1 /* memcontrol.c - Memory Controller
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
18 * Charge lifetime sanitation
19 * Lockless page tracking & accounting
20 * Unified hierarchy configuration model
21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23 * This program is free software; you can redistribute it and/or modify
24 * it under the terms of the GNU General Public License as published by
25 * the Free Software Foundation; either version 2 of the License, or
26 * (at your option) any later version.
28 * This program is distributed in the hope that it will be useful,
29 * but WITHOUT ANY WARRANTY; without even the implied warranty of
30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
31 * GNU General Public License for more details.
34 #include <linux/page_counter.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cgroup.h>
38 #include <linux/sched/mm.h>
39 #include <linux/shmem_fs.h>
40 #include <linux/hugetlb.h>
41 #include <linux/pagemap.h>
42 #include <linux/smp.h>
43 #include <linux/page-flags.h>
44 #include <linux/backing-dev.h>
45 #include <linux/bit_spinlock.h>
46 #include <linux/rcupdate.h>
47 #include <linux/limits.h>
48 #include <linux/export.h>
49 #include <linux/mutex.h>
50 #include <linux/rbtree.h>
51 #include <linux/slab.h>
52 #include <linux/swap.h>
53 #include <linux/swapops.h>
54 #include <linux/spinlock.h>
55 #include <linux/eventfd.h>
56 #include <linux/poll.h>
57 #include <linux/sort.h>
59 #include <linux/seq_file.h>
60 #include <linux/vmpressure.h>
61 #include <linux/mm_inline.h>
62 #include <linux/swap_cgroup.h>
63 #include <linux/cpu.h>
64 #include <linux/oom.h>
65 #include <linux/lockdep.h>
66 #include <linux/file.h>
67 #include <linux/tracehook.h>
73 #include <linux/uaccess.h>
75 #include <trace/events/vmscan.h>
77 struct cgroup_subsys memory_cgrp_subsys __read_mostly
;
78 EXPORT_SYMBOL(memory_cgrp_subsys
);
80 struct mem_cgroup
*root_mem_cgroup __read_mostly
;
82 #define MEM_CGROUP_RECLAIM_RETRIES 5
84 /* Socket memory accounting disabled? */
85 static bool cgroup_memory_nosocket
;
87 /* Kernel memory accounting disabled? */
88 static bool cgroup_memory_nokmem
;
90 /* Whether the swap controller is active */
91 #ifdef CONFIG_MEMCG_SWAP
92 int do_swap_account __read_mostly
;
94 #define do_swap_account 0
97 /* Whether legacy memory+swap accounting is active */
98 static bool do_memsw_account(void)
100 return !cgroup_subsys_on_dfl(memory_cgrp_subsys
) && do_swap_account
;
103 static const char *const mem_cgroup_lru_names
[] = {
111 #define THRESHOLDS_EVENTS_TARGET 128
112 #define SOFTLIMIT_EVENTS_TARGET 1024
113 #define NUMAINFO_EVENTS_TARGET 1024
116 * Cgroups above their limits are maintained in a RB-Tree, independent of
117 * their hierarchy representation
120 struct mem_cgroup_tree_per_node
{
121 struct rb_root rb_root
;
122 struct rb_node
*rb_rightmost
;
126 struct mem_cgroup_tree
{
127 struct mem_cgroup_tree_per_node
*rb_tree_per_node
[MAX_NUMNODES
];
130 static struct mem_cgroup_tree soft_limit_tree __read_mostly
;
133 struct mem_cgroup_eventfd_list
{
134 struct list_head list
;
135 struct eventfd_ctx
*eventfd
;
139 * cgroup_event represents events which userspace want to receive.
141 struct mem_cgroup_event
{
143 * memcg which the event belongs to.
145 struct mem_cgroup
*memcg
;
147 * eventfd to signal userspace about the event.
149 struct eventfd_ctx
*eventfd
;
151 * Each of these stored in a list by the cgroup.
153 struct list_head list
;
155 * register_event() callback will be used to add new userspace
156 * waiter for changes related to this event. Use eventfd_signal()
157 * on eventfd to send notification to userspace.
159 int (*register_event
)(struct mem_cgroup
*memcg
,
160 struct eventfd_ctx
*eventfd
, const char *args
);
162 * unregister_event() callback will be called when userspace closes
163 * the eventfd or on cgroup removing. This callback must be set,
164 * if you want provide notification functionality.
166 void (*unregister_event
)(struct mem_cgroup
*memcg
,
167 struct eventfd_ctx
*eventfd
);
169 * All fields below needed to unregister event when
170 * userspace closes eventfd.
173 wait_queue_head_t
*wqh
;
174 wait_queue_entry_t wait
;
175 struct work_struct remove
;
178 static void mem_cgroup_threshold(struct mem_cgroup
*memcg
);
179 static void mem_cgroup_oom_notify(struct mem_cgroup
*memcg
);
181 /* Stuffs for move charges at task migration. */
183 * Types of charges to be moved.
185 #define MOVE_ANON 0x1U
186 #define MOVE_FILE 0x2U
187 #define MOVE_MASK (MOVE_ANON | MOVE_FILE)
189 /* "mc" and its members are protected by cgroup_mutex */
190 static struct move_charge_struct
{
191 spinlock_t lock
; /* for from, to */
192 struct mm_struct
*mm
;
193 struct mem_cgroup
*from
;
194 struct mem_cgroup
*to
;
196 unsigned long precharge
;
197 unsigned long moved_charge
;
198 unsigned long moved_swap
;
199 struct task_struct
*moving_task
; /* a task moving charges */
200 wait_queue_head_t waitq
; /* a waitq for other context */
202 .lock
= __SPIN_LOCK_UNLOCKED(mc
.lock
),
203 .waitq
= __WAIT_QUEUE_HEAD_INITIALIZER(mc
.waitq
),
207 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
208 * limit reclaim to prevent infinite loops, if they ever occur.
210 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
211 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
214 MEM_CGROUP_CHARGE_TYPE_CACHE
= 0,
215 MEM_CGROUP_CHARGE_TYPE_ANON
,
216 MEM_CGROUP_CHARGE_TYPE_SWAPOUT
, /* for accounting swapcache */
217 MEM_CGROUP_CHARGE_TYPE_DROP
, /* a page was unused swap cache */
221 /* for encoding cft->private value on file */
230 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
231 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
232 #define MEMFILE_ATTR(val) ((val) & 0xffff)
233 /* Used for OOM nofiier */
234 #define OOM_CONTROL (0)
236 /* Some nice accessors for the vmpressure. */
237 struct vmpressure
*memcg_to_vmpressure(struct mem_cgroup
*memcg
)
240 memcg
= root_mem_cgroup
;
241 return &memcg
->vmpressure
;
244 struct cgroup_subsys_state
*vmpressure_to_css(struct vmpressure
*vmpr
)
246 return &container_of(vmpr
, struct mem_cgroup
, vmpressure
)->css
;
249 static inline bool mem_cgroup_is_root(struct mem_cgroup
*memcg
)
251 return (memcg
== root_mem_cgroup
);
256 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
257 * The main reason for not using cgroup id for this:
258 * this works better in sparse environments, where we have a lot of memcgs,
259 * but only a few kmem-limited. Or also, if we have, for instance, 200
260 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
261 * 200 entry array for that.
263 * The current size of the caches array is stored in memcg_nr_cache_ids. It
264 * will double each time we have to increase it.
266 static DEFINE_IDA(memcg_cache_ida
);
267 int memcg_nr_cache_ids
;
269 /* Protects memcg_nr_cache_ids */
270 static DECLARE_RWSEM(memcg_cache_ids_sem
);
272 void memcg_get_cache_ids(void)
274 down_read(&memcg_cache_ids_sem
);
277 void memcg_put_cache_ids(void)
279 up_read(&memcg_cache_ids_sem
);
283 * MIN_SIZE is different than 1, because we would like to avoid going through
284 * the alloc/free process all the time. In a small machine, 4 kmem-limited
285 * cgroups is a reasonable guess. In the future, it could be a parameter or
286 * tunable, but that is strictly not necessary.
288 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
289 * this constant directly from cgroup, but it is understandable that this is
290 * better kept as an internal representation in cgroup.c. In any case, the
291 * cgrp_id space is not getting any smaller, and we don't have to necessarily
292 * increase ours as well if it increases.
294 #define MEMCG_CACHES_MIN_SIZE 4
295 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
298 * A lot of the calls to the cache allocation functions are expected to be
299 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
300 * conditional to this static branch, we'll have to allow modules that does
301 * kmem_cache_alloc and the such to see this symbol as well
303 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key
);
304 EXPORT_SYMBOL(memcg_kmem_enabled_key
);
306 struct workqueue_struct
*memcg_kmem_cache_wq
;
308 #endif /* !CONFIG_SLOB */
311 * mem_cgroup_css_from_page - css of the memcg associated with a page
312 * @page: page of interest
314 * If memcg is bound to the default hierarchy, css of the memcg associated
315 * with @page is returned. The returned css remains associated with @page
316 * until it is released.
318 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
321 struct cgroup_subsys_state
*mem_cgroup_css_from_page(struct page
*page
)
323 struct mem_cgroup
*memcg
;
325 memcg
= page
->mem_cgroup
;
327 if (!memcg
|| !cgroup_subsys_on_dfl(memory_cgrp_subsys
))
328 memcg
= root_mem_cgroup
;
334 * page_cgroup_ino - return inode number of the memcg a page is charged to
337 * Look up the closest online ancestor of the memory cgroup @page is charged to
338 * and return its inode number or 0 if @page is not charged to any cgroup. It
339 * is safe to call this function without holding a reference to @page.
341 * Note, this function is inherently racy, because there is nothing to prevent
342 * the cgroup inode from getting torn down and potentially reallocated a moment
343 * after page_cgroup_ino() returns, so it only should be used by callers that
344 * do not care (such as procfs interfaces).
346 ino_t
page_cgroup_ino(struct page
*page
)
348 struct mem_cgroup
*memcg
;
349 unsigned long ino
= 0;
352 memcg
= READ_ONCE(page
->mem_cgroup
);
353 while (memcg
&& !(memcg
->css
.flags
& CSS_ONLINE
))
354 memcg
= parent_mem_cgroup(memcg
);
356 ino
= cgroup_ino(memcg
->css
.cgroup
);
361 static struct mem_cgroup_per_node
*
362 mem_cgroup_page_nodeinfo(struct mem_cgroup
*memcg
, struct page
*page
)
364 int nid
= page_to_nid(page
);
366 return memcg
->nodeinfo
[nid
];
369 static struct mem_cgroup_tree_per_node
*
370 soft_limit_tree_node(int nid
)
372 return soft_limit_tree
.rb_tree_per_node
[nid
];
375 static struct mem_cgroup_tree_per_node
*
376 soft_limit_tree_from_page(struct page
*page
)
378 int nid
= page_to_nid(page
);
380 return soft_limit_tree
.rb_tree_per_node
[nid
];
383 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node
*mz
,
384 struct mem_cgroup_tree_per_node
*mctz
,
385 unsigned long new_usage_in_excess
)
387 struct rb_node
**p
= &mctz
->rb_root
.rb_node
;
388 struct rb_node
*parent
= NULL
;
389 struct mem_cgroup_per_node
*mz_node
;
390 bool rightmost
= true;
395 mz
->usage_in_excess
= new_usage_in_excess
;
396 if (!mz
->usage_in_excess
)
400 mz_node
= rb_entry(parent
, struct mem_cgroup_per_node
,
402 if (mz
->usage_in_excess
< mz_node
->usage_in_excess
) {
408 * We can't avoid mem cgroups that are over their soft
409 * limit by the same amount
411 else if (mz
->usage_in_excess
>= mz_node
->usage_in_excess
)
416 mctz
->rb_rightmost
= &mz
->tree_node
;
418 rb_link_node(&mz
->tree_node
, parent
, p
);
419 rb_insert_color(&mz
->tree_node
, &mctz
->rb_root
);
423 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node
*mz
,
424 struct mem_cgroup_tree_per_node
*mctz
)
429 if (&mz
->tree_node
== mctz
->rb_rightmost
)
430 mctz
->rb_rightmost
= rb_prev(&mz
->tree_node
);
432 rb_erase(&mz
->tree_node
, &mctz
->rb_root
);
436 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node
*mz
,
437 struct mem_cgroup_tree_per_node
*mctz
)
441 spin_lock_irqsave(&mctz
->lock
, flags
);
442 __mem_cgroup_remove_exceeded(mz
, mctz
);
443 spin_unlock_irqrestore(&mctz
->lock
, flags
);
446 static unsigned long soft_limit_excess(struct mem_cgroup
*memcg
)
448 unsigned long nr_pages
= page_counter_read(&memcg
->memory
);
449 unsigned long soft_limit
= READ_ONCE(memcg
->soft_limit
);
450 unsigned long excess
= 0;
452 if (nr_pages
> soft_limit
)
453 excess
= nr_pages
- soft_limit
;
458 static void mem_cgroup_update_tree(struct mem_cgroup
*memcg
, struct page
*page
)
460 unsigned long excess
;
461 struct mem_cgroup_per_node
*mz
;
462 struct mem_cgroup_tree_per_node
*mctz
;
464 mctz
= soft_limit_tree_from_page(page
);
468 * Necessary to update all ancestors when hierarchy is used.
469 * because their event counter is not touched.
471 for (; memcg
; memcg
= parent_mem_cgroup(memcg
)) {
472 mz
= mem_cgroup_page_nodeinfo(memcg
, page
);
473 excess
= soft_limit_excess(memcg
);
475 * We have to update the tree if mz is on RB-tree or
476 * mem is over its softlimit.
478 if (excess
|| mz
->on_tree
) {
481 spin_lock_irqsave(&mctz
->lock
, flags
);
482 /* if on-tree, remove it */
484 __mem_cgroup_remove_exceeded(mz
, mctz
);
486 * Insert again. mz->usage_in_excess will be updated.
487 * If excess is 0, no tree ops.
489 __mem_cgroup_insert_exceeded(mz
, mctz
, excess
);
490 spin_unlock_irqrestore(&mctz
->lock
, flags
);
495 static void mem_cgroup_remove_from_trees(struct mem_cgroup
*memcg
)
497 struct mem_cgroup_tree_per_node
*mctz
;
498 struct mem_cgroup_per_node
*mz
;
502 mz
= mem_cgroup_nodeinfo(memcg
, nid
);
503 mctz
= soft_limit_tree_node(nid
);
505 mem_cgroup_remove_exceeded(mz
, mctz
);
509 static struct mem_cgroup_per_node
*
510 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node
*mctz
)
512 struct mem_cgroup_per_node
*mz
;
516 if (!mctz
->rb_rightmost
)
517 goto done
; /* Nothing to reclaim from */
519 mz
= rb_entry(mctz
->rb_rightmost
,
520 struct mem_cgroup_per_node
, tree_node
);
522 * Remove the node now but someone else can add it back,
523 * we will to add it back at the end of reclaim to its correct
524 * position in the tree.
526 __mem_cgroup_remove_exceeded(mz
, mctz
);
527 if (!soft_limit_excess(mz
->memcg
) ||
528 !css_tryget_online(&mz
->memcg
->css
))
534 static struct mem_cgroup_per_node
*
535 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node
*mctz
)
537 struct mem_cgroup_per_node
*mz
;
539 spin_lock_irq(&mctz
->lock
);
540 mz
= __mem_cgroup_largest_soft_limit_node(mctz
);
541 spin_unlock_irq(&mctz
->lock
);
546 * Return page count for single (non recursive) @memcg.
548 * Implementation Note: reading percpu statistics for memcg.
550 * Both of vmstat[] and percpu_counter has threshold and do periodic
551 * synchronization to implement "quick" read. There are trade-off between
552 * reading cost and precision of value. Then, we may have a chance to implement
553 * a periodic synchronization of counter in memcg's counter.
555 * But this _read() function is used for user interface now. The user accounts
556 * memory usage by memory cgroup and he _always_ requires exact value because
557 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
558 * have to visit all online cpus and make sum. So, for now, unnecessary
559 * synchronization is not implemented. (just implemented for cpu hotplug)
561 * If there are kernel internal actions which can make use of some not-exact
562 * value, and reading all cpu value can be performance bottleneck in some
563 * common workload, threshold and synchronization as vmstat[] should be
566 * The parameter idx can be of type enum memcg_event_item or vm_event_item.
569 static unsigned long memcg_sum_events(struct mem_cgroup
*memcg
,
572 unsigned long val
= 0;
575 for_each_possible_cpu(cpu
)
576 val
+= per_cpu(memcg
->stat
->events
[event
], cpu
);
580 static void mem_cgroup_charge_statistics(struct mem_cgroup
*memcg
,
582 bool compound
, int nr_pages
)
585 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
586 * counted as CACHE even if it's on ANON LRU.
589 __this_cpu_add(memcg
->stat
->count
[MEMCG_RSS
], nr_pages
);
591 __this_cpu_add(memcg
->stat
->count
[MEMCG_CACHE
], nr_pages
);
592 if (PageSwapBacked(page
))
593 __this_cpu_add(memcg
->stat
->count
[NR_SHMEM
], nr_pages
);
597 VM_BUG_ON_PAGE(!PageTransHuge(page
), page
);
598 __this_cpu_add(memcg
->stat
->count
[MEMCG_RSS_HUGE
], nr_pages
);
601 /* pagein of a big page is an event. So, ignore page size */
603 __this_cpu_inc(memcg
->stat
->events
[PGPGIN
]);
605 __this_cpu_inc(memcg
->stat
->events
[PGPGOUT
]);
606 nr_pages
= -nr_pages
; /* for event */
609 __this_cpu_add(memcg
->stat
->nr_page_events
, nr_pages
);
612 unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup
*memcg
,
613 int nid
, unsigned int lru_mask
)
615 struct lruvec
*lruvec
= mem_cgroup_lruvec(NODE_DATA(nid
), memcg
);
616 unsigned long nr
= 0;
619 VM_BUG_ON((unsigned)nid
>= nr_node_ids
);
622 if (!(BIT(lru
) & lru_mask
))
624 nr
+= mem_cgroup_get_lru_size(lruvec
, lru
);
629 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup
*memcg
,
630 unsigned int lru_mask
)
632 unsigned long nr
= 0;
635 for_each_node_state(nid
, N_MEMORY
)
636 nr
+= mem_cgroup_node_nr_lru_pages(memcg
, nid
, lru_mask
);
640 static bool mem_cgroup_event_ratelimit(struct mem_cgroup
*memcg
,
641 enum mem_cgroup_events_target target
)
643 unsigned long val
, next
;
645 val
= __this_cpu_read(memcg
->stat
->nr_page_events
);
646 next
= __this_cpu_read(memcg
->stat
->targets
[target
]);
647 /* from time_after() in jiffies.h */
648 if ((long)(next
- val
) < 0) {
650 case MEM_CGROUP_TARGET_THRESH
:
651 next
= val
+ THRESHOLDS_EVENTS_TARGET
;
653 case MEM_CGROUP_TARGET_SOFTLIMIT
:
654 next
= val
+ SOFTLIMIT_EVENTS_TARGET
;
656 case MEM_CGROUP_TARGET_NUMAINFO
:
657 next
= val
+ NUMAINFO_EVENTS_TARGET
;
662 __this_cpu_write(memcg
->stat
->targets
[target
], next
);
669 * Check events in order.
672 static void memcg_check_events(struct mem_cgroup
*memcg
, struct page
*page
)
674 /* threshold event is triggered in finer grain than soft limit */
675 if (unlikely(mem_cgroup_event_ratelimit(memcg
,
676 MEM_CGROUP_TARGET_THRESH
))) {
678 bool do_numainfo __maybe_unused
;
680 do_softlimit
= mem_cgroup_event_ratelimit(memcg
,
681 MEM_CGROUP_TARGET_SOFTLIMIT
);
683 do_numainfo
= mem_cgroup_event_ratelimit(memcg
,
684 MEM_CGROUP_TARGET_NUMAINFO
);
686 mem_cgroup_threshold(memcg
);
687 if (unlikely(do_softlimit
))
688 mem_cgroup_update_tree(memcg
, page
);
690 if (unlikely(do_numainfo
))
691 atomic_inc(&memcg
->numainfo_events
);
696 struct mem_cgroup
*mem_cgroup_from_task(struct task_struct
*p
)
699 * mm_update_next_owner() may clear mm->owner to NULL
700 * if it races with swapoff, page migration, etc.
701 * So this can be called with p == NULL.
706 return mem_cgroup_from_css(task_css(p
, memory_cgrp_id
));
708 EXPORT_SYMBOL(mem_cgroup_from_task
);
710 static struct mem_cgroup
*get_mem_cgroup_from_mm(struct mm_struct
*mm
)
712 struct mem_cgroup
*memcg
= NULL
;
717 * Page cache insertions can happen withou an
718 * actual mm context, e.g. during disk probing
719 * on boot, loopback IO, acct() writes etc.
722 memcg
= root_mem_cgroup
;
724 memcg
= mem_cgroup_from_task(rcu_dereference(mm
->owner
));
725 if (unlikely(!memcg
))
726 memcg
= root_mem_cgroup
;
728 } while (!css_tryget_online(&memcg
->css
));
734 * mem_cgroup_iter - iterate over memory cgroup hierarchy
735 * @root: hierarchy root
736 * @prev: previously returned memcg, NULL on first invocation
737 * @reclaim: cookie for shared reclaim walks, NULL for full walks
739 * Returns references to children of the hierarchy below @root, or
740 * @root itself, or %NULL after a full round-trip.
742 * Caller must pass the return value in @prev on subsequent
743 * invocations for reference counting, or use mem_cgroup_iter_break()
744 * to cancel a hierarchy walk before the round-trip is complete.
746 * Reclaimers can specify a zone and a priority level in @reclaim to
747 * divide up the memcgs in the hierarchy among all concurrent
748 * reclaimers operating on the same zone and priority.
750 struct mem_cgroup
*mem_cgroup_iter(struct mem_cgroup
*root
,
751 struct mem_cgroup
*prev
,
752 struct mem_cgroup_reclaim_cookie
*reclaim
)
754 struct mem_cgroup_reclaim_iter
*uninitialized_var(iter
);
755 struct cgroup_subsys_state
*css
= NULL
;
756 struct mem_cgroup
*memcg
= NULL
;
757 struct mem_cgroup
*pos
= NULL
;
759 if (mem_cgroup_disabled())
763 root
= root_mem_cgroup
;
765 if (prev
&& !reclaim
)
768 if (!root
->use_hierarchy
&& root
!= root_mem_cgroup
) {
777 struct mem_cgroup_per_node
*mz
;
779 mz
= mem_cgroup_nodeinfo(root
, reclaim
->pgdat
->node_id
);
780 iter
= &mz
->iter
[reclaim
->priority
];
782 if (prev
&& reclaim
->generation
!= iter
->generation
)
786 pos
= READ_ONCE(iter
->position
);
787 if (!pos
|| css_tryget(&pos
->css
))
790 * css reference reached zero, so iter->position will
791 * be cleared by ->css_released. However, we should not
792 * rely on this happening soon, because ->css_released
793 * is called from a work queue, and by busy-waiting we
794 * might block it. So we clear iter->position right
797 (void)cmpxchg(&iter
->position
, pos
, NULL
);
805 css
= css_next_descendant_pre(css
, &root
->css
);
808 * Reclaimers share the hierarchy walk, and a
809 * new one might jump in right at the end of
810 * the hierarchy - make sure they see at least
811 * one group and restart from the beginning.
819 * Verify the css and acquire a reference. The root
820 * is provided by the caller, so we know it's alive
821 * and kicking, and don't take an extra reference.
823 memcg
= mem_cgroup_from_css(css
);
825 if (css
== &root
->css
)
836 * The position could have already been updated by a competing
837 * thread, so check that the value hasn't changed since we read
838 * it to avoid reclaiming from the same cgroup twice.
840 (void)cmpxchg(&iter
->position
, pos
, memcg
);
848 reclaim
->generation
= iter
->generation
;
854 if (prev
&& prev
!= root
)
861 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
862 * @root: hierarchy root
863 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
865 void mem_cgroup_iter_break(struct mem_cgroup
*root
,
866 struct mem_cgroup
*prev
)
869 root
= root_mem_cgroup
;
870 if (prev
&& prev
!= root
)
874 static void __invalidate_reclaim_iterators(struct mem_cgroup
*from
,
875 struct mem_cgroup
*dead_memcg
)
877 struct mem_cgroup_reclaim_iter
*iter
;
878 struct mem_cgroup_per_node
*mz
;
883 mz
= mem_cgroup_nodeinfo(from
, nid
);
884 for (i
= 0; i
<= DEF_PRIORITY
; i
++) {
886 cmpxchg(&iter
->position
,
892 static void invalidate_reclaim_iterators(struct mem_cgroup
*dead_memcg
)
894 struct mem_cgroup
*memcg
= dead_memcg
;
895 struct mem_cgroup
*last
;
898 __invalidate_reclaim_iterators(memcg
, dead_memcg
);
900 } while ((memcg
= parent_mem_cgroup(memcg
)));
903 * When cgruop1 non-hierarchy mode is used,
904 * parent_mem_cgroup() does not walk all the way up to the
905 * cgroup root (root_mem_cgroup). So we have to handle
906 * dead_memcg from cgroup root separately.
908 if (last
!= root_mem_cgroup
)
909 __invalidate_reclaim_iterators(root_mem_cgroup
,
914 * Iteration constructs for visiting all cgroups (under a tree). If
915 * loops are exited prematurely (break), mem_cgroup_iter_break() must
916 * be used for reference counting.
918 #define for_each_mem_cgroup_tree(iter, root) \
919 for (iter = mem_cgroup_iter(root, NULL, NULL); \
921 iter = mem_cgroup_iter(root, iter, NULL))
923 #define for_each_mem_cgroup(iter) \
924 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
926 iter = mem_cgroup_iter(NULL, iter, NULL))
929 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
930 * @memcg: hierarchy root
931 * @fn: function to call for each task
932 * @arg: argument passed to @fn
934 * This function iterates over tasks attached to @memcg or to any of its
935 * descendants and calls @fn for each task. If @fn returns a non-zero
936 * value, the function breaks the iteration loop and returns the value.
937 * Otherwise, it will iterate over all tasks and return 0.
939 * This function must not be called for the root memory cgroup.
941 int mem_cgroup_scan_tasks(struct mem_cgroup
*memcg
,
942 int (*fn
)(struct task_struct
*, void *), void *arg
)
944 struct mem_cgroup
*iter
;
947 BUG_ON(memcg
== root_mem_cgroup
);
949 for_each_mem_cgroup_tree(iter
, memcg
) {
950 struct css_task_iter it
;
951 struct task_struct
*task
;
953 css_task_iter_start(&iter
->css
, 0, &it
);
954 while (!ret
&& (task
= css_task_iter_next(&it
)))
956 css_task_iter_end(&it
);
958 mem_cgroup_iter_break(memcg
, iter
);
966 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
968 * @zone: zone of the page
970 * This function is only safe when following the LRU page isolation
971 * and putback protocol: the LRU lock must be held, and the page must
972 * either be PageLRU() or the caller must have isolated/allocated it.
974 struct lruvec
*mem_cgroup_page_lruvec(struct page
*page
, struct pglist_data
*pgdat
)
976 struct mem_cgroup_per_node
*mz
;
977 struct mem_cgroup
*memcg
;
978 struct lruvec
*lruvec
;
980 if (mem_cgroup_disabled()) {
981 lruvec
= &pgdat
->lruvec
;
985 memcg
= page
->mem_cgroup
;
987 * Swapcache readahead pages are added to the LRU - and
988 * possibly migrated - before they are charged.
991 memcg
= root_mem_cgroup
;
993 mz
= mem_cgroup_page_nodeinfo(memcg
, page
);
994 lruvec
= &mz
->lruvec
;
997 * Since a node can be onlined after the mem_cgroup was created,
998 * we have to be prepared to initialize lruvec->zone here;
999 * and if offlined then reonlined, we need to reinitialize it.
1001 if (unlikely(lruvec
->pgdat
!= pgdat
))
1002 lruvec
->pgdat
= pgdat
;
1007 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1008 * @lruvec: mem_cgroup per zone lru vector
1009 * @lru: index of lru list the page is sitting on
1010 * @zid: zone id of the accounted pages
1011 * @nr_pages: positive when adding or negative when removing
1013 * This function must be called under lru_lock, just before a page is added
1014 * to or just after a page is removed from an lru list (that ordering being
1015 * so as to allow it to check that lru_size 0 is consistent with list_empty).
1017 void mem_cgroup_update_lru_size(struct lruvec
*lruvec
, enum lru_list lru
,
1018 int zid
, int nr_pages
)
1020 struct mem_cgroup_per_node
*mz
;
1021 unsigned long *lru_size
;
1024 if (mem_cgroup_disabled())
1027 mz
= container_of(lruvec
, struct mem_cgroup_per_node
, lruvec
);
1028 lru_size
= &mz
->lru_zone_size
[zid
][lru
];
1031 *lru_size
+= nr_pages
;
1034 if (WARN_ONCE(size
< 0,
1035 "%s(%p, %d, %d): lru_size %ld\n",
1036 __func__
, lruvec
, lru
, nr_pages
, size
)) {
1042 *lru_size
+= nr_pages
;
1045 bool task_in_mem_cgroup(struct task_struct
*task
, struct mem_cgroup
*memcg
)
1047 struct mem_cgroup
*task_memcg
;
1048 struct task_struct
*p
;
1051 p
= find_lock_task_mm(task
);
1053 task_memcg
= get_mem_cgroup_from_mm(p
->mm
);
1057 * All threads may have already detached their mm's, but the oom
1058 * killer still needs to detect if they have already been oom
1059 * killed to prevent needlessly killing additional tasks.
1062 task_memcg
= mem_cgroup_from_task(task
);
1063 css_get(&task_memcg
->css
);
1066 ret
= mem_cgroup_is_descendant(task_memcg
, memcg
);
1067 css_put(&task_memcg
->css
);
1072 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1073 * @memcg: the memory cgroup
1075 * Returns the maximum amount of memory @mem can be charged with, in
1078 static unsigned long mem_cgroup_margin(struct mem_cgroup
*memcg
)
1080 unsigned long margin
= 0;
1081 unsigned long count
;
1082 unsigned long limit
;
1084 count
= page_counter_read(&memcg
->memory
);
1085 limit
= READ_ONCE(memcg
->memory
.limit
);
1087 margin
= limit
- count
;
1089 if (do_memsw_account()) {
1090 count
= page_counter_read(&memcg
->memsw
);
1091 limit
= READ_ONCE(memcg
->memsw
.limit
);
1093 margin
= min(margin
, limit
- count
);
1102 * A routine for checking "mem" is under move_account() or not.
1104 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1105 * moving cgroups. This is for waiting at high-memory pressure
1108 static bool mem_cgroup_under_move(struct mem_cgroup
*memcg
)
1110 struct mem_cgroup
*from
;
1111 struct mem_cgroup
*to
;
1114 * Unlike task_move routines, we access mc.to, mc.from not under
1115 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1117 spin_lock(&mc
.lock
);
1123 ret
= mem_cgroup_is_descendant(from
, memcg
) ||
1124 mem_cgroup_is_descendant(to
, memcg
);
1126 spin_unlock(&mc
.lock
);
1130 static bool mem_cgroup_wait_acct_move(struct mem_cgroup
*memcg
)
1132 if (mc
.moving_task
&& current
!= mc
.moving_task
) {
1133 if (mem_cgroup_under_move(memcg
)) {
1135 prepare_to_wait(&mc
.waitq
, &wait
, TASK_INTERRUPTIBLE
);
1136 /* moving charge context might have finished. */
1139 finish_wait(&mc
.waitq
, &wait
);
1146 unsigned int memcg1_stats
[] = {
1157 static const char *const memcg1_stat_names
[] = {
1168 #define K(x) ((x) << (PAGE_SHIFT-10))
1170 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1171 * @memcg: The memory cgroup that went over limit
1172 * @p: Task that is going to be killed
1174 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1177 void mem_cgroup_print_oom_info(struct mem_cgroup
*memcg
, struct task_struct
*p
)
1179 struct mem_cgroup
*iter
;
1185 pr_info("Task in ");
1186 pr_cont_cgroup_path(task_cgroup(p
, memory_cgrp_id
));
1187 pr_cont(" killed as a result of limit of ");
1189 pr_info("Memory limit reached of cgroup ");
1192 pr_cont_cgroup_path(memcg
->css
.cgroup
);
1197 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1198 K((u64
)page_counter_read(&memcg
->memory
)),
1199 K((u64
)memcg
->memory
.limit
), memcg
->memory
.failcnt
);
1200 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1201 K((u64
)page_counter_read(&memcg
->memsw
)),
1202 K((u64
)memcg
->memsw
.limit
), memcg
->memsw
.failcnt
);
1203 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1204 K((u64
)page_counter_read(&memcg
->kmem
)),
1205 K((u64
)memcg
->kmem
.limit
), memcg
->kmem
.failcnt
);
1207 for_each_mem_cgroup_tree(iter
, memcg
) {
1208 pr_info("Memory cgroup stats for ");
1209 pr_cont_cgroup_path(iter
->css
.cgroup
);
1212 for (i
= 0; i
< ARRAY_SIZE(memcg1_stats
); i
++) {
1213 if (memcg1_stats
[i
] == MEMCG_SWAP
&& !do_swap_account
)
1215 pr_cont(" %s:%luKB", memcg1_stat_names
[i
],
1216 K(memcg_page_state(iter
, memcg1_stats
[i
])));
1219 for (i
= 0; i
< NR_LRU_LISTS
; i
++)
1220 pr_cont(" %s:%luKB", mem_cgroup_lru_names
[i
],
1221 K(mem_cgroup_nr_lru_pages(iter
, BIT(i
))));
1228 * This function returns the number of memcg under hierarchy tree. Returns
1229 * 1(self count) if no children.
1231 static int mem_cgroup_count_children(struct mem_cgroup
*memcg
)
1234 struct mem_cgroup
*iter
;
1236 for_each_mem_cgroup_tree(iter
, memcg
)
1242 * Return the memory (and swap, if configured) limit for a memcg.
1244 unsigned long mem_cgroup_get_limit(struct mem_cgroup
*memcg
)
1246 unsigned long limit
;
1248 limit
= memcg
->memory
.limit
;
1249 if (mem_cgroup_swappiness(memcg
)) {
1250 unsigned long memsw_limit
;
1251 unsigned long swap_limit
;
1253 memsw_limit
= memcg
->memsw
.limit
;
1254 swap_limit
= memcg
->swap
.limit
;
1255 swap_limit
= min(swap_limit
, (unsigned long)total_swap_pages
);
1256 limit
= min(limit
+ swap_limit
, memsw_limit
);
1261 static bool mem_cgroup_out_of_memory(struct mem_cgroup
*memcg
, gfp_t gfp_mask
,
1264 struct oom_control oc
= {
1268 .gfp_mask
= gfp_mask
,
1273 mutex_lock(&oom_lock
);
1274 ret
= out_of_memory(&oc
);
1275 mutex_unlock(&oom_lock
);
1279 #if MAX_NUMNODES > 1
1282 * test_mem_cgroup_node_reclaimable
1283 * @memcg: the target memcg
1284 * @nid: the node ID to be checked.
1285 * @noswap : specify true here if the user wants flle only information.
1287 * This function returns whether the specified memcg contains any
1288 * reclaimable pages on a node. Returns true if there are any reclaimable
1289 * pages in the node.
1291 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup
*memcg
,
1292 int nid
, bool noswap
)
1294 if (mem_cgroup_node_nr_lru_pages(memcg
, nid
, LRU_ALL_FILE
))
1296 if (noswap
|| !total_swap_pages
)
1298 if (mem_cgroup_node_nr_lru_pages(memcg
, nid
, LRU_ALL_ANON
))
1305 * Always updating the nodemask is not very good - even if we have an empty
1306 * list or the wrong list here, we can start from some node and traverse all
1307 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1310 static void mem_cgroup_may_update_nodemask(struct mem_cgroup
*memcg
)
1314 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1315 * pagein/pageout changes since the last update.
1317 if (!atomic_read(&memcg
->numainfo_events
))
1319 if (atomic_inc_return(&memcg
->numainfo_updating
) > 1)
1322 /* make a nodemask where this memcg uses memory from */
1323 memcg
->scan_nodes
= node_states
[N_MEMORY
];
1325 for_each_node_mask(nid
, node_states
[N_MEMORY
]) {
1327 if (!test_mem_cgroup_node_reclaimable(memcg
, nid
, false))
1328 node_clear(nid
, memcg
->scan_nodes
);
1331 atomic_set(&memcg
->numainfo_events
, 0);
1332 atomic_set(&memcg
->numainfo_updating
, 0);
1336 * Selecting a node where we start reclaim from. Because what we need is just
1337 * reducing usage counter, start from anywhere is O,K. Considering
1338 * memory reclaim from current node, there are pros. and cons.
1340 * Freeing memory from current node means freeing memory from a node which
1341 * we'll use or we've used. So, it may make LRU bad. And if several threads
1342 * hit limits, it will see a contention on a node. But freeing from remote
1343 * node means more costs for memory reclaim because of memory latency.
1345 * Now, we use round-robin. Better algorithm is welcomed.
1347 int mem_cgroup_select_victim_node(struct mem_cgroup
*memcg
)
1351 mem_cgroup_may_update_nodemask(memcg
);
1352 node
= memcg
->last_scanned_node
;
1354 node
= next_node_in(node
, memcg
->scan_nodes
);
1356 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
1357 * last time it really checked all the LRUs due to rate limiting.
1358 * Fallback to the current node in that case for simplicity.
1360 if (unlikely(node
== MAX_NUMNODES
))
1361 node
= numa_node_id();
1363 memcg
->last_scanned_node
= node
;
1367 int mem_cgroup_select_victim_node(struct mem_cgroup
*memcg
)
1373 static int mem_cgroup_soft_reclaim(struct mem_cgroup
*root_memcg
,
1376 unsigned long *total_scanned
)
1378 struct mem_cgroup
*victim
= NULL
;
1381 unsigned long excess
;
1382 unsigned long nr_scanned
;
1383 struct mem_cgroup_reclaim_cookie reclaim
= {
1388 excess
= soft_limit_excess(root_memcg
);
1391 victim
= mem_cgroup_iter(root_memcg
, victim
, &reclaim
);
1396 * If we have not been able to reclaim
1397 * anything, it might because there are
1398 * no reclaimable pages under this hierarchy
1403 * We want to do more targeted reclaim.
1404 * excess >> 2 is not to excessive so as to
1405 * reclaim too much, nor too less that we keep
1406 * coming back to reclaim from this cgroup
1408 if (total
>= (excess
>> 2) ||
1409 (loop
> MEM_CGROUP_MAX_RECLAIM_LOOPS
))
1414 total
+= mem_cgroup_shrink_node(victim
, gfp_mask
, false,
1415 pgdat
, &nr_scanned
);
1416 *total_scanned
+= nr_scanned
;
1417 if (!soft_limit_excess(root_memcg
))
1420 mem_cgroup_iter_break(root_memcg
, victim
);
1424 #ifdef CONFIG_LOCKDEP
1425 static struct lockdep_map memcg_oom_lock_dep_map
= {
1426 .name
= "memcg_oom_lock",
1430 static DEFINE_SPINLOCK(memcg_oom_lock
);
1433 * Check OOM-Killer is already running under our hierarchy.
1434 * If someone is running, return false.
1436 static bool mem_cgroup_oom_trylock(struct mem_cgroup
*memcg
)
1438 struct mem_cgroup
*iter
, *failed
= NULL
;
1440 spin_lock(&memcg_oom_lock
);
1442 for_each_mem_cgroup_tree(iter
, memcg
) {
1443 if (iter
->oom_lock
) {
1445 * this subtree of our hierarchy is already locked
1446 * so we cannot give a lock.
1449 mem_cgroup_iter_break(memcg
, iter
);
1452 iter
->oom_lock
= true;
1457 * OK, we failed to lock the whole subtree so we have
1458 * to clean up what we set up to the failing subtree
1460 for_each_mem_cgroup_tree(iter
, memcg
) {
1461 if (iter
== failed
) {
1462 mem_cgroup_iter_break(memcg
, iter
);
1465 iter
->oom_lock
= false;
1468 mutex_acquire(&memcg_oom_lock_dep_map
, 0, 1, _RET_IP_
);
1470 spin_unlock(&memcg_oom_lock
);
1475 static void mem_cgroup_oom_unlock(struct mem_cgroup
*memcg
)
1477 struct mem_cgroup
*iter
;
1479 spin_lock(&memcg_oom_lock
);
1480 mutex_release(&memcg_oom_lock_dep_map
, 1, _RET_IP_
);
1481 for_each_mem_cgroup_tree(iter
, memcg
)
1482 iter
->oom_lock
= false;
1483 spin_unlock(&memcg_oom_lock
);
1486 static void mem_cgroup_mark_under_oom(struct mem_cgroup
*memcg
)
1488 struct mem_cgroup
*iter
;
1490 spin_lock(&memcg_oom_lock
);
1491 for_each_mem_cgroup_tree(iter
, memcg
)
1493 spin_unlock(&memcg_oom_lock
);
1496 static void mem_cgroup_unmark_under_oom(struct mem_cgroup
*memcg
)
1498 struct mem_cgroup
*iter
;
1501 * When a new child is created while the hierarchy is under oom,
1502 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1504 spin_lock(&memcg_oom_lock
);
1505 for_each_mem_cgroup_tree(iter
, memcg
)
1506 if (iter
->under_oom
> 0)
1508 spin_unlock(&memcg_oom_lock
);
1511 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq
);
1513 struct oom_wait_info
{
1514 struct mem_cgroup
*memcg
;
1515 wait_queue_entry_t wait
;
1518 static int memcg_oom_wake_function(wait_queue_entry_t
*wait
,
1519 unsigned mode
, int sync
, void *arg
)
1521 struct mem_cgroup
*wake_memcg
= (struct mem_cgroup
*)arg
;
1522 struct mem_cgroup
*oom_wait_memcg
;
1523 struct oom_wait_info
*oom_wait_info
;
1525 oom_wait_info
= container_of(wait
, struct oom_wait_info
, wait
);
1526 oom_wait_memcg
= oom_wait_info
->memcg
;
1528 if (!mem_cgroup_is_descendant(wake_memcg
, oom_wait_memcg
) &&
1529 !mem_cgroup_is_descendant(oom_wait_memcg
, wake_memcg
))
1531 return autoremove_wake_function(wait
, mode
, sync
, arg
);
1534 static void memcg_oom_recover(struct mem_cgroup
*memcg
)
1537 * For the following lockless ->under_oom test, the only required
1538 * guarantee is that it must see the state asserted by an OOM when
1539 * this function is called as a result of userland actions
1540 * triggered by the notification of the OOM. This is trivially
1541 * achieved by invoking mem_cgroup_mark_under_oom() before
1542 * triggering notification.
1544 if (memcg
&& memcg
->under_oom
)
1545 __wake_up(&memcg_oom_waitq
, TASK_NORMAL
, 0, memcg
);
1548 static void mem_cgroup_oom(struct mem_cgroup
*memcg
, gfp_t mask
, int order
)
1550 if (!current
->memcg_may_oom
)
1553 * We are in the middle of the charge context here, so we
1554 * don't want to block when potentially sitting on a callstack
1555 * that holds all kinds of filesystem and mm locks.
1557 * Also, the caller may handle a failed allocation gracefully
1558 * (like optional page cache readahead) and so an OOM killer
1559 * invocation might not even be necessary.
1561 * That's why we don't do anything here except remember the
1562 * OOM context and then deal with it at the end of the page
1563 * fault when the stack is unwound, the locks are released,
1564 * and when we know whether the fault was overall successful.
1566 css_get(&memcg
->css
);
1567 current
->memcg_in_oom
= memcg
;
1568 current
->memcg_oom_gfp_mask
= mask
;
1569 current
->memcg_oom_order
= order
;
1573 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1574 * @handle: actually kill/wait or just clean up the OOM state
1576 * This has to be called at the end of a page fault if the memcg OOM
1577 * handler was enabled.
1579 * Memcg supports userspace OOM handling where failed allocations must
1580 * sleep on a waitqueue until the userspace task resolves the
1581 * situation. Sleeping directly in the charge context with all kinds
1582 * of locks held is not a good idea, instead we remember an OOM state
1583 * in the task and mem_cgroup_oom_synchronize() has to be called at
1584 * the end of the page fault to complete the OOM handling.
1586 * Returns %true if an ongoing memcg OOM situation was detected and
1587 * completed, %false otherwise.
1589 bool mem_cgroup_oom_synchronize(bool handle
)
1591 struct mem_cgroup
*memcg
= current
->memcg_in_oom
;
1592 struct oom_wait_info owait
;
1595 /* OOM is global, do not handle */
1602 owait
.memcg
= memcg
;
1603 owait
.wait
.flags
= 0;
1604 owait
.wait
.func
= memcg_oom_wake_function
;
1605 owait
.wait
.private = current
;
1606 INIT_LIST_HEAD(&owait
.wait
.entry
);
1608 prepare_to_wait(&memcg_oom_waitq
, &owait
.wait
, TASK_KILLABLE
);
1609 mem_cgroup_mark_under_oom(memcg
);
1611 locked
= mem_cgroup_oom_trylock(memcg
);
1614 mem_cgroup_oom_notify(memcg
);
1616 if (locked
&& !memcg
->oom_kill_disable
) {
1617 mem_cgroup_unmark_under_oom(memcg
);
1618 finish_wait(&memcg_oom_waitq
, &owait
.wait
);
1619 mem_cgroup_out_of_memory(memcg
, current
->memcg_oom_gfp_mask
,
1620 current
->memcg_oom_order
);
1623 mem_cgroup_unmark_under_oom(memcg
);
1624 finish_wait(&memcg_oom_waitq
, &owait
.wait
);
1628 mem_cgroup_oom_unlock(memcg
);
1630 * There is no guarantee that an OOM-lock contender
1631 * sees the wakeups triggered by the OOM kill
1632 * uncharges. Wake any sleepers explicitely.
1634 memcg_oom_recover(memcg
);
1637 current
->memcg_in_oom
= NULL
;
1638 css_put(&memcg
->css
);
1643 * lock_page_memcg - lock a page->mem_cgroup binding
1646 * This function protects unlocked LRU pages from being moved to
1649 * It ensures lifetime of the returned memcg. Caller is responsible
1650 * for the lifetime of the page; __unlock_page_memcg() is available
1651 * when @page might get freed inside the locked section.
1653 struct mem_cgroup
*lock_page_memcg(struct page
*page
)
1655 struct mem_cgroup
*memcg
;
1656 unsigned long flags
;
1659 * The RCU lock is held throughout the transaction. The fast
1660 * path can get away without acquiring the memcg->move_lock
1661 * because page moving starts with an RCU grace period.
1663 * The RCU lock also protects the memcg from being freed when
1664 * the page state that is going to change is the only thing
1665 * preventing the page itself from being freed. E.g. writeback
1666 * doesn't hold a page reference and relies on PG_writeback to
1667 * keep off truncation, migration and so forth.
1671 if (mem_cgroup_disabled())
1674 memcg
= page
->mem_cgroup
;
1675 if (unlikely(!memcg
))
1678 if (atomic_read(&memcg
->moving_account
) <= 0)
1681 spin_lock_irqsave(&memcg
->move_lock
, flags
);
1682 if (memcg
!= page
->mem_cgroup
) {
1683 spin_unlock_irqrestore(&memcg
->move_lock
, flags
);
1688 * When charge migration first begins, we can have locked and
1689 * unlocked page stat updates happening concurrently. Track
1690 * the task who has the lock for unlock_page_memcg().
1692 memcg
->move_lock_task
= current
;
1693 memcg
->move_lock_flags
= flags
;
1697 EXPORT_SYMBOL(lock_page_memcg
);
1700 * __unlock_page_memcg - unlock and unpin a memcg
1703 * Unlock and unpin a memcg returned by lock_page_memcg().
1705 void __unlock_page_memcg(struct mem_cgroup
*memcg
)
1707 if (memcg
&& memcg
->move_lock_task
== current
) {
1708 unsigned long flags
= memcg
->move_lock_flags
;
1710 memcg
->move_lock_task
= NULL
;
1711 memcg
->move_lock_flags
= 0;
1713 spin_unlock_irqrestore(&memcg
->move_lock
, flags
);
1720 * unlock_page_memcg - unlock a page->mem_cgroup binding
1723 void unlock_page_memcg(struct page
*page
)
1725 __unlock_page_memcg(page
->mem_cgroup
);
1727 EXPORT_SYMBOL(unlock_page_memcg
);
1730 * size of first charge trial. "32" comes from vmscan.c's magic value.
1731 * TODO: maybe necessary to use big numbers in big irons.
1733 #define CHARGE_BATCH 32U
1734 struct memcg_stock_pcp
{
1735 struct mem_cgroup
*cached
; /* this never be root cgroup */
1736 unsigned int nr_pages
;
1737 struct work_struct work
;
1738 unsigned long flags
;
1739 #define FLUSHING_CACHED_CHARGE 0
1741 static DEFINE_PER_CPU(struct memcg_stock_pcp
, memcg_stock
);
1742 static DEFINE_MUTEX(percpu_charge_mutex
);
1745 * consume_stock: Try to consume stocked charge on this cpu.
1746 * @memcg: memcg to consume from.
1747 * @nr_pages: how many pages to charge.
1749 * The charges will only happen if @memcg matches the current cpu's memcg
1750 * stock, and at least @nr_pages are available in that stock. Failure to
1751 * service an allocation will refill the stock.
1753 * returns true if successful, false otherwise.
1755 static bool consume_stock(struct mem_cgroup
*memcg
, unsigned int nr_pages
)
1757 struct memcg_stock_pcp
*stock
;
1758 unsigned long flags
;
1761 if (nr_pages
> CHARGE_BATCH
)
1764 local_irq_save(flags
);
1766 stock
= this_cpu_ptr(&memcg_stock
);
1767 if (memcg
== stock
->cached
&& stock
->nr_pages
>= nr_pages
) {
1768 stock
->nr_pages
-= nr_pages
;
1772 local_irq_restore(flags
);
1778 * Returns stocks cached in percpu and reset cached information.
1780 static void drain_stock(struct memcg_stock_pcp
*stock
)
1782 struct mem_cgroup
*old
= stock
->cached
;
1784 if (stock
->nr_pages
) {
1785 page_counter_uncharge(&old
->memory
, stock
->nr_pages
);
1786 if (do_memsw_account())
1787 page_counter_uncharge(&old
->memsw
, stock
->nr_pages
);
1788 css_put_many(&old
->css
, stock
->nr_pages
);
1789 stock
->nr_pages
= 0;
1791 stock
->cached
= NULL
;
1794 static void drain_local_stock(struct work_struct
*dummy
)
1796 struct memcg_stock_pcp
*stock
;
1797 unsigned long flags
;
1800 * The only protection from memory hotplug vs. drain_stock races is
1801 * that we always operate on local CPU stock here with IRQ disabled
1803 local_irq_save(flags
);
1805 stock
= this_cpu_ptr(&memcg_stock
);
1807 clear_bit(FLUSHING_CACHED_CHARGE
, &stock
->flags
);
1809 local_irq_restore(flags
);
1813 * Cache charges(val) to local per_cpu area.
1814 * This will be consumed by consume_stock() function, later.
1816 static void refill_stock(struct mem_cgroup
*memcg
, unsigned int nr_pages
)
1818 struct memcg_stock_pcp
*stock
;
1819 unsigned long flags
;
1821 local_irq_save(flags
);
1823 stock
= this_cpu_ptr(&memcg_stock
);
1824 if (stock
->cached
!= memcg
) { /* reset if necessary */
1826 stock
->cached
= memcg
;
1828 stock
->nr_pages
+= nr_pages
;
1830 if (stock
->nr_pages
> CHARGE_BATCH
)
1833 local_irq_restore(flags
);
1837 * Drains all per-CPU charge caches for given root_memcg resp. subtree
1838 * of the hierarchy under it.
1840 static void drain_all_stock(struct mem_cgroup
*root_memcg
)
1844 /* If someone's already draining, avoid adding running more workers. */
1845 if (!mutex_trylock(&percpu_charge_mutex
))
1848 * Notify other cpus that system-wide "drain" is running
1849 * We do not care about races with the cpu hotplug because cpu down
1850 * as well as workers from this path always operate on the local
1851 * per-cpu data. CPU up doesn't touch memcg_stock at all.
1854 for_each_online_cpu(cpu
) {
1855 struct memcg_stock_pcp
*stock
= &per_cpu(memcg_stock
, cpu
);
1856 struct mem_cgroup
*memcg
;
1858 memcg
= stock
->cached
;
1859 if (!memcg
|| !stock
->nr_pages
|| !css_tryget(&memcg
->css
))
1861 if (!mem_cgroup_is_descendant(memcg
, root_memcg
)) {
1862 css_put(&memcg
->css
);
1865 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE
, &stock
->flags
)) {
1867 drain_local_stock(&stock
->work
);
1869 schedule_work_on(cpu
, &stock
->work
);
1871 css_put(&memcg
->css
);
1874 mutex_unlock(&percpu_charge_mutex
);
1877 static int memcg_hotplug_cpu_dead(unsigned int cpu
)
1879 struct memcg_stock_pcp
*stock
;
1881 stock
= &per_cpu(memcg_stock
, cpu
);
1886 static void reclaim_high(struct mem_cgroup
*memcg
,
1887 unsigned int nr_pages
,
1891 if (page_counter_read(&memcg
->memory
) <= memcg
->high
)
1893 mem_cgroup_event(memcg
, MEMCG_HIGH
);
1894 try_to_free_mem_cgroup_pages(memcg
, nr_pages
, gfp_mask
, true);
1895 } while ((memcg
= parent_mem_cgroup(memcg
)));
1898 static void high_work_func(struct work_struct
*work
)
1900 struct mem_cgroup
*memcg
;
1902 memcg
= container_of(work
, struct mem_cgroup
, high_work
);
1903 reclaim_high(memcg
, CHARGE_BATCH
, GFP_KERNEL
);
1907 * Scheduled by try_charge() to be executed from the userland return path
1908 * and reclaims memory over the high limit.
1910 void mem_cgroup_handle_over_high(void)
1912 unsigned int nr_pages
= current
->memcg_nr_pages_over_high
;
1913 struct mem_cgroup
*memcg
;
1915 if (likely(!nr_pages
))
1918 memcg
= get_mem_cgroup_from_mm(current
->mm
);
1919 reclaim_high(memcg
, nr_pages
, GFP_KERNEL
);
1920 css_put(&memcg
->css
);
1921 current
->memcg_nr_pages_over_high
= 0;
1924 static int try_charge(struct mem_cgroup
*memcg
, gfp_t gfp_mask
,
1925 unsigned int nr_pages
)
1927 unsigned int batch
= max(CHARGE_BATCH
, nr_pages
);
1928 int nr_retries
= MEM_CGROUP_RECLAIM_RETRIES
;
1929 struct mem_cgroup
*mem_over_limit
;
1930 struct page_counter
*counter
;
1931 unsigned long nr_reclaimed
;
1932 bool may_swap
= true;
1933 bool drained
= false;
1935 if (mem_cgroup_is_root(memcg
))
1938 if (consume_stock(memcg
, nr_pages
))
1941 if (!do_memsw_account() ||
1942 page_counter_try_charge(&memcg
->memsw
, batch
, &counter
)) {
1943 if (page_counter_try_charge(&memcg
->memory
, batch
, &counter
))
1945 if (do_memsw_account())
1946 page_counter_uncharge(&memcg
->memsw
, batch
);
1947 mem_over_limit
= mem_cgroup_from_counter(counter
, memory
);
1949 mem_over_limit
= mem_cgroup_from_counter(counter
, memsw
);
1953 if (batch
> nr_pages
) {
1959 * Unlike in global OOM situations, memcg is not in a physical
1960 * memory shortage. Allow dying and OOM-killed tasks to
1961 * bypass the last charges so that they can exit quickly and
1962 * free their memory.
1964 if (unlikely(tsk_is_oom_victim(current
) ||
1965 fatal_signal_pending(current
) ||
1966 current
->flags
& PF_EXITING
))
1970 * Prevent unbounded recursion when reclaim operations need to
1971 * allocate memory. This might exceed the limits temporarily,
1972 * but we prefer facilitating memory reclaim and getting back
1973 * under the limit over triggering OOM kills in these cases.
1975 if (unlikely(current
->flags
& PF_MEMALLOC
))
1978 if (unlikely(task_in_memcg_oom(current
)))
1981 if (!gfpflags_allow_blocking(gfp_mask
))
1984 mem_cgroup_event(mem_over_limit
, MEMCG_MAX
);
1986 nr_reclaimed
= try_to_free_mem_cgroup_pages(mem_over_limit
, nr_pages
,
1987 gfp_mask
, may_swap
);
1989 if (mem_cgroup_margin(mem_over_limit
) >= nr_pages
)
1993 drain_all_stock(mem_over_limit
);
1998 if (gfp_mask
& __GFP_NORETRY
)
2001 * Even though the limit is exceeded at this point, reclaim
2002 * may have been able to free some pages. Retry the charge
2003 * before killing the task.
2005 * Only for regular pages, though: huge pages are rather
2006 * unlikely to succeed so close to the limit, and we fall back
2007 * to regular pages anyway in case of failure.
2009 if (nr_reclaimed
&& nr_pages
<= (1 << PAGE_ALLOC_COSTLY_ORDER
))
2012 * At task move, charge accounts can be doubly counted. So, it's
2013 * better to wait until the end of task_move if something is going on.
2015 if (mem_cgroup_wait_acct_move(mem_over_limit
))
2021 if (gfp_mask
& __GFP_NOFAIL
)
2024 if (fatal_signal_pending(current
))
2027 mem_cgroup_event(mem_over_limit
, MEMCG_OOM
);
2029 mem_cgroup_oom(mem_over_limit
, gfp_mask
,
2030 get_order(nr_pages
* PAGE_SIZE
));
2032 if (!(gfp_mask
& __GFP_NOFAIL
))
2036 * The allocation either can't fail or will lead to more memory
2037 * being freed very soon. Allow memory usage go over the limit
2038 * temporarily by force charging it.
2040 page_counter_charge(&memcg
->memory
, nr_pages
);
2041 if (do_memsw_account())
2042 page_counter_charge(&memcg
->memsw
, nr_pages
);
2043 css_get_many(&memcg
->css
, nr_pages
);
2048 css_get_many(&memcg
->css
, batch
);
2049 if (batch
> nr_pages
)
2050 refill_stock(memcg
, batch
- nr_pages
);
2053 * If the hierarchy is above the normal consumption range, schedule
2054 * reclaim on returning to userland. We can perform reclaim here
2055 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2056 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2057 * not recorded as it most likely matches current's and won't
2058 * change in the meantime. As high limit is checked again before
2059 * reclaim, the cost of mismatch is negligible.
2062 if (page_counter_read(&memcg
->memory
) > memcg
->high
) {
2063 /* Don't bother a random interrupted task */
2064 if (in_interrupt()) {
2065 schedule_work(&memcg
->high_work
);
2068 current
->memcg_nr_pages_over_high
+= batch
;
2069 set_notify_resume(current
);
2072 } while ((memcg
= parent_mem_cgroup(memcg
)));
2077 static void cancel_charge(struct mem_cgroup
*memcg
, unsigned int nr_pages
)
2079 if (mem_cgroup_is_root(memcg
))
2082 page_counter_uncharge(&memcg
->memory
, nr_pages
);
2083 if (do_memsw_account())
2084 page_counter_uncharge(&memcg
->memsw
, nr_pages
);
2086 css_put_many(&memcg
->css
, nr_pages
);
2089 static void lock_page_lru(struct page
*page
, int *isolated
)
2091 struct zone
*zone
= page_zone(page
);
2093 spin_lock_irq(zone_lru_lock(zone
));
2094 if (PageLRU(page
)) {
2095 struct lruvec
*lruvec
;
2097 lruvec
= mem_cgroup_page_lruvec(page
, zone
->zone_pgdat
);
2099 del_page_from_lru_list(page
, lruvec
, page_lru(page
));
2105 static void unlock_page_lru(struct page
*page
, int isolated
)
2107 struct zone
*zone
= page_zone(page
);
2110 struct lruvec
*lruvec
;
2112 lruvec
= mem_cgroup_page_lruvec(page
, zone
->zone_pgdat
);
2113 VM_BUG_ON_PAGE(PageLRU(page
), page
);
2115 add_page_to_lru_list(page
, lruvec
, page_lru(page
));
2117 spin_unlock_irq(zone_lru_lock(zone
));
2120 static void commit_charge(struct page
*page
, struct mem_cgroup
*memcg
,
2125 VM_BUG_ON_PAGE(page
->mem_cgroup
, page
);
2128 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2129 * may already be on some other mem_cgroup's LRU. Take care of it.
2132 lock_page_lru(page
, &isolated
);
2135 * Nobody should be changing or seriously looking at
2136 * page->mem_cgroup at this point:
2138 * - the page is uncharged
2140 * - the page is off-LRU
2142 * - an anonymous fault has exclusive page access, except for
2143 * a locked page table
2145 * - a page cache insertion, a swapin fault, or a migration
2146 * have the page locked
2148 page
->mem_cgroup
= memcg
;
2151 unlock_page_lru(page
, isolated
);
2155 static int memcg_alloc_cache_id(void)
2160 id
= ida_simple_get(&memcg_cache_ida
,
2161 0, MEMCG_CACHES_MAX_SIZE
, GFP_KERNEL
);
2165 if (id
< memcg_nr_cache_ids
)
2169 * There's no space for the new id in memcg_caches arrays,
2170 * so we have to grow them.
2172 down_write(&memcg_cache_ids_sem
);
2174 size
= 2 * (id
+ 1);
2175 if (size
< MEMCG_CACHES_MIN_SIZE
)
2176 size
= MEMCG_CACHES_MIN_SIZE
;
2177 else if (size
> MEMCG_CACHES_MAX_SIZE
)
2178 size
= MEMCG_CACHES_MAX_SIZE
;
2180 err
= memcg_update_all_caches(size
);
2182 err
= memcg_update_all_list_lrus(size
);
2184 memcg_nr_cache_ids
= size
;
2186 up_write(&memcg_cache_ids_sem
);
2189 ida_simple_remove(&memcg_cache_ida
, id
);
2195 static void memcg_free_cache_id(int id
)
2197 ida_simple_remove(&memcg_cache_ida
, id
);
2200 struct memcg_kmem_cache_create_work
{
2201 struct mem_cgroup
*memcg
;
2202 struct kmem_cache
*cachep
;
2203 struct work_struct work
;
2206 static void memcg_kmem_cache_create_func(struct work_struct
*w
)
2208 struct memcg_kmem_cache_create_work
*cw
=
2209 container_of(w
, struct memcg_kmem_cache_create_work
, work
);
2210 struct mem_cgroup
*memcg
= cw
->memcg
;
2211 struct kmem_cache
*cachep
= cw
->cachep
;
2213 memcg_create_kmem_cache(memcg
, cachep
);
2215 css_put(&memcg
->css
);
2220 * Enqueue the creation of a per-memcg kmem_cache.
2222 static void __memcg_schedule_kmem_cache_create(struct mem_cgroup
*memcg
,
2223 struct kmem_cache
*cachep
)
2225 struct memcg_kmem_cache_create_work
*cw
;
2227 cw
= kmalloc(sizeof(*cw
), GFP_NOWAIT
| __GFP_NOWARN
);
2231 css_get(&memcg
->css
);
2234 cw
->cachep
= cachep
;
2235 INIT_WORK(&cw
->work
, memcg_kmem_cache_create_func
);
2237 queue_work(memcg_kmem_cache_wq
, &cw
->work
);
2240 static void memcg_schedule_kmem_cache_create(struct mem_cgroup
*memcg
,
2241 struct kmem_cache
*cachep
)
2244 * We need to stop accounting when we kmalloc, because if the
2245 * corresponding kmalloc cache is not yet created, the first allocation
2246 * in __memcg_schedule_kmem_cache_create will recurse.
2248 * However, it is better to enclose the whole function. Depending on
2249 * the debugging options enabled, INIT_WORK(), for instance, can
2250 * trigger an allocation. This too, will make us recurse. Because at
2251 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2252 * the safest choice is to do it like this, wrapping the whole function.
2254 current
->memcg_kmem_skip_account
= 1;
2255 __memcg_schedule_kmem_cache_create(memcg
, cachep
);
2256 current
->memcg_kmem_skip_account
= 0;
2259 static inline bool memcg_kmem_bypass(void)
2261 if (in_interrupt() || !current
->mm
|| (current
->flags
& PF_KTHREAD
))
2267 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
2268 * @cachep: the original global kmem cache
2270 * Return the kmem_cache we're supposed to use for a slab allocation.
2271 * We try to use the current memcg's version of the cache.
2273 * If the cache does not exist yet, if we are the first user of it, we
2274 * create it asynchronously in a workqueue and let the current allocation
2275 * go through with the original cache.
2277 * This function takes a reference to the cache it returns to assure it
2278 * won't get destroyed while we are working with it. Once the caller is
2279 * done with it, memcg_kmem_put_cache() must be called to release the
2282 struct kmem_cache
*memcg_kmem_get_cache(struct kmem_cache
*cachep
)
2284 struct mem_cgroup
*memcg
;
2285 struct kmem_cache
*memcg_cachep
;
2288 VM_BUG_ON(!is_root_cache(cachep
));
2290 if (memcg_kmem_bypass())
2293 if (current
->memcg_kmem_skip_account
)
2296 memcg
= get_mem_cgroup_from_mm(current
->mm
);
2297 kmemcg_id
= READ_ONCE(memcg
->kmemcg_id
);
2301 memcg_cachep
= cache_from_memcg_idx(cachep
, kmemcg_id
);
2302 if (likely(memcg_cachep
))
2303 return memcg_cachep
;
2306 * If we are in a safe context (can wait, and not in interrupt
2307 * context), we could be be predictable and return right away.
2308 * This would guarantee that the allocation being performed
2309 * already belongs in the new cache.
2311 * However, there are some clashes that can arrive from locking.
2312 * For instance, because we acquire the slab_mutex while doing
2313 * memcg_create_kmem_cache, this means no further allocation
2314 * could happen with the slab_mutex held. So it's better to
2317 memcg_schedule_kmem_cache_create(memcg
, cachep
);
2319 css_put(&memcg
->css
);
2324 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
2325 * @cachep: the cache returned by memcg_kmem_get_cache
2327 void memcg_kmem_put_cache(struct kmem_cache
*cachep
)
2329 if (!is_root_cache(cachep
))
2330 css_put(&cachep
->memcg_params
.memcg
->css
);
2334 * memcg_kmem_charge: charge a kmem page
2335 * @page: page to charge
2336 * @gfp: reclaim mode
2337 * @order: allocation order
2338 * @memcg: memory cgroup to charge
2340 * Returns 0 on success, an error code on failure.
2342 int memcg_kmem_charge_memcg(struct page
*page
, gfp_t gfp
, int order
,
2343 struct mem_cgroup
*memcg
)
2345 unsigned int nr_pages
= 1 << order
;
2346 struct page_counter
*counter
;
2349 ret
= try_charge(memcg
, gfp
, nr_pages
);
2353 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys
) &&
2354 !page_counter_try_charge(&memcg
->kmem
, nr_pages
, &counter
)) {
2355 cancel_charge(memcg
, nr_pages
);
2359 page
->mem_cgroup
= memcg
;
2365 * memcg_kmem_charge: charge a kmem page to the current memory cgroup
2366 * @page: page to charge
2367 * @gfp: reclaim mode
2368 * @order: allocation order
2370 * Returns 0 on success, an error code on failure.
2372 int memcg_kmem_charge(struct page
*page
, gfp_t gfp
, int order
)
2374 struct mem_cgroup
*memcg
;
2377 if (memcg_kmem_bypass())
2380 memcg
= get_mem_cgroup_from_mm(current
->mm
);
2381 if (!mem_cgroup_is_root(memcg
)) {
2382 ret
= memcg_kmem_charge_memcg(page
, gfp
, order
, memcg
);
2384 __SetPageKmemcg(page
);
2386 css_put(&memcg
->css
);
2390 * memcg_kmem_uncharge: uncharge a kmem page
2391 * @page: page to uncharge
2392 * @order: allocation order
2394 void memcg_kmem_uncharge(struct page
*page
, int order
)
2396 struct mem_cgroup
*memcg
= page
->mem_cgroup
;
2397 unsigned int nr_pages
= 1 << order
;
2402 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg
), page
);
2404 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys
))
2405 page_counter_uncharge(&memcg
->kmem
, nr_pages
);
2407 page_counter_uncharge(&memcg
->memory
, nr_pages
);
2408 if (do_memsw_account())
2409 page_counter_uncharge(&memcg
->memsw
, nr_pages
);
2411 page
->mem_cgroup
= NULL
;
2413 /* slab pages do not have PageKmemcg flag set */
2414 if (PageKmemcg(page
))
2415 __ClearPageKmemcg(page
);
2417 css_put_many(&memcg
->css
, nr_pages
);
2419 #endif /* !CONFIG_SLOB */
2421 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2424 * Because tail pages are not marked as "used", set it. We're under
2425 * zone_lru_lock and migration entries setup in all page mappings.
2427 void mem_cgroup_split_huge_fixup(struct page
*head
)
2431 if (mem_cgroup_disabled())
2434 for (i
= 1; i
< HPAGE_PMD_NR
; i
++)
2435 head
[i
].mem_cgroup
= head
->mem_cgroup
;
2437 __this_cpu_sub(head
->mem_cgroup
->stat
->count
[MEMCG_RSS_HUGE
],
2440 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2442 #ifdef CONFIG_MEMCG_SWAP
2443 static void mem_cgroup_swap_statistics(struct mem_cgroup
*memcg
,
2446 this_cpu_add(memcg
->stat
->count
[MEMCG_SWAP
], nr_entries
);
2450 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2451 * @entry: swap entry to be moved
2452 * @from: mem_cgroup which the entry is moved from
2453 * @to: mem_cgroup which the entry is moved to
2455 * It succeeds only when the swap_cgroup's record for this entry is the same
2456 * as the mem_cgroup's id of @from.
2458 * Returns 0 on success, -EINVAL on failure.
2460 * The caller must have charged to @to, IOW, called page_counter_charge() about
2461 * both res and memsw, and called css_get().
2463 static int mem_cgroup_move_swap_account(swp_entry_t entry
,
2464 struct mem_cgroup
*from
, struct mem_cgroup
*to
)
2466 unsigned short old_id
, new_id
;
2468 old_id
= mem_cgroup_id(from
);
2469 new_id
= mem_cgroup_id(to
);
2471 if (swap_cgroup_cmpxchg(entry
, old_id
, new_id
) == old_id
) {
2472 mem_cgroup_swap_statistics(from
, -1);
2473 mem_cgroup_swap_statistics(to
, 1);
2479 static inline int mem_cgroup_move_swap_account(swp_entry_t entry
,
2480 struct mem_cgroup
*from
, struct mem_cgroup
*to
)
2486 static DEFINE_MUTEX(memcg_limit_mutex
);
2488 static int mem_cgroup_resize_limit(struct mem_cgroup
*memcg
,
2489 unsigned long limit
)
2491 unsigned long curusage
;
2492 unsigned long oldusage
;
2493 bool enlarge
= false;
2498 * For keeping hierarchical_reclaim simple, how long we should retry
2499 * is depends on callers. We set our retry-count to be function
2500 * of # of children which we should visit in this loop.
2502 retry_count
= MEM_CGROUP_RECLAIM_RETRIES
*
2503 mem_cgroup_count_children(memcg
);
2505 oldusage
= page_counter_read(&memcg
->memory
);
2508 if (signal_pending(current
)) {
2513 mutex_lock(&memcg_limit_mutex
);
2514 if (limit
> memcg
->memsw
.limit
) {
2515 mutex_unlock(&memcg_limit_mutex
);
2519 if (limit
> memcg
->memory
.limit
)
2521 ret
= page_counter_limit(&memcg
->memory
, limit
);
2522 mutex_unlock(&memcg_limit_mutex
);
2527 try_to_free_mem_cgroup_pages(memcg
, 1, GFP_KERNEL
, true);
2529 curusage
= page_counter_read(&memcg
->memory
);
2530 /* Usage is reduced ? */
2531 if (curusage
>= oldusage
)
2534 oldusage
= curusage
;
2535 } while (retry_count
);
2537 if (!ret
&& enlarge
)
2538 memcg_oom_recover(memcg
);
2543 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup
*memcg
,
2544 unsigned long limit
)
2546 unsigned long curusage
;
2547 unsigned long oldusage
;
2548 bool enlarge
= false;
2552 /* see mem_cgroup_resize_res_limit */
2553 retry_count
= MEM_CGROUP_RECLAIM_RETRIES
*
2554 mem_cgroup_count_children(memcg
);
2556 oldusage
= page_counter_read(&memcg
->memsw
);
2559 if (signal_pending(current
)) {
2564 mutex_lock(&memcg_limit_mutex
);
2565 if (limit
< memcg
->memory
.limit
) {
2566 mutex_unlock(&memcg_limit_mutex
);
2570 if (limit
> memcg
->memsw
.limit
)
2572 ret
= page_counter_limit(&memcg
->memsw
, limit
);
2573 mutex_unlock(&memcg_limit_mutex
);
2578 try_to_free_mem_cgroup_pages(memcg
, 1, GFP_KERNEL
, false);
2580 curusage
= page_counter_read(&memcg
->memsw
);
2581 /* Usage is reduced ? */
2582 if (curusage
>= oldusage
)
2585 oldusage
= curusage
;
2586 } while (retry_count
);
2588 if (!ret
&& enlarge
)
2589 memcg_oom_recover(memcg
);
2594 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t
*pgdat
, int order
,
2596 unsigned long *total_scanned
)
2598 unsigned long nr_reclaimed
= 0;
2599 struct mem_cgroup_per_node
*mz
, *next_mz
= NULL
;
2600 unsigned long reclaimed
;
2602 struct mem_cgroup_tree_per_node
*mctz
;
2603 unsigned long excess
;
2604 unsigned long nr_scanned
;
2609 mctz
= soft_limit_tree_node(pgdat
->node_id
);
2612 * Do not even bother to check the largest node if the root
2613 * is empty. Do it lockless to prevent lock bouncing. Races
2614 * are acceptable as soft limit is best effort anyway.
2616 if (!mctz
|| RB_EMPTY_ROOT(&mctz
->rb_root
))
2620 * This loop can run a while, specially if mem_cgroup's continuously
2621 * keep exceeding their soft limit and putting the system under
2628 mz
= mem_cgroup_largest_soft_limit_node(mctz
);
2633 reclaimed
= mem_cgroup_soft_reclaim(mz
->memcg
, pgdat
,
2634 gfp_mask
, &nr_scanned
);
2635 nr_reclaimed
+= reclaimed
;
2636 *total_scanned
+= nr_scanned
;
2637 spin_lock_irq(&mctz
->lock
);
2638 __mem_cgroup_remove_exceeded(mz
, mctz
);
2641 * If we failed to reclaim anything from this memory cgroup
2642 * it is time to move on to the next cgroup
2646 next_mz
= __mem_cgroup_largest_soft_limit_node(mctz
);
2648 excess
= soft_limit_excess(mz
->memcg
);
2650 * One school of thought says that we should not add
2651 * back the node to the tree if reclaim returns 0.
2652 * But our reclaim could return 0, simply because due
2653 * to priority we are exposing a smaller subset of
2654 * memory to reclaim from. Consider this as a longer
2657 /* If excess == 0, no tree ops */
2658 __mem_cgroup_insert_exceeded(mz
, mctz
, excess
);
2659 spin_unlock_irq(&mctz
->lock
);
2660 css_put(&mz
->memcg
->css
);
2663 * Could not reclaim anything and there are no more
2664 * mem cgroups to try or we seem to be looping without
2665 * reclaiming anything.
2667 if (!nr_reclaimed
&&
2669 loop
> MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS
))
2671 } while (!nr_reclaimed
);
2673 css_put(&next_mz
->memcg
->css
);
2674 return nr_reclaimed
;
2678 * Test whether @memcg has children, dead or alive. Note that this
2679 * function doesn't care whether @memcg has use_hierarchy enabled and
2680 * returns %true if there are child csses according to the cgroup
2681 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
2683 static inline bool memcg_has_children(struct mem_cgroup
*memcg
)
2688 ret
= css_next_child(NULL
, &memcg
->css
);
2694 * Reclaims as many pages from the given memcg as possible.
2696 * Caller is responsible for holding css reference for memcg.
2698 static int mem_cgroup_force_empty(struct mem_cgroup
*memcg
)
2700 int nr_retries
= MEM_CGROUP_RECLAIM_RETRIES
;
2702 /* we call try-to-free pages for make this cgroup empty */
2703 lru_add_drain_all();
2704 /* try to free all pages in this cgroup */
2705 while (nr_retries
&& page_counter_read(&memcg
->memory
)) {
2708 if (signal_pending(current
))
2711 progress
= try_to_free_mem_cgroup_pages(memcg
, 1,
2715 /* maybe some writeback is necessary */
2716 congestion_wait(BLK_RW_ASYNC
, HZ
/10);
2724 static ssize_t
mem_cgroup_force_empty_write(struct kernfs_open_file
*of
,
2725 char *buf
, size_t nbytes
,
2728 struct mem_cgroup
*memcg
= mem_cgroup_from_css(of_css(of
));
2730 if (mem_cgroup_is_root(memcg
))
2732 return mem_cgroup_force_empty(memcg
) ?: nbytes
;
2735 static u64
mem_cgroup_hierarchy_read(struct cgroup_subsys_state
*css
,
2738 return mem_cgroup_from_css(css
)->use_hierarchy
;
2741 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state
*css
,
2742 struct cftype
*cft
, u64 val
)
2745 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
2746 struct mem_cgroup
*parent_memcg
= mem_cgroup_from_css(memcg
->css
.parent
);
2748 if (memcg
->use_hierarchy
== val
)
2752 * If parent's use_hierarchy is set, we can't make any modifications
2753 * in the child subtrees. If it is unset, then the change can
2754 * occur, provided the current cgroup has no children.
2756 * For the root cgroup, parent_mem is NULL, we allow value to be
2757 * set if there are no children.
2759 if ((!parent_memcg
|| !parent_memcg
->use_hierarchy
) &&
2760 (val
== 1 || val
== 0)) {
2761 if (!memcg_has_children(memcg
))
2762 memcg
->use_hierarchy
= val
;
2771 static void tree_stat(struct mem_cgroup
*memcg
, unsigned long *stat
)
2773 struct mem_cgroup
*iter
;
2776 memset(stat
, 0, sizeof(*stat
) * MEMCG_NR_STAT
);
2778 for_each_mem_cgroup_tree(iter
, memcg
) {
2779 for (i
= 0; i
< MEMCG_NR_STAT
; i
++)
2780 stat
[i
] += memcg_page_state(iter
, i
);
2784 static void tree_events(struct mem_cgroup
*memcg
, unsigned long *events
)
2786 struct mem_cgroup
*iter
;
2789 memset(events
, 0, sizeof(*events
) * MEMCG_NR_EVENTS
);
2791 for_each_mem_cgroup_tree(iter
, memcg
) {
2792 for (i
= 0; i
< MEMCG_NR_EVENTS
; i
++)
2793 events
[i
] += memcg_sum_events(iter
, i
);
2797 static unsigned long mem_cgroup_usage(struct mem_cgroup
*memcg
, bool swap
)
2799 unsigned long val
= 0;
2801 if (mem_cgroup_is_root(memcg
)) {
2802 struct mem_cgroup
*iter
;
2804 for_each_mem_cgroup_tree(iter
, memcg
) {
2805 val
+= memcg_page_state(iter
, MEMCG_CACHE
);
2806 val
+= memcg_page_state(iter
, MEMCG_RSS
);
2808 val
+= memcg_page_state(iter
, MEMCG_SWAP
);
2812 val
= page_counter_read(&memcg
->memory
);
2814 val
= page_counter_read(&memcg
->memsw
);
2827 static u64
mem_cgroup_read_u64(struct cgroup_subsys_state
*css
,
2830 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
2831 struct page_counter
*counter
;
2833 switch (MEMFILE_TYPE(cft
->private)) {
2835 counter
= &memcg
->memory
;
2838 counter
= &memcg
->memsw
;
2841 counter
= &memcg
->kmem
;
2844 counter
= &memcg
->tcpmem
;
2850 switch (MEMFILE_ATTR(cft
->private)) {
2852 if (counter
== &memcg
->memory
)
2853 return (u64
)mem_cgroup_usage(memcg
, false) * PAGE_SIZE
;
2854 if (counter
== &memcg
->memsw
)
2855 return (u64
)mem_cgroup_usage(memcg
, true) * PAGE_SIZE
;
2856 return (u64
)page_counter_read(counter
) * PAGE_SIZE
;
2858 return (u64
)counter
->limit
* PAGE_SIZE
;
2860 return (u64
)counter
->watermark
* PAGE_SIZE
;
2862 return counter
->failcnt
;
2863 case RES_SOFT_LIMIT
:
2864 return (u64
)memcg
->soft_limit
* PAGE_SIZE
;
2871 static int memcg_online_kmem(struct mem_cgroup
*memcg
)
2875 if (cgroup_memory_nokmem
)
2878 BUG_ON(memcg
->kmemcg_id
>= 0);
2879 BUG_ON(memcg
->kmem_state
);
2881 memcg_id
= memcg_alloc_cache_id();
2885 static_branch_inc(&memcg_kmem_enabled_key
);
2887 * A memory cgroup is considered kmem-online as soon as it gets
2888 * kmemcg_id. Setting the id after enabling static branching will
2889 * guarantee no one starts accounting before all call sites are
2892 memcg
->kmemcg_id
= memcg_id
;
2893 memcg
->kmem_state
= KMEM_ONLINE
;
2894 INIT_LIST_HEAD(&memcg
->kmem_caches
);
2899 static void memcg_offline_kmem(struct mem_cgroup
*memcg
)
2901 struct cgroup_subsys_state
*css
;
2902 struct mem_cgroup
*parent
, *child
;
2905 if (memcg
->kmem_state
!= KMEM_ONLINE
)
2908 * Clear the online state before clearing memcg_caches array
2909 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
2910 * guarantees that no cache will be created for this cgroup
2911 * after we are done (see memcg_create_kmem_cache()).
2913 memcg
->kmem_state
= KMEM_ALLOCATED
;
2915 memcg_deactivate_kmem_caches(memcg
);
2917 kmemcg_id
= memcg
->kmemcg_id
;
2918 BUG_ON(kmemcg_id
< 0);
2920 parent
= parent_mem_cgroup(memcg
);
2922 parent
= root_mem_cgroup
;
2925 * Change kmemcg_id of this cgroup and all its descendants to the
2926 * parent's id, and then move all entries from this cgroup's list_lrus
2927 * to ones of the parent. After we have finished, all list_lrus
2928 * corresponding to this cgroup are guaranteed to remain empty. The
2929 * ordering is imposed by list_lru_node->lock taken by
2930 * memcg_drain_all_list_lrus().
2932 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
2933 css_for_each_descendant_pre(css
, &memcg
->css
) {
2934 child
= mem_cgroup_from_css(css
);
2935 BUG_ON(child
->kmemcg_id
!= kmemcg_id
);
2936 child
->kmemcg_id
= parent
->kmemcg_id
;
2937 if (!memcg
->use_hierarchy
)
2942 memcg_drain_all_list_lrus(kmemcg_id
, parent
->kmemcg_id
);
2944 memcg_free_cache_id(kmemcg_id
);
2947 static void memcg_free_kmem(struct mem_cgroup
*memcg
)
2949 /* css_alloc() failed, offlining didn't happen */
2950 if (unlikely(memcg
->kmem_state
== KMEM_ONLINE
))
2951 memcg_offline_kmem(memcg
);
2953 if (memcg
->kmem_state
== KMEM_ALLOCATED
) {
2954 memcg_destroy_kmem_caches(memcg
);
2955 static_branch_dec(&memcg_kmem_enabled_key
);
2956 WARN_ON(page_counter_read(&memcg
->kmem
));
2960 static int memcg_online_kmem(struct mem_cgroup
*memcg
)
2964 static void memcg_offline_kmem(struct mem_cgroup
*memcg
)
2967 static void memcg_free_kmem(struct mem_cgroup
*memcg
)
2970 #endif /* !CONFIG_SLOB */
2972 static int memcg_update_kmem_limit(struct mem_cgroup
*memcg
,
2973 unsigned long limit
)
2977 mutex_lock(&memcg_limit_mutex
);
2978 ret
= page_counter_limit(&memcg
->kmem
, limit
);
2979 mutex_unlock(&memcg_limit_mutex
);
2983 static int memcg_update_tcp_limit(struct mem_cgroup
*memcg
, unsigned long limit
)
2987 mutex_lock(&memcg_limit_mutex
);
2989 ret
= page_counter_limit(&memcg
->tcpmem
, limit
);
2993 if (!memcg
->tcpmem_active
) {
2995 * The active flag needs to be written after the static_key
2996 * update. This is what guarantees that the socket activation
2997 * function is the last one to run. See mem_cgroup_sk_alloc()
2998 * for details, and note that we don't mark any socket as
2999 * belonging to this memcg until that flag is up.
3001 * We need to do this, because static_keys will span multiple
3002 * sites, but we can't control their order. If we mark a socket
3003 * as accounted, but the accounting functions are not patched in
3004 * yet, we'll lose accounting.
3006 * We never race with the readers in mem_cgroup_sk_alloc(),
3007 * because when this value change, the code to process it is not
3010 static_branch_inc(&memcg_sockets_enabled_key
);
3011 memcg
->tcpmem_active
= true;
3014 mutex_unlock(&memcg_limit_mutex
);
3019 * The user of this function is...
3022 static ssize_t
mem_cgroup_write(struct kernfs_open_file
*of
,
3023 char *buf
, size_t nbytes
, loff_t off
)
3025 struct mem_cgroup
*memcg
= mem_cgroup_from_css(of_css(of
));
3026 unsigned long nr_pages
;
3029 buf
= strstrip(buf
);
3030 ret
= page_counter_memparse(buf
, "-1", &nr_pages
);
3034 switch (MEMFILE_ATTR(of_cft(of
)->private)) {
3036 if (mem_cgroup_is_root(memcg
)) { /* Can't set limit on root */
3040 switch (MEMFILE_TYPE(of_cft(of
)->private)) {
3042 ret
= mem_cgroup_resize_limit(memcg
, nr_pages
);
3045 ret
= mem_cgroup_resize_memsw_limit(memcg
, nr_pages
);
3048 ret
= memcg_update_kmem_limit(memcg
, nr_pages
);
3051 ret
= memcg_update_tcp_limit(memcg
, nr_pages
);
3055 case RES_SOFT_LIMIT
:
3056 memcg
->soft_limit
= nr_pages
;
3060 return ret
?: nbytes
;
3063 static ssize_t
mem_cgroup_reset(struct kernfs_open_file
*of
, char *buf
,
3064 size_t nbytes
, loff_t off
)
3066 struct mem_cgroup
*memcg
= mem_cgroup_from_css(of_css(of
));
3067 struct page_counter
*counter
;
3069 switch (MEMFILE_TYPE(of_cft(of
)->private)) {
3071 counter
= &memcg
->memory
;
3074 counter
= &memcg
->memsw
;
3077 counter
= &memcg
->kmem
;
3080 counter
= &memcg
->tcpmem
;
3086 switch (MEMFILE_ATTR(of_cft(of
)->private)) {
3088 page_counter_reset_watermark(counter
);
3091 counter
->failcnt
= 0;
3100 static u64
mem_cgroup_move_charge_read(struct cgroup_subsys_state
*css
,
3103 return mem_cgroup_from_css(css
)->move_charge_at_immigrate
;
3107 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state
*css
,
3108 struct cftype
*cft
, u64 val
)
3110 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
3112 if (val
& ~MOVE_MASK
)
3116 * No kind of locking is needed in here, because ->can_attach() will
3117 * check this value once in the beginning of the process, and then carry
3118 * on with stale data. This means that changes to this value will only
3119 * affect task migrations starting after the change.
3121 memcg
->move_charge_at_immigrate
= val
;
3125 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state
*css
,
3126 struct cftype
*cft
, u64 val
)
3133 static int memcg_numa_stat_show(struct seq_file
*m
, void *v
)
3137 unsigned int lru_mask
;
3140 static const struct numa_stat stats
[] = {
3141 { "total", LRU_ALL
},
3142 { "file", LRU_ALL_FILE
},
3143 { "anon", LRU_ALL_ANON
},
3144 { "unevictable", BIT(LRU_UNEVICTABLE
) },
3146 const struct numa_stat
*stat
;
3149 struct mem_cgroup
*memcg
= mem_cgroup_from_css(seq_css(m
));
3151 for (stat
= stats
; stat
< stats
+ ARRAY_SIZE(stats
); stat
++) {
3152 nr
= mem_cgroup_nr_lru_pages(memcg
, stat
->lru_mask
);
3153 seq_printf(m
, "%s=%lu", stat
->name
, nr
);
3154 for_each_node_state(nid
, N_MEMORY
) {
3155 nr
= mem_cgroup_node_nr_lru_pages(memcg
, nid
,
3157 seq_printf(m
, " N%d=%lu", nid
, nr
);
3162 for (stat
= stats
; stat
< stats
+ ARRAY_SIZE(stats
); stat
++) {
3163 struct mem_cgroup
*iter
;
3166 for_each_mem_cgroup_tree(iter
, memcg
)
3167 nr
+= mem_cgroup_nr_lru_pages(iter
, stat
->lru_mask
);
3168 seq_printf(m
, "hierarchical_%s=%lu", stat
->name
, nr
);
3169 for_each_node_state(nid
, N_MEMORY
) {
3171 for_each_mem_cgroup_tree(iter
, memcg
)
3172 nr
+= mem_cgroup_node_nr_lru_pages(
3173 iter
, nid
, stat
->lru_mask
);
3174 seq_printf(m
, " N%d=%lu", nid
, nr
);
3181 #endif /* CONFIG_NUMA */
3183 /* Universal VM events cgroup1 shows, original sort order */
3184 unsigned int memcg1_events
[] = {
3191 static const char *const memcg1_event_names
[] = {
3198 static int memcg_stat_show(struct seq_file
*m
, void *v
)
3200 struct mem_cgroup
*memcg
= mem_cgroup_from_css(seq_css(m
));
3201 unsigned long memory
, memsw
;
3202 struct mem_cgroup
*mi
;
3205 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names
) != ARRAY_SIZE(memcg1_stats
));
3206 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names
) != NR_LRU_LISTS
);
3208 for (i
= 0; i
< ARRAY_SIZE(memcg1_stats
); i
++) {
3209 if (memcg1_stats
[i
] == MEMCG_SWAP
&& !do_memsw_account())
3211 seq_printf(m
, "%s %lu\n", memcg1_stat_names
[i
],
3212 memcg_page_state(memcg
, memcg1_stats
[i
]) *
3216 for (i
= 0; i
< ARRAY_SIZE(memcg1_events
); i
++)
3217 seq_printf(m
, "%s %lu\n", memcg1_event_names
[i
],
3218 memcg_sum_events(memcg
, memcg1_events
[i
]));
3220 for (i
= 0; i
< NR_LRU_LISTS
; i
++)
3221 seq_printf(m
, "%s %lu\n", mem_cgroup_lru_names
[i
],
3222 mem_cgroup_nr_lru_pages(memcg
, BIT(i
)) * PAGE_SIZE
);
3224 /* Hierarchical information */
3225 memory
= memsw
= PAGE_COUNTER_MAX
;
3226 for (mi
= memcg
; mi
; mi
= parent_mem_cgroup(mi
)) {
3227 memory
= min(memory
, mi
->memory
.limit
);
3228 memsw
= min(memsw
, mi
->memsw
.limit
);
3230 seq_printf(m
, "hierarchical_memory_limit %llu\n",
3231 (u64
)memory
* PAGE_SIZE
);
3232 if (do_memsw_account())
3233 seq_printf(m
, "hierarchical_memsw_limit %llu\n",
3234 (u64
)memsw
* PAGE_SIZE
);
3236 for (i
= 0; i
< ARRAY_SIZE(memcg1_stats
); i
++) {
3237 unsigned long long val
= 0;
3239 if (memcg1_stats
[i
] == MEMCG_SWAP
&& !do_memsw_account())
3241 for_each_mem_cgroup_tree(mi
, memcg
)
3242 val
+= memcg_page_state(mi
, memcg1_stats
[i
]) *
3244 seq_printf(m
, "total_%s %llu\n", memcg1_stat_names
[i
], val
);
3247 for (i
= 0; i
< ARRAY_SIZE(memcg1_events
); i
++) {
3248 unsigned long long val
= 0;
3250 for_each_mem_cgroup_tree(mi
, memcg
)
3251 val
+= memcg_sum_events(mi
, memcg1_events
[i
]);
3252 seq_printf(m
, "total_%s %llu\n", memcg1_event_names
[i
], val
);
3255 for (i
= 0; i
< NR_LRU_LISTS
; i
++) {
3256 unsigned long long val
= 0;
3258 for_each_mem_cgroup_tree(mi
, memcg
)
3259 val
+= mem_cgroup_nr_lru_pages(mi
, BIT(i
)) * PAGE_SIZE
;
3260 seq_printf(m
, "total_%s %llu\n", mem_cgroup_lru_names
[i
], val
);
3263 #ifdef CONFIG_DEBUG_VM
3266 struct mem_cgroup_per_node
*mz
;
3267 struct zone_reclaim_stat
*rstat
;
3268 unsigned long recent_rotated
[2] = {0, 0};
3269 unsigned long recent_scanned
[2] = {0, 0};
3271 for_each_online_pgdat(pgdat
) {
3272 mz
= mem_cgroup_nodeinfo(memcg
, pgdat
->node_id
);
3273 rstat
= &mz
->lruvec
.reclaim_stat
;
3275 recent_rotated
[0] += rstat
->recent_rotated
[0];
3276 recent_rotated
[1] += rstat
->recent_rotated
[1];
3277 recent_scanned
[0] += rstat
->recent_scanned
[0];
3278 recent_scanned
[1] += rstat
->recent_scanned
[1];
3280 seq_printf(m
, "recent_rotated_anon %lu\n", recent_rotated
[0]);
3281 seq_printf(m
, "recent_rotated_file %lu\n", recent_rotated
[1]);
3282 seq_printf(m
, "recent_scanned_anon %lu\n", recent_scanned
[0]);
3283 seq_printf(m
, "recent_scanned_file %lu\n", recent_scanned
[1]);
3290 static u64
mem_cgroup_swappiness_read(struct cgroup_subsys_state
*css
,
3293 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
3295 return mem_cgroup_swappiness(memcg
);
3298 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state
*css
,
3299 struct cftype
*cft
, u64 val
)
3301 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
3307 memcg
->swappiness
= val
;
3309 vm_swappiness
= val
;
3314 static void __mem_cgroup_threshold(struct mem_cgroup
*memcg
, bool swap
)
3316 struct mem_cgroup_threshold_ary
*t
;
3317 unsigned long usage
;
3322 t
= rcu_dereference(memcg
->thresholds
.primary
);
3324 t
= rcu_dereference(memcg
->memsw_thresholds
.primary
);
3329 usage
= mem_cgroup_usage(memcg
, swap
);
3332 * current_threshold points to threshold just below or equal to usage.
3333 * If it's not true, a threshold was crossed after last
3334 * call of __mem_cgroup_threshold().
3336 i
= t
->current_threshold
;
3339 * Iterate backward over array of thresholds starting from
3340 * current_threshold and check if a threshold is crossed.
3341 * If none of thresholds below usage is crossed, we read
3342 * only one element of the array here.
3344 for (; i
>= 0 && unlikely(t
->entries
[i
].threshold
> usage
); i
--)
3345 eventfd_signal(t
->entries
[i
].eventfd
, 1);
3347 /* i = current_threshold + 1 */
3351 * Iterate forward over array of thresholds starting from
3352 * current_threshold+1 and check if a threshold is crossed.
3353 * If none of thresholds above usage is crossed, we read
3354 * only one element of the array here.
3356 for (; i
< t
->size
&& unlikely(t
->entries
[i
].threshold
<= usage
); i
++)
3357 eventfd_signal(t
->entries
[i
].eventfd
, 1);
3359 /* Update current_threshold */
3360 t
->current_threshold
= i
- 1;
3365 static void mem_cgroup_threshold(struct mem_cgroup
*memcg
)
3368 __mem_cgroup_threshold(memcg
, false);
3369 if (do_memsw_account())
3370 __mem_cgroup_threshold(memcg
, true);
3372 memcg
= parent_mem_cgroup(memcg
);
3376 static int compare_thresholds(const void *a
, const void *b
)
3378 const struct mem_cgroup_threshold
*_a
= a
;
3379 const struct mem_cgroup_threshold
*_b
= b
;
3381 if (_a
->threshold
> _b
->threshold
)
3384 if (_a
->threshold
< _b
->threshold
)
3390 static int mem_cgroup_oom_notify_cb(struct mem_cgroup
*memcg
)
3392 struct mem_cgroup_eventfd_list
*ev
;
3394 spin_lock(&memcg_oom_lock
);
3396 list_for_each_entry(ev
, &memcg
->oom_notify
, list
)
3397 eventfd_signal(ev
->eventfd
, 1);
3399 spin_unlock(&memcg_oom_lock
);
3403 static void mem_cgroup_oom_notify(struct mem_cgroup
*memcg
)
3405 struct mem_cgroup
*iter
;
3407 for_each_mem_cgroup_tree(iter
, memcg
)
3408 mem_cgroup_oom_notify_cb(iter
);
3411 static int __mem_cgroup_usage_register_event(struct mem_cgroup
*memcg
,
3412 struct eventfd_ctx
*eventfd
, const char *args
, enum res_type type
)
3414 struct mem_cgroup_thresholds
*thresholds
;
3415 struct mem_cgroup_threshold_ary
*new;
3416 unsigned long threshold
;
3417 unsigned long usage
;
3420 ret
= page_counter_memparse(args
, "-1", &threshold
);
3424 mutex_lock(&memcg
->thresholds_lock
);
3427 thresholds
= &memcg
->thresholds
;
3428 usage
= mem_cgroup_usage(memcg
, false);
3429 } else if (type
== _MEMSWAP
) {
3430 thresholds
= &memcg
->memsw_thresholds
;
3431 usage
= mem_cgroup_usage(memcg
, true);
3435 /* Check if a threshold crossed before adding a new one */
3436 if (thresholds
->primary
)
3437 __mem_cgroup_threshold(memcg
, type
== _MEMSWAP
);
3439 size
= thresholds
->primary
? thresholds
->primary
->size
+ 1 : 1;
3441 /* Allocate memory for new array of thresholds */
3442 new = kmalloc(sizeof(*new) + size
* sizeof(struct mem_cgroup_threshold
),
3450 /* Copy thresholds (if any) to new array */
3451 if (thresholds
->primary
) {
3452 memcpy(new->entries
, thresholds
->primary
->entries
, (size
- 1) *
3453 sizeof(struct mem_cgroup_threshold
));
3456 /* Add new threshold */
3457 new->entries
[size
- 1].eventfd
= eventfd
;
3458 new->entries
[size
- 1].threshold
= threshold
;
3460 /* Sort thresholds. Registering of new threshold isn't time-critical */
3461 sort(new->entries
, size
, sizeof(struct mem_cgroup_threshold
),
3462 compare_thresholds
, NULL
);
3464 /* Find current threshold */
3465 new->current_threshold
= -1;
3466 for (i
= 0; i
< size
; i
++) {
3467 if (new->entries
[i
].threshold
<= usage
) {
3469 * new->current_threshold will not be used until
3470 * rcu_assign_pointer(), so it's safe to increment
3473 ++new->current_threshold
;
3478 /* Free old spare buffer and save old primary buffer as spare */
3479 kfree(thresholds
->spare
);
3480 thresholds
->spare
= thresholds
->primary
;
3482 rcu_assign_pointer(thresholds
->primary
, new);
3484 /* To be sure that nobody uses thresholds */
3488 mutex_unlock(&memcg
->thresholds_lock
);
3493 static int mem_cgroup_usage_register_event(struct mem_cgroup
*memcg
,
3494 struct eventfd_ctx
*eventfd
, const char *args
)
3496 return __mem_cgroup_usage_register_event(memcg
, eventfd
, args
, _MEM
);
3499 static int memsw_cgroup_usage_register_event(struct mem_cgroup
*memcg
,
3500 struct eventfd_ctx
*eventfd
, const char *args
)
3502 return __mem_cgroup_usage_register_event(memcg
, eventfd
, args
, _MEMSWAP
);
3505 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup
*memcg
,
3506 struct eventfd_ctx
*eventfd
, enum res_type type
)
3508 struct mem_cgroup_thresholds
*thresholds
;
3509 struct mem_cgroup_threshold_ary
*new;
3510 unsigned long usage
;
3513 mutex_lock(&memcg
->thresholds_lock
);
3516 thresholds
= &memcg
->thresholds
;
3517 usage
= mem_cgroup_usage(memcg
, false);
3518 } else if (type
== _MEMSWAP
) {
3519 thresholds
= &memcg
->memsw_thresholds
;
3520 usage
= mem_cgroup_usage(memcg
, true);
3524 if (!thresholds
->primary
)
3527 /* Check if a threshold crossed before removing */
3528 __mem_cgroup_threshold(memcg
, type
== _MEMSWAP
);
3530 /* Calculate new number of threshold */
3532 for (i
= 0; i
< thresholds
->primary
->size
; i
++) {
3533 if (thresholds
->primary
->entries
[i
].eventfd
!= eventfd
)
3537 new = thresholds
->spare
;
3539 /* Set thresholds array to NULL if we don't have thresholds */
3548 /* Copy thresholds and find current threshold */
3549 new->current_threshold
= -1;
3550 for (i
= 0, j
= 0; i
< thresholds
->primary
->size
; i
++) {
3551 if (thresholds
->primary
->entries
[i
].eventfd
== eventfd
)
3554 new->entries
[j
] = thresholds
->primary
->entries
[i
];
3555 if (new->entries
[j
].threshold
<= usage
) {
3557 * new->current_threshold will not be used
3558 * until rcu_assign_pointer(), so it's safe to increment
3561 ++new->current_threshold
;
3567 /* Swap primary and spare array */
3568 thresholds
->spare
= thresholds
->primary
;
3570 rcu_assign_pointer(thresholds
->primary
, new);
3572 /* To be sure that nobody uses thresholds */
3575 /* If all events are unregistered, free the spare array */
3577 kfree(thresholds
->spare
);
3578 thresholds
->spare
= NULL
;
3581 mutex_unlock(&memcg
->thresholds_lock
);
3584 static void mem_cgroup_usage_unregister_event(struct mem_cgroup
*memcg
,
3585 struct eventfd_ctx
*eventfd
)
3587 return __mem_cgroup_usage_unregister_event(memcg
, eventfd
, _MEM
);
3590 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup
*memcg
,
3591 struct eventfd_ctx
*eventfd
)
3593 return __mem_cgroup_usage_unregister_event(memcg
, eventfd
, _MEMSWAP
);
3596 static int mem_cgroup_oom_register_event(struct mem_cgroup
*memcg
,
3597 struct eventfd_ctx
*eventfd
, const char *args
)
3599 struct mem_cgroup_eventfd_list
*event
;
3601 event
= kmalloc(sizeof(*event
), GFP_KERNEL
);
3605 spin_lock(&memcg_oom_lock
);
3607 event
->eventfd
= eventfd
;
3608 list_add(&event
->list
, &memcg
->oom_notify
);
3610 /* already in OOM ? */
3611 if (memcg
->under_oom
)
3612 eventfd_signal(eventfd
, 1);
3613 spin_unlock(&memcg_oom_lock
);
3618 static void mem_cgroup_oom_unregister_event(struct mem_cgroup
*memcg
,
3619 struct eventfd_ctx
*eventfd
)
3621 struct mem_cgroup_eventfd_list
*ev
, *tmp
;
3623 spin_lock(&memcg_oom_lock
);
3625 list_for_each_entry_safe(ev
, tmp
, &memcg
->oom_notify
, list
) {
3626 if (ev
->eventfd
== eventfd
) {
3627 list_del(&ev
->list
);
3632 spin_unlock(&memcg_oom_lock
);
3635 static int mem_cgroup_oom_control_read(struct seq_file
*sf
, void *v
)
3637 struct mem_cgroup
*memcg
= mem_cgroup_from_css(seq_css(sf
));
3639 seq_printf(sf
, "oom_kill_disable %d\n", memcg
->oom_kill_disable
);
3640 seq_printf(sf
, "under_oom %d\n", (bool)memcg
->under_oom
);
3641 seq_printf(sf
, "oom_kill %lu\n", memcg_sum_events(memcg
, OOM_KILL
));
3645 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state
*css
,
3646 struct cftype
*cft
, u64 val
)
3648 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
3650 /* cannot set to root cgroup and only 0 and 1 are allowed */
3651 if (!css
->parent
|| !((val
== 0) || (val
== 1)))
3654 memcg
->oom_kill_disable
= val
;
3656 memcg_oom_recover(memcg
);
3661 #ifdef CONFIG_CGROUP_WRITEBACK
3663 struct list_head
*mem_cgroup_cgwb_list(struct mem_cgroup
*memcg
)
3665 return &memcg
->cgwb_list
;
3668 static int memcg_wb_domain_init(struct mem_cgroup
*memcg
, gfp_t gfp
)
3670 return wb_domain_init(&memcg
->cgwb_domain
, gfp
);
3673 static void memcg_wb_domain_exit(struct mem_cgroup
*memcg
)
3675 wb_domain_exit(&memcg
->cgwb_domain
);
3678 static void memcg_wb_domain_size_changed(struct mem_cgroup
*memcg
)
3680 wb_domain_size_changed(&memcg
->cgwb_domain
);
3683 struct wb_domain
*mem_cgroup_wb_domain(struct bdi_writeback
*wb
)
3685 struct mem_cgroup
*memcg
= mem_cgroup_from_css(wb
->memcg_css
);
3687 if (!memcg
->css
.parent
)
3690 return &memcg
->cgwb_domain
;
3694 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3695 * @wb: bdi_writeback in question
3696 * @pfilepages: out parameter for number of file pages
3697 * @pheadroom: out parameter for number of allocatable pages according to memcg
3698 * @pdirty: out parameter for number of dirty pages
3699 * @pwriteback: out parameter for number of pages under writeback
3701 * Determine the numbers of file, headroom, dirty, and writeback pages in
3702 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
3703 * is a bit more involved.
3705 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
3706 * headroom is calculated as the lowest headroom of itself and the
3707 * ancestors. Note that this doesn't consider the actual amount of
3708 * available memory in the system. The caller should further cap
3709 * *@pheadroom accordingly.
3711 void mem_cgroup_wb_stats(struct bdi_writeback
*wb
, unsigned long *pfilepages
,
3712 unsigned long *pheadroom
, unsigned long *pdirty
,
3713 unsigned long *pwriteback
)
3715 struct mem_cgroup
*memcg
= mem_cgroup_from_css(wb
->memcg_css
);
3716 struct mem_cgroup
*parent
;
3718 *pdirty
= memcg_page_state(memcg
, NR_FILE_DIRTY
);
3720 /* this should eventually include NR_UNSTABLE_NFS */
3721 *pwriteback
= memcg_page_state(memcg
, NR_WRITEBACK
);
3722 *pfilepages
= mem_cgroup_nr_lru_pages(memcg
, (1 << LRU_INACTIVE_FILE
) |
3723 (1 << LRU_ACTIVE_FILE
));
3724 *pheadroom
= PAGE_COUNTER_MAX
;
3726 while ((parent
= parent_mem_cgroup(memcg
))) {
3727 unsigned long ceiling
= min(memcg
->memory
.limit
, memcg
->high
);
3728 unsigned long used
= page_counter_read(&memcg
->memory
);
3730 *pheadroom
= min(*pheadroom
, ceiling
- min(ceiling
, used
));
3735 #else /* CONFIG_CGROUP_WRITEBACK */
3737 static int memcg_wb_domain_init(struct mem_cgroup
*memcg
, gfp_t gfp
)
3742 static void memcg_wb_domain_exit(struct mem_cgroup
*memcg
)
3746 static void memcg_wb_domain_size_changed(struct mem_cgroup
*memcg
)
3750 #endif /* CONFIG_CGROUP_WRITEBACK */
3753 * DO NOT USE IN NEW FILES.
3755 * "cgroup.event_control" implementation.
3757 * This is way over-engineered. It tries to support fully configurable
3758 * events for each user. Such level of flexibility is completely
3759 * unnecessary especially in the light of the planned unified hierarchy.
3761 * Please deprecate this and replace with something simpler if at all
3766 * Unregister event and free resources.
3768 * Gets called from workqueue.
3770 static void memcg_event_remove(struct work_struct
*work
)
3772 struct mem_cgroup_event
*event
=
3773 container_of(work
, struct mem_cgroup_event
, remove
);
3774 struct mem_cgroup
*memcg
= event
->memcg
;
3776 remove_wait_queue(event
->wqh
, &event
->wait
);
3778 event
->unregister_event(memcg
, event
->eventfd
);
3780 /* Notify userspace the event is going away. */
3781 eventfd_signal(event
->eventfd
, 1);
3783 eventfd_ctx_put(event
->eventfd
);
3785 css_put(&memcg
->css
);
3789 * Gets called on POLLHUP on eventfd when user closes it.
3791 * Called with wqh->lock held and interrupts disabled.
3793 static int memcg_event_wake(wait_queue_entry_t
*wait
, unsigned mode
,
3794 int sync
, void *key
)
3796 struct mem_cgroup_event
*event
=
3797 container_of(wait
, struct mem_cgroup_event
, wait
);
3798 struct mem_cgroup
*memcg
= event
->memcg
;
3799 unsigned long flags
= (unsigned long)key
;
3801 if (flags
& POLLHUP
) {
3803 * If the event has been detached at cgroup removal, we
3804 * can simply return knowing the other side will cleanup
3807 * We can't race against event freeing since the other
3808 * side will require wqh->lock via remove_wait_queue(),
3811 spin_lock(&memcg
->event_list_lock
);
3812 if (!list_empty(&event
->list
)) {
3813 list_del_init(&event
->list
);
3815 * We are in atomic context, but cgroup_event_remove()
3816 * may sleep, so we have to call it in workqueue.
3818 schedule_work(&event
->remove
);
3820 spin_unlock(&memcg
->event_list_lock
);
3826 static void memcg_event_ptable_queue_proc(struct file
*file
,
3827 wait_queue_head_t
*wqh
, poll_table
*pt
)
3829 struct mem_cgroup_event
*event
=
3830 container_of(pt
, struct mem_cgroup_event
, pt
);
3833 add_wait_queue(wqh
, &event
->wait
);
3837 * DO NOT USE IN NEW FILES.
3839 * Parse input and register new cgroup event handler.
3841 * Input must be in format '<event_fd> <control_fd> <args>'.
3842 * Interpretation of args is defined by control file implementation.
3844 static ssize_t
memcg_write_event_control(struct kernfs_open_file
*of
,
3845 char *buf
, size_t nbytes
, loff_t off
)
3847 struct cgroup_subsys_state
*css
= of_css(of
);
3848 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
3849 struct mem_cgroup_event
*event
;
3850 struct cgroup_subsys_state
*cfile_css
;
3851 unsigned int efd
, cfd
;
3858 buf
= strstrip(buf
);
3860 efd
= simple_strtoul(buf
, &endp
, 10);
3865 cfd
= simple_strtoul(buf
, &endp
, 10);
3866 if ((*endp
!= ' ') && (*endp
!= '\0'))
3870 event
= kzalloc(sizeof(*event
), GFP_KERNEL
);
3874 event
->memcg
= memcg
;
3875 INIT_LIST_HEAD(&event
->list
);
3876 init_poll_funcptr(&event
->pt
, memcg_event_ptable_queue_proc
);
3877 init_waitqueue_func_entry(&event
->wait
, memcg_event_wake
);
3878 INIT_WORK(&event
->remove
, memcg_event_remove
);
3886 event
->eventfd
= eventfd_ctx_fileget(efile
.file
);
3887 if (IS_ERR(event
->eventfd
)) {
3888 ret
= PTR_ERR(event
->eventfd
);
3895 goto out_put_eventfd
;
3898 /* the process need read permission on control file */
3899 /* AV: shouldn't we check that it's been opened for read instead? */
3900 ret
= inode_permission(file_inode(cfile
.file
), MAY_READ
);
3905 * Determine the event callbacks and set them in @event. This used
3906 * to be done via struct cftype but cgroup core no longer knows
3907 * about these events. The following is crude but the whole thing
3908 * is for compatibility anyway.
3910 * DO NOT ADD NEW FILES.
3912 name
= cfile
.file
->f_path
.dentry
->d_name
.name
;
3914 if (!strcmp(name
, "memory.usage_in_bytes")) {
3915 event
->register_event
= mem_cgroup_usage_register_event
;
3916 event
->unregister_event
= mem_cgroup_usage_unregister_event
;
3917 } else if (!strcmp(name
, "memory.oom_control")) {
3918 event
->register_event
= mem_cgroup_oom_register_event
;
3919 event
->unregister_event
= mem_cgroup_oom_unregister_event
;
3920 } else if (!strcmp(name
, "memory.pressure_level")) {
3921 event
->register_event
= vmpressure_register_event
;
3922 event
->unregister_event
= vmpressure_unregister_event
;
3923 } else if (!strcmp(name
, "memory.memsw.usage_in_bytes")) {
3924 event
->register_event
= memsw_cgroup_usage_register_event
;
3925 event
->unregister_event
= memsw_cgroup_usage_unregister_event
;
3932 * Verify @cfile should belong to @css. Also, remaining events are
3933 * automatically removed on cgroup destruction but the removal is
3934 * asynchronous, so take an extra ref on @css.
3936 cfile_css
= css_tryget_online_from_dir(cfile
.file
->f_path
.dentry
->d_parent
,
3937 &memory_cgrp_subsys
);
3939 if (IS_ERR(cfile_css
))
3941 if (cfile_css
!= css
) {
3946 ret
= event
->register_event(memcg
, event
->eventfd
, buf
);
3950 efile
.file
->f_op
->poll(efile
.file
, &event
->pt
);
3952 spin_lock(&memcg
->event_list_lock
);
3953 list_add(&event
->list
, &memcg
->event_list
);
3954 spin_unlock(&memcg
->event_list_lock
);
3966 eventfd_ctx_put(event
->eventfd
);
3975 static struct cftype mem_cgroup_legacy_files
[] = {
3977 .name
= "usage_in_bytes",
3978 .private = MEMFILE_PRIVATE(_MEM
, RES_USAGE
),
3979 .read_u64
= mem_cgroup_read_u64
,
3982 .name
= "max_usage_in_bytes",
3983 .private = MEMFILE_PRIVATE(_MEM
, RES_MAX_USAGE
),
3984 .write
= mem_cgroup_reset
,
3985 .read_u64
= mem_cgroup_read_u64
,
3988 .name
= "limit_in_bytes",
3989 .private = MEMFILE_PRIVATE(_MEM
, RES_LIMIT
),
3990 .write
= mem_cgroup_write
,
3991 .read_u64
= mem_cgroup_read_u64
,
3994 .name
= "soft_limit_in_bytes",
3995 .private = MEMFILE_PRIVATE(_MEM
, RES_SOFT_LIMIT
),
3996 .write
= mem_cgroup_write
,
3997 .read_u64
= mem_cgroup_read_u64
,
4001 .private = MEMFILE_PRIVATE(_MEM
, RES_FAILCNT
),
4002 .write
= mem_cgroup_reset
,
4003 .read_u64
= mem_cgroup_read_u64
,
4007 .seq_show
= memcg_stat_show
,
4010 .name
= "force_empty",
4011 .write
= mem_cgroup_force_empty_write
,
4014 .name
= "use_hierarchy",
4015 .write_u64
= mem_cgroup_hierarchy_write
,
4016 .read_u64
= mem_cgroup_hierarchy_read
,
4019 .name
= "cgroup.event_control", /* XXX: for compat */
4020 .write
= memcg_write_event_control
,
4021 .flags
= CFTYPE_NO_PREFIX
| CFTYPE_WORLD_WRITABLE
,
4024 .name
= "swappiness",
4025 .read_u64
= mem_cgroup_swappiness_read
,
4026 .write_u64
= mem_cgroup_swappiness_write
,
4029 .name
= "move_charge_at_immigrate",
4030 .read_u64
= mem_cgroup_move_charge_read
,
4031 .write_u64
= mem_cgroup_move_charge_write
,
4034 .name
= "oom_control",
4035 .seq_show
= mem_cgroup_oom_control_read
,
4036 .write_u64
= mem_cgroup_oom_control_write
,
4037 .private = MEMFILE_PRIVATE(_OOM_TYPE
, OOM_CONTROL
),
4040 .name
= "pressure_level",
4044 .name
= "numa_stat",
4045 .seq_show
= memcg_numa_stat_show
,
4049 .name
= "kmem.limit_in_bytes",
4050 .private = MEMFILE_PRIVATE(_KMEM
, RES_LIMIT
),
4051 .write
= mem_cgroup_write
,
4052 .read_u64
= mem_cgroup_read_u64
,
4055 .name
= "kmem.usage_in_bytes",
4056 .private = MEMFILE_PRIVATE(_KMEM
, RES_USAGE
),
4057 .read_u64
= mem_cgroup_read_u64
,
4060 .name
= "kmem.failcnt",
4061 .private = MEMFILE_PRIVATE(_KMEM
, RES_FAILCNT
),
4062 .write
= mem_cgroup_reset
,
4063 .read_u64
= mem_cgroup_read_u64
,
4066 .name
= "kmem.max_usage_in_bytes",
4067 .private = MEMFILE_PRIVATE(_KMEM
, RES_MAX_USAGE
),
4068 .write
= mem_cgroup_reset
,
4069 .read_u64
= mem_cgroup_read_u64
,
4071 #ifdef CONFIG_SLABINFO
4073 .name
= "kmem.slabinfo",
4074 .seq_start
= memcg_slab_start
,
4075 .seq_next
= memcg_slab_next
,
4076 .seq_stop
= memcg_slab_stop
,
4077 .seq_show
= memcg_slab_show
,
4081 .name
= "kmem.tcp.limit_in_bytes",
4082 .private = MEMFILE_PRIVATE(_TCP
, RES_LIMIT
),
4083 .write
= mem_cgroup_write
,
4084 .read_u64
= mem_cgroup_read_u64
,
4087 .name
= "kmem.tcp.usage_in_bytes",
4088 .private = MEMFILE_PRIVATE(_TCP
, RES_USAGE
),
4089 .read_u64
= mem_cgroup_read_u64
,
4092 .name
= "kmem.tcp.failcnt",
4093 .private = MEMFILE_PRIVATE(_TCP
, RES_FAILCNT
),
4094 .write
= mem_cgroup_reset
,
4095 .read_u64
= mem_cgroup_read_u64
,
4098 .name
= "kmem.tcp.max_usage_in_bytes",
4099 .private = MEMFILE_PRIVATE(_TCP
, RES_MAX_USAGE
),
4100 .write
= mem_cgroup_reset
,
4101 .read_u64
= mem_cgroup_read_u64
,
4103 { }, /* terminate */
4107 * Private memory cgroup IDR
4109 * Swap-out records and page cache shadow entries need to store memcg
4110 * references in constrained space, so we maintain an ID space that is
4111 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4112 * memory-controlled cgroups to 64k.
4114 * However, there usually are many references to the oflline CSS after
4115 * the cgroup has been destroyed, such as page cache or reclaimable
4116 * slab objects, that don't need to hang on to the ID. We want to keep
4117 * those dead CSS from occupying IDs, or we might quickly exhaust the
4118 * relatively small ID space and prevent the creation of new cgroups
4119 * even when there are much fewer than 64k cgroups - possibly none.
4121 * Maintain a private 16-bit ID space for memcg, and allow the ID to
4122 * be freed and recycled when it's no longer needed, which is usually
4123 * when the CSS is offlined.
4125 * The only exception to that are records of swapped out tmpfs/shmem
4126 * pages that need to be attributed to live ancestors on swapin. But
4127 * those references are manageable from userspace.
4130 static DEFINE_IDR(mem_cgroup_idr
);
4132 static void mem_cgroup_id_remove(struct mem_cgroup
*memcg
)
4134 if (memcg
->id
.id
> 0) {
4135 idr_remove(&mem_cgroup_idr
, memcg
->id
.id
);
4140 static void mem_cgroup_id_get_many(struct mem_cgroup
*memcg
, unsigned int n
)
4142 VM_BUG_ON(atomic_read(&memcg
->id
.ref
) <= 0);
4143 atomic_add(n
, &memcg
->id
.ref
);
4146 static void mem_cgroup_id_put_many(struct mem_cgroup
*memcg
, unsigned int n
)
4148 VM_BUG_ON(atomic_read(&memcg
->id
.ref
) < n
);
4149 if (atomic_sub_and_test(n
, &memcg
->id
.ref
)) {
4150 mem_cgroup_id_remove(memcg
);
4152 /* Memcg ID pins CSS */
4153 css_put(&memcg
->css
);
4157 static inline void mem_cgroup_id_get(struct mem_cgroup
*memcg
)
4159 mem_cgroup_id_get_many(memcg
, 1);
4162 static inline void mem_cgroup_id_put(struct mem_cgroup
*memcg
)
4164 mem_cgroup_id_put_many(memcg
, 1);
4168 * mem_cgroup_from_id - look up a memcg from a memcg id
4169 * @id: the memcg id to look up
4171 * Caller must hold rcu_read_lock().
4173 struct mem_cgroup
*mem_cgroup_from_id(unsigned short id
)
4175 WARN_ON_ONCE(!rcu_read_lock_held());
4176 return idr_find(&mem_cgroup_idr
, id
);
4179 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup
*memcg
, int node
)
4181 struct mem_cgroup_per_node
*pn
;
4184 * This routine is called against possible nodes.
4185 * But it's BUG to call kmalloc() against offline node.
4187 * TODO: this routine can waste much memory for nodes which will
4188 * never be onlined. It's better to use memory hotplug callback
4191 if (!node_state(node
, N_NORMAL_MEMORY
))
4193 pn
= kzalloc_node(sizeof(*pn
), GFP_KERNEL
, tmp
);
4197 pn
->lruvec_stat
= alloc_percpu(struct lruvec_stat
);
4198 if (!pn
->lruvec_stat
) {
4203 lruvec_init(&pn
->lruvec
);
4204 pn
->usage_in_excess
= 0;
4205 pn
->on_tree
= false;
4208 memcg
->nodeinfo
[node
] = pn
;
4212 static void free_mem_cgroup_per_node_info(struct mem_cgroup
*memcg
, int node
)
4214 struct mem_cgroup_per_node
*pn
= memcg
->nodeinfo
[node
];
4219 free_percpu(pn
->lruvec_stat
);
4223 static void __mem_cgroup_free(struct mem_cgroup
*memcg
)
4228 free_mem_cgroup_per_node_info(memcg
, node
);
4229 free_percpu(memcg
->stat
);
4233 static void mem_cgroup_free(struct mem_cgroup
*memcg
)
4235 memcg_wb_domain_exit(memcg
);
4236 __mem_cgroup_free(memcg
);
4239 static struct mem_cgroup
*mem_cgroup_alloc(void)
4241 struct mem_cgroup
*memcg
;
4245 size
= sizeof(struct mem_cgroup
);
4246 size
+= nr_node_ids
* sizeof(struct mem_cgroup_per_node
*);
4248 memcg
= kzalloc(size
, GFP_KERNEL
);
4252 memcg
->id
.id
= idr_alloc(&mem_cgroup_idr
, NULL
,
4253 1, MEM_CGROUP_ID_MAX
,
4255 if (memcg
->id
.id
< 0)
4258 memcg
->stat
= alloc_percpu(struct mem_cgroup_stat_cpu
);
4263 if (alloc_mem_cgroup_per_node_info(memcg
, node
))
4266 if (memcg_wb_domain_init(memcg
, GFP_KERNEL
))
4269 INIT_WORK(&memcg
->high_work
, high_work_func
);
4270 memcg
->last_scanned_node
= MAX_NUMNODES
;
4271 INIT_LIST_HEAD(&memcg
->oom_notify
);
4272 mutex_init(&memcg
->thresholds_lock
);
4273 spin_lock_init(&memcg
->move_lock
);
4274 vmpressure_init(&memcg
->vmpressure
);
4275 INIT_LIST_HEAD(&memcg
->event_list
);
4276 spin_lock_init(&memcg
->event_list_lock
);
4277 memcg
->socket_pressure
= jiffies
;
4279 memcg
->kmemcg_id
= -1;
4281 #ifdef CONFIG_CGROUP_WRITEBACK
4282 INIT_LIST_HEAD(&memcg
->cgwb_list
);
4284 idr_replace(&mem_cgroup_idr
, memcg
, memcg
->id
.id
);
4287 mem_cgroup_id_remove(memcg
);
4288 __mem_cgroup_free(memcg
);
4292 static struct cgroup_subsys_state
* __ref
4293 mem_cgroup_css_alloc(struct cgroup_subsys_state
*parent_css
)
4295 struct mem_cgroup
*parent
= mem_cgroup_from_css(parent_css
);
4296 struct mem_cgroup
*memcg
;
4297 long error
= -ENOMEM
;
4299 memcg
= mem_cgroup_alloc();
4301 return ERR_PTR(error
);
4303 memcg
->high
= PAGE_COUNTER_MAX
;
4304 memcg
->soft_limit
= PAGE_COUNTER_MAX
;
4306 memcg
->swappiness
= mem_cgroup_swappiness(parent
);
4307 memcg
->oom_kill_disable
= parent
->oom_kill_disable
;
4309 if (parent
&& parent
->use_hierarchy
) {
4310 memcg
->use_hierarchy
= true;
4311 page_counter_init(&memcg
->memory
, &parent
->memory
);
4312 page_counter_init(&memcg
->swap
, &parent
->swap
);
4313 page_counter_init(&memcg
->memsw
, &parent
->memsw
);
4314 page_counter_init(&memcg
->kmem
, &parent
->kmem
);
4315 page_counter_init(&memcg
->tcpmem
, &parent
->tcpmem
);
4317 page_counter_init(&memcg
->memory
, NULL
);
4318 page_counter_init(&memcg
->swap
, NULL
);
4319 page_counter_init(&memcg
->memsw
, NULL
);
4320 page_counter_init(&memcg
->kmem
, NULL
);
4321 page_counter_init(&memcg
->tcpmem
, NULL
);
4323 * Deeper hierachy with use_hierarchy == false doesn't make
4324 * much sense so let cgroup subsystem know about this
4325 * unfortunate state in our controller.
4327 if (parent
!= root_mem_cgroup
)
4328 memory_cgrp_subsys
.broken_hierarchy
= true;
4331 /* The following stuff does not apply to the root */
4333 root_mem_cgroup
= memcg
;
4337 error
= memcg_online_kmem(memcg
);
4341 if (cgroup_subsys_on_dfl(memory_cgrp_subsys
) && !cgroup_memory_nosocket
)
4342 static_branch_inc(&memcg_sockets_enabled_key
);
4346 mem_cgroup_id_remove(memcg
);
4347 mem_cgroup_free(memcg
);
4348 return ERR_PTR(-ENOMEM
);
4351 static int mem_cgroup_css_online(struct cgroup_subsys_state
*css
)
4353 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
4355 /* Online state pins memcg ID, memcg ID pins CSS */
4356 atomic_set(&memcg
->id
.ref
, 1);
4361 static void mem_cgroup_css_offline(struct cgroup_subsys_state
*css
)
4363 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
4364 struct mem_cgroup_event
*event
, *tmp
;
4367 * Unregister events and notify userspace.
4368 * Notify userspace about cgroup removing only after rmdir of cgroup
4369 * directory to avoid race between userspace and kernelspace.
4371 spin_lock(&memcg
->event_list_lock
);
4372 list_for_each_entry_safe(event
, tmp
, &memcg
->event_list
, list
) {
4373 list_del_init(&event
->list
);
4374 schedule_work(&event
->remove
);
4376 spin_unlock(&memcg
->event_list_lock
);
4380 memcg_offline_kmem(memcg
);
4381 wb_memcg_offline(memcg
);
4383 mem_cgroup_id_put(memcg
);
4386 static void mem_cgroup_css_released(struct cgroup_subsys_state
*css
)
4388 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
4390 invalidate_reclaim_iterators(memcg
);
4393 static void mem_cgroup_css_free(struct cgroup_subsys_state
*css
)
4395 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
4397 if (cgroup_subsys_on_dfl(memory_cgrp_subsys
) && !cgroup_memory_nosocket
)
4398 static_branch_dec(&memcg_sockets_enabled_key
);
4400 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys
) && memcg
->tcpmem_active
)
4401 static_branch_dec(&memcg_sockets_enabled_key
);
4403 vmpressure_cleanup(&memcg
->vmpressure
);
4404 cancel_work_sync(&memcg
->high_work
);
4405 mem_cgroup_remove_from_trees(memcg
);
4406 memcg_free_kmem(memcg
);
4407 mem_cgroup_free(memcg
);
4411 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4412 * @css: the target css
4414 * Reset the states of the mem_cgroup associated with @css. This is
4415 * invoked when the userland requests disabling on the default hierarchy
4416 * but the memcg is pinned through dependency. The memcg should stop
4417 * applying policies and should revert to the vanilla state as it may be
4418 * made visible again.
4420 * The current implementation only resets the essential configurations.
4421 * This needs to be expanded to cover all the visible parts.
4423 static void mem_cgroup_css_reset(struct cgroup_subsys_state
*css
)
4425 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
4427 page_counter_limit(&memcg
->memory
, PAGE_COUNTER_MAX
);
4428 page_counter_limit(&memcg
->swap
, PAGE_COUNTER_MAX
);
4429 page_counter_limit(&memcg
->memsw
, PAGE_COUNTER_MAX
);
4430 page_counter_limit(&memcg
->kmem
, PAGE_COUNTER_MAX
);
4431 page_counter_limit(&memcg
->tcpmem
, PAGE_COUNTER_MAX
);
4433 memcg
->high
= PAGE_COUNTER_MAX
;
4434 memcg
->soft_limit
= PAGE_COUNTER_MAX
;
4435 memcg_wb_domain_size_changed(memcg
);
4439 /* Handlers for move charge at task migration. */
4440 static int mem_cgroup_do_precharge(unsigned long count
)
4444 /* Try a single bulk charge without reclaim first, kswapd may wake */
4445 ret
= try_charge(mc
.to
, GFP_KERNEL
& ~__GFP_DIRECT_RECLAIM
, count
);
4447 mc
.precharge
+= count
;
4451 /* Try charges one by one with reclaim, but do not retry */
4453 ret
= try_charge(mc
.to
, GFP_KERNEL
| __GFP_NORETRY
, 1);
4467 enum mc_target_type
{
4474 static struct page
*mc_handle_present_pte(struct vm_area_struct
*vma
,
4475 unsigned long addr
, pte_t ptent
)
4477 struct page
*page
= _vm_normal_page(vma
, addr
, ptent
, true);
4479 if (!page
|| !page_mapped(page
))
4481 if (PageAnon(page
)) {
4482 if (!(mc
.flags
& MOVE_ANON
))
4485 if (!(mc
.flags
& MOVE_FILE
))
4488 if (!get_page_unless_zero(page
))
4494 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
4495 static struct page
*mc_handle_swap_pte(struct vm_area_struct
*vma
,
4496 pte_t ptent
, swp_entry_t
*entry
)
4498 struct page
*page
= NULL
;
4499 swp_entry_t ent
= pte_to_swp_entry(ptent
);
4501 if (!(mc
.flags
& MOVE_ANON
) || non_swap_entry(ent
))
4505 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
4506 * a device and because they are not accessible by CPU they are store
4507 * as special swap entry in the CPU page table.
4509 if (is_device_private_entry(ent
)) {
4510 page
= device_private_entry_to_page(ent
);
4512 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
4513 * a refcount of 1 when free (unlike normal page)
4515 if (!page_ref_add_unless(page
, 1, 1))
4521 * Because lookup_swap_cache() updates some statistics counter,
4522 * we call find_get_page() with swapper_space directly.
4524 page
= find_get_page(swap_address_space(ent
), swp_offset(ent
));
4525 if (do_memsw_account())
4526 entry
->val
= ent
.val
;
4531 static struct page
*mc_handle_swap_pte(struct vm_area_struct
*vma
,
4532 pte_t ptent
, swp_entry_t
*entry
)
4538 static struct page
*mc_handle_file_pte(struct vm_area_struct
*vma
,
4539 unsigned long addr
, pte_t ptent
, swp_entry_t
*entry
)
4541 struct page
*page
= NULL
;
4542 struct address_space
*mapping
;
4545 if (!vma
->vm_file
) /* anonymous vma */
4547 if (!(mc
.flags
& MOVE_FILE
))
4550 mapping
= vma
->vm_file
->f_mapping
;
4551 pgoff
= linear_page_index(vma
, addr
);
4553 /* page is moved even if it's not RSS of this task(page-faulted). */
4555 /* shmem/tmpfs may report page out on swap: account for that too. */
4556 if (shmem_mapping(mapping
)) {
4557 page
= find_get_entry(mapping
, pgoff
);
4558 if (radix_tree_exceptional_entry(page
)) {
4559 swp_entry_t swp
= radix_to_swp_entry(page
);
4560 if (do_memsw_account())
4562 page
= find_get_page(swap_address_space(swp
),
4566 page
= find_get_page(mapping
, pgoff
);
4568 page
= find_get_page(mapping
, pgoff
);
4574 * mem_cgroup_move_account - move account of the page
4576 * @compound: charge the page as compound or small page
4577 * @from: mem_cgroup which the page is moved from.
4578 * @to: mem_cgroup which the page is moved to. @from != @to.
4580 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
4582 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4585 static int mem_cgroup_move_account(struct page
*page
,
4587 struct mem_cgroup
*from
,
4588 struct mem_cgroup
*to
)
4590 unsigned long flags
;
4591 unsigned int nr_pages
= compound
? hpage_nr_pages(page
) : 1;
4595 VM_BUG_ON(from
== to
);
4596 VM_BUG_ON_PAGE(PageLRU(page
), page
);
4597 VM_BUG_ON(compound
&& !PageTransHuge(page
));
4600 * Prevent mem_cgroup_migrate() from looking at
4601 * page->mem_cgroup of its source page while we change it.
4604 if (!trylock_page(page
))
4608 if (page
->mem_cgroup
!= from
)
4611 anon
= PageAnon(page
);
4613 spin_lock_irqsave(&from
->move_lock
, flags
);
4615 if (!anon
&& page_mapped(page
)) {
4616 __this_cpu_sub(from
->stat
->count
[NR_FILE_MAPPED
], nr_pages
);
4617 __this_cpu_add(to
->stat
->count
[NR_FILE_MAPPED
], nr_pages
);
4621 * move_lock grabbed above and caller set from->moving_account, so
4622 * mod_memcg_page_state will serialize updates to PageDirty.
4623 * So mapping should be stable for dirty pages.
4625 if (!anon
&& PageDirty(page
)) {
4626 struct address_space
*mapping
= page_mapping(page
);
4628 if (mapping_cap_account_dirty(mapping
)) {
4629 __this_cpu_sub(from
->stat
->count
[NR_FILE_DIRTY
],
4631 __this_cpu_add(to
->stat
->count
[NR_FILE_DIRTY
],
4636 if (PageWriteback(page
)) {
4637 __this_cpu_sub(from
->stat
->count
[NR_WRITEBACK
], nr_pages
);
4638 __this_cpu_add(to
->stat
->count
[NR_WRITEBACK
], nr_pages
);
4642 * It is safe to change page->mem_cgroup here because the page
4643 * is referenced, charged, and isolated - we can't race with
4644 * uncharging, charging, migration, or LRU putback.
4647 /* caller should have done css_get */
4648 page
->mem_cgroup
= to
;
4649 spin_unlock_irqrestore(&from
->move_lock
, flags
);
4653 local_irq_disable();
4654 mem_cgroup_charge_statistics(to
, page
, compound
, nr_pages
);
4655 memcg_check_events(to
, page
);
4656 mem_cgroup_charge_statistics(from
, page
, compound
, -nr_pages
);
4657 memcg_check_events(from
, page
);
4666 * get_mctgt_type - get target type of moving charge
4667 * @vma: the vma the pte to be checked belongs
4668 * @addr: the address corresponding to the pte to be checked
4669 * @ptent: the pte to be checked
4670 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4673 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4674 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4675 * move charge. if @target is not NULL, the page is stored in target->page
4676 * with extra refcnt got(Callers should handle it).
4677 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4678 * target for charge migration. if @target is not NULL, the entry is stored
4680 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is MEMORY_DEVICE_PUBLIC
4681 * or MEMORY_DEVICE_PRIVATE (so ZONE_DEVICE page and thus not on the lru).
4682 * For now we such page is charge like a regular page would be as for all
4683 * intent and purposes it is just special memory taking the place of a
4686 * See Documentations/vm/hmm.txt and include/linux/hmm.h
4688 * Called with pte lock held.
4691 static enum mc_target_type
get_mctgt_type(struct vm_area_struct
*vma
,
4692 unsigned long addr
, pte_t ptent
, union mc_target
*target
)
4694 struct page
*page
= NULL
;
4695 enum mc_target_type ret
= MC_TARGET_NONE
;
4696 swp_entry_t ent
= { .val
= 0 };
4698 if (pte_present(ptent
))
4699 page
= mc_handle_present_pte(vma
, addr
, ptent
);
4700 else if (is_swap_pte(ptent
))
4701 page
= mc_handle_swap_pte(vma
, ptent
, &ent
);
4702 else if (pte_none(ptent
))
4703 page
= mc_handle_file_pte(vma
, addr
, ptent
, &ent
);
4705 if (!page
&& !ent
.val
)
4709 * Do only loose check w/o serialization.
4710 * mem_cgroup_move_account() checks the page is valid or
4711 * not under LRU exclusion.
4713 if (page
->mem_cgroup
== mc
.from
) {
4714 ret
= MC_TARGET_PAGE
;
4715 if (is_device_private_page(page
) ||
4716 is_device_public_page(page
))
4717 ret
= MC_TARGET_DEVICE
;
4719 target
->page
= page
;
4721 if (!ret
|| !target
)
4725 * There is a swap entry and a page doesn't exist or isn't charged.
4726 * But we cannot move a tail-page in a THP.
4728 if (ent
.val
&& !ret
&& (!page
|| !PageTransCompound(page
)) &&
4729 mem_cgroup_id(mc
.from
) == lookup_swap_cgroup_id(ent
)) {
4730 ret
= MC_TARGET_SWAP
;
4737 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4739 * We don't consider PMD mapped swapping or file mapped pages because THP does
4740 * not support them for now.
4741 * Caller should make sure that pmd_trans_huge(pmd) is true.
4743 static enum mc_target_type
get_mctgt_type_thp(struct vm_area_struct
*vma
,
4744 unsigned long addr
, pmd_t pmd
, union mc_target
*target
)
4746 struct page
*page
= NULL
;
4747 enum mc_target_type ret
= MC_TARGET_NONE
;
4749 if (unlikely(is_swap_pmd(pmd
))) {
4750 VM_BUG_ON(thp_migration_supported() &&
4751 !is_pmd_migration_entry(pmd
));
4754 page
= pmd_page(pmd
);
4755 VM_BUG_ON_PAGE(!page
|| !PageHead(page
), page
);
4756 if (!(mc
.flags
& MOVE_ANON
))
4758 if (page
->mem_cgroup
== mc
.from
) {
4759 ret
= MC_TARGET_PAGE
;
4762 target
->page
= page
;
4768 static inline enum mc_target_type
get_mctgt_type_thp(struct vm_area_struct
*vma
,
4769 unsigned long addr
, pmd_t pmd
, union mc_target
*target
)
4771 return MC_TARGET_NONE
;
4775 static int mem_cgroup_count_precharge_pte_range(pmd_t
*pmd
,
4776 unsigned long addr
, unsigned long end
,
4777 struct mm_walk
*walk
)
4779 struct vm_area_struct
*vma
= walk
->vma
;
4783 ptl
= pmd_trans_huge_lock(pmd
, vma
);
4786 * Note their can not be MC_TARGET_DEVICE for now as we do not
4787 * support transparent huge page with MEMORY_DEVICE_PUBLIC or
4788 * MEMORY_DEVICE_PRIVATE but this might change.
4790 if (get_mctgt_type_thp(vma
, addr
, *pmd
, NULL
) == MC_TARGET_PAGE
)
4791 mc
.precharge
+= HPAGE_PMD_NR
;
4796 if (pmd_trans_unstable(pmd
))
4798 pte
= pte_offset_map_lock(vma
->vm_mm
, pmd
, addr
, &ptl
);
4799 for (; addr
!= end
; pte
++, addr
+= PAGE_SIZE
)
4800 if (get_mctgt_type(vma
, addr
, *pte
, NULL
))
4801 mc
.precharge
++; /* increment precharge temporarily */
4802 pte_unmap_unlock(pte
- 1, ptl
);
4808 static unsigned long mem_cgroup_count_precharge(struct mm_struct
*mm
)
4810 unsigned long precharge
;
4812 struct mm_walk mem_cgroup_count_precharge_walk
= {
4813 .pmd_entry
= mem_cgroup_count_precharge_pte_range
,
4816 down_read(&mm
->mmap_sem
);
4817 walk_page_range(0, mm
->highest_vm_end
,
4818 &mem_cgroup_count_precharge_walk
);
4819 up_read(&mm
->mmap_sem
);
4821 precharge
= mc
.precharge
;
4827 static int mem_cgroup_precharge_mc(struct mm_struct
*mm
)
4829 unsigned long precharge
= mem_cgroup_count_precharge(mm
);
4831 VM_BUG_ON(mc
.moving_task
);
4832 mc
.moving_task
= current
;
4833 return mem_cgroup_do_precharge(precharge
);
4836 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4837 static void __mem_cgroup_clear_mc(void)
4839 struct mem_cgroup
*from
= mc
.from
;
4840 struct mem_cgroup
*to
= mc
.to
;
4842 /* we must uncharge all the leftover precharges from mc.to */
4844 cancel_charge(mc
.to
, mc
.precharge
);
4848 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4849 * we must uncharge here.
4851 if (mc
.moved_charge
) {
4852 cancel_charge(mc
.from
, mc
.moved_charge
);
4853 mc
.moved_charge
= 0;
4855 /* we must fixup refcnts and charges */
4856 if (mc
.moved_swap
) {
4857 /* uncharge swap account from the old cgroup */
4858 if (!mem_cgroup_is_root(mc
.from
))
4859 page_counter_uncharge(&mc
.from
->memsw
, mc
.moved_swap
);
4861 mem_cgroup_id_put_many(mc
.from
, mc
.moved_swap
);
4864 * we charged both to->memory and to->memsw, so we
4865 * should uncharge to->memory.
4867 if (!mem_cgroup_is_root(mc
.to
))
4868 page_counter_uncharge(&mc
.to
->memory
, mc
.moved_swap
);
4870 mem_cgroup_id_get_many(mc
.to
, mc
.moved_swap
);
4871 css_put_many(&mc
.to
->css
, mc
.moved_swap
);
4875 memcg_oom_recover(from
);
4876 memcg_oom_recover(to
);
4877 wake_up_all(&mc
.waitq
);
4880 static void mem_cgroup_clear_mc(void)
4882 struct mm_struct
*mm
= mc
.mm
;
4885 * we must clear moving_task before waking up waiters at the end of
4888 mc
.moving_task
= NULL
;
4889 __mem_cgroup_clear_mc();
4890 spin_lock(&mc
.lock
);
4894 spin_unlock(&mc
.lock
);
4899 static int mem_cgroup_can_attach(struct cgroup_taskset
*tset
)
4901 struct cgroup_subsys_state
*css
;
4902 struct mem_cgroup
*memcg
= NULL
; /* unneeded init to make gcc happy */
4903 struct mem_cgroup
*from
;
4904 struct task_struct
*leader
, *p
;
4905 struct mm_struct
*mm
;
4906 unsigned long move_flags
;
4909 /* charge immigration isn't supported on the default hierarchy */
4910 if (cgroup_subsys_on_dfl(memory_cgrp_subsys
))
4914 * Multi-process migrations only happen on the default hierarchy
4915 * where charge immigration is not used. Perform charge
4916 * immigration if @tset contains a leader and whine if there are
4920 cgroup_taskset_for_each_leader(leader
, css
, tset
) {
4923 memcg
= mem_cgroup_from_css(css
);
4929 * We are now commited to this value whatever it is. Changes in this
4930 * tunable will only affect upcoming migrations, not the current one.
4931 * So we need to save it, and keep it going.
4933 move_flags
= READ_ONCE(memcg
->move_charge_at_immigrate
);
4937 from
= mem_cgroup_from_task(p
);
4939 VM_BUG_ON(from
== memcg
);
4941 mm
= get_task_mm(p
);
4944 /* We move charges only when we move a owner of the mm */
4945 if (mm
->owner
== p
) {
4948 VM_BUG_ON(mc
.precharge
);
4949 VM_BUG_ON(mc
.moved_charge
);
4950 VM_BUG_ON(mc
.moved_swap
);
4952 spin_lock(&mc
.lock
);
4956 mc
.flags
= move_flags
;
4957 spin_unlock(&mc
.lock
);
4958 /* We set mc.moving_task later */
4960 ret
= mem_cgroup_precharge_mc(mm
);
4962 mem_cgroup_clear_mc();
4969 static void mem_cgroup_cancel_attach(struct cgroup_taskset
*tset
)
4972 mem_cgroup_clear_mc();
4975 static int mem_cgroup_move_charge_pte_range(pmd_t
*pmd
,
4976 unsigned long addr
, unsigned long end
,
4977 struct mm_walk
*walk
)
4980 struct vm_area_struct
*vma
= walk
->vma
;
4983 enum mc_target_type target_type
;
4984 union mc_target target
;
4987 ptl
= pmd_trans_huge_lock(pmd
, vma
);
4989 if (mc
.precharge
< HPAGE_PMD_NR
) {
4993 target_type
= get_mctgt_type_thp(vma
, addr
, *pmd
, &target
);
4994 if (target_type
== MC_TARGET_PAGE
) {
4996 if (!isolate_lru_page(page
)) {
4997 if (!mem_cgroup_move_account(page
, true,
4999 mc
.precharge
-= HPAGE_PMD_NR
;
5000 mc
.moved_charge
+= HPAGE_PMD_NR
;
5002 putback_lru_page(page
);
5005 } else if (target_type
== MC_TARGET_DEVICE
) {
5007 if (!mem_cgroup_move_account(page
, true,
5009 mc
.precharge
-= HPAGE_PMD_NR
;
5010 mc
.moved_charge
+= HPAGE_PMD_NR
;
5018 if (pmd_trans_unstable(pmd
))
5021 pte
= pte_offset_map_lock(vma
->vm_mm
, pmd
, addr
, &ptl
);
5022 for (; addr
!= end
; addr
+= PAGE_SIZE
) {
5023 pte_t ptent
= *(pte
++);
5024 bool device
= false;
5030 switch (get_mctgt_type(vma
, addr
, ptent
, &target
)) {
5031 case MC_TARGET_DEVICE
:
5034 case MC_TARGET_PAGE
:
5037 * We can have a part of the split pmd here. Moving it
5038 * can be done but it would be too convoluted so simply
5039 * ignore such a partial THP and keep it in original
5040 * memcg. There should be somebody mapping the head.
5042 if (PageTransCompound(page
))
5044 if (!device
&& isolate_lru_page(page
))
5046 if (!mem_cgroup_move_account(page
, false,
5049 /* we uncharge from mc.from later. */
5053 putback_lru_page(page
);
5054 put
: /* get_mctgt_type() gets the page */
5057 case MC_TARGET_SWAP
:
5059 if (!mem_cgroup_move_swap_account(ent
, mc
.from
, mc
.to
)) {
5061 /* we fixup refcnts and charges later. */
5069 pte_unmap_unlock(pte
- 1, ptl
);
5074 * We have consumed all precharges we got in can_attach().
5075 * We try charge one by one, but don't do any additional
5076 * charges to mc.to if we have failed in charge once in attach()
5079 ret
= mem_cgroup_do_precharge(1);
5087 static void mem_cgroup_move_charge(void)
5089 struct mm_walk mem_cgroup_move_charge_walk
= {
5090 .pmd_entry
= mem_cgroup_move_charge_pte_range
,
5094 lru_add_drain_all();
5096 * Signal lock_page_memcg() to take the memcg's move_lock
5097 * while we're moving its pages to another memcg. Then wait
5098 * for already started RCU-only updates to finish.
5100 atomic_inc(&mc
.from
->moving_account
);
5103 if (unlikely(!down_read_trylock(&mc
.mm
->mmap_sem
))) {
5105 * Someone who are holding the mmap_sem might be waiting in
5106 * waitq. So we cancel all extra charges, wake up all waiters,
5107 * and retry. Because we cancel precharges, we might not be able
5108 * to move enough charges, but moving charge is a best-effort
5109 * feature anyway, so it wouldn't be a big problem.
5111 __mem_cgroup_clear_mc();
5116 * When we have consumed all precharges and failed in doing
5117 * additional charge, the page walk just aborts.
5119 walk_page_range(0, mc
.mm
->highest_vm_end
, &mem_cgroup_move_charge_walk
);
5121 up_read(&mc
.mm
->mmap_sem
);
5122 atomic_dec(&mc
.from
->moving_account
);
5125 static void mem_cgroup_move_task(void)
5128 mem_cgroup_move_charge();
5129 mem_cgroup_clear_mc();
5132 #else /* !CONFIG_MMU */
5133 static int mem_cgroup_can_attach(struct cgroup_taskset
*tset
)
5137 static void mem_cgroup_cancel_attach(struct cgroup_taskset
*tset
)
5140 static void mem_cgroup_move_task(void)
5146 * Cgroup retains root cgroups across [un]mount cycles making it necessary
5147 * to verify whether we're attached to the default hierarchy on each mount
5150 static void mem_cgroup_bind(struct cgroup_subsys_state
*root_css
)
5153 * use_hierarchy is forced on the default hierarchy. cgroup core
5154 * guarantees that @root doesn't have any children, so turning it
5155 * on for the root memcg is enough.
5157 if (cgroup_subsys_on_dfl(memory_cgrp_subsys
))
5158 root_mem_cgroup
->use_hierarchy
= true;
5160 root_mem_cgroup
->use_hierarchy
= false;
5163 static u64
memory_current_read(struct cgroup_subsys_state
*css
,
5166 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
5168 return (u64
)page_counter_read(&memcg
->memory
) * PAGE_SIZE
;
5171 static int memory_low_show(struct seq_file
*m
, void *v
)
5173 struct mem_cgroup
*memcg
= mem_cgroup_from_css(seq_css(m
));
5174 unsigned long low
= READ_ONCE(memcg
->low
);
5176 if (low
== PAGE_COUNTER_MAX
)
5177 seq_puts(m
, "max\n");
5179 seq_printf(m
, "%llu\n", (u64
)low
* PAGE_SIZE
);
5184 static ssize_t
memory_low_write(struct kernfs_open_file
*of
,
5185 char *buf
, size_t nbytes
, loff_t off
)
5187 struct mem_cgroup
*memcg
= mem_cgroup_from_css(of_css(of
));
5191 buf
= strstrip(buf
);
5192 err
= page_counter_memparse(buf
, "max", &low
);
5201 static int memory_high_show(struct seq_file
*m
, void *v
)
5203 struct mem_cgroup
*memcg
= mem_cgroup_from_css(seq_css(m
));
5204 unsigned long high
= READ_ONCE(memcg
->high
);
5206 if (high
== PAGE_COUNTER_MAX
)
5207 seq_puts(m
, "max\n");
5209 seq_printf(m
, "%llu\n", (u64
)high
* PAGE_SIZE
);
5214 static ssize_t
memory_high_write(struct kernfs_open_file
*of
,
5215 char *buf
, size_t nbytes
, loff_t off
)
5217 struct mem_cgroup
*memcg
= mem_cgroup_from_css(of_css(of
));
5218 unsigned long nr_pages
;
5222 buf
= strstrip(buf
);
5223 err
= page_counter_memparse(buf
, "max", &high
);
5229 nr_pages
= page_counter_read(&memcg
->memory
);
5230 if (nr_pages
> high
)
5231 try_to_free_mem_cgroup_pages(memcg
, nr_pages
- high
,
5234 memcg_wb_domain_size_changed(memcg
);
5238 static int memory_max_show(struct seq_file
*m
, void *v
)
5240 struct mem_cgroup
*memcg
= mem_cgroup_from_css(seq_css(m
));
5241 unsigned long max
= READ_ONCE(memcg
->memory
.limit
);
5243 if (max
== PAGE_COUNTER_MAX
)
5244 seq_puts(m
, "max\n");
5246 seq_printf(m
, "%llu\n", (u64
)max
* PAGE_SIZE
);
5251 static ssize_t
memory_max_write(struct kernfs_open_file
*of
,
5252 char *buf
, size_t nbytes
, loff_t off
)
5254 struct mem_cgroup
*memcg
= mem_cgroup_from_css(of_css(of
));
5255 unsigned int nr_reclaims
= MEM_CGROUP_RECLAIM_RETRIES
;
5256 bool drained
= false;
5260 buf
= strstrip(buf
);
5261 err
= page_counter_memparse(buf
, "max", &max
);
5265 xchg(&memcg
->memory
.limit
, max
);
5268 unsigned long nr_pages
= page_counter_read(&memcg
->memory
);
5270 if (nr_pages
<= max
)
5273 if (signal_pending(current
)) {
5279 drain_all_stock(memcg
);
5285 if (!try_to_free_mem_cgroup_pages(memcg
, nr_pages
- max
,
5291 mem_cgroup_event(memcg
, MEMCG_OOM
);
5292 if (!mem_cgroup_out_of_memory(memcg
, GFP_KERNEL
, 0))
5296 memcg_wb_domain_size_changed(memcg
);
5300 static int memory_events_show(struct seq_file
*m
, void *v
)
5302 struct mem_cgroup
*memcg
= mem_cgroup_from_css(seq_css(m
));
5304 seq_printf(m
, "low %lu\n", memcg_sum_events(memcg
, MEMCG_LOW
));
5305 seq_printf(m
, "high %lu\n", memcg_sum_events(memcg
, MEMCG_HIGH
));
5306 seq_printf(m
, "max %lu\n", memcg_sum_events(memcg
, MEMCG_MAX
));
5307 seq_printf(m
, "oom %lu\n", memcg_sum_events(memcg
, MEMCG_OOM
));
5308 seq_printf(m
, "oom_kill %lu\n", memcg_sum_events(memcg
, OOM_KILL
));
5313 static int memory_stat_show(struct seq_file
*m
, void *v
)
5315 struct mem_cgroup
*memcg
= mem_cgroup_from_css(seq_css(m
));
5316 unsigned long stat
[MEMCG_NR_STAT
];
5317 unsigned long events
[MEMCG_NR_EVENTS
];
5321 * Provide statistics on the state of the memory subsystem as
5322 * well as cumulative event counters that show past behavior.
5324 * This list is ordered following a combination of these gradients:
5325 * 1) generic big picture -> specifics and details
5326 * 2) reflecting userspace activity -> reflecting kernel heuristics
5328 * Current memory state:
5331 tree_stat(memcg
, stat
);
5332 tree_events(memcg
, events
);
5334 seq_printf(m
, "anon %llu\n",
5335 (u64
)stat
[MEMCG_RSS
] * PAGE_SIZE
);
5336 seq_printf(m
, "file %llu\n",
5337 (u64
)stat
[MEMCG_CACHE
] * PAGE_SIZE
);
5338 seq_printf(m
, "kernel_stack %llu\n",
5339 (u64
)stat
[MEMCG_KERNEL_STACK_KB
] * 1024);
5340 seq_printf(m
, "slab %llu\n",
5341 (u64
)(stat
[NR_SLAB_RECLAIMABLE
] +
5342 stat
[NR_SLAB_UNRECLAIMABLE
]) * PAGE_SIZE
);
5343 seq_printf(m
, "sock %llu\n",
5344 (u64
)stat
[MEMCG_SOCK
] * PAGE_SIZE
);
5346 seq_printf(m
, "shmem %llu\n",
5347 (u64
)stat
[NR_SHMEM
] * PAGE_SIZE
);
5348 seq_printf(m
, "file_mapped %llu\n",
5349 (u64
)stat
[NR_FILE_MAPPED
] * PAGE_SIZE
);
5350 seq_printf(m
, "file_dirty %llu\n",
5351 (u64
)stat
[NR_FILE_DIRTY
] * PAGE_SIZE
);
5352 seq_printf(m
, "file_writeback %llu\n",
5353 (u64
)stat
[NR_WRITEBACK
] * PAGE_SIZE
);
5355 for (i
= 0; i
< NR_LRU_LISTS
; i
++) {
5356 struct mem_cgroup
*mi
;
5357 unsigned long val
= 0;
5359 for_each_mem_cgroup_tree(mi
, memcg
)
5360 val
+= mem_cgroup_nr_lru_pages(mi
, BIT(i
));
5361 seq_printf(m
, "%s %llu\n",
5362 mem_cgroup_lru_names
[i
], (u64
)val
* PAGE_SIZE
);
5365 seq_printf(m
, "slab_reclaimable %llu\n",
5366 (u64
)stat
[NR_SLAB_RECLAIMABLE
] * PAGE_SIZE
);
5367 seq_printf(m
, "slab_unreclaimable %llu\n",
5368 (u64
)stat
[NR_SLAB_UNRECLAIMABLE
] * PAGE_SIZE
);
5370 /* Accumulated memory events */
5372 seq_printf(m
, "pgfault %lu\n", events
[PGFAULT
]);
5373 seq_printf(m
, "pgmajfault %lu\n", events
[PGMAJFAULT
]);
5375 seq_printf(m
, "pgrefill %lu\n", events
[PGREFILL
]);
5376 seq_printf(m
, "pgscan %lu\n", events
[PGSCAN_KSWAPD
] +
5377 events
[PGSCAN_DIRECT
]);
5378 seq_printf(m
, "pgsteal %lu\n", events
[PGSTEAL_KSWAPD
] +
5379 events
[PGSTEAL_DIRECT
]);
5380 seq_printf(m
, "pgactivate %lu\n", events
[PGACTIVATE
]);
5381 seq_printf(m
, "pgdeactivate %lu\n", events
[PGDEACTIVATE
]);
5382 seq_printf(m
, "pglazyfree %lu\n", events
[PGLAZYFREE
]);
5383 seq_printf(m
, "pglazyfreed %lu\n", events
[PGLAZYFREED
]);
5385 seq_printf(m
, "workingset_refault %lu\n",
5386 stat
[WORKINGSET_REFAULT
]);
5387 seq_printf(m
, "workingset_activate %lu\n",
5388 stat
[WORKINGSET_ACTIVATE
]);
5389 seq_printf(m
, "workingset_nodereclaim %lu\n",
5390 stat
[WORKINGSET_NODERECLAIM
]);
5395 static struct cftype memory_files
[] = {
5398 .flags
= CFTYPE_NOT_ON_ROOT
,
5399 .read_u64
= memory_current_read
,
5403 .flags
= CFTYPE_NOT_ON_ROOT
,
5404 .seq_show
= memory_low_show
,
5405 .write
= memory_low_write
,
5409 .flags
= CFTYPE_NOT_ON_ROOT
,
5410 .seq_show
= memory_high_show
,
5411 .write
= memory_high_write
,
5415 .flags
= CFTYPE_NOT_ON_ROOT
,
5416 .seq_show
= memory_max_show
,
5417 .write
= memory_max_write
,
5421 .flags
= CFTYPE_NOT_ON_ROOT
,
5422 .file_offset
= offsetof(struct mem_cgroup
, events_file
),
5423 .seq_show
= memory_events_show
,
5427 .flags
= CFTYPE_NOT_ON_ROOT
,
5428 .seq_show
= memory_stat_show
,
5433 struct cgroup_subsys memory_cgrp_subsys
= {
5434 .css_alloc
= mem_cgroup_css_alloc
,
5435 .css_online
= mem_cgroup_css_online
,
5436 .css_offline
= mem_cgroup_css_offline
,
5437 .css_released
= mem_cgroup_css_released
,
5438 .css_free
= mem_cgroup_css_free
,
5439 .css_reset
= mem_cgroup_css_reset
,
5440 .can_attach
= mem_cgroup_can_attach
,
5441 .cancel_attach
= mem_cgroup_cancel_attach
,
5442 .post_attach
= mem_cgroup_move_task
,
5443 .bind
= mem_cgroup_bind
,
5444 .dfl_cftypes
= memory_files
,
5445 .legacy_cftypes
= mem_cgroup_legacy_files
,
5450 * mem_cgroup_low - check if memory consumption is below the normal range
5451 * @root: the top ancestor of the sub-tree being checked
5452 * @memcg: the memory cgroup to check
5454 * Returns %true if memory consumption of @memcg, and that of all
5455 * ancestors up to (but not including) @root, is below the normal range.
5457 * @root is exclusive; it is never low when looked at directly and isn't
5458 * checked when traversing the hierarchy.
5460 * Excluding @root enables using memory.low to prioritize memory usage
5461 * between cgroups within a subtree of the hierarchy that is limited by
5462 * memory.high or memory.max.
5464 * For example, given cgroup A with children B and C:
5472 * 1. A/memory.current > A/memory.high
5473 * 2. A/B/memory.current < A/B/memory.low
5474 * 3. A/C/memory.current >= A/C/memory.low
5476 * As 'A' is high, i.e. triggers reclaim from 'A', and 'B' is low, we
5477 * should reclaim from 'C' until 'A' is no longer high or until we can
5478 * no longer reclaim from 'C'. If 'A', i.e. @root, isn't excluded by
5479 * mem_cgroup_low when reclaming from 'A', then 'B' won't be considered
5480 * low and we will reclaim indiscriminately from both 'B' and 'C'.
5482 bool mem_cgroup_low(struct mem_cgroup
*root
, struct mem_cgroup
*memcg
)
5484 if (mem_cgroup_disabled())
5488 root
= root_mem_cgroup
;
5492 for (; memcg
!= root
; memcg
= parent_mem_cgroup(memcg
)) {
5493 if (page_counter_read(&memcg
->memory
) >= memcg
->low
)
5501 * mem_cgroup_try_charge - try charging a page
5502 * @page: page to charge
5503 * @mm: mm context of the victim
5504 * @gfp_mask: reclaim mode
5505 * @memcgp: charged memcg return
5506 * @compound: charge the page as compound or small page
5508 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5509 * pages according to @gfp_mask if necessary.
5511 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5512 * Otherwise, an error code is returned.
5514 * After page->mapping has been set up, the caller must finalize the
5515 * charge with mem_cgroup_commit_charge(). Or abort the transaction
5516 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5518 int mem_cgroup_try_charge(struct page
*page
, struct mm_struct
*mm
,
5519 gfp_t gfp_mask
, struct mem_cgroup
**memcgp
,
5522 struct mem_cgroup
*memcg
= NULL
;
5523 unsigned int nr_pages
= compound
? hpage_nr_pages(page
) : 1;
5526 if (mem_cgroup_disabled())
5529 if (PageSwapCache(page
)) {
5531 * Every swap fault against a single page tries to charge the
5532 * page, bail as early as possible. shmem_unuse() encounters
5533 * already charged pages, too. The USED bit is protected by
5534 * the page lock, which serializes swap cache removal, which
5535 * in turn serializes uncharging.
5537 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
5538 if (compound_head(page
)->mem_cgroup
)
5541 if (do_swap_account
) {
5542 swp_entry_t ent
= { .val
= page_private(page
), };
5543 unsigned short id
= lookup_swap_cgroup_id(ent
);
5546 memcg
= mem_cgroup_from_id(id
);
5547 if (memcg
&& !css_tryget_online(&memcg
->css
))
5554 memcg
= get_mem_cgroup_from_mm(mm
);
5556 ret
= try_charge(memcg
, gfp_mask
, nr_pages
);
5558 css_put(&memcg
->css
);
5565 * mem_cgroup_commit_charge - commit a page charge
5566 * @page: page to charge
5567 * @memcg: memcg to charge the page to
5568 * @lrucare: page might be on LRU already
5569 * @compound: charge the page as compound or small page
5571 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5572 * after page->mapping has been set up. This must happen atomically
5573 * as part of the page instantiation, i.e. under the page table lock
5574 * for anonymous pages, under the page lock for page and swap cache.
5576 * In addition, the page must not be on the LRU during the commit, to
5577 * prevent racing with task migration. If it might be, use @lrucare.
5579 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5581 void mem_cgroup_commit_charge(struct page
*page
, struct mem_cgroup
*memcg
,
5582 bool lrucare
, bool compound
)
5584 unsigned int nr_pages
= compound
? hpage_nr_pages(page
) : 1;
5586 VM_BUG_ON_PAGE(!page
->mapping
, page
);
5587 VM_BUG_ON_PAGE(PageLRU(page
) && !lrucare
, page
);
5589 if (mem_cgroup_disabled())
5592 * Swap faults will attempt to charge the same page multiple
5593 * times. But reuse_swap_page() might have removed the page
5594 * from swapcache already, so we can't check PageSwapCache().
5599 commit_charge(page
, memcg
, lrucare
);
5601 local_irq_disable();
5602 mem_cgroup_charge_statistics(memcg
, page
, compound
, nr_pages
);
5603 memcg_check_events(memcg
, page
);
5606 if (do_memsw_account() && PageSwapCache(page
)) {
5607 swp_entry_t entry
= { .val
= page_private(page
) };
5609 * The swap entry might not get freed for a long time,
5610 * let's not wait for it. The page already received a
5611 * memory+swap charge, drop the swap entry duplicate.
5613 mem_cgroup_uncharge_swap(entry
, nr_pages
);
5618 * mem_cgroup_cancel_charge - cancel a page charge
5619 * @page: page to charge
5620 * @memcg: memcg to charge the page to
5621 * @compound: charge the page as compound or small page
5623 * Cancel a charge transaction started by mem_cgroup_try_charge().
5625 void mem_cgroup_cancel_charge(struct page
*page
, struct mem_cgroup
*memcg
,
5628 unsigned int nr_pages
= compound
? hpage_nr_pages(page
) : 1;
5630 if (mem_cgroup_disabled())
5633 * Swap faults will attempt to charge the same page multiple
5634 * times. But reuse_swap_page() might have removed the page
5635 * from swapcache already, so we can't check PageSwapCache().
5640 cancel_charge(memcg
, nr_pages
);
5643 struct uncharge_gather
{
5644 struct mem_cgroup
*memcg
;
5645 unsigned long pgpgout
;
5646 unsigned long nr_anon
;
5647 unsigned long nr_file
;
5648 unsigned long nr_kmem
;
5649 unsigned long nr_huge
;
5650 unsigned long nr_shmem
;
5651 struct page
*dummy_page
;
5654 static inline void uncharge_gather_clear(struct uncharge_gather
*ug
)
5656 memset(ug
, 0, sizeof(*ug
));
5659 static void uncharge_batch(const struct uncharge_gather
*ug
)
5661 unsigned long nr_pages
= ug
->nr_anon
+ ug
->nr_file
+ ug
->nr_kmem
;
5662 unsigned long flags
;
5664 if (!mem_cgroup_is_root(ug
->memcg
)) {
5665 page_counter_uncharge(&ug
->memcg
->memory
, nr_pages
);
5666 if (do_memsw_account())
5667 page_counter_uncharge(&ug
->memcg
->memsw
, nr_pages
);
5668 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys
) && ug
->nr_kmem
)
5669 page_counter_uncharge(&ug
->memcg
->kmem
, ug
->nr_kmem
);
5670 memcg_oom_recover(ug
->memcg
);
5673 local_irq_save(flags
);
5674 __this_cpu_sub(ug
->memcg
->stat
->count
[MEMCG_RSS
], ug
->nr_anon
);
5675 __this_cpu_sub(ug
->memcg
->stat
->count
[MEMCG_CACHE
], ug
->nr_file
);
5676 __this_cpu_sub(ug
->memcg
->stat
->count
[MEMCG_RSS_HUGE
], ug
->nr_huge
);
5677 __this_cpu_sub(ug
->memcg
->stat
->count
[NR_SHMEM
], ug
->nr_shmem
);
5678 __this_cpu_add(ug
->memcg
->stat
->events
[PGPGOUT
], ug
->pgpgout
);
5679 __this_cpu_add(ug
->memcg
->stat
->nr_page_events
, nr_pages
);
5680 memcg_check_events(ug
->memcg
, ug
->dummy_page
);
5681 local_irq_restore(flags
);
5683 if (!mem_cgroup_is_root(ug
->memcg
))
5684 css_put_many(&ug
->memcg
->css
, nr_pages
);
5687 static void uncharge_page(struct page
*page
, struct uncharge_gather
*ug
)
5689 VM_BUG_ON_PAGE(PageLRU(page
), page
);
5690 VM_BUG_ON_PAGE(page_count(page
) && !is_zone_device_page(page
) &&
5691 !PageHWPoison(page
) , page
);
5693 if (!page
->mem_cgroup
)
5697 * Nobody should be changing or seriously looking at
5698 * page->mem_cgroup at this point, we have fully
5699 * exclusive access to the page.
5702 if (ug
->memcg
!= page
->mem_cgroup
) {
5705 uncharge_gather_clear(ug
);
5707 ug
->memcg
= page
->mem_cgroup
;
5710 if (!PageKmemcg(page
)) {
5711 unsigned int nr_pages
= 1;
5713 if (PageTransHuge(page
)) {
5714 nr_pages
<<= compound_order(page
);
5715 ug
->nr_huge
+= nr_pages
;
5718 ug
->nr_anon
+= nr_pages
;
5720 ug
->nr_file
+= nr_pages
;
5721 if (PageSwapBacked(page
))
5722 ug
->nr_shmem
+= nr_pages
;
5726 ug
->nr_kmem
+= 1 << compound_order(page
);
5727 __ClearPageKmemcg(page
);
5730 ug
->dummy_page
= page
;
5731 page
->mem_cgroup
= NULL
;
5734 static void uncharge_list(struct list_head
*page_list
)
5736 struct uncharge_gather ug
;
5737 struct list_head
*next
;
5739 uncharge_gather_clear(&ug
);
5742 * Note that the list can be a single page->lru; hence the
5743 * do-while loop instead of a simple list_for_each_entry().
5745 next
= page_list
->next
;
5749 page
= list_entry(next
, struct page
, lru
);
5750 next
= page
->lru
.next
;
5752 uncharge_page(page
, &ug
);
5753 } while (next
!= page_list
);
5756 uncharge_batch(&ug
);
5760 * mem_cgroup_uncharge - uncharge a page
5761 * @page: page to uncharge
5763 * Uncharge a page previously charged with mem_cgroup_try_charge() and
5764 * mem_cgroup_commit_charge().
5766 void mem_cgroup_uncharge(struct page
*page
)
5768 struct uncharge_gather ug
;
5770 if (mem_cgroup_disabled())
5773 /* Don't touch page->lru of any random page, pre-check: */
5774 if (!page
->mem_cgroup
)
5777 uncharge_gather_clear(&ug
);
5778 uncharge_page(page
, &ug
);
5779 uncharge_batch(&ug
);
5783 * mem_cgroup_uncharge_list - uncharge a list of page
5784 * @page_list: list of pages to uncharge
5786 * Uncharge a list of pages previously charged with
5787 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5789 void mem_cgroup_uncharge_list(struct list_head
*page_list
)
5791 if (mem_cgroup_disabled())
5794 if (!list_empty(page_list
))
5795 uncharge_list(page_list
);
5799 * mem_cgroup_migrate - charge a page's replacement
5800 * @oldpage: currently circulating page
5801 * @newpage: replacement page
5803 * Charge @newpage as a replacement page for @oldpage. @oldpage will
5804 * be uncharged upon free.
5806 * Both pages must be locked, @newpage->mapping must be set up.
5808 void mem_cgroup_migrate(struct page
*oldpage
, struct page
*newpage
)
5810 struct mem_cgroup
*memcg
;
5811 unsigned int nr_pages
;
5813 unsigned long flags
;
5815 VM_BUG_ON_PAGE(!PageLocked(oldpage
), oldpage
);
5816 VM_BUG_ON_PAGE(!PageLocked(newpage
), newpage
);
5817 VM_BUG_ON_PAGE(PageAnon(oldpage
) != PageAnon(newpage
), newpage
);
5818 VM_BUG_ON_PAGE(PageTransHuge(oldpage
) != PageTransHuge(newpage
),
5821 if (mem_cgroup_disabled())
5824 /* Page cache replacement: new page already charged? */
5825 if (newpage
->mem_cgroup
)
5828 /* Swapcache readahead pages can get replaced before being charged */
5829 memcg
= oldpage
->mem_cgroup
;
5833 /* Force-charge the new page. The old one will be freed soon */
5834 compound
= PageTransHuge(newpage
);
5835 nr_pages
= compound
? hpage_nr_pages(newpage
) : 1;
5837 page_counter_charge(&memcg
->memory
, nr_pages
);
5838 if (do_memsw_account())
5839 page_counter_charge(&memcg
->memsw
, nr_pages
);
5840 css_get_many(&memcg
->css
, nr_pages
);
5842 commit_charge(newpage
, memcg
, false);
5844 local_irq_save(flags
);
5845 mem_cgroup_charge_statistics(memcg
, newpage
, compound
, nr_pages
);
5846 memcg_check_events(memcg
, newpage
);
5847 local_irq_restore(flags
);
5850 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key
);
5851 EXPORT_SYMBOL(memcg_sockets_enabled_key
);
5853 void mem_cgroup_sk_alloc(struct sock
*sk
)
5855 struct mem_cgroup
*memcg
;
5857 if (!mem_cgroup_sockets_enabled
)
5861 * Socket cloning can throw us here with sk_memcg already
5862 * filled. It won't however, necessarily happen from
5863 * process context. So the test for root memcg given
5864 * the current task's memcg won't help us in this case.
5866 * Respecting the original socket's memcg is a better
5867 * decision in this case.
5870 css_get(&sk
->sk_memcg
->css
);
5875 memcg
= mem_cgroup_from_task(current
);
5876 if (memcg
== root_mem_cgroup
)
5878 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys
) && !memcg
->tcpmem_active
)
5880 if (css_tryget_online(&memcg
->css
))
5881 sk
->sk_memcg
= memcg
;
5886 void mem_cgroup_sk_free(struct sock
*sk
)
5889 css_put(&sk
->sk_memcg
->css
);
5893 * mem_cgroup_charge_skmem - charge socket memory
5894 * @memcg: memcg to charge
5895 * @nr_pages: number of pages to charge
5897 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
5898 * @memcg's configured limit, %false if the charge had to be forced.
5900 bool mem_cgroup_charge_skmem(struct mem_cgroup
*memcg
, unsigned int nr_pages
)
5902 gfp_t gfp_mask
= GFP_KERNEL
;
5904 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys
)) {
5905 struct page_counter
*fail
;
5907 if (page_counter_try_charge(&memcg
->tcpmem
, nr_pages
, &fail
)) {
5908 memcg
->tcpmem_pressure
= 0;
5911 page_counter_charge(&memcg
->tcpmem
, nr_pages
);
5912 memcg
->tcpmem_pressure
= 1;
5916 /* Don't block in the packet receive path */
5918 gfp_mask
= GFP_NOWAIT
;
5920 this_cpu_add(memcg
->stat
->count
[MEMCG_SOCK
], nr_pages
);
5922 if (try_charge(memcg
, gfp_mask
, nr_pages
) == 0)
5925 try_charge(memcg
, gfp_mask
|__GFP_NOFAIL
, nr_pages
);
5930 * mem_cgroup_uncharge_skmem - uncharge socket memory
5931 * @memcg - memcg to uncharge
5932 * @nr_pages - number of pages to uncharge
5934 void mem_cgroup_uncharge_skmem(struct mem_cgroup
*memcg
, unsigned int nr_pages
)
5936 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys
)) {
5937 page_counter_uncharge(&memcg
->tcpmem
, nr_pages
);
5941 this_cpu_sub(memcg
->stat
->count
[MEMCG_SOCK
], nr_pages
);
5943 refill_stock(memcg
, nr_pages
);
5946 static int __init
cgroup_memory(char *s
)
5950 while ((token
= strsep(&s
, ",")) != NULL
) {
5953 if (!strcmp(token
, "nosocket"))
5954 cgroup_memory_nosocket
= true;
5955 if (!strcmp(token
, "nokmem"))
5956 cgroup_memory_nokmem
= true;
5960 __setup("cgroup.memory=", cgroup_memory
);
5963 * subsys_initcall() for memory controller.
5965 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
5966 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
5967 * basically everything that doesn't depend on a specific mem_cgroup structure
5968 * should be initialized from here.
5970 static int __init
mem_cgroup_init(void)
5976 * Kmem cache creation is mostly done with the slab_mutex held,
5977 * so use a workqueue with limited concurrency to avoid stalling
5978 * all worker threads in case lots of cgroups are created and
5979 * destroyed simultaneously.
5981 memcg_kmem_cache_wq
= alloc_workqueue("memcg_kmem_cache", 0, 1);
5982 BUG_ON(!memcg_kmem_cache_wq
);
5985 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD
, "mm/memctrl:dead", NULL
,
5986 memcg_hotplug_cpu_dead
);
5988 for_each_possible_cpu(cpu
)
5989 INIT_WORK(&per_cpu_ptr(&memcg_stock
, cpu
)->work
,
5992 for_each_node(node
) {
5993 struct mem_cgroup_tree_per_node
*rtpn
;
5995 rtpn
= kzalloc_node(sizeof(*rtpn
), GFP_KERNEL
,
5996 node_online(node
) ? node
: NUMA_NO_NODE
);
5998 rtpn
->rb_root
= RB_ROOT
;
5999 rtpn
->rb_rightmost
= NULL
;
6000 spin_lock_init(&rtpn
->lock
);
6001 soft_limit_tree
.rb_tree_per_node
[node
] = rtpn
;
6006 subsys_initcall(mem_cgroup_init
);
6008 #ifdef CONFIG_MEMCG_SWAP
6009 static struct mem_cgroup
*mem_cgroup_id_get_online(struct mem_cgroup
*memcg
)
6011 while (!atomic_inc_not_zero(&memcg
->id
.ref
)) {
6013 * The root cgroup cannot be destroyed, so it's refcount must
6016 if (WARN_ON_ONCE(memcg
== root_mem_cgroup
)) {
6020 memcg
= parent_mem_cgroup(memcg
);
6022 memcg
= root_mem_cgroup
;
6028 * mem_cgroup_swapout - transfer a memsw charge to swap
6029 * @page: page whose memsw charge to transfer
6030 * @entry: swap entry to move the charge to
6032 * Transfer the memsw charge of @page to @entry.
6034 void mem_cgroup_swapout(struct page
*page
, swp_entry_t entry
)
6036 struct mem_cgroup
*memcg
, *swap_memcg
;
6037 unsigned int nr_entries
;
6038 unsigned short oldid
;
6040 VM_BUG_ON_PAGE(PageLRU(page
), page
);
6041 VM_BUG_ON_PAGE(page_count(page
), page
);
6043 if (!do_memsw_account())
6046 memcg
= page
->mem_cgroup
;
6048 /* Readahead page, never charged */
6053 * In case the memcg owning these pages has been offlined and doesn't
6054 * have an ID allocated to it anymore, charge the closest online
6055 * ancestor for the swap instead and transfer the memory+swap charge.
6057 swap_memcg
= mem_cgroup_id_get_online(memcg
);
6058 nr_entries
= hpage_nr_pages(page
);
6059 /* Get references for the tail pages, too */
6061 mem_cgroup_id_get_many(swap_memcg
, nr_entries
- 1);
6062 oldid
= swap_cgroup_record(entry
, mem_cgroup_id(swap_memcg
),
6064 VM_BUG_ON_PAGE(oldid
, page
);
6065 mem_cgroup_swap_statistics(swap_memcg
, nr_entries
);
6067 page
->mem_cgroup
= NULL
;
6069 if (!mem_cgroup_is_root(memcg
))
6070 page_counter_uncharge(&memcg
->memory
, nr_entries
);
6072 if (memcg
!= swap_memcg
) {
6073 if (!mem_cgroup_is_root(swap_memcg
))
6074 page_counter_charge(&swap_memcg
->memsw
, nr_entries
);
6075 page_counter_uncharge(&memcg
->memsw
, nr_entries
);
6079 * Interrupts should be disabled here because the caller holds the
6080 * mapping->tree_lock lock which is taken with interrupts-off. It is
6081 * important here to have the interrupts disabled because it is the
6082 * only synchronisation we have for udpating the per-CPU variables.
6084 VM_BUG_ON(!irqs_disabled());
6085 mem_cgroup_charge_statistics(memcg
, page
, PageTransHuge(page
),
6087 memcg_check_events(memcg
, page
);
6089 if (!mem_cgroup_is_root(memcg
))
6090 css_put_many(&memcg
->css
, nr_entries
);
6094 * mem_cgroup_try_charge_swap - try charging swap space for a page
6095 * @page: page being added to swap
6096 * @entry: swap entry to charge
6098 * Try to charge @page's memcg for the swap space at @entry.
6100 * Returns 0 on success, -ENOMEM on failure.
6102 int mem_cgroup_try_charge_swap(struct page
*page
, swp_entry_t entry
)
6104 unsigned int nr_pages
= hpage_nr_pages(page
);
6105 struct page_counter
*counter
;
6106 struct mem_cgroup
*memcg
;
6107 unsigned short oldid
;
6109 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys
) || !do_swap_account
)
6112 memcg
= page
->mem_cgroup
;
6114 /* Readahead page, never charged */
6118 memcg
= mem_cgroup_id_get_online(memcg
);
6120 if (!mem_cgroup_is_root(memcg
) &&
6121 !page_counter_try_charge(&memcg
->swap
, nr_pages
, &counter
)) {
6122 mem_cgroup_id_put(memcg
);
6126 /* Get references for the tail pages, too */
6128 mem_cgroup_id_get_many(memcg
, nr_pages
- 1);
6129 oldid
= swap_cgroup_record(entry
, mem_cgroup_id(memcg
), nr_pages
);
6130 VM_BUG_ON_PAGE(oldid
, page
);
6131 mem_cgroup_swap_statistics(memcg
, nr_pages
);
6137 * mem_cgroup_uncharge_swap - uncharge swap space
6138 * @entry: swap entry to uncharge
6139 * @nr_pages: the amount of swap space to uncharge
6141 void mem_cgroup_uncharge_swap(swp_entry_t entry
, unsigned int nr_pages
)
6143 struct mem_cgroup
*memcg
;
6146 if (!do_swap_account
)
6149 id
= swap_cgroup_record(entry
, 0, nr_pages
);
6151 memcg
= mem_cgroup_from_id(id
);
6153 if (!mem_cgroup_is_root(memcg
)) {
6154 if (cgroup_subsys_on_dfl(memory_cgrp_subsys
))
6155 page_counter_uncharge(&memcg
->swap
, nr_pages
);
6157 page_counter_uncharge(&memcg
->memsw
, nr_pages
);
6159 mem_cgroup_swap_statistics(memcg
, -nr_pages
);
6160 mem_cgroup_id_put_many(memcg
, nr_pages
);
6165 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup
*memcg
)
6167 long nr_swap_pages
= get_nr_swap_pages();
6169 if (!do_swap_account
|| !cgroup_subsys_on_dfl(memory_cgrp_subsys
))
6170 return nr_swap_pages
;
6171 for (; memcg
!= root_mem_cgroup
; memcg
= parent_mem_cgroup(memcg
))
6172 nr_swap_pages
= min_t(long, nr_swap_pages
,
6173 READ_ONCE(memcg
->swap
.limit
) -
6174 page_counter_read(&memcg
->swap
));
6175 return nr_swap_pages
;
6178 bool mem_cgroup_swap_full(struct page
*page
)
6180 struct mem_cgroup
*memcg
;
6182 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
6186 if (!do_swap_account
|| !cgroup_subsys_on_dfl(memory_cgrp_subsys
))
6189 memcg
= page
->mem_cgroup
;
6193 for (; memcg
!= root_mem_cgroup
; memcg
= parent_mem_cgroup(memcg
))
6194 if (page_counter_read(&memcg
->swap
) * 2 >= memcg
->swap
.limit
)
6200 /* for remember boot option*/
6201 #ifdef CONFIG_MEMCG_SWAP_ENABLED
6202 static int really_do_swap_account __initdata
= 1;
6204 static int really_do_swap_account __initdata
;
6207 static int __init
enable_swap_account(char *s
)
6209 if (!strcmp(s
, "1"))
6210 really_do_swap_account
= 1;
6211 else if (!strcmp(s
, "0"))
6212 really_do_swap_account
= 0;
6215 __setup("swapaccount=", enable_swap_account
);
6217 static u64
swap_current_read(struct cgroup_subsys_state
*css
,
6220 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
6222 return (u64
)page_counter_read(&memcg
->swap
) * PAGE_SIZE
;
6225 static int swap_max_show(struct seq_file
*m
, void *v
)
6227 struct mem_cgroup
*memcg
= mem_cgroup_from_css(seq_css(m
));
6228 unsigned long max
= READ_ONCE(memcg
->swap
.limit
);
6230 if (max
== PAGE_COUNTER_MAX
)
6231 seq_puts(m
, "max\n");
6233 seq_printf(m
, "%llu\n", (u64
)max
* PAGE_SIZE
);
6238 static ssize_t
swap_max_write(struct kernfs_open_file
*of
,
6239 char *buf
, size_t nbytes
, loff_t off
)
6241 struct mem_cgroup
*memcg
= mem_cgroup_from_css(of_css(of
));
6245 buf
= strstrip(buf
);
6246 err
= page_counter_memparse(buf
, "max", &max
);
6250 mutex_lock(&memcg_limit_mutex
);
6251 err
= page_counter_limit(&memcg
->swap
, max
);
6252 mutex_unlock(&memcg_limit_mutex
);
6259 static struct cftype swap_files
[] = {
6261 .name
= "swap.current",
6262 .flags
= CFTYPE_NOT_ON_ROOT
,
6263 .read_u64
= swap_current_read
,
6267 .flags
= CFTYPE_NOT_ON_ROOT
,
6268 .seq_show
= swap_max_show
,
6269 .write
= swap_max_write
,
6274 static struct cftype memsw_cgroup_files
[] = {
6276 .name
= "memsw.usage_in_bytes",
6277 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_USAGE
),
6278 .read_u64
= mem_cgroup_read_u64
,
6281 .name
= "memsw.max_usage_in_bytes",
6282 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_MAX_USAGE
),
6283 .write
= mem_cgroup_reset
,
6284 .read_u64
= mem_cgroup_read_u64
,
6287 .name
= "memsw.limit_in_bytes",
6288 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_LIMIT
),
6289 .write
= mem_cgroup_write
,
6290 .read_u64
= mem_cgroup_read_u64
,
6293 .name
= "memsw.failcnt",
6294 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_FAILCNT
),
6295 .write
= mem_cgroup_reset
,
6296 .read_u64
= mem_cgroup_read_u64
,
6298 { }, /* terminate */
6301 static int __init
mem_cgroup_swap_init(void)
6303 if (!mem_cgroup_disabled() && really_do_swap_account
) {
6304 do_swap_account
= 1;
6305 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys
,
6307 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys
,
6308 memsw_cgroup_files
));
6312 subsys_initcall(mem_cgroup_swap_init
);
6314 #endif /* CONFIG_MEMCG_SWAP */