2 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
3 * Internal non-public definitions that provide either classic
4 * or preemptible semantics.
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
20 * Copyright Red Hat, 2009
21 * Copyright IBM Corporation, 2009
23 * Author: Ingo Molnar <mingo@elte.hu>
24 * Paul E. McKenney <paulmck@linux.vnet.ibm.com>
27 #include <linux/delay.h>
28 #include <linux/gfp.h>
29 #include <linux/oom.h>
30 #include <linux/smpboot.h>
32 #define RCU_KTHREAD_PRIO 1
34 #ifdef CONFIG_RCU_BOOST
35 #define RCU_BOOST_PRIO CONFIG_RCU_BOOST_PRIO
37 #define RCU_BOOST_PRIO RCU_KTHREAD_PRIO
40 #ifdef CONFIG_RCU_NOCB_CPU
41 static cpumask_var_t rcu_nocb_mask
; /* CPUs to have callbacks offloaded. */
42 static bool have_rcu_nocb_mask
; /* Was rcu_nocb_mask allocated? */
43 static bool __read_mostly rcu_nocb_poll
; /* Offload kthread are to poll. */
44 static char __initdata nocb_buf
[NR_CPUS
* 5];
45 #endif /* #ifdef CONFIG_RCU_NOCB_CPU */
48 * Check the RCU kernel configuration parameters and print informative
49 * messages about anything out of the ordinary. If you like #ifdef, you
50 * will love this function.
52 static void __init
rcu_bootup_announce_oddness(void)
54 #ifdef CONFIG_RCU_TRACE
55 printk(KERN_INFO
"\tRCU debugfs-based tracing is enabled.\n");
57 #if (defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 64) || (!defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 32)
58 printk(KERN_INFO
"\tCONFIG_RCU_FANOUT set to non-default value of %d\n",
61 #ifdef CONFIG_RCU_FANOUT_EXACT
62 printk(KERN_INFO
"\tHierarchical RCU autobalancing is disabled.\n");
64 #ifdef CONFIG_RCU_FAST_NO_HZ
66 "\tRCU dyntick-idle grace-period acceleration is enabled.\n");
68 #ifdef CONFIG_PROVE_RCU
69 printk(KERN_INFO
"\tRCU lockdep checking is enabled.\n");
71 #ifdef CONFIG_RCU_TORTURE_TEST_RUNNABLE
72 printk(KERN_INFO
"\tRCU torture testing starts during boot.\n");
74 #if defined(CONFIG_TREE_PREEMPT_RCU) && !defined(CONFIG_RCU_CPU_STALL_VERBOSE)
75 printk(KERN_INFO
"\tDump stacks of tasks blocking RCU-preempt GP.\n");
77 #if defined(CONFIG_RCU_CPU_STALL_INFO)
78 printk(KERN_INFO
"\tAdditional per-CPU info printed with stalls.\n");
80 #if NUM_RCU_LVL_4 != 0
81 printk(KERN_INFO
"\tFour-level hierarchy is enabled.\n");
83 if (rcu_fanout_leaf
!= CONFIG_RCU_FANOUT_LEAF
)
84 printk(KERN_INFO
"\tExperimental boot-time adjustment of leaf fanout to %d.\n", rcu_fanout_leaf
);
85 if (nr_cpu_ids
!= NR_CPUS
)
86 printk(KERN_INFO
"\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%d.\n", NR_CPUS
, nr_cpu_ids
);
87 #ifdef CONFIG_RCU_NOCB_CPU
88 if (have_rcu_nocb_mask
) {
89 if (cpumask_test_cpu(0, rcu_nocb_mask
)) {
90 cpumask_clear_cpu(0, rcu_nocb_mask
);
91 pr_info("\tCPU 0: illegal no-CBs CPU (cleared).\n");
93 cpulist_scnprintf(nocb_buf
, sizeof(nocb_buf
), rcu_nocb_mask
);
94 pr_info("\tExperimental no-CBs CPUs: %s.\n", nocb_buf
);
96 pr_info("\tExperimental polled no-CBs CPUs.\n");
98 #endif /* #ifdef CONFIG_RCU_NOCB_CPU */
101 #ifdef CONFIG_TREE_PREEMPT_RCU
103 struct rcu_state rcu_preempt_state
=
104 RCU_STATE_INITIALIZER(rcu_preempt
, call_rcu
);
105 DEFINE_PER_CPU(struct rcu_data
, rcu_preempt_data
);
106 static struct rcu_state
*rcu_state
= &rcu_preempt_state
;
108 static int rcu_preempted_readers_exp(struct rcu_node
*rnp
);
111 * Tell them what RCU they are running.
113 static void __init
rcu_bootup_announce(void)
115 printk(KERN_INFO
"Preemptible hierarchical RCU implementation.\n");
116 rcu_bootup_announce_oddness();
120 * Return the number of RCU-preempt batches processed thus far
121 * for debug and statistics.
123 long rcu_batches_completed_preempt(void)
125 return rcu_preempt_state
.completed
;
127 EXPORT_SYMBOL_GPL(rcu_batches_completed_preempt
);
130 * Return the number of RCU batches processed thus far for debug & stats.
132 long rcu_batches_completed(void)
134 return rcu_batches_completed_preempt();
136 EXPORT_SYMBOL_GPL(rcu_batches_completed
);
139 * Force a quiescent state for preemptible RCU.
141 void rcu_force_quiescent_state(void)
143 force_quiescent_state(&rcu_preempt_state
);
145 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state
);
148 * Record a preemptible-RCU quiescent state for the specified CPU. Note
149 * that this just means that the task currently running on the CPU is
150 * not in a quiescent state. There might be any number of tasks blocked
151 * while in an RCU read-side critical section.
153 * Unlike the other rcu_*_qs() functions, callers to this function
154 * must disable irqs in order to protect the assignment to
155 * ->rcu_read_unlock_special.
157 static void rcu_preempt_qs(int cpu
)
159 struct rcu_data
*rdp
= &per_cpu(rcu_preempt_data
, cpu
);
161 if (rdp
->passed_quiesce
== 0)
162 trace_rcu_grace_period("rcu_preempt", rdp
->gpnum
, "cpuqs");
163 rdp
->passed_quiesce
= 1;
164 current
->rcu_read_unlock_special
&= ~RCU_READ_UNLOCK_NEED_QS
;
168 * We have entered the scheduler, and the current task might soon be
169 * context-switched away from. If this task is in an RCU read-side
170 * critical section, we will no longer be able to rely on the CPU to
171 * record that fact, so we enqueue the task on the blkd_tasks list.
172 * The task will dequeue itself when it exits the outermost enclosing
173 * RCU read-side critical section. Therefore, the current grace period
174 * cannot be permitted to complete until the blkd_tasks list entries
175 * predating the current grace period drain, in other words, until
176 * rnp->gp_tasks becomes NULL.
178 * Caller must disable preemption.
180 static void rcu_preempt_note_context_switch(int cpu
)
182 struct task_struct
*t
= current
;
184 struct rcu_data
*rdp
;
185 struct rcu_node
*rnp
;
187 if (t
->rcu_read_lock_nesting
> 0 &&
188 (t
->rcu_read_unlock_special
& RCU_READ_UNLOCK_BLOCKED
) == 0) {
190 /* Possibly blocking in an RCU read-side critical section. */
191 rdp
= per_cpu_ptr(rcu_preempt_state
.rda
, cpu
);
193 raw_spin_lock_irqsave(&rnp
->lock
, flags
);
194 t
->rcu_read_unlock_special
|= RCU_READ_UNLOCK_BLOCKED
;
195 t
->rcu_blocked_node
= rnp
;
198 * If this CPU has already checked in, then this task
199 * will hold up the next grace period rather than the
200 * current grace period. Queue the task accordingly.
201 * If the task is queued for the current grace period
202 * (i.e., this CPU has not yet passed through a quiescent
203 * state for the current grace period), then as long
204 * as that task remains queued, the current grace period
205 * cannot end. Note that there is some uncertainty as
206 * to exactly when the current grace period started.
207 * We take a conservative approach, which can result
208 * in unnecessarily waiting on tasks that started very
209 * slightly after the current grace period began. C'est
212 * But first, note that the current CPU must still be
215 WARN_ON_ONCE((rdp
->grpmask
& rnp
->qsmaskinit
) == 0);
216 WARN_ON_ONCE(!list_empty(&t
->rcu_node_entry
));
217 if ((rnp
->qsmask
& rdp
->grpmask
) && rnp
->gp_tasks
!= NULL
) {
218 list_add(&t
->rcu_node_entry
, rnp
->gp_tasks
->prev
);
219 rnp
->gp_tasks
= &t
->rcu_node_entry
;
220 #ifdef CONFIG_RCU_BOOST
221 if (rnp
->boost_tasks
!= NULL
)
222 rnp
->boost_tasks
= rnp
->gp_tasks
;
223 #endif /* #ifdef CONFIG_RCU_BOOST */
225 list_add(&t
->rcu_node_entry
, &rnp
->blkd_tasks
);
226 if (rnp
->qsmask
& rdp
->grpmask
)
227 rnp
->gp_tasks
= &t
->rcu_node_entry
;
229 trace_rcu_preempt_task(rdp
->rsp
->name
,
231 (rnp
->qsmask
& rdp
->grpmask
)
234 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
235 } else if (t
->rcu_read_lock_nesting
< 0 &&
236 t
->rcu_read_unlock_special
) {
239 * Complete exit from RCU read-side critical section on
240 * behalf of preempted instance of __rcu_read_unlock().
242 rcu_read_unlock_special(t
);
246 * Either we were not in an RCU read-side critical section to
247 * begin with, or we have now recorded that critical section
248 * globally. Either way, we can now note a quiescent state
249 * for this CPU. Again, if we were in an RCU read-side critical
250 * section, and if that critical section was blocking the current
251 * grace period, then the fact that the task has been enqueued
252 * means that we continue to block the current grace period.
254 local_irq_save(flags
);
256 local_irq_restore(flags
);
260 * Check for preempted RCU readers blocking the current grace period
261 * for the specified rcu_node structure. If the caller needs a reliable
262 * answer, it must hold the rcu_node's ->lock.
264 static int rcu_preempt_blocked_readers_cgp(struct rcu_node
*rnp
)
266 return rnp
->gp_tasks
!= NULL
;
270 * Record a quiescent state for all tasks that were previously queued
271 * on the specified rcu_node structure and that were blocking the current
272 * RCU grace period. The caller must hold the specified rnp->lock with
273 * irqs disabled, and this lock is released upon return, but irqs remain
276 static void rcu_report_unblock_qs_rnp(struct rcu_node
*rnp
, unsigned long flags
)
277 __releases(rnp
->lock
)
280 struct rcu_node
*rnp_p
;
282 if (rnp
->qsmask
!= 0 || rcu_preempt_blocked_readers_cgp(rnp
)) {
283 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
284 return; /* Still need more quiescent states! */
290 * Either there is only one rcu_node in the tree,
291 * or tasks were kicked up to root rcu_node due to
292 * CPUs going offline.
294 rcu_report_qs_rsp(&rcu_preempt_state
, flags
);
298 /* Report up the rest of the hierarchy. */
300 raw_spin_unlock(&rnp
->lock
); /* irqs remain disabled. */
301 raw_spin_lock(&rnp_p
->lock
); /* irqs already disabled. */
302 rcu_report_qs_rnp(mask
, &rcu_preempt_state
, rnp_p
, flags
);
306 * Advance a ->blkd_tasks-list pointer to the next entry, instead
307 * returning NULL if at the end of the list.
309 static struct list_head
*rcu_next_node_entry(struct task_struct
*t
,
310 struct rcu_node
*rnp
)
312 struct list_head
*np
;
314 np
= t
->rcu_node_entry
.next
;
315 if (np
== &rnp
->blkd_tasks
)
321 * Handle special cases during rcu_read_unlock(), such as needing to
322 * notify RCU core processing or task having blocked during the RCU
323 * read-side critical section.
325 void rcu_read_unlock_special(struct task_struct
*t
)
331 struct list_head
*np
;
332 #ifdef CONFIG_RCU_BOOST
333 struct rt_mutex
*rbmp
= NULL
;
334 #endif /* #ifdef CONFIG_RCU_BOOST */
335 struct rcu_node
*rnp
;
338 /* NMI handlers cannot block and cannot safely manipulate state. */
342 local_irq_save(flags
);
345 * If RCU core is waiting for this CPU to exit critical section,
346 * let it know that we have done so.
348 special
= t
->rcu_read_unlock_special
;
349 if (special
& RCU_READ_UNLOCK_NEED_QS
) {
350 rcu_preempt_qs(smp_processor_id());
353 /* Hardware IRQ handlers cannot block. */
354 if (in_irq() || in_serving_softirq()) {
355 local_irq_restore(flags
);
359 /* Clean up if blocked during RCU read-side critical section. */
360 if (special
& RCU_READ_UNLOCK_BLOCKED
) {
361 t
->rcu_read_unlock_special
&= ~RCU_READ_UNLOCK_BLOCKED
;
364 * Remove this task from the list it blocked on. The
365 * task can migrate while we acquire the lock, but at
366 * most one time. So at most two passes through loop.
369 rnp
= t
->rcu_blocked_node
;
370 raw_spin_lock(&rnp
->lock
); /* irqs already disabled. */
371 if (rnp
== t
->rcu_blocked_node
)
373 raw_spin_unlock(&rnp
->lock
); /* irqs remain disabled. */
375 empty
= !rcu_preempt_blocked_readers_cgp(rnp
);
376 empty_exp
= !rcu_preempted_readers_exp(rnp
);
377 smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
378 np
= rcu_next_node_entry(t
, rnp
);
379 list_del_init(&t
->rcu_node_entry
);
380 t
->rcu_blocked_node
= NULL
;
381 trace_rcu_unlock_preempted_task("rcu_preempt",
383 if (&t
->rcu_node_entry
== rnp
->gp_tasks
)
385 if (&t
->rcu_node_entry
== rnp
->exp_tasks
)
387 #ifdef CONFIG_RCU_BOOST
388 if (&t
->rcu_node_entry
== rnp
->boost_tasks
)
389 rnp
->boost_tasks
= np
;
390 /* Snapshot/clear ->rcu_boost_mutex with rcu_node lock held. */
391 if (t
->rcu_boost_mutex
) {
392 rbmp
= t
->rcu_boost_mutex
;
393 t
->rcu_boost_mutex
= NULL
;
395 #endif /* #ifdef CONFIG_RCU_BOOST */
398 * If this was the last task on the current list, and if
399 * we aren't waiting on any CPUs, report the quiescent state.
400 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
401 * so we must take a snapshot of the expedited state.
403 empty_exp_now
= !rcu_preempted_readers_exp(rnp
);
404 if (!empty
&& !rcu_preempt_blocked_readers_cgp(rnp
)) {
405 trace_rcu_quiescent_state_report("preempt_rcu",
412 rcu_report_unblock_qs_rnp(rnp
, flags
);
414 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
417 #ifdef CONFIG_RCU_BOOST
418 /* Unboost if we were boosted. */
420 rt_mutex_unlock(rbmp
);
421 #endif /* #ifdef CONFIG_RCU_BOOST */
424 * If this was the last task on the expedited lists,
425 * then we need to report up the rcu_node hierarchy.
427 if (!empty_exp
&& empty_exp_now
)
428 rcu_report_exp_rnp(&rcu_preempt_state
, rnp
, true);
430 local_irq_restore(flags
);
434 #ifdef CONFIG_RCU_CPU_STALL_VERBOSE
437 * Dump detailed information for all tasks blocking the current RCU
438 * grace period on the specified rcu_node structure.
440 static void rcu_print_detail_task_stall_rnp(struct rcu_node
*rnp
)
443 struct task_struct
*t
;
445 raw_spin_lock_irqsave(&rnp
->lock
, flags
);
446 if (!rcu_preempt_blocked_readers_cgp(rnp
)) {
447 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
450 t
= list_entry(rnp
->gp_tasks
,
451 struct task_struct
, rcu_node_entry
);
452 list_for_each_entry_continue(t
, &rnp
->blkd_tasks
, rcu_node_entry
)
454 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
458 * Dump detailed information for all tasks blocking the current RCU
461 static void rcu_print_detail_task_stall(struct rcu_state
*rsp
)
463 struct rcu_node
*rnp
= rcu_get_root(rsp
);
465 rcu_print_detail_task_stall_rnp(rnp
);
466 rcu_for_each_leaf_node(rsp
, rnp
)
467 rcu_print_detail_task_stall_rnp(rnp
);
470 #else /* #ifdef CONFIG_RCU_CPU_STALL_VERBOSE */
472 static void rcu_print_detail_task_stall(struct rcu_state
*rsp
)
476 #endif /* #else #ifdef CONFIG_RCU_CPU_STALL_VERBOSE */
478 #ifdef CONFIG_RCU_CPU_STALL_INFO
480 static void rcu_print_task_stall_begin(struct rcu_node
*rnp
)
482 printk(KERN_ERR
"\tTasks blocked on level-%d rcu_node (CPUs %d-%d):",
483 rnp
->level
, rnp
->grplo
, rnp
->grphi
);
486 static void rcu_print_task_stall_end(void)
488 printk(KERN_CONT
"\n");
491 #else /* #ifdef CONFIG_RCU_CPU_STALL_INFO */
493 static void rcu_print_task_stall_begin(struct rcu_node
*rnp
)
497 static void rcu_print_task_stall_end(void)
501 #endif /* #else #ifdef CONFIG_RCU_CPU_STALL_INFO */
504 * Scan the current list of tasks blocked within RCU read-side critical
505 * sections, printing out the tid of each.
507 static int rcu_print_task_stall(struct rcu_node
*rnp
)
509 struct task_struct
*t
;
512 if (!rcu_preempt_blocked_readers_cgp(rnp
))
514 rcu_print_task_stall_begin(rnp
);
515 t
= list_entry(rnp
->gp_tasks
,
516 struct task_struct
, rcu_node_entry
);
517 list_for_each_entry_continue(t
, &rnp
->blkd_tasks
, rcu_node_entry
) {
518 printk(KERN_CONT
" P%d", t
->pid
);
521 rcu_print_task_stall_end();
526 * Check that the list of blocked tasks for the newly completed grace
527 * period is in fact empty. It is a serious bug to complete a grace
528 * period that still has RCU readers blocked! This function must be
529 * invoked -before- updating this rnp's ->gpnum, and the rnp's ->lock
530 * must be held by the caller.
532 * Also, if there are blocked tasks on the list, they automatically
533 * block the newly created grace period, so set up ->gp_tasks accordingly.
535 static void rcu_preempt_check_blocked_tasks(struct rcu_node
*rnp
)
537 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp
));
538 if (!list_empty(&rnp
->blkd_tasks
))
539 rnp
->gp_tasks
= rnp
->blkd_tasks
.next
;
540 WARN_ON_ONCE(rnp
->qsmask
);
543 #ifdef CONFIG_HOTPLUG_CPU
546 * Handle tasklist migration for case in which all CPUs covered by the
547 * specified rcu_node have gone offline. Move them up to the root
548 * rcu_node. The reason for not just moving them to the immediate
549 * parent is to remove the need for rcu_read_unlock_special() to
550 * make more than two attempts to acquire the target rcu_node's lock.
551 * Returns true if there were tasks blocking the current RCU grace
554 * Returns 1 if there was previously a task blocking the current grace
555 * period on the specified rcu_node structure.
557 * The caller must hold rnp->lock with irqs disabled.
559 static int rcu_preempt_offline_tasks(struct rcu_state
*rsp
,
560 struct rcu_node
*rnp
,
561 struct rcu_data
*rdp
)
563 struct list_head
*lp
;
564 struct list_head
*lp_root
;
566 struct rcu_node
*rnp_root
= rcu_get_root(rsp
);
567 struct task_struct
*t
;
569 if (rnp
== rnp_root
) {
570 WARN_ONCE(1, "Last CPU thought to be offlined?");
571 return 0; /* Shouldn't happen: at least one CPU online. */
574 /* If we are on an internal node, complain bitterly. */
575 WARN_ON_ONCE(rnp
!= rdp
->mynode
);
578 * Move tasks up to root rcu_node. Don't try to get fancy for
579 * this corner-case operation -- just put this node's tasks
580 * at the head of the root node's list, and update the root node's
581 * ->gp_tasks and ->exp_tasks pointers to those of this node's,
582 * if non-NULL. This might result in waiting for more tasks than
583 * absolutely necessary, but this is a good performance/complexity
586 if (rcu_preempt_blocked_readers_cgp(rnp
) && rnp
->qsmask
== 0)
587 retval
|= RCU_OFL_TASKS_NORM_GP
;
588 if (rcu_preempted_readers_exp(rnp
))
589 retval
|= RCU_OFL_TASKS_EXP_GP
;
590 lp
= &rnp
->blkd_tasks
;
591 lp_root
= &rnp_root
->blkd_tasks
;
592 while (!list_empty(lp
)) {
593 t
= list_entry(lp
->next
, typeof(*t
), rcu_node_entry
);
594 raw_spin_lock(&rnp_root
->lock
); /* irqs already disabled */
595 list_del(&t
->rcu_node_entry
);
596 t
->rcu_blocked_node
= rnp_root
;
597 list_add(&t
->rcu_node_entry
, lp_root
);
598 if (&t
->rcu_node_entry
== rnp
->gp_tasks
)
599 rnp_root
->gp_tasks
= rnp
->gp_tasks
;
600 if (&t
->rcu_node_entry
== rnp
->exp_tasks
)
601 rnp_root
->exp_tasks
= rnp
->exp_tasks
;
602 #ifdef CONFIG_RCU_BOOST
603 if (&t
->rcu_node_entry
== rnp
->boost_tasks
)
604 rnp_root
->boost_tasks
= rnp
->boost_tasks
;
605 #endif /* #ifdef CONFIG_RCU_BOOST */
606 raw_spin_unlock(&rnp_root
->lock
); /* irqs still disabled */
609 rnp
->gp_tasks
= NULL
;
610 rnp
->exp_tasks
= NULL
;
611 #ifdef CONFIG_RCU_BOOST
612 rnp
->boost_tasks
= NULL
;
614 * In case root is being boosted and leaf was not. Make sure
615 * that we boost the tasks blocking the current grace period
618 raw_spin_lock(&rnp_root
->lock
); /* irqs already disabled */
619 if (rnp_root
->boost_tasks
!= NULL
&&
620 rnp_root
->boost_tasks
!= rnp_root
->gp_tasks
&&
621 rnp_root
->boost_tasks
!= rnp_root
->exp_tasks
)
622 rnp_root
->boost_tasks
= rnp_root
->gp_tasks
;
623 raw_spin_unlock(&rnp_root
->lock
); /* irqs still disabled */
624 #endif /* #ifdef CONFIG_RCU_BOOST */
629 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
632 * Check for a quiescent state from the current CPU. When a task blocks,
633 * the task is recorded in the corresponding CPU's rcu_node structure,
634 * which is checked elsewhere.
636 * Caller must disable hard irqs.
638 static void rcu_preempt_check_callbacks(int cpu
)
640 struct task_struct
*t
= current
;
642 if (t
->rcu_read_lock_nesting
== 0) {
646 if (t
->rcu_read_lock_nesting
> 0 &&
647 per_cpu(rcu_preempt_data
, cpu
).qs_pending
)
648 t
->rcu_read_unlock_special
|= RCU_READ_UNLOCK_NEED_QS
;
651 #ifdef CONFIG_RCU_BOOST
653 static void rcu_preempt_do_callbacks(void)
655 rcu_do_batch(&rcu_preempt_state
, &__get_cpu_var(rcu_preempt_data
));
658 #endif /* #ifdef CONFIG_RCU_BOOST */
661 * Queue a preemptible-RCU callback for invocation after a grace period.
663 void call_rcu(struct rcu_head
*head
, void (*func
)(struct rcu_head
*rcu
))
665 __call_rcu(head
, func
, &rcu_preempt_state
, -1, 0);
667 EXPORT_SYMBOL_GPL(call_rcu
);
670 * Queue an RCU callback for lazy invocation after a grace period.
671 * This will likely be later named something like "call_rcu_lazy()",
672 * but this change will require some way of tagging the lazy RCU
673 * callbacks in the list of pending callbacks. Until then, this
674 * function may only be called from __kfree_rcu().
676 void kfree_call_rcu(struct rcu_head
*head
,
677 void (*func
)(struct rcu_head
*rcu
))
679 __call_rcu(head
, func
, &rcu_preempt_state
, -1, 1);
681 EXPORT_SYMBOL_GPL(kfree_call_rcu
);
684 * synchronize_rcu - wait until a grace period has elapsed.
686 * Control will return to the caller some time after a full grace
687 * period has elapsed, in other words after all currently executing RCU
688 * read-side critical sections have completed. Note, however, that
689 * upon return from synchronize_rcu(), the caller might well be executing
690 * concurrently with new RCU read-side critical sections that began while
691 * synchronize_rcu() was waiting. RCU read-side critical sections are
692 * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
694 * See the description of synchronize_sched() for more detailed information
695 * on memory ordering guarantees.
697 void synchronize_rcu(void)
699 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map
) &&
700 !lock_is_held(&rcu_lock_map
) &&
701 !lock_is_held(&rcu_sched_lock_map
),
702 "Illegal synchronize_rcu() in RCU read-side critical section");
703 if (!rcu_scheduler_active
)
706 synchronize_rcu_expedited();
708 wait_rcu_gp(call_rcu
);
710 EXPORT_SYMBOL_GPL(synchronize_rcu
);
712 static DECLARE_WAIT_QUEUE_HEAD(sync_rcu_preempt_exp_wq
);
713 static unsigned long sync_rcu_preempt_exp_count
;
714 static DEFINE_MUTEX(sync_rcu_preempt_exp_mutex
);
717 * Return non-zero if there are any tasks in RCU read-side critical
718 * sections blocking the current preemptible-RCU expedited grace period.
719 * If there is no preemptible-RCU expedited grace period currently in
720 * progress, returns zero unconditionally.
722 static int rcu_preempted_readers_exp(struct rcu_node
*rnp
)
724 return rnp
->exp_tasks
!= NULL
;
728 * return non-zero if there is no RCU expedited grace period in progress
729 * for the specified rcu_node structure, in other words, if all CPUs and
730 * tasks covered by the specified rcu_node structure have done their bit
731 * for the current expedited grace period. Works only for preemptible
732 * RCU -- other RCU implementation use other means.
734 * Caller must hold sync_rcu_preempt_exp_mutex.
736 static int sync_rcu_preempt_exp_done(struct rcu_node
*rnp
)
738 return !rcu_preempted_readers_exp(rnp
) &&
739 ACCESS_ONCE(rnp
->expmask
) == 0;
743 * Report the exit from RCU read-side critical section for the last task
744 * that queued itself during or before the current expedited preemptible-RCU
745 * grace period. This event is reported either to the rcu_node structure on
746 * which the task was queued or to one of that rcu_node structure's ancestors,
747 * recursively up the tree. (Calm down, calm down, we do the recursion
750 * Most callers will set the "wake" flag, but the task initiating the
751 * expedited grace period need not wake itself.
753 * Caller must hold sync_rcu_preempt_exp_mutex.
755 static void rcu_report_exp_rnp(struct rcu_state
*rsp
, struct rcu_node
*rnp
,
761 raw_spin_lock_irqsave(&rnp
->lock
, flags
);
763 if (!sync_rcu_preempt_exp_done(rnp
)) {
764 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
767 if (rnp
->parent
== NULL
) {
768 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
770 wake_up(&sync_rcu_preempt_exp_wq
);
774 raw_spin_unlock(&rnp
->lock
); /* irqs remain disabled */
776 raw_spin_lock(&rnp
->lock
); /* irqs already disabled */
777 rnp
->expmask
&= ~mask
;
782 * Snapshot the tasks blocking the newly started preemptible-RCU expedited
783 * grace period for the specified rcu_node structure. If there are no such
784 * tasks, report it up the rcu_node hierarchy.
786 * Caller must hold sync_rcu_preempt_exp_mutex and must exclude
787 * CPU hotplug operations.
790 sync_rcu_preempt_exp_init(struct rcu_state
*rsp
, struct rcu_node
*rnp
)
795 raw_spin_lock_irqsave(&rnp
->lock
, flags
);
796 if (list_empty(&rnp
->blkd_tasks
)) {
797 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
799 rnp
->exp_tasks
= rnp
->blkd_tasks
.next
;
800 rcu_initiate_boost(rnp
, flags
); /* releases rnp->lock */
804 rcu_report_exp_rnp(rsp
, rnp
, false); /* Don't wake self. */
808 * synchronize_rcu_expedited - Brute-force RCU grace period
810 * Wait for an RCU-preempt grace period, but expedite it. The basic
811 * idea is to invoke synchronize_sched_expedited() to push all the tasks to
812 * the ->blkd_tasks lists and wait for this list to drain. This consumes
813 * significant time on all CPUs and is unfriendly to real-time workloads,
814 * so is thus not recommended for any sort of common-case code.
815 * In fact, if you are using synchronize_rcu_expedited() in a loop,
816 * please restructure your code to batch your updates, and then Use a
817 * single synchronize_rcu() instead.
819 * Note that it is illegal to call this function while holding any lock
820 * that is acquired by a CPU-hotplug notifier. And yes, it is also illegal
821 * to call this function from a CPU-hotplug notifier. Failing to observe
822 * these restriction will result in deadlock.
824 void synchronize_rcu_expedited(void)
827 struct rcu_node
*rnp
;
828 struct rcu_state
*rsp
= &rcu_preempt_state
;
832 smp_mb(); /* Caller's modifications seen first by other CPUs. */
833 snap
= ACCESS_ONCE(sync_rcu_preempt_exp_count
) + 1;
834 smp_mb(); /* Above access cannot bleed into critical section. */
837 * Block CPU-hotplug operations. This means that any CPU-hotplug
838 * operation that finds an rcu_node structure with tasks in the
839 * process of being boosted will know that all tasks blocking
840 * this expedited grace period will already be in the process of
841 * being boosted. This simplifies the process of moving tasks
842 * from leaf to root rcu_node structures.
847 * Acquire lock, falling back to synchronize_rcu() if too many
848 * lock-acquisition failures. Of course, if someone does the
849 * expedited grace period for us, just leave.
851 while (!mutex_trylock(&sync_rcu_preempt_exp_mutex
)) {
852 if (ULONG_CMP_LT(snap
,
853 ACCESS_ONCE(sync_rcu_preempt_exp_count
))) {
855 goto mb_ret
; /* Others did our work for us. */
857 if (trycount
++ < 10) {
858 udelay(trycount
* num_online_cpus());
861 wait_rcu_gp(call_rcu
);
865 if (ULONG_CMP_LT(snap
, ACCESS_ONCE(sync_rcu_preempt_exp_count
))) {
867 goto unlock_mb_ret
; /* Others did our work for us. */
870 /* force all RCU readers onto ->blkd_tasks lists. */
871 synchronize_sched_expedited();
873 /* Initialize ->expmask for all non-leaf rcu_node structures. */
874 rcu_for_each_nonleaf_node_breadth_first(rsp
, rnp
) {
875 raw_spin_lock_irqsave(&rnp
->lock
, flags
);
876 rnp
->expmask
= rnp
->qsmaskinit
;
877 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
880 /* Snapshot current state of ->blkd_tasks lists. */
881 rcu_for_each_leaf_node(rsp
, rnp
)
882 sync_rcu_preempt_exp_init(rsp
, rnp
);
883 if (NUM_RCU_NODES
> 1)
884 sync_rcu_preempt_exp_init(rsp
, rcu_get_root(rsp
));
888 /* Wait for snapshotted ->blkd_tasks lists to drain. */
889 rnp
= rcu_get_root(rsp
);
890 wait_event(sync_rcu_preempt_exp_wq
,
891 sync_rcu_preempt_exp_done(rnp
));
893 /* Clean up and exit. */
894 smp_mb(); /* ensure expedited GP seen before counter increment. */
895 ACCESS_ONCE(sync_rcu_preempt_exp_count
)++;
897 mutex_unlock(&sync_rcu_preempt_exp_mutex
);
899 smp_mb(); /* ensure subsequent action seen after grace period. */
901 EXPORT_SYMBOL_GPL(synchronize_rcu_expedited
);
904 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
906 * Note that this primitive does not necessarily wait for an RCU grace period
907 * to complete. For example, if there are no RCU callbacks queued anywhere
908 * in the system, then rcu_barrier() is within its rights to return
909 * immediately, without waiting for anything, much less an RCU grace period.
911 void rcu_barrier(void)
913 _rcu_barrier(&rcu_preempt_state
);
915 EXPORT_SYMBOL_GPL(rcu_barrier
);
918 * Initialize preemptible RCU's state structures.
920 static void __init
__rcu_init_preempt(void)
922 rcu_init_one(&rcu_preempt_state
, &rcu_preempt_data
);
925 #else /* #ifdef CONFIG_TREE_PREEMPT_RCU */
927 static struct rcu_state
*rcu_state
= &rcu_sched_state
;
930 * Tell them what RCU they are running.
932 static void __init
rcu_bootup_announce(void)
934 printk(KERN_INFO
"Hierarchical RCU implementation.\n");
935 rcu_bootup_announce_oddness();
939 * Return the number of RCU batches processed thus far for debug & stats.
941 long rcu_batches_completed(void)
943 return rcu_batches_completed_sched();
945 EXPORT_SYMBOL_GPL(rcu_batches_completed
);
948 * Force a quiescent state for RCU, which, because there is no preemptible
949 * RCU, becomes the same as rcu-sched.
951 void rcu_force_quiescent_state(void)
953 rcu_sched_force_quiescent_state();
955 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state
);
958 * Because preemptible RCU does not exist, we never have to check for
959 * CPUs being in quiescent states.
961 static void rcu_preempt_note_context_switch(int cpu
)
966 * Because preemptible RCU does not exist, there are never any preempted
969 static int rcu_preempt_blocked_readers_cgp(struct rcu_node
*rnp
)
974 #ifdef CONFIG_HOTPLUG_CPU
976 /* Because preemptible RCU does not exist, no quieting of tasks. */
977 static void rcu_report_unblock_qs_rnp(struct rcu_node
*rnp
, unsigned long flags
)
979 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
982 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
985 * Because preemptible RCU does not exist, we never have to check for
986 * tasks blocked within RCU read-side critical sections.
988 static void rcu_print_detail_task_stall(struct rcu_state
*rsp
)
993 * Because preemptible RCU does not exist, we never have to check for
994 * tasks blocked within RCU read-side critical sections.
996 static int rcu_print_task_stall(struct rcu_node
*rnp
)
1002 * Because there is no preemptible RCU, there can be no readers blocked,
1003 * so there is no need to check for blocked tasks. So check only for
1004 * bogus qsmask values.
1006 static void rcu_preempt_check_blocked_tasks(struct rcu_node
*rnp
)
1008 WARN_ON_ONCE(rnp
->qsmask
);
1011 #ifdef CONFIG_HOTPLUG_CPU
1014 * Because preemptible RCU does not exist, it never needs to migrate
1015 * tasks that were blocked within RCU read-side critical sections, and
1016 * such non-existent tasks cannot possibly have been blocking the current
1019 static int rcu_preempt_offline_tasks(struct rcu_state
*rsp
,
1020 struct rcu_node
*rnp
,
1021 struct rcu_data
*rdp
)
1026 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
1029 * Because preemptible RCU does not exist, it never has any callbacks
1032 static void rcu_preempt_check_callbacks(int cpu
)
1037 * Queue an RCU callback for lazy invocation after a grace period.
1038 * This will likely be later named something like "call_rcu_lazy()",
1039 * but this change will require some way of tagging the lazy RCU
1040 * callbacks in the list of pending callbacks. Until then, this
1041 * function may only be called from __kfree_rcu().
1043 * Because there is no preemptible RCU, we use RCU-sched instead.
1045 void kfree_call_rcu(struct rcu_head
*head
,
1046 void (*func
)(struct rcu_head
*rcu
))
1048 __call_rcu(head
, func
, &rcu_sched_state
, -1, 1);
1050 EXPORT_SYMBOL_GPL(kfree_call_rcu
);
1053 * Wait for an rcu-preempt grace period, but make it happen quickly.
1054 * But because preemptible RCU does not exist, map to rcu-sched.
1056 void synchronize_rcu_expedited(void)
1058 synchronize_sched_expedited();
1060 EXPORT_SYMBOL_GPL(synchronize_rcu_expedited
);
1062 #ifdef CONFIG_HOTPLUG_CPU
1065 * Because preemptible RCU does not exist, there is never any need to
1066 * report on tasks preempted in RCU read-side critical sections during
1067 * expedited RCU grace periods.
1069 static void rcu_report_exp_rnp(struct rcu_state
*rsp
, struct rcu_node
*rnp
,
1074 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
1077 * Because preemptible RCU does not exist, rcu_barrier() is just
1078 * another name for rcu_barrier_sched().
1080 void rcu_barrier(void)
1082 rcu_barrier_sched();
1084 EXPORT_SYMBOL_GPL(rcu_barrier
);
1087 * Because preemptible RCU does not exist, it need not be initialized.
1089 static void __init
__rcu_init_preempt(void)
1093 #endif /* #else #ifdef CONFIG_TREE_PREEMPT_RCU */
1095 #ifdef CONFIG_RCU_BOOST
1097 #include "rtmutex_common.h"
1099 #ifdef CONFIG_RCU_TRACE
1101 static void rcu_initiate_boost_trace(struct rcu_node
*rnp
)
1103 if (list_empty(&rnp
->blkd_tasks
))
1104 rnp
->n_balk_blkd_tasks
++;
1105 else if (rnp
->exp_tasks
== NULL
&& rnp
->gp_tasks
== NULL
)
1106 rnp
->n_balk_exp_gp_tasks
++;
1107 else if (rnp
->gp_tasks
!= NULL
&& rnp
->boost_tasks
!= NULL
)
1108 rnp
->n_balk_boost_tasks
++;
1109 else if (rnp
->gp_tasks
!= NULL
&& rnp
->qsmask
!= 0)
1110 rnp
->n_balk_notblocked
++;
1111 else if (rnp
->gp_tasks
!= NULL
&&
1112 ULONG_CMP_LT(jiffies
, rnp
->boost_time
))
1113 rnp
->n_balk_notyet
++;
1118 #else /* #ifdef CONFIG_RCU_TRACE */
1120 static void rcu_initiate_boost_trace(struct rcu_node
*rnp
)
1124 #endif /* #else #ifdef CONFIG_RCU_TRACE */
1126 static void rcu_wake_cond(struct task_struct
*t
, int status
)
1129 * If the thread is yielding, only wake it when this
1130 * is invoked from idle
1132 if (status
!= RCU_KTHREAD_YIELDING
|| is_idle_task(current
))
1137 * Carry out RCU priority boosting on the task indicated by ->exp_tasks
1138 * or ->boost_tasks, advancing the pointer to the next task in the
1139 * ->blkd_tasks list.
1141 * Note that irqs must be enabled: boosting the task can block.
1142 * Returns 1 if there are more tasks needing to be boosted.
1144 static int rcu_boost(struct rcu_node
*rnp
)
1146 unsigned long flags
;
1147 struct rt_mutex mtx
;
1148 struct task_struct
*t
;
1149 struct list_head
*tb
;
1151 if (rnp
->exp_tasks
== NULL
&& rnp
->boost_tasks
== NULL
)
1152 return 0; /* Nothing left to boost. */
1154 raw_spin_lock_irqsave(&rnp
->lock
, flags
);
1157 * Recheck under the lock: all tasks in need of boosting
1158 * might exit their RCU read-side critical sections on their own.
1160 if (rnp
->exp_tasks
== NULL
&& rnp
->boost_tasks
== NULL
) {
1161 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
1166 * Preferentially boost tasks blocking expedited grace periods.
1167 * This cannot starve the normal grace periods because a second
1168 * expedited grace period must boost all blocked tasks, including
1169 * those blocking the pre-existing normal grace period.
1171 if (rnp
->exp_tasks
!= NULL
) {
1172 tb
= rnp
->exp_tasks
;
1173 rnp
->n_exp_boosts
++;
1175 tb
= rnp
->boost_tasks
;
1176 rnp
->n_normal_boosts
++;
1178 rnp
->n_tasks_boosted
++;
1181 * We boost task t by manufacturing an rt_mutex that appears to
1182 * be held by task t. We leave a pointer to that rt_mutex where
1183 * task t can find it, and task t will release the mutex when it
1184 * exits its outermost RCU read-side critical section. Then
1185 * simply acquiring this artificial rt_mutex will boost task
1186 * t's priority. (Thanks to tglx for suggesting this approach!)
1188 * Note that task t must acquire rnp->lock to remove itself from
1189 * the ->blkd_tasks list, which it will do from exit() if from
1190 * nowhere else. We therefore are guaranteed that task t will
1191 * stay around at least until we drop rnp->lock. Note that
1192 * rnp->lock also resolves races between our priority boosting
1193 * and task t's exiting its outermost RCU read-side critical
1196 t
= container_of(tb
, struct task_struct
, rcu_node_entry
);
1197 rt_mutex_init_proxy_locked(&mtx
, t
);
1198 t
->rcu_boost_mutex
= &mtx
;
1199 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
1200 rt_mutex_lock(&mtx
); /* Side effect: boosts task t's priority. */
1201 rt_mutex_unlock(&mtx
); /* Keep lockdep happy. */
1203 return ACCESS_ONCE(rnp
->exp_tasks
) != NULL
||
1204 ACCESS_ONCE(rnp
->boost_tasks
) != NULL
;
1208 * Priority-boosting kthread. One per leaf rcu_node and one for the
1211 static int rcu_boost_kthread(void *arg
)
1213 struct rcu_node
*rnp
= (struct rcu_node
*)arg
;
1217 trace_rcu_utilization("Start boost kthread@init");
1219 rnp
->boost_kthread_status
= RCU_KTHREAD_WAITING
;
1220 trace_rcu_utilization("End boost kthread@rcu_wait");
1221 rcu_wait(rnp
->boost_tasks
|| rnp
->exp_tasks
);
1222 trace_rcu_utilization("Start boost kthread@rcu_wait");
1223 rnp
->boost_kthread_status
= RCU_KTHREAD_RUNNING
;
1224 more2boost
= rcu_boost(rnp
);
1230 rnp
->boost_kthread_status
= RCU_KTHREAD_YIELDING
;
1231 trace_rcu_utilization("End boost kthread@rcu_yield");
1232 schedule_timeout_interruptible(2);
1233 trace_rcu_utilization("Start boost kthread@rcu_yield");
1238 trace_rcu_utilization("End boost kthread@notreached");
1243 * Check to see if it is time to start boosting RCU readers that are
1244 * blocking the current grace period, and, if so, tell the per-rcu_node
1245 * kthread to start boosting them. If there is an expedited grace
1246 * period in progress, it is always time to boost.
1248 * The caller must hold rnp->lock, which this function releases.
1249 * The ->boost_kthread_task is immortal, so we don't need to worry
1250 * about it going away.
1252 static void rcu_initiate_boost(struct rcu_node
*rnp
, unsigned long flags
)
1254 struct task_struct
*t
;
1256 if (!rcu_preempt_blocked_readers_cgp(rnp
) && rnp
->exp_tasks
== NULL
) {
1257 rnp
->n_balk_exp_gp_tasks
++;
1258 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
1261 if (rnp
->exp_tasks
!= NULL
||
1262 (rnp
->gp_tasks
!= NULL
&&
1263 rnp
->boost_tasks
== NULL
&&
1265 ULONG_CMP_GE(jiffies
, rnp
->boost_time
))) {
1266 if (rnp
->exp_tasks
== NULL
)
1267 rnp
->boost_tasks
= rnp
->gp_tasks
;
1268 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
1269 t
= rnp
->boost_kthread_task
;
1271 rcu_wake_cond(t
, rnp
->boost_kthread_status
);
1273 rcu_initiate_boost_trace(rnp
);
1274 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
1279 * Wake up the per-CPU kthread to invoke RCU callbacks.
1281 static void invoke_rcu_callbacks_kthread(void)
1283 unsigned long flags
;
1285 local_irq_save(flags
);
1286 __this_cpu_write(rcu_cpu_has_work
, 1);
1287 if (__this_cpu_read(rcu_cpu_kthread_task
) != NULL
&&
1288 current
!= __this_cpu_read(rcu_cpu_kthread_task
)) {
1289 rcu_wake_cond(__this_cpu_read(rcu_cpu_kthread_task
),
1290 __this_cpu_read(rcu_cpu_kthread_status
));
1292 local_irq_restore(flags
);
1296 * Is the current CPU running the RCU-callbacks kthread?
1297 * Caller must have preemption disabled.
1299 static bool rcu_is_callbacks_kthread(void)
1301 return __get_cpu_var(rcu_cpu_kthread_task
) == current
;
1304 #define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
1307 * Do priority-boost accounting for the start of a new grace period.
1309 static void rcu_preempt_boost_start_gp(struct rcu_node
*rnp
)
1311 rnp
->boost_time
= jiffies
+ RCU_BOOST_DELAY_JIFFIES
;
1315 * Create an RCU-boost kthread for the specified node if one does not
1316 * already exist. We only create this kthread for preemptible RCU.
1317 * Returns zero if all is well, a negated errno otherwise.
1319 static int __cpuinit
rcu_spawn_one_boost_kthread(struct rcu_state
*rsp
,
1320 struct rcu_node
*rnp
)
1322 int rnp_index
= rnp
- &rsp
->node
[0];
1323 unsigned long flags
;
1324 struct sched_param sp
;
1325 struct task_struct
*t
;
1327 if (&rcu_preempt_state
!= rsp
)
1330 if (!rcu_scheduler_fully_active
|| rnp
->qsmaskinit
== 0)
1334 if (rnp
->boost_kthread_task
!= NULL
)
1336 t
= kthread_create(rcu_boost_kthread
, (void *)rnp
,
1337 "rcub/%d", rnp_index
);
1340 raw_spin_lock_irqsave(&rnp
->lock
, flags
);
1341 rnp
->boost_kthread_task
= t
;
1342 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
1343 sp
.sched_priority
= RCU_BOOST_PRIO
;
1344 sched_setscheduler_nocheck(t
, SCHED_FIFO
, &sp
);
1345 wake_up_process(t
); /* get to TASK_INTERRUPTIBLE quickly. */
1349 static void rcu_kthread_do_work(void)
1351 rcu_do_batch(&rcu_sched_state
, &__get_cpu_var(rcu_sched_data
));
1352 rcu_do_batch(&rcu_bh_state
, &__get_cpu_var(rcu_bh_data
));
1353 rcu_preempt_do_callbacks();
1356 static void rcu_cpu_kthread_setup(unsigned int cpu
)
1358 struct sched_param sp
;
1360 sp
.sched_priority
= RCU_KTHREAD_PRIO
;
1361 sched_setscheduler_nocheck(current
, SCHED_FIFO
, &sp
);
1364 static void rcu_cpu_kthread_park(unsigned int cpu
)
1366 per_cpu(rcu_cpu_kthread_status
, cpu
) = RCU_KTHREAD_OFFCPU
;
1369 static int rcu_cpu_kthread_should_run(unsigned int cpu
)
1371 return __get_cpu_var(rcu_cpu_has_work
);
1375 * Per-CPU kernel thread that invokes RCU callbacks. This replaces the
1376 * RCU softirq used in flavors and configurations of RCU that do not
1377 * support RCU priority boosting.
1379 static void rcu_cpu_kthread(unsigned int cpu
)
1381 unsigned int *statusp
= &__get_cpu_var(rcu_cpu_kthread_status
);
1382 char work
, *workp
= &__get_cpu_var(rcu_cpu_has_work
);
1385 for (spincnt
= 0; spincnt
< 10; spincnt
++) {
1386 trace_rcu_utilization("Start CPU kthread@rcu_wait");
1388 *statusp
= RCU_KTHREAD_RUNNING
;
1389 this_cpu_inc(rcu_cpu_kthread_loops
);
1390 local_irq_disable();
1395 rcu_kthread_do_work();
1398 trace_rcu_utilization("End CPU kthread@rcu_wait");
1399 *statusp
= RCU_KTHREAD_WAITING
;
1403 *statusp
= RCU_KTHREAD_YIELDING
;
1404 trace_rcu_utilization("Start CPU kthread@rcu_yield");
1405 schedule_timeout_interruptible(2);
1406 trace_rcu_utilization("End CPU kthread@rcu_yield");
1407 *statusp
= RCU_KTHREAD_WAITING
;
1411 * Set the per-rcu_node kthread's affinity to cover all CPUs that are
1412 * served by the rcu_node in question. The CPU hotplug lock is still
1413 * held, so the value of rnp->qsmaskinit will be stable.
1415 * We don't include outgoingcpu in the affinity set, use -1 if there is
1416 * no outgoing CPU. If there are no CPUs left in the affinity set,
1417 * this function allows the kthread to execute on any CPU.
1419 static void rcu_boost_kthread_setaffinity(struct rcu_node
*rnp
, int outgoingcpu
)
1421 struct task_struct
*t
= rnp
->boost_kthread_task
;
1422 unsigned long mask
= rnp
->qsmaskinit
;
1428 if (!zalloc_cpumask_var(&cm
, GFP_KERNEL
))
1430 for (cpu
= rnp
->grplo
; cpu
<= rnp
->grphi
; cpu
++, mask
>>= 1)
1431 if ((mask
& 0x1) && cpu
!= outgoingcpu
)
1432 cpumask_set_cpu(cpu
, cm
);
1433 if (cpumask_weight(cm
) == 0) {
1435 for (cpu
= rnp
->grplo
; cpu
<= rnp
->grphi
; cpu
++)
1436 cpumask_clear_cpu(cpu
, cm
);
1437 WARN_ON_ONCE(cpumask_weight(cm
) == 0);
1439 set_cpus_allowed_ptr(t
, cm
);
1440 free_cpumask_var(cm
);
1443 static struct smp_hotplug_thread rcu_cpu_thread_spec
= {
1444 .store
= &rcu_cpu_kthread_task
,
1445 .thread_should_run
= rcu_cpu_kthread_should_run
,
1446 .thread_fn
= rcu_cpu_kthread
,
1447 .thread_comm
= "rcuc/%u",
1448 .setup
= rcu_cpu_kthread_setup
,
1449 .park
= rcu_cpu_kthread_park
,
1453 * Spawn all kthreads -- called as soon as the scheduler is running.
1455 static int __init
rcu_spawn_kthreads(void)
1457 struct rcu_node
*rnp
;
1460 rcu_scheduler_fully_active
= 1;
1461 for_each_possible_cpu(cpu
)
1462 per_cpu(rcu_cpu_has_work
, cpu
) = 0;
1463 BUG_ON(smpboot_register_percpu_thread(&rcu_cpu_thread_spec
));
1464 rnp
= rcu_get_root(rcu_state
);
1465 (void)rcu_spawn_one_boost_kthread(rcu_state
, rnp
);
1466 if (NUM_RCU_NODES
> 1) {
1467 rcu_for_each_leaf_node(rcu_state
, rnp
)
1468 (void)rcu_spawn_one_boost_kthread(rcu_state
, rnp
);
1472 early_initcall(rcu_spawn_kthreads
);
1474 static void __cpuinit
rcu_prepare_kthreads(int cpu
)
1476 struct rcu_data
*rdp
= per_cpu_ptr(rcu_state
->rda
, cpu
);
1477 struct rcu_node
*rnp
= rdp
->mynode
;
1479 /* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
1480 if (rcu_scheduler_fully_active
)
1481 (void)rcu_spawn_one_boost_kthread(rcu_state
, rnp
);
1484 #else /* #ifdef CONFIG_RCU_BOOST */
1486 static void rcu_initiate_boost(struct rcu_node
*rnp
, unsigned long flags
)
1488 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
1491 static void invoke_rcu_callbacks_kthread(void)
1496 static bool rcu_is_callbacks_kthread(void)
1501 static void rcu_preempt_boost_start_gp(struct rcu_node
*rnp
)
1505 static void rcu_boost_kthread_setaffinity(struct rcu_node
*rnp
, int outgoingcpu
)
1509 static int __init
rcu_scheduler_really_started(void)
1511 rcu_scheduler_fully_active
= 1;
1514 early_initcall(rcu_scheduler_really_started
);
1516 static void __cpuinit
rcu_prepare_kthreads(int cpu
)
1520 #endif /* #else #ifdef CONFIG_RCU_BOOST */
1522 #if !defined(CONFIG_RCU_FAST_NO_HZ)
1525 * Check to see if any future RCU-related work will need to be done
1526 * by the current CPU, even if none need be done immediately, returning
1527 * 1 if so. This function is part of the RCU implementation; it is -not-
1528 * an exported member of the RCU API.
1530 * Because we not have RCU_FAST_NO_HZ, just check whether this CPU needs
1531 * any flavor of RCU.
1533 int rcu_needs_cpu(int cpu
, unsigned long *delta_jiffies
)
1535 *delta_jiffies
= ULONG_MAX
;
1536 return rcu_cpu_has_callbacks(cpu
);
1540 * Because we do not have RCU_FAST_NO_HZ, don't bother initializing for it.
1542 static void rcu_prepare_for_idle_init(int cpu
)
1547 * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up
1550 static void rcu_cleanup_after_idle(int cpu
)
1555 * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n,
1558 static void rcu_prepare_for_idle(int cpu
)
1563 * Don't bother keeping a running count of the number of RCU callbacks
1564 * posted because CONFIG_RCU_FAST_NO_HZ=n.
1566 static void rcu_idle_count_callbacks_posted(void)
1570 #else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1573 * This code is invoked when a CPU goes idle, at which point we want
1574 * to have the CPU do everything required for RCU so that it can enter
1575 * the energy-efficient dyntick-idle mode. This is handled by a
1576 * state machine implemented by rcu_prepare_for_idle() below.
1578 * The following three proprocessor symbols control this state machine:
1580 * RCU_IDLE_FLUSHES gives the maximum number of times that we will attempt
1581 * to satisfy RCU. Beyond this point, it is better to incur a periodic
1582 * scheduling-clock interrupt than to loop through the state machine
1584 * RCU_IDLE_OPT_FLUSHES gives the number of RCU_IDLE_FLUSHES that are
1585 * optional if RCU does not need anything immediately from this
1586 * CPU, even if this CPU still has RCU callbacks queued. The first
1587 * times through the state machine are mandatory: we need to give
1588 * the state machine a chance to communicate a quiescent state
1590 * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted
1591 * to sleep in dyntick-idle mode with RCU callbacks pending. This
1592 * is sized to be roughly one RCU grace period. Those energy-efficiency
1593 * benchmarkers who might otherwise be tempted to set this to a large
1594 * number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your
1595 * system. And if you are -that- concerned about energy efficiency,
1596 * just power the system down and be done with it!
1597 * RCU_IDLE_LAZY_GP_DELAY gives the number of jiffies that a CPU is
1598 * permitted to sleep in dyntick-idle mode with only lazy RCU
1599 * callbacks pending. Setting this too high can OOM your system.
1601 * The values below work well in practice. If future workloads require
1602 * adjustment, they can be converted into kernel config parameters, though
1603 * making the state machine smarter might be a better option.
1605 #define RCU_IDLE_FLUSHES 5 /* Number of dyntick-idle tries. */
1606 #define RCU_IDLE_OPT_FLUSHES 3 /* Optional dyntick-idle tries. */
1607 #define RCU_IDLE_GP_DELAY 4 /* Roughly one grace period. */
1608 #define RCU_IDLE_LAZY_GP_DELAY (6 * HZ) /* Roughly six seconds. */
1610 extern int tick_nohz_enabled
;
1613 * Does the specified flavor of RCU have non-lazy callbacks pending on
1614 * the specified CPU? Both RCU flavor and CPU are specified by the
1615 * rcu_data structure.
1617 static bool __rcu_cpu_has_nonlazy_callbacks(struct rcu_data
*rdp
)
1619 return rdp
->qlen
!= rdp
->qlen_lazy
;
1622 #ifdef CONFIG_TREE_PREEMPT_RCU
1625 * Are there non-lazy RCU-preempt callbacks? (There cannot be if there
1626 * is no RCU-preempt in the kernel.)
1628 static bool rcu_preempt_cpu_has_nonlazy_callbacks(int cpu
)
1630 struct rcu_data
*rdp
= &per_cpu(rcu_preempt_data
, cpu
);
1632 return __rcu_cpu_has_nonlazy_callbacks(rdp
);
1635 #else /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1637 static bool rcu_preempt_cpu_has_nonlazy_callbacks(int cpu
)
1642 #endif /* else #ifdef CONFIG_TREE_PREEMPT_RCU */
1645 * Does any flavor of RCU have non-lazy callbacks on the specified CPU?
1647 static bool rcu_cpu_has_nonlazy_callbacks(int cpu
)
1649 return __rcu_cpu_has_nonlazy_callbacks(&per_cpu(rcu_sched_data
, cpu
)) ||
1650 __rcu_cpu_has_nonlazy_callbacks(&per_cpu(rcu_bh_data
, cpu
)) ||
1651 rcu_preempt_cpu_has_nonlazy_callbacks(cpu
);
1655 * Allow the CPU to enter dyntick-idle mode if either: (1) There are no
1656 * callbacks on this CPU, (2) this CPU has not yet attempted to enter
1657 * dyntick-idle mode, or (3) this CPU is in the process of attempting to
1658 * enter dyntick-idle mode. Otherwise, if we have recently tried and failed
1659 * to enter dyntick-idle mode, we refuse to try to enter it. After all,
1660 * it is better to incur scheduling-clock interrupts than to spin
1661 * continuously for the same time duration!
1663 * The delta_jiffies argument is used to store the time when RCU is
1664 * going to need the CPU again if it still has callbacks. The reason
1665 * for this is that rcu_prepare_for_idle() might need to post a timer,
1666 * but if so, it will do so after tick_nohz_stop_sched_tick() has set
1667 * the wakeup time for this CPU. This means that RCU's timer can be
1668 * delayed until the wakeup time, which defeats the purpose of posting
1671 int rcu_needs_cpu(int cpu
, unsigned long *delta_jiffies
)
1673 struct rcu_dynticks
*rdtp
= &per_cpu(rcu_dynticks
, cpu
);
1675 /* Flag a new idle sojourn to the idle-entry state machine. */
1676 rdtp
->idle_first_pass
= 1;
1677 /* If no callbacks, RCU doesn't need the CPU. */
1678 if (!rcu_cpu_has_callbacks(cpu
)) {
1679 *delta_jiffies
= ULONG_MAX
;
1682 if (rdtp
->dyntick_holdoff
== jiffies
) {
1683 /* RCU recently tried and failed, so don't try again. */
1687 /* Set up for the possibility that RCU will post a timer. */
1688 if (rcu_cpu_has_nonlazy_callbacks(cpu
)) {
1689 *delta_jiffies
= round_up(RCU_IDLE_GP_DELAY
+ jiffies
,
1690 RCU_IDLE_GP_DELAY
) - jiffies
;
1692 *delta_jiffies
= jiffies
+ RCU_IDLE_LAZY_GP_DELAY
;
1693 *delta_jiffies
= round_jiffies(*delta_jiffies
) - jiffies
;
1699 * Handler for smp_call_function_single(). The only point of this
1700 * handler is to wake the CPU up, so the handler does only tracing.
1702 void rcu_idle_demigrate(void *unused
)
1704 trace_rcu_prep_idle("Demigrate");
1708 * Timer handler used to force CPU to start pushing its remaining RCU
1709 * callbacks in the case where it entered dyntick-idle mode with callbacks
1710 * pending. The hander doesn't really need to do anything because the
1711 * real work is done upon re-entry to idle, or by the next scheduling-clock
1712 * interrupt should idle not be re-entered.
1714 * One special case: the timer gets migrated without awakening the CPU
1715 * on which the timer was scheduled on. In this case, we must wake up
1716 * that CPU. We do so with smp_call_function_single().
1718 static void rcu_idle_gp_timer_func(unsigned long cpu_in
)
1720 int cpu
= (int)cpu_in
;
1722 trace_rcu_prep_idle("Timer");
1723 if (cpu
!= smp_processor_id())
1724 smp_call_function_single(cpu
, rcu_idle_demigrate
, NULL
, 0);
1726 WARN_ON_ONCE(1); /* Getting here can hang the system... */
1730 * Initialize the timer used to pull CPUs out of dyntick-idle mode.
1732 static void rcu_prepare_for_idle_init(int cpu
)
1734 struct rcu_dynticks
*rdtp
= &per_cpu(rcu_dynticks
, cpu
);
1736 rdtp
->dyntick_holdoff
= jiffies
- 1;
1737 setup_timer(&rdtp
->idle_gp_timer
, rcu_idle_gp_timer_func
, cpu
);
1738 rdtp
->idle_gp_timer_expires
= jiffies
- 1;
1739 rdtp
->idle_first_pass
= 1;
1743 * Clean up for exit from idle. Because we are exiting from idle, there
1744 * is no longer any point to ->idle_gp_timer, so cancel it. This will
1745 * do nothing if this timer is not active, so just cancel it unconditionally.
1747 static void rcu_cleanup_after_idle(int cpu
)
1749 struct rcu_dynticks
*rdtp
= &per_cpu(rcu_dynticks
, cpu
);
1751 del_timer(&rdtp
->idle_gp_timer
);
1752 trace_rcu_prep_idle("Cleanup after idle");
1753 rdtp
->tick_nohz_enabled_snap
= ACCESS_ONCE(tick_nohz_enabled
);
1757 * Check to see if any RCU-related work can be done by the current CPU,
1758 * and if so, schedule a softirq to get it done. This function is part
1759 * of the RCU implementation; it is -not- an exported member of the RCU API.
1761 * The idea is for the current CPU to clear out all work required by the
1762 * RCU core for the current grace period, so that this CPU can be permitted
1763 * to enter dyntick-idle mode. In some cases, it will need to be awakened
1764 * at the end of the grace period by whatever CPU ends the grace period.
1765 * This allows CPUs to go dyntick-idle more quickly, and to reduce the
1766 * number of wakeups by a modest integer factor.
1768 * Because it is not legal to invoke rcu_process_callbacks() with irqs
1769 * disabled, we do one pass of force_quiescent_state(), then do a
1770 * invoke_rcu_core() to cause rcu_process_callbacks() to be invoked
1771 * later. The ->dyntick_drain field controls the sequencing.
1773 * The caller must have disabled interrupts.
1775 static void rcu_prepare_for_idle(int cpu
)
1777 struct timer_list
*tp
;
1778 struct rcu_dynticks
*rdtp
= &per_cpu(rcu_dynticks
, cpu
);
1781 /* Handle nohz enablement switches conservatively. */
1782 tne
= ACCESS_ONCE(tick_nohz_enabled
);
1783 if (tne
!= rdtp
->tick_nohz_enabled_snap
) {
1784 if (rcu_cpu_has_callbacks(cpu
))
1785 invoke_rcu_core(); /* force nohz to see update. */
1786 rdtp
->tick_nohz_enabled_snap
= tne
;
1792 /* Adaptive-tick mode, where usermode execution is idle to RCU. */
1793 if (!is_idle_task(current
)) {
1794 rdtp
->dyntick_holdoff
= jiffies
- 1;
1795 if (rcu_cpu_has_nonlazy_callbacks(cpu
)) {
1796 trace_rcu_prep_idle("User dyntick with callbacks");
1797 rdtp
->idle_gp_timer_expires
=
1798 round_up(jiffies
+ RCU_IDLE_GP_DELAY
,
1800 } else if (rcu_cpu_has_callbacks(cpu
)) {
1801 rdtp
->idle_gp_timer_expires
=
1802 round_jiffies(jiffies
+ RCU_IDLE_LAZY_GP_DELAY
);
1803 trace_rcu_prep_idle("User dyntick with lazy callbacks");
1807 tp
= &rdtp
->idle_gp_timer
;
1808 mod_timer_pinned(tp
, rdtp
->idle_gp_timer_expires
);
1813 * If this is an idle re-entry, for example, due to use of
1814 * RCU_NONIDLE() or the new idle-loop tracing API within the idle
1815 * loop, then don't take any state-machine actions, unless the
1816 * momentary exit from idle queued additional non-lazy callbacks.
1817 * Instead, repost the ->idle_gp_timer if this CPU has callbacks
1820 if (!rdtp
->idle_first_pass
&&
1821 (rdtp
->nonlazy_posted
== rdtp
->nonlazy_posted_snap
)) {
1822 if (rcu_cpu_has_callbacks(cpu
)) {
1823 tp
= &rdtp
->idle_gp_timer
;
1824 mod_timer_pinned(tp
, rdtp
->idle_gp_timer_expires
);
1828 rdtp
->idle_first_pass
= 0;
1829 rdtp
->nonlazy_posted_snap
= rdtp
->nonlazy_posted
- 1;
1832 * If there are no callbacks on this CPU, enter dyntick-idle mode.
1833 * Also reset state to avoid prejudicing later attempts.
1835 if (!rcu_cpu_has_callbacks(cpu
)) {
1836 rdtp
->dyntick_holdoff
= jiffies
- 1;
1837 rdtp
->dyntick_drain
= 0;
1838 trace_rcu_prep_idle("No callbacks");
1843 * If in holdoff mode, just return. We will presumably have
1844 * refrained from disabling the scheduling-clock tick.
1846 if (rdtp
->dyntick_holdoff
== jiffies
) {
1847 trace_rcu_prep_idle("In holdoff");
1851 /* Check and update the ->dyntick_drain sequencing. */
1852 if (rdtp
->dyntick_drain
<= 0) {
1853 /* First time through, initialize the counter. */
1854 rdtp
->dyntick_drain
= RCU_IDLE_FLUSHES
;
1855 } else if (rdtp
->dyntick_drain
<= RCU_IDLE_OPT_FLUSHES
&&
1856 !rcu_pending(cpu
) &&
1857 !local_softirq_pending()) {
1858 /* Can we go dyntick-idle despite still having callbacks? */
1859 rdtp
->dyntick_drain
= 0;
1860 rdtp
->dyntick_holdoff
= jiffies
;
1861 if (rcu_cpu_has_nonlazy_callbacks(cpu
)) {
1862 trace_rcu_prep_idle("Dyntick with callbacks");
1863 rdtp
->idle_gp_timer_expires
=
1864 round_up(jiffies
+ RCU_IDLE_GP_DELAY
,
1867 rdtp
->idle_gp_timer_expires
=
1868 round_jiffies(jiffies
+ RCU_IDLE_LAZY_GP_DELAY
);
1869 trace_rcu_prep_idle("Dyntick with lazy callbacks");
1871 tp
= &rdtp
->idle_gp_timer
;
1872 mod_timer_pinned(tp
, rdtp
->idle_gp_timer_expires
);
1873 rdtp
->nonlazy_posted_snap
= rdtp
->nonlazy_posted
;
1874 return; /* Nothing more to do immediately. */
1875 } else if (--(rdtp
->dyntick_drain
) <= 0) {
1876 /* We have hit the limit, so time to give up. */
1877 rdtp
->dyntick_holdoff
= jiffies
;
1878 trace_rcu_prep_idle("Begin holdoff");
1879 invoke_rcu_core(); /* Force the CPU out of dyntick-idle. */
1884 * Do one step of pushing the remaining RCU callbacks through
1885 * the RCU core state machine.
1887 #ifdef CONFIG_TREE_PREEMPT_RCU
1888 if (per_cpu(rcu_preempt_data
, cpu
).nxtlist
) {
1889 rcu_preempt_qs(cpu
);
1890 force_quiescent_state(&rcu_preempt_state
);
1892 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1893 if (per_cpu(rcu_sched_data
, cpu
).nxtlist
) {
1895 force_quiescent_state(&rcu_sched_state
);
1897 if (per_cpu(rcu_bh_data
, cpu
).nxtlist
) {
1899 force_quiescent_state(&rcu_bh_state
);
1903 * If RCU callbacks are still pending, RCU still needs this CPU.
1904 * So try forcing the callbacks through the grace period.
1906 if (rcu_cpu_has_callbacks(cpu
)) {
1907 trace_rcu_prep_idle("More callbacks");
1910 trace_rcu_prep_idle("Callbacks drained");
1915 * Keep a running count of the number of non-lazy callbacks posted
1916 * on this CPU. This running counter (which is never decremented) allows
1917 * rcu_prepare_for_idle() to detect when something out of the idle loop
1918 * posts a callback, even if an equal number of callbacks are invoked.
1919 * Of course, callbacks should only be posted from within a trace event
1920 * designed to be called from idle or from within RCU_NONIDLE().
1922 static void rcu_idle_count_callbacks_posted(void)
1924 __this_cpu_add(rcu_dynticks
.nonlazy_posted
, 1);
1928 * Data for flushing lazy RCU callbacks at OOM time.
1930 static atomic_t oom_callback_count
;
1931 static DECLARE_WAIT_QUEUE_HEAD(oom_callback_wq
);
1934 * RCU OOM callback -- decrement the outstanding count and deliver the
1935 * wake-up if we are the last one.
1937 static void rcu_oom_callback(struct rcu_head
*rhp
)
1939 if (atomic_dec_and_test(&oom_callback_count
))
1940 wake_up(&oom_callback_wq
);
1944 * Post an rcu_oom_notify callback on the current CPU if it has at
1945 * least one lazy callback. This will unnecessarily post callbacks
1946 * to CPUs that already have a non-lazy callback at the end of their
1947 * callback list, but this is an infrequent operation, so accept some
1948 * extra overhead to keep things simple.
1950 static void rcu_oom_notify_cpu(void *unused
)
1952 struct rcu_state
*rsp
;
1953 struct rcu_data
*rdp
;
1955 for_each_rcu_flavor(rsp
) {
1956 rdp
= __this_cpu_ptr(rsp
->rda
);
1957 if (rdp
->qlen_lazy
!= 0) {
1958 atomic_inc(&oom_callback_count
);
1959 rsp
->call(&rdp
->oom_head
, rcu_oom_callback
);
1965 * If low on memory, ensure that each CPU has a non-lazy callback.
1966 * This will wake up CPUs that have only lazy callbacks, in turn
1967 * ensuring that they free up the corresponding memory in a timely manner.
1968 * Because an uncertain amount of memory will be freed in some uncertain
1969 * timeframe, we do not claim to have freed anything.
1971 static int rcu_oom_notify(struct notifier_block
*self
,
1972 unsigned long notused
, void *nfreed
)
1976 /* Wait for callbacks from earlier instance to complete. */
1977 wait_event(oom_callback_wq
, atomic_read(&oom_callback_count
) == 0);
1980 * Prevent premature wakeup: ensure that all increments happen
1981 * before there is a chance of the counter reaching zero.
1983 atomic_set(&oom_callback_count
, 1);
1986 for_each_online_cpu(cpu
) {
1987 smp_call_function_single(cpu
, rcu_oom_notify_cpu
, NULL
, 1);
1992 /* Unconditionally decrement: no need to wake ourselves up. */
1993 atomic_dec(&oom_callback_count
);
1998 static struct notifier_block rcu_oom_nb
= {
1999 .notifier_call
= rcu_oom_notify
2002 static int __init
rcu_register_oom_notifier(void)
2004 register_oom_notifier(&rcu_oom_nb
);
2007 early_initcall(rcu_register_oom_notifier
);
2009 #endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */
2011 #ifdef CONFIG_RCU_CPU_STALL_INFO
2013 #ifdef CONFIG_RCU_FAST_NO_HZ
2015 static void print_cpu_stall_fast_no_hz(char *cp
, int cpu
)
2017 struct rcu_dynticks
*rdtp
= &per_cpu(rcu_dynticks
, cpu
);
2018 struct timer_list
*tltp
= &rdtp
->idle_gp_timer
;
2021 c
= rdtp
->dyntick_holdoff
== jiffies
? 'H' : '.';
2022 if (timer_pending(tltp
))
2023 sprintf(cp
, "drain=%d %c timer=%lu",
2024 rdtp
->dyntick_drain
, c
, tltp
->expires
- jiffies
);
2026 sprintf(cp
, "drain=%d %c timer not pending",
2027 rdtp
->dyntick_drain
, c
);
2030 #else /* #ifdef CONFIG_RCU_FAST_NO_HZ */
2032 static void print_cpu_stall_fast_no_hz(char *cp
, int cpu
)
2037 #endif /* #else #ifdef CONFIG_RCU_FAST_NO_HZ */
2039 /* Initiate the stall-info list. */
2040 static void print_cpu_stall_info_begin(void)
2042 printk(KERN_CONT
"\n");
2046 * Print out diagnostic information for the specified stalled CPU.
2048 * If the specified CPU is aware of the current RCU grace period
2049 * (flavor specified by rsp), then print the number of scheduling
2050 * clock interrupts the CPU has taken during the time that it has
2051 * been aware. Otherwise, print the number of RCU grace periods
2052 * that this CPU is ignorant of, for example, "1" if the CPU was
2053 * aware of the previous grace period.
2055 * Also print out idle and (if CONFIG_RCU_FAST_NO_HZ) idle-entry info.
2057 static void print_cpu_stall_info(struct rcu_state
*rsp
, int cpu
)
2059 char fast_no_hz
[72];
2060 struct rcu_data
*rdp
= per_cpu_ptr(rsp
->rda
, cpu
);
2061 struct rcu_dynticks
*rdtp
= rdp
->dynticks
;
2063 unsigned long ticks_value
;
2065 if (rsp
->gpnum
== rdp
->gpnum
) {
2066 ticks_title
= "ticks this GP";
2067 ticks_value
= rdp
->ticks_this_gp
;
2069 ticks_title
= "GPs behind";
2070 ticks_value
= rsp
->gpnum
- rdp
->gpnum
;
2072 print_cpu_stall_fast_no_hz(fast_no_hz
, cpu
);
2073 printk(KERN_ERR
"\t%d: (%lu %s) idle=%03x/%llx/%d %s\n",
2074 cpu
, ticks_value
, ticks_title
,
2075 atomic_read(&rdtp
->dynticks
) & 0xfff,
2076 rdtp
->dynticks_nesting
, rdtp
->dynticks_nmi_nesting
,
2080 /* Terminate the stall-info list. */
2081 static void print_cpu_stall_info_end(void)
2083 printk(KERN_ERR
"\t");
2086 /* Zero ->ticks_this_gp for all flavors of RCU. */
2087 static void zero_cpu_stall_ticks(struct rcu_data
*rdp
)
2089 rdp
->ticks_this_gp
= 0;
2092 /* Increment ->ticks_this_gp for all flavors of RCU. */
2093 static void increment_cpu_stall_ticks(void)
2095 struct rcu_state
*rsp
;
2097 for_each_rcu_flavor(rsp
)
2098 __this_cpu_ptr(rsp
->rda
)->ticks_this_gp
++;
2101 #else /* #ifdef CONFIG_RCU_CPU_STALL_INFO */
2103 static void print_cpu_stall_info_begin(void)
2105 printk(KERN_CONT
" {");
2108 static void print_cpu_stall_info(struct rcu_state
*rsp
, int cpu
)
2110 printk(KERN_CONT
" %d", cpu
);
2113 static void print_cpu_stall_info_end(void)
2115 printk(KERN_CONT
"} ");
2118 static void zero_cpu_stall_ticks(struct rcu_data
*rdp
)
2122 static void increment_cpu_stall_ticks(void)
2126 #endif /* #else #ifdef CONFIG_RCU_CPU_STALL_INFO */
2128 #ifdef CONFIG_RCU_NOCB_CPU
2131 * Offload callback processing from the boot-time-specified set of CPUs
2132 * specified by rcu_nocb_mask. For each CPU in the set, there is a
2133 * kthread created that pulls the callbacks from the corresponding CPU,
2134 * waits for a grace period to elapse, and invokes the callbacks.
2135 * The no-CBs CPUs do a wake_up() on their kthread when they insert
2136 * a callback into any empty list, unless the rcu_nocb_poll boot parameter
2137 * has been specified, in which case each kthread actively polls its
2138 * CPU. (Which isn't so great for energy efficiency, but which does
2139 * reduce RCU's overhead on that CPU.)
2141 * This is intended to be used in conjunction with Frederic Weisbecker's
2142 * adaptive-idle work, which would seriously reduce OS jitter on CPUs
2143 * running CPU-bound user-mode computations.
2145 * Offloading of callback processing could also in theory be used as
2146 * an energy-efficiency measure because CPUs with no RCU callbacks
2147 * queued are more aggressive about entering dyntick-idle mode.
2151 /* Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters. */
2152 static int __init
rcu_nocb_setup(char *str
)
2154 alloc_bootmem_cpumask_var(&rcu_nocb_mask
);
2155 have_rcu_nocb_mask
= true;
2156 cpulist_parse(str
, rcu_nocb_mask
);
2159 __setup("rcu_nocbs=", rcu_nocb_setup
);
2161 static int __init
parse_rcu_nocb_poll(char *arg
)
2166 early_param("rcu_nocb_poll", parse_rcu_nocb_poll
);
2168 /* Is the specified CPU a no-CPUs CPU? */
2169 static bool is_nocb_cpu(int cpu
)
2171 if (have_rcu_nocb_mask
)
2172 return cpumask_test_cpu(cpu
, rcu_nocb_mask
);
2177 * Enqueue the specified string of rcu_head structures onto the specified
2178 * CPU's no-CBs lists. The CPU is specified by rdp, the head of the
2179 * string by rhp, and the tail of the string by rhtp. The non-lazy/lazy
2180 * counts are supplied by rhcount and rhcount_lazy.
2182 * If warranted, also wake up the kthread servicing this CPUs queues.
2184 static void __call_rcu_nocb_enqueue(struct rcu_data
*rdp
,
2185 struct rcu_head
*rhp
,
2186 struct rcu_head
**rhtp
,
2187 int rhcount
, int rhcount_lazy
)
2190 struct rcu_head
**old_rhpp
;
2191 struct task_struct
*t
;
2193 /* Enqueue the callback on the nocb list and update counts. */
2194 old_rhpp
= xchg(&rdp
->nocb_tail
, rhtp
);
2195 ACCESS_ONCE(*old_rhpp
) = rhp
;
2196 atomic_long_add(rhcount
, &rdp
->nocb_q_count
);
2197 atomic_long_add(rhcount_lazy
, &rdp
->nocb_q_count_lazy
);
2199 /* If we are not being polled and there is a kthread, awaken it ... */
2200 t
= ACCESS_ONCE(rdp
->nocb_kthread
);
2201 if (rcu_nocb_poll
| !t
)
2203 len
= atomic_long_read(&rdp
->nocb_q_count
);
2204 if (old_rhpp
== &rdp
->nocb_head
) {
2205 wake_up(&rdp
->nocb_wq
); /* ... only if queue was empty ... */
2206 rdp
->qlen_last_fqs_check
= 0;
2207 } else if (len
> rdp
->qlen_last_fqs_check
+ qhimark
) {
2208 wake_up_process(t
); /* ... or if many callbacks queued. */
2209 rdp
->qlen_last_fqs_check
= LONG_MAX
/ 2;
2215 * This is a helper for __call_rcu(), which invokes this when the normal
2216 * callback queue is inoperable. If this is not a no-CBs CPU, this
2217 * function returns failure back to __call_rcu(), which can complain
2220 * Otherwise, this function queues the callback where the corresponding
2221 * "rcuo" kthread can find it.
2223 static bool __call_rcu_nocb(struct rcu_data
*rdp
, struct rcu_head
*rhp
,
2227 if (!is_nocb_cpu(rdp
->cpu
))
2229 __call_rcu_nocb_enqueue(rdp
, rhp
, &rhp
->next
, 1, lazy
);
2234 * Adopt orphaned callbacks on a no-CBs CPU, or return 0 if this is
2237 static bool __maybe_unused
rcu_nocb_adopt_orphan_cbs(struct rcu_state
*rsp
,
2238 struct rcu_data
*rdp
)
2240 long ql
= rsp
->qlen
;
2241 long qll
= rsp
->qlen_lazy
;
2243 /* If this is not a no-CBs CPU, tell the caller to do it the old way. */
2244 if (!is_nocb_cpu(smp_processor_id()))
2249 /* First, enqueue the donelist, if any. This preserves CB ordering. */
2250 if (rsp
->orphan_donelist
!= NULL
) {
2251 __call_rcu_nocb_enqueue(rdp
, rsp
->orphan_donelist
,
2252 rsp
->orphan_donetail
, ql
, qll
);
2254 rsp
->orphan_donelist
= NULL
;
2255 rsp
->orphan_donetail
= &rsp
->orphan_donelist
;
2257 if (rsp
->orphan_nxtlist
!= NULL
) {
2258 __call_rcu_nocb_enqueue(rdp
, rsp
->orphan_nxtlist
,
2259 rsp
->orphan_nxttail
, ql
, qll
);
2261 rsp
->orphan_nxtlist
= NULL
;
2262 rsp
->orphan_nxttail
= &rsp
->orphan_nxtlist
;
2268 * There must be at least one non-no-CBs CPU in operation at any given
2269 * time, because no-CBs CPUs are not capable of initiating grace periods
2270 * independently. This function therefore complains if the specified
2271 * CPU is the last non-no-CBs CPU, allowing the CPU-hotplug system to
2272 * avoid offlining the last such CPU. (Recursion is a wonderful thing,
2273 * but you have to have a base case!)
2275 static bool nocb_cpu_expendable(int cpu
)
2277 cpumask_var_t non_nocb_cpus
;
2281 * If there are no no-CB CPUs or if this CPU is not a no-CB CPU,
2282 * then offlining this CPU is harmless. Let it happen.
2284 if (!have_rcu_nocb_mask
|| is_nocb_cpu(cpu
))
2287 /* If no memory, play it safe and keep the CPU around. */
2288 if (!alloc_cpumask_var(&non_nocb_cpus
, GFP_NOIO
))
2290 cpumask_andnot(non_nocb_cpus
, cpu_online_mask
, rcu_nocb_mask
);
2291 cpumask_clear_cpu(cpu
, non_nocb_cpus
);
2292 ret
= !cpumask_empty(non_nocb_cpus
);
2293 free_cpumask_var(non_nocb_cpus
);
2298 * Helper structure for remote registry of RCU callbacks.
2299 * This is needed for when a no-CBs CPU needs to start a grace period.
2300 * If it just invokes call_rcu(), the resulting callback will be queued,
2301 * which can result in deadlock.
2303 struct rcu_head_remote
{
2304 struct rcu_head
*rhp
;
2305 call_rcu_func_t
*crf
;
2306 void (*func
)(struct rcu_head
*rhp
);
2310 * Register a callback as specified by the rcu_head_remote struct.
2311 * This function is intended to be invoked via smp_call_function_single().
2313 static void call_rcu_local(void *arg
)
2315 struct rcu_head_remote
*rhrp
=
2316 container_of(arg
, struct rcu_head_remote
, rhp
);
2318 rhrp
->crf(rhrp
->rhp
, rhrp
->func
);
2322 * Set up an rcu_head_remote structure and the invoke call_rcu_local()
2323 * on CPU 0 (which is guaranteed to be a non-no-CBs CPU) via
2324 * smp_call_function_single().
2326 static void invoke_crf_remote(struct rcu_head
*rhp
,
2327 void (*func
)(struct rcu_head
*rhp
),
2328 call_rcu_func_t crf
)
2330 struct rcu_head_remote rhr
;
2335 smp_call_function_single(0, call_rcu_local
, &rhr
, 1);
2339 * Helper functions to be passed to wait_rcu_gp(), each of which
2340 * invokes invoke_crf_remote() to register a callback appropriately.
2342 static void __maybe_unused
2343 call_rcu_preempt_remote(struct rcu_head
*rhp
,
2344 void (*func
)(struct rcu_head
*rhp
))
2346 invoke_crf_remote(rhp
, func
, call_rcu
);
2348 static void call_rcu_bh_remote(struct rcu_head
*rhp
,
2349 void (*func
)(struct rcu_head
*rhp
))
2351 invoke_crf_remote(rhp
, func
, call_rcu_bh
);
2353 static void call_rcu_sched_remote(struct rcu_head
*rhp
,
2354 void (*func
)(struct rcu_head
*rhp
))
2356 invoke_crf_remote(rhp
, func
, call_rcu_sched
);
2360 * Per-rcu_data kthread, but only for no-CBs CPUs. Each kthread invokes
2361 * callbacks queued by the corresponding no-CBs CPU.
2363 static int rcu_nocb_kthread(void *arg
)
2366 struct rcu_head
*list
;
2367 struct rcu_head
*next
;
2368 struct rcu_head
**tail
;
2369 struct rcu_data
*rdp
= arg
;
2371 /* Each pass through this loop invokes one batch of callbacks */
2373 /* If not polling, wait for next batch of callbacks. */
2375 wait_event_interruptible(rdp
->nocb_wq
, rdp
->nocb_head
);
2376 list
= ACCESS_ONCE(rdp
->nocb_head
);
2378 schedule_timeout_interruptible(1);
2379 flush_signals(current
);
2384 * Extract queued callbacks, update counts, and wait
2385 * for a grace period to elapse.
2387 ACCESS_ONCE(rdp
->nocb_head
) = NULL
;
2388 tail
= xchg(&rdp
->nocb_tail
, &rdp
->nocb_head
);
2389 c
= atomic_long_xchg(&rdp
->nocb_q_count
, 0);
2390 cl
= atomic_long_xchg(&rdp
->nocb_q_count_lazy
, 0);
2391 ACCESS_ONCE(rdp
->nocb_p_count
) += c
;
2392 ACCESS_ONCE(rdp
->nocb_p_count_lazy
) += cl
;
2393 wait_rcu_gp(rdp
->rsp
->call_remote
);
2395 /* Each pass through the following loop invokes a callback. */
2396 trace_rcu_batch_start(rdp
->rsp
->name
, cl
, c
, -1);
2400 /* Wait for enqueuing to complete, if needed. */
2401 while (next
== NULL
&& &list
->next
!= tail
) {
2402 schedule_timeout_interruptible(1);
2405 debug_rcu_head_unqueue(list
);
2407 if (__rcu_reclaim(rdp
->rsp
->name
, list
))
2413 trace_rcu_batch_end(rdp
->rsp
->name
, c
, !!list
, 0, 0, 1);
2414 ACCESS_ONCE(rdp
->nocb_p_count
) -= c
;
2415 ACCESS_ONCE(rdp
->nocb_p_count_lazy
) -= cl
;
2416 rdp
->n_nocbs_invoked
+= c
;
2421 /* Initialize per-rcu_data variables for no-CBs CPUs. */
2422 static void __init
rcu_boot_init_nocb_percpu_data(struct rcu_data
*rdp
)
2424 rdp
->nocb_tail
= &rdp
->nocb_head
;
2425 init_waitqueue_head(&rdp
->nocb_wq
);
2428 /* Create a kthread for each RCU flavor for each no-CBs CPU. */
2429 static void __init
rcu_spawn_nocb_kthreads(struct rcu_state
*rsp
)
2432 struct rcu_data
*rdp
;
2433 struct task_struct
*t
;
2435 if (rcu_nocb_mask
== NULL
)
2437 for_each_cpu(cpu
, rcu_nocb_mask
) {
2438 rdp
= per_cpu_ptr(rsp
->rda
, cpu
);
2439 t
= kthread_run(rcu_nocb_kthread
, rdp
, "rcuo%d", cpu
);
2441 ACCESS_ONCE(rdp
->nocb_kthread
) = t
;
2445 /* Prevent __call_rcu() from enqueuing callbacks on no-CBs CPUs */
2446 static void init_nocb_callback_list(struct rcu_data
*rdp
)
2448 if (rcu_nocb_mask
== NULL
||
2449 !cpumask_test_cpu(rdp
->cpu
, rcu_nocb_mask
))
2451 rdp
->nxttail
[RCU_NEXT_TAIL
] = NULL
;
2454 /* Initialize the ->call_remote fields in the rcu_state structures. */
2455 static void __init
rcu_init_nocb(void)
2457 #ifdef CONFIG_PREEMPT_RCU
2458 rcu_preempt_state
.call_remote
= call_rcu_preempt_remote
;
2459 #endif /* #ifdef CONFIG_PREEMPT_RCU */
2460 rcu_bh_state
.call_remote
= call_rcu_bh_remote
;
2461 rcu_sched_state
.call_remote
= call_rcu_sched_remote
;
2464 #else /* #ifdef CONFIG_RCU_NOCB_CPU */
2466 static bool is_nocb_cpu(int cpu
)
2471 static bool __call_rcu_nocb(struct rcu_data
*rdp
, struct rcu_head
*rhp
,
2477 static bool __maybe_unused
rcu_nocb_adopt_orphan_cbs(struct rcu_state
*rsp
,
2478 struct rcu_data
*rdp
)
2483 static bool nocb_cpu_expendable(int cpu
)
2488 static void __init
rcu_boot_init_nocb_percpu_data(struct rcu_data
*rdp
)
2492 static void __init
rcu_spawn_nocb_kthreads(struct rcu_state
*rsp
)
2496 static void init_nocb_callback_list(struct rcu_data
*rdp
)
2500 static void __init
rcu_init_nocb(void)
2504 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */