2 * Functions related to setting various queue properties from drivers
4 #include <linux/kernel.h>
5 #include <linux/module.h>
6 #include <linux/init.h>
8 #include <linux/blkdev.h>
9 #include <linux/bootmem.h> /* for max_pfn/max_low_pfn */
10 #include <linux/gcd.h>
11 #include <linux/lcm.h>
12 #include <linux/jiffies.h>
13 #include <linux/gfp.h>
18 unsigned long blk_max_low_pfn
;
19 EXPORT_SYMBOL(blk_max_low_pfn
);
21 unsigned long blk_max_pfn
;
24 * blk_queue_prep_rq - set a prepare_request function for queue
26 * @pfn: prepare_request function
28 * It's possible for a queue to register a prepare_request callback which
29 * is invoked before the request is handed to the request_fn. The goal of
30 * the function is to prepare a request for I/O, it can be used to build a
31 * cdb from the request data for instance.
34 void blk_queue_prep_rq(struct request_queue
*q
, prep_rq_fn
*pfn
)
38 EXPORT_SYMBOL(blk_queue_prep_rq
);
41 * blk_queue_unprep_rq - set an unprepare_request function for queue
43 * @ufn: unprepare_request function
45 * It's possible for a queue to register an unprepare_request callback
46 * which is invoked before the request is finally completed. The goal
47 * of the function is to deallocate any data that was allocated in the
48 * prepare_request callback.
51 void blk_queue_unprep_rq(struct request_queue
*q
, unprep_rq_fn
*ufn
)
53 q
->unprep_rq_fn
= ufn
;
55 EXPORT_SYMBOL(blk_queue_unprep_rq
);
57 void blk_queue_softirq_done(struct request_queue
*q
, softirq_done_fn
*fn
)
59 q
->softirq_done_fn
= fn
;
61 EXPORT_SYMBOL(blk_queue_softirq_done
);
63 void blk_queue_rq_timeout(struct request_queue
*q
, unsigned int timeout
)
65 q
->rq_timeout
= timeout
;
67 EXPORT_SYMBOL_GPL(blk_queue_rq_timeout
);
69 void blk_queue_rq_timed_out(struct request_queue
*q
, rq_timed_out_fn
*fn
)
71 q
->rq_timed_out_fn
= fn
;
73 EXPORT_SYMBOL_GPL(blk_queue_rq_timed_out
);
75 void blk_queue_lld_busy(struct request_queue
*q
, lld_busy_fn
*fn
)
79 EXPORT_SYMBOL_GPL(blk_queue_lld_busy
);
82 * blk_set_default_limits - reset limits to default values
83 * @lim: the queue_limits structure to reset
86 * Returns a queue_limit struct to its default state.
88 void blk_set_default_limits(struct queue_limits
*lim
)
90 lim
->max_segments
= BLK_MAX_SEGMENTS
;
91 lim
->max_discard_segments
= 1;
92 lim
->max_integrity_segments
= 0;
93 lim
->seg_boundary_mask
= BLK_SEG_BOUNDARY_MASK
;
94 lim
->virt_boundary_mask
= 0;
95 lim
->max_segment_size
= BLK_MAX_SEGMENT_SIZE
;
96 lim
->max_sectors
= lim
->max_hw_sectors
= BLK_SAFE_MAX_SECTORS
;
97 lim
->max_dev_sectors
= 0;
98 lim
->chunk_sectors
= 0;
99 lim
->max_write_same_sectors
= 0;
100 lim
->max_write_zeroes_sectors
= 0;
101 lim
->max_discard_sectors
= 0;
102 lim
->max_hw_discard_sectors
= 0;
103 lim
->discard_granularity
= 0;
104 lim
->discard_alignment
= 0;
105 lim
->discard_misaligned
= 0;
106 lim
->logical_block_size
= lim
->physical_block_size
= lim
->io_min
= 512;
107 lim
->bounce_pfn
= (unsigned long)(BLK_BOUNCE_ANY
>> PAGE_SHIFT
);
108 lim
->alignment_offset
= 0;
112 lim
->zoned
= BLK_ZONED_NONE
;
114 EXPORT_SYMBOL(blk_set_default_limits
);
117 * blk_set_stacking_limits - set default limits for stacking devices
118 * @lim: the queue_limits structure to reset
121 * Returns a queue_limit struct to its default state. Should be used
122 * by stacking drivers like DM that have no internal limits.
124 void blk_set_stacking_limits(struct queue_limits
*lim
)
126 blk_set_default_limits(lim
);
128 /* Inherit limits from component devices */
129 lim
->max_segments
= USHRT_MAX
;
130 lim
->max_discard_segments
= 1;
131 lim
->max_hw_sectors
= UINT_MAX
;
132 lim
->max_segment_size
= UINT_MAX
;
133 lim
->max_sectors
= UINT_MAX
;
134 lim
->max_dev_sectors
= UINT_MAX
;
135 lim
->max_write_same_sectors
= UINT_MAX
;
136 lim
->max_write_zeroes_sectors
= UINT_MAX
;
138 EXPORT_SYMBOL(blk_set_stacking_limits
);
141 * blk_queue_make_request - define an alternate make_request function for a device
142 * @q: the request queue for the device to be affected
143 * @mfn: the alternate make_request function
146 * The normal way for &struct bios to be passed to a device
147 * driver is for them to be collected into requests on a request
148 * queue, and then to allow the device driver to select requests
149 * off that queue when it is ready. This works well for many block
150 * devices. However some block devices (typically virtual devices
151 * such as md or lvm) do not benefit from the processing on the
152 * request queue, and are served best by having the requests passed
153 * directly to them. This can be achieved by providing a function
154 * to blk_queue_make_request().
157 * The driver that does this *must* be able to deal appropriately
158 * with buffers in "highmemory". This can be accomplished by either calling
159 * __bio_kmap_atomic() to get a temporary kernel mapping, or by calling
160 * blk_queue_bounce() to create a buffer in normal memory.
162 void blk_queue_make_request(struct request_queue
*q
, make_request_fn
*mfn
)
167 q
->nr_requests
= BLKDEV_MAX_RQ
;
169 q
->make_request_fn
= mfn
;
170 blk_queue_dma_alignment(q
, 511);
171 blk_queue_congestion_threshold(q
);
172 q
->nr_batching
= BLK_BATCH_REQ
;
174 blk_set_default_limits(&q
->limits
);
176 EXPORT_SYMBOL(blk_queue_make_request
);
179 * blk_queue_bounce_limit - set bounce buffer limit for queue
180 * @q: the request queue for the device
181 * @max_addr: the maximum address the device can handle
184 * Different hardware can have different requirements as to what pages
185 * it can do I/O directly to. A low level driver can call
186 * blk_queue_bounce_limit to have lower memory pages allocated as bounce
187 * buffers for doing I/O to pages residing above @max_addr.
189 void blk_queue_bounce_limit(struct request_queue
*q
, u64 max_addr
)
191 unsigned long b_pfn
= max_addr
>> PAGE_SHIFT
;
194 q
->bounce_gfp
= GFP_NOIO
;
195 #if BITS_PER_LONG == 64
197 * Assume anything <= 4GB can be handled by IOMMU. Actually
198 * some IOMMUs can handle everything, but I don't know of a
199 * way to test this here.
201 if (b_pfn
< (min_t(u64
, 0xffffffffUL
, BLK_BOUNCE_HIGH
) >> PAGE_SHIFT
))
203 q
->limits
.bounce_pfn
= max(max_low_pfn
, b_pfn
);
205 if (b_pfn
< blk_max_low_pfn
)
207 q
->limits
.bounce_pfn
= b_pfn
;
210 init_emergency_isa_pool();
211 q
->bounce_gfp
= GFP_NOIO
| GFP_DMA
;
212 q
->limits
.bounce_pfn
= b_pfn
;
215 EXPORT_SYMBOL(blk_queue_bounce_limit
);
218 * blk_queue_max_hw_sectors - set max sectors for a request for this queue
219 * @q: the request queue for the device
220 * @max_hw_sectors: max hardware sectors in the usual 512b unit
223 * Enables a low level driver to set a hard upper limit,
224 * max_hw_sectors, on the size of requests. max_hw_sectors is set by
225 * the device driver based upon the capabilities of the I/O
228 * max_dev_sectors is a hard limit imposed by the storage device for
229 * READ/WRITE requests. It is set by the disk driver.
231 * max_sectors is a soft limit imposed by the block layer for
232 * filesystem type requests. This value can be overridden on a
233 * per-device basis in /sys/block/<device>/queue/max_sectors_kb.
234 * The soft limit can not exceed max_hw_sectors.
236 void blk_queue_max_hw_sectors(struct request_queue
*q
, unsigned int max_hw_sectors
)
238 struct queue_limits
*limits
= &q
->limits
;
239 unsigned int max_sectors
;
241 if ((max_hw_sectors
<< 9) < PAGE_SIZE
) {
242 max_hw_sectors
= 1 << (PAGE_SHIFT
- 9);
243 printk(KERN_INFO
"%s: set to minimum %d\n",
244 __func__
, max_hw_sectors
);
247 limits
->max_hw_sectors
= max_hw_sectors
;
248 max_sectors
= min_not_zero(max_hw_sectors
, limits
->max_dev_sectors
);
249 max_sectors
= min_t(unsigned int, max_sectors
, BLK_DEF_MAX_SECTORS
);
250 limits
->max_sectors
= max_sectors
;
251 q
->backing_dev_info
->io_pages
= max_sectors
>> (PAGE_SHIFT
- 9);
253 EXPORT_SYMBOL(blk_queue_max_hw_sectors
);
256 * blk_queue_chunk_sectors - set size of the chunk for this queue
257 * @q: the request queue for the device
258 * @chunk_sectors: chunk sectors in the usual 512b unit
261 * If a driver doesn't want IOs to cross a given chunk size, it can set
262 * this limit and prevent merging across chunks. Note that the chunk size
263 * must currently be a power-of-2 in sectors. Also note that the block
264 * layer must accept a page worth of data at any offset. So if the
265 * crossing of chunks is a hard limitation in the driver, it must still be
266 * prepared to split single page bios.
268 void blk_queue_chunk_sectors(struct request_queue
*q
, unsigned int chunk_sectors
)
270 BUG_ON(!is_power_of_2(chunk_sectors
));
271 q
->limits
.chunk_sectors
= chunk_sectors
;
273 EXPORT_SYMBOL(blk_queue_chunk_sectors
);
276 * blk_queue_max_discard_sectors - set max sectors for a single discard
277 * @q: the request queue for the device
278 * @max_discard_sectors: maximum number of sectors to discard
280 void blk_queue_max_discard_sectors(struct request_queue
*q
,
281 unsigned int max_discard_sectors
)
283 q
->limits
.max_hw_discard_sectors
= max_discard_sectors
;
284 q
->limits
.max_discard_sectors
= max_discard_sectors
;
286 EXPORT_SYMBOL(blk_queue_max_discard_sectors
);
289 * blk_queue_max_write_same_sectors - set max sectors for a single write same
290 * @q: the request queue for the device
291 * @max_write_same_sectors: maximum number of sectors to write per command
293 void blk_queue_max_write_same_sectors(struct request_queue
*q
,
294 unsigned int max_write_same_sectors
)
296 q
->limits
.max_write_same_sectors
= max_write_same_sectors
;
298 EXPORT_SYMBOL(blk_queue_max_write_same_sectors
);
301 * blk_queue_max_write_zeroes_sectors - set max sectors for a single
303 * @q: the request queue for the device
304 * @max_write_zeroes_sectors: maximum number of sectors to write per command
306 void blk_queue_max_write_zeroes_sectors(struct request_queue
*q
,
307 unsigned int max_write_zeroes_sectors
)
309 q
->limits
.max_write_zeroes_sectors
= max_write_zeroes_sectors
;
311 EXPORT_SYMBOL(blk_queue_max_write_zeroes_sectors
);
314 * blk_queue_max_segments - set max hw segments for a request for this queue
315 * @q: the request queue for the device
316 * @max_segments: max number of segments
319 * Enables a low level driver to set an upper limit on the number of
320 * hw data segments in a request.
322 void blk_queue_max_segments(struct request_queue
*q
, unsigned short max_segments
)
326 printk(KERN_INFO
"%s: set to minimum %d\n",
327 __func__
, max_segments
);
330 q
->limits
.max_segments
= max_segments
;
332 EXPORT_SYMBOL(blk_queue_max_segments
);
335 * blk_queue_max_discard_segments - set max segments for discard requests
336 * @q: the request queue for the device
337 * @max_segments: max number of segments
340 * Enables a low level driver to set an upper limit on the number of
341 * segments in a discard request.
343 void blk_queue_max_discard_segments(struct request_queue
*q
,
344 unsigned short max_segments
)
346 q
->limits
.max_discard_segments
= max_segments
;
348 EXPORT_SYMBOL_GPL(blk_queue_max_discard_segments
);
351 * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
352 * @q: the request queue for the device
353 * @max_size: max size of segment in bytes
356 * Enables a low level driver to set an upper limit on the size of a
359 void blk_queue_max_segment_size(struct request_queue
*q
, unsigned int max_size
)
361 if (max_size
< PAGE_SIZE
) {
362 max_size
= PAGE_SIZE
;
363 printk(KERN_INFO
"%s: set to minimum %d\n",
367 q
->limits
.max_segment_size
= max_size
;
369 EXPORT_SYMBOL(blk_queue_max_segment_size
);
372 * blk_queue_logical_block_size - set logical block size for the queue
373 * @q: the request queue for the device
374 * @size: the logical block size, in bytes
377 * This should be set to the lowest possible block size that the
378 * storage device can address. The default of 512 covers most
381 void blk_queue_logical_block_size(struct request_queue
*q
, unsigned short size
)
383 q
->limits
.logical_block_size
= size
;
385 if (q
->limits
.physical_block_size
< size
)
386 q
->limits
.physical_block_size
= size
;
388 if (q
->limits
.io_min
< q
->limits
.physical_block_size
)
389 q
->limits
.io_min
= q
->limits
.physical_block_size
;
391 EXPORT_SYMBOL(blk_queue_logical_block_size
);
394 * blk_queue_physical_block_size - set physical block size for the queue
395 * @q: the request queue for the device
396 * @size: the physical block size, in bytes
399 * This should be set to the lowest possible sector size that the
400 * hardware can operate on without reverting to read-modify-write
403 void blk_queue_physical_block_size(struct request_queue
*q
, unsigned int size
)
405 q
->limits
.physical_block_size
= size
;
407 if (q
->limits
.physical_block_size
< q
->limits
.logical_block_size
)
408 q
->limits
.physical_block_size
= q
->limits
.logical_block_size
;
410 if (q
->limits
.io_min
< q
->limits
.physical_block_size
)
411 q
->limits
.io_min
= q
->limits
.physical_block_size
;
413 EXPORT_SYMBOL(blk_queue_physical_block_size
);
416 * blk_queue_alignment_offset - set physical block alignment offset
417 * @q: the request queue for the device
418 * @offset: alignment offset in bytes
421 * Some devices are naturally misaligned to compensate for things like
422 * the legacy DOS partition table 63-sector offset. Low-level drivers
423 * should call this function for devices whose first sector is not
426 void blk_queue_alignment_offset(struct request_queue
*q
, unsigned int offset
)
428 q
->limits
.alignment_offset
=
429 offset
& (q
->limits
.physical_block_size
- 1);
430 q
->limits
.misaligned
= 0;
432 EXPORT_SYMBOL(blk_queue_alignment_offset
);
435 * blk_limits_io_min - set minimum request size for a device
436 * @limits: the queue limits
437 * @min: smallest I/O size in bytes
440 * Some devices have an internal block size bigger than the reported
441 * hardware sector size. This function can be used to signal the
442 * smallest I/O the device can perform without incurring a performance
445 void blk_limits_io_min(struct queue_limits
*limits
, unsigned int min
)
447 limits
->io_min
= min
;
449 if (limits
->io_min
< limits
->logical_block_size
)
450 limits
->io_min
= limits
->logical_block_size
;
452 if (limits
->io_min
< limits
->physical_block_size
)
453 limits
->io_min
= limits
->physical_block_size
;
455 EXPORT_SYMBOL(blk_limits_io_min
);
458 * blk_queue_io_min - set minimum request size for the queue
459 * @q: the request queue for the device
460 * @min: smallest I/O size in bytes
463 * Storage devices may report a granularity or preferred minimum I/O
464 * size which is the smallest request the device can perform without
465 * incurring a performance penalty. For disk drives this is often the
466 * physical block size. For RAID arrays it is often the stripe chunk
467 * size. A properly aligned multiple of minimum_io_size is the
468 * preferred request size for workloads where a high number of I/O
469 * operations is desired.
471 void blk_queue_io_min(struct request_queue
*q
, unsigned int min
)
473 blk_limits_io_min(&q
->limits
, min
);
475 EXPORT_SYMBOL(blk_queue_io_min
);
478 * blk_limits_io_opt - set optimal request size for a device
479 * @limits: the queue limits
480 * @opt: smallest I/O size in bytes
483 * Storage devices may report an optimal I/O size, which is the
484 * device's preferred unit for sustained I/O. This is rarely reported
485 * for disk drives. For RAID arrays it is usually the stripe width or
486 * the internal track size. A properly aligned multiple of
487 * optimal_io_size is the preferred request size for workloads where
488 * sustained throughput is desired.
490 void blk_limits_io_opt(struct queue_limits
*limits
, unsigned int opt
)
492 limits
->io_opt
= opt
;
494 EXPORT_SYMBOL(blk_limits_io_opt
);
497 * blk_queue_io_opt - set optimal request size for the queue
498 * @q: the request queue for the device
499 * @opt: optimal request size in bytes
502 * Storage devices may report an optimal I/O size, which is the
503 * device's preferred unit for sustained I/O. This is rarely reported
504 * for disk drives. For RAID arrays it is usually the stripe width or
505 * the internal track size. A properly aligned multiple of
506 * optimal_io_size is the preferred request size for workloads where
507 * sustained throughput is desired.
509 void blk_queue_io_opt(struct request_queue
*q
, unsigned int opt
)
511 blk_limits_io_opt(&q
->limits
, opt
);
513 EXPORT_SYMBOL(blk_queue_io_opt
);
516 * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
517 * @t: the stacking driver (top)
518 * @b: the underlying device (bottom)
520 void blk_queue_stack_limits(struct request_queue
*t
, struct request_queue
*b
)
522 blk_stack_limits(&t
->limits
, &b
->limits
, 0);
524 EXPORT_SYMBOL(blk_queue_stack_limits
);
527 * blk_stack_limits - adjust queue_limits for stacked devices
528 * @t: the stacking driver limits (top device)
529 * @b: the underlying queue limits (bottom, component device)
530 * @start: first data sector within component device
533 * This function is used by stacking drivers like MD and DM to ensure
534 * that all component devices have compatible block sizes and
535 * alignments. The stacking driver must provide a queue_limits
536 * struct (top) and then iteratively call the stacking function for
537 * all component (bottom) devices. The stacking function will
538 * attempt to combine the values and ensure proper alignment.
540 * Returns 0 if the top and bottom queue_limits are compatible. The
541 * top device's block sizes and alignment offsets may be adjusted to
542 * ensure alignment with the bottom device. If no compatible sizes
543 * and alignments exist, -1 is returned and the resulting top
544 * queue_limits will have the misaligned flag set to indicate that
545 * the alignment_offset is undefined.
547 int blk_stack_limits(struct queue_limits
*t
, struct queue_limits
*b
,
550 unsigned int top
, bottom
, alignment
, ret
= 0;
552 t
->max_sectors
= min_not_zero(t
->max_sectors
, b
->max_sectors
);
553 t
->max_hw_sectors
= min_not_zero(t
->max_hw_sectors
, b
->max_hw_sectors
);
554 t
->max_dev_sectors
= min_not_zero(t
->max_dev_sectors
, b
->max_dev_sectors
);
555 t
->max_write_same_sectors
= min(t
->max_write_same_sectors
,
556 b
->max_write_same_sectors
);
557 t
->max_write_zeroes_sectors
= min(t
->max_write_zeroes_sectors
,
558 b
->max_write_zeroes_sectors
);
559 t
->bounce_pfn
= min_not_zero(t
->bounce_pfn
, b
->bounce_pfn
);
561 t
->seg_boundary_mask
= min_not_zero(t
->seg_boundary_mask
,
562 b
->seg_boundary_mask
);
563 t
->virt_boundary_mask
= min_not_zero(t
->virt_boundary_mask
,
564 b
->virt_boundary_mask
);
566 t
->max_segments
= min_not_zero(t
->max_segments
, b
->max_segments
);
567 t
->max_discard_segments
= min_not_zero(t
->max_discard_segments
,
568 b
->max_discard_segments
);
569 t
->max_integrity_segments
= min_not_zero(t
->max_integrity_segments
,
570 b
->max_integrity_segments
);
572 t
->max_segment_size
= min_not_zero(t
->max_segment_size
,
573 b
->max_segment_size
);
575 t
->misaligned
|= b
->misaligned
;
577 alignment
= queue_limit_alignment_offset(b
, start
);
579 /* Bottom device has different alignment. Check that it is
580 * compatible with the current top alignment.
582 if (t
->alignment_offset
!= alignment
) {
584 top
= max(t
->physical_block_size
, t
->io_min
)
585 + t
->alignment_offset
;
586 bottom
= max(b
->physical_block_size
, b
->io_min
) + alignment
;
588 /* Verify that top and bottom intervals line up */
589 if (max(top
, bottom
) % min(top
, bottom
)) {
595 t
->logical_block_size
= max(t
->logical_block_size
,
596 b
->logical_block_size
);
598 t
->physical_block_size
= max(t
->physical_block_size
,
599 b
->physical_block_size
);
601 t
->io_min
= max(t
->io_min
, b
->io_min
);
602 t
->io_opt
= lcm_not_zero(t
->io_opt
, b
->io_opt
);
604 t
->cluster
&= b
->cluster
;
606 /* Physical block size a multiple of the logical block size? */
607 if (t
->physical_block_size
& (t
->logical_block_size
- 1)) {
608 t
->physical_block_size
= t
->logical_block_size
;
613 /* Minimum I/O a multiple of the physical block size? */
614 if (t
->io_min
& (t
->physical_block_size
- 1)) {
615 t
->io_min
= t
->physical_block_size
;
620 /* Optimal I/O a multiple of the physical block size? */
621 if (t
->io_opt
& (t
->physical_block_size
- 1)) {
627 t
->raid_partial_stripes_expensive
=
628 max(t
->raid_partial_stripes_expensive
,
629 b
->raid_partial_stripes_expensive
);
631 /* Find lowest common alignment_offset */
632 t
->alignment_offset
= lcm_not_zero(t
->alignment_offset
, alignment
)
633 % max(t
->physical_block_size
, t
->io_min
);
635 /* Verify that new alignment_offset is on a logical block boundary */
636 if (t
->alignment_offset
& (t
->logical_block_size
- 1)) {
641 /* Discard alignment and granularity */
642 if (b
->discard_granularity
) {
643 alignment
= queue_limit_discard_alignment(b
, start
);
645 if (t
->discard_granularity
!= 0 &&
646 t
->discard_alignment
!= alignment
) {
647 top
= t
->discard_granularity
+ t
->discard_alignment
;
648 bottom
= b
->discard_granularity
+ alignment
;
650 /* Verify that top and bottom intervals line up */
651 if ((max(top
, bottom
) % min(top
, bottom
)) != 0)
652 t
->discard_misaligned
= 1;
655 t
->max_discard_sectors
= min_not_zero(t
->max_discard_sectors
,
656 b
->max_discard_sectors
);
657 t
->max_hw_discard_sectors
= min_not_zero(t
->max_hw_discard_sectors
,
658 b
->max_hw_discard_sectors
);
659 t
->discard_granularity
= max(t
->discard_granularity
,
660 b
->discard_granularity
);
661 t
->discard_alignment
= lcm_not_zero(t
->discard_alignment
, alignment
) %
662 t
->discard_granularity
;
665 if (b
->chunk_sectors
)
666 t
->chunk_sectors
= min_not_zero(t
->chunk_sectors
,
671 EXPORT_SYMBOL(blk_stack_limits
);
674 * bdev_stack_limits - adjust queue limits for stacked drivers
675 * @t: the stacking driver limits (top device)
676 * @bdev: the component block_device (bottom)
677 * @start: first data sector within component device
680 * Merges queue limits for a top device and a block_device. Returns
681 * 0 if alignment didn't change. Returns -1 if adding the bottom
682 * device caused misalignment.
684 int bdev_stack_limits(struct queue_limits
*t
, struct block_device
*bdev
,
687 struct request_queue
*bq
= bdev_get_queue(bdev
);
689 start
+= get_start_sect(bdev
);
691 return blk_stack_limits(t
, &bq
->limits
, start
);
693 EXPORT_SYMBOL(bdev_stack_limits
);
696 * disk_stack_limits - adjust queue limits for stacked drivers
697 * @disk: MD/DM gendisk (top)
698 * @bdev: the underlying block device (bottom)
699 * @offset: offset to beginning of data within component device
702 * Merges the limits for a top level gendisk and a bottom level
705 void disk_stack_limits(struct gendisk
*disk
, struct block_device
*bdev
,
708 struct request_queue
*t
= disk
->queue
;
710 if (bdev_stack_limits(&t
->limits
, bdev
, offset
>> 9) < 0) {
711 char top
[BDEVNAME_SIZE
], bottom
[BDEVNAME_SIZE
];
713 disk_name(disk
, 0, top
);
714 bdevname(bdev
, bottom
);
716 printk(KERN_NOTICE
"%s: Warning: Device %s is misaligned\n",
720 EXPORT_SYMBOL(disk_stack_limits
);
723 * blk_queue_dma_pad - set pad mask
724 * @q: the request queue for the device
729 * Appending pad buffer to a request modifies the last entry of a
730 * scatter list such that it includes the pad buffer.
732 void blk_queue_dma_pad(struct request_queue
*q
, unsigned int mask
)
734 q
->dma_pad_mask
= mask
;
736 EXPORT_SYMBOL(blk_queue_dma_pad
);
739 * blk_queue_update_dma_pad - update pad mask
740 * @q: the request queue for the device
743 * Update dma pad mask.
745 * Appending pad buffer to a request modifies the last entry of a
746 * scatter list such that it includes the pad buffer.
748 void blk_queue_update_dma_pad(struct request_queue
*q
, unsigned int mask
)
750 if (mask
> q
->dma_pad_mask
)
751 q
->dma_pad_mask
= mask
;
753 EXPORT_SYMBOL(blk_queue_update_dma_pad
);
756 * blk_queue_dma_drain - Set up a drain buffer for excess dma.
757 * @q: the request queue for the device
758 * @dma_drain_needed: fn which returns non-zero if drain is necessary
759 * @buf: physically contiguous buffer
760 * @size: size of the buffer in bytes
762 * Some devices have excess DMA problems and can't simply discard (or
763 * zero fill) the unwanted piece of the transfer. They have to have a
764 * real area of memory to transfer it into. The use case for this is
765 * ATAPI devices in DMA mode. If the packet command causes a transfer
766 * bigger than the transfer size some HBAs will lock up if there
767 * aren't DMA elements to contain the excess transfer. What this API
768 * does is adjust the queue so that the buf is always appended
769 * silently to the scatterlist.
771 * Note: This routine adjusts max_hw_segments to make room for appending
772 * the drain buffer. If you call blk_queue_max_segments() after calling
773 * this routine, you must set the limit to one fewer than your device
774 * can support otherwise there won't be room for the drain buffer.
776 int blk_queue_dma_drain(struct request_queue
*q
,
777 dma_drain_needed_fn
*dma_drain_needed
,
778 void *buf
, unsigned int size
)
780 if (queue_max_segments(q
) < 2)
782 /* make room for appending the drain */
783 blk_queue_max_segments(q
, queue_max_segments(q
) - 1);
784 q
->dma_drain_needed
= dma_drain_needed
;
785 q
->dma_drain_buffer
= buf
;
786 q
->dma_drain_size
= size
;
790 EXPORT_SYMBOL_GPL(blk_queue_dma_drain
);
793 * blk_queue_segment_boundary - set boundary rules for segment merging
794 * @q: the request queue for the device
795 * @mask: the memory boundary mask
797 void blk_queue_segment_boundary(struct request_queue
*q
, unsigned long mask
)
799 if (mask
< PAGE_SIZE
- 1) {
800 mask
= PAGE_SIZE
- 1;
801 printk(KERN_INFO
"%s: set to minimum %lx\n",
805 q
->limits
.seg_boundary_mask
= mask
;
807 EXPORT_SYMBOL(blk_queue_segment_boundary
);
810 * blk_queue_virt_boundary - set boundary rules for bio merging
811 * @q: the request queue for the device
812 * @mask: the memory boundary mask
814 void blk_queue_virt_boundary(struct request_queue
*q
, unsigned long mask
)
816 q
->limits
.virt_boundary_mask
= mask
;
818 EXPORT_SYMBOL(blk_queue_virt_boundary
);
821 * blk_queue_dma_alignment - set dma length and memory alignment
822 * @q: the request queue for the device
823 * @mask: alignment mask
826 * set required memory and length alignment for direct dma transactions.
827 * this is used when building direct io requests for the queue.
830 void blk_queue_dma_alignment(struct request_queue
*q
, int mask
)
832 q
->dma_alignment
= mask
;
834 EXPORT_SYMBOL(blk_queue_dma_alignment
);
837 * blk_queue_update_dma_alignment - update dma length and memory alignment
838 * @q: the request queue for the device
839 * @mask: alignment mask
842 * update required memory and length alignment for direct dma transactions.
843 * If the requested alignment is larger than the current alignment, then
844 * the current queue alignment is updated to the new value, otherwise it
845 * is left alone. The design of this is to allow multiple objects
846 * (driver, device, transport etc) to set their respective
847 * alignments without having them interfere.
850 void blk_queue_update_dma_alignment(struct request_queue
*q
, int mask
)
852 BUG_ON(mask
> PAGE_SIZE
);
854 if (mask
> q
->dma_alignment
)
855 q
->dma_alignment
= mask
;
857 EXPORT_SYMBOL(blk_queue_update_dma_alignment
);
859 void blk_queue_flush_queueable(struct request_queue
*q
, bool queueable
)
861 spin_lock_irq(q
->queue_lock
);
863 clear_bit(QUEUE_FLAG_FLUSH_NQ
, &q
->queue_flags
);
865 set_bit(QUEUE_FLAG_FLUSH_NQ
, &q
->queue_flags
);
866 spin_unlock_irq(q
->queue_lock
);
868 EXPORT_SYMBOL_GPL(blk_queue_flush_queueable
);
871 * blk_set_queue_depth - tell the block layer about the device queue depth
872 * @q: the request queue for the device
873 * @depth: queue depth
876 void blk_set_queue_depth(struct request_queue
*q
, unsigned int depth
)
878 q
->queue_depth
= depth
;
879 wbt_set_queue_depth(q
->rq_wb
, depth
);
881 EXPORT_SYMBOL(blk_set_queue_depth
);
884 * blk_queue_write_cache - configure queue's write cache
885 * @q: the request queue for the device
886 * @wc: write back cache on or off
887 * @fua: device supports FUA writes, if true
889 * Tell the block layer about the write cache of @q.
891 void blk_queue_write_cache(struct request_queue
*q
, bool wc
, bool fua
)
893 spin_lock_irq(q
->queue_lock
);
895 queue_flag_set(QUEUE_FLAG_WC
, q
);
897 queue_flag_clear(QUEUE_FLAG_WC
, q
);
899 queue_flag_set(QUEUE_FLAG_FUA
, q
);
901 queue_flag_clear(QUEUE_FLAG_FUA
, q
);
902 spin_unlock_irq(q
->queue_lock
);
904 wbt_set_write_cache(q
->rq_wb
, test_bit(QUEUE_FLAG_WC
, &q
->queue_flags
));
906 EXPORT_SYMBOL_GPL(blk_queue_write_cache
);
908 static int __init
blk_settings_init(void)
910 blk_max_low_pfn
= max_low_pfn
- 1;
911 blk_max_pfn
= max_pfn
- 1;
914 subsys_initcall(blk_settings_init
);