Merge tag '6.11-rc-smb-client-fixes-part2' of git://git.samba.org/sfrench/cifs-2.6
[linux-stable.git] / mm / mremap.c
blobe7ae140fc6409bff946cf1c0e7f77b74d02f5ec7
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * mm/mremap.c
5 * (C) Copyright 1996 Linus Torvalds
7 * Address space accounting code <alan@lxorguk.ukuu.org.uk>
8 * (C) Copyright 2002 Red Hat Inc, All Rights Reserved
9 */
11 #include <linux/mm.h>
12 #include <linux/mm_inline.h>
13 #include <linux/hugetlb.h>
14 #include <linux/shm.h>
15 #include <linux/ksm.h>
16 #include <linux/mman.h>
17 #include <linux/swap.h>
18 #include <linux/capability.h>
19 #include <linux/fs.h>
20 #include <linux/swapops.h>
21 #include <linux/highmem.h>
22 #include <linux/security.h>
23 #include <linux/syscalls.h>
24 #include <linux/mmu_notifier.h>
25 #include <linux/uaccess.h>
26 #include <linux/userfaultfd_k.h>
27 #include <linux/mempolicy.h>
29 #include <asm/cacheflush.h>
30 #include <asm/tlb.h>
31 #include <asm/pgalloc.h>
33 #include "internal.h"
35 static pud_t *get_old_pud(struct mm_struct *mm, unsigned long addr)
37 pgd_t *pgd;
38 p4d_t *p4d;
39 pud_t *pud;
41 pgd = pgd_offset(mm, addr);
42 if (pgd_none_or_clear_bad(pgd))
43 return NULL;
45 p4d = p4d_offset(pgd, addr);
46 if (p4d_none_or_clear_bad(p4d))
47 return NULL;
49 pud = pud_offset(p4d, addr);
50 if (pud_none_or_clear_bad(pud))
51 return NULL;
53 return pud;
56 static pmd_t *get_old_pmd(struct mm_struct *mm, unsigned long addr)
58 pud_t *pud;
59 pmd_t *pmd;
61 pud = get_old_pud(mm, addr);
62 if (!pud)
63 return NULL;
65 pmd = pmd_offset(pud, addr);
66 if (pmd_none(*pmd))
67 return NULL;
69 return pmd;
72 static pud_t *alloc_new_pud(struct mm_struct *mm, struct vm_area_struct *vma,
73 unsigned long addr)
75 pgd_t *pgd;
76 p4d_t *p4d;
78 pgd = pgd_offset(mm, addr);
79 p4d = p4d_alloc(mm, pgd, addr);
80 if (!p4d)
81 return NULL;
83 return pud_alloc(mm, p4d, addr);
86 static pmd_t *alloc_new_pmd(struct mm_struct *mm, struct vm_area_struct *vma,
87 unsigned long addr)
89 pud_t *pud;
90 pmd_t *pmd;
92 pud = alloc_new_pud(mm, vma, addr);
93 if (!pud)
94 return NULL;
96 pmd = pmd_alloc(mm, pud, addr);
97 if (!pmd)
98 return NULL;
100 VM_BUG_ON(pmd_trans_huge(*pmd));
102 return pmd;
105 static void take_rmap_locks(struct vm_area_struct *vma)
107 if (vma->vm_file)
108 i_mmap_lock_write(vma->vm_file->f_mapping);
109 if (vma->anon_vma)
110 anon_vma_lock_write(vma->anon_vma);
113 static void drop_rmap_locks(struct vm_area_struct *vma)
115 if (vma->anon_vma)
116 anon_vma_unlock_write(vma->anon_vma);
117 if (vma->vm_file)
118 i_mmap_unlock_write(vma->vm_file->f_mapping);
121 static pte_t move_soft_dirty_pte(pte_t pte)
124 * Set soft dirty bit so we can notice
125 * in userspace the ptes were moved.
127 #ifdef CONFIG_MEM_SOFT_DIRTY
128 if (pte_present(pte))
129 pte = pte_mksoft_dirty(pte);
130 else if (is_swap_pte(pte))
131 pte = pte_swp_mksoft_dirty(pte);
132 #endif
133 return pte;
136 static int move_ptes(struct vm_area_struct *vma, pmd_t *old_pmd,
137 unsigned long old_addr, unsigned long old_end,
138 struct vm_area_struct *new_vma, pmd_t *new_pmd,
139 unsigned long new_addr, bool need_rmap_locks)
141 struct mm_struct *mm = vma->vm_mm;
142 pte_t *old_pte, *new_pte, pte;
143 spinlock_t *old_ptl, *new_ptl;
144 bool force_flush = false;
145 unsigned long len = old_end - old_addr;
146 int err = 0;
149 * When need_rmap_locks is true, we take the i_mmap_rwsem and anon_vma
150 * locks to ensure that rmap will always observe either the old or the
151 * new ptes. This is the easiest way to avoid races with
152 * truncate_pagecache(), page migration, etc...
154 * When need_rmap_locks is false, we use other ways to avoid
155 * such races:
157 * - During exec() shift_arg_pages(), we use a specially tagged vma
158 * which rmap call sites look for using vma_is_temporary_stack().
160 * - During mremap(), new_vma is often known to be placed after vma
161 * in rmap traversal order. This ensures rmap will always observe
162 * either the old pte, or the new pte, or both (the page table locks
163 * serialize access to individual ptes, but only rmap traversal
164 * order guarantees that we won't miss both the old and new ptes).
166 if (need_rmap_locks)
167 take_rmap_locks(vma);
170 * We don't have to worry about the ordering of src and dst
171 * pte locks because exclusive mmap_lock prevents deadlock.
173 old_pte = pte_offset_map_lock(mm, old_pmd, old_addr, &old_ptl);
174 if (!old_pte) {
175 err = -EAGAIN;
176 goto out;
178 new_pte = pte_offset_map_nolock(mm, new_pmd, new_addr, &new_ptl);
179 if (!new_pte) {
180 pte_unmap_unlock(old_pte, old_ptl);
181 err = -EAGAIN;
182 goto out;
184 if (new_ptl != old_ptl)
185 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
186 flush_tlb_batched_pending(vma->vm_mm);
187 arch_enter_lazy_mmu_mode();
189 for (; old_addr < old_end; old_pte++, old_addr += PAGE_SIZE,
190 new_pte++, new_addr += PAGE_SIZE) {
191 if (pte_none(ptep_get(old_pte)))
192 continue;
194 pte = ptep_get_and_clear(mm, old_addr, old_pte);
196 * If we are remapping a valid PTE, make sure
197 * to flush TLB before we drop the PTL for the
198 * PTE.
200 * NOTE! Both old and new PTL matter: the old one
201 * for racing with folio_mkclean(), the new one to
202 * make sure the physical page stays valid until
203 * the TLB entry for the old mapping has been
204 * flushed.
206 if (pte_present(pte))
207 force_flush = true;
208 pte = move_pte(pte, old_addr, new_addr);
209 pte = move_soft_dirty_pte(pte);
210 set_pte_at(mm, new_addr, new_pte, pte);
213 arch_leave_lazy_mmu_mode();
214 if (force_flush)
215 flush_tlb_range(vma, old_end - len, old_end);
216 if (new_ptl != old_ptl)
217 spin_unlock(new_ptl);
218 pte_unmap(new_pte - 1);
219 pte_unmap_unlock(old_pte - 1, old_ptl);
220 out:
221 if (need_rmap_locks)
222 drop_rmap_locks(vma);
223 return err;
226 #ifndef arch_supports_page_table_move
227 #define arch_supports_page_table_move arch_supports_page_table_move
228 static inline bool arch_supports_page_table_move(void)
230 return IS_ENABLED(CONFIG_HAVE_MOVE_PMD) ||
231 IS_ENABLED(CONFIG_HAVE_MOVE_PUD);
233 #endif
235 #ifdef CONFIG_HAVE_MOVE_PMD
236 static bool move_normal_pmd(struct vm_area_struct *vma, unsigned long old_addr,
237 unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd)
239 spinlock_t *old_ptl, *new_ptl;
240 struct mm_struct *mm = vma->vm_mm;
241 pmd_t pmd;
243 if (!arch_supports_page_table_move())
244 return false;
246 * The destination pmd shouldn't be established, free_pgtables()
247 * should have released it.
249 * However, there's a case during execve() where we use mremap
250 * to move the initial stack, and in that case the target area
251 * may overlap the source area (always moving down).
253 * If everything is PMD-aligned, that works fine, as moving
254 * each pmd down will clear the source pmd. But if we first
255 * have a few 4kB-only pages that get moved down, and then
256 * hit the "now the rest is PMD-aligned, let's do everything
257 * one pmd at a time", we will still have the old (now empty
258 * of any 4kB pages, but still there) PMD in the page table
259 * tree.
261 * Warn on it once - because we really should try to figure
262 * out how to do this better - but then say "I won't move
263 * this pmd".
265 * One alternative might be to just unmap the target pmd at
266 * this point, and verify that it really is empty. We'll see.
268 if (WARN_ON_ONCE(!pmd_none(*new_pmd)))
269 return false;
272 * We don't have to worry about the ordering of src and dst
273 * ptlocks because exclusive mmap_lock prevents deadlock.
275 old_ptl = pmd_lock(vma->vm_mm, old_pmd);
276 new_ptl = pmd_lockptr(mm, new_pmd);
277 if (new_ptl != old_ptl)
278 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
280 /* Clear the pmd */
281 pmd = *old_pmd;
282 pmd_clear(old_pmd);
284 VM_BUG_ON(!pmd_none(*new_pmd));
286 pmd_populate(mm, new_pmd, pmd_pgtable(pmd));
287 flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
288 if (new_ptl != old_ptl)
289 spin_unlock(new_ptl);
290 spin_unlock(old_ptl);
292 return true;
294 #else
295 static inline bool move_normal_pmd(struct vm_area_struct *vma,
296 unsigned long old_addr, unsigned long new_addr, pmd_t *old_pmd,
297 pmd_t *new_pmd)
299 return false;
301 #endif
303 #if CONFIG_PGTABLE_LEVELS > 2 && defined(CONFIG_HAVE_MOVE_PUD)
304 static bool move_normal_pud(struct vm_area_struct *vma, unsigned long old_addr,
305 unsigned long new_addr, pud_t *old_pud, pud_t *new_pud)
307 spinlock_t *old_ptl, *new_ptl;
308 struct mm_struct *mm = vma->vm_mm;
309 pud_t pud;
311 if (!arch_supports_page_table_move())
312 return false;
314 * The destination pud shouldn't be established, free_pgtables()
315 * should have released it.
317 if (WARN_ON_ONCE(!pud_none(*new_pud)))
318 return false;
321 * We don't have to worry about the ordering of src and dst
322 * ptlocks because exclusive mmap_lock prevents deadlock.
324 old_ptl = pud_lock(vma->vm_mm, old_pud);
325 new_ptl = pud_lockptr(mm, new_pud);
326 if (new_ptl != old_ptl)
327 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
329 /* Clear the pud */
330 pud = *old_pud;
331 pud_clear(old_pud);
333 VM_BUG_ON(!pud_none(*new_pud));
335 pud_populate(mm, new_pud, pud_pgtable(pud));
336 flush_tlb_range(vma, old_addr, old_addr + PUD_SIZE);
337 if (new_ptl != old_ptl)
338 spin_unlock(new_ptl);
339 spin_unlock(old_ptl);
341 return true;
343 #else
344 static inline bool move_normal_pud(struct vm_area_struct *vma,
345 unsigned long old_addr, unsigned long new_addr, pud_t *old_pud,
346 pud_t *new_pud)
348 return false;
350 #endif
352 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
353 static bool move_huge_pud(struct vm_area_struct *vma, unsigned long old_addr,
354 unsigned long new_addr, pud_t *old_pud, pud_t *new_pud)
356 spinlock_t *old_ptl, *new_ptl;
357 struct mm_struct *mm = vma->vm_mm;
358 pud_t pud;
361 * The destination pud shouldn't be established, free_pgtables()
362 * should have released it.
364 if (WARN_ON_ONCE(!pud_none(*new_pud)))
365 return false;
368 * We don't have to worry about the ordering of src and dst
369 * ptlocks because exclusive mmap_lock prevents deadlock.
371 old_ptl = pud_lock(vma->vm_mm, old_pud);
372 new_ptl = pud_lockptr(mm, new_pud);
373 if (new_ptl != old_ptl)
374 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
376 /* Clear the pud */
377 pud = *old_pud;
378 pud_clear(old_pud);
380 VM_BUG_ON(!pud_none(*new_pud));
382 /* Set the new pud */
383 /* mark soft_ditry when we add pud level soft dirty support */
384 set_pud_at(mm, new_addr, new_pud, pud);
385 flush_pud_tlb_range(vma, old_addr, old_addr + HPAGE_PUD_SIZE);
386 if (new_ptl != old_ptl)
387 spin_unlock(new_ptl);
388 spin_unlock(old_ptl);
390 return true;
392 #else
393 static bool move_huge_pud(struct vm_area_struct *vma, unsigned long old_addr,
394 unsigned long new_addr, pud_t *old_pud, pud_t *new_pud)
396 WARN_ON_ONCE(1);
397 return false;
400 #endif
402 enum pgt_entry {
403 NORMAL_PMD,
404 HPAGE_PMD,
405 NORMAL_PUD,
406 HPAGE_PUD,
410 * Returns an extent of the corresponding size for the pgt_entry specified if
411 * valid. Else returns a smaller extent bounded by the end of the source and
412 * destination pgt_entry.
414 static __always_inline unsigned long get_extent(enum pgt_entry entry,
415 unsigned long old_addr, unsigned long old_end,
416 unsigned long new_addr)
418 unsigned long next, extent, mask, size;
420 switch (entry) {
421 case HPAGE_PMD:
422 case NORMAL_PMD:
423 mask = PMD_MASK;
424 size = PMD_SIZE;
425 break;
426 case HPAGE_PUD:
427 case NORMAL_PUD:
428 mask = PUD_MASK;
429 size = PUD_SIZE;
430 break;
431 default:
432 BUILD_BUG();
433 break;
436 next = (old_addr + size) & mask;
437 /* even if next overflowed, extent below will be ok */
438 extent = next - old_addr;
439 if (extent > old_end - old_addr)
440 extent = old_end - old_addr;
441 next = (new_addr + size) & mask;
442 if (extent > next - new_addr)
443 extent = next - new_addr;
444 return extent;
448 * Attempts to speedup the move by moving entry at the level corresponding to
449 * pgt_entry. Returns true if the move was successful, else false.
451 static bool move_pgt_entry(enum pgt_entry entry, struct vm_area_struct *vma,
452 unsigned long old_addr, unsigned long new_addr,
453 void *old_entry, void *new_entry, bool need_rmap_locks)
455 bool moved = false;
457 /* See comment in move_ptes() */
458 if (need_rmap_locks)
459 take_rmap_locks(vma);
461 switch (entry) {
462 case NORMAL_PMD:
463 moved = move_normal_pmd(vma, old_addr, new_addr, old_entry,
464 new_entry);
465 break;
466 case NORMAL_PUD:
467 moved = move_normal_pud(vma, old_addr, new_addr, old_entry,
468 new_entry);
469 break;
470 case HPAGE_PMD:
471 moved = IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
472 move_huge_pmd(vma, old_addr, new_addr, old_entry,
473 new_entry);
474 break;
475 case HPAGE_PUD:
476 moved = IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
477 move_huge_pud(vma, old_addr, new_addr, old_entry,
478 new_entry);
479 break;
481 default:
482 WARN_ON_ONCE(1);
483 break;
486 if (need_rmap_locks)
487 drop_rmap_locks(vma);
489 return moved;
493 * A helper to check if aligning down is OK. The aligned address should fall
494 * on *no mapping*. For the stack moving down, that's a special move within
495 * the VMA that is created to span the source and destination of the move,
496 * so we make an exception for it.
498 static bool can_align_down(struct vm_area_struct *vma, unsigned long addr_to_align,
499 unsigned long mask, bool for_stack)
501 unsigned long addr_masked = addr_to_align & mask;
504 * If @addr_to_align of either source or destination is not the beginning
505 * of the corresponding VMA, we can't align down or we will destroy part
506 * of the current mapping.
508 if (!for_stack && vma->vm_start != addr_to_align)
509 return false;
511 /* In the stack case we explicitly permit in-VMA alignment. */
512 if (for_stack && addr_masked >= vma->vm_start)
513 return true;
516 * Make sure the realignment doesn't cause the address to fall on an
517 * existing mapping.
519 return find_vma_intersection(vma->vm_mm, addr_masked, vma->vm_start) == NULL;
522 /* Opportunistically realign to specified boundary for faster copy. */
523 static void try_realign_addr(unsigned long *old_addr, struct vm_area_struct *old_vma,
524 unsigned long *new_addr, struct vm_area_struct *new_vma,
525 unsigned long mask, bool for_stack)
527 /* Skip if the addresses are already aligned. */
528 if ((*old_addr & ~mask) == 0)
529 return;
531 /* Only realign if the new and old addresses are mutually aligned. */
532 if ((*old_addr & ~mask) != (*new_addr & ~mask))
533 return;
535 /* Ensure realignment doesn't cause overlap with existing mappings. */
536 if (!can_align_down(old_vma, *old_addr, mask, for_stack) ||
537 !can_align_down(new_vma, *new_addr, mask, for_stack))
538 return;
540 *old_addr = *old_addr & mask;
541 *new_addr = *new_addr & mask;
544 unsigned long move_page_tables(struct vm_area_struct *vma,
545 unsigned long old_addr, struct vm_area_struct *new_vma,
546 unsigned long new_addr, unsigned long len,
547 bool need_rmap_locks, bool for_stack)
549 unsigned long extent, old_end;
550 struct mmu_notifier_range range;
551 pmd_t *old_pmd, *new_pmd;
552 pud_t *old_pud, *new_pud;
554 if (!len)
555 return 0;
557 old_end = old_addr + len;
559 if (is_vm_hugetlb_page(vma))
560 return move_hugetlb_page_tables(vma, new_vma, old_addr,
561 new_addr, len);
564 * If possible, realign addresses to PMD boundary for faster copy.
565 * Only realign if the mremap copying hits a PMD boundary.
567 if (len >= PMD_SIZE - (old_addr & ~PMD_MASK))
568 try_realign_addr(&old_addr, vma, &new_addr, new_vma, PMD_MASK,
569 for_stack);
571 flush_cache_range(vma, old_addr, old_end);
572 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma->vm_mm,
573 old_addr, old_end);
574 mmu_notifier_invalidate_range_start(&range);
576 for (; old_addr < old_end; old_addr += extent, new_addr += extent) {
577 cond_resched();
579 * If extent is PUD-sized try to speed up the move by moving at the
580 * PUD level if possible.
582 extent = get_extent(NORMAL_PUD, old_addr, old_end, new_addr);
584 old_pud = get_old_pud(vma->vm_mm, old_addr);
585 if (!old_pud)
586 continue;
587 new_pud = alloc_new_pud(vma->vm_mm, vma, new_addr);
588 if (!new_pud)
589 break;
590 if (pud_trans_huge(*old_pud) || pud_devmap(*old_pud)) {
591 if (extent == HPAGE_PUD_SIZE) {
592 move_pgt_entry(HPAGE_PUD, vma, old_addr, new_addr,
593 old_pud, new_pud, need_rmap_locks);
594 /* We ignore and continue on error? */
595 continue;
597 } else if (IS_ENABLED(CONFIG_HAVE_MOVE_PUD) && extent == PUD_SIZE) {
599 if (move_pgt_entry(NORMAL_PUD, vma, old_addr, new_addr,
600 old_pud, new_pud, true))
601 continue;
604 extent = get_extent(NORMAL_PMD, old_addr, old_end, new_addr);
605 old_pmd = get_old_pmd(vma->vm_mm, old_addr);
606 if (!old_pmd)
607 continue;
608 new_pmd = alloc_new_pmd(vma->vm_mm, vma, new_addr);
609 if (!new_pmd)
610 break;
611 again:
612 if (is_swap_pmd(*old_pmd) || pmd_trans_huge(*old_pmd) ||
613 pmd_devmap(*old_pmd)) {
614 if (extent == HPAGE_PMD_SIZE &&
615 move_pgt_entry(HPAGE_PMD, vma, old_addr, new_addr,
616 old_pmd, new_pmd, need_rmap_locks))
617 continue;
618 split_huge_pmd(vma, old_pmd, old_addr);
619 } else if (IS_ENABLED(CONFIG_HAVE_MOVE_PMD) &&
620 extent == PMD_SIZE) {
622 * If the extent is PMD-sized, try to speed the move by
623 * moving at the PMD level if possible.
625 if (move_pgt_entry(NORMAL_PMD, vma, old_addr, new_addr,
626 old_pmd, new_pmd, true))
627 continue;
629 if (pmd_none(*old_pmd))
630 continue;
631 if (pte_alloc(new_vma->vm_mm, new_pmd))
632 break;
633 if (move_ptes(vma, old_pmd, old_addr, old_addr + extent,
634 new_vma, new_pmd, new_addr, need_rmap_locks) < 0)
635 goto again;
638 mmu_notifier_invalidate_range_end(&range);
641 * Prevent negative return values when {old,new}_addr was realigned
642 * but we broke out of the above loop for the first PMD itself.
644 if (len + old_addr < old_end)
645 return 0;
647 return len + old_addr - old_end; /* how much done */
650 static unsigned long move_vma(struct vm_area_struct *vma,
651 unsigned long old_addr, unsigned long old_len,
652 unsigned long new_len, unsigned long new_addr,
653 bool *locked, unsigned long flags,
654 struct vm_userfaultfd_ctx *uf, struct list_head *uf_unmap)
656 long to_account = new_len - old_len;
657 struct mm_struct *mm = vma->vm_mm;
658 struct vm_area_struct *new_vma;
659 unsigned long vm_flags = vma->vm_flags;
660 unsigned long new_pgoff;
661 unsigned long moved_len;
662 unsigned long account_start = 0;
663 unsigned long account_end = 0;
664 unsigned long hiwater_vm;
665 int err = 0;
666 bool need_rmap_locks;
667 struct vma_iterator vmi;
670 * We'd prefer to avoid failure later on in do_munmap:
671 * which may split one vma into three before unmapping.
673 if (mm->map_count >= sysctl_max_map_count - 3)
674 return -ENOMEM;
676 if (unlikely(flags & MREMAP_DONTUNMAP))
677 to_account = new_len;
679 if (vma->vm_ops && vma->vm_ops->may_split) {
680 if (vma->vm_start != old_addr)
681 err = vma->vm_ops->may_split(vma, old_addr);
682 if (!err && vma->vm_end != old_addr + old_len)
683 err = vma->vm_ops->may_split(vma, old_addr + old_len);
684 if (err)
685 return err;
689 * Advise KSM to break any KSM pages in the area to be moved:
690 * it would be confusing if they were to turn up at the new
691 * location, where they happen to coincide with different KSM
692 * pages recently unmapped. But leave vma->vm_flags as it was,
693 * so KSM can come around to merge on vma and new_vma afterwards.
695 err = ksm_madvise(vma, old_addr, old_addr + old_len,
696 MADV_UNMERGEABLE, &vm_flags);
697 if (err)
698 return err;
700 if (vm_flags & VM_ACCOUNT) {
701 if (security_vm_enough_memory_mm(mm, to_account >> PAGE_SHIFT))
702 return -ENOMEM;
705 vma_start_write(vma);
706 new_pgoff = vma->vm_pgoff + ((old_addr - vma->vm_start) >> PAGE_SHIFT);
707 new_vma = copy_vma(&vma, new_addr, new_len, new_pgoff,
708 &need_rmap_locks);
709 if (!new_vma) {
710 if (vm_flags & VM_ACCOUNT)
711 vm_unacct_memory(to_account >> PAGE_SHIFT);
712 return -ENOMEM;
715 moved_len = move_page_tables(vma, old_addr, new_vma, new_addr, old_len,
716 need_rmap_locks, false);
717 if (moved_len < old_len) {
718 err = -ENOMEM;
719 } else if (vma->vm_ops && vma->vm_ops->mremap) {
720 err = vma->vm_ops->mremap(new_vma);
723 if (unlikely(err)) {
725 * On error, move entries back from new area to old,
726 * which will succeed since page tables still there,
727 * and then proceed to unmap new area instead of old.
729 move_page_tables(new_vma, new_addr, vma, old_addr, moved_len,
730 true, false);
731 vma = new_vma;
732 old_len = new_len;
733 old_addr = new_addr;
734 new_addr = err;
735 } else {
736 mremap_userfaultfd_prep(new_vma, uf);
739 if (is_vm_hugetlb_page(vma)) {
740 clear_vma_resv_huge_pages(vma);
743 /* Conceal VM_ACCOUNT so old reservation is not undone */
744 if (vm_flags & VM_ACCOUNT && !(flags & MREMAP_DONTUNMAP)) {
745 vm_flags_clear(vma, VM_ACCOUNT);
746 if (vma->vm_start < old_addr)
747 account_start = vma->vm_start;
748 if (vma->vm_end > old_addr + old_len)
749 account_end = vma->vm_end;
753 * If we failed to move page tables we still do total_vm increment
754 * since do_munmap() will decrement it by old_len == new_len.
756 * Since total_vm is about to be raised artificially high for a
757 * moment, we need to restore high watermark afterwards: if stats
758 * are taken meanwhile, total_vm and hiwater_vm appear too high.
759 * If this were a serious issue, we'd add a flag to do_munmap().
761 hiwater_vm = mm->hiwater_vm;
762 vm_stat_account(mm, vma->vm_flags, new_len >> PAGE_SHIFT);
764 /* Tell pfnmap has moved from this vma */
765 if (unlikely(vma->vm_flags & VM_PFNMAP))
766 untrack_pfn_clear(vma);
768 if (unlikely(!err && (flags & MREMAP_DONTUNMAP))) {
769 /* We always clear VM_LOCKED[ONFAULT] on the old vma */
770 vm_flags_clear(vma, VM_LOCKED_MASK);
773 * anon_vma links of the old vma is no longer needed after its page
774 * table has been moved.
776 if (new_vma != vma && vma->vm_start == old_addr &&
777 vma->vm_end == (old_addr + old_len))
778 unlink_anon_vmas(vma);
780 /* Because we won't unmap we don't need to touch locked_vm */
781 return new_addr;
784 vma_iter_init(&vmi, mm, old_addr);
785 if (do_vmi_munmap(&vmi, mm, old_addr, old_len, uf_unmap, false) < 0) {
786 /* OOM: unable to split vma, just get accounts right */
787 if (vm_flags & VM_ACCOUNT && !(flags & MREMAP_DONTUNMAP))
788 vm_acct_memory(old_len >> PAGE_SHIFT);
789 account_start = account_end = 0;
792 if (vm_flags & VM_LOCKED) {
793 mm->locked_vm += new_len >> PAGE_SHIFT;
794 *locked = true;
797 mm->hiwater_vm = hiwater_vm;
799 /* Restore VM_ACCOUNT if one or two pieces of vma left */
800 if (account_start) {
801 vma = vma_prev(&vmi);
802 vm_flags_set(vma, VM_ACCOUNT);
805 if (account_end) {
806 vma = vma_next(&vmi);
807 vm_flags_set(vma, VM_ACCOUNT);
810 return new_addr;
813 static struct vm_area_struct *vma_to_resize(unsigned long addr,
814 unsigned long old_len, unsigned long new_len, unsigned long flags)
816 struct mm_struct *mm = current->mm;
817 struct vm_area_struct *vma;
818 unsigned long pgoff;
820 vma = vma_lookup(mm, addr);
821 if (!vma)
822 return ERR_PTR(-EFAULT);
825 * !old_len is a special case where an attempt is made to 'duplicate'
826 * a mapping. This makes no sense for private mappings as it will
827 * instead create a fresh/new mapping unrelated to the original. This
828 * is contrary to the basic idea of mremap which creates new mappings
829 * based on the original. There are no known use cases for this
830 * behavior. As a result, fail such attempts.
832 if (!old_len && !(vma->vm_flags & (VM_SHARED | VM_MAYSHARE))) {
833 pr_warn_once("%s (%d): attempted to duplicate a private mapping with mremap. This is not supported.\n", current->comm, current->pid);
834 return ERR_PTR(-EINVAL);
837 if ((flags & MREMAP_DONTUNMAP) &&
838 (vma->vm_flags & (VM_DONTEXPAND | VM_PFNMAP)))
839 return ERR_PTR(-EINVAL);
841 /* We can't remap across vm area boundaries */
842 if (old_len > vma->vm_end - addr)
843 return ERR_PTR(-EFAULT);
845 if (new_len == old_len)
846 return vma;
848 /* Need to be careful about a growing mapping */
849 pgoff = (addr - vma->vm_start) >> PAGE_SHIFT;
850 pgoff += vma->vm_pgoff;
851 if (pgoff + (new_len >> PAGE_SHIFT) < pgoff)
852 return ERR_PTR(-EINVAL);
854 if (vma->vm_flags & (VM_DONTEXPAND | VM_PFNMAP))
855 return ERR_PTR(-EFAULT);
857 if (!mlock_future_ok(mm, vma->vm_flags, new_len - old_len))
858 return ERR_PTR(-EAGAIN);
860 if (!may_expand_vm(mm, vma->vm_flags,
861 (new_len - old_len) >> PAGE_SHIFT))
862 return ERR_PTR(-ENOMEM);
864 return vma;
867 static unsigned long mremap_to(unsigned long addr, unsigned long old_len,
868 unsigned long new_addr, unsigned long new_len, bool *locked,
869 unsigned long flags, struct vm_userfaultfd_ctx *uf,
870 struct list_head *uf_unmap_early,
871 struct list_head *uf_unmap)
873 struct mm_struct *mm = current->mm;
874 struct vm_area_struct *vma;
875 unsigned long ret = -EINVAL;
876 unsigned long map_flags = 0;
878 if (offset_in_page(new_addr))
879 goto out;
881 if (new_len > TASK_SIZE || new_addr > TASK_SIZE - new_len)
882 goto out;
884 /* Ensure the old/new locations do not overlap */
885 if (addr + old_len > new_addr && new_addr + new_len > addr)
886 goto out;
889 * move_vma() need us to stay 4 maps below the threshold, otherwise
890 * it will bail out at the very beginning.
891 * That is a problem if we have already unmaped the regions here
892 * (new_addr, and old_addr), because userspace will not know the
893 * state of the vma's after it gets -ENOMEM.
894 * So, to avoid such scenario we can pre-compute if the whole
895 * operation has high chances to success map-wise.
896 * Worst-scenario case is when both vma's (new_addr and old_addr) get
897 * split in 3 before unmapping it.
898 * That means 2 more maps (1 for each) to the ones we already hold.
899 * Check whether current map count plus 2 still leads us to 4 maps below
900 * the threshold, otherwise return -ENOMEM here to be more safe.
902 if ((mm->map_count + 2) >= sysctl_max_map_count - 3)
903 return -ENOMEM;
906 * In mremap_to().
907 * Move a VMA to another location, check if src addr is sealed.
909 * Place can_modify_mm here because mremap_to()
910 * does its own checking for address range, and we only
911 * check the sealing after passing those checks.
913 * can_modify_mm assumes we have acquired the lock on MM.
915 if (unlikely(!can_modify_mm(mm, addr, addr + old_len)))
916 return -EPERM;
918 if (flags & MREMAP_FIXED) {
920 * In mremap_to().
921 * VMA is moved to dst address, and munmap dst first.
922 * do_munmap will check if dst is sealed.
924 ret = do_munmap(mm, new_addr, new_len, uf_unmap_early);
925 if (ret)
926 goto out;
929 if (old_len > new_len) {
930 ret = do_munmap(mm, addr+new_len, old_len - new_len, uf_unmap);
931 if (ret)
932 goto out;
933 old_len = new_len;
936 vma = vma_to_resize(addr, old_len, new_len, flags);
937 if (IS_ERR(vma)) {
938 ret = PTR_ERR(vma);
939 goto out;
942 /* MREMAP_DONTUNMAP expands by old_len since old_len == new_len */
943 if (flags & MREMAP_DONTUNMAP &&
944 !may_expand_vm(mm, vma->vm_flags, old_len >> PAGE_SHIFT)) {
945 ret = -ENOMEM;
946 goto out;
949 if (flags & MREMAP_FIXED)
950 map_flags |= MAP_FIXED;
952 if (vma->vm_flags & VM_MAYSHARE)
953 map_flags |= MAP_SHARED;
955 ret = get_unmapped_area(vma->vm_file, new_addr, new_len, vma->vm_pgoff +
956 ((addr - vma->vm_start) >> PAGE_SHIFT),
957 map_flags);
958 if (IS_ERR_VALUE(ret))
959 goto out;
961 /* We got a new mapping */
962 if (!(flags & MREMAP_FIXED))
963 new_addr = ret;
965 ret = move_vma(vma, addr, old_len, new_len, new_addr, locked, flags, uf,
966 uf_unmap);
968 out:
969 return ret;
972 static int vma_expandable(struct vm_area_struct *vma, unsigned long delta)
974 unsigned long end = vma->vm_end + delta;
976 if (end < vma->vm_end) /* overflow */
977 return 0;
978 if (find_vma_intersection(vma->vm_mm, vma->vm_end, end))
979 return 0;
980 if (get_unmapped_area(NULL, vma->vm_start, end - vma->vm_start,
981 0, MAP_FIXED) & ~PAGE_MASK)
982 return 0;
983 return 1;
987 * Expand (or shrink) an existing mapping, potentially moving it at the
988 * same time (controlled by the MREMAP_MAYMOVE flag and available VM space)
990 * MREMAP_FIXED option added 5-Dec-1999 by Benjamin LaHaise
991 * This option implies MREMAP_MAYMOVE.
993 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
994 unsigned long, new_len, unsigned long, flags,
995 unsigned long, new_addr)
997 struct mm_struct *mm = current->mm;
998 struct vm_area_struct *vma;
999 unsigned long ret = -EINVAL;
1000 bool locked = false;
1001 struct vm_userfaultfd_ctx uf = NULL_VM_UFFD_CTX;
1002 LIST_HEAD(uf_unmap_early);
1003 LIST_HEAD(uf_unmap);
1006 * There is a deliberate asymmetry here: we strip the pointer tag
1007 * from the old address but leave the new address alone. This is
1008 * for consistency with mmap(), where we prevent the creation of
1009 * aliasing mappings in userspace by leaving the tag bits of the
1010 * mapping address intact. A non-zero tag will cause the subsequent
1011 * range checks to reject the address as invalid.
1013 * See Documentation/arch/arm64/tagged-address-abi.rst for more
1014 * information.
1016 addr = untagged_addr(addr);
1018 if (flags & ~(MREMAP_FIXED | MREMAP_MAYMOVE | MREMAP_DONTUNMAP))
1019 return ret;
1021 if (flags & MREMAP_FIXED && !(flags & MREMAP_MAYMOVE))
1022 return ret;
1025 * MREMAP_DONTUNMAP is always a move and it does not allow resizing
1026 * in the process.
1028 if (flags & MREMAP_DONTUNMAP &&
1029 (!(flags & MREMAP_MAYMOVE) || old_len != new_len))
1030 return ret;
1033 if (offset_in_page(addr))
1034 return ret;
1036 old_len = PAGE_ALIGN(old_len);
1037 new_len = PAGE_ALIGN(new_len);
1040 * We allow a zero old-len as a special case
1041 * for DOS-emu "duplicate shm area" thing. But
1042 * a zero new-len is nonsensical.
1044 if (!new_len)
1045 return ret;
1047 if (mmap_write_lock_killable(current->mm))
1048 return -EINTR;
1049 vma = vma_lookup(mm, addr);
1050 if (!vma) {
1051 ret = -EFAULT;
1052 goto out;
1055 if (is_vm_hugetlb_page(vma)) {
1056 struct hstate *h __maybe_unused = hstate_vma(vma);
1058 old_len = ALIGN(old_len, huge_page_size(h));
1059 new_len = ALIGN(new_len, huge_page_size(h));
1061 /* addrs must be huge page aligned */
1062 if (addr & ~huge_page_mask(h))
1063 goto out;
1064 if (new_addr & ~huge_page_mask(h))
1065 goto out;
1068 * Don't allow remap expansion, because the underlying hugetlb
1069 * reservation is not yet capable to handle split reservation.
1071 if (new_len > old_len)
1072 goto out;
1075 if (flags & (MREMAP_FIXED | MREMAP_DONTUNMAP)) {
1076 ret = mremap_to(addr, old_len, new_addr, new_len,
1077 &locked, flags, &uf, &uf_unmap_early,
1078 &uf_unmap);
1079 goto out;
1083 * Below is shrink/expand case (not mremap_to())
1084 * Check if src address is sealed, if so, reject.
1085 * In other words, prevent shrinking or expanding a sealed VMA.
1087 * Place can_modify_mm here so we can keep the logic related to
1088 * shrink/expand together.
1090 if (unlikely(!can_modify_mm(mm, addr, addr + old_len))) {
1091 ret = -EPERM;
1092 goto out;
1096 * Always allow a shrinking remap: that just unmaps
1097 * the unnecessary pages..
1098 * do_vmi_munmap does all the needed commit accounting, and
1099 * unlocks the mmap_lock if so directed.
1101 if (old_len >= new_len) {
1102 VMA_ITERATOR(vmi, mm, addr + new_len);
1104 if (old_len == new_len) {
1105 ret = addr;
1106 goto out;
1109 ret = do_vmi_munmap(&vmi, mm, addr + new_len, old_len - new_len,
1110 &uf_unmap, true);
1111 if (ret)
1112 goto out;
1114 ret = addr;
1115 goto out_unlocked;
1119 * Ok, we need to grow..
1121 vma = vma_to_resize(addr, old_len, new_len, flags);
1122 if (IS_ERR(vma)) {
1123 ret = PTR_ERR(vma);
1124 goto out;
1127 /* old_len exactly to the end of the area..
1129 if (old_len == vma->vm_end - addr) {
1130 unsigned long delta = new_len - old_len;
1132 /* can we just expand the current mapping? */
1133 if (vma_expandable(vma, delta)) {
1134 long pages = delta >> PAGE_SHIFT;
1135 VMA_ITERATOR(vmi, mm, vma->vm_end);
1136 long charged = 0;
1138 if (vma->vm_flags & VM_ACCOUNT) {
1139 if (security_vm_enough_memory_mm(mm, pages)) {
1140 ret = -ENOMEM;
1141 goto out;
1143 charged = pages;
1147 * Function vma_merge_extend() is called on the
1148 * extension we are adding to the already existing vma,
1149 * vma_merge_extend() will merge this extension with the
1150 * already existing vma (expand operation itself) and
1151 * possibly also with the next vma if it becomes
1152 * adjacent to the expanded vma and otherwise
1153 * compatible.
1155 vma = vma_merge_extend(&vmi, vma, delta);
1156 if (!vma) {
1157 vm_unacct_memory(charged);
1158 ret = -ENOMEM;
1159 goto out;
1162 vm_stat_account(mm, vma->vm_flags, pages);
1163 if (vma->vm_flags & VM_LOCKED) {
1164 mm->locked_vm += pages;
1165 locked = true;
1166 new_addr = addr;
1168 ret = addr;
1169 goto out;
1174 * We weren't able to just expand or shrink the area,
1175 * we need to create a new one and move it..
1177 ret = -ENOMEM;
1178 if (flags & MREMAP_MAYMOVE) {
1179 unsigned long map_flags = 0;
1180 if (vma->vm_flags & VM_MAYSHARE)
1181 map_flags |= MAP_SHARED;
1183 new_addr = get_unmapped_area(vma->vm_file, 0, new_len,
1184 vma->vm_pgoff +
1185 ((addr - vma->vm_start) >> PAGE_SHIFT),
1186 map_flags);
1187 if (IS_ERR_VALUE(new_addr)) {
1188 ret = new_addr;
1189 goto out;
1192 ret = move_vma(vma, addr, old_len, new_len, new_addr,
1193 &locked, flags, &uf, &uf_unmap);
1195 out:
1196 if (offset_in_page(ret))
1197 locked = false;
1198 mmap_write_unlock(current->mm);
1199 if (locked && new_len > old_len)
1200 mm_populate(new_addr + old_len, new_len - old_len);
1201 out_unlocked:
1202 userfaultfd_unmap_complete(mm, &uf_unmap_early);
1203 mremap_userfaultfd_complete(&uf, addr, ret, old_len);
1204 userfaultfd_unmap_complete(mm, &uf_unmap);
1205 return ret;