tcp: make sure EPOLLOUT wont be missed
[linux-stable.git] / mm / memcontrol.c
blob84e4c23ed6061b55a3215c13c19b06d7419d9073
1 /* memcontrol.c - Memory Controller
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
17 * Native page reclaim
18 * Charge lifetime sanitation
19 * Lockless page tracking & accounting
20 * Unified hierarchy configuration model
21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23 * This program is free software; you can redistribute it and/or modify
24 * it under the terms of the GNU General Public License as published by
25 * the Free Software Foundation; either version 2 of the License, or
26 * (at your option) any later version.
28 * This program is distributed in the hope that it will be useful,
29 * but WITHOUT ANY WARRANTY; without even the implied warranty of
30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
31 * GNU General Public License for more details.
34 #include <linux/page_counter.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cgroup.h>
37 #include <linux/mm.h>
38 #include <linux/sched/mm.h>
39 #include <linux/shmem_fs.h>
40 #include <linux/hugetlb.h>
41 #include <linux/pagemap.h>
42 #include <linux/smp.h>
43 #include <linux/page-flags.h>
44 #include <linux/backing-dev.h>
45 #include <linux/bit_spinlock.h>
46 #include <linux/rcupdate.h>
47 #include <linux/limits.h>
48 #include <linux/export.h>
49 #include <linux/mutex.h>
50 #include <linux/rbtree.h>
51 #include <linux/slab.h>
52 #include <linux/swap.h>
53 #include <linux/swapops.h>
54 #include <linux/spinlock.h>
55 #include <linux/eventfd.h>
56 #include <linux/poll.h>
57 #include <linux/sort.h>
58 #include <linux/fs.h>
59 #include <linux/seq_file.h>
60 #include <linux/vmpressure.h>
61 #include <linux/mm_inline.h>
62 #include <linux/swap_cgroup.h>
63 #include <linux/cpu.h>
64 #include <linux/oom.h>
65 #include <linux/lockdep.h>
66 #include <linux/file.h>
67 #include <linux/tracehook.h>
68 #include "internal.h"
69 #include <net/sock.h>
70 #include <net/ip.h>
71 #include "slab.h"
73 #include <linux/uaccess.h>
75 #include <trace/events/vmscan.h>
77 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
78 EXPORT_SYMBOL(memory_cgrp_subsys);
80 struct mem_cgroup *root_mem_cgroup __read_mostly;
82 #define MEM_CGROUP_RECLAIM_RETRIES 5
84 /* Socket memory accounting disabled? */
85 static bool cgroup_memory_nosocket;
87 /* Kernel memory accounting disabled? */
88 static bool cgroup_memory_nokmem;
90 /* Whether the swap controller is active */
91 #ifdef CONFIG_MEMCG_SWAP
92 int do_swap_account __read_mostly;
93 #else
94 #define do_swap_account 0
95 #endif
97 /* Whether legacy memory+swap accounting is active */
98 static bool do_memsw_account(void)
100 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
103 static const char *const mem_cgroup_lru_names[] = {
104 "inactive_anon",
105 "active_anon",
106 "inactive_file",
107 "active_file",
108 "unevictable",
111 #define THRESHOLDS_EVENTS_TARGET 128
112 #define SOFTLIMIT_EVENTS_TARGET 1024
113 #define NUMAINFO_EVENTS_TARGET 1024
116 * Cgroups above their limits are maintained in a RB-Tree, independent of
117 * their hierarchy representation
120 struct mem_cgroup_tree_per_node {
121 struct rb_root rb_root;
122 struct rb_node *rb_rightmost;
123 spinlock_t lock;
126 struct mem_cgroup_tree {
127 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
130 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
132 /* for OOM */
133 struct mem_cgroup_eventfd_list {
134 struct list_head list;
135 struct eventfd_ctx *eventfd;
139 * cgroup_event represents events which userspace want to receive.
141 struct mem_cgroup_event {
143 * memcg which the event belongs to.
145 struct mem_cgroup *memcg;
147 * eventfd to signal userspace about the event.
149 struct eventfd_ctx *eventfd;
151 * Each of these stored in a list by the cgroup.
153 struct list_head list;
155 * register_event() callback will be used to add new userspace
156 * waiter for changes related to this event. Use eventfd_signal()
157 * on eventfd to send notification to userspace.
159 int (*register_event)(struct mem_cgroup *memcg,
160 struct eventfd_ctx *eventfd, const char *args);
162 * unregister_event() callback will be called when userspace closes
163 * the eventfd or on cgroup removing. This callback must be set,
164 * if you want provide notification functionality.
166 void (*unregister_event)(struct mem_cgroup *memcg,
167 struct eventfd_ctx *eventfd);
169 * All fields below needed to unregister event when
170 * userspace closes eventfd.
172 poll_table pt;
173 wait_queue_head_t *wqh;
174 wait_queue_entry_t wait;
175 struct work_struct remove;
178 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
179 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
181 /* Stuffs for move charges at task migration. */
183 * Types of charges to be moved.
185 #define MOVE_ANON 0x1U
186 #define MOVE_FILE 0x2U
187 #define MOVE_MASK (MOVE_ANON | MOVE_FILE)
189 /* "mc" and its members are protected by cgroup_mutex */
190 static struct move_charge_struct {
191 spinlock_t lock; /* for from, to */
192 struct mm_struct *mm;
193 struct mem_cgroup *from;
194 struct mem_cgroup *to;
195 unsigned long flags;
196 unsigned long precharge;
197 unsigned long moved_charge;
198 unsigned long moved_swap;
199 struct task_struct *moving_task; /* a task moving charges */
200 wait_queue_head_t waitq; /* a waitq for other context */
201 } mc = {
202 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
203 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
207 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
208 * limit reclaim to prevent infinite loops, if they ever occur.
210 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
211 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
213 enum charge_type {
214 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
215 MEM_CGROUP_CHARGE_TYPE_ANON,
216 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
217 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
218 NR_CHARGE_TYPE,
221 /* for encoding cft->private value on file */
222 enum res_type {
223 _MEM,
224 _MEMSWAP,
225 _OOM_TYPE,
226 _KMEM,
227 _TCP,
230 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
231 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
232 #define MEMFILE_ATTR(val) ((val) & 0xffff)
233 /* Used for OOM nofiier */
234 #define OOM_CONTROL (0)
236 /* Some nice accessors for the vmpressure. */
237 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
239 if (!memcg)
240 memcg = root_mem_cgroup;
241 return &memcg->vmpressure;
244 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
246 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
249 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
251 return (memcg == root_mem_cgroup);
254 #ifndef CONFIG_SLOB
256 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
257 * The main reason for not using cgroup id for this:
258 * this works better in sparse environments, where we have a lot of memcgs,
259 * but only a few kmem-limited. Or also, if we have, for instance, 200
260 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
261 * 200 entry array for that.
263 * The current size of the caches array is stored in memcg_nr_cache_ids. It
264 * will double each time we have to increase it.
266 static DEFINE_IDA(memcg_cache_ida);
267 int memcg_nr_cache_ids;
269 /* Protects memcg_nr_cache_ids */
270 static DECLARE_RWSEM(memcg_cache_ids_sem);
272 void memcg_get_cache_ids(void)
274 down_read(&memcg_cache_ids_sem);
277 void memcg_put_cache_ids(void)
279 up_read(&memcg_cache_ids_sem);
283 * MIN_SIZE is different than 1, because we would like to avoid going through
284 * the alloc/free process all the time. In a small machine, 4 kmem-limited
285 * cgroups is a reasonable guess. In the future, it could be a parameter or
286 * tunable, but that is strictly not necessary.
288 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
289 * this constant directly from cgroup, but it is understandable that this is
290 * better kept as an internal representation in cgroup.c. In any case, the
291 * cgrp_id space is not getting any smaller, and we don't have to necessarily
292 * increase ours as well if it increases.
294 #define MEMCG_CACHES_MIN_SIZE 4
295 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
298 * A lot of the calls to the cache allocation functions are expected to be
299 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
300 * conditional to this static branch, we'll have to allow modules that does
301 * kmem_cache_alloc and the such to see this symbol as well
303 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
304 EXPORT_SYMBOL(memcg_kmem_enabled_key);
306 struct workqueue_struct *memcg_kmem_cache_wq;
308 #endif /* !CONFIG_SLOB */
311 * mem_cgroup_css_from_page - css of the memcg associated with a page
312 * @page: page of interest
314 * If memcg is bound to the default hierarchy, css of the memcg associated
315 * with @page is returned. The returned css remains associated with @page
316 * until it is released.
318 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
319 * is returned.
321 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
323 struct mem_cgroup *memcg;
325 memcg = page->mem_cgroup;
327 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
328 memcg = root_mem_cgroup;
330 return &memcg->css;
334 * page_cgroup_ino - return inode number of the memcg a page is charged to
335 * @page: the page
337 * Look up the closest online ancestor of the memory cgroup @page is charged to
338 * and return its inode number or 0 if @page is not charged to any cgroup. It
339 * is safe to call this function without holding a reference to @page.
341 * Note, this function is inherently racy, because there is nothing to prevent
342 * the cgroup inode from getting torn down and potentially reallocated a moment
343 * after page_cgroup_ino() returns, so it only should be used by callers that
344 * do not care (such as procfs interfaces).
346 ino_t page_cgroup_ino(struct page *page)
348 struct mem_cgroup *memcg;
349 unsigned long ino = 0;
351 rcu_read_lock();
352 memcg = READ_ONCE(page->mem_cgroup);
353 while (memcg && !(memcg->css.flags & CSS_ONLINE))
354 memcg = parent_mem_cgroup(memcg);
355 if (memcg)
356 ino = cgroup_ino(memcg->css.cgroup);
357 rcu_read_unlock();
358 return ino;
361 static struct mem_cgroup_per_node *
362 mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
364 int nid = page_to_nid(page);
366 return memcg->nodeinfo[nid];
369 static struct mem_cgroup_tree_per_node *
370 soft_limit_tree_node(int nid)
372 return soft_limit_tree.rb_tree_per_node[nid];
375 static struct mem_cgroup_tree_per_node *
376 soft_limit_tree_from_page(struct page *page)
378 int nid = page_to_nid(page);
380 return soft_limit_tree.rb_tree_per_node[nid];
383 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
384 struct mem_cgroup_tree_per_node *mctz,
385 unsigned long new_usage_in_excess)
387 struct rb_node **p = &mctz->rb_root.rb_node;
388 struct rb_node *parent = NULL;
389 struct mem_cgroup_per_node *mz_node;
390 bool rightmost = true;
392 if (mz->on_tree)
393 return;
395 mz->usage_in_excess = new_usage_in_excess;
396 if (!mz->usage_in_excess)
397 return;
398 while (*p) {
399 parent = *p;
400 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
401 tree_node);
402 if (mz->usage_in_excess < mz_node->usage_in_excess) {
403 p = &(*p)->rb_left;
404 rightmost = false;
408 * We can't avoid mem cgroups that are over their soft
409 * limit by the same amount
411 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
412 p = &(*p)->rb_right;
415 if (rightmost)
416 mctz->rb_rightmost = &mz->tree_node;
418 rb_link_node(&mz->tree_node, parent, p);
419 rb_insert_color(&mz->tree_node, &mctz->rb_root);
420 mz->on_tree = true;
423 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
424 struct mem_cgroup_tree_per_node *mctz)
426 if (!mz->on_tree)
427 return;
429 if (&mz->tree_node == mctz->rb_rightmost)
430 mctz->rb_rightmost = rb_prev(&mz->tree_node);
432 rb_erase(&mz->tree_node, &mctz->rb_root);
433 mz->on_tree = false;
436 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
437 struct mem_cgroup_tree_per_node *mctz)
439 unsigned long flags;
441 spin_lock_irqsave(&mctz->lock, flags);
442 __mem_cgroup_remove_exceeded(mz, mctz);
443 spin_unlock_irqrestore(&mctz->lock, flags);
446 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
448 unsigned long nr_pages = page_counter_read(&memcg->memory);
449 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
450 unsigned long excess = 0;
452 if (nr_pages > soft_limit)
453 excess = nr_pages - soft_limit;
455 return excess;
458 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
460 unsigned long excess;
461 struct mem_cgroup_per_node *mz;
462 struct mem_cgroup_tree_per_node *mctz;
464 mctz = soft_limit_tree_from_page(page);
465 if (!mctz)
466 return;
468 * Necessary to update all ancestors when hierarchy is used.
469 * because their event counter is not touched.
471 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
472 mz = mem_cgroup_page_nodeinfo(memcg, page);
473 excess = soft_limit_excess(memcg);
475 * We have to update the tree if mz is on RB-tree or
476 * mem is over its softlimit.
478 if (excess || mz->on_tree) {
479 unsigned long flags;
481 spin_lock_irqsave(&mctz->lock, flags);
482 /* if on-tree, remove it */
483 if (mz->on_tree)
484 __mem_cgroup_remove_exceeded(mz, mctz);
486 * Insert again. mz->usage_in_excess will be updated.
487 * If excess is 0, no tree ops.
489 __mem_cgroup_insert_exceeded(mz, mctz, excess);
490 spin_unlock_irqrestore(&mctz->lock, flags);
495 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
497 struct mem_cgroup_tree_per_node *mctz;
498 struct mem_cgroup_per_node *mz;
499 int nid;
501 for_each_node(nid) {
502 mz = mem_cgroup_nodeinfo(memcg, nid);
503 mctz = soft_limit_tree_node(nid);
504 if (mctz)
505 mem_cgroup_remove_exceeded(mz, mctz);
509 static struct mem_cgroup_per_node *
510 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
512 struct mem_cgroup_per_node *mz;
514 retry:
515 mz = NULL;
516 if (!mctz->rb_rightmost)
517 goto done; /* Nothing to reclaim from */
519 mz = rb_entry(mctz->rb_rightmost,
520 struct mem_cgroup_per_node, tree_node);
522 * Remove the node now but someone else can add it back,
523 * we will to add it back at the end of reclaim to its correct
524 * position in the tree.
526 __mem_cgroup_remove_exceeded(mz, mctz);
527 if (!soft_limit_excess(mz->memcg) ||
528 !css_tryget_online(&mz->memcg->css))
529 goto retry;
530 done:
531 return mz;
534 static struct mem_cgroup_per_node *
535 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
537 struct mem_cgroup_per_node *mz;
539 spin_lock_irq(&mctz->lock);
540 mz = __mem_cgroup_largest_soft_limit_node(mctz);
541 spin_unlock_irq(&mctz->lock);
542 return mz;
546 * Return page count for single (non recursive) @memcg.
548 * Implementation Note: reading percpu statistics for memcg.
550 * Both of vmstat[] and percpu_counter has threshold and do periodic
551 * synchronization to implement "quick" read. There are trade-off between
552 * reading cost and precision of value. Then, we may have a chance to implement
553 * a periodic synchronization of counter in memcg's counter.
555 * But this _read() function is used for user interface now. The user accounts
556 * memory usage by memory cgroup and he _always_ requires exact value because
557 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
558 * have to visit all online cpus and make sum. So, for now, unnecessary
559 * synchronization is not implemented. (just implemented for cpu hotplug)
561 * If there are kernel internal actions which can make use of some not-exact
562 * value, and reading all cpu value can be performance bottleneck in some
563 * common workload, threshold and synchronization as vmstat[] should be
564 * implemented.
566 * The parameter idx can be of type enum memcg_event_item or vm_event_item.
569 static unsigned long memcg_sum_events(struct mem_cgroup *memcg,
570 int event)
572 unsigned long val = 0;
573 int cpu;
575 for_each_possible_cpu(cpu)
576 val += per_cpu(memcg->stat->events[event], cpu);
577 return val;
580 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
581 struct page *page,
582 bool compound, int nr_pages)
585 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
586 * counted as CACHE even if it's on ANON LRU.
588 if (PageAnon(page))
589 __this_cpu_add(memcg->stat->count[MEMCG_RSS], nr_pages);
590 else {
591 __this_cpu_add(memcg->stat->count[MEMCG_CACHE], nr_pages);
592 if (PageSwapBacked(page))
593 __this_cpu_add(memcg->stat->count[NR_SHMEM], nr_pages);
596 if (compound) {
597 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
598 __this_cpu_add(memcg->stat->count[MEMCG_RSS_HUGE], nr_pages);
601 /* pagein of a big page is an event. So, ignore page size */
602 if (nr_pages > 0)
603 __this_cpu_inc(memcg->stat->events[PGPGIN]);
604 else {
605 __this_cpu_inc(memcg->stat->events[PGPGOUT]);
606 nr_pages = -nr_pages; /* for event */
609 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
612 unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
613 int nid, unsigned int lru_mask)
615 struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg);
616 unsigned long nr = 0;
617 enum lru_list lru;
619 VM_BUG_ON((unsigned)nid >= nr_node_ids);
621 for_each_lru(lru) {
622 if (!(BIT(lru) & lru_mask))
623 continue;
624 nr += mem_cgroup_get_lru_size(lruvec, lru);
626 return nr;
629 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
630 unsigned int lru_mask)
632 unsigned long nr = 0;
633 int nid;
635 for_each_node_state(nid, N_MEMORY)
636 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
637 return nr;
640 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
641 enum mem_cgroup_events_target target)
643 unsigned long val, next;
645 val = __this_cpu_read(memcg->stat->nr_page_events);
646 next = __this_cpu_read(memcg->stat->targets[target]);
647 /* from time_after() in jiffies.h */
648 if ((long)(next - val) < 0) {
649 switch (target) {
650 case MEM_CGROUP_TARGET_THRESH:
651 next = val + THRESHOLDS_EVENTS_TARGET;
652 break;
653 case MEM_CGROUP_TARGET_SOFTLIMIT:
654 next = val + SOFTLIMIT_EVENTS_TARGET;
655 break;
656 case MEM_CGROUP_TARGET_NUMAINFO:
657 next = val + NUMAINFO_EVENTS_TARGET;
658 break;
659 default:
660 break;
662 __this_cpu_write(memcg->stat->targets[target], next);
663 return true;
665 return false;
669 * Check events in order.
672 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
674 /* threshold event is triggered in finer grain than soft limit */
675 if (unlikely(mem_cgroup_event_ratelimit(memcg,
676 MEM_CGROUP_TARGET_THRESH))) {
677 bool do_softlimit;
678 bool do_numainfo __maybe_unused;
680 do_softlimit = mem_cgroup_event_ratelimit(memcg,
681 MEM_CGROUP_TARGET_SOFTLIMIT);
682 #if MAX_NUMNODES > 1
683 do_numainfo = mem_cgroup_event_ratelimit(memcg,
684 MEM_CGROUP_TARGET_NUMAINFO);
685 #endif
686 mem_cgroup_threshold(memcg);
687 if (unlikely(do_softlimit))
688 mem_cgroup_update_tree(memcg, page);
689 #if MAX_NUMNODES > 1
690 if (unlikely(do_numainfo))
691 atomic_inc(&memcg->numainfo_events);
692 #endif
696 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
699 * mm_update_next_owner() may clear mm->owner to NULL
700 * if it races with swapoff, page migration, etc.
701 * So this can be called with p == NULL.
703 if (unlikely(!p))
704 return NULL;
706 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
708 EXPORT_SYMBOL(mem_cgroup_from_task);
710 static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
712 struct mem_cgroup *memcg = NULL;
714 rcu_read_lock();
715 do {
717 * Page cache insertions can happen withou an
718 * actual mm context, e.g. during disk probing
719 * on boot, loopback IO, acct() writes etc.
721 if (unlikely(!mm))
722 memcg = root_mem_cgroup;
723 else {
724 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
725 if (unlikely(!memcg))
726 memcg = root_mem_cgroup;
728 } while (!css_tryget_online(&memcg->css));
729 rcu_read_unlock();
730 return memcg;
734 * mem_cgroup_iter - iterate over memory cgroup hierarchy
735 * @root: hierarchy root
736 * @prev: previously returned memcg, NULL on first invocation
737 * @reclaim: cookie for shared reclaim walks, NULL for full walks
739 * Returns references to children of the hierarchy below @root, or
740 * @root itself, or %NULL after a full round-trip.
742 * Caller must pass the return value in @prev on subsequent
743 * invocations for reference counting, or use mem_cgroup_iter_break()
744 * to cancel a hierarchy walk before the round-trip is complete.
746 * Reclaimers can specify a zone and a priority level in @reclaim to
747 * divide up the memcgs in the hierarchy among all concurrent
748 * reclaimers operating on the same zone and priority.
750 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
751 struct mem_cgroup *prev,
752 struct mem_cgroup_reclaim_cookie *reclaim)
754 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
755 struct cgroup_subsys_state *css = NULL;
756 struct mem_cgroup *memcg = NULL;
757 struct mem_cgroup *pos = NULL;
759 if (mem_cgroup_disabled())
760 return NULL;
762 if (!root)
763 root = root_mem_cgroup;
765 if (prev && !reclaim)
766 pos = prev;
768 if (!root->use_hierarchy && root != root_mem_cgroup) {
769 if (prev)
770 goto out;
771 return root;
774 rcu_read_lock();
776 if (reclaim) {
777 struct mem_cgroup_per_node *mz;
779 mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
780 iter = &mz->iter[reclaim->priority];
782 if (prev && reclaim->generation != iter->generation)
783 goto out_unlock;
785 while (1) {
786 pos = READ_ONCE(iter->position);
787 if (!pos || css_tryget(&pos->css))
788 break;
790 * css reference reached zero, so iter->position will
791 * be cleared by ->css_released. However, we should not
792 * rely on this happening soon, because ->css_released
793 * is called from a work queue, and by busy-waiting we
794 * might block it. So we clear iter->position right
795 * away.
797 (void)cmpxchg(&iter->position, pos, NULL);
801 if (pos)
802 css = &pos->css;
804 for (;;) {
805 css = css_next_descendant_pre(css, &root->css);
806 if (!css) {
808 * Reclaimers share the hierarchy walk, and a
809 * new one might jump in right at the end of
810 * the hierarchy - make sure they see at least
811 * one group and restart from the beginning.
813 if (!prev)
814 continue;
815 break;
819 * Verify the css and acquire a reference. The root
820 * is provided by the caller, so we know it's alive
821 * and kicking, and don't take an extra reference.
823 memcg = mem_cgroup_from_css(css);
825 if (css == &root->css)
826 break;
828 if (css_tryget(css))
829 break;
831 memcg = NULL;
834 if (reclaim) {
836 * The position could have already been updated by a competing
837 * thread, so check that the value hasn't changed since we read
838 * it to avoid reclaiming from the same cgroup twice.
840 (void)cmpxchg(&iter->position, pos, memcg);
842 if (pos)
843 css_put(&pos->css);
845 if (!memcg)
846 iter->generation++;
847 else if (!prev)
848 reclaim->generation = iter->generation;
851 out_unlock:
852 rcu_read_unlock();
853 out:
854 if (prev && prev != root)
855 css_put(&prev->css);
857 return memcg;
861 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
862 * @root: hierarchy root
863 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
865 void mem_cgroup_iter_break(struct mem_cgroup *root,
866 struct mem_cgroup *prev)
868 if (!root)
869 root = root_mem_cgroup;
870 if (prev && prev != root)
871 css_put(&prev->css);
874 static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
875 struct mem_cgroup *dead_memcg)
877 struct mem_cgroup_reclaim_iter *iter;
878 struct mem_cgroup_per_node *mz;
879 int nid;
880 int i;
882 for_each_node(nid) {
883 mz = mem_cgroup_nodeinfo(from, nid);
884 for (i = 0; i <= DEF_PRIORITY; i++) {
885 iter = &mz->iter[i];
886 cmpxchg(&iter->position,
887 dead_memcg, NULL);
892 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
894 struct mem_cgroup *memcg = dead_memcg;
895 struct mem_cgroup *last;
897 do {
898 __invalidate_reclaim_iterators(memcg, dead_memcg);
899 last = memcg;
900 } while ((memcg = parent_mem_cgroup(memcg)));
903 * When cgruop1 non-hierarchy mode is used,
904 * parent_mem_cgroup() does not walk all the way up to the
905 * cgroup root (root_mem_cgroup). So we have to handle
906 * dead_memcg from cgroup root separately.
908 if (last != root_mem_cgroup)
909 __invalidate_reclaim_iterators(root_mem_cgroup,
910 dead_memcg);
914 * Iteration constructs for visiting all cgroups (under a tree). If
915 * loops are exited prematurely (break), mem_cgroup_iter_break() must
916 * be used for reference counting.
918 #define for_each_mem_cgroup_tree(iter, root) \
919 for (iter = mem_cgroup_iter(root, NULL, NULL); \
920 iter != NULL; \
921 iter = mem_cgroup_iter(root, iter, NULL))
923 #define for_each_mem_cgroup(iter) \
924 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
925 iter != NULL; \
926 iter = mem_cgroup_iter(NULL, iter, NULL))
929 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
930 * @memcg: hierarchy root
931 * @fn: function to call for each task
932 * @arg: argument passed to @fn
934 * This function iterates over tasks attached to @memcg or to any of its
935 * descendants and calls @fn for each task. If @fn returns a non-zero
936 * value, the function breaks the iteration loop and returns the value.
937 * Otherwise, it will iterate over all tasks and return 0.
939 * This function must not be called for the root memory cgroup.
941 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
942 int (*fn)(struct task_struct *, void *), void *arg)
944 struct mem_cgroup *iter;
945 int ret = 0;
947 BUG_ON(memcg == root_mem_cgroup);
949 for_each_mem_cgroup_tree(iter, memcg) {
950 struct css_task_iter it;
951 struct task_struct *task;
953 css_task_iter_start(&iter->css, 0, &it);
954 while (!ret && (task = css_task_iter_next(&it)))
955 ret = fn(task, arg);
956 css_task_iter_end(&it);
957 if (ret) {
958 mem_cgroup_iter_break(memcg, iter);
959 break;
962 return ret;
966 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
967 * @page: the page
968 * @zone: zone of the page
970 * This function is only safe when following the LRU page isolation
971 * and putback protocol: the LRU lock must be held, and the page must
972 * either be PageLRU() or the caller must have isolated/allocated it.
974 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
976 struct mem_cgroup_per_node *mz;
977 struct mem_cgroup *memcg;
978 struct lruvec *lruvec;
980 if (mem_cgroup_disabled()) {
981 lruvec = &pgdat->lruvec;
982 goto out;
985 memcg = page->mem_cgroup;
987 * Swapcache readahead pages are added to the LRU - and
988 * possibly migrated - before they are charged.
990 if (!memcg)
991 memcg = root_mem_cgroup;
993 mz = mem_cgroup_page_nodeinfo(memcg, page);
994 lruvec = &mz->lruvec;
995 out:
997 * Since a node can be onlined after the mem_cgroup was created,
998 * we have to be prepared to initialize lruvec->zone here;
999 * and if offlined then reonlined, we need to reinitialize it.
1001 if (unlikely(lruvec->pgdat != pgdat))
1002 lruvec->pgdat = pgdat;
1003 return lruvec;
1007 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1008 * @lruvec: mem_cgroup per zone lru vector
1009 * @lru: index of lru list the page is sitting on
1010 * @zid: zone id of the accounted pages
1011 * @nr_pages: positive when adding or negative when removing
1013 * This function must be called under lru_lock, just before a page is added
1014 * to or just after a page is removed from an lru list (that ordering being
1015 * so as to allow it to check that lru_size 0 is consistent with list_empty).
1017 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1018 int zid, int nr_pages)
1020 struct mem_cgroup_per_node *mz;
1021 unsigned long *lru_size;
1022 long size;
1024 if (mem_cgroup_disabled())
1025 return;
1027 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1028 lru_size = &mz->lru_zone_size[zid][lru];
1030 if (nr_pages < 0)
1031 *lru_size += nr_pages;
1033 size = *lru_size;
1034 if (WARN_ONCE(size < 0,
1035 "%s(%p, %d, %d): lru_size %ld\n",
1036 __func__, lruvec, lru, nr_pages, size)) {
1037 VM_BUG_ON(1);
1038 *lru_size = 0;
1041 if (nr_pages > 0)
1042 *lru_size += nr_pages;
1045 bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1047 struct mem_cgroup *task_memcg;
1048 struct task_struct *p;
1049 bool ret;
1051 p = find_lock_task_mm(task);
1052 if (p) {
1053 task_memcg = get_mem_cgroup_from_mm(p->mm);
1054 task_unlock(p);
1055 } else {
1057 * All threads may have already detached their mm's, but the oom
1058 * killer still needs to detect if they have already been oom
1059 * killed to prevent needlessly killing additional tasks.
1061 rcu_read_lock();
1062 task_memcg = mem_cgroup_from_task(task);
1063 css_get(&task_memcg->css);
1064 rcu_read_unlock();
1066 ret = mem_cgroup_is_descendant(task_memcg, memcg);
1067 css_put(&task_memcg->css);
1068 return ret;
1072 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1073 * @memcg: the memory cgroup
1075 * Returns the maximum amount of memory @mem can be charged with, in
1076 * pages.
1078 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1080 unsigned long margin = 0;
1081 unsigned long count;
1082 unsigned long limit;
1084 count = page_counter_read(&memcg->memory);
1085 limit = READ_ONCE(memcg->memory.limit);
1086 if (count < limit)
1087 margin = limit - count;
1089 if (do_memsw_account()) {
1090 count = page_counter_read(&memcg->memsw);
1091 limit = READ_ONCE(memcg->memsw.limit);
1092 if (count <= limit)
1093 margin = min(margin, limit - count);
1094 else
1095 margin = 0;
1098 return margin;
1102 * A routine for checking "mem" is under move_account() or not.
1104 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1105 * moving cgroups. This is for waiting at high-memory pressure
1106 * caused by "move".
1108 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1110 struct mem_cgroup *from;
1111 struct mem_cgroup *to;
1112 bool ret = false;
1114 * Unlike task_move routines, we access mc.to, mc.from not under
1115 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1117 spin_lock(&mc.lock);
1118 from = mc.from;
1119 to = mc.to;
1120 if (!from)
1121 goto unlock;
1123 ret = mem_cgroup_is_descendant(from, memcg) ||
1124 mem_cgroup_is_descendant(to, memcg);
1125 unlock:
1126 spin_unlock(&mc.lock);
1127 return ret;
1130 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1132 if (mc.moving_task && current != mc.moving_task) {
1133 if (mem_cgroup_under_move(memcg)) {
1134 DEFINE_WAIT(wait);
1135 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1136 /* moving charge context might have finished. */
1137 if (mc.moving_task)
1138 schedule();
1139 finish_wait(&mc.waitq, &wait);
1140 return true;
1143 return false;
1146 unsigned int memcg1_stats[] = {
1147 MEMCG_CACHE,
1148 MEMCG_RSS,
1149 MEMCG_RSS_HUGE,
1150 NR_SHMEM,
1151 NR_FILE_MAPPED,
1152 NR_FILE_DIRTY,
1153 NR_WRITEBACK,
1154 MEMCG_SWAP,
1157 static const char *const memcg1_stat_names[] = {
1158 "cache",
1159 "rss",
1160 "rss_huge",
1161 "shmem",
1162 "mapped_file",
1163 "dirty",
1164 "writeback",
1165 "swap",
1168 #define K(x) ((x) << (PAGE_SHIFT-10))
1170 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1171 * @memcg: The memory cgroup that went over limit
1172 * @p: Task that is going to be killed
1174 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1175 * enabled
1177 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1179 struct mem_cgroup *iter;
1180 unsigned int i;
1182 rcu_read_lock();
1184 if (p) {
1185 pr_info("Task in ");
1186 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1187 pr_cont(" killed as a result of limit of ");
1188 } else {
1189 pr_info("Memory limit reached of cgroup ");
1192 pr_cont_cgroup_path(memcg->css.cgroup);
1193 pr_cont("\n");
1195 rcu_read_unlock();
1197 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1198 K((u64)page_counter_read(&memcg->memory)),
1199 K((u64)memcg->memory.limit), memcg->memory.failcnt);
1200 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1201 K((u64)page_counter_read(&memcg->memsw)),
1202 K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1203 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1204 K((u64)page_counter_read(&memcg->kmem)),
1205 K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1207 for_each_mem_cgroup_tree(iter, memcg) {
1208 pr_info("Memory cgroup stats for ");
1209 pr_cont_cgroup_path(iter->css.cgroup);
1210 pr_cont(":");
1212 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
1213 if (memcg1_stats[i] == MEMCG_SWAP && !do_swap_account)
1214 continue;
1215 pr_cont(" %s:%luKB", memcg1_stat_names[i],
1216 K(memcg_page_state(iter, memcg1_stats[i])));
1219 for (i = 0; i < NR_LRU_LISTS; i++)
1220 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1221 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1223 pr_cont("\n");
1228 * This function returns the number of memcg under hierarchy tree. Returns
1229 * 1(self count) if no children.
1231 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1233 int num = 0;
1234 struct mem_cgroup *iter;
1236 for_each_mem_cgroup_tree(iter, memcg)
1237 num++;
1238 return num;
1242 * Return the memory (and swap, if configured) limit for a memcg.
1244 unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
1246 unsigned long limit;
1248 limit = memcg->memory.limit;
1249 if (mem_cgroup_swappiness(memcg)) {
1250 unsigned long memsw_limit;
1251 unsigned long swap_limit;
1253 memsw_limit = memcg->memsw.limit;
1254 swap_limit = memcg->swap.limit;
1255 swap_limit = min(swap_limit, (unsigned long)total_swap_pages);
1256 limit = min(limit + swap_limit, memsw_limit);
1258 return limit;
1261 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1262 int order)
1264 struct oom_control oc = {
1265 .zonelist = NULL,
1266 .nodemask = NULL,
1267 .memcg = memcg,
1268 .gfp_mask = gfp_mask,
1269 .order = order,
1271 bool ret;
1273 mutex_lock(&oom_lock);
1274 ret = out_of_memory(&oc);
1275 mutex_unlock(&oom_lock);
1276 return ret;
1279 #if MAX_NUMNODES > 1
1282 * test_mem_cgroup_node_reclaimable
1283 * @memcg: the target memcg
1284 * @nid: the node ID to be checked.
1285 * @noswap : specify true here if the user wants flle only information.
1287 * This function returns whether the specified memcg contains any
1288 * reclaimable pages on a node. Returns true if there are any reclaimable
1289 * pages in the node.
1291 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1292 int nid, bool noswap)
1294 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1295 return true;
1296 if (noswap || !total_swap_pages)
1297 return false;
1298 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1299 return true;
1300 return false;
1305 * Always updating the nodemask is not very good - even if we have an empty
1306 * list or the wrong list here, we can start from some node and traverse all
1307 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1310 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1312 int nid;
1314 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1315 * pagein/pageout changes since the last update.
1317 if (!atomic_read(&memcg->numainfo_events))
1318 return;
1319 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1320 return;
1322 /* make a nodemask where this memcg uses memory from */
1323 memcg->scan_nodes = node_states[N_MEMORY];
1325 for_each_node_mask(nid, node_states[N_MEMORY]) {
1327 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1328 node_clear(nid, memcg->scan_nodes);
1331 atomic_set(&memcg->numainfo_events, 0);
1332 atomic_set(&memcg->numainfo_updating, 0);
1336 * Selecting a node where we start reclaim from. Because what we need is just
1337 * reducing usage counter, start from anywhere is O,K. Considering
1338 * memory reclaim from current node, there are pros. and cons.
1340 * Freeing memory from current node means freeing memory from a node which
1341 * we'll use or we've used. So, it may make LRU bad. And if several threads
1342 * hit limits, it will see a contention on a node. But freeing from remote
1343 * node means more costs for memory reclaim because of memory latency.
1345 * Now, we use round-robin. Better algorithm is welcomed.
1347 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1349 int node;
1351 mem_cgroup_may_update_nodemask(memcg);
1352 node = memcg->last_scanned_node;
1354 node = next_node_in(node, memcg->scan_nodes);
1356 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
1357 * last time it really checked all the LRUs due to rate limiting.
1358 * Fallback to the current node in that case for simplicity.
1360 if (unlikely(node == MAX_NUMNODES))
1361 node = numa_node_id();
1363 memcg->last_scanned_node = node;
1364 return node;
1366 #else
1367 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1369 return 0;
1371 #endif
1373 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1374 pg_data_t *pgdat,
1375 gfp_t gfp_mask,
1376 unsigned long *total_scanned)
1378 struct mem_cgroup *victim = NULL;
1379 int total = 0;
1380 int loop = 0;
1381 unsigned long excess;
1382 unsigned long nr_scanned;
1383 struct mem_cgroup_reclaim_cookie reclaim = {
1384 .pgdat = pgdat,
1385 .priority = 0,
1388 excess = soft_limit_excess(root_memcg);
1390 while (1) {
1391 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1392 if (!victim) {
1393 loop++;
1394 if (loop >= 2) {
1396 * If we have not been able to reclaim
1397 * anything, it might because there are
1398 * no reclaimable pages under this hierarchy
1400 if (!total)
1401 break;
1403 * We want to do more targeted reclaim.
1404 * excess >> 2 is not to excessive so as to
1405 * reclaim too much, nor too less that we keep
1406 * coming back to reclaim from this cgroup
1408 if (total >= (excess >> 2) ||
1409 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1410 break;
1412 continue;
1414 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1415 pgdat, &nr_scanned);
1416 *total_scanned += nr_scanned;
1417 if (!soft_limit_excess(root_memcg))
1418 break;
1420 mem_cgroup_iter_break(root_memcg, victim);
1421 return total;
1424 #ifdef CONFIG_LOCKDEP
1425 static struct lockdep_map memcg_oom_lock_dep_map = {
1426 .name = "memcg_oom_lock",
1428 #endif
1430 static DEFINE_SPINLOCK(memcg_oom_lock);
1433 * Check OOM-Killer is already running under our hierarchy.
1434 * If someone is running, return false.
1436 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1438 struct mem_cgroup *iter, *failed = NULL;
1440 spin_lock(&memcg_oom_lock);
1442 for_each_mem_cgroup_tree(iter, memcg) {
1443 if (iter->oom_lock) {
1445 * this subtree of our hierarchy is already locked
1446 * so we cannot give a lock.
1448 failed = iter;
1449 mem_cgroup_iter_break(memcg, iter);
1450 break;
1451 } else
1452 iter->oom_lock = true;
1455 if (failed) {
1457 * OK, we failed to lock the whole subtree so we have
1458 * to clean up what we set up to the failing subtree
1460 for_each_mem_cgroup_tree(iter, memcg) {
1461 if (iter == failed) {
1462 mem_cgroup_iter_break(memcg, iter);
1463 break;
1465 iter->oom_lock = false;
1467 } else
1468 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1470 spin_unlock(&memcg_oom_lock);
1472 return !failed;
1475 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1477 struct mem_cgroup *iter;
1479 spin_lock(&memcg_oom_lock);
1480 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1481 for_each_mem_cgroup_tree(iter, memcg)
1482 iter->oom_lock = false;
1483 spin_unlock(&memcg_oom_lock);
1486 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1488 struct mem_cgroup *iter;
1490 spin_lock(&memcg_oom_lock);
1491 for_each_mem_cgroup_tree(iter, memcg)
1492 iter->under_oom++;
1493 spin_unlock(&memcg_oom_lock);
1496 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1498 struct mem_cgroup *iter;
1501 * When a new child is created while the hierarchy is under oom,
1502 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1504 spin_lock(&memcg_oom_lock);
1505 for_each_mem_cgroup_tree(iter, memcg)
1506 if (iter->under_oom > 0)
1507 iter->under_oom--;
1508 spin_unlock(&memcg_oom_lock);
1511 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1513 struct oom_wait_info {
1514 struct mem_cgroup *memcg;
1515 wait_queue_entry_t wait;
1518 static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1519 unsigned mode, int sync, void *arg)
1521 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1522 struct mem_cgroup *oom_wait_memcg;
1523 struct oom_wait_info *oom_wait_info;
1525 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1526 oom_wait_memcg = oom_wait_info->memcg;
1528 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1529 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1530 return 0;
1531 return autoremove_wake_function(wait, mode, sync, arg);
1534 static void memcg_oom_recover(struct mem_cgroup *memcg)
1537 * For the following lockless ->under_oom test, the only required
1538 * guarantee is that it must see the state asserted by an OOM when
1539 * this function is called as a result of userland actions
1540 * triggered by the notification of the OOM. This is trivially
1541 * achieved by invoking mem_cgroup_mark_under_oom() before
1542 * triggering notification.
1544 if (memcg && memcg->under_oom)
1545 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1548 static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1550 if (!current->memcg_may_oom)
1551 return;
1553 * We are in the middle of the charge context here, so we
1554 * don't want to block when potentially sitting on a callstack
1555 * that holds all kinds of filesystem and mm locks.
1557 * Also, the caller may handle a failed allocation gracefully
1558 * (like optional page cache readahead) and so an OOM killer
1559 * invocation might not even be necessary.
1561 * That's why we don't do anything here except remember the
1562 * OOM context and then deal with it at the end of the page
1563 * fault when the stack is unwound, the locks are released,
1564 * and when we know whether the fault was overall successful.
1566 css_get(&memcg->css);
1567 current->memcg_in_oom = memcg;
1568 current->memcg_oom_gfp_mask = mask;
1569 current->memcg_oom_order = order;
1573 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1574 * @handle: actually kill/wait or just clean up the OOM state
1576 * This has to be called at the end of a page fault if the memcg OOM
1577 * handler was enabled.
1579 * Memcg supports userspace OOM handling where failed allocations must
1580 * sleep on a waitqueue until the userspace task resolves the
1581 * situation. Sleeping directly in the charge context with all kinds
1582 * of locks held is not a good idea, instead we remember an OOM state
1583 * in the task and mem_cgroup_oom_synchronize() has to be called at
1584 * the end of the page fault to complete the OOM handling.
1586 * Returns %true if an ongoing memcg OOM situation was detected and
1587 * completed, %false otherwise.
1589 bool mem_cgroup_oom_synchronize(bool handle)
1591 struct mem_cgroup *memcg = current->memcg_in_oom;
1592 struct oom_wait_info owait;
1593 bool locked;
1595 /* OOM is global, do not handle */
1596 if (!memcg)
1597 return false;
1599 if (!handle)
1600 goto cleanup;
1602 owait.memcg = memcg;
1603 owait.wait.flags = 0;
1604 owait.wait.func = memcg_oom_wake_function;
1605 owait.wait.private = current;
1606 INIT_LIST_HEAD(&owait.wait.entry);
1608 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1609 mem_cgroup_mark_under_oom(memcg);
1611 locked = mem_cgroup_oom_trylock(memcg);
1613 if (locked)
1614 mem_cgroup_oom_notify(memcg);
1616 if (locked && !memcg->oom_kill_disable) {
1617 mem_cgroup_unmark_under_oom(memcg);
1618 finish_wait(&memcg_oom_waitq, &owait.wait);
1619 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1620 current->memcg_oom_order);
1621 } else {
1622 schedule();
1623 mem_cgroup_unmark_under_oom(memcg);
1624 finish_wait(&memcg_oom_waitq, &owait.wait);
1627 if (locked) {
1628 mem_cgroup_oom_unlock(memcg);
1630 * There is no guarantee that an OOM-lock contender
1631 * sees the wakeups triggered by the OOM kill
1632 * uncharges. Wake any sleepers explicitely.
1634 memcg_oom_recover(memcg);
1636 cleanup:
1637 current->memcg_in_oom = NULL;
1638 css_put(&memcg->css);
1639 return true;
1643 * lock_page_memcg - lock a page->mem_cgroup binding
1644 * @page: the page
1646 * This function protects unlocked LRU pages from being moved to
1647 * another cgroup.
1649 * It ensures lifetime of the returned memcg. Caller is responsible
1650 * for the lifetime of the page; __unlock_page_memcg() is available
1651 * when @page might get freed inside the locked section.
1653 struct mem_cgroup *lock_page_memcg(struct page *page)
1655 struct mem_cgroup *memcg;
1656 unsigned long flags;
1659 * The RCU lock is held throughout the transaction. The fast
1660 * path can get away without acquiring the memcg->move_lock
1661 * because page moving starts with an RCU grace period.
1663 * The RCU lock also protects the memcg from being freed when
1664 * the page state that is going to change is the only thing
1665 * preventing the page itself from being freed. E.g. writeback
1666 * doesn't hold a page reference and relies on PG_writeback to
1667 * keep off truncation, migration and so forth.
1669 rcu_read_lock();
1671 if (mem_cgroup_disabled())
1672 return NULL;
1673 again:
1674 memcg = page->mem_cgroup;
1675 if (unlikely(!memcg))
1676 return NULL;
1678 if (atomic_read(&memcg->moving_account) <= 0)
1679 return memcg;
1681 spin_lock_irqsave(&memcg->move_lock, flags);
1682 if (memcg != page->mem_cgroup) {
1683 spin_unlock_irqrestore(&memcg->move_lock, flags);
1684 goto again;
1688 * When charge migration first begins, we can have locked and
1689 * unlocked page stat updates happening concurrently. Track
1690 * the task who has the lock for unlock_page_memcg().
1692 memcg->move_lock_task = current;
1693 memcg->move_lock_flags = flags;
1695 return memcg;
1697 EXPORT_SYMBOL(lock_page_memcg);
1700 * __unlock_page_memcg - unlock and unpin a memcg
1701 * @memcg: the memcg
1703 * Unlock and unpin a memcg returned by lock_page_memcg().
1705 void __unlock_page_memcg(struct mem_cgroup *memcg)
1707 if (memcg && memcg->move_lock_task == current) {
1708 unsigned long flags = memcg->move_lock_flags;
1710 memcg->move_lock_task = NULL;
1711 memcg->move_lock_flags = 0;
1713 spin_unlock_irqrestore(&memcg->move_lock, flags);
1716 rcu_read_unlock();
1720 * unlock_page_memcg - unlock a page->mem_cgroup binding
1721 * @page: the page
1723 void unlock_page_memcg(struct page *page)
1725 __unlock_page_memcg(page->mem_cgroup);
1727 EXPORT_SYMBOL(unlock_page_memcg);
1730 * size of first charge trial. "32" comes from vmscan.c's magic value.
1731 * TODO: maybe necessary to use big numbers in big irons.
1733 #define CHARGE_BATCH 32U
1734 struct memcg_stock_pcp {
1735 struct mem_cgroup *cached; /* this never be root cgroup */
1736 unsigned int nr_pages;
1737 struct work_struct work;
1738 unsigned long flags;
1739 #define FLUSHING_CACHED_CHARGE 0
1741 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1742 static DEFINE_MUTEX(percpu_charge_mutex);
1745 * consume_stock: Try to consume stocked charge on this cpu.
1746 * @memcg: memcg to consume from.
1747 * @nr_pages: how many pages to charge.
1749 * The charges will only happen if @memcg matches the current cpu's memcg
1750 * stock, and at least @nr_pages are available in that stock. Failure to
1751 * service an allocation will refill the stock.
1753 * returns true if successful, false otherwise.
1755 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1757 struct memcg_stock_pcp *stock;
1758 unsigned long flags;
1759 bool ret = false;
1761 if (nr_pages > CHARGE_BATCH)
1762 return ret;
1764 local_irq_save(flags);
1766 stock = this_cpu_ptr(&memcg_stock);
1767 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
1768 stock->nr_pages -= nr_pages;
1769 ret = true;
1772 local_irq_restore(flags);
1774 return ret;
1778 * Returns stocks cached in percpu and reset cached information.
1780 static void drain_stock(struct memcg_stock_pcp *stock)
1782 struct mem_cgroup *old = stock->cached;
1784 if (stock->nr_pages) {
1785 page_counter_uncharge(&old->memory, stock->nr_pages);
1786 if (do_memsw_account())
1787 page_counter_uncharge(&old->memsw, stock->nr_pages);
1788 css_put_many(&old->css, stock->nr_pages);
1789 stock->nr_pages = 0;
1791 stock->cached = NULL;
1794 static void drain_local_stock(struct work_struct *dummy)
1796 struct memcg_stock_pcp *stock;
1797 unsigned long flags;
1800 * The only protection from memory hotplug vs. drain_stock races is
1801 * that we always operate on local CPU stock here with IRQ disabled
1803 local_irq_save(flags);
1805 stock = this_cpu_ptr(&memcg_stock);
1806 drain_stock(stock);
1807 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1809 local_irq_restore(flags);
1813 * Cache charges(val) to local per_cpu area.
1814 * This will be consumed by consume_stock() function, later.
1816 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1818 struct memcg_stock_pcp *stock;
1819 unsigned long flags;
1821 local_irq_save(flags);
1823 stock = this_cpu_ptr(&memcg_stock);
1824 if (stock->cached != memcg) { /* reset if necessary */
1825 drain_stock(stock);
1826 stock->cached = memcg;
1828 stock->nr_pages += nr_pages;
1830 if (stock->nr_pages > CHARGE_BATCH)
1831 drain_stock(stock);
1833 local_irq_restore(flags);
1837 * Drains all per-CPU charge caches for given root_memcg resp. subtree
1838 * of the hierarchy under it.
1840 static void drain_all_stock(struct mem_cgroup *root_memcg)
1842 int cpu, curcpu;
1844 /* If someone's already draining, avoid adding running more workers. */
1845 if (!mutex_trylock(&percpu_charge_mutex))
1846 return;
1848 * Notify other cpus that system-wide "drain" is running
1849 * We do not care about races with the cpu hotplug because cpu down
1850 * as well as workers from this path always operate on the local
1851 * per-cpu data. CPU up doesn't touch memcg_stock at all.
1853 curcpu = get_cpu();
1854 for_each_online_cpu(cpu) {
1855 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1856 struct mem_cgroup *memcg;
1858 memcg = stock->cached;
1859 if (!memcg || !stock->nr_pages || !css_tryget(&memcg->css))
1860 continue;
1861 if (!mem_cgroup_is_descendant(memcg, root_memcg)) {
1862 css_put(&memcg->css);
1863 continue;
1865 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
1866 if (cpu == curcpu)
1867 drain_local_stock(&stock->work);
1868 else
1869 schedule_work_on(cpu, &stock->work);
1871 css_put(&memcg->css);
1873 put_cpu();
1874 mutex_unlock(&percpu_charge_mutex);
1877 static int memcg_hotplug_cpu_dead(unsigned int cpu)
1879 struct memcg_stock_pcp *stock;
1881 stock = &per_cpu(memcg_stock, cpu);
1882 drain_stock(stock);
1883 return 0;
1886 static void reclaim_high(struct mem_cgroup *memcg,
1887 unsigned int nr_pages,
1888 gfp_t gfp_mask)
1890 do {
1891 if (page_counter_read(&memcg->memory) <= memcg->high)
1892 continue;
1893 mem_cgroup_event(memcg, MEMCG_HIGH);
1894 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
1895 } while ((memcg = parent_mem_cgroup(memcg)));
1898 static void high_work_func(struct work_struct *work)
1900 struct mem_cgroup *memcg;
1902 memcg = container_of(work, struct mem_cgroup, high_work);
1903 reclaim_high(memcg, CHARGE_BATCH, GFP_KERNEL);
1907 * Scheduled by try_charge() to be executed from the userland return path
1908 * and reclaims memory over the high limit.
1910 void mem_cgroup_handle_over_high(void)
1912 unsigned int nr_pages = current->memcg_nr_pages_over_high;
1913 struct mem_cgroup *memcg;
1915 if (likely(!nr_pages))
1916 return;
1918 memcg = get_mem_cgroup_from_mm(current->mm);
1919 reclaim_high(memcg, nr_pages, GFP_KERNEL);
1920 css_put(&memcg->css);
1921 current->memcg_nr_pages_over_high = 0;
1924 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
1925 unsigned int nr_pages)
1927 unsigned int batch = max(CHARGE_BATCH, nr_pages);
1928 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1929 struct mem_cgroup *mem_over_limit;
1930 struct page_counter *counter;
1931 unsigned long nr_reclaimed;
1932 bool may_swap = true;
1933 bool drained = false;
1935 if (mem_cgroup_is_root(memcg))
1936 return 0;
1937 retry:
1938 if (consume_stock(memcg, nr_pages))
1939 return 0;
1941 if (!do_memsw_account() ||
1942 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
1943 if (page_counter_try_charge(&memcg->memory, batch, &counter))
1944 goto done_restock;
1945 if (do_memsw_account())
1946 page_counter_uncharge(&memcg->memsw, batch);
1947 mem_over_limit = mem_cgroup_from_counter(counter, memory);
1948 } else {
1949 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
1950 may_swap = false;
1953 if (batch > nr_pages) {
1954 batch = nr_pages;
1955 goto retry;
1959 * Unlike in global OOM situations, memcg is not in a physical
1960 * memory shortage. Allow dying and OOM-killed tasks to
1961 * bypass the last charges so that they can exit quickly and
1962 * free their memory.
1964 if (unlikely(tsk_is_oom_victim(current) ||
1965 fatal_signal_pending(current) ||
1966 current->flags & PF_EXITING))
1967 goto force;
1970 * Prevent unbounded recursion when reclaim operations need to
1971 * allocate memory. This might exceed the limits temporarily,
1972 * but we prefer facilitating memory reclaim and getting back
1973 * under the limit over triggering OOM kills in these cases.
1975 if (unlikely(current->flags & PF_MEMALLOC))
1976 goto force;
1978 if (unlikely(task_in_memcg_oom(current)))
1979 goto nomem;
1981 if (!gfpflags_allow_blocking(gfp_mask))
1982 goto nomem;
1984 mem_cgroup_event(mem_over_limit, MEMCG_MAX);
1986 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
1987 gfp_mask, may_swap);
1989 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
1990 goto retry;
1992 if (!drained) {
1993 drain_all_stock(mem_over_limit);
1994 drained = true;
1995 goto retry;
1998 if (gfp_mask & __GFP_NORETRY)
1999 goto nomem;
2001 * Even though the limit is exceeded at this point, reclaim
2002 * may have been able to free some pages. Retry the charge
2003 * before killing the task.
2005 * Only for regular pages, though: huge pages are rather
2006 * unlikely to succeed so close to the limit, and we fall back
2007 * to regular pages anyway in case of failure.
2009 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2010 goto retry;
2012 * At task move, charge accounts can be doubly counted. So, it's
2013 * better to wait until the end of task_move if something is going on.
2015 if (mem_cgroup_wait_acct_move(mem_over_limit))
2016 goto retry;
2018 if (nr_retries--)
2019 goto retry;
2021 if (gfp_mask & __GFP_NOFAIL)
2022 goto force;
2024 if (fatal_signal_pending(current))
2025 goto force;
2027 mem_cgroup_event(mem_over_limit, MEMCG_OOM);
2029 mem_cgroup_oom(mem_over_limit, gfp_mask,
2030 get_order(nr_pages * PAGE_SIZE));
2031 nomem:
2032 if (!(gfp_mask & __GFP_NOFAIL))
2033 return -ENOMEM;
2034 force:
2036 * The allocation either can't fail or will lead to more memory
2037 * being freed very soon. Allow memory usage go over the limit
2038 * temporarily by force charging it.
2040 page_counter_charge(&memcg->memory, nr_pages);
2041 if (do_memsw_account())
2042 page_counter_charge(&memcg->memsw, nr_pages);
2043 css_get_many(&memcg->css, nr_pages);
2045 return 0;
2047 done_restock:
2048 css_get_many(&memcg->css, batch);
2049 if (batch > nr_pages)
2050 refill_stock(memcg, batch - nr_pages);
2053 * If the hierarchy is above the normal consumption range, schedule
2054 * reclaim on returning to userland. We can perform reclaim here
2055 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2056 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2057 * not recorded as it most likely matches current's and won't
2058 * change in the meantime. As high limit is checked again before
2059 * reclaim, the cost of mismatch is negligible.
2061 do {
2062 if (page_counter_read(&memcg->memory) > memcg->high) {
2063 /* Don't bother a random interrupted task */
2064 if (in_interrupt()) {
2065 schedule_work(&memcg->high_work);
2066 break;
2068 current->memcg_nr_pages_over_high += batch;
2069 set_notify_resume(current);
2070 break;
2072 } while ((memcg = parent_mem_cgroup(memcg)));
2074 return 0;
2077 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2079 if (mem_cgroup_is_root(memcg))
2080 return;
2082 page_counter_uncharge(&memcg->memory, nr_pages);
2083 if (do_memsw_account())
2084 page_counter_uncharge(&memcg->memsw, nr_pages);
2086 css_put_many(&memcg->css, nr_pages);
2089 static void lock_page_lru(struct page *page, int *isolated)
2091 struct zone *zone = page_zone(page);
2093 spin_lock_irq(zone_lru_lock(zone));
2094 if (PageLRU(page)) {
2095 struct lruvec *lruvec;
2097 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
2098 ClearPageLRU(page);
2099 del_page_from_lru_list(page, lruvec, page_lru(page));
2100 *isolated = 1;
2101 } else
2102 *isolated = 0;
2105 static void unlock_page_lru(struct page *page, int isolated)
2107 struct zone *zone = page_zone(page);
2109 if (isolated) {
2110 struct lruvec *lruvec;
2112 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
2113 VM_BUG_ON_PAGE(PageLRU(page), page);
2114 SetPageLRU(page);
2115 add_page_to_lru_list(page, lruvec, page_lru(page));
2117 spin_unlock_irq(zone_lru_lock(zone));
2120 static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2121 bool lrucare)
2123 int isolated;
2125 VM_BUG_ON_PAGE(page->mem_cgroup, page);
2128 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2129 * may already be on some other mem_cgroup's LRU. Take care of it.
2131 if (lrucare)
2132 lock_page_lru(page, &isolated);
2135 * Nobody should be changing or seriously looking at
2136 * page->mem_cgroup at this point:
2138 * - the page is uncharged
2140 * - the page is off-LRU
2142 * - an anonymous fault has exclusive page access, except for
2143 * a locked page table
2145 * - a page cache insertion, a swapin fault, or a migration
2146 * have the page locked
2148 page->mem_cgroup = memcg;
2150 if (lrucare)
2151 unlock_page_lru(page, isolated);
2154 #ifndef CONFIG_SLOB
2155 static int memcg_alloc_cache_id(void)
2157 int id, size;
2158 int err;
2160 id = ida_simple_get(&memcg_cache_ida,
2161 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2162 if (id < 0)
2163 return id;
2165 if (id < memcg_nr_cache_ids)
2166 return id;
2169 * There's no space for the new id in memcg_caches arrays,
2170 * so we have to grow them.
2172 down_write(&memcg_cache_ids_sem);
2174 size = 2 * (id + 1);
2175 if (size < MEMCG_CACHES_MIN_SIZE)
2176 size = MEMCG_CACHES_MIN_SIZE;
2177 else if (size > MEMCG_CACHES_MAX_SIZE)
2178 size = MEMCG_CACHES_MAX_SIZE;
2180 err = memcg_update_all_caches(size);
2181 if (!err)
2182 err = memcg_update_all_list_lrus(size);
2183 if (!err)
2184 memcg_nr_cache_ids = size;
2186 up_write(&memcg_cache_ids_sem);
2188 if (err) {
2189 ida_simple_remove(&memcg_cache_ida, id);
2190 return err;
2192 return id;
2195 static void memcg_free_cache_id(int id)
2197 ida_simple_remove(&memcg_cache_ida, id);
2200 struct memcg_kmem_cache_create_work {
2201 struct mem_cgroup *memcg;
2202 struct kmem_cache *cachep;
2203 struct work_struct work;
2206 static void memcg_kmem_cache_create_func(struct work_struct *w)
2208 struct memcg_kmem_cache_create_work *cw =
2209 container_of(w, struct memcg_kmem_cache_create_work, work);
2210 struct mem_cgroup *memcg = cw->memcg;
2211 struct kmem_cache *cachep = cw->cachep;
2213 memcg_create_kmem_cache(memcg, cachep);
2215 css_put(&memcg->css);
2216 kfree(cw);
2220 * Enqueue the creation of a per-memcg kmem_cache.
2222 static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2223 struct kmem_cache *cachep)
2225 struct memcg_kmem_cache_create_work *cw;
2227 cw = kmalloc(sizeof(*cw), GFP_NOWAIT | __GFP_NOWARN);
2228 if (!cw)
2229 return;
2231 css_get(&memcg->css);
2233 cw->memcg = memcg;
2234 cw->cachep = cachep;
2235 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2237 queue_work(memcg_kmem_cache_wq, &cw->work);
2240 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2241 struct kmem_cache *cachep)
2244 * We need to stop accounting when we kmalloc, because if the
2245 * corresponding kmalloc cache is not yet created, the first allocation
2246 * in __memcg_schedule_kmem_cache_create will recurse.
2248 * However, it is better to enclose the whole function. Depending on
2249 * the debugging options enabled, INIT_WORK(), for instance, can
2250 * trigger an allocation. This too, will make us recurse. Because at
2251 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2252 * the safest choice is to do it like this, wrapping the whole function.
2254 current->memcg_kmem_skip_account = 1;
2255 __memcg_schedule_kmem_cache_create(memcg, cachep);
2256 current->memcg_kmem_skip_account = 0;
2259 static inline bool memcg_kmem_bypass(void)
2261 if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
2262 return true;
2263 return false;
2267 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
2268 * @cachep: the original global kmem cache
2270 * Return the kmem_cache we're supposed to use for a slab allocation.
2271 * We try to use the current memcg's version of the cache.
2273 * If the cache does not exist yet, if we are the first user of it, we
2274 * create it asynchronously in a workqueue and let the current allocation
2275 * go through with the original cache.
2277 * This function takes a reference to the cache it returns to assure it
2278 * won't get destroyed while we are working with it. Once the caller is
2279 * done with it, memcg_kmem_put_cache() must be called to release the
2280 * reference.
2282 struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
2284 struct mem_cgroup *memcg;
2285 struct kmem_cache *memcg_cachep;
2286 int kmemcg_id;
2288 VM_BUG_ON(!is_root_cache(cachep));
2290 if (memcg_kmem_bypass())
2291 return cachep;
2293 if (current->memcg_kmem_skip_account)
2294 return cachep;
2296 memcg = get_mem_cgroup_from_mm(current->mm);
2297 kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2298 if (kmemcg_id < 0)
2299 goto out;
2301 memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2302 if (likely(memcg_cachep))
2303 return memcg_cachep;
2306 * If we are in a safe context (can wait, and not in interrupt
2307 * context), we could be be predictable and return right away.
2308 * This would guarantee that the allocation being performed
2309 * already belongs in the new cache.
2311 * However, there are some clashes that can arrive from locking.
2312 * For instance, because we acquire the slab_mutex while doing
2313 * memcg_create_kmem_cache, this means no further allocation
2314 * could happen with the slab_mutex held. So it's better to
2315 * defer everything.
2317 memcg_schedule_kmem_cache_create(memcg, cachep);
2318 out:
2319 css_put(&memcg->css);
2320 return cachep;
2324 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
2325 * @cachep: the cache returned by memcg_kmem_get_cache
2327 void memcg_kmem_put_cache(struct kmem_cache *cachep)
2329 if (!is_root_cache(cachep))
2330 css_put(&cachep->memcg_params.memcg->css);
2334 * memcg_kmem_charge: charge a kmem page
2335 * @page: page to charge
2336 * @gfp: reclaim mode
2337 * @order: allocation order
2338 * @memcg: memory cgroup to charge
2340 * Returns 0 on success, an error code on failure.
2342 int memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2343 struct mem_cgroup *memcg)
2345 unsigned int nr_pages = 1 << order;
2346 struct page_counter *counter;
2347 int ret;
2349 ret = try_charge(memcg, gfp, nr_pages);
2350 if (ret)
2351 return ret;
2353 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2354 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2355 cancel_charge(memcg, nr_pages);
2356 return -ENOMEM;
2359 page->mem_cgroup = memcg;
2361 return 0;
2365 * memcg_kmem_charge: charge a kmem page to the current memory cgroup
2366 * @page: page to charge
2367 * @gfp: reclaim mode
2368 * @order: allocation order
2370 * Returns 0 on success, an error code on failure.
2372 int memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2374 struct mem_cgroup *memcg;
2375 int ret = 0;
2377 if (memcg_kmem_bypass())
2378 return 0;
2380 memcg = get_mem_cgroup_from_mm(current->mm);
2381 if (!mem_cgroup_is_root(memcg)) {
2382 ret = memcg_kmem_charge_memcg(page, gfp, order, memcg);
2383 if (!ret)
2384 __SetPageKmemcg(page);
2386 css_put(&memcg->css);
2387 return ret;
2390 * memcg_kmem_uncharge: uncharge a kmem page
2391 * @page: page to uncharge
2392 * @order: allocation order
2394 void memcg_kmem_uncharge(struct page *page, int order)
2396 struct mem_cgroup *memcg = page->mem_cgroup;
2397 unsigned int nr_pages = 1 << order;
2399 if (!memcg)
2400 return;
2402 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2404 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2405 page_counter_uncharge(&memcg->kmem, nr_pages);
2407 page_counter_uncharge(&memcg->memory, nr_pages);
2408 if (do_memsw_account())
2409 page_counter_uncharge(&memcg->memsw, nr_pages);
2411 page->mem_cgroup = NULL;
2413 /* slab pages do not have PageKmemcg flag set */
2414 if (PageKmemcg(page))
2415 __ClearPageKmemcg(page);
2417 css_put_many(&memcg->css, nr_pages);
2419 #endif /* !CONFIG_SLOB */
2421 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2424 * Because tail pages are not marked as "used", set it. We're under
2425 * zone_lru_lock and migration entries setup in all page mappings.
2427 void mem_cgroup_split_huge_fixup(struct page *head)
2429 int i;
2431 if (mem_cgroup_disabled())
2432 return;
2434 for (i = 1; i < HPAGE_PMD_NR; i++)
2435 head[i].mem_cgroup = head->mem_cgroup;
2437 __this_cpu_sub(head->mem_cgroup->stat->count[MEMCG_RSS_HUGE],
2438 HPAGE_PMD_NR);
2440 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2442 #ifdef CONFIG_MEMCG_SWAP
2443 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
2444 int nr_entries)
2446 this_cpu_add(memcg->stat->count[MEMCG_SWAP], nr_entries);
2450 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2451 * @entry: swap entry to be moved
2452 * @from: mem_cgroup which the entry is moved from
2453 * @to: mem_cgroup which the entry is moved to
2455 * It succeeds only when the swap_cgroup's record for this entry is the same
2456 * as the mem_cgroup's id of @from.
2458 * Returns 0 on success, -EINVAL on failure.
2460 * The caller must have charged to @to, IOW, called page_counter_charge() about
2461 * both res and memsw, and called css_get().
2463 static int mem_cgroup_move_swap_account(swp_entry_t entry,
2464 struct mem_cgroup *from, struct mem_cgroup *to)
2466 unsigned short old_id, new_id;
2468 old_id = mem_cgroup_id(from);
2469 new_id = mem_cgroup_id(to);
2471 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2472 mem_cgroup_swap_statistics(from, -1);
2473 mem_cgroup_swap_statistics(to, 1);
2474 return 0;
2476 return -EINVAL;
2478 #else
2479 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2480 struct mem_cgroup *from, struct mem_cgroup *to)
2482 return -EINVAL;
2484 #endif
2486 static DEFINE_MUTEX(memcg_limit_mutex);
2488 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2489 unsigned long limit)
2491 unsigned long curusage;
2492 unsigned long oldusage;
2493 bool enlarge = false;
2494 int retry_count;
2495 int ret;
2498 * For keeping hierarchical_reclaim simple, how long we should retry
2499 * is depends on callers. We set our retry-count to be function
2500 * of # of children which we should visit in this loop.
2502 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2503 mem_cgroup_count_children(memcg);
2505 oldusage = page_counter_read(&memcg->memory);
2507 do {
2508 if (signal_pending(current)) {
2509 ret = -EINTR;
2510 break;
2513 mutex_lock(&memcg_limit_mutex);
2514 if (limit > memcg->memsw.limit) {
2515 mutex_unlock(&memcg_limit_mutex);
2516 ret = -EINVAL;
2517 break;
2519 if (limit > memcg->memory.limit)
2520 enlarge = true;
2521 ret = page_counter_limit(&memcg->memory, limit);
2522 mutex_unlock(&memcg_limit_mutex);
2524 if (!ret)
2525 break;
2527 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
2529 curusage = page_counter_read(&memcg->memory);
2530 /* Usage is reduced ? */
2531 if (curusage >= oldusage)
2532 retry_count--;
2533 else
2534 oldusage = curusage;
2535 } while (retry_count);
2537 if (!ret && enlarge)
2538 memcg_oom_recover(memcg);
2540 return ret;
2543 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2544 unsigned long limit)
2546 unsigned long curusage;
2547 unsigned long oldusage;
2548 bool enlarge = false;
2549 int retry_count;
2550 int ret;
2552 /* see mem_cgroup_resize_res_limit */
2553 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2554 mem_cgroup_count_children(memcg);
2556 oldusage = page_counter_read(&memcg->memsw);
2558 do {
2559 if (signal_pending(current)) {
2560 ret = -EINTR;
2561 break;
2564 mutex_lock(&memcg_limit_mutex);
2565 if (limit < memcg->memory.limit) {
2566 mutex_unlock(&memcg_limit_mutex);
2567 ret = -EINVAL;
2568 break;
2570 if (limit > memcg->memsw.limit)
2571 enlarge = true;
2572 ret = page_counter_limit(&memcg->memsw, limit);
2573 mutex_unlock(&memcg_limit_mutex);
2575 if (!ret)
2576 break;
2578 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
2580 curusage = page_counter_read(&memcg->memsw);
2581 /* Usage is reduced ? */
2582 if (curusage >= oldusage)
2583 retry_count--;
2584 else
2585 oldusage = curusage;
2586 } while (retry_count);
2588 if (!ret && enlarge)
2589 memcg_oom_recover(memcg);
2591 return ret;
2594 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
2595 gfp_t gfp_mask,
2596 unsigned long *total_scanned)
2598 unsigned long nr_reclaimed = 0;
2599 struct mem_cgroup_per_node *mz, *next_mz = NULL;
2600 unsigned long reclaimed;
2601 int loop = 0;
2602 struct mem_cgroup_tree_per_node *mctz;
2603 unsigned long excess;
2604 unsigned long nr_scanned;
2606 if (order > 0)
2607 return 0;
2609 mctz = soft_limit_tree_node(pgdat->node_id);
2612 * Do not even bother to check the largest node if the root
2613 * is empty. Do it lockless to prevent lock bouncing. Races
2614 * are acceptable as soft limit is best effort anyway.
2616 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
2617 return 0;
2620 * This loop can run a while, specially if mem_cgroup's continuously
2621 * keep exceeding their soft limit and putting the system under
2622 * pressure
2624 do {
2625 if (next_mz)
2626 mz = next_mz;
2627 else
2628 mz = mem_cgroup_largest_soft_limit_node(mctz);
2629 if (!mz)
2630 break;
2632 nr_scanned = 0;
2633 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
2634 gfp_mask, &nr_scanned);
2635 nr_reclaimed += reclaimed;
2636 *total_scanned += nr_scanned;
2637 spin_lock_irq(&mctz->lock);
2638 __mem_cgroup_remove_exceeded(mz, mctz);
2641 * If we failed to reclaim anything from this memory cgroup
2642 * it is time to move on to the next cgroup
2644 next_mz = NULL;
2645 if (!reclaimed)
2646 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2648 excess = soft_limit_excess(mz->memcg);
2650 * One school of thought says that we should not add
2651 * back the node to the tree if reclaim returns 0.
2652 * But our reclaim could return 0, simply because due
2653 * to priority we are exposing a smaller subset of
2654 * memory to reclaim from. Consider this as a longer
2655 * term TODO.
2657 /* If excess == 0, no tree ops */
2658 __mem_cgroup_insert_exceeded(mz, mctz, excess);
2659 spin_unlock_irq(&mctz->lock);
2660 css_put(&mz->memcg->css);
2661 loop++;
2663 * Could not reclaim anything and there are no more
2664 * mem cgroups to try or we seem to be looping without
2665 * reclaiming anything.
2667 if (!nr_reclaimed &&
2668 (next_mz == NULL ||
2669 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2670 break;
2671 } while (!nr_reclaimed);
2672 if (next_mz)
2673 css_put(&next_mz->memcg->css);
2674 return nr_reclaimed;
2678 * Test whether @memcg has children, dead or alive. Note that this
2679 * function doesn't care whether @memcg has use_hierarchy enabled and
2680 * returns %true if there are child csses according to the cgroup
2681 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
2683 static inline bool memcg_has_children(struct mem_cgroup *memcg)
2685 bool ret;
2687 rcu_read_lock();
2688 ret = css_next_child(NULL, &memcg->css);
2689 rcu_read_unlock();
2690 return ret;
2694 * Reclaims as many pages from the given memcg as possible.
2696 * Caller is responsible for holding css reference for memcg.
2698 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2700 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2702 /* we call try-to-free pages for make this cgroup empty */
2703 lru_add_drain_all();
2704 /* try to free all pages in this cgroup */
2705 while (nr_retries && page_counter_read(&memcg->memory)) {
2706 int progress;
2708 if (signal_pending(current))
2709 return -EINTR;
2711 progress = try_to_free_mem_cgroup_pages(memcg, 1,
2712 GFP_KERNEL, true);
2713 if (!progress) {
2714 nr_retries--;
2715 /* maybe some writeback is necessary */
2716 congestion_wait(BLK_RW_ASYNC, HZ/10);
2721 return 0;
2724 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
2725 char *buf, size_t nbytes,
2726 loff_t off)
2728 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2730 if (mem_cgroup_is_root(memcg))
2731 return -EINVAL;
2732 return mem_cgroup_force_empty(memcg) ?: nbytes;
2735 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
2736 struct cftype *cft)
2738 return mem_cgroup_from_css(css)->use_hierarchy;
2741 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
2742 struct cftype *cft, u64 val)
2744 int retval = 0;
2745 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2746 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
2748 if (memcg->use_hierarchy == val)
2749 return 0;
2752 * If parent's use_hierarchy is set, we can't make any modifications
2753 * in the child subtrees. If it is unset, then the change can
2754 * occur, provided the current cgroup has no children.
2756 * For the root cgroup, parent_mem is NULL, we allow value to be
2757 * set if there are no children.
2759 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
2760 (val == 1 || val == 0)) {
2761 if (!memcg_has_children(memcg))
2762 memcg->use_hierarchy = val;
2763 else
2764 retval = -EBUSY;
2765 } else
2766 retval = -EINVAL;
2768 return retval;
2771 static void tree_stat(struct mem_cgroup *memcg, unsigned long *stat)
2773 struct mem_cgroup *iter;
2774 int i;
2776 memset(stat, 0, sizeof(*stat) * MEMCG_NR_STAT);
2778 for_each_mem_cgroup_tree(iter, memcg) {
2779 for (i = 0; i < MEMCG_NR_STAT; i++)
2780 stat[i] += memcg_page_state(iter, i);
2784 static void tree_events(struct mem_cgroup *memcg, unsigned long *events)
2786 struct mem_cgroup *iter;
2787 int i;
2789 memset(events, 0, sizeof(*events) * MEMCG_NR_EVENTS);
2791 for_each_mem_cgroup_tree(iter, memcg) {
2792 for (i = 0; i < MEMCG_NR_EVENTS; i++)
2793 events[i] += memcg_sum_events(iter, i);
2797 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
2799 unsigned long val = 0;
2801 if (mem_cgroup_is_root(memcg)) {
2802 struct mem_cgroup *iter;
2804 for_each_mem_cgroup_tree(iter, memcg) {
2805 val += memcg_page_state(iter, MEMCG_CACHE);
2806 val += memcg_page_state(iter, MEMCG_RSS);
2807 if (swap)
2808 val += memcg_page_state(iter, MEMCG_SWAP);
2810 } else {
2811 if (!swap)
2812 val = page_counter_read(&memcg->memory);
2813 else
2814 val = page_counter_read(&memcg->memsw);
2816 return val;
2819 enum {
2820 RES_USAGE,
2821 RES_LIMIT,
2822 RES_MAX_USAGE,
2823 RES_FAILCNT,
2824 RES_SOFT_LIMIT,
2827 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
2828 struct cftype *cft)
2830 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2831 struct page_counter *counter;
2833 switch (MEMFILE_TYPE(cft->private)) {
2834 case _MEM:
2835 counter = &memcg->memory;
2836 break;
2837 case _MEMSWAP:
2838 counter = &memcg->memsw;
2839 break;
2840 case _KMEM:
2841 counter = &memcg->kmem;
2842 break;
2843 case _TCP:
2844 counter = &memcg->tcpmem;
2845 break;
2846 default:
2847 BUG();
2850 switch (MEMFILE_ATTR(cft->private)) {
2851 case RES_USAGE:
2852 if (counter == &memcg->memory)
2853 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
2854 if (counter == &memcg->memsw)
2855 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
2856 return (u64)page_counter_read(counter) * PAGE_SIZE;
2857 case RES_LIMIT:
2858 return (u64)counter->limit * PAGE_SIZE;
2859 case RES_MAX_USAGE:
2860 return (u64)counter->watermark * PAGE_SIZE;
2861 case RES_FAILCNT:
2862 return counter->failcnt;
2863 case RES_SOFT_LIMIT:
2864 return (u64)memcg->soft_limit * PAGE_SIZE;
2865 default:
2866 BUG();
2870 #ifndef CONFIG_SLOB
2871 static int memcg_online_kmem(struct mem_cgroup *memcg)
2873 int memcg_id;
2875 if (cgroup_memory_nokmem)
2876 return 0;
2878 BUG_ON(memcg->kmemcg_id >= 0);
2879 BUG_ON(memcg->kmem_state);
2881 memcg_id = memcg_alloc_cache_id();
2882 if (memcg_id < 0)
2883 return memcg_id;
2885 static_branch_inc(&memcg_kmem_enabled_key);
2887 * A memory cgroup is considered kmem-online as soon as it gets
2888 * kmemcg_id. Setting the id after enabling static branching will
2889 * guarantee no one starts accounting before all call sites are
2890 * patched.
2892 memcg->kmemcg_id = memcg_id;
2893 memcg->kmem_state = KMEM_ONLINE;
2894 INIT_LIST_HEAD(&memcg->kmem_caches);
2896 return 0;
2899 static void memcg_offline_kmem(struct mem_cgroup *memcg)
2901 struct cgroup_subsys_state *css;
2902 struct mem_cgroup *parent, *child;
2903 int kmemcg_id;
2905 if (memcg->kmem_state != KMEM_ONLINE)
2906 return;
2908 * Clear the online state before clearing memcg_caches array
2909 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
2910 * guarantees that no cache will be created for this cgroup
2911 * after we are done (see memcg_create_kmem_cache()).
2913 memcg->kmem_state = KMEM_ALLOCATED;
2915 memcg_deactivate_kmem_caches(memcg);
2917 kmemcg_id = memcg->kmemcg_id;
2918 BUG_ON(kmemcg_id < 0);
2920 parent = parent_mem_cgroup(memcg);
2921 if (!parent)
2922 parent = root_mem_cgroup;
2925 * Change kmemcg_id of this cgroup and all its descendants to the
2926 * parent's id, and then move all entries from this cgroup's list_lrus
2927 * to ones of the parent. After we have finished, all list_lrus
2928 * corresponding to this cgroup are guaranteed to remain empty. The
2929 * ordering is imposed by list_lru_node->lock taken by
2930 * memcg_drain_all_list_lrus().
2932 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
2933 css_for_each_descendant_pre(css, &memcg->css) {
2934 child = mem_cgroup_from_css(css);
2935 BUG_ON(child->kmemcg_id != kmemcg_id);
2936 child->kmemcg_id = parent->kmemcg_id;
2937 if (!memcg->use_hierarchy)
2938 break;
2940 rcu_read_unlock();
2942 memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);
2944 memcg_free_cache_id(kmemcg_id);
2947 static void memcg_free_kmem(struct mem_cgroup *memcg)
2949 /* css_alloc() failed, offlining didn't happen */
2950 if (unlikely(memcg->kmem_state == KMEM_ONLINE))
2951 memcg_offline_kmem(memcg);
2953 if (memcg->kmem_state == KMEM_ALLOCATED) {
2954 memcg_destroy_kmem_caches(memcg);
2955 static_branch_dec(&memcg_kmem_enabled_key);
2956 WARN_ON(page_counter_read(&memcg->kmem));
2959 #else
2960 static int memcg_online_kmem(struct mem_cgroup *memcg)
2962 return 0;
2964 static void memcg_offline_kmem(struct mem_cgroup *memcg)
2967 static void memcg_free_kmem(struct mem_cgroup *memcg)
2970 #endif /* !CONFIG_SLOB */
2972 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
2973 unsigned long limit)
2975 int ret;
2977 mutex_lock(&memcg_limit_mutex);
2978 ret = page_counter_limit(&memcg->kmem, limit);
2979 mutex_unlock(&memcg_limit_mutex);
2980 return ret;
2983 static int memcg_update_tcp_limit(struct mem_cgroup *memcg, unsigned long limit)
2985 int ret;
2987 mutex_lock(&memcg_limit_mutex);
2989 ret = page_counter_limit(&memcg->tcpmem, limit);
2990 if (ret)
2991 goto out;
2993 if (!memcg->tcpmem_active) {
2995 * The active flag needs to be written after the static_key
2996 * update. This is what guarantees that the socket activation
2997 * function is the last one to run. See mem_cgroup_sk_alloc()
2998 * for details, and note that we don't mark any socket as
2999 * belonging to this memcg until that flag is up.
3001 * We need to do this, because static_keys will span multiple
3002 * sites, but we can't control their order. If we mark a socket
3003 * as accounted, but the accounting functions are not patched in
3004 * yet, we'll lose accounting.
3006 * We never race with the readers in mem_cgroup_sk_alloc(),
3007 * because when this value change, the code to process it is not
3008 * patched in yet.
3010 static_branch_inc(&memcg_sockets_enabled_key);
3011 memcg->tcpmem_active = true;
3013 out:
3014 mutex_unlock(&memcg_limit_mutex);
3015 return ret;
3019 * The user of this function is...
3020 * RES_LIMIT.
3022 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3023 char *buf, size_t nbytes, loff_t off)
3025 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3026 unsigned long nr_pages;
3027 int ret;
3029 buf = strstrip(buf);
3030 ret = page_counter_memparse(buf, "-1", &nr_pages);
3031 if (ret)
3032 return ret;
3034 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3035 case RES_LIMIT:
3036 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3037 ret = -EINVAL;
3038 break;
3040 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3041 case _MEM:
3042 ret = mem_cgroup_resize_limit(memcg, nr_pages);
3043 break;
3044 case _MEMSWAP:
3045 ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
3046 break;
3047 case _KMEM:
3048 ret = memcg_update_kmem_limit(memcg, nr_pages);
3049 break;
3050 case _TCP:
3051 ret = memcg_update_tcp_limit(memcg, nr_pages);
3052 break;
3054 break;
3055 case RES_SOFT_LIMIT:
3056 memcg->soft_limit = nr_pages;
3057 ret = 0;
3058 break;
3060 return ret ?: nbytes;
3063 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3064 size_t nbytes, loff_t off)
3066 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3067 struct page_counter *counter;
3069 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3070 case _MEM:
3071 counter = &memcg->memory;
3072 break;
3073 case _MEMSWAP:
3074 counter = &memcg->memsw;
3075 break;
3076 case _KMEM:
3077 counter = &memcg->kmem;
3078 break;
3079 case _TCP:
3080 counter = &memcg->tcpmem;
3081 break;
3082 default:
3083 BUG();
3086 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3087 case RES_MAX_USAGE:
3088 page_counter_reset_watermark(counter);
3089 break;
3090 case RES_FAILCNT:
3091 counter->failcnt = 0;
3092 break;
3093 default:
3094 BUG();
3097 return nbytes;
3100 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3101 struct cftype *cft)
3103 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3106 #ifdef CONFIG_MMU
3107 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3108 struct cftype *cft, u64 val)
3110 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3112 if (val & ~MOVE_MASK)
3113 return -EINVAL;
3116 * No kind of locking is needed in here, because ->can_attach() will
3117 * check this value once in the beginning of the process, and then carry
3118 * on with stale data. This means that changes to this value will only
3119 * affect task migrations starting after the change.
3121 memcg->move_charge_at_immigrate = val;
3122 return 0;
3124 #else
3125 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3126 struct cftype *cft, u64 val)
3128 return -ENOSYS;
3130 #endif
3132 #ifdef CONFIG_NUMA
3133 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3135 struct numa_stat {
3136 const char *name;
3137 unsigned int lru_mask;
3140 static const struct numa_stat stats[] = {
3141 { "total", LRU_ALL },
3142 { "file", LRU_ALL_FILE },
3143 { "anon", LRU_ALL_ANON },
3144 { "unevictable", BIT(LRU_UNEVICTABLE) },
3146 const struct numa_stat *stat;
3147 int nid;
3148 unsigned long nr;
3149 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3151 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3152 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3153 seq_printf(m, "%s=%lu", stat->name, nr);
3154 for_each_node_state(nid, N_MEMORY) {
3155 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3156 stat->lru_mask);
3157 seq_printf(m, " N%d=%lu", nid, nr);
3159 seq_putc(m, '\n');
3162 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3163 struct mem_cgroup *iter;
3165 nr = 0;
3166 for_each_mem_cgroup_tree(iter, memcg)
3167 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3168 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3169 for_each_node_state(nid, N_MEMORY) {
3170 nr = 0;
3171 for_each_mem_cgroup_tree(iter, memcg)
3172 nr += mem_cgroup_node_nr_lru_pages(
3173 iter, nid, stat->lru_mask);
3174 seq_printf(m, " N%d=%lu", nid, nr);
3176 seq_putc(m, '\n');
3179 return 0;
3181 #endif /* CONFIG_NUMA */
3183 /* Universal VM events cgroup1 shows, original sort order */
3184 unsigned int memcg1_events[] = {
3185 PGPGIN,
3186 PGPGOUT,
3187 PGFAULT,
3188 PGMAJFAULT,
3191 static const char *const memcg1_event_names[] = {
3192 "pgpgin",
3193 "pgpgout",
3194 "pgfault",
3195 "pgmajfault",
3198 static int memcg_stat_show(struct seq_file *m, void *v)
3200 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3201 unsigned long memory, memsw;
3202 struct mem_cgroup *mi;
3203 unsigned int i;
3205 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
3206 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3208 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3209 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3210 continue;
3211 seq_printf(m, "%s %lu\n", memcg1_stat_names[i],
3212 memcg_page_state(memcg, memcg1_stats[i]) *
3213 PAGE_SIZE);
3216 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3217 seq_printf(m, "%s %lu\n", memcg1_event_names[i],
3218 memcg_sum_events(memcg, memcg1_events[i]));
3220 for (i = 0; i < NR_LRU_LISTS; i++)
3221 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3222 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3224 /* Hierarchical information */
3225 memory = memsw = PAGE_COUNTER_MAX;
3226 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3227 memory = min(memory, mi->memory.limit);
3228 memsw = min(memsw, mi->memsw.limit);
3230 seq_printf(m, "hierarchical_memory_limit %llu\n",
3231 (u64)memory * PAGE_SIZE);
3232 if (do_memsw_account())
3233 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3234 (u64)memsw * PAGE_SIZE);
3236 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3237 unsigned long long val = 0;
3239 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3240 continue;
3241 for_each_mem_cgroup_tree(mi, memcg)
3242 val += memcg_page_state(mi, memcg1_stats[i]) *
3243 PAGE_SIZE;
3244 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i], val);
3247 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++) {
3248 unsigned long long val = 0;
3250 for_each_mem_cgroup_tree(mi, memcg)
3251 val += memcg_sum_events(mi, memcg1_events[i]);
3252 seq_printf(m, "total_%s %llu\n", memcg1_event_names[i], val);
3255 for (i = 0; i < NR_LRU_LISTS; i++) {
3256 unsigned long long val = 0;
3258 for_each_mem_cgroup_tree(mi, memcg)
3259 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3260 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3263 #ifdef CONFIG_DEBUG_VM
3265 pg_data_t *pgdat;
3266 struct mem_cgroup_per_node *mz;
3267 struct zone_reclaim_stat *rstat;
3268 unsigned long recent_rotated[2] = {0, 0};
3269 unsigned long recent_scanned[2] = {0, 0};
3271 for_each_online_pgdat(pgdat) {
3272 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
3273 rstat = &mz->lruvec.reclaim_stat;
3275 recent_rotated[0] += rstat->recent_rotated[0];
3276 recent_rotated[1] += rstat->recent_rotated[1];
3277 recent_scanned[0] += rstat->recent_scanned[0];
3278 recent_scanned[1] += rstat->recent_scanned[1];
3280 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3281 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3282 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3283 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
3285 #endif
3287 return 0;
3290 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3291 struct cftype *cft)
3293 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3295 return mem_cgroup_swappiness(memcg);
3298 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3299 struct cftype *cft, u64 val)
3301 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3303 if (val > 100)
3304 return -EINVAL;
3306 if (css->parent)
3307 memcg->swappiness = val;
3308 else
3309 vm_swappiness = val;
3311 return 0;
3314 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3316 struct mem_cgroup_threshold_ary *t;
3317 unsigned long usage;
3318 int i;
3320 rcu_read_lock();
3321 if (!swap)
3322 t = rcu_dereference(memcg->thresholds.primary);
3323 else
3324 t = rcu_dereference(memcg->memsw_thresholds.primary);
3326 if (!t)
3327 goto unlock;
3329 usage = mem_cgroup_usage(memcg, swap);
3332 * current_threshold points to threshold just below or equal to usage.
3333 * If it's not true, a threshold was crossed after last
3334 * call of __mem_cgroup_threshold().
3336 i = t->current_threshold;
3339 * Iterate backward over array of thresholds starting from
3340 * current_threshold and check if a threshold is crossed.
3341 * If none of thresholds below usage is crossed, we read
3342 * only one element of the array here.
3344 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3345 eventfd_signal(t->entries[i].eventfd, 1);
3347 /* i = current_threshold + 1 */
3348 i++;
3351 * Iterate forward over array of thresholds starting from
3352 * current_threshold+1 and check if a threshold is crossed.
3353 * If none of thresholds above usage is crossed, we read
3354 * only one element of the array here.
3356 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3357 eventfd_signal(t->entries[i].eventfd, 1);
3359 /* Update current_threshold */
3360 t->current_threshold = i - 1;
3361 unlock:
3362 rcu_read_unlock();
3365 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3367 while (memcg) {
3368 __mem_cgroup_threshold(memcg, false);
3369 if (do_memsw_account())
3370 __mem_cgroup_threshold(memcg, true);
3372 memcg = parent_mem_cgroup(memcg);
3376 static int compare_thresholds(const void *a, const void *b)
3378 const struct mem_cgroup_threshold *_a = a;
3379 const struct mem_cgroup_threshold *_b = b;
3381 if (_a->threshold > _b->threshold)
3382 return 1;
3384 if (_a->threshold < _b->threshold)
3385 return -1;
3387 return 0;
3390 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
3392 struct mem_cgroup_eventfd_list *ev;
3394 spin_lock(&memcg_oom_lock);
3396 list_for_each_entry(ev, &memcg->oom_notify, list)
3397 eventfd_signal(ev->eventfd, 1);
3399 spin_unlock(&memcg_oom_lock);
3400 return 0;
3403 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
3405 struct mem_cgroup *iter;
3407 for_each_mem_cgroup_tree(iter, memcg)
3408 mem_cgroup_oom_notify_cb(iter);
3411 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3412 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3414 struct mem_cgroup_thresholds *thresholds;
3415 struct mem_cgroup_threshold_ary *new;
3416 unsigned long threshold;
3417 unsigned long usage;
3418 int i, size, ret;
3420 ret = page_counter_memparse(args, "-1", &threshold);
3421 if (ret)
3422 return ret;
3424 mutex_lock(&memcg->thresholds_lock);
3426 if (type == _MEM) {
3427 thresholds = &memcg->thresholds;
3428 usage = mem_cgroup_usage(memcg, false);
3429 } else if (type == _MEMSWAP) {
3430 thresholds = &memcg->memsw_thresholds;
3431 usage = mem_cgroup_usage(memcg, true);
3432 } else
3433 BUG();
3435 /* Check if a threshold crossed before adding a new one */
3436 if (thresholds->primary)
3437 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3439 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3441 /* Allocate memory for new array of thresholds */
3442 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3443 GFP_KERNEL);
3444 if (!new) {
3445 ret = -ENOMEM;
3446 goto unlock;
3448 new->size = size;
3450 /* Copy thresholds (if any) to new array */
3451 if (thresholds->primary) {
3452 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3453 sizeof(struct mem_cgroup_threshold));
3456 /* Add new threshold */
3457 new->entries[size - 1].eventfd = eventfd;
3458 new->entries[size - 1].threshold = threshold;
3460 /* Sort thresholds. Registering of new threshold isn't time-critical */
3461 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3462 compare_thresholds, NULL);
3464 /* Find current threshold */
3465 new->current_threshold = -1;
3466 for (i = 0; i < size; i++) {
3467 if (new->entries[i].threshold <= usage) {
3469 * new->current_threshold will not be used until
3470 * rcu_assign_pointer(), so it's safe to increment
3471 * it here.
3473 ++new->current_threshold;
3474 } else
3475 break;
3478 /* Free old spare buffer and save old primary buffer as spare */
3479 kfree(thresholds->spare);
3480 thresholds->spare = thresholds->primary;
3482 rcu_assign_pointer(thresholds->primary, new);
3484 /* To be sure that nobody uses thresholds */
3485 synchronize_rcu();
3487 unlock:
3488 mutex_unlock(&memcg->thresholds_lock);
3490 return ret;
3493 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3494 struct eventfd_ctx *eventfd, const char *args)
3496 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
3499 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
3500 struct eventfd_ctx *eventfd, const char *args)
3502 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
3505 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3506 struct eventfd_ctx *eventfd, enum res_type type)
3508 struct mem_cgroup_thresholds *thresholds;
3509 struct mem_cgroup_threshold_ary *new;
3510 unsigned long usage;
3511 int i, j, size;
3513 mutex_lock(&memcg->thresholds_lock);
3515 if (type == _MEM) {
3516 thresholds = &memcg->thresholds;
3517 usage = mem_cgroup_usage(memcg, false);
3518 } else if (type == _MEMSWAP) {
3519 thresholds = &memcg->memsw_thresholds;
3520 usage = mem_cgroup_usage(memcg, true);
3521 } else
3522 BUG();
3524 if (!thresholds->primary)
3525 goto unlock;
3527 /* Check if a threshold crossed before removing */
3528 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3530 /* Calculate new number of threshold */
3531 size = 0;
3532 for (i = 0; i < thresholds->primary->size; i++) {
3533 if (thresholds->primary->entries[i].eventfd != eventfd)
3534 size++;
3537 new = thresholds->spare;
3539 /* Set thresholds array to NULL if we don't have thresholds */
3540 if (!size) {
3541 kfree(new);
3542 new = NULL;
3543 goto swap_buffers;
3546 new->size = size;
3548 /* Copy thresholds and find current threshold */
3549 new->current_threshold = -1;
3550 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3551 if (thresholds->primary->entries[i].eventfd == eventfd)
3552 continue;
3554 new->entries[j] = thresholds->primary->entries[i];
3555 if (new->entries[j].threshold <= usage) {
3557 * new->current_threshold will not be used
3558 * until rcu_assign_pointer(), so it's safe to increment
3559 * it here.
3561 ++new->current_threshold;
3563 j++;
3566 swap_buffers:
3567 /* Swap primary and spare array */
3568 thresholds->spare = thresholds->primary;
3570 rcu_assign_pointer(thresholds->primary, new);
3572 /* To be sure that nobody uses thresholds */
3573 synchronize_rcu();
3575 /* If all events are unregistered, free the spare array */
3576 if (!new) {
3577 kfree(thresholds->spare);
3578 thresholds->spare = NULL;
3580 unlock:
3581 mutex_unlock(&memcg->thresholds_lock);
3584 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3585 struct eventfd_ctx *eventfd)
3587 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
3590 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3591 struct eventfd_ctx *eventfd)
3593 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
3596 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
3597 struct eventfd_ctx *eventfd, const char *args)
3599 struct mem_cgroup_eventfd_list *event;
3601 event = kmalloc(sizeof(*event), GFP_KERNEL);
3602 if (!event)
3603 return -ENOMEM;
3605 spin_lock(&memcg_oom_lock);
3607 event->eventfd = eventfd;
3608 list_add(&event->list, &memcg->oom_notify);
3610 /* already in OOM ? */
3611 if (memcg->under_oom)
3612 eventfd_signal(eventfd, 1);
3613 spin_unlock(&memcg_oom_lock);
3615 return 0;
3618 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
3619 struct eventfd_ctx *eventfd)
3621 struct mem_cgroup_eventfd_list *ev, *tmp;
3623 spin_lock(&memcg_oom_lock);
3625 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
3626 if (ev->eventfd == eventfd) {
3627 list_del(&ev->list);
3628 kfree(ev);
3632 spin_unlock(&memcg_oom_lock);
3635 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3637 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3639 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3640 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3641 seq_printf(sf, "oom_kill %lu\n", memcg_sum_events(memcg, OOM_KILL));
3642 return 0;
3645 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3646 struct cftype *cft, u64 val)
3648 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3650 /* cannot set to root cgroup and only 0 and 1 are allowed */
3651 if (!css->parent || !((val == 0) || (val == 1)))
3652 return -EINVAL;
3654 memcg->oom_kill_disable = val;
3655 if (!val)
3656 memcg_oom_recover(memcg);
3658 return 0;
3661 #ifdef CONFIG_CGROUP_WRITEBACK
3663 struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
3665 return &memcg->cgwb_list;
3668 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3670 return wb_domain_init(&memcg->cgwb_domain, gfp);
3673 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3675 wb_domain_exit(&memcg->cgwb_domain);
3678 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3680 wb_domain_size_changed(&memcg->cgwb_domain);
3683 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3685 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3687 if (!memcg->css.parent)
3688 return NULL;
3690 return &memcg->cgwb_domain;
3694 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3695 * @wb: bdi_writeback in question
3696 * @pfilepages: out parameter for number of file pages
3697 * @pheadroom: out parameter for number of allocatable pages according to memcg
3698 * @pdirty: out parameter for number of dirty pages
3699 * @pwriteback: out parameter for number of pages under writeback
3701 * Determine the numbers of file, headroom, dirty, and writeback pages in
3702 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
3703 * is a bit more involved.
3705 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
3706 * headroom is calculated as the lowest headroom of itself and the
3707 * ancestors. Note that this doesn't consider the actual amount of
3708 * available memory in the system. The caller should further cap
3709 * *@pheadroom accordingly.
3711 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3712 unsigned long *pheadroom, unsigned long *pdirty,
3713 unsigned long *pwriteback)
3715 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3716 struct mem_cgroup *parent;
3718 *pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
3720 /* this should eventually include NR_UNSTABLE_NFS */
3721 *pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
3722 *pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
3723 (1 << LRU_ACTIVE_FILE));
3724 *pheadroom = PAGE_COUNTER_MAX;
3726 while ((parent = parent_mem_cgroup(memcg))) {
3727 unsigned long ceiling = min(memcg->memory.limit, memcg->high);
3728 unsigned long used = page_counter_read(&memcg->memory);
3730 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
3731 memcg = parent;
3735 #else /* CONFIG_CGROUP_WRITEBACK */
3737 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3739 return 0;
3742 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3746 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3750 #endif /* CONFIG_CGROUP_WRITEBACK */
3753 * DO NOT USE IN NEW FILES.
3755 * "cgroup.event_control" implementation.
3757 * This is way over-engineered. It tries to support fully configurable
3758 * events for each user. Such level of flexibility is completely
3759 * unnecessary especially in the light of the planned unified hierarchy.
3761 * Please deprecate this and replace with something simpler if at all
3762 * possible.
3766 * Unregister event and free resources.
3768 * Gets called from workqueue.
3770 static void memcg_event_remove(struct work_struct *work)
3772 struct mem_cgroup_event *event =
3773 container_of(work, struct mem_cgroup_event, remove);
3774 struct mem_cgroup *memcg = event->memcg;
3776 remove_wait_queue(event->wqh, &event->wait);
3778 event->unregister_event(memcg, event->eventfd);
3780 /* Notify userspace the event is going away. */
3781 eventfd_signal(event->eventfd, 1);
3783 eventfd_ctx_put(event->eventfd);
3784 kfree(event);
3785 css_put(&memcg->css);
3789 * Gets called on POLLHUP on eventfd when user closes it.
3791 * Called with wqh->lock held and interrupts disabled.
3793 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
3794 int sync, void *key)
3796 struct mem_cgroup_event *event =
3797 container_of(wait, struct mem_cgroup_event, wait);
3798 struct mem_cgroup *memcg = event->memcg;
3799 unsigned long flags = (unsigned long)key;
3801 if (flags & POLLHUP) {
3803 * If the event has been detached at cgroup removal, we
3804 * can simply return knowing the other side will cleanup
3805 * for us.
3807 * We can't race against event freeing since the other
3808 * side will require wqh->lock via remove_wait_queue(),
3809 * which we hold.
3811 spin_lock(&memcg->event_list_lock);
3812 if (!list_empty(&event->list)) {
3813 list_del_init(&event->list);
3815 * We are in atomic context, but cgroup_event_remove()
3816 * may sleep, so we have to call it in workqueue.
3818 schedule_work(&event->remove);
3820 spin_unlock(&memcg->event_list_lock);
3823 return 0;
3826 static void memcg_event_ptable_queue_proc(struct file *file,
3827 wait_queue_head_t *wqh, poll_table *pt)
3829 struct mem_cgroup_event *event =
3830 container_of(pt, struct mem_cgroup_event, pt);
3832 event->wqh = wqh;
3833 add_wait_queue(wqh, &event->wait);
3837 * DO NOT USE IN NEW FILES.
3839 * Parse input and register new cgroup event handler.
3841 * Input must be in format '<event_fd> <control_fd> <args>'.
3842 * Interpretation of args is defined by control file implementation.
3844 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
3845 char *buf, size_t nbytes, loff_t off)
3847 struct cgroup_subsys_state *css = of_css(of);
3848 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3849 struct mem_cgroup_event *event;
3850 struct cgroup_subsys_state *cfile_css;
3851 unsigned int efd, cfd;
3852 struct fd efile;
3853 struct fd cfile;
3854 const char *name;
3855 char *endp;
3856 int ret;
3858 buf = strstrip(buf);
3860 efd = simple_strtoul(buf, &endp, 10);
3861 if (*endp != ' ')
3862 return -EINVAL;
3863 buf = endp + 1;
3865 cfd = simple_strtoul(buf, &endp, 10);
3866 if ((*endp != ' ') && (*endp != '\0'))
3867 return -EINVAL;
3868 buf = endp + 1;
3870 event = kzalloc(sizeof(*event), GFP_KERNEL);
3871 if (!event)
3872 return -ENOMEM;
3874 event->memcg = memcg;
3875 INIT_LIST_HEAD(&event->list);
3876 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
3877 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
3878 INIT_WORK(&event->remove, memcg_event_remove);
3880 efile = fdget(efd);
3881 if (!efile.file) {
3882 ret = -EBADF;
3883 goto out_kfree;
3886 event->eventfd = eventfd_ctx_fileget(efile.file);
3887 if (IS_ERR(event->eventfd)) {
3888 ret = PTR_ERR(event->eventfd);
3889 goto out_put_efile;
3892 cfile = fdget(cfd);
3893 if (!cfile.file) {
3894 ret = -EBADF;
3895 goto out_put_eventfd;
3898 /* the process need read permission on control file */
3899 /* AV: shouldn't we check that it's been opened for read instead? */
3900 ret = inode_permission(file_inode(cfile.file), MAY_READ);
3901 if (ret < 0)
3902 goto out_put_cfile;
3905 * Determine the event callbacks and set them in @event. This used
3906 * to be done via struct cftype but cgroup core no longer knows
3907 * about these events. The following is crude but the whole thing
3908 * is for compatibility anyway.
3910 * DO NOT ADD NEW FILES.
3912 name = cfile.file->f_path.dentry->d_name.name;
3914 if (!strcmp(name, "memory.usage_in_bytes")) {
3915 event->register_event = mem_cgroup_usage_register_event;
3916 event->unregister_event = mem_cgroup_usage_unregister_event;
3917 } else if (!strcmp(name, "memory.oom_control")) {
3918 event->register_event = mem_cgroup_oom_register_event;
3919 event->unregister_event = mem_cgroup_oom_unregister_event;
3920 } else if (!strcmp(name, "memory.pressure_level")) {
3921 event->register_event = vmpressure_register_event;
3922 event->unregister_event = vmpressure_unregister_event;
3923 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
3924 event->register_event = memsw_cgroup_usage_register_event;
3925 event->unregister_event = memsw_cgroup_usage_unregister_event;
3926 } else {
3927 ret = -EINVAL;
3928 goto out_put_cfile;
3932 * Verify @cfile should belong to @css. Also, remaining events are
3933 * automatically removed on cgroup destruction but the removal is
3934 * asynchronous, so take an extra ref on @css.
3936 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
3937 &memory_cgrp_subsys);
3938 ret = -EINVAL;
3939 if (IS_ERR(cfile_css))
3940 goto out_put_cfile;
3941 if (cfile_css != css) {
3942 css_put(cfile_css);
3943 goto out_put_cfile;
3946 ret = event->register_event(memcg, event->eventfd, buf);
3947 if (ret)
3948 goto out_put_css;
3950 efile.file->f_op->poll(efile.file, &event->pt);
3952 spin_lock(&memcg->event_list_lock);
3953 list_add(&event->list, &memcg->event_list);
3954 spin_unlock(&memcg->event_list_lock);
3956 fdput(cfile);
3957 fdput(efile);
3959 return nbytes;
3961 out_put_css:
3962 css_put(css);
3963 out_put_cfile:
3964 fdput(cfile);
3965 out_put_eventfd:
3966 eventfd_ctx_put(event->eventfd);
3967 out_put_efile:
3968 fdput(efile);
3969 out_kfree:
3970 kfree(event);
3972 return ret;
3975 static struct cftype mem_cgroup_legacy_files[] = {
3977 .name = "usage_in_bytes",
3978 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
3979 .read_u64 = mem_cgroup_read_u64,
3982 .name = "max_usage_in_bytes",
3983 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
3984 .write = mem_cgroup_reset,
3985 .read_u64 = mem_cgroup_read_u64,
3988 .name = "limit_in_bytes",
3989 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
3990 .write = mem_cgroup_write,
3991 .read_u64 = mem_cgroup_read_u64,
3994 .name = "soft_limit_in_bytes",
3995 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
3996 .write = mem_cgroup_write,
3997 .read_u64 = mem_cgroup_read_u64,
4000 .name = "failcnt",
4001 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4002 .write = mem_cgroup_reset,
4003 .read_u64 = mem_cgroup_read_u64,
4006 .name = "stat",
4007 .seq_show = memcg_stat_show,
4010 .name = "force_empty",
4011 .write = mem_cgroup_force_empty_write,
4014 .name = "use_hierarchy",
4015 .write_u64 = mem_cgroup_hierarchy_write,
4016 .read_u64 = mem_cgroup_hierarchy_read,
4019 .name = "cgroup.event_control", /* XXX: for compat */
4020 .write = memcg_write_event_control,
4021 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
4024 .name = "swappiness",
4025 .read_u64 = mem_cgroup_swappiness_read,
4026 .write_u64 = mem_cgroup_swappiness_write,
4029 .name = "move_charge_at_immigrate",
4030 .read_u64 = mem_cgroup_move_charge_read,
4031 .write_u64 = mem_cgroup_move_charge_write,
4034 .name = "oom_control",
4035 .seq_show = mem_cgroup_oom_control_read,
4036 .write_u64 = mem_cgroup_oom_control_write,
4037 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4040 .name = "pressure_level",
4042 #ifdef CONFIG_NUMA
4044 .name = "numa_stat",
4045 .seq_show = memcg_numa_stat_show,
4047 #endif
4049 .name = "kmem.limit_in_bytes",
4050 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4051 .write = mem_cgroup_write,
4052 .read_u64 = mem_cgroup_read_u64,
4055 .name = "kmem.usage_in_bytes",
4056 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4057 .read_u64 = mem_cgroup_read_u64,
4060 .name = "kmem.failcnt",
4061 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4062 .write = mem_cgroup_reset,
4063 .read_u64 = mem_cgroup_read_u64,
4066 .name = "kmem.max_usage_in_bytes",
4067 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4068 .write = mem_cgroup_reset,
4069 .read_u64 = mem_cgroup_read_u64,
4071 #ifdef CONFIG_SLABINFO
4073 .name = "kmem.slabinfo",
4074 .seq_start = memcg_slab_start,
4075 .seq_next = memcg_slab_next,
4076 .seq_stop = memcg_slab_stop,
4077 .seq_show = memcg_slab_show,
4079 #endif
4081 .name = "kmem.tcp.limit_in_bytes",
4082 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4083 .write = mem_cgroup_write,
4084 .read_u64 = mem_cgroup_read_u64,
4087 .name = "kmem.tcp.usage_in_bytes",
4088 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4089 .read_u64 = mem_cgroup_read_u64,
4092 .name = "kmem.tcp.failcnt",
4093 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4094 .write = mem_cgroup_reset,
4095 .read_u64 = mem_cgroup_read_u64,
4098 .name = "kmem.tcp.max_usage_in_bytes",
4099 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4100 .write = mem_cgroup_reset,
4101 .read_u64 = mem_cgroup_read_u64,
4103 { }, /* terminate */
4107 * Private memory cgroup IDR
4109 * Swap-out records and page cache shadow entries need to store memcg
4110 * references in constrained space, so we maintain an ID space that is
4111 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4112 * memory-controlled cgroups to 64k.
4114 * However, there usually are many references to the oflline CSS after
4115 * the cgroup has been destroyed, such as page cache or reclaimable
4116 * slab objects, that don't need to hang on to the ID. We want to keep
4117 * those dead CSS from occupying IDs, or we might quickly exhaust the
4118 * relatively small ID space and prevent the creation of new cgroups
4119 * even when there are much fewer than 64k cgroups - possibly none.
4121 * Maintain a private 16-bit ID space for memcg, and allow the ID to
4122 * be freed and recycled when it's no longer needed, which is usually
4123 * when the CSS is offlined.
4125 * The only exception to that are records of swapped out tmpfs/shmem
4126 * pages that need to be attributed to live ancestors on swapin. But
4127 * those references are manageable from userspace.
4130 static DEFINE_IDR(mem_cgroup_idr);
4132 static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
4134 if (memcg->id.id > 0) {
4135 idr_remove(&mem_cgroup_idr, memcg->id.id);
4136 memcg->id.id = 0;
4140 static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n)
4142 VM_BUG_ON(atomic_read(&memcg->id.ref) <= 0);
4143 atomic_add(n, &memcg->id.ref);
4146 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
4148 VM_BUG_ON(atomic_read(&memcg->id.ref) < n);
4149 if (atomic_sub_and_test(n, &memcg->id.ref)) {
4150 mem_cgroup_id_remove(memcg);
4152 /* Memcg ID pins CSS */
4153 css_put(&memcg->css);
4157 static inline void mem_cgroup_id_get(struct mem_cgroup *memcg)
4159 mem_cgroup_id_get_many(memcg, 1);
4162 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
4164 mem_cgroup_id_put_many(memcg, 1);
4168 * mem_cgroup_from_id - look up a memcg from a memcg id
4169 * @id: the memcg id to look up
4171 * Caller must hold rcu_read_lock().
4173 struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
4175 WARN_ON_ONCE(!rcu_read_lock_held());
4176 return idr_find(&mem_cgroup_idr, id);
4179 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4181 struct mem_cgroup_per_node *pn;
4182 int tmp = node;
4184 * This routine is called against possible nodes.
4185 * But it's BUG to call kmalloc() against offline node.
4187 * TODO: this routine can waste much memory for nodes which will
4188 * never be onlined. It's better to use memory hotplug callback
4189 * function.
4191 if (!node_state(node, N_NORMAL_MEMORY))
4192 tmp = -1;
4193 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4194 if (!pn)
4195 return 1;
4197 pn->lruvec_stat = alloc_percpu(struct lruvec_stat);
4198 if (!pn->lruvec_stat) {
4199 kfree(pn);
4200 return 1;
4203 lruvec_init(&pn->lruvec);
4204 pn->usage_in_excess = 0;
4205 pn->on_tree = false;
4206 pn->memcg = memcg;
4208 memcg->nodeinfo[node] = pn;
4209 return 0;
4212 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4214 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
4216 if (!pn)
4217 return;
4219 free_percpu(pn->lruvec_stat);
4220 kfree(pn);
4223 static void __mem_cgroup_free(struct mem_cgroup *memcg)
4225 int node;
4227 for_each_node(node)
4228 free_mem_cgroup_per_node_info(memcg, node);
4229 free_percpu(memcg->stat);
4230 kfree(memcg);
4233 static void mem_cgroup_free(struct mem_cgroup *memcg)
4235 memcg_wb_domain_exit(memcg);
4236 __mem_cgroup_free(memcg);
4239 static struct mem_cgroup *mem_cgroup_alloc(void)
4241 struct mem_cgroup *memcg;
4242 size_t size;
4243 int node;
4245 size = sizeof(struct mem_cgroup);
4246 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4248 memcg = kzalloc(size, GFP_KERNEL);
4249 if (!memcg)
4250 return NULL;
4252 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
4253 1, MEM_CGROUP_ID_MAX,
4254 GFP_KERNEL);
4255 if (memcg->id.id < 0)
4256 goto fail;
4258 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4259 if (!memcg->stat)
4260 goto fail;
4262 for_each_node(node)
4263 if (alloc_mem_cgroup_per_node_info(memcg, node))
4264 goto fail;
4266 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4267 goto fail;
4269 INIT_WORK(&memcg->high_work, high_work_func);
4270 memcg->last_scanned_node = MAX_NUMNODES;
4271 INIT_LIST_HEAD(&memcg->oom_notify);
4272 mutex_init(&memcg->thresholds_lock);
4273 spin_lock_init(&memcg->move_lock);
4274 vmpressure_init(&memcg->vmpressure);
4275 INIT_LIST_HEAD(&memcg->event_list);
4276 spin_lock_init(&memcg->event_list_lock);
4277 memcg->socket_pressure = jiffies;
4278 #ifndef CONFIG_SLOB
4279 memcg->kmemcg_id = -1;
4280 #endif
4281 #ifdef CONFIG_CGROUP_WRITEBACK
4282 INIT_LIST_HEAD(&memcg->cgwb_list);
4283 #endif
4284 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
4285 return memcg;
4286 fail:
4287 mem_cgroup_id_remove(memcg);
4288 __mem_cgroup_free(memcg);
4289 return NULL;
4292 static struct cgroup_subsys_state * __ref
4293 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4295 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
4296 struct mem_cgroup *memcg;
4297 long error = -ENOMEM;
4299 memcg = mem_cgroup_alloc();
4300 if (!memcg)
4301 return ERR_PTR(error);
4303 memcg->high = PAGE_COUNTER_MAX;
4304 memcg->soft_limit = PAGE_COUNTER_MAX;
4305 if (parent) {
4306 memcg->swappiness = mem_cgroup_swappiness(parent);
4307 memcg->oom_kill_disable = parent->oom_kill_disable;
4309 if (parent && parent->use_hierarchy) {
4310 memcg->use_hierarchy = true;
4311 page_counter_init(&memcg->memory, &parent->memory);
4312 page_counter_init(&memcg->swap, &parent->swap);
4313 page_counter_init(&memcg->memsw, &parent->memsw);
4314 page_counter_init(&memcg->kmem, &parent->kmem);
4315 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
4316 } else {
4317 page_counter_init(&memcg->memory, NULL);
4318 page_counter_init(&memcg->swap, NULL);
4319 page_counter_init(&memcg->memsw, NULL);
4320 page_counter_init(&memcg->kmem, NULL);
4321 page_counter_init(&memcg->tcpmem, NULL);
4323 * Deeper hierachy with use_hierarchy == false doesn't make
4324 * much sense so let cgroup subsystem know about this
4325 * unfortunate state in our controller.
4327 if (parent != root_mem_cgroup)
4328 memory_cgrp_subsys.broken_hierarchy = true;
4331 /* The following stuff does not apply to the root */
4332 if (!parent) {
4333 root_mem_cgroup = memcg;
4334 return &memcg->css;
4337 error = memcg_online_kmem(memcg);
4338 if (error)
4339 goto fail;
4341 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4342 static_branch_inc(&memcg_sockets_enabled_key);
4344 return &memcg->css;
4345 fail:
4346 mem_cgroup_id_remove(memcg);
4347 mem_cgroup_free(memcg);
4348 return ERR_PTR(-ENOMEM);
4351 static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
4353 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4355 /* Online state pins memcg ID, memcg ID pins CSS */
4356 atomic_set(&memcg->id.ref, 1);
4357 css_get(css);
4358 return 0;
4361 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4363 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4364 struct mem_cgroup_event *event, *tmp;
4367 * Unregister events and notify userspace.
4368 * Notify userspace about cgroup removing only after rmdir of cgroup
4369 * directory to avoid race between userspace and kernelspace.
4371 spin_lock(&memcg->event_list_lock);
4372 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4373 list_del_init(&event->list);
4374 schedule_work(&event->remove);
4376 spin_unlock(&memcg->event_list_lock);
4378 memcg->low = 0;
4380 memcg_offline_kmem(memcg);
4381 wb_memcg_offline(memcg);
4383 mem_cgroup_id_put(memcg);
4386 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
4388 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4390 invalidate_reclaim_iterators(memcg);
4393 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
4395 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4397 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4398 static_branch_dec(&memcg_sockets_enabled_key);
4400 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
4401 static_branch_dec(&memcg_sockets_enabled_key);
4403 vmpressure_cleanup(&memcg->vmpressure);
4404 cancel_work_sync(&memcg->high_work);
4405 mem_cgroup_remove_from_trees(memcg);
4406 memcg_free_kmem(memcg);
4407 mem_cgroup_free(memcg);
4411 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4412 * @css: the target css
4414 * Reset the states of the mem_cgroup associated with @css. This is
4415 * invoked when the userland requests disabling on the default hierarchy
4416 * but the memcg is pinned through dependency. The memcg should stop
4417 * applying policies and should revert to the vanilla state as it may be
4418 * made visible again.
4420 * The current implementation only resets the essential configurations.
4421 * This needs to be expanded to cover all the visible parts.
4423 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4425 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4427 page_counter_limit(&memcg->memory, PAGE_COUNTER_MAX);
4428 page_counter_limit(&memcg->swap, PAGE_COUNTER_MAX);
4429 page_counter_limit(&memcg->memsw, PAGE_COUNTER_MAX);
4430 page_counter_limit(&memcg->kmem, PAGE_COUNTER_MAX);
4431 page_counter_limit(&memcg->tcpmem, PAGE_COUNTER_MAX);
4432 memcg->low = 0;
4433 memcg->high = PAGE_COUNTER_MAX;
4434 memcg->soft_limit = PAGE_COUNTER_MAX;
4435 memcg_wb_domain_size_changed(memcg);
4438 #ifdef CONFIG_MMU
4439 /* Handlers for move charge at task migration. */
4440 static int mem_cgroup_do_precharge(unsigned long count)
4442 int ret;
4444 /* Try a single bulk charge without reclaim first, kswapd may wake */
4445 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
4446 if (!ret) {
4447 mc.precharge += count;
4448 return ret;
4451 /* Try charges one by one with reclaim, but do not retry */
4452 while (count--) {
4453 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
4454 if (ret)
4455 return ret;
4456 mc.precharge++;
4457 cond_resched();
4459 return 0;
4462 union mc_target {
4463 struct page *page;
4464 swp_entry_t ent;
4467 enum mc_target_type {
4468 MC_TARGET_NONE = 0,
4469 MC_TARGET_PAGE,
4470 MC_TARGET_SWAP,
4471 MC_TARGET_DEVICE,
4474 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4475 unsigned long addr, pte_t ptent)
4477 struct page *page = _vm_normal_page(vma, addr, ptent, true);
4479 if (!page || !page_mapped(page))
4480 return NULL;
4481 if (PageAnon(page)) {
4482 if (!(mc.flags & MOVE_ANON))
4483 return NULL;
4484 } else {
4485 if (!(mc.flags & MOVE_FILE))
4486 return NULL;
4488 if (!get_page_unless_zero(page))
4489 return NULL;
4491 return page;
4494 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
4495 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4496 pte_t ptent, swp_entry_t *entry)
4498 struct page *page = NULL;
4499 swp_entry_t ent = pte_to_swp_entry(ptent);
4501 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
4502 return NULL;
4505 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
4506 * a device and because they are not accessible by CPU they are store
4507 * as special swap entry in the CPU page table.
4509 if (is_device_private_entry(ent)) {
4510 page = device_private_entry_to_page(ent);
4512 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
4513 * a refcount of 1 when free (unlike normal page)
4515 if (!page_ref_add_unless(page, 1, 1))
4516 return NULL;
4517 return page;
4521 * Because lookup_swap_cache() updates some statistics counter,
4522 * we call find_get_page() with swapper_space directly.
4524 page = find_get_page(swap_address_space(ent), swp_offset(ent));
4525 if (do_memsw_account())
4526 entry->val = ent.val;
4528 return page;
4530 #else
4531 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4532 pte_t ptent, swp_entry_t *entry)
4534 return NULL;
4536 #endif
4538 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4539 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4541 struct page *page = NULL;
4542 struct address_space *mapping;
4543 pgoff_t pgoff;
4545 if (!vma->vm_file) /* anonymous vma */
4546 return NULL;
4547 if (!(mc.flags & MOVE_FILE))
4548 return NULL;
4550 mapping = vma->vm_file->f_mapping;
4551 pgoff = linear_page_index(vma, addr);
4553 /* page is moved even if it's not RSS of this task(page-faulted). */
4554 #ifdef CONFIG_SWAP
4555 /* shmem/tmpfs may report page out on swap: account for that too. */
4556 if (shmem_mapping(mapping)) {
4557 page = find_get_entry(mapping, pgoff);
4558 if (radix_tree_exceptional_entry(page)) {
4559 swp_entry_t swp = radix_to_swp_entry(page);
4560 if (do_memsw_account())
4561 *entry = swp;
4562 page = find_get_page(swap_address_space(swp),
4563 swp_offset(swp));
4565 } else
4566 page = find_get_page(mapping, pgoff);
4567 #else
4568 page = find_get_page(mapping, pgoff);
4569 #endif
4570 return page;
4574 * mem_cgroup_move_account - move account of the page
4575 * @page: the page
4576 * @compound: charge the page as compound or small page
4577 * @from: mem_cgroup which the page is moved from.
4578 * @to: mem_cgroup which the page is moved to. @from != @to.
4580 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
4582 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4583 * from old cgroup.
4585 static int mem_cgroup_move_account(struct page *page,
4586 bool compound,
4587 struct mem_cgroup *from,
4588 struct mem_cgroup *to)
4590 unsigned long flags;
4591 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
4592 int ret;
4593 bool anon;
4595 VM_BUG_ON(from == to);
4596 VM_BUG_ON_PAGE(PageLRU(page), page);
4597 VM_BUG_ON(compound && !PageTransHuge(page));
4600 * Prevent mem_cgroup_migrate() from looking at
4601 * page->mem_cgroup of its source page while we change it.
4603 ret = -EBUSY;
4604 if (!trylock_page(page))
4605 goto out;
4607 ret = -EINVAL;
4608 if (page->mem_cgroup != from)
4609 goto out_unlock;
4611 anon = PageAnon(page);
4613 spin_lock_irqsave(&from->move_lock, flags);
4615 if (!anon && page_mapped(page)) {
4616 __this_cpu_sub(from->stat->count[NR_FILE_MAPPED], nr_pages);
4617 __this_cpu_add(to->stat->count[NR_FILE_MAPPED], nr_pages);
4621 * move_lock grabbed above and caller set from->moving_account, so
4622 * mod_memcg_page_state will serialize updates to PageDirty.
4623 * So mapping should be stable for dirty pages.
4625 if (!anon && PageDirty(page)) {
4626 struct address_space *mapping = page_mapping(page);
4628 if (mapping_cap_account_dirty(mapping)) {
4629 __this_cpu_sub(from->stat->count[NR_FILE_DIRTY],
4630 nr_pages);
4631 __this_cpu_add(to->stat->count[NR_FILE_DIRTY],
4632 nr_pages);
4636 if (PageWriteback(page)) {
4637 __this_cpu_sub(from->stat->count[NR_WRITEBACK], nr_pages);
4638 __this_cpu_add(to->stat->count[NR_WRITEBACK], nr_pages);
4642 * It is safe to change page->mem_cgroup here because the page
4643 * is referenced, charged, and isolated - we can't race with
4644 * uncharging, charging, migration, or LRU putback.
4647 /* caller should have done css_get */
4648 page->mem_cgroup = to;
4649 spin_unlock_irqrestore(&from->move_lock, flags);
4651 ret = 0;
4653 local_irq_disable();
4654 mem_cgroup_charge_statistics(to, page, compound, nr_pages);
4655 memcg_check_events(to, page);
4656 mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
4657 memcg_check_events(from, page);
4658 local_irq_enable();
4659 out_unlock:
4660 unlock_page(page);
4661 out:
4662 return ret;
4666 * get_mctgt_type - get target type of moving charge
4667 * @vma: the vma the pte to be checked belongs
4668 * @addr: the address corresponding to the pte to be checked
4669 * @ptent: the pte to be checked
4670 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4672 * Returns
4673 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4674 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4675 * move charge. if @target is not NULL, the page is stored in target->page
4676 * with extra refcnt got(Callers should handle it).
4677 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4678 * target for charge migration. if @target is not NULL, the entry is stored
4679 * in target->ent.
4680 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is MEMORY_DEVICE_PUBLIC
4681 * or MEMORY_DEVICE_PRIVATE (so ZONE_DEVICE page and thus not on the lru).
4682 * For now we such page is charge like a regular page would be as for all
4683 * intent and purposes it is just special memory taking the place of a
4684 * regular page.
4686 * See Documentations/vm/hmm.txt and include/linux/hmm.h
4688 * Called with pte lock held.
4691 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
4692 unsigned long addr, pte_t ptent, union mc_target *target)
4694 struct page *page = NULL;
4695 enum mc_target_type ret = MC_TARGET_NONE;
4696 swp_entry_t ent = { .val = 0 };
4698 if (pte_present(ptent))
4699 page = mc_handle_present_pte(vma, addr, ptent);
4700 else if (is_swap_pte(ptent))
4701 page = mc_handle_swap_pte(vma, ptent, &ent);
4702 else if (pte_none(ptent))
4703 page = mc_handle_file_pte(vma, addr, ptent, &ent);
4705 if (!page && !ent.val)
4706 return ret;
4707 if (page) {
4709 * Do only loose check w/o serialization.
4710 * mem_cgroup_move_account() checks the page is valid or
4711 * not under LRU exclusion.
4713 if (page->mem_cgroup == mc.from) {
4714 ret = MC_TARGET_PAGE;
4715 if (is_device_private_page(page) ||
4716 is_device_public_page(page))
4717 ret = MC_TARGET_DEVICE;
4718 if (target)
4719 target->page = page;
4721 if (!ret || !target)
4722 put_page(page);
4725 * There is a swap entry and a page doesn't exist or isn't charged.
4726 * But we cannot move a tail-page in a THP.
4728 if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
4729 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4730 ret = MC_TARGET_SWAP;
4731 if (target)
4732 target->ent = ent;
4734 return ret;
4737 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4739 * We don't consider PMD mapped swapping or file mapped pages because THP does
4740 * not support them for now.
4741 * Caller should make sure that pmd_trans_huge(pmd) is true.
4743 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4744 unsigned long addr, pmd_t pmd, union mc_target *target)
4746 struct page *page = NULL;
4747 enum mc_target_type ret = MC_TARGET_NONE;
4749 if (unlikely(is_swap_pmd(pmd))) {
4750 VM_BUG_ON(thp_migration_supported() &&
4751 !is_pmd_migration_entry(pmd));
4752 return ret;
4754 page = pmd_page(pmd);
4755 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4756 if (!(mc.flags & MOVE_ANON))
4757 return ret;
4758 if (page->mem_cgroup == mc.from) {
4759 ret = MC_TARGET_PAGE;
4760 if (target) {
4761 get_page(page);
4762 target->page = page;
4765 return ret;
4767 #else
4768 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4769 unsigned long addr, pmd_t pmd, union mc_target *target)
4771 return MC_TARGET_NONE;
4773 #endif
4775 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4776 unsigned long addr, unsigned long end,
4777 struct mm_walk *walk)
4779 struct vm_area_struct *vma = walk->vma;
4780 pte_t *pte;
4781 spinlock_t *ptl;
4783 ptl = pmd_trans_huge_lock(pmd, vma);
4784 if (ptl) {
4786 * Note their can not be MC_TARGET_DEVICE for now as we do not
4787 * support transparent huge page with MEMORY_DEVICE_PUBLIC or
4788 * MEMORY_DEVICE_PRIVATE but this might change.
4790 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4791 mc.precharge += HPAGE_PMD_NR;
4792 spin_unlock(ptl);
4793 return 0;
4796 if (pmd_trans_unstable(pmd))
4797 return 0;
4798 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4799 for (; addr != end; pte++, addr += PAGE_SIZE)
4800 if (get_mctgt_type(vma, addr, *pte, NULL))
4801 mc.precharge++; /* increment precharge temporarily */
4802 pte_unmap_unlock(pte - 1, ptl);
4803 cond_resched();
4805 return 0;
4808 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4810 unsigned long precharge;
4812 struct mm_walk mem_cgroup_count_precharge_walk = {
4813 .pmd_entry = mem_cgroup_count_precharge_pte_range,
4814 .mm = mm,
4816 down_read(&mm->mmap_sem);
4817 walk_page_range(0, mm->highest_vm_end,
4818 &mem_cgroup_count_precharge_walk);
4819 up_read(&mm->mmap_sem);
4821 precharge = mc.precharge;
4822 mc.precharge = 0;
4824 return precharge;
4827 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4829 unsigned long precharge = mem_cgroup_count_precharge(mm);
4831 VM_BUG_ON(mc.moving_task);
4832 mc.moving_task = current;
4833 return mem_cgroup_do_precharge(precharge);
4836 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4837 static void __mem_cgroup_clear_mc(void)
4839 struct mem_cgroup *from = mc.from;
4840 struct mem_cgroup *to = mc.to;
4842 /* we must uncharge all the leftover precharges from mc.to */
4843 if (mc.precharge) {
4844 cancel_charge(mc.to, mc.precharge);
4845 mc.precharge = 0;
4848 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4849 * we must uncharge here.
4851 if (mc.moved_charge) {
4852 cancel_charge(mc.from, mc.moved_charge);
4853 mc.moved_charge = 0;
4855 /* we must fixup refcnts and charges */
4856 if (mc.moved_swap) {
4857 /* uncharge swap account from the old cgroup */
4858 if (!mem_cgroup_is_root(mc.from))
4859 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
4861 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
4864 * we charged both to->memory and to->memsw, so we
4865 * should uncharge to->memory.
4867 if (!mem_cgroup_is_root(mc.to))
4868 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
4870 mem_cgroup_id_get_many(mc.to, mc.moved_swap);
4871 css_put_many(&mc.to->css, mc.moved_swap);
4873 mc.moved_swap = 0;
4875 memcg_oom_recover(from);
4876 memcg_oom_recover(to);
4877 wake_up_all(&mc.waitq);
4880 static void mem_cgroup_clear_mc(void)
4882 struct mm_struct *mm = mc.mm;
4885 * we must clear moving_task before waking up waiters at the end of
4886 * task migration.
4888 mc.moving_task = NULL;
4889 __mem_cgroup_clear_mc();
4890 spin_lock(&mc.lock);
4891 mc.from = NULL;
4892 mc.to = NULL;
4893 mc.mm = NULL;
4894 spin_unlock(&mc.lock);
4896 mmput(mm);
4899 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4901 struct cgroup_subsys_state *css;
4902 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
4903 struct mem_cgroup *from;
4904 struct task_struct *leader, *p;
4905 struct mm_struct *mm;
4906 unsigned long move_flags;
4907 int ret = 0;
4909 /* charge immigration isn't supported on the default hierarchy */
4910 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
4911 return 0;
4914 * Multi-process migrations only happen on the default hierarchy
4915 * where charge immigration is not used. Perform charge
4916 * immigration if @tset contains a leader and whine if there are
4917 * multiple.
4919 p = NULL;
4920 cgroup_taskset_for_each_leader(leader, css, tset) {
4921 WARN_ON_ONCE(p);
4922 p = leader;
4923 memcg = mem_cgroup_from_css(css);
4925 if (!p)
4926 return 0;
4929 * We are now commited to this value whatever it is. Changes in this
4930 * tunable will only affect upcoming migrations, not the current one.
4931 * So we need to save it, and keep it going.
4933 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
4934 if (!move_flags)
4935 return 0;
4937 from = mem_cgroup_from_task(p);
4939 VM_BUG_ON(from == memcg);
4941 mm = get_task_mm(p);
4942 if (!mm)
4943 return 0;
4944 /* We move charges only when we move a owner of the mm */
4945 if (mm->owner == p) {
4946 VM_BUG_ON(mc.from);
4947 VM_BUG_ON(mc.to);
4948 VM_BUG_ON(mc.precharge);
4949 VM_BUG_ON(mc.moved_charge);
4950 VM_BUG_ON(mc.moved_swap);
4952 spin_lock(&mc.lock);
4953 mc.mm = mm;
4954 mc.from = from;
4955 mc.to = memcg;
4956 mc.flags = move_flags;
4957 spin_unlock(&mc.lock);
4958 /* We set mc.moving_task later */
4960 ret = mem_cgroup_precharge_mc(mm);
4961 if (ret)
4962 mem_cgroup_clear_mc();
4963 } else {
4964 mmput(mm);
4966 return ret;
4969 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4971 if (mc.to)
4972 mem_cgroup_clear_mc();
4975 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4976 unsigned long addr, unsigned long end,
4977 struct mm_walk *walk)
4979 int ret = 0;
4980 struct vm_area_struct *vma = walk->vma;
4981 pte_t *pte;
4982 spinlock_t *ptl;
4983 enum mc_target_type target_type;
4984 union mc_target target;
4985 struct page *page;
4987 ptl = pmd_trans_huge_lock(pmd, vma);
4988 if (ptl) {
4989 if (mc.precharge < HPAGE_PMD_NR) {
4990 spin_unlock(ptl);
4991 return 0;
4993 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
4994 if (target_type == MC_TARGET_PAGE) {
4995 page = target.page;
4996 if (!isolate_lru_page(page)) {
4997 if (!mem_cgroup_move_account(page, true,
4998 mc.from, mc.to)) {
4999 mc.precharge -= HPAGE_PMD_NR;
5000 mc.moved_charge += HPAGE_PMD_NR;
5002 putback_lru_page(page);
5004 put_page(page);
5005 } else if (target_type == MC_TARGET_DEVICE) {
5006 page = target.page;
5007 if (!mem_cgroup_move_account(page, true,
5008 mc.from, mc.to)) {
5009 mc.precharge -= HPAGE_PMD_NR;
5010 mc.moved_charge += HPAGE_PMD_NR;
5012 put_page(page);
5014 spin_unlock(ptl);
5015 return 0;
5018 if (pmd_trans_unstable(pmd))
5019 return 0;
5020 retry:
5021 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5022 for (; addr != end; addr += PAGE_SIZE) {
5023 pte_t ptent = *(pte++);
5024 bool device = false;
5025 swp_entry_t ent;
5027 if (!mc.precharge)
5028 break;
5030 switch (get_mctgt_type(vma, addr, ptent, &target)) {
5031 case MC_TARGET_DEVICE:
5032 device = true;
5033 /* fall through */
5034 case MC_TARGET_PAGE:
5035 page = target.page;
5037 * We can have a part of the split pmd here. Moving it
5038 * can be done but it would be too convoluted so simply
5039 * ignore such a partial THP and keep it in original
5040 * memcg. There should be somebody mapping the head.
5042 if (PageTransCompound(page))
5043 goto put;
5044 if (!device && isolate_lru_page(page))
5045 goto put;
5046 if (!mem_cgroup_move_account(page, false,
5047 mc.from, mc.to)) {
5048 mc.precharge--;
5049 /* we uncharge from mc.from later. */
5050 mc.moved_charge++;
5052 if (!device)
5053 putback_lru_page(page);
5054 put: /* get_mctgt_type() gets the page */
5055 put_page(page);
5056 break;
5057 case MC_TARGET_SWAP:
5058 ent = target.ent;
5059 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5060 mc.precharge--;
5061 /* we fixup refcnts and charges later. */
5062 mc.moved_swap++;
5064 break;
5065 default:
5066 break;
5069 pte_unmap_unlock(pte - 1, ptl);
5070 cond_resched();
5072 if (addr != end) {
5074 * We have consumed all precharges we got in can_attach().
5075 * We try charge one by one, but don't do any additional
5076 * charges to mc.to if we have failed in charge once in attach()
5077 * phase.
5079 ret = mem_cgroup_do_precharge(1);
5080 if (!ret)
5081 goto retry;
5084 return ret;
5087 static void mem_cgroup_move_charge(void)
5089 struct mm_walk mem_cgroup_move_charge_walk = {
5090 .pmd_entry = mem_cgroup_move_charge_pte_range,
5091 .mm = mc.mm,
5094 lru_add_drain_all();
5096 * Signal lock_page_memcg() to take the memcg's move_lock
5097 * while we're moving its pages to another memcg. Then wait
5098 * for already started RCU-only updates to finish.
5100 atomic_inc(&mc.from->moving_account);
5101 synchronize_rcu();
5102 retry:
5103 if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
5105 * Someone who are holding the mmap_sem might be waiting in
5106 * waitq. So we cancel all extra charges, wake up all waiters,
5107 * and retry. Because we cancel precharges, we might not be able
5108 * to move enough charges, but moving charge is a best-effort
5109 * feature anyway, so it wouldn't be a big problem.
5111 __mem_cgroup_clear_mc();
5112 cond_resched();
5113 goto retry;
5116 * When we have consumed all precharges and failed in doing
5117 * additional charge, the page walk just aborts.
5119 walk_page_range(0, mc.mm->highest_vm_end, &mem_cgroup_move_charge_walk);
5121 up_read(&mc.mm->mmap_sem);
5122 atomic_dec(&mc.from->moving_account);
5125 static void mem_cgroup_move_task(void)
5127 if (mc.to) {
5128 mem_cgroup_move_charge();
5129 mem_cgroup_clear_mc();
5132 #else /* !CONFIG_MMU */
5133 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5135 return 0;
5137 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5140 static void mem_cgroup_move_task(void)
5143 #endif
5146 * Cgroup retains root cgroups across [un]mount cycles making it necessary
5147 * to verify whether we're attached to the default hierarchy on each mount
5148 * attempt.
5150 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5153 * use_hierarchy is forced on the default hierarchy. cgroup core
5154 * guarantees that @root doesn't have any children, so turning it
5155 * on for the root memcg is enough.
5157 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5158 root_mem_cgroup->use_hierarchy = true;
5159 else
5160 root_mem_cgroup->use_hierarchy = false;
5163 static u64 memory_current_read(struct cgroup_subsys_state *css,
5164 struct cftype *cft)
5166 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5168 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
5171 static int memory_low_show(struct seq_file *m, void *v)
5173 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5174 unsigned long low = READ_ONCE(memcg->low);
5176 if (low == PAGE_COUNTER_MAX)
5177 seq_puts(m, "max\n");
5178 else
5179 seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
5181 return 0;
5184 static ssize_t memory_low_write(struct kernfs_open_file *of,
5185 char *buf, size_t nbytes, loff_t off)
5187 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5188 unsigned long low;
5189 int err;
5191 buf = strstrip(buf);
5192 err = page_counter_memparse(buf, "max", &low);
5193 if (err)
5194 return err;
5196 memcg->low = low;
5198 return nbytes;
5201 static int memory_high_show(struct seq_file *m, void *v)
5203 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5204 unsigned long high = READ_ONCE(memcg->high);
5206 if (high == PAGE_COUNTER_MAX)
5207 seq_puts(m, "max\n");
5208 else
5209 seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
5211 return 0;
5214 static ssize_t memory_high_write(struct kernfs_open_file *of,
5215 char *buf, size_t nbytes, loff_t off)
5217 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5218 unsigned long nr_pages;
5219 unsigned long high;
5220 int err;
5222 buf = strstrip(buf);
5223 err = page_counter_memparse(buf, "max", &high);
5224 if (err)
5225 return err;
5227 memcg->high = high;
5229 nr_pages = page_counter_read(&memcg->memory);
5230 if (nr_pages > high)
5231 try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
5232 GFP_KERNEL, true);
5234 memcg_wb_domain_size_changed(memcg);
5235 return nbytes;
5238 static int memory_max_show(struct seq_file *m, void *v)
5240 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5241 unsigned long max = READ_ONCE(memcg->memory.limit);
5243 if (max == PAGE_COUNTER_MAX)
5244 seq_puts(m, "max\n");
5245 else
5246 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5248 return 0;
5251 static ssize_t memory_max_write(struct kernfs_open_file *of,
5252 char *buf, size_t nbytes, loff_t off)
5254 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5255 unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
5256 bool drained = false;
5257 unsigned long max;
5258 int err;
5260 buf = strstrip(buf);
5261 err = page_counter_memparse(buf, "max", &max);
5262 if (err)
5263 return err;
5265 xchg(&memcg->memory.limit, max);
5267 for (;;) {
5268 unsigned long nr_pages = page_counter_read(&memcg->memory);
5270 if (nr_pages <= max)
5271 break;
5273 if (signal_pending(current)) {
5274 err = -EINTR;
5275 break;
5278 if (!drained) {
5279 drain_all_stock(memcg);
5280 drained = true;
5281 continue;
5284 if (nr_reclaims) {
5285 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
5286 GFP_KERNEL, true))
5287 nr_reclaims--;
5288 continue;
5291 mem_cgroup_event(memcg, MEMCG_OOM);
5292 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
5293 break;
5296 memcg_wb_domain_size_changed(memcg);
5297 return nbytes;
5300 static int memory_events_show(struct seq_file *m, void *v)
5302 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5304 seq_printf(m, "low %lu\n", memcg_sum_events(memcg, MEMCG_LOW));
5305 seq_printf(m, "high %lu\n", memcg_sum_events(memcg, MEMCG_HIGH));
5306 seq_printf(m, "max %lu\n", memcg_sum_events(memcg, MEMCG_MAX));
5307 seq_printf(m, "oom %lu\n", memcg_sum_events(memcg, MEMCG_OOM));
5308 seq_printf(m, "oom_kill %lu\n", memcg_sum_events(memcg, OOM_KILL));
5310 return 0;
5313 static int memory_stat_show(struct seq_file *m, void *v)
5315 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5316 unsigned long stat[MEMCG_NR_STAT];
5317 unsigned long events[MEMCG_NR_EVENTS];
5318 int i;
5321 * Provide statistics on the state of the memory subsystem as
5322 * well as cumulative event counters that show past behavior.
5324 * This list is ordered following a combination of these gradients:
5325 * 1) generic big picture -> specifics and details
5326 * 2) reflecting userspace activity -> reflecting kernel heuristics
5328 * Current memory state:
5331 tree_stat(memcg, stat);
5332 tree_events(memcg, events);
5334 seq_printf(m, "anon %llu\n",
5335 (u64)stat[MEMCG_RSS] * PAGE_SIZE);
5336 seq_printf(m, "file %llu\n",
5337 (u64)stat[MEMCG_CACHE] * PAGE_SIZE);
5338 seq_printf(m, "kernel_stack %llu\n",
5339 (u64)stat[MEMCG_KERNEL_STACK_KB] * 1024);
5340 seq_printf(m, "slab %llu\n",
5341 (u64)(stat[NR_SLAB_RECLAIMABLE] +
5342 stat[NR_SLAB_UNRECLAIMABLE]) * PAGE_SIZE);
5343 seq_printf(m, "sock %llu\n",
5344 (u64)stat[MEMCG_SOCK] * PAGE_SIZE);
5346 seq_printf(m, "shmem %llu\n",
5347 (u64)stat[NR_SHMEM] * PAGE_SIZE);
5348 seq_printf(m, "file_mapped %llu\n",
5349 (u64)stat[NR_FILE_MAPPED] * PAGE_SIZE);
5350 seq_printf(m, "file_dirty %llu\n",
5351 (u64)stat[NR_FILE_DIRTY] * PAGE_SIZE);
5352 seq_printf(m, "file_writeback %llu\n",
5353 (u64)stat[NR_WRITEBACK] * PAGE_SIZE);
5355 for (i = 0; i < NR_LRU_LISTS; i++) {
5356 struct mem_cgroup *mi;
5357 unsigned long val = 0;
5359 for_each_mem_cgroup_tree(mi, memcg)
5360 val += mem_cgroup_nr_lru_pages(mi, BIT(i));
5361 seq_printf(m, "%s %llu\n",
5362 mem_cgroup_lru_names[i], (u64)val * PAGE_SIZE);
5365 seq_printf(m, "slab_reclaimable %llu\n",
5366 (u64)stat[NR_SLAB_RECLAIMABLE] * PAGE_SIZE);
5367 seq_printf(m, "slab_unreclaimable %llu\n",
5368 (u64)stat[NR_SLAB_UNRECLAIMABLE] * PAGE_SIZE);
5370 /* Accumulated memory events */
5372 seq_printf(m, "pgfault %lu\n", events[PGFAULT]);
5373 seq_printf(m, "pgmajfault %lu\n", events[PGMAJFAULT]);
5375 seq_printf(m, "pgrefill %lu\n", events[PGREFILL]);
5376 seq_printf(m, "pgscan %lu\n", events[PGSCAN_KSWAPD] +
5377 events[PGSCAN_DIRECT]);
5378 seq_printf(m, "pgsteal %lu\n", events[PGSTEAL_KSWAPD] +
5379 events[PGSTEAL_DIRECT]);
5380 seq_printf(m, "pgactivate %lu\n", events[PGACTIVATE]);
5381 seq_printf(m, "pgdeactivate %lu\n", events[PGDEACTIVATE]);
5382 seq_printf(m, "pglazyfree %lu\n", events[PGLAZYFREE]);
5383 seq_printf(m, "pglazyfreed %lu\n", events[PGLAZYFREED]);
5385 seq_printf(m, "workingset_refault %lu\n",
5386 stat[WORKINGSET_REFAULT]);
5387 seq_printf(m, "workingset_activate %lu\n",
5388 stat[WORKINGSET_ACTIVATE]);
5389 seq_printf(m, "workingset_nodereclaim %lu\n",
5390 stat[WORKINGSET_NODERECLAIM]);
5392 return 0;
5395 static struct cftype memory_files[] = {
5397 .name = "current",
5398 .flags = CFTYPE_NOT_ON_ROOT,
5399 .read_u64 = memory_current_read,
5402 .name = "low",
5403 .flags = CFTYPE_NOT_ON_ROOT,
5404 .seq_show = memory_low_show,
5405 .write = memory_low_write,
5408 .name = "high",
5409 .flags = CFTYPE_NOT_ON_ROOT,
5410 .seq_show = memory_high_show,
5411 .write = memory_high_write,
5414 .name = "max",
5415 .flags = CFTYPE_NOT_ON_ROOT,
5416 .seq_show = memory_max_show,
5417 .write = memory_max_write,
5420 .name = "events",
5421 .flags = CFTYPE_NOT_ON_ROOT,
5422 .file_offset = offsetof(struct mem_cgroup, events_file),
5423 .seq_show = memory_events_show,
5426 .name = "stat",
5427 .flags = CFTYPE_NOT_ON_ROOT,
5428 .seq_show = memory_stat_show,
5430 { } /* terminate */
5433 struct cgroup_subsys memory_cgrp_subsys = {
5434 .css_alloc = mem_cgroup_css_alloc,
5435 .css_online = mem_cgroup_css_online,
5436 .css_offline = mem_cgroup_css_offline,
5437 .css_released = mem_cgroup_css_released,
5438 .css_free = mem_cgroup_css_free,
5439 .css_reset = mem_cgroup_css_reset,
5440 .can_attach = mem_cgroup_can_attach,
5441 .cancel_attach = mem_cgroup_cancel_attach,
5442 .post_attach = mem_cgroup_move_task,
5443 .bind = mem_cgroup_bind,
5444 .dfl_cftypes = memory_files,
5445 .legacy_cftypes = mem_cgroup_legacy_files,
5446 .early_init = 0,
5450 * mem_cgroup_low - check if memory consumption is below the normal range
5451 * @root: the top ancestor of the sub-tree being checked
5452 * @memcg: the memory cgroup to check
5454 * Returns %true if memory consumption of @memcg, and that of all
5455 * ancestors up to (but not including) @root, is below the normal range.
5457 * @root is exclusive; it is never low when looked at directly and isn't
5458 * checked when traversing the hierarchy.
5460 * Excluding @root enables using memory.low to prioritize memory usage
5461 * between cgroups within a subtree of the hierarchy that is limited by
5462 * memory.high or memory.max.
5464 * For example, given cgroup A with children B and C:
5467 * / \
5468 * B C
5470 * and
5472 * 1. A/memory.current > A/memory.high
5473 * 2. A/B/memory.current < A/B/memory.low
5474 * 3. A/C/memory.current >= A/C/memory.low
5476 * As 'A' is high, i.e. triggers reclaim from 'A', and 'B' is low, we
5477 * should reclaim from 'C' until 'A' is no longer high or until we can
5478 * no longer reclaim from 'C'. If 'A', i.e. @root, isn't excluded by
5479 * mem_cgroup_low when reclaming from 'A', then 'B' won't be considered
5480 * low and we will reclaim indiscriminately from both 'B' and 'C'.
5482 bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
5484 if (mem_cgroup_disabled())
5485 return false;
5487 if (!root)
5488 root = root_mem_cgroup;
5489 if (memcg == root)
5490 return false;
5492 for (; memcg != root; memcg = parent_mem_cgroup(memcg)) {
5493 if (page_counter_read(&memcg->memory) >= memcg->low)
5494 return false;
5497 return true;
5501 * mem_cgroup_try_charge - try charging a page
5502 * @page: page to charge
5503 * @mm: mm context of the victim
5504 * @gfp_mask: reclaim mode
5505 * @memcgp: charged memcg return
5506 * @compound: charge the page as compound or small page
5508 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5509 * pages according to @gfp_mask if necessary.
5511 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5512 * Otherwise, an error code is returned.
5514 * After page->mapping has been set up, the caller must finalize the
5515 * charge with mem_cgroup_commit_charge(). Or abort the transaction
5516 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5518 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5519 gfp_t gfp_mask, struct mem_cgroup **memcgp,
5520 bool compound)
5522 struct mem_cgroup *memcg = NULL;
5523 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5524 int ret = 0;
5526 if (mem_cgroup_disabled())
5527 goto out;
5529 if (PageSwapCache(page)) {
5531 * Every swap fault against a single page tries to charge the
5532 * page, bail as early as possible. shmem_unuse() encounters
5533 * already charged pages, too. The USED bit is protected by
5534 * the page lock, which serializes swap cache removal, which
5535 * in turn serializes uncharging.
5537 VM_BUG_ON_PAGE(!PageLocked(page), page);
5538 if (compound_head(page)->mem_cgroup)
5539 goto out;
5541 if (do_swap_account) {
5542 swp_entry_t ent = { .val = page_private(page), };
5543 unsigned short id = lookup_swap_cgroup_id(ent);
5545 rcu_read_lock();
5546 memcg = mem_cgroup_from_id(id);
5547 if (memcg && !css_tryget_online(&memcg->css))
5548 memcg = NULL;
5549 rcu_read_unlock();
5553 if (!memcg)
5554 memcg = get_mem_cgroup_from_mm(mm);
5556 ret = try_charge(memcg, gfp_mask, nr_pages);
5558 css_put(&memcg->css);
5559 out:
5560 *memcgp = memcg;
5561 return ret;
5565 * mem_cgroup_commit_charge - commit a page charge
5566 * @page: page to charge
5567 * @memcg: memcg to charge the page to
5568 * @lrucare: page might be on LRU already
5569 * @compound: charge the page as compound or small page
5571 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5572 * after page->mapping has been set up. This must happen atomically
5573 * as part of the page instantiation, i.e. under the page table lock
5574 * for anonymous pages, under the page lock for page and swap cache.
5576 * In addition, the page must not be on the LRU during the commit, to
5577 * prevent racing with task migration. If it might be, use @lrucare.
5579 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5581 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5582 bool lrucare, bool compound)
5584 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5586 VM_BUG_ON_PAGE(!page->mapping, page);
5587 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5589 if (mem_cgroup_disabled())
5590 return;
5592 * Swap faults will attempt to charge the same page multiple
5593 * times. But reuse_swap_page() might have removed the page
5594 * from swapcache already, so we can't check PageSwapCache().
5596 if (!memcg)
5597 return;
5599 commit_charge(page, memcg, lrucare);
5601 local_irq_disable();
5602 mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
5603 memcg_check_events(memcg, page);
5604 local_irq_enable();
5606 if (do_memsw_account() && PageSwapCache(page)) {
5607 swp_entry_t entry = { .val = page_private(page) };
5609 * The swap entry might not get freed for a long time,
5610 * let's not wait for it. The page already received a
5611 * memory+swap charge, drop the swap entry duplicate.
5613 mem_cgroup_uncharge_swap(entry, nr_pages);
5618 * mem_cgroup_cancel_charge - cancel a page charge
5619 * @page: page to charge
5620 * @memcg: memcg to charge the page to
5621 * @compound: charge the page as compound or small page
5623 * Cancel a charge transaction started by mem_cgroup_try_charge().
5625 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
5626 bool compound)
5628 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5630 if (mem_cgroup_disabled())
5631 return;
5633 * Swap faults will attempt to charge the same page multiple
5634 * times. But reuse_swap_page() might have removed the page
5635 * from swapcache already, so we can't check PageSwapCache().
5637 if (!memcg)
5638 return;
5640 cancel_charge(memcg, nr_pages);
5643 struct uncharge_gather {
5644 struct mem_cgroup *memcg;
5645 unsigned long pgpgout;
5646 unsigned long nr_anon;
5647 unsigned long nr_file;
5648 unsigned long nr_kmem;
5649 unsigned long nr_huge;
5650 unsigned long nr_shmem;
5651 struct page *dummy_page;
5654 static inline void uncharge_gather_clear(struct uncharge_gather *ug)
5656 memset(ug, 0, sizeof(*ug));
5659 static void uncharge_batch(const struct uncharge_gather *ug)
5661 unsigned long nr_pages = ug->nr_anon + ug->nr_file + ug->nr_kmem;
5662 unsigned long flags;
5664 if (!mem_cgroup_is_root(ug->memcg)) {
5665 page_counter_uncharge(&ug->memcg->memory, nr_pages);
5666 if (do_memsw_account())
5667 page_counter_uncharge(&ug->memcg->memsw, nr_pages);
5668 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
5669 page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
5670 memcg_oom_recover(ug->memcg);
5673 local_irq_save(flags);
5674 __this_cpu_sub(ug->memcg->stat->count[MEMCG_RSS], ug->nr_anon);
5675 __this_cpu_sub(ug->memcg->stat->count[MEMCG_CACHE], ug->nr_file);
5676 __this_cpu_sub(ug->memcg->stat->count[MEMCG_RSS_HUGE], ug->nr_huge);
5677 __this_cpu_sub(ug->memcg->stat->count[NR_SHMEM], ug->nr_shmem);
5678 __this_cpu_add(ug->memcg->stat->events[PGPGOUT], ug->pgpgout);
5679 __this_cpu_add(ug->memcg->stat->nr_page_events, nr_pages);
5680 memcg_check_events(ug->memcg, ug->dummy_page);
5681 local_irq_restore(flags);
5683 if (!mem_cgroup_is_root(ug->memcg))
5684 css_put_many(&ug->memcg->css, nr_pages);
5687 static void uncharge_page(struct page *page, struct uncharge_gather *ug)
5689 VM_BUG_ON_PAGE(PageLRU(page), page);
5690 VM_BUG_ON_PAGE(page_count(page) && !is_zone_device_page(page) &&
5691 !PageHWPoison(page) , page);
5693 if (!page->mem_cgroup)
5694 return;
5697 * Nobody should be changing or seriously looking at
5698 * page->mem_cgroup at this point, we have fully
5699 * exclusive access to the page.
5702 if (ug->memcg != page->mem_cgroup) {
5703 if (ug->memcg) {
5704 uncharge_batch(ug);
5705 uncharge_gather_clear(ug);
5707 ug->memcg = page->mem_cgroup;
5710 if (!PageKmemcg(page)) {
5711 unsigned int nr_pages = 1;
5713 if (PageTransHuge(page)) {
5714 nr_pages <<= compound_order(page);
5715 ug->nr_huge += nr_pages;
5717 if (PageAnon(page))
5718 ug->nr_anon += nr_pages;
5719 else {
5720 ug->nr_file += nr_pages;
5721 if (PageSwapBacked(page))
5722 ug->nr_shmem += nr_pages;
5724 ug->pgpgout++;
5725 } else {
5726 ug->nr_kmem += 1 << compound_order(page);
5727 __ClearPageKmemcg(page);
5730 ug->dummy_page = page;
5731 page->mem_cgroup = NULL;
5734 static void uncharge_list(struct list_head *page_list)
5736 struct uncharge_gather ug;
5737 struct list_head *next;
5739 uncharge_gather_clear(&ug);
5742 * Note that the list can be a single page->lru; hence the
5743 * do-while loop instead of a simple list_for_each_entry().
5745 next = page_list->next;
5746 do {
5747 struct page *page;
5749 page = list_entry(next, struct page, lru);
5750 next = page->lru.next;
5752 uncharge_page(page, &ug);
5753 } while (next != page_list);
5755 if (ug.memcg)
5756 uncharge_batch(&ug);
5760 * mem_cgroup_uncharge - uncharge a page
5761 * @page: page to uncharge
5763 * Uncharge a page previously charged with mem_cgroup_try_charge() and
5764 * mem_cgroup_commit_charge().
5766 void mem_cgroup_uncharge(struct page *page)
5768 struct uncharge_gather ug;
5770 if (mem_cgroup_disabled())
5771 return;
5773 /* Don't touch page->lru of any random page, pre-check: */
5774 if (!page->mem_cgroup)
5775 return;
5777 uncharge_gather_clear(&ug);
5778 uncharge_page(page, &ug);
5779 uncharge_batch(&ug);
5783 * mem_cgroup_uncharge_list - uncharge a list of page
5784 * @page_list: list of pages to uncharge
5786 * Uncharge a list of pages previously charged with
5787 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5789 void mem_cgroup_uncharge_list(struct list_head *page_list)
5791 if (mem_cgroup_disabled())
5792 return;
5794 if (!list_empty(page_list))
5795 uncharge_list(page_list);
5799 * mem_cgroup_migrate - charge a page's replacement
5800 * @oldpage: currently circulating page
5801 * @newpage: replacement page
5803 * Charge @newpage as a replacement page for @oldpage. @oldpage will
5804 * be uncharged upon free.
5806 * Both pages must be locked, @newpage->mapping must be set up.
5808 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
5810 struct mem_cgroup *memcg;
5811 unsigned int nr_pages;
5812 bool compound;
5813 unsigned long flags;
5815 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5816 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
5817 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
5818 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5819 newpage);
5821 if (mem_cgroup_disabled())
5822 return;
5824 /* Page cache replacement: new page already charged? */
5825 if (newpage->mem_cgroup)
5826 return;
5828 /* Swapcache readahead pages can get replaced before being charged */
5829 memcg = oldpage->mem_cgroup;
5830 if (!memcg)
5831 return;
5833 /* Force-charge the new page. The old one will be freed soon */
5834 compound = PageTransHuge(newpage);
5835 nr_pages = compound ? hpage_nr_pages(newpage) : 1;
5837 page_counter_charge(&memcg->memory, nr_pages);
5838 if (do_memsw_account())
5839 page_counter_charge(&memcg->memsw, nr_pages);
5840 css_get_many(&memcg->css, nr_pages);
5842 commit_charge(newpage, memcg, false);
5844 local_irq_save(flags);
5845 mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
5846 memcg_check_events(memcg, newpage);
5847 local_irq_restore(flags);
5850 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
5851 EXPORT_SYMBOL(memcg_sockets_enabled_key);
5853 void mem_cgroup_sk_alloc(struct sock *sk)
5855 struct mem_cgroup *memcg;
5857 if (!mem_cgroup_sockets_enabled)
5858 return;
5861 * Socket cloning can throw us here with sk_memcg already
5862 * filled. It won't however, necessarily happen from
5863 * process context. So the test for root memcg given
5864 * the current task's memcg won't help us in this case.
5866 * Respecting the original socket's memcg is a better
5867 * decision in this case.
5869 if (sk->sk_memcg) {
5870 css_get(&sk->sk_memcg->css);
5871 return;
5874 rcu_read_lock();
5875 memcg = mem_cgroup_from_task(current);
5876 if (memcg == root_mem_cgroup)
5877 goto out;
5878 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
5879 goto out;
5880 if (css_tryget_online(&memcg->css))
5881 sk->sk_memcg = memcg;
5882 out:
5883 rcu_read_unlock();
5886 void mem_cgroup_sk_free(struct sock *sk)
5888 if (sk->sk_memcg)
5889 css_put(&sk->sk_memcg->css);
5893 * mem_cgroup_charge_skmem - charge socket memory
5894 * @memcg: memcg to charge
5895 * @nr_pages: number of pages to charge
5897 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
5898 * @memcg's configured limit, %false if the charge had to be forced.
5900 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5902 gfp_t gfp_mask = GFP_KERNEL;
5904 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5905 struct page_counter *fail;
5907 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
5908 memcg->tcpmem_pressure = 0;
5909 return true;
5911 page_counter_charge(&memcg->tcpmem, nr_pages);
5912 memcg->tcpmem_pressure = 1;
5913 return false;
5916 /* Don't block in the packet receive path */
5917 if (in_softirq())
5918 gfp_mask = GFP_NOWAIT;
5920 this_cpu_add(memcg->stat->count[MEMCG_SOCK], nr_pages);
5922 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
5923 return true;
5925 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
5926 return false;
5930 * mem_cgroup_uncharge_skmem - uncharge socket memory
5931 * @memcg - memcg to uncharge
5932 * @nr_pages - number of pages to uncharge
5934 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5936 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5937 page_counter_uncharge(&memcg->tcpmem, nr_pages);
5938 return;
5941 this_cpu_sub(memcg->stat->count[MEMCG_SOCK], nr_pages);
5943 refill_stock(memcg, nr_pages);
5946 static int __init cgroup_memory(char *s)
5948 char *token;
5950 while ((token = strsep(&s, ",")) != NULL) {
5951 if (!*token)
5952 continue;
5953 if (!strcmp(token, "nosocket"))
5954 cgroup_memory_nosocket = true;
5955 if (!strcmp(token, "nokmem"))
5956 cgroup_memory_nokmem = true;
5958 return 0;
5960 __setup("cgroup.memory=", cgroup_memory);
5963 * subsys_initcall() for memory controller.
5965 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
5966 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
5967 * basically everything that doesn't depend on a specific mem_cgroup structure
5968 * should be initialized from here.
5970 static int __init mem_cgroup_init(void)
5972 int cpu, node;
5974 #ifndef CONFIG_SLOB
5976 * Kmem cache creation is mostly done with the slab_mutex held,
5977 * so use a workqueue with limited concurrency to avoid stalling
5978 * all worker threads in case lots of cgroups are created and
5979 * destroyed simultaneously.
5981 memcg_kmem_cache_wq = alloc_workqueue("memcg_kmem_cache", 0, 1);
5982 BUG_ON(!memcg_kmem_cache_wq);
5983 #endif
5985 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
5986 memcg_hotplug_cpu_dead);
5988 for_each_possible_cpu(cpu)
5989 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
5990 drain_local_stock);
5992 for_each_node(node) {
5993 struct mem_cgroup_tree_per_node *rtpn;
5995 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
5996 node_online(node) ? node : NUMA_NO_NODE);
5998 rtpn->rb_root = RB_ROOT;
5999 rtpn->rb_rightmost = NULL;
6000 spin_lock_init(&rtpn->lock);
6001 soft_limit_tree.rb_tree_per_node[node] = rtpn;
6004 return 0;
6006 subsys_initcall(mem_cgroup_init);
6008 #ifdef CONFIG_MEMCG_SWAP
6009 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
6011 while (!atomic_inc_not_zero(&memcg->id.ref)) {
6013 * The root cgroup cannot be destroyed, so it's refcount must
6014 * always be >= 1.
6016 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
6017 VM_BUG_ON(1);
6018 break;
6020 memcg = parent_mem_cgroup(memcg);
6021 if (!memcg)
6022 memcg = root_mem_cgroup;
6024 return memcg;
6028 * mem_cgroup_swapout - transfer a memsw charge to swap
6029 * @page: page whose memsw charge to transfer
6030 * @entry: swap entry to move the charge to
6032 * Transfer the memsw charge of @page to @entry.
6034 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
6036 struct mem_cgroup *memcg, *swap_memcg;
6037 unsigned int nr_entries;
6038 unsigned short oldid;
6040 VM_BUG_ON_PAGE(PageLRU(page), page);
6041 VM_BUG_ON_PAGE(page_count(page), page);
6043 if (!do_memsw_account())
6044 return;
6046 memcg = page->mem_cgroup;
6048 /* Readahead page, never charged */
6049 if (!memcg)
6050 return;
6053 * In case the memcg owning these pages has been offlined and doesn't
6054 * have an ID allocated to it anymore, charge the closest online
6055 * ancestor for the swap instead and transfer the memory+swap charge.
6057 swap_memcg = mem_cgroup_id_get_online(memcg);
6058 nr_entries = hpage_nr_pages(page);
6059 /* Get references for the tail pages, too */
6060 if (nr_entries > 1)
6061 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
6062 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
6063 nr_entries);
6064 VM_BUG_ON_PAGE(oldid, page);
6065 mem_cgroup_swap_statistics(swap_memcg, nr_entries);
6067 page->mem_cgroup = NULL;
6069 if (!mem_cgroup_is_root(memcg))
6070 page_counter_uncharge(&memcg->memory, nr_entries);
6072 if (memcg != swap_memcg) {
6073 if (!mem_cgroup_is_root(swap_memcg))
6074 page_counter_charge(&swap_memcg->memsw, nr_entries);
6075 page_counter_uncharge(&memcg->memsw, nr_entries);
6079 * Interrupts should be disabled here because the caller holds the
6080 * mapping->tree_lock lock which is taken with interrupts-off. It is
6081 * important here to have the interrupts disabled because it is the
6082 * only synchronisation we have for udpating the per-CPU variables.
6084 VM_BUG_ON(!irqs_disabled());
6085 mem_cgroup_charge_statistics(memcg, page, PageTransHuge(page),
6086 -nr_entries);
6087 memcg_check_events(memcg, page);
6089 if (!mem_cgroup_is_root(memcg))
6090 css_put_many(&memcg->css, nr_entries);
6094 * mem_cgroup_try_charge_swap - try charging swap space for a page
6095 * @page: page being added to swap
6096 * @entry: swap entry to charge
6098 * Try to charge @page's memcg for the swap space at @entry.
6100 * Returns 0 on success, -ENOMEM on failure.
6102 int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
6104 unsigned int nr_pages = hpage_nr_pages(page);
6105 struct page_counter *counter;
6106 struct mem_cgroup *memcg;
6107 unsigned short oldid;
6109 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
6110 return 0;
6112 memcg = page->mem_cgroup;
6114 /* Readahead page, never charged */
6115 if (!memcg)
6116 return 0;
6118 memcg = mem_cgroup_id_get_online(memcg);
6120 if (!mem_cgroup_is_root(memcg) &&
6121 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
6122 mem_cgroup_id_put(memcg);
6123 return -ENOMEM;
6126 /* Get references for the tail pages, too */
6127 if (nr_pages > 1)
6128 mem_cgroup_id_get_many(memcg, nr_pages - 1);
6129 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
6130 VM_BUG_ON_PAGE(oldid, page);
6131 mem_cgroup_swap_statistics(memcg, nr_pages);
6133 return 0;
6137 * mem_cgroup_uncharge_swap - uncharge swap space
6138 * @entry: swap entry to uncharge
6139 * @nr_pages: the amount of swap space to uncharge
6141 void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
6143 struct mem_cgroup *memcg;
6144 unsigned short id;
6146 if (!do_swap_account)
6147 return;
6149 id = swap_cgroup_record(entry, 0, nr_pages);
6150 rcu_read_lock();
6151 memcg = mem_cgroup_from_id(id);
6152 if (memcg) {
6153 if (!mem_cgroup_is_root(memcg)) {
6154 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
6155 page_counter_uncharge(&memcg->swap, nr_pages);
6156 else
6157 page_counter_uncharge(&memcg->memsw, nr_pages);
6159 mem_cgroup_swap_statistics(memcg, -nr_pages);
6160 mem_cgroup_id_put_many(memcg, nr_pages);
6162 rcu_read_unlock();
6165 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
6167 long nr_swap_pages = get_nr_swap_pages();
6169 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
6170 return nr_swap_pages;
6171 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
6172 nr_swap_pages = min_t(long, nr_swap_pages,
6173 READ_ONCE(memcg->swap.limit) -
6174 page_counter_read(&memcg->swap));
6175 return nr_swap_pages;
6178 bool mem_cgroup_swap_full(struct page *page)
6180 struct mem_cgroup *memcg;
6182 VM_BUG_ON_PAGE(!PageLocked(page), page);
6184 if (vm_swap_full())
6185 return true;
6186 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
6187 return false;
6189 memcg = page->mem_cgroup;
6190 if (!memcg)
6191 return false;
6193 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
6194 if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.limit)
6195 return true;
6197 return false;
6200 /* for remember boot option*/
6201 #ifdef CONFIG_MEMCG_SWAP_ENABLED
6202 static int really_do_swap_account __initdata = 1;
6203 #else
6204 static int really_do_swap_account __initdata;
6205 #endif
6207 static int __init enable_swap_account(char *s)
6209 if (!strcmp(s, "1"))
6210 really_do_swap_account = 1;
6211 else if (!strcmp(s, "0"))
6212 really_do_swap_account = 0;
6213 return 1;
6215 __setup("swapaccount=", enable_swap_account);
6217 static u64 swap_current_read(struct cgroup_subsys_state *css,
6218 struct cftype *cft)
6220 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6222 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
6225 static int swap_max_show(struct seq_file *m, void *v)
6227 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
6228 unsigned long max = READ_ONCE(memcg->swap.limit);
6230 if (max == PAGE_COUNTER_MAX)
6231 seq_puts(m, "max\n");
6232 else
6233 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
6235 return 0;
6238 static ssize_t swap_max_write(struct kernfs_open_file *of,
6239 char *buf, size_t nbytes, loff_t off)
6241 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6242 unsigned long max;
6243 int err;
6245 buf = strstrip(buf);
6246 err = page_counter_memparse(buf, "max", &max);
6247 if (err)
6248 return err;
6250 mutex_lock(&memcg_limit_mutex);
6251 err = page_counter_limit(&memcg->swap, max);
6252 mutex_unlock(&memcg_limit_mutex);
6253 if (err)
6254 return err;
6256 return nbytes;
6259 static struct cftype swap_files[] = {
6261 .name = "swap.current",
6262 .flags = CFTYPE_NOT_ON_ROOT,
6263 .read_u64 = swap_current_read,
6266 .name = "swap.max",
6267 .flags = CFTYPE_NOT_ON_ROOT,
6268 .seq_show = swap_max_show,
6269 .write = swap_max_write,
6271 { } /* terminate */
6274 static struct cftype memsw_cgroup_files[] = {
6276 .name = "memsw.usage_in_bytes",
6277 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6278 .read_u64 = mem_cgroup_read_u64,
6281 .name = "memsw.max_usage_in_bytes",
6282 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6283 .write = mem_cgroup_reset,
6284 .read_u64 = mem_cgroup_read_u64,
6287 .name = "memsw.limit_in_bytes",
6288 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6289 .write = mem_cgroup_write,
6290 .read_u64 = mem_cgroup_read_u64,
6293 .name = "memsw.failcnt",
6294 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6295 .write = mem_cgroup_reset,
6296 .read_u64 = mem_cgroup_read_u64,
6298 { }, /* terminate */
6301 static int __init mem_cgroup_swap_init(void)
6303 if (!mem_cgroup_disabled() && really_do_swap_account) {
6304 do_swap_account = 1;
6305 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
6306 swap_files));
6307 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
6308 memsw_cgroup_files));
6310 return 0;
6312 subsys_initcall(mem_cgroup_swap_init);
6314 #endif /* CONFIG_MEMCG_SWAP */