VMCI: Release resource if the work is already queued
[linux-stable.git] / kernel / panic.c
blob32ff6fd302017f5595c1361af7034886bc446f02
1 /*
2 * linux/kernel/panic.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 /*
8 * This function is used through-out the kernel (including mm and fs)
9 * to indicate a major problem.
11 #include <linux/debug_locks.h>
12 #include <linux/sched/debug.h>
13 #include <linux/interrupt.h>
14 #include <linux/kmsg_dump.h>
15 #include <linux/kallsyms.h>
16 #include <linux/notifier.h>
17 #include <linux/vt_kern.h>
18 #include <linux/module.h>
19 #include <linux/random.h>
20 #include <linux/ftrace.h>
21 #include <linux/reboot.h>
22 #include <linux/delay.h>
23 #include <linux/kexec.h>
24 #include <linux/sched.h>
25 #include <linux/sysrq.h>
26 #include <linux/init.h>
27 #include <linux/nmi.h>
28 #include <linux/console.h>
29 #include <linux/bug.h>
30 #include <linux/ratelimit.h>
32 #define PANIC_TIMER_STEP 100
33 #define PANIC_BLINK_SPD 18
35 int panic_on_oops = CONFIG_PANIC_ON_OOPS_VALUE;
36 static unsigned long tainted_mask;
37 static int pause_on_oops;
38 static int pause_on_oops_flag;
39 static DEFINE_SPINLOCK(pause_on_oops_lock);
40 bool crash_kexec_post_notifiers;
41 int panic_on_warn __read_mostly;
43 int panic_timeout = CONFIG_PANIC_TIMEOUT;
44 EXPORT_SYMBOL_GPL(panic_timeout);
46 ATOMIC_NOTIFIER_HEAD(panic_notifier_list);
48 EXPORT_SYMBOL(panic_notifier_list);
50 static long no_blink(int state)
52 return 0;
55 /* Returns how long it waited in ms */
56 long (*panic_blink)(int state);
57 EXPORT_SYMBOL(panic_blink);
60 * Stop ourself in panic -- architecture code may override this
62 void __weak panic_smp_self_stop(void)
64 while (1)
65 cpu_relax();
69 * Stop ourselves in NMI context if another CPU has already panicked. Arch code
70 * may override this to prepare for crash dumping, e.g. save regs info.
72 void __weak nmi_panic_self_stop(struct pt_regs *regs)
74 panic_smp_self_stop();
78 * Stop other CPUs in panic. Architecture dependent code may override this
79 * with more suitable version. For example, if the architecture supports
80 * crash dump, it should save registers of each stopped CPU and disable
81 * per-CPU features such as virtualization extensions.
83 void __weak crash_smp_send_stop(void)
85 static int cpus_stopped;
88 * This function can be called twice in panic path, but obviously
89 * we execute this only once.
91 if (cpus_stopped)
92 return;
95 * Note smp_send_stop is the usual smp shutdown function, which
96 * unfortunately means it may not be hardened to work in a panic
97 * situation.
99 smp_send_stop();
100 cpus_stopped = 1;
103 atomic_t panic_cpu = ATOMIC_INIT(PANIC_CPU_INVALID);
106 * A variant of panic() called from NMI context. We return if we've already
107 * panicked on this CPU. If another CPU already panicked, loop in
108 * nmi_panic_self_stop() which can provide architecture dependent code such
109 * as saving register state for crash dump.
111 void nmi_panic(struct pt_regs *regs, const char *msg)
113 int old_cpu, cpu;
115 cpu = raw_smp_processor_id();
116 old_cpu = atomic_cmpxchg(&panic_cpu, PANIC_CPU_INVALID, cpu);
118 if (old_cpu == PANIC_CPU_INVALID)
119 panic("%s", msg);
120 else if (old_cpu != cpu)
121 nmi_panic_self_stop(regs);
123 EXPORT_SYMBOL(nmi_panic);
126 * panic - halt the system
127 * @fmt: The text string to print
129 * Display a message, then perform cleanups.
131 * This function never returns.
133 void panic(const char *fmt, ...)
135 static char buf[1024];
136 va_list args;
137 long i, i_next = 0;
138 int state = 0;
139 int old_cpu, this_cpu;
140 bool _crash_kexec_post_notifiers = crash_kexec_post_notifiers;
143 * Disable local interrupts. This will prevent panic_smp_self_stop
144 * from deadlocking the first cpu that invokes the panic, since
145 * there is nothing to prevent an interrupt handler (that runs
146 * after setting panic_cpu) from invoking panic() again.
148 local_irq_disable();
151 * It's possible to come here directly from a panic-assertion and
152 * not have preempt disabled. Some functions called from here want
153 * preempt to be disabled. No point enabling it later though...
155 * Only one CPU is allowed to execute the panic code from here. For
156 * multiple parallel invocations of panic, all other CPUs either
157 * stop themself or will wait until they are stopped by the 1st CPU
158 * with smp_send_stop().
160 * `old_cpu == PANIC_CPU_INVALID' means this is the 1st CPU which
161 * comes here, so go ahead.
162 * `old_cpu == this_cpu' means we came from nmi_panic() which sets
163 * panic_cpu to this CPU. In this case, this is also the 1st CPU.
165 this_cpu = raw_smp_processor_id();
166 old_cpu = atomic_cmpxchg(&panic_cpu, PANIC_CPU_INVALID, this_cpu);
168 if (old_cpu != PANIC_CPU_INVALID && old_cpu != this_cpu)
169 panic_smp_self_stop();
171 console_verbose();
172 bust_spinlocks(1);
173 va_start(args, fmt);
174 vsnprintf(buf, sizeof(buf), fmt, args);
175 va_end(args);
176 pr_emerg("Kernel panic - not syncing: %s\n", buf);
177 #ifdef CONFIG_DEBUG_BUGVERBOSE
179 * Avoid nested stack-dumping if a panic occurs during oops processing
181 if (!test_taint(TAINT_DIE) && oops_in_progress <= 1)
182 dump_stack();
183 #endif
186 * If we have crashed and we have a crash kernel loaded let it handle
187 * everything else.
188 * If we want to run this after calling panic_notifiers, pass
189 * the "crash_kexec_post_notifiers" option to the kernel.
191 * Bypass the panic_cpu check and call __crash_kexec directly.
193 if (!_crash_kexec_post_notifiers) {
194 printk_safe_flush_on_panic();
195 __crash_kexec(NULL);
198 * Note smp_send_stop is the usual smp shutdown function, which
199 * unfortunately means it may not be hardened to work in a
200 * panic situation.
202 smp_send_stop();
203 } else {
205 * If we want to do crash dump after notifier calls and
206 * kmsg_dump, we will need architecture dependent extra
207 * works in addition to stopping other CPUs.
209 crash_smp_send_stop();
213 * Run any panic handlers, including those that might need to
214 * add information to the kmsg dump output.
216 atomic_notifier_call_chain(&panic_notifier_list, 0, buf);
218 /* Call flush even twice. It tries harder with a single online CPU */
219 printk_safe_flush_on_panic();
220 kmsg_dump(KMSG_DUMP_PANIC);
223 * If you doubt kdump always works fine in any situation,
224 * "crash_kexec_post_notifiers" offers you a chance to run
225 * panic_notifiers and dumping kmsg before kdump.
226 * Note: since some panic_notifiers can make crashed kernel
227 * more unstable, it can increase risks of the kdump failure too.
229 * Bypass the panic_cpu check and call __crash_kexec directly.
231 if (_crash_kexec_post_notifiers)
232 __crash_kexec(NULL);
234 #ifdef CONFIG_VT
235 unblank_screen();
236 #endif
237 console_unblank();
240 * We may have ended up stopping the CPU holding the lock (in
241 * smp_send_stop()) while still having some valuable data in the console
242 * buffer. Try to acquire the lock then release it regardless of the
243 * result. The release will also print the buffers out. Locks debug
244 * should be disabled to avoid reporting bad unlock balance when
245 * panic() is not being callled from OOPS.
247 debug_locks_off();
248 console_flush_on_panic();
250 if (!panic_blink)
251 panic_blink = no_blink;
253 if (panic_timeout > 0) {
255 * Delay timeout seconds before rebooting the machine.
256 * We can't use the "normal" timers since we just panicked.
258 pr_emerg("Rebooting in %d seconds..\n", panic_timeout);
260 for (i = 0; i < panic_timeout * 1000; i += PANIC_TIMER_STEP) {
261 touch_nmi_watchdog();
262 if (i >= i_next) {
263 i += panic_blink(state ^= 1);
264 i_next = i + 3600 / PANIC_BLINK_SPD;
266 mdelay(PANIC_TIMER_STEP);
269 if (panic_timeout != 0) {
271 * This will not be a clean reboot, with everything
272 * shutting down. But if there is a chance of
273 * rebooting the system it will be rebooted.
275 emergency_restart();
277 #ifdef __sparc__
279 extern int stop_a_enabled;
280 /* Make sure the user can actually press Stop-A (L1-A) */
281 stop_a_enabled = 1;
282 pr_emerg("Press Stop-A (L1-A) from sun keyboard or send break\n"
283 "twice on console to return to the boot prom\n");
285 #endif
286 #if defined(CONFIG_S390)
288 unsigned long caller;
290 caller = (unsigned long)__builtin_return_address(0);
291 disabled_wait(caller);
293 #endif
294 pr_emerg("---[ end Kernel panic - not syncing: %s\n", buf);
295 local_irq_enable();
296 for (i = 0; ; i += PANIC_TIMER_STEP) {
297 touch_softlockup_watchdog();
298 if (i >= i_next) {
299 i += panic_blink(state ^= 1);
300 i_next = i + 3600 / PANIC_BLINK_SPD;
302 mdelay(PANIC_TIMER_STEP);
306 EXPORT_SYMBOL(panic);
309 * TAINT_FORCED_RMMOD could be a per-module flag but the module
310 * is being removed anyway.
312 const struct taint_flag taint_flags[TAINT_FLAGS_COUNT] = {
313 { 'P', 'G', true }, /* TAINT_PROPRIETARY_MODULE */
314 { 'F', ' ', true }, /* TAINT_FORCED_MODULE */
315 { 'S', ' ', false }, /* TAINT_CPU_OUT_OF_SPEC */
316 { 'R', ' ', false }, /* TAINT_FORCED_RMMOD */
317 { 'M', ' ', false }, /* TAINT_MACHINE_CHECK */
318 { 'B', ' ', false }, /* TAINT_BAD_PAGE */
319 { 'U', ' ', false }, /* TAINT_USER */
320 { 'D', ' ', false }, /* TAINT_DIE */
321 { 'A', ' ', false }, /* TAINT_OVERRIDDEN_ACPI_TABLE */
322 { 'W', ' ', false }, /* TAINT_WARN */
323 { 'C', ' ', true }, /* TAINT_CRAP */
324 { 'I', ' ', false }, /* TAINT_FIRMWARE_WORKAROUND */
325 { 'O', ' ', true }, /* TAINT_OOT_MODULE */
326 { 'E', ' ', true }, /* TAINT_UNSIGNED_MODULE */
327 { 'L', ' ', false }, /* TAINT_SOFTLOCKUP */
328 { 'K', ' ', true }, /* TAINT_LIVEPATCH */
332 * print_tainted - return a string to represent the kernel taint state.
334 * 'P' - Proprietary module has been loaded.
335 * 'F' - Module has been forcibly loaded.
336 * 'S' - SMP with CPUs not designed for SMP.
337 * 'R' - User forced a module unload.
338 * 'M' - System experienced a machine check exception.
339 * 'B' - System has hit bad_page.
340 * 'U' - Userspace-defined naughtiness.
341 * 'D' - Kernel has oopsed before
342 * 'A' - ACPI table overridden.
343 * 'W' - Taint on warning.
344 * 'C' - modules from drivers/staging are loaded.
345 * 'I' - Working around severe firmware bug.
346 * 'O' - Out-of-tree module has been loaded.
347 * 'E' - Unsigned module has been loaded.
348 * 'L' - A soft lockup has previously occurred.
349 * 'K' - Kernel has been live patched.
351 * The string is overwritten by the next call to print_tainted().
353 const char *print_tainted(void)
355 static char buf[TAINT_FLAGS_COUNT + sizeof("Tainted: ")];
357 if (tainted_mask) {
358 char *s;
359 int i;
361 s = buf + sprintf(buf, "Tainted: ");
362 for (i = 0; i < TAINT_FLAGS_COUNT; i++) {
363 const struct taint_flag *t = &taint_flags[i];
364 *s++ = test_bit(i, &tainted_mask) ?
365 t->c_true : t->c_false;
367 *s = 0;
368 } else
369 snprintf(buf, sizeof(buf), "Not tainted");
371 return buf;
374 int test_taint(unsigned flag)
376 return test_bit(flag, &tainted_mask);
378 EXPORT_SYMBOL(test_taint);
380 unsigned long get_taint(void)
382 return tainted_mask;
386 * add_taint: add a taint flag if not already set.
387 * @flag: one of the TAINT_* constants.
388 * @lockdep_ok: whether lock debugging is still OK.
390 * If something bad has gone wrong, you'll want @lockdebug_ok = false, but for
391 * some notewortht-but-not-corrupting cases, it can be set to true.
393 void add_taint(unsigned flag, enum lockdep_ok lockdep_ok)
395 if (lockdep_ok == LOCKDEP_NOW_UNRELIABLE && __debug_locks_off())
396 pr_warn("Disabling lock debugging due to kernel taint\n");
398 set_bit(flag, &tainted_mask);
400 EXPORT_SYMBOL(add_taint);
402 static void spin_msec(int msecs)
404 int i;
406 for (i = 0; i < msecs; i++) {
407 touch_nmi_watchdog();
408 mdelay(1);
413 * It just happens that oops_enter() and oops_exit() are identically
414 * implemented...
416 static void do_oops_enter_exit(void)
418 unsigned long flags;
419 static int spin_counter;
421 if (!pause_on_oops)
422 return;
424 spin_lock_irqsave(&pause_on_oops_lock, flags);
425 if (pause_on_oops_flag == 0) {
426 /* This CPU may now print the oops message */
427 pause_on_oops_flag = 1;
428 } else {
429 /* We need to stall this CPU */
430 if (!spin_counter) {
431 /* This CPU gets to do the counting */
432 spin_counter = pause_on_oops;
433 do {
434 spin_unlock(&pause_on_oops_lock);
435 spin_msec(MSEC_PER_SEC);
436 spin_lock(&pause_on_oops_lock);
437 } while (--spin_counter);
438 pause_on_oops_flag = 0;
439 } else {
440 /* This CPU waits for a different one */
441 while (spin_counter) {
442 spin_unlock(&pause_on_oops_lock);
443 spin_msec(1);
444 spin_lock(&pause_on_oops_lock);
448 spin_unlock_irqrestore(&pause_on_oops_lock, flags);
452 * Return true if the calling CPU is allowed to print oops-related info.
453 * This is a bit racy..
455 int oops_may_print(void)
457 return pause_on_oops_flag == 0;
461 * Called when the architecture enters its oops handler, before it prints
462 * anything. If this is the first CPU to oops, and it's oopsing the first
463 * time then let it proceed.
465 * This is all enabled by the pause_on_oops kernel boot option. We do all
466 * this to ensure that oopses don't scroll off the screen. It has the
467 * side-effect of preventing later-oopsing CPUs from mucking up the display,
468 * too.
470 * It turns out that the CPU which is allowed to print ends up pausing for
471 * the right duration, whereas all the other CPUs pause for twice as long:
472 * once in oops_enter(), once in oops_exit().
474 void oops_enter(void)
476 tracing_off();
477 /* can't trust the integrity of the kernel anymore: */
478 debug_locks_off();
479 do_oops_enter_exit();
483 * 64-bit random ID for oopses:
485 static u64 oops_id;
487 static int init_oops_id(void)
489 if (!oops_id)
490 get_random_bytes(&oops_id, sizeof(oops_id));
491 else
492 oops_id++;
494 return 0;
496 late_initcall(init_oops_id);
498 void print_oops_end_marker(void)
500 init_oops_id();
501 pr_warn("---[ end trace %016llx ]---\n", (unsigned long long)oops_id);
505 * Called when the architecture exits its oops handler, after printing
506 * everything.
508 void oops_exit(void)
510 do_oops_enter_exit();
511 print_oops_end_marker();
512 kmsg_dump(KMSG_DUMP_OOPS);
515 struct warn_args {
516 const char *fmt;
517 va_list args;
520 void __warn(const char *file, int line, void *caller, unsigned taint,
521 struct pt_regs *regs, struct warn_args *args)
523 disable_trace_on_warning();
525 pr_warn("------------[ cut here ]------------\n");
527 if (file)
528 pr_warn("WARNING: CPU: %d PID: %d at %s:%d %pS\n",
529 raw_smp_processor_id(), current->pid, file, line,
530 caller);
531 else
532 pr_warn("WARNING: CPU: %d PID: %d at %pS\n",
533 raw_smp_processor_id(), current->pid, caller);
535 if (args)
536 vprintk(args->fmt, args->args);
538 if (panic_on_warn) {
540 * This thread may hit another WARN() in the panic path.
541 * Resetting this prevents additional WARN() from panicking the
542 * system on this thread. Other threads are blocked by the
543 * panic_mutex in panic().
545 panic_on_warn = 0;
546 panic("panic_on_warn set ...\n");
549 print_modules();
551 if (regs)
552 show_regs(regs);
553 else
554 dump_stack();
556 print_oops_end_marker();
558 /* Just a warning, don't kill lockdep. */
559 add_taint(taint, LOCKDEP_STILL_OK);
562 #ifdef WANT_WARN_ON_SLOWPATH
563 void warn_slowpath_fmt(const char *file, int line, const char *fmt, ...)
565 struct warn_args args;
567 args.fmt = fmt;
568 va_start(args.args, fmt);
569 __warn(file, line, __builtin_return_address(0), TAINT_WARN, NULL,
570 &args);
571 va_end(args.args);
573 EXPORT_SYMBOL(warn_slowpath_fmt);
575 void warn_slowpath_fmt_taint(const char *file, int line,
576 unsigned taint, const char *fmt, ...)
578 struct warn_args args;
580 args.fmt = fmt;
581 va_start(args.args, fmt);
582 __warn(file, line, __builtin_return_address(0), taint, NULL, &args);
583 va_end(args.args);
585 EXPORT_SYMBOL(warn_slowpath_fmt_taint);
587 void warn_slowpath_null(const char *file, int line)
589 __warn(file, line, __builtin_return_address(0), TAINT_WARN, NULL, NULL);
591 EXPORT_SYMBOL(warn_slowpath_null);
592 #endif
594 #ifdef CONFIG_CC_STACKPROTECTOR
597 * Called when gcc's -fstack-protector feature is used, and
598 * gcc detects corruption of the on-stack canary value
600 __visible void __stack_chk_fail(void)
602 panic("stack-protector: Kernel stack is corrupted in: %p\n",
603 __builtin_return_address(0));
605 EXPORT_SYMBOL(__stack_chk_fail);
607 #endif
609 #ifdef CONFIG_ARCH_HAS_REFCOUNT
610 void refcount_error_report(struct pt_regs *regs, const char *err)
612 WARN_RATELIMIT(1, "refcount_t %s at %pB in %s[%d], uid/euid: %u/%u\n",
613 err, (void *)instruction_pointer(regs),
614 current->comm, task_pid_nr(current),
615 from_kuid_munged(&init_user_ns, current_uid()),
616 from_kuid_munged(&init_user_ns, current_euid()));
618 #endif
620 core_param(panic, panic_timeout, int, 0644);
621 core_param(pause_on_oops, pause_on_oops, int, 0644);
622 core_param(panic_on_warn, panic_on_warn, int, 0644);
623 core_param(crash_kexec_post_notifiers, crash_kexec_post_notifiers, bool, 0644);
625 static int __init oops_setup(char *s)
627 if (!s)
628 return -EINVAL;
629 if (!strcmp(s, "panic"))
630 panic_on_oops = 1;
631 return 0;
633 early_param("oops", oops_setup);