thread which
993 * we can only see if it is traced by us.
995 if ((p
->exit_signal
!= SIGCHLD
) ^ !!(wo
->wo_flags
& __WCLONE
))
1001 static int wait_noreap_copyout(struct wait_opts
*wo
, struct task_struct
*p
,
1002 pid_t pid
, uid_t uid
, int why
, int status
)
1004 struct siginfo __user
*infop
;
1005 int retval
= wo
->wo_rusage
1006 ? getrusage(p
, RUSAGE_BOTH
, wo
->wo_rusage
) : 0;
1009 infop
= wo
->wo_info
;
1012 retval
= put_user(SIGCHLD
, &infop
->si_signo
);
1014 retval
= put_user(0, &infop
->si_errno
);
1016 retval
= put_user((short)why
, &infop
->si_code
);
1018 retval
= put_user(pid
, &infop
->si_pid
);
1020 retval
= put_user(uid
, &infop
->si_uid
);
1022 retval
= put_user(status
, &infop
->si_status
);
1030 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
1031 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1032 * the lock and this task is uninteresting. If we return nonzero, we have
1033 * released the lock and the system call should return.
1035 static int wait_task_zombie(struct wait_opts
*wo
, struct task_struct
*p
)
1037 int state
, retval
, status
;
1038 pid_t pid
= task_pid_vnr(p
);
1039 uid_t uid
= from_kuid_munged(current_user_ns(), task_uid(p
));
1040 struct siginfo __user
*infop
;
1042 if (!likely(wo
->wo_flags
& WEXITED
))
1045 if (unlikely(wo
->wo_flags
& WNOWAIT
)) {
1046 int exit_code
= p
->exit_code
;
1050 read_unlock(&tasklist_lock
);
1051 sched_annotate_sleep();
1053 if ((exit_code
& 0x7f) == 0) {
1055 status
= exit_code
>> 8;
1057 why
= (exit_code
& 0x80) ? CLD_DUMPED
: CLD_KILLED
;
1058 status
= exit_code
& 0x7f;
1060 return wait_noreap_copyout(wo
, p
, pid
, uid
, why
, status
);
1063 * Move the task's state to DEAD/TRACE, only one thread can do this.
1065 state
= (ptrace_reparented(p
) && thread_group_leader(p
)) ?
1066 EXIT_TRACE
: EXIT_DEAD
;
1067 if (cmpxchg(&p
->exit_state
, EXIT_ZOMBIE
, state
) != EXIT_ZOMBIE
)
1070 * We own this thread, nobody else can reap it.
1072 read_unlock(&tasklist_lock
);
1073 sched_annotate_sleep();
1076 * Check thread_group_leader() to exclude the traced sub-threads.
1078 if (state
== EXIT_DEAD
&& thread_group_leader(p
)) {
1079 struct signal_struct
*sig
= p
->signal
;
1080 struct signal_struct
*psig
= current
->signal
;
1081 unsigned long maxrss
;
1082 cputime_t tgutime
, tgstime
;
1085 * The resource counters for the group leader are in its
1086 * own task_struct. Those for dead threads in the group
1087 * are in its signal_struct, as are those for the child
1088 * processes it has previously reaped. All these
1089 * accumulate in the parent's signal_struct c* fields.
1091 * We don't bother to take a lock here to protect these
1092 * p->signal fields because the whole thread group is dead
1093 * and nobody can change them.
1095 * psig->stats_lock also protects us from our sub-theads
1096 * which can reap other children at the same time. Until
1097 * we change k_getrusage()-like users to rely on this lock
1098 * we have to take ->siglock as well.
1100 * We use thread_group_cputime_adjusted() to get times for
1101 * the thread group, which consolidates times for all threads
1102 * in the group including the group leader.
1104 thread_group_cputime_adjusted(p
, &tgutime
, &tgstime
);
1105 spin_lock_irq(¤t
->sighand
->siglock
);
1106 write_seqlock(&psig
->stats_lock
);
1107 psig
->cutime
+= tgutime
+ sig
->cutime
;
1108 psig
->cstime
+= tgstime
+ sig
->cstime
;
1109 psig
->cgtime
+= task_gtime(p
) + sig
->gtime
+ sig
->cgtime
;
1111 p
->min_flt
+ sig
->min_flt
+ sig
->cmin_flt
;
1113 p
->maj_flt
+ sig
->maj_flt
+ sig
->cmaj_flt
;
1115 p
->nvcsw
+ sig
->nvcsw
+ sig
->cnvcsw
;
1117 p
->nivcsw
+ sig
->nivcsw
+ sig
->cnivcsw
;
1119 task_io_get_inblock(p
) +
1120 sig
->inblock
+ sig
->cinblock
;
1122 task_io_get_oublock(p
) +
1123 sig
->oublock
+ sig
->coublock
;
1124 maxrss
= max(sig
->maxrss
, sig
->cmaxrss
);
1125 if (psig
->cmaxrss
< maxrss
)
1126 psig
->cmaxrss
= maxrss
;
1127 task_io_accounting_add(&psig
->ioac
, &p
->ioac
);
1128 task_io_accounting_add(&psig
->ioac
, &sig
->ioac
);
1129 write_sequnlock(&psig
->stats_lock
);
1130 spin_unlock_irq(¤t
->sighand
->siglock
);
1133 retval
= wo
->wo_rusage
1134 ? getrusage(p
, RUSAGE_BOTH
, wo
->wo_rusage
) : 0;
1135 status
= (p
->signal
->flags
& SIGNAL_GROUP_EXIT
)
1136 ? p
->signal
->group_exit_code
: p
->exit_code
;
1137 if (!retval
&& wo
->wo_stat
)
1138 retval
= put_user(status
, wo
->wo_stat
);
1140 infop
= wo
->wo_info
;
1141 if (!retval
&& infop
)
1142 retval
= put_user(SIGCHLD
, &infop
->si_signo
);
1143 if (!retval
&& infop
)
1144 retval
= put_user(0, &infop
->si_errno
);
1145 if (!retval
&& infop
) {
1148 if ((status
& 0x7f) == 0) {
1152 why
= (status
& 0x80) ? CLD_DUMPED
: CLD_KILLED
;
1155 retval
= put_user((short)why
, &infop
->si_code
);
1157 retval
= put_user(status
, &infop
->si_status
);
1159 if (!retval
&& infop
)
1160 retval
= put_user(pid
, &infop
->si_pid
);
1161 if (!retval
&& infop
)
1162 retval
= put_user(uid
, &infop
->si_uid
);
1166 if (state
== EXIT_TRACE
) {
1167 write_lock_irq(&tasklist_lock
);
1168 /* We dropped tasklist, ptracer could die and untrace */
1171 /* If parent wants a zombie, don't release it now */
1172 state
= EXIT_ZOMBIE
;
1173 if (do_notify_parent(p
, p
->exit_signal
))
1175 p
->exit_state
= state
;
1176 write_unlock_irq(&tasklist_lock
);
1178 if (state
== EXIT_DEAD
)
1184 static int *task_stopped_code(struct task_struct
*p
, bool ptrace
)
1187 if (task_is_traced(p
) && !(p
->jobctl
& JOBCTL_LISTENING
))
1188 return &p
->exit_code
;
1190 if (p
->signal
->flags
& SIGNAL_STOP_STOPPED
)
1191 return &p
->signal
->group_exit_code
;
1197 * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1199 * @ptrace: is the wait for ptrace
1200 * @p: task to wait for
1202 * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1205 * read_lock(&tasklist_lock), which is released if return value is
1206 * non-zero. Also, grabs and releases @p->sighand->siglock.
1209 * 0 if wait condition didn't exist and search for other wait conditions
1210 * should continue. Non-zero return, -errno on failure and @p's pid on
1211 * success, implies that tasklist_lock is released and wait condition
1212 * search should terminate.
1214 static int wait_task_stopped(struct wait_opts
*wo
,
1215 int ptrace
, struct task_struct
*p
)
1217 struct siginfo __user
*infop
;
1218 int retval
, exit_code
, *p_code
, why
;
1219 uid_t uid
= 0; /* unneeded, required by compiler */
1223 * Traditionally we see ptrace'd stopped tasks regardless of options.
1225 if (!ptrace
&& !(wo
->wo_flags
& WUNTRACED
))
1228 if (!task_stopped_code(p
, ptrace
))
1232 spin_lock_irq(&p
->sighand
->siglock
);
1234 p_code
= task_stopped_code(p
, ptrace
);
1235 if (unlikely(!p_code
))
1238 exit_code
= *p_code
;
1242 if (!unlikely(wo
->wo_flags
& WNOWAIT
))
1245 uid
= from_kuid_munged(current_user_ns(), task_uid(p
));
1247 spin_unlock_irq(&p
->sighand
->siglock
);
1252 * Now we are pretty sure this task is interesting.
1253 * Make sure it doesn't get reaped out from under us while we
1254 * give up the lock and then examine it below. We don't want to
1255 * keep holding onto the tasklist_lock while we call getrusage and
1256 * possibly take page faults for user memory.
1259 pid
= task_pid_vnr(p
);
1260 why
= ptrace
? CLD_TRAPPED
: CLD_STOPPED
;
1261 read_unlock(&tasklist_lock
);
1262 sched_annotate_sleep();
1264 if (unlikely(wo
->wo_flags
& WNOWAIT
))
1265 return wait_noreap_copyout(wo
, p
, pid
, uid
, why
, exit_code
);
1267 retval
= wo
->wo_rusage
1268 ? getrusage(p
, RUSAGE_BOTH
, wo
->wo_rusage
) : 0;
1269 if (!retval
&& wo
->wo_stat
)
1270 retval
= put_user((exit_code
<< 8) | 0x7f, wo
->wo_stat
);
1272 infop
= wo
->wo_info
;
1273 if (!retval
&& infop
)
1274 retval
= put_user(SIGCHLD
, &infop
->si_signo
);
1275 if (!retval
&& infop
)
1276 retval
= put_user(0, &infop
->si_errno
);
1277 if (!retval
&& infop
)
1278 retval
= put_user((short)why
, &infop
->si_code
);
1279 if (!retval
&& infop
)
1280 retval
= put_user(exit_code
, &infop
->si_status
);
1281 if (!retval
&& infop
)
1282 retval
= put_user(pid
, &infop
->si_pid
);
1283 if (!retval
&& infop
)
1284 retval
= put_user(uid
, &infop
->si_uid
);
1294 * Handle do_wait work for one task in a live, non-stopped state.
1295 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1296 * the lock and this task is uninteresting. If we return nonzero, we have
1297 * released the lock and the system call should return.
1299 static int wait_task_continued(struct wait_opts
*wo
, struct task_struct
*p
)
1305 if (!unlikely(wo
->wo_flags
& WCONTINUED
))
1308 if (!(p
->signal
->flags
& SIGNAL_STOP_CONTINUED
))
1311 spin_lock_irq(&p
->sighand
->siglock
);
1312 /* Re-check with the lock held. */
1313 if (!(p
->signal
->flags
& SIGNAL_STOP_CONTINUED
)) {
1314 spin_unlock_irq(&p
->sighand
->siglock
);
1317 if (!unlikely(wo
->wo_flags
& WNOWAIT
))
1318 p
->signal
->flags
&= ~SIGNAL_STOP_CONTINUED
;
1319 uid
= from_kuid_munged(current_user_ns(), task_uid(p
));
1320 spin_unlock_irq(&p
->sighand
->siglock
);
1322 pid
= task_pid_vnr(p
);
1324 read_unlock(&tasklist_lock
);
1325 sched_annotate_sleep();
1328 retval
= wo
->wo_rusage
1329 ? getrusage(p
, RUSAGE_BOTH
, wo
->wo_rusage
) : 0;
1331 if (!retval
&& wo
->wo_stat
)
1332 retval
= put_user(0xffff, wo
->wo_stat
);
1336 retval
= wait_noreap_copyout(wo
, p
, pid
, uid
,
1337 CLD_CONTINUED
, SIGCONT
);
1338 BUG_ON(retval
== 0);
1345 * Consider @p for a wait by @parent.
1347 * -ECHILD should be in ->notask_error before the first call.
1348 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1349 * Returns zero if the search for a child should continue;
1350 * then ->notask_error is 0 if @p is an eligible child,
1351 * or another error from security_task_wait(), or still -ECHILD.
1353 static int wait_consider_task(struct wait_opts
*wo
, int ptrace
,
1354 struct task_struct
*p
)
1357 * We can race with wait_task_zombie() from another thread.
1358 * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
1359 * can't confuse the checks below.
1361 int exit_state
= ACCESS_ONCE(p
->exit_state
);
1364 if (unlikely(exit_state
== EXIT_DEAD
))
1367 ret
= eligible_child(wo
, ptrace
, p
);
1371 ret
= security_task_wait(p
);
1372 if (unlikely(ret
< 0)) {
1374 * If we have not yet seen any eligible child,
1375 * then let this error code replace -ECHILD.
1376 * A permission error will give the user a clue
1377 * to look for security policy problems, rather
1378 * than for mysterious wait bugs.
1380 if (wo
->notask_error
)
1381 wo
->notask_error
= ret
;
1385 if (unlikely(exit_state
== EXIT_TRACE
)) {
1387 * ptrace == 0 means we are the natural parent. In this case
1388 * we should clear notask_error, debugger will notify us.
1390 if (likely(!ptrace
))
1391 wo
->notask_error
= 0;
1395 if (likely(!ptrace
) && unlikely(p
->ptrace
)) {
1397 * If it is traced by its real parent's group, just pretend
1398 * the caller is ptrace_do_wait() and reap this child if it
1401 * This also hides group stop state from real parent; otherwise
1402 * a single stop can be reported twice as group and ptrace stop.
1403 * If a ptracer wants to distinguish these two events for its
1404 * own children it should create a separate process which takes
1405 * the role of real parent.
1407 if (!ptrace_reparented(p
))
1412 if (exit_state
== EXIT_ZOMBIE
) {
1413 /* we don't reap group leaders with subthreads */
1414 if (!delay_group_leader(p
)) {
1416 * A zombie ptracee is only visible to its ptracer.
1417 * Notification and reaping will be cascaded to the
1418 * real parent when the ptracer detaches.
1420 if (unlikely(ptrace
) || likely(!p
->ptrace
))
1421 return wait_task_zombie(wo
, p
);
1425 * Allow access to stopped/continued state via zombie by
1426 * falling through. Clearing of notask_error is complex.
1430 * If WEXITED is set, notask_error should naturally be
1431 * cleared. If not, subset of WSTOPPED|WCONTINUED is set,
1432 * so, if there are live subthreads, there are events to
1433 * wait for. If all subthreads are dead, it's still safe
1434 * to clear - this function will be called again in finite
1435 * amount time once all the subthreads are released and
1436 * will then return without clearing.
1440 * Stopped state is per-task and thus can't change once the
1441 * target task dies. Only continued and exited can happen.
1442 * Clear notask_error if WCONTINUED | WEXITED.
1444 if (likely(!ptrace
) || (wo
->wo_flags
& (WCONTINUED
| WEXITED
)))
1445 wo
->notask_error
= 0;
1448 * @p is alive and it's gonna stop, continue or exit, so
1449 * there always is something to wait for.
1451 wo
->notask_error
= 0;
1455 * Wait for stopped. Depending on @ptrace, different stopped state
1456 * is used and the two don't interact with each other.
1458 ret
= wait_task_stopped(wo
, ptrace
, p
);
1463 * Wait for continued. There's only one continued state and the
1464 * ptracer can consume it which can confuse the real parent. Don't
1465 * use WCONTINUED from ptracer. You don't need or want it.
1467 return wait_task_continued(wo
, p
);
1471 * Do the work of do_wait() for one thread in the group, @tsk.
1473 * -ECHILD should be in ->notask_error before the first call.
1474 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1475 * Returns zero if the search for a child should continue; then
1476 * ->notask_error is 0 if there were any eligible children,
1477 * or another error from security_task_wait(), or still -ECHILD.
1479 static int do_wait_thread(struct wait_opts
*wo
, struct task_struct
*tsk
)
1481 struct task_struct
*p
;
1483 list_for_each_entry(p
, &tsk
->children
, sibling
) {
1484 int ret
= wait_consider_task(wo
, 0, p
);
1493 static int ptrace_do_wait(struct wait_opts
*wo
, struct task_struct
*tsk
)
1495 struct task_struct
*p
;
1497 list_for_each_entry(p
, &tsk
->ptraced
, ptrace_entry
) {
1498 int ret
= wait_consider_task(wo
, 1, p
);
1507 static int child_wait_callback(wait_queue_t
*wait
, unsigned mode
,
1508 int sync
, void *key
)
1510 struct wait_opts
*wo
= container_of(wait
, struct wait_opts
,
1512 struct task_struct
*p
= key
;
1514 if (!eligible_pid(wo
, p
))
1517 if ((wo
->wo_flags
& __WNOTHREAD
) && wait
->private != p
->parent
)
1520 return default_wake_function(wait
, mode
, sync
, key
);
1523 void __wake_up_parent(struct task_struct
*p
, struct task_struct
*parent
)
1525 __wake_up_sync_key(&parent
->signal
->wait_chldexit
,
1526 TASK_INTERRUPTIBLE
, 1, p
);
1529 static long do_wait(struct wait_opts
*wo
)
1531 struct task_struct
*tsk
;
1534 trace_sched_process_wait(wo
->wo_pid
);
1536 init_waitqueue_func_entry(&wo
->child_wait
, child_wait_callback
);
1537 wo
->child_wait
.private = current
;
1538 add_wait_queue(¤t
->signal
->wait_chldexit
, &wo
->child_wait
);
1541 * If there is nothing that can match our criteria, just get out.
1542 * We will clear ->notask_error to zero if we see any child that
1543 * might later match our criteria, even if we are not able to reap
1546 wo
->notask_error
= -ECHILD
;
1547 if ((wo
->wo_type
< PIDTYPE_MAX
) &&
1548 (!wo
->wo_pid
|| hlist_empty(&wo
->wo_pid
->tasks
[wo
->wo_type
])))
1551 set_current_state(TASK_INTERRUPTIBLE
);
1552 read_lock(&tasklist_lock
);
1555 retval
= do_wait_thread(wo
, tsk
);
1559 retval
= ptrace_do_wait(wo
, tsk
);
1563 if (wo
->wo_flags
& __WNOTHREAD
)
1565 } while_each_thread(current
, tsk
);
1566 read_unlock(&tasklist_lock
);
1569 retval
= wo
->notask_error
;
1570 if (!retval
&& !(wo
->wo_flags
& WNOHANG
)) {
1571 retval
= -ERESTARTSYS
;
1572 if (!signal_pending(current
)) {
1578 __set_current_state(TASK_RUNNING
);
1579 remove_wait_queue(¤t
->signal
->wait_chldexit
, &wo
->child_wait
);
1583 SYSCALL_DEFINE5(waitid
, int, which
, pid_t
, upid
, struct siginfo __user
*,
1584 infop
, int, options
, struct rusage __user
*, ru
)
1586 struct wait_opts wo
;
1587 struct pid
*pid
= NULL
;
1591 if (options
& ~(WNOHANG
|WNOWAIT
|WEXITED
|WSTOPPED
|WCONTINUED
|
1592 __WNOTHREAD
|__WCLONE
|__WALL
))
1594 if (!(options
& (WEXITED
|WSTOPPED
|WCONTINUED
)))
1607 type
= PIDTYPE_PGID
;
1615 if (type
< PIDTYPE_MAX
)
1616 pid
= find_get_pid(upid
);
1620 wo
.wo_flags
= options
;
1630 * For a WNOHANG return, clear out all the fields
1631 * we would set so the user can easily tell the
1635 ret
= put_user(0, &infop
->si_signo
);
1637 ret
= put_user(0, &infop
->si_errno
);
1639 ret
= put_user(0, &infop
->si_code
);
1641 ret
= put_user(0, &infop
->si_pid
);
1643 ret
= put_user(0, &infop
->si_uid
);
1645 ret
= put_user(0, &infop
->si_status
);
1652 SYSCALL_DEFINE4(wait4
, pid_t
, upid
, int __user
*, stat_addr
,
1653 int, options
, struct rusage __user
*, ru
)
1655 struct wait_opts wo
;
1656 struct pid
*pid
= NULL
;
1660 if (options
& ~(WNOHANG
|WUNTRACED
|WCONTINUED
|
1661 __WNOTHREAD
|__WCLONE
|__WALL
))
1666 else if (upid
< 0) {
1667 type
= PIDTYPE_PGID
;
1668 pid
= find_get_pid(-upid
);
1669 } else if (upid
== 0) {
1670 type
= PIDTYPE_PGID
;
1671 pid
= get_task_pid(current
, PIDTYPE_PGID
);
1672 } else /* upid > 0 */ {
1674 pid
= find_get_pid(upid
);
1679 wo
.wo_flags
= options
| WEXITED
;
1681 wo
.wo_stat
= stat_addr
;
1689 #ifdef __ARCH_WANT_SYS_WAITPID
1692 * sys_waitpid() remains for compatibility. waitpid() should be
1693 * implemented by calling sys_wait4() from libc.a.
1695 SYSCALL_DEFINE3(waitpid
, pid_t
, pid
, int __user
*, stat_addr
, int, options
)
1697 return sys_wait4(pid
, stat_addr
, options
, NULL
);