2 * Driver for Lineage Compact Power Line series of power entry modules.
4 * Copyright (C) 2010, 2011 Ericsson AB.
7 * http://www.lineagepower.com/oem/pdf/CPLI2C.pdf
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
24 #include <linux/kernel.h>
25 #include <linux/module.h>
26 #include <linux/init.h>
27 #include <linux/err.h>
28 #include <linux/slab.h>
29 #include <linux/i2c.h>
30 #include <linux/hwmon.h>
31 #include <linux/hwmon-sysfs.h>
32 #include <linux/jiffies.h>
35 * This driver supports various Lineage Compact Power Line DC/DC and AC/DC
36 * converters such as CP1800, CP2000AC, CP2000DC, CP2100DC, and others.
38 * The devices are nominally PMBus compliant. However, most standard PMBus
39 * commands are not supported. Specifically, all hardware monitoring and
40 * status reporting commands are non-standard. For this reason, a standard
41 * PMBus driver can not be used.
43 * All Lineage CPL devices have a built-in I2C bus master selector (PCA9541).
44 * To ensure device access, this driver should only be used as client driver
45 * to the pca9541 I2C master selector driver.
49 #define PEM_OPERATION 0x01
50 #define PEM_CLEAR_INFO_FLAGS 0x03
51 #define PEM_VOUT_COMMAND 0x21
52 #define PEM_VOUT_OV_FAULT_LIMIT 0x40
53 #define PEM_READ_DATA_STRING 0xd0
54 #define PEM_READ_INPUT_STRING 0xdc
55 #define PEM_READ_FIRMWARE_REV 0xdd
56 #define PEM_READ_RUN_TIMER 0xde
57 #define PEM_FAN_HI_SPEED 0xdf
58 #define PEM_FAN_NORMAL_SPEED 0xe0
59 #define PEM_READ_FAN_SPEED 0xe1
61 /* offsets in data string */
62 #define PEM_DATA_STATUS_2 0
63 #define PEM_DATA_STATUS_1 1
64 #define PEM_DATA_ALARM_2 2
65 #define PEM_DATA_ALARM_1 3
66 #define PEM_DATA_VOUT_LSB 4
67 #define PEM_DATA_VOUT_MSB 5
68 #define PEM_DATA_CURRENT 6
69 #define PEM_DATA_TEMP 7
71 /* Virtual entries, to report constants */
72 #define PEM_DATA_TEMP_MAX 10
73 #define PEM_DATA_TEMP_CRIT 11
75 /* offsets in input string */
76 #define PEM_INPUT_VOLTAGE 0
77 #define PEM_INPUT_POWER_LSB 1
78 #define PEM_INPUT_POWER_MSB 2
80 /* offsets in fan data */
81 #define PEM_FAN_ADJUSTMENT 0
82 #define PEM_FAN_FAN1 1
83 #define PEM_FAN_FAN2 2
84 #define PEM_FAN_FAN3 3
86 /* Status register bits */
87 #define STS1_OUTPUT_ON (1 << 0)
88 #define STS1_LEDS_FLASHING (1 << 1)
89 #define STS1_EXT_FAULT (1 << 2)
90 #define STS1_SERVICE_LED_ON (1 << 3)
91 #define STS1_SHUTDOWN_OCCURRED (1 << 4)
92 #define STS1_INT_FAULT (1 << 5)
93 #define STS1_ISOLATION_TEST_OK (1 << 6)
95 #define STS2_ENABLE_PIN_HI (1 << 0)
96 #define STS2_DATA_OUT_RANGE (1 << 1)
97 #define STS2_RESTARTED_OK (1 << 1)
98 #define STS2_ISOLATION_TEST_FAIL (1 << 3)
99 #define STS2_HIGH_POWER_CAP (1 << 4)
100 #define STS2_INVALID_INSTR (1 << 5)
101 #define STS2_WILL_RESTART (1 << 6)
102 #define STS2_PEC_ERR (1 << 7)
104 /* Alarm register bits */
105 #define ALRM1_VIN_OUT_LIMIT (1 << 0)
106 #define ALRM1_VOUT_OUT_LIMIT (1 << 1)
107 #define ALRM1_OV_VOLT_SHUTDOWN (1 << 2)
108 #define ALRM1_VIN_OVERCURRENT (1 << 3)
109 #define ALRM1_TEMP_WARNING (1 << 4)
110 #define ALRM1_TEMP_SHUTDOWN (1 << 5)
111 #define ALRM1_PRIMARY_FAULT (1 << 6)
112 #define ALRM1_POWER_LIMIT (1 << 7)
114 #define ALRM2_5V_OUT_LIMIT (1 << 1)
115 #define ALRM2_TEMP_FAULT (1 << 2)
116 #define ALRM2_OV_LOW (1 << 3)
117 #define ALRM2_DCDC_TEMP_HIGH (1 << 4)
118 #define ALRM2_PRI_TEMP_HIGH (1 << 5)
119 #define ALRM2_NO_PRIMARY (1 << 6)
120 #define ALRM2_FAN_FAULT (1 << 7)
122 #define FIRMWARE_REV_LEN 4
123 #define DATA_STRING_LEN 9
124 #define INPUT_STRING_LEN 5 /* 4 for most devices */
125 #define FAN_SPEED_LEN 5
128 struct i2c_client
*client
;
129 const struct attribute_group
*groups
[4];
131 struct mutex update_lock
;
135 unsigned long last_updated
; /* in jiffies */
137 u8 firmware_rev
[FIRMWARE_REV_LEN
];
138 u8 data_string
[DATA_STRING_LEN
];
139 u8 input_string
[INPUT_STRING_LEN
];
140 u8 fan_speed
[FAN_SPEED_LEN
];
143 static int pem_read_block(struct i2c_client
*client
, u8 command
, u8
*data
,
146 u8 block_buffer
[I2C_SMBUS_BLOCK_MAX
];
149 result
= i2c_smbus_read_block_data(client
, command
, block_buffer
);
150 if (unlikely(result
< 0))
152 if (unlikely(result
== 0xff || result
!= data_len
)) {
156 memcpy(data
, block_buffer
, data_len
);
162 static struct pem_data
*pem_update_device(struct device
*dev
)
164 struct pem_data
*data
= dev_get_drvdata(dev
);
165 struct i2c_client
*client
= data
->client
;
166 struct pem_data
*ret
= data
;
168 mutex_lock(&data
->update_lock
);
170 if (time_after(jiffies
, data
->last_updated
+ HZ
) || !data
->valid
) {
173 /* Read data string */
174 result
= pem_read_block(client
, PEM_READ_DATA_STRING
,
176 sizeof(data
->data_string
));
177 if (unlikely(result
< 0)) {
178 ret
= ERR_PTR(result
);
182 /* Read input string */
183 if (data
->input_length
) {
184 result
= pem_read_block(client
, PEM_READ_INPUT_STRING
,
187 if (unlikely(result
< 0)) {
188 ret
= ERR_PTR(result
);
193 /* Read fan speeds */
194 if (data
->fans_supported
) {
195 result
= pem_read_block(client
, PEM_READ_FAN_SPEED
,
197 sizeof(data
->fan_speed
));
198 if (unlikely(result
< 0)) {
199 ret
= ERR_PTR(result
);
204 i2c_smbus_write_byte(client
, PEM_CLEAR_INFO_FLAGS
);
206 data
->last_updated
= jiffies
;
210 mutex_unlock(&data
->update_lock
);
214 static long pem_get_data(u8
*data
, int len
, int index
)
219 case PEM_DATA_VOUT_LSB
:
220 val
= (data
[index
] + (data
[index
+1] << 8)) * 5 / 2;
222 case PEM_DATA_CURRENT
:
223 val
= data
[index
] * 200;
226 val
= data
[index
] * 1000;
228 case PEM_DATA_TEMP_MAX
:
229 val
= 97 * 1000; /* 97 degrees C per datasheet */
231 case PEM_DATA_TEMP_CRIT
:
232 val
= 107 * 1000; /* 107 degrees C per datasheet */
241 static long pem_get_input(u8
*data
, int len
, int index
)
246 case PEM_INPUT_VOLTAGE
:
247 if (len
== INPUT_STRING_LEN
)
248 val
= (data
[index
] + (data
[index
+1] << 8) - 75) * 1000;
250 val
= (data
[index
] - 75) * 1000;
252 case PEM_INPUT_POWER_LSB
:
253 if (len
== INPUT_STRING_LEN
)
255 val
= (data
[index
] + (data
[index
+1] << 8)) * 1000000L;
264 static long pem_get_fan(u8
*data
, int len
, int index
)
272 val
= data
[index
] * 100;
282 * Show boolean, either a fault or an alarm.
283 * .nr points to the register, .index is the bit mask to check
285 static ssize_t
pem_show_bool(struct device
*dev
,
286 struct device_attribute
*da
, char *buf
)
288 struct sensor_device_attribute_2
*attr
= to_sensor_dev_attr_2(da
);
289 struct pem_data
*data
= pem_update_device(dev
);
293 return PTR_ERR(data
);
295 status
= data
->data_string
[attr
->nr
] & attr
->index
;
296 return snprintf(buf
, PAGE_SIZE
, "%d\n", !!status
);
299 static ssize_t
pem_show_data(struct device
*dev
, struct device_attribute
*da
,
302 struct sensor_device_attribute
*attr
= to_sensor_dev_attr(da
);
303 struct pem_data
*data
= pem_update_device(dev
);
307 return PTR_ERR(data
);
309 value
= pem_get_data(data
->data_string
, sizeof(data
->data_string
),
312 return snprintf(buf
, PAGE_SIZE
, "%ld\n", value
);
315 static ssize_t
pem_show_input(struct device
*dev
, struct device_attribute
*da
,
318 struct sensor_device_attribute
*attr
= to_sensor_dev_attr(da
);
319 struct pem_data
*data
= pem_update_device(dev
);
323 return PTR_ERR(data
);
325 value
= pem_get_input(data
->input_string
, sizeof(data
->input_string
),
328 return snprintf(buf
, PAGE_SIZE
, "%ld\n", value
);
331 static ssize_t
pem_show_fan(struct device
*dev
, struct device_attribute
*da
,
334 struct sensor_device_attribute
*attr
= to_sensor_dev_attr(da
);
335 struct pem_data
*data
= pem_update_device(dev
);
339 return PTR_ERR(data
);
341 value
= pem_get_fan(data
->fan_speed
, sizeof(data
->fan_speed
),
344 return snprintf(buf
, PAGE_SIZE
, "%ld\n", value
);
348 static SENSOR_DEVICE_ATTR(in1_input
, S_IRUGO
, pem_show_data
, NULL
,
350 static SENSOR_DEVICE_ATTR_2(in1_alarm
, S_IRUGO
, pem_show_bool
, NULL
,
351 PEM_DATA_ALARM_1
, ALRM1_VOUT_OUT_LIMIT
);
352 static SENSOR_DEVICE_ATTR_2(in1_crit_alarm
, S_IRUGO
, pem_show_bool
, NULL
,
353 PEM_DATA_ALARM_1
, ALRM1_OV_VOLT_SHUTDOWN
);
354 static SENSOR_DEVICE_ATTR(in2_input
, S_IRUGO
, pem_show_input
, NULL
,
356 static SENSOR_DEVICE_ATTR_2(in2_alarm
, S_IRUGO
, pem_show_bool
, NULL
,
358 ALRM1_VIN_OUT_LIMIT
| ALRM1_PRIMARY_FAULT
);
361 static SENSOR_DEVICE_ATTR(curr1_input
, S_IRUGO
, pem_show_data
, NULL
,
363 static SENSOR_DEVICE_ATTR_2(curr1_alarm
, S_IRUGO
, pem_show_bool
, NULL
,
364 PEM_DATA_ALARM_1
, ALRM1_VIN_OVERCURRENT
);
367 static SENSOR_DEVICE_ATTR(power1_input
, S_IRUGO
, pem_show_input
, NULL
,
368 PEM_INPUT_POWER_LSB
);
369 static SENSOR_DEVICE_ATTR_2(power1_alarm
, S_IRUGO
, pem_show_bool
, NULL
,
370 PEM_DATA_ALARM_1
, ALRM1_POWER_LIMIT
);
373 static SENSOR_DEVICE_ATTR(fan1_input
, S_IRUGO
, pem_show_fan
, NULL
,
375 static SENSOR_DEVICE_ATTR(fan2_input
, S_IRUGO
, pem_show_fan
, NULL
,
377 static SENSOR_DEVICE_ATTR(fan3_input
, S_IRUGO
, pem_show_fan
, NULL
,
379 static SENSOR_DEVICE_ATTR_2(fan1_alarm
, S_IRUGO
, pem_show_bool
, NULL
,
380 PEM_DATA_ALARM_2
, ALRM2_FAN_FAULT
);
383 static SENSOR_DEVICE_ATTR(temp1_input
, S_IRUGO
, pem_show_data
, NULL
,
385 static SENSOR_DEVICE_ATTR(temp1_max
, S_IRUGO
, pem_show_data
, NULL
,
387 static SENSOR_DEVICE_ATTR(temp1_crit
, S_IRUGO
, pem_show_data
, NULL
,
389 static SENSOR_DEVICE_ATTR_2(temp1_alarm
, S_IRUGO
, pem_show_bool
, NULL
,
390 PEM_DATA_ALARM_1
, ALRM1_TEMP_WARNING
);
391 static SENSOR_DEVICE_ATTR_2(temp1_crit_alarm
, S_IRUGO
, pem_show_bool
, NULL
,
392 PEM_DATA_ALARM_1
, ALRM1_TEMP_SHUTDOWN
);
393 static SENSOR_DEVICE_ATTR_2(temp1_fault
, S_IRUGO
, pem_show_bool
, NULL
,
394 PEM_DATA_ALARM_2
, ALRM2_TEMP_FAULT
);
396 static struct attribute
*pem_attributes
[] = {
397 &sensor_dev_attr_in1_input
.dev_attr
.attr
,
398 &sensor_dev_attr_in1_alarm
.dev_attr
.attr
,
399 &sensor_dev_attr_in1_crit_alarm
.dev_attr
.attr
,
400 &sensor_dev_attr_in2_alarm
.dev_attr
.attr
,
402 &sensor_dev_attr_curr1_alarm
.dev_attr
.attr
,
404 &sensor_dev_attr_power1_alarm
.dev_attr
.attr
,
406 &sensor_dev_attr_fan1_alarm
.dev_attr
.attr
,
408 &sensor_dev_attr_temp1_input
.dev_attr
.attr
,
409 &sensor_dev_attr_temp1_max
.dev_attr
.attr
,
410 &sensor_dev_attr_temp1_crit
.dev_attr
.attr
,
411 &sensor_dev_attr_temp1_alarm
.dev_attr
.attr
,
412 &sensor_dev_attr_temp1_crit_alarm
.dev_attr
.attr
,
413 &sensor_dev_attr_temp1_fault
.dev_attr
.attr
,
418 static const struct attribute_group pem_group
= {
419 .attrs
= pem_attributes
,
422 static struct attribute
*pem_input_attributes
[] = {
423 &sensor_dev_attr_in2_input
.dev_attr
.attr
,
424 &sensor_dev_attr_curr1_input
.dev_attr
.attr
,
425 &sensor_dev_attr_power1_input
.dev_attr
.attr
,
429 static const struct attribute_group pem_input_group
= {
430 .attrs
= pem_input_attributes
,
433 static struct attribute
*pem_fan_attributes
[] = {
434 &sensor_dev_attr_fan1_input
.dev_attr
.attr
,
435 &sensor_dev_attr_fan2_input
.dev_attr
.attr
,
436 &sensor_dev_attr_fan3_input
.dev_attr
.attr
,
440 static const struct attribute_group pem_fan_group
= {
441 .attrs
= pem_fan_attributes
,
444 static int pem_probe(struct i2c_client
*client
,
445 const struct i2c_device_id
*id
)
447 struct i2c_adapter
*adapter
= client
->adapter
;
448 struct device
*dev
= &client
->dev
;
449 struct device
*hwmon_dev
;
450 struct pem_data
*data
;
453 if (!i2c_check_functionality(adapter
, I2C_FUNC_SMBUS_BLOCK_DATA
454 | I2C_FUNC_SMBUS_WRITE_BYTE
))
457 data
= devm_kzalloc(dev
, sizeof(*data
), GFP_KERNEL
);
461 data
->client
= client
;
462 mutex_init(&data
->update_lock
);
465 * We use the next two commands to determine if the device is really
468 ret
= pem_read_block(client
, PEM_READ_FIRMWARE_REV
,
469 data
->firmware_rev
, sizeof(data
->firmware_rev
));
473 ret
= i2c_smbus_write_byte(client
, PEM_CLEAR_INFO_FLAGS
);
477 dev_info(dev
, "Firmware revision %d.%d.%d\n",
478 data
->firmware_rev
[0], data
->firmware_rev
[1],
479 data
->firmware_rev
[2]);
482 data
->groups
[idx
++] = &pem_group
;
485 * Check if input readings are supported.
486 * This is the case if we can read input data,
487 * and if the returned data is not all zeros.
488 * Note that input alarms are always supported.
490 ret
= pem_read_block(client
, PEM_READ_INPUT_STRING
,
492 sizeof(data
->input_string
) - 1);
493 if (!ret
&& (data
->input_string
[0] || data
->input_string
[1] ||
494 data
->input_string
[2]))
495 data
->input_length
= sizeof(data
->input_string
) - 1;
497 /* Input string is one byte longer for some devices */
498 ret
= pem_read_block(client
, PEM_READ_INPUT_STRING
,
500 sizeof(data
->input_string
));
501 if (!ret
&& (data
->input_string
[0] || data
->input_string
[1] ||
502 data
->input_string
[2] || data
->input_string
[3]))
503 data
->input_length
= sizeof(data
->input_string
);
506 if (data
->input_length
)
507 data
->groups
[idx
++] = &pem_input_group
;
510 * Check if fan speed readings are supported.
511 * This is the case if we can read fan speed data,
512 * and if the returned data is not all zeros.
513 * Note that the fan alarm is always supported.
515 ret
= pem_read_block(client
, PEM_READ_FAN_SPEED
,
517 sizeof(data
->fan_speed
));
518 if (!ret
&& (data
->fan_speed
[0] || data
->fan_speed
[1] ||
519 data
->fan_speed
[2] || data
->fan_speed
[3])) {
520 data
->fans_supported
= true;
521 data
->groups
[idx
++] = &pem_fan_group
;
524 hwmon_dev
= devm_hwmon_device_register_with_groups(dev
, client
->name
,
526 return PTR_ERR_OR_ZERO(hwmon_dev
);
529 static const struct i2c_device_id pem_id
[] = {
533 MODULE_DEVICE_TABLE(i2c
, pem_id
);
535 static struct i2c_driver pem_driver
= {
537 .name
= "lineage_pem",
543 module_i2c_driver(pem_driver
);
545 MODULE_AUTHOR("Guenter Roeck <linux@roeck-us.net>");
546 MODULE_DESCRIPTION("Lineage CPL PEM hardware monitoring driver");
547 MODULE_LICENSE("GPL");