Merge tag '6.11-rc-smb-client-fixes-part2' of git://git.samba.org/sfrench/cifs-2.6
[linux-stable.git] / mm / migrate.c
blobe7296c0fb5d57a2ee8585fca9e0a031be090f97f
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Memory Migration functionality - linux/mm/migrate.c
5 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
7 * Page migration was first developed in the context of the memory hotplug
8 * project. The main authors of the migration code are:
10 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
11 * Hirokazu Takahashi <taka@valinux.co.jp>
12 * Dave Hansen <haveblue@us.ibm.com>
13 * Christoph Lameter
16 #include <linux/migrate.h>
17 #include <linux/export.h>
18 #include <linux/swap.h>
19 #include <linux/swapops.h>
20 #include <linux/pagemap.h>
21 #include <linux/buffer_head.h>
22 #include <linux/mm_inline.h>
23 #include <linux/nsproxy.h>
24 #include <linux/ksm.h>
25 #include <linux/rmap.h>
26 #include <linux/topology.h>
27 #include <linux/cpu.h>
28 #include <linux/cpuset.h>
29 #include <linux/writeback.h>
30 #include <linux/mempolicy.h>
31 #include <linux/vmalloc.h>
32 #include <linux/security.h>
33 #include <linux/backing-dev.h>
34 #include <linux/compaction.h>
35 #include <linux/syscalls.h>
36 #include <linux/compat.h>
37 #include <linux/hugetlb.h>
38 #include <linux/hugetlb_cgroup.h>
39 #include <linux/gfp.h>
40 #include <linux/pfn_t.h>
41 #include <linux/memremap.h>
42 #include <linux/userfaultfd_k.h>
43 #include <linux/balloon_compaction.h>
44 #include <linux/page_idle.h>
45 #include <linux/page_owner.h>
46 #include <linux/sched/mm.h>
47 #include <linux/ptrace.h>
48 #include <linux/oom.h>
49 #include <linux/memory.h>
50 #include <linux/random.h>
51 #include <linux/sched/sysctl.h>
52 #include <linux/memory-tiers.h>
54 #include <asm/tlbflush.h>
56 #include <trace/events/migrate.h>
58 #include "internal.h"
60 bool isolate_movable_page(struct page *page, isolate_mode_t mode)
62 struct folio *folio = folio_get_nontail_page(page);
63 const struct movable_operations *mops;
66 * Avoid burning cycles with pages that are yet under __free_pages(),
67 * or just got freed under us.
69 * In case we 'win' a race for a movable page being freed under us and
70 * raise its refcount preventing __free_pages() from doing its job
71 * the put_page() at the end of this block will take care of
72 * release this page, thus avoiding a nasty leakage.
74 if (!folio)
75 goto out;
77 if (unlikely(folio_test_slab(folio)))
78 goto out_putfolio;
79 /* Pairs with smp_wmb() in slab freeing, e.g. SLUB's __free_slab() */
80 smp_rmb();
82 * Check movable flag before taking the page lock because
83 * we use non-atomic bitops on newly allocated page flags so
84 * unconditionally grabbing the lock ruins page's owner side.
86 if (unlikely(!__folio_test_movable(folio)))
87 goto out_putfolio;
88 /* Pairs with smp_wmb() in slab allocation, e.g. SLUB's alloc_slab_page() */
89 smp_rmb();
90 if (unlikely(folio_test_slab(folio)))
91 goto out_putfolio;
94 * As movable pages are not isolated from LRU lists, concurrent
95 * compaction threads can race against page migration functions
96 * as well as race against the releasing a page.
98 * In order to avoid having an already isolated movable page
99 * being (wrongly) re-isolated while it is under migration,
100 * or to avoid attempting to isolate pages being released,
101 * lets be sure we have the page lock
102 * before proceeding with the movable page isolation steps.
104 if (unlikely(!folio_trylock(folio)))
105 goto out_putfolio;
107 if (!folio_test_movable(folio) || folio_test_isolated(folio))
108 goto out_no_isolated;
110 mops = folio_movable_ops(folio);
111 VM_BUG_ON_FOLIO(!mops, folio);
113 if (!mops->isolate_page(&folio->page, mode))
114 goto out_no_isolated;
116 /* Driver shouldn't use the isolated flag */
117 WARN_ON_ONCE(folio_test_isolated(folio));
118 folio_set_isolated(folio);
119 folio_unlock(folio);
121 return true;
123 out_no_isolated:
124 folio_unlock(folio);
125 out_putfolio:
126 folio_put(folio);
127 out:
128 return false;
131 static void putback_movable_folio(struct folio *folio)
133 const struct movable_operations *mops = folio_movable_ops(folio);
135 mops->putback_page(&folio->page);
136 folio_clear_isolated(folio);
140 * Put previously isolated pages back onto the appropriate lists
141 * from where they were once taken off for compaction/migration.
143 * This function shall be used whenever the isolated pageset has been
144 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
145 * and isolate_hugetlb().
147 void putback_movable_pages(struct list_head *l)
149 struct folio *folio;
150 struct folio *folio2;
152 list_for_each_entry_safe(folio, folio2, l, lru) {
153 if (unlikely(folio_test_hugetlb(folio))) {
154 folio_putback_active_hugetlb(folio);
155 continue;
157 list_del(&folio->lru);
159 * We isolated non-lru movable folio so here we can use
160 * __folio_test_movable because LRU folio's mapping cannot
161 * have PAGE_MAPPING_MOVABLE.
163 if (unlikely(__folio_test_movable(folio))) {
164 VM_BUG_ON_FOLIO(!folio_test_isolated(folio), folio);
165 folio_lock(folio);
166 if (folio_test_movable(folio))
167 putback_movable_folio(folio);
168 else
169 folio_clear_isolated(folio);
170 folio_unlock(folio);
171 folio_put(folio);
172 } else {
173 node_stat_mod_folio(folio, NR_ISOLATED_ANON +
174 folio_is_file_lru(folio), -folio_nr_pages(folio));
175 folio_putback_lru(folio);
181 * Restore a potential migration pte to a working pte entry
183 static bool remove_migration_pte(struct folio *folio,
184 struct vm_area_struct *vma, unsigned long addr, void *old)
186 DEFINE_FOLIO_VMA_WALK(pvmw, old, vma, addr, PVMW_SYNC | PVMW_MIGRATION);
188 while (page_vma_mapped_walk(&pvmw)) {
189 rmap_t rmap_flags = RMAP_NONE;
190 pte_t old_pte;
191 pte_t pte;
192 swp_entry_t entry;
193 struct page *new;
194 unsigned long idx = 0;
196 /* pgoff is invalid for ksm pages, but they are never large */
197 if (folio_test_large(folio) && !folio_test_hugetlb(folio))
198 idx = linear_page_index(vma, pvmw.address) - pvmw.pgoff;
199 new = folio_page(folio, idx);
201 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
202 /* PMD-mapped THP migration entry */
203 if (!pvmw.pte) {
204 VM_BUG_ON_FOLIO(folio_test_hugetlb(folio) ||
205 !folio_test_pmd_mappable(folio), folio);
206 remove_migration_pmd(&pvmw, new);
207 continue;
209 #endif
211 folio_get(folio);
212 pte = mk_pte(new, READ_ONCE(vma->vm_page_prot));
213 old_pte = ptep_get(pvmw.pte);
215 entry = pte_to_swp_entry(old_pte);
216 if (!is_migration_entry_young(entry))
217 pte = pte_mkold(pte);
218 if (folio_test_dirty(folio) && is_migration_entry_dirty(entry))
219 pte = pte_mkdirty(pte);
220 if (pte_swp_soft_dirty(old_pte))
221 pte = pte_mksoft_dirty(pte);
222 else
223 pte = pte_clear_soft_dirty(pte);
225 if (is_writable_migration_entry(entry))
226 pte = pte_mkwrite(pte, vma);
227 else if (pte_swp_uffd_wp(old_pte))
228 pte = pte_mkuffd_wp(pte);
230 if (folio_test_anon(folio) && !is_readable_migration_entry(entry))
231 rmap_flags |= RMAP_EXCLUSIVE;
233 if (unlikely(is_device_private_page(new))) {
234 if (pte_write(pte))
235 entry = make_writable_device_private_entry(
236 page_to_pfn(new));
237 else
238 entry = make_readable_device_private_entry(
239 page_to_pfn(new));
240 pte = swp_entry_to_pte(entry);
241 if (pte_swp_soft_dirty(old_pte))
242 pte = pte_swp_mksoft_dirty(pte);
243 if (pte_swp_uffd_wp(old_pte))
244 pte = pte_swp_mkuffd_wp(pte);
247 #ifdef CONFIG_HUGETLB_PAGE
248 if (folio_test_hugetlb(folio)) {
249 struct hstate *h = hstate_vma(vma);
250 unsigned int shift = huge_page_shift(h);
251 unsigned long psize = huge_page_size(h);
253 pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
254 if (folio_test_anon(folio))
255 hugetlb_add_anon_rmap(folio, vma, pvmw.address,
256 rmap_flags);
257 else
258 hugetlb_add_file_rmap(folio);
259 set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte,
260 psize);
261 } else
262 #endif
264 if (folio_test_anon(folio))
265 folio_add_anon_rmap_pte(folio, new, vma,
266 pvmw.address, rmap_flags);
267 else
268 folio_add_file_rmap_pte(folio, new, vma);
269 set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
271 if (vma->vm_flags & VM_LOCKED)
272 mlock_drain_local();
274 trace_remove_migration_pte(pvmw.address, pte_val(pte),
275 compound_order(new));
277 /* No need to invalidate - it was non-present before */
278 update_mmu_cache(vma, pvmw.address, pvmw.pte);
281 return true;
285 * Get rid of all migration entries and replace them by
286 * references to the indicated page.
288 void remove_migration_ptes(struct folio *src, struct folio *dst, bool locked)
290 struct rmap_walk_control rwc = {
291 .rmap_one = remove_migration_pte,
292 .arg = src,
295 if (locked)
296 rmap_walk_locked(dst, &rwc);
297 else
298 rmap_walk(dst, &rwc);
302 * Something used the pte of a page under migration. We need to
303 * get to the page and wait until migration is finished.
304 * When we return from this function the fault will be retried.
306 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
307 unsigned long address)
309 spinlock_t *ptl;
310 pte_t *ptep;
311 pte_t pte;
312 swp_entry_t entry;
314 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
315 if (!ptep)
316 return;
318 pte = ptep_get(ptep);
319 pte_unmap(ptep);
321 if (!is_swap_pte(pte))
322 goto out;
324 entry = pte_to_swp_entry(pte);
325 if (!is_migration_entry(entry))
326 goto out;
328 migration_entry_wait_on_locked(entry, ptl);
329 return;
330 out:
331 spin_unlock(ptl);
334 #ifdef CONFIG_HUGETLB_PAGE
336 * The vma read lock must be held upon entry. Holding that lock prevents either
337 * the pte or the ptl from being freed.
339 * This function will release the vma lock before returning.
341 void migration_entry_wait_huge(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep)
343 spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), vma->vm_mm, ptep);
344 pte_t pte;
346 hugetlb_vma_assert_locked(vma);
347 spin_lock(ptl);
348 pte = huge_ptep_get(vma->vm_mm, addr, ptep);
350 if (unlikely(!is_hugetlb_entry_migration(pte))) {
351 spin_unlock(ptl);
352 hugetlb_vma_unlock_read(vma);
353 } else {
355 * If migration entry existed, safe to release vma lock
356 * here because the pgtable page won't be freed without the
357 * pgtable lock released. See comment right above pgtable
358 * lock release in migration_entry_wait_on_locked().
360 hugetlb_vma_unlock_read(vma);
361 migration_entry_wait_on_locked(pte_to_swp_entry(pte), ptl);
364 #endif
366 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
367 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
369 spinlock_t *ptl;
371 ptl = pmd_lock(mm, pmd);
372 if (!is_pmd_migration_entry(*pmd))
373 goto unlock;
374 migration_entry_wait_on_locked(pmd_to_swp_entry(*pmd), ptl);
375 return;
376 unlock:
377 spin_unlock(ptl);
379 #endif
381 static int folio_expected_refs(struct address_space *mapping,
382 struct folio *folio)
384 int refs = 1;
385 if (!mapping)
386 return refs;
388 refs += folio_nr_pages(folio);
389 if (folio_test_private(folio))
390 refs++;
392 return refs;
396 * Replace the folio in the mapping.
398 * The number of remaining references must be:
399 * 1 for anonymous folios without a mapping
400 * 2 for folios with a mapping
401 * 3 for folios with a mapping and PagePrivate/PagePrivate2 set.
403 static int __folio_migrate_mapping(struct address_space *mapping,
404 struct folio *newfolio, struct folio *folio, int expected_count)
406 XA_STATE(xas, &mapping->i_pages, folio_index(folio));
407 struct zone *oldzone, *newzone;
408 int dirty;
409 long nr = folio_nr_pages(folio);
410 long entries, i;
412 if (!mapping) {
413 /* Take off deferred split queue while frozen and memcg set */
414 if (folio_test_large(folio) &&
415 folio_test_large_rmappable(folio)) {
416 if (!folio_ref_freeze(folio, expected_count))
417 return -EAGAIN;
418 folio_undo_large_rmappable(folio);
419 folio_ref_unfreeze(folio, expected_count);
422 /* No turning back from here */
423 newfolio->index = folio->index;
424 newfolio->mapping = folio->mapping;
425 if (folio_test_swapbacked(folio))
426 __folio_set_swapbacked(newfolio);
428 return MIGRATEPAGE_SUCCESS;
431 oldzone = folio_zone(folio);
432 newzone = folio_zone(newfolio);
434 xas_lock_irq(&xas);
435 if (!folio_ref_freeze(folio, expected_count)) {
436 xas_unlock_irq(&xas);
437 return -EAGAIN;
440 /* Take off deferred split queue while frozen and memcg set */
441 folio_undo_large_rmappable(folio);
444 * Now we know that no one else is looking at the folio:
445 * no turning back from here.
447 newfolio->index = folio->index;
448 newfolio->mapping = folio->mapping;
449 folio_ref_add(newfolio, nr); /* add cache reference */
450 if (folio_test_swapbacked(folio)) {
451 __folio_set_swapbacked(newfolio);
452 if (folio_test_swapcache(folio)) {
453 folio_set_swapcache(newfolio);
454 newfolio->private = folio_get_private(folio);
456 entries = nr;
457 } else {
458 VM_BUG_ON_FOLIO(folio_test_swapcache(folio), folio);
459 entries = 1;
462 /* Move dirty while folio refs frozen and newfolio not yet exposed */
463 dirty = folio_test_dirty(folio);
464 if (dirty) {
465 folio_clear_dirty(folio);
466 folio_set_dirty(newfolio);
469 /* Swap cache still stores N entries instead of a high-order entry */
470 for (i = 0; i < entries; i++) {
471 xas_store(&xas, newfolio);
472 xas_next(&xas);
476 * Drop cache reference from old folio by unfreezing
477 * to one less reference.
478 * We know this isn't the last reference.
480 folio_ref_unfreeze(folio, expected_count - nr);
482 xas_unlock(&xas);
483 /* Leave irq disabled to prevent preemption while updating stats */
486 * If moved to a different zone then also account
487 * the folio for that zone. Other VM counters will be
488 * taken care of when we establish references to the
489 * new folio and drop references to the old folio.
491 * Note that anonymous folios are accounted for
492 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
493 * are mapped to swap space.
495 if (newzone != oldzone) {
496 struct lruvec *old_lruvec, *new_lruvec;
497 struct mem_cgroup *memcg;
499 memcg = folio_memcg(folio);
500 old_lruvec = mem_cgroup_lruvec(memcg, oldzone->zone_pgdat);
501 new_lruvec = mem_cgroup_lruvec(memcg, newzone->zone_pgdat);
503 __mod_lruvec_state(old_lruvec, NR_FILE_PAGES, -nr);
504 __mod_lruvec_state(new_lruvec, NR_FILE_PAGES, nr);
505 if (folio_test_swapbacked(folio) && !folio_test_swapcache(folio)) {
506 __mod_lruvec_state(old_lruvec, NR_SHMEM, -nr);
507 __mod_lruvec_state(new_lruvec, NR_SHMEM, nr);
509 if (folio_test_pmd_mappable(folio)) {
510 __mod_lruvec_state(old_lruvec, NR_SHMEM_THPS, -nr);
511 __mod_lruvec_state(new_lruvec, NR_SHMEM_THPS, nr);
514 #ifdef CONFIG_SWAP
515 if (folio_test_swapcache(folio)) {
516 __mod_lruvec_state(old_lruvec, NR_SWAPCACHE, -nr);
517 __mod_lruvec_state(new_lruvec, NR_SWAPCACHE, nr);
519 #endif
520 if (dirty && mapping_can_writeback(mapping)) {
521 __mod_lruvec_state(old_lruvec, NR_FILE_DIRTY, -nr);
522 __mod_zone_page_state(oldzone, NR_ZONE_WRITE_PENDING, -nr);
523 __mod_lruvec_state(new_lruvec, NR_FILE_DIRTY, nr);
524 __mod_zone_page_state(newzone, NR_ZONE_WRITE_PENDING, nr);
527 local_irq_enable();
529 return MIGRATEPAGE_SUCCESS;
532 int folio_migrate_mapping(struct address_space *mapping,
533 struct folio *newfolio, struct folio *folio, int extra_count)
535 int expected_count = folio_expected_refs(mapping, folio) + extra_count;
537 if (folio_ref_count(folio) != expected_count)
538 return -EAGAIN;
540 return __folio_migrate_mapping(mapping, newfolio, folio, expected_count);
542 EXPORT_SYMBOL(folio_migrate_mapping);
545 * The expected number of remaining references is the same as that
546 * of folio_migrate_mapping().
548 int migrate_huge_page_move_mapping(struct address_space *mapping,
549 struct folio *dst, struct folio *src)
551 XA_STATE(xas, &mapping->i_pages, folio_index(src));
552 int rc, expected_count = folio_expected_refs(mapping, src);
554 if (folio_ref_count(src) != expected_count)
555 return -EAGAIN;
557 rc = folio_mc_copy(dst, src);
558 if (unlikely(rc))
559 return rc;
561 xas_lock_irq(&xas);
562 if (!folio_ref_freeze(src, expected_count)) {
563 xas_unlock_irq(&xas);
564 return -EAGAIN;
567 dst->index = src->index;
568 dst->mapping = src->mapping;
570 folio_ref_add(dst, folio_nr_pages(dst));
572 xas_store(&xas, dst);
574 folio_ref_unfreeze(src, expected_count - folio_nr_pages(src));
576 xas_unlock_irq(&xas);
578 return MIGRATEPAGE_SUCCESS;
582 * Copy the flags and some other ancillary information
584 void folio_migrate_flags(struct folio *newfolio, struct folio *folio)
586 int cpupid;
588 if (folio_test_error(folio))
589 folio_set_error(newfolio);
590 if (folio_test_referenced(folio))
591 folio_set_referenced(newfolio);
592 if (folio_test_uptodate(folio))
593 folio_mark_uptodate(newfolio);
594 if (folio_test_clear_active(folio)) {
595 VM_BUG_ON_FOLIO(folio_test_unevictable(folio), folio);
596 folio_set_active(newfolio);
597 } else if (folio_test_clear_unevictable(folio))
598 folio_set_unevictable(newfolio);
599 if (folio_test_workingset(folio))
600 folio_set_workingset(newfolio);
601 if (folio_test_checked(folio))
602 folio_set_checked(newfolio);
604 * PG_anon_exclusive (-> PG_mappedtodisk) is always migrated via
605 * migration entries. We can still have PG_anon_exclusive set on an
606 * effectively unmapped and unreferenced first sub-pages of an
607 * anonymous THP: we can simply copy it here via PG_mappedtodisk.
609 if (folio_test_mappedtodisk(folio))
610 folio_set_mappedtodisk(newfolio);
612 /* Move dirty on pages not done by folio_migrate_mapping() */
613 if (folio_test_dirty(folio))
614 folio_set_dirty(newfolio);
616 if (folio_test_young(folio))
617 folio_set_young(newfolio);
618 if (folio_test_idle(folio))
619 folio_set_idle(newfolio);
622 * Copy NUMA information to the new page, to prevent over-eager
623 * future migrations of this same page.
625 cpupid = folio_xchg_last_cpupid(folio, -1);
627 * For memory tiering mode, when migrate between slow and fast
628 * memory node, reset cpupid, because that is used to record
629 * page access time in slow memory node.
631 if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) {
632 bool f_toptier = node_is_toptier(folio_nid(folio));
633 bool t_toptier = node_is_toptier(folio_nid(newfolio));
635 if (f_toptier != t_toptier)
636 cpupid = -1;
638 folio_xchg_last_cpupid(newfolio, cpupid);
640 folio_migrate_ksm(newfolio, folio);
642 * Please do not reorder this without considering how mm/ksm.c's
643 * ksm_get_folio() depends upon ksm_migrate_page() and PageSwapCache().
645 if (folio_test_swapcache(folio))
646 folio_clear_swapcache(folio);
647 folio_clear_private(folio);
649 /* page->private contains hugetlb specific flags */
650 if (!folio_test_hugetlb(folio))
651 folio->private = NULL;
654 * If any waiters have accumulated on the new page then
655 * wake them up.
657 if (folio_test_writeback(newfolio))
658 folio_end_writeback(newfolio);
661 * PG_readahead shares the same bit with PG_reclaim. The above
662 * end_page_writeback() may clear PG_readahead mistakenly, so set the
663 * bit after that.
665 if (folio_test_readahead(folio))
666 folio_set_readahead(newfolio);
668 folio_copy_owner(newfolio, folio);
670 mem_cgroup_migrate(folio, newfolio);
672 EXPORT_SYMBOL(folio_migrate_flags);
674 /************************************************************
675 * Migration functions
676 ***********************************************************/
678 static int __migrate_folio(struct address_space *mapping, struct folio *dst,
679 struct folio *src, void *src_private,
680 enum migrate_mode mode)
682 int rc, expected_count = folio_expected_refs(mapping, src);
684 /* Check whether src does not have extra refs before we do more work */
685 if (folio_ref_count(src) != expected_count)
686 return -EAGAIN;
688 rc = folio_mc_copy(dst, src);
689 if (unlikely(rc))
690 return rc;
692 rc = __folio_migrate_mapping(mapping, dst, src, expected_count);
693 if (rc != MIGRATEPAGE_SUCCESS)
694 return rc;
696 if (src_private)
697 folio_attach_private(dst, folio_detach_private(src));
699 folio_migrate_flags(dst, src);
700 return MIGRATEPAGE_SUCCESS;
704 * migrate_folio() - Simple folio migration.
705 * @mapping: The address_space containing the folio.
706 * @dst: The folio to migrate the data to.
707 * @src: The folio containing the current data.
708 * @mode: How to migrate the page.
710 * Common logic to directly migrate a single LRU folio suitable for
711 * folios that do not use PagePrivate/PagePrivate2.
713 * Folios are locked upon entry and exit.
715 int migrate_folio(struct address_space *mapping, struct folio *dst,
716 struct folio *src, enum migrate_mode mode)
718 BUG_ON(folio_test_writeback(src)); /* Writeback must be complete */
719 return __migrate_folio(mapping, dst, src, NULL, mode);
721 EXPORT_SYMBOL(migrate_folio);
723 #ifdef CONFIG_BUFFER_HEAD
724 /* Returns true if all buffers are successfully locked */
725 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
726 enum migrate_mode mode)
728 struct buffer_head *bh = head;
729 struct buffer_head *failed_bh;
731 do {
732 if (!trylock_buffer(bh)) {
733 if (mode == MIGRATE_ASYNC)
734 goto unlock;
735 if (mode == MIGRATE_SYNC_LIGHT && !buffer_uptodate(bh))
736 goto unlock;
737 lock_buffer(bh);
740 bh = bh->b_this_page;
741 } while (bh != head);
743 return true;
745 unlock:
746 /* We failed to lock the buffer and cannot stall. */
747 failed_bh = bh;
748 bh = head;
749 while (bh != failed_bh) {
750 unlock_buffer(bh);
751 bh = bh->b_this_page;
754 return false;
757 static int __buffer_migrate_folio(struct address_space *mapping,
758 struct folio *dst, struct folio *src, enum migrate_mode mode,
759 bool check_refs)
761 struct buffer_head *bh, *head;
762 int rc;
763 int expected_count;
765 head = folio_buffers(src);
766 if (!head)
767 return migrate_folio(mapping, dst, src, mode);
769 /* Check whether page does not have extra refs before we do more work */
770 expected_count = folio_expected_refs(mapping, src);
771 if (folio_ref_count(src) != expected_count)
772 return -EAGAIN;
774 if (!buffer_migrate_lock_buffers(head, mode))
775 return -EAGAIN;
777 if (check_refs) {
778 bool busy;
779 bool invalidated = false;
781 recheck_buffers:
782 busy = false;
783 spin_lock(&mapping->i_private_lock);
784 bh = head;
785 do {
786 if (atomic_read(&bh->b_count)) {
787 busy = true;
788 break;
790 bh = bh->b_this_page;
791 } while (bh != head);
792 if (busy) {
793 if (invalidated) {
794 rc = -EAGAIN;
795 goto unlock_buffers;
797 spin_unlock(&mapping->i_private_lock);
798 invalidate_bh_lrus();
799 invalidated = true;
800 goto recheck_buffers;
804 rc = filemap_migrate_folio(mapping, dst, src, mode);
805 if (rc != MIGRATEPAGE_SUCCESS)
806 goto unlock_buffers;
808 bh = head;
809 do {
810 folio_set_bh(bh, dst, bh_offset(bh));
811 bh = bh->b_this_page;
812 } while (bh != head);
814 unlock_buffers:
815 if (check_refs)
816 spin_unlock(&mapping->i_private_lock);
817 bh = head;
818 do {
819 unlock_buffer(bh);
820 bh = bh->b_this_page;
821 } while (bh != head);
823 return rc;
827 * buffer_migrate_folio() - Migration function for folios with buffers.
828 * @mapping: The address space containing @src.
829 * @dst: The folio to migrate to.
830 * @src: The folio to migrate from.
831 * @mode: How to migrate the folio.
833 * This function can only be used if the underlying filesystem guarantees
834 * that no other references to @src exist. For example attached buffer
835 * heads are accessed only under the folio lock. If your filesystem cannot
836 * provide this guarantee, buffer_migrate_folio_norefs() may be more
837 * appropriate.
839 * Return: 0 on success or a negative errno on failure.
841 int buffer_migrate_folio(struct address_space *mapping,
842 struct folio *dst, struct folio *src, enum migrate_mode mode)
844 return __buffer_migrate_folio(mapping, dst, src, mode, false);
846 EXPORT_SYMBOL(buffer_migrate_folio);
849 * buffer_migrate_folio_norefs() - Migration function for folios with buffers.
850 * @mapping: The address space containing @src.
851 * @dst: The folio to migrate to.
852 * @src: The folio to migrate from.
853 * @mode: How to migrate the folio.
855 * Like buffer_migrate_folio() except that this variant is more careful
856 * and checks that there are also no buffer head references. This function
857 * is the right one for mappings where buffer heads are directly looked
858 * up and referenced (such as block device mappings).
860 * Return: 0 on success or a negative errno on failure.
862 int buffer_migrate_folio_norefs(struct address_space *mapping,
863 struct folio *dst, struct folio *src, enum migrate_mode mode)
865 return __buffer_migrate_folio(mapping, dst, src, mode, true);
867 EXPORT_SYMBOL_GPL(buffer_migrate_folio_norefs);
868 #endif /* CONFIG_BUFFER_HEAD */
870 int filemap_migrate_folio(struct address_space *mapping,
871 struct folio *dst, struct folio *src, enum migrate_mode mode)
873 return __migrate_folio(mapping, dst, src, folio_get_private(src), mode);
875 EXPORT_SYMBOL_GPL(filemap_migrate_folio);
878 * Writeback a folio to clean the dirty state
880 static int writeout(struct address_space *mapping, struct folio *folio)
882 struct writeback_control wbc = {
883 .sync_mode = WB_SYNC_NONE,
884 .nr_to_write = 1,
885 .range_start = 0,
886 .range_end = LLONG_MAX,
887 .for_reclaim = 1
889 int rc;
891 if (!mapping->a_ops->writepage)
892 /* No write method for the address space */
893 return -EINVAL;
895 if (!folio_clear_dirty_for_io(folio))
896 /* Someone else already triggered a write */
897 return -EAGAIN;
900 * A dirty folio may imply that the underlying filesystem has
901 * the folio on some queue. So the folio must be clean for
902 * migration. Writeout may mean we lose the lock and the
903 * folio state is no longer what we checked for earlier.
904 * At this point we know that the migration attempt cannot
905 * be successful.
907 remove_migration_ptes(folio, folio, false);
909 rc = mapping->a_ops->writepage(&folio->page, &wbc);
911 if (rc != AOP_WRITEPAGE_ACTIVATE)
912 /* unlocked. Relock */
913 folio_lock(folio);
915 return (rc < 0) ? -EIO : -EAGAIN;
919 * Default handling if a filesystem does not provide a migration function.
921 static int fallback_migrate_folio(struct address_space *mapping,
922 struct folio *dst, struct folio *src, enum migrate_mode mode)
924 if (folio_test_dirty(src)) {
925 /* Only writeback folios in full synchronous migration */
926 switch (mode) {
927 case MIGRATE_SYNC:
928 break;
929 default:
930 return -EBUSY;
932 return writeout(mapping, src);
936 * Buffers may be managed in a filesystem specific way.
937 * We must have no buffers or drop them.
939 if (!filemap_release_folio(src, GFP_KERNEL))
940 return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY;
942 return migrate_folio(mapping, dst, src, mode);
946 * Move a page to a newly allocated page
947 * The page is locked and all ptes have been successfully removed.
949 * The new page will have replaced the old page if this function
950 * is successful.
952 * Return value:
953 * < 0 - error code
954 * MIGRATEPAGE_SUCCESS - success
956 static int move_to_new_folio(struct folio *dst, struct folio *src,
957 enum migrate_mode mode)
959 int rc = -EAGAIN;
960 bool is_lru = !__folio_test_movable(src);
962 VM_BUG_ON_FOLIO(!folio_test_locked(src), src);
963 VM_BUG_ON_FOLIO(!folio_test_locked(dst), dst);
965 if (likely(is_lru)) {
966 struct address_space *mapping = folio_mapping(src);
968 if (!mapping)
969 rc = migrate_folio(mapping, dst, src, mode);
970 else if (mapping_inaccessible(mapping))
971 rc = -EOPNOTSUPP;
972 else if (mapping->a_ops->migrate_folio)
974 * Most folios have a mapping and most filesystems
975 * provide a migrate_folio callback. Anonymous folios
976 * are part of swap space which also has its own
977 * migrate_folio callback. This is the most common path
978 * for page migration.
980 rc = mapping->a_ops->migrate_folio(mapping, dst, src,
981 mode);
982 else
983 rc = fallback_migrate_folio(mapping, dst, src, mode);
984 } else {
985 const struct movable_operations *mops;
988 * In case of non-lru page, it could be released after
989 * isolation step. In that case, we shouldn't try migration.
991 VM_BUG_ON_FOLIO(!folio_test_isolated(src), src);
992 if (!folio_test_movable(src)) {
993 rc = MIGRATEPAGE_SUCCESS;
994 folio_clear_isolated(src);
995 goto out;
998 mops = folio_movable_ops(src);
999 rc = mops->migrate_page(&dst->page, &src->page, mode);
1000 WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
1001 !folio_test_isolated(src));
1005 * When successful, old pagecache src->mapping must be cleared before
1006 * src is freed; but stats require that PageAnon be left as PageAnon.
1008 if (rc == MIGRATEPAGE_SUCCESS) {
1009 if (__folio_test_movable(src)) {
1010 VM_BUG_ON_FOLIO(!folio_test_isolated(src), src);
1013 * We clear PG_movable under page_lock so any compactor
1014 * cannot try to migrate this page.
1016 folio_clear_isolated(src);
1020 * Anonymous and movable src->mapping will be cleared by
1021 * free_pages_prepare so don't reset it here for keeping
1022 * the type to work PageAnon, for example.
1024 if (!folio_mapping_flags(src))
1025 src->mapping = NULL;
1027 if (likely(!folio_is_zone_device(dst)))
1028 flush_dcache_folio(dst);
1030 out:
1031 return rc;
1035 * To record some information during migration, we use unused private
1036 * field of struct folio of the newly allocated destination folio.
1037 * This is safe because nobody is using it except us.
1039 enum {
1040 PAGE_WAS_MAPPED = BIT(0),
1041 PAGE_WAS_MLOCKED = BIT(1),
1042 PAGE_OLD_STATES = PAGE_WAS_MAPPED | PAGE_WAS_MLOCKED,
1045 static void __migrate_folio_record(struct folio *dst,
1046 int old_page_state,
1047 struct anon_vma *anon_vma)
1049 dst->private = (void *)anon_vma + old_page_state;
1052 static void __migrate_folio_extract(struct folio *dst,
1053 int *old_page_state,
1054 struct anon_vma **anon_vmap)
1056 unsigned long private = (unsigned long)dst->private;
1058 *anon_vmap = (struct anon_vma *)(private & ~PAGE_OLD_STATES);
1059 *old_page_state = private & PAGE_OLD_STATES;
1060 dst->private = NULL;
1063 /* Restore the source folio to the original state upon failure */
1064 static void migrate_folio_undo_src(struct folio *src,
1065 int page_was_mapped,
1066 struct anon_vma *anon_vma,
1067 bool locked,
1068 struct list_head *ret)
1070 if (page_was_mapped)
1071 remove_migration_ptes(src, src, false);
1072 /* Drop an anon_vma reference if we took one */
1073 if (anon_vma)
1074 put_anon_vma(anon_vma);
1075 if (locked)
1076 folio_unlock(src);
1077 if (ret)
1078 list_move_tail(&src->lru, ret);
1081 /* Restore the destination folio to the original state upon failure */
1082 static void migrate_folio_undo_dst(struct folio *dst, bool locked,
1083 free_folio_t put_new_folio, unsigned long private)
1085 if (locked)
1086 folio_unlock(dst);
1087 if (put_new_folio)
1088 put_new_folio(dst, private);
1089 else
1090 folio_put(dst);
1093 /* Cleanup src folio upon migration success */
1094 static void migrate_folio_done(struct folio *src,
1095 enum migrate_reason reason)
1098 * Compaction can migrate also non-LRU pages which are
1099 * not accounted to NR_ISOLATED_*. They can be recognized
1100 * as __folio_test_movable
1102 if (likely(!__folio_test_movable(src)))
1103 mod_node_page_state(folio_pgdat(src), NR_ISOLATED_ANON +
1104 folio_is_file_lru(src), -folio_nr_pages(src));
1106 if (reason != MR_MEMORY_FAILURE)
1107 /* We release the page in page_handle_poison. */
1108 folio_put(src);
1111 /* Obtain the lock on page, remove all ptes. */
1112 static int migrate_folio_unmap(new_folio_t get_new_folio,
1113 free_folio_t put_new_folio, unsigned long private,
1114 struct folio *src, struct folio **dstp, enum migrate_mode mode,
1115 enum migrate_reason reason, struct list_head *ret)
1117 struct folio *dst;
1118 int rc = -EAGAIN;
1119 int old_page_state = 0;
1120 struct anon_vma *anon_vma = NULL;
1121 bool is_lru = !__folio_test_movable(src);
1122 bool locked = false;
1123 bool dst_locked = false;
1125 if (folio_ref_count(src) == 1) {
1126 /* Folio was freed from under us. So we are done. */
1127 folio_clear_active(src);
1128 folio_clear_unevictable(src);
1129 /* free_pages_prepare() will clear PG_isolated. */
1130 list_del(&src->lru);
1131 migrate_folio_done(src, reason);
1132 return MIGRATEPAGE_SUCCESS;
1135 dst = get_new_folio(src, private);
1136 if (!dst)
1137 return -ENOMEM;
1138 *dstp = dst;
1140 dst->private = NULL;
1142 if (!folio_trylock(src)) {
1143 if (mode == MIGRATE_ASYNC)
1144 goto out;
1147 * It's not safe for direct compaction to call lock_page.
1148 * For example, during page readahead pages are added locked
1149 * to the LRU. Later, when the IO completes the pages are
1150 * marked uptodate and unlocked. However, the queueing
1151 * could be merging multiple pages for one bio (e.g.
1152 * mpage_readahead). If an allocation happens for the
1153 * second or third page, the process can end up locking
1154 * the same page twice and deadlocking. Rather than
1155 * trying to be clever about what pages can be locked,
1156 * avoid the use of lock_page for direct compaction
1157 * altogether.
1159 if (current->flags & PF_MEMALLOC)
1160 goto out;
1163 * In "light" mode, we can wait for transient locks (eg
1164 * inserting a page into the page table), but it's not
1165 * worth waiting for I/O.
1167 if (mode == MIGRATE_SYNC_LIGHT && !folio_test_uptodate(src))
1168 goto out;
1170 folio_lock(src);
1172 locked = true;
1173 if (folio_test_mlocked(src))
1174 old_page_state |= PAGE_WAS_MLOCKED;
1176 if (folio_test_writeback(src)) {
1178 * Only in the case of a full synchronous migration is it
1179 * necessary to wait for PageWriteback. In the async case,
1180 * the retry loop is too short and in the sync-light case,
1181 * the overhead of stalling is too much
1183 switch (mode) {
1184 case MIGRATE_SYNC:
1185 break;
1186 default:
1187 rc = -EBUSY;
1188 goto out;
1190 folio_wait_writeback(src);
1194 * By try_to_migrate(), src->mapcount goes down to 0 here. In this case,
1195 * we cannot notice that anon_vma is freed while we migrate a page.
1196 * This get_anon_vma() delays freeing anon_vma pointer until the end
1197 * of migration. File cache pages are no problem because of page_lock()
1198 * File Caches may use write_page() or lock_page() in migration, then,
1199 * just care Anon page here.
1201 * Only folio_get_anon_vma() understands the subtleties of
1202 * getting a hold on an anon_vma from outside one of its mms.
1203 * But if we cannot get anon_vma, then we won't need it anyway,
1204 * because that implies that the anon page is no longer mapped
1205 * (and cannot be remapped so long as we hold the page lock).
1207 if (folio_test_anon(src) && !folio_test_ksm(src))
1208 anon_vma = folio_get_anon_vma(src);
1211 * Block others from accessing the new page when we get around to
1212 * establishing additional references. We are usually the only one
1213 * holding a reference to dst at this point. We used to have a BUG
1214 * here if folio_trylock(dst) fails, but would like to allow for
1215 * cases where there might be a race with the previous use of dst.
1216 * This is much like races on refcount of oldpage: just don't BUG().
1218 if (unlikely(!folio_trylock(dst)))
1219 goto out;
1220 dst_locked = true;
1222 if (unlikely(!is_lru)) {
1223 __migrate_folio_record(dst, old_page_state, anon_vma);
1224 return MIGRATEPAGE_UNMAP;
1228 * Corner case handling:
1229 * 1. When a new swap-cache page is read into, it is added to the LRU
1230 * and treated as swapcache but it has no rmap yet.
1231 * Calling try_to_unmap() against a src->mapping==NULL page will
1232 * trigger a BUG. So handle it here.
1233 * 2. An orphaned page (see truncate_cleanup_page) might have
1234 * fs-private metadata. The page can be picked up due to memory
1235 * offlining. Everywhere else except page reclaim, the page is
1236 * invisible to the vm, so the page can not be migrated. So try to
1237 * free the metadata, so the page can be freed.
1239 if (!src->mapping) {
1240 if (folio_test_private(src)) {
1241 try_to_free_buffers(src);
1242 goto out;
1244 } else if (folio_mapped(src)) {
1245 /* Establish migration ptes */
1246 VM_BUG_ON_FOLIO(folio_test_anon(src) &&
1247 !folio_test_ksm(src) && !anon_vma, src);
1248 try_to_migrate(src, mode == MIGRATE_ASYNC ? TTU_BATCH_FLUSH : 0);
1249 old_page_state |= PAGE_WAS_MAPPED;
1252 if (!folio_mapped(src)) {
1253 __migrate_folio_record(dst, old_page_state, anon_vma);
1254 return MIGRATEPAGE_UNMAP;
1257 out:
1259 * A folio that has not been unmapped will be restored to
1260 * right list unless we want to retry.
1262 if (rc == -EAGAIN)
1263 ret = NULL;
1265 migrate_folio_undo_src(src, old_page_state & PAGE_WAS_MAPPED,
1266 anon_vma, locked, ret);
1267 migrate_folio_undo_dst(dst, dst_locked, put_new_folio, private);
1269 return rc;
1272 /* Migrate the folio to the newly allocated folio in dst. */
1273 static int migrate_folio_move(free_folio_t put_new_folio, unsigned long private,
1274 struct folio *src, struct folio *dst,
1275 enum migrate_mode mode, enum migrate_reason reason,
1276 struct list_head *ret)
1278 int rc;
1279 int old_page_state = 0;
1280 struct anon_vma *anon_vma = NULL;
1281 bool is_lru = !__folio_test_movable(src);
1282 struct list_head *prev;
1284 __migrate_folio_extract(dst, &old_page_state, &anon_vma);
1285 prev = dst->lru.prev;
1286 list_del(&dst->lru);
1288 rc = move_to_new_folio(dst, src, mode);
1289 if (rc)
1290 goto out;
1292 if (unlikely(!is_lru))
1293 goto out_unlock_both;
1296 * When successful, push dst to LRU immediately: so that if it
1297 * turns out to be an mlocked page, remove_migration_ptes() will
1298 * automatically build up the correct dst->mlock_count for it.
1300 * We would like to do something similar for the old page, when
1301 * unsuccessful, and other cases when a page has been temporarily
1302 * isolated from the unevictable LRU: but this case is the easiest.
1304 folio_add_lru(dst);
1305 if (old_page_state & PAGE_WAS_MLOCKED)
1306 lru_add_drain();
1308 if (old_page_state & PAGE_WAS_MAPPED)
1309 remove_migration_ptes(src, dst, false);
1311 out_unlock_both:
1312 folio_unlock(dst);
1313 set_page_owner_migrate_reason(&dst->page, reason);
1315 * If migration is successful, decrease refcount of dst,
1316 * which will not free the page because new page owner increased
1317 * refcounter.
1319 folio_put(dst);
1322 * A folio that has been migrated has all references removed
1323 * and will be freed.
1325 list_del(&src->lru);
1326 /* Drop an anon_vma reference if we took one */
1327 if (anon_vma)
1328 put_anon_vma(anon_vma);
1329 folio_unlock(src);
1330 migrate_folio_done(src, reason);
1332 return rc;
1333 out:
1335 * A folio that has not been migrated will be restored to
1336 * right list unless we want to retry.
1338 if (rc == -EAGAIN) {
1339 list_add(&dst->lru, prev);
1340 __migrate_folio_record(dst, old_page_state, anon_vma);
1341 return rc;
1344 migrate_folio_undo_src(src, old_page_state & PAGE_WAS_MAPPED,
1345 anon_vma, true, ret);
1346 migrate_folio_undo_dst(dst, true, put_new_folio, private);
1348 return rc;
1352 * Counterpart of unmap_and_move_page() for hugepage migration.
1354 * This function doesn't wait the completion of hugepage I/O
1355 * because there is no race between I/O and migration for hugepage.
1356 * Note that currently hugepage I/O occurs only in direct I/O
1357 * where no lock is held and PG_writeback is irrelevant,
1358 * and writeback status of all subpages are counted in the reference
1359 * count of the head page (i.e. if all subpages of a 2MB hugepage are
1360 * under direct I/O, the reference of the head page is 512 and a bit more.)
1361 * This means that when we try to migrate hugepage whose subpages are
1362 * doing direct I/O, some references remain after try_to_unmap() and
1363 * hugepage migration fails without data corruption.
1365 * There is also no race when direct I/O is issued on the page under migration,
1366 * because then pte is replaced with migration swap entry and direct I/O code
1367 * will wait in the page fault for migration to complete.
1369 static int unmap_and_move_huge_page(new_folio_t get_new_folio,
1370 free_folio_t put_new_folio, unsigned long private,
1371 struct folio *src, int force, enum migrate_mode mode,
1372 int reason, struct list_head *ret)
1374 struct folio *dst;
1375 int rc = -EAGAIN;
1376 int page_was_mapped = 0;
1377 struct anon_vma *anon_vma = NULL;
1378 struct address_space *mapping = NULL;
1380 if (folio_ref_count(src) == 1) {
1381 /* page was freed from under us. So we are done. */
1382 folio_putback_active_hugetlb(src);
1383 return MIGRATEPAGE_SUCCESS;
1386 dst = get_new_folio(src, private);
1387 if (!dst)
1388 return -ENOMEM;
1390 if (!folio_trylock(src)) {
1391 if (!force)
1392 goto out;
1393 switch (mode) {
1394 case MIGRATE_SYNC:
1395 break;
1396 default:
1397 goto out;
1399 folio_lock(src);
1403 * Check for pages which are in the process of being freed. Without
1404 * folio_mapping() set, hugetlbfs specific move page routine will not
1405 * be called and we could leak usage counts for subpools.
1407 if (hugetlb_folio_subpool(src) && !folio_mapping(src)) {
1408 rc = -EBUSY;
1409 goto out_unlock;
1412 if (folio_test_anon(src))
1413 anon_vma = folio_get_anon_vma(src);
1415 if (unlikely(!folio_trylock(dst)))
1416 goto put_anon;
1418 if (folio_mapped(src)) {
1419 enum ttu_flags ttu = 0;
1421 if (!folio_test_anon(src)) {
1423 * In shared mappings, try_to_unmap could potentially
1424 * call huge_pmd_unshare. Because of this, take
1425 * semaphore in write mode here and set TTU_RMAP_LOCKED
1426 * to let lower levels know we have taken the lock.
1428 mapping = hugetlb_folio_mapping_lock_write(src);
1429 if (unlikely(!mapping))
1430 goto unlock_put_anon;
1432 ttu = TTU_RMAP_LOCKED;
1435 try_to_migrate(src, ttu);
1436 page_was_mapped = 1;
1438 if (ttu & TTU_RMAP_LOCKED)
1439 i_mmap_unlock_write(mapping);
1442 if (!folio_mapped(src))
1443 rc = move_to_new_folio(dst, src, mode);
1445 if (page_was_mapped)
1446 remove_migration_ptes(src,
1447 rc == MIGRATEPAGE_SUCCESS ? dst : src, false);
1449 unlock_put_anon:
1450 folio_unlock(dst);
1452 put_anon:
1453 if (anon_vma)
1454 put_anon_vma(anon_vma);
1456 if (rc == MIGRATEPAGE_SUCCESS) {
1457 move_hugetlb_state(src, dst, reason);
1458 put_new_folio = NULL;
1461 out_unlock:
1462 folio_unlock(src);
1463 out:
1464 if (rc == MIGRATEPAGE_SUCCESS)
1465 folio_putback_active_hugetlb(src);
1466 else if (rc != -EAGAIN)
1467 list_move_tail(&src->lru, ret);
1470 * If migration was not successful and there's a freeing callback, use
1471 * it. Otherwise, put_page() will drop the reference grabbed during
1472 * isolation.
1474 if (put_new_folio)
1475 put_new_folio(dst, private);
1476 else
1477 folio_putback_active_hugetlb(dst);
1479 return rc;
1482 static inline int try_split_folio(struct folio *folio, struct list_head *split_folios)
1484 int rc;
1486 folio_lock(folio);
1487 rc = split_folio_to_list(folio, split_folios);
1488 folio_unlock(folio);
1489 if (!rc)
1490 list_move_tail(&folio->lru, split_folios);
1492 return rc;
1495 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1496 #define NR_MAX_BATCHED_MIGRATION HPAGE_PMD_NR
1497 #else
1498 #define NR_MAX_BATCHED_MIGRATION 512
1499 #endif
1500 #define NR_MAX_MIGRATE_PAGES_RETRY 10
1501 #define NR_MAX_MIGRATE_ASYNC_RETRY 3
1502 #define NR_MAX_MIGRATE_SYNC_RETRY \
1503 (NR_MAX_MIGRATE_PAGES_RETRY - NR_MAX_MIGRATE_ASYNC_RETRY)
1505 struct migrate_pages_stats {
1506 int nr_succeeded; /* Normal and large folios migrated successfully, in
1507 units of base pages */
1508 int nr_failed_pages; /* Normal and large folios failed to be migrated, in
1509 units of base pages. Untried folios aren't counted */
1510 int nr_thp_succeeded; /* THP migrated successfully */
1511 int nr_thp_failed; /* THP failed to be migrated */
1512 int nr_thp_split; /* THP split before migrating */
1513 int nr_split; /* Large folio (include THP) split before migrating */
1517 * Returns the number of hugetlb folios that were not migrated, or an error code
1518 * after NR_MAX_MIGRATE_PAGES_RETRY attempts or if no hugetlb folios are movable
1519 * any more because the list has become empty or no retryable hugetlb folios
1520 * exist any more. It is caller's responsibility to call putback_movable_pages()
1521 * only if ret != 0.
1523 static int migrate_hugetlbs(struct list_head *from, new_folio_t get_new_folio,
1524 free_folio_t put_new_folio, unsigned long private,
1525 enum migrate_mode mode, int reason,
1526 struct migrate_pages_stats *stats,
1527 struct list_head *ret_folios)
1529 int retry = 1;
1530 int nr_failed = 0;
1531 int nr_retry_pages = 0;
1532 int pass = 0;
1533 struct folio *folio, *folio2;
1534 int rc, nr_pages;
1536 for (pass = 0; pass < NR_MAX_MIGRATE_PAGES_RETRY && retry; pass++) {
1537 retry = 0;
1538 nr_retry_pages = 0;
1540 list_for_each_entry_safe(folio, folio2, from, lru) {
1541 if (!folio_test_hugetlb(folio))
1542 continue;
1544 nr_pages = folio_nr_pages(folio);
1546 cond_resched();
1549 * Migratability of hugepages depends on architectures and
1550 * their size. This check is necessary because some callers
1551 * of hugepage migration like soft offline and memory
1552 * hotremove don't walk through page tables or check whether
1553 * the hugepage is pmd-based or not before kicking migration.
1555 if (!hugepage_migration_supported(folio_hstate(folio))) {
1556 nr_failed++;
1557 stats->nr_failed_pages += nr_pages;
1558 list_move_tail(&folio->lru, ret_folios);
1559 continue;
1562 rc = unmap_and_move_huge_page(get_new_folio,
1563 put_new_folio, private,
1564 folio, pass > 2, mode,
1565 reason, ret_folios);
1567 * The rules are:
1568 * Success: hugetlb folio will be put back
1569 * -EAGAIN: stay on the from list
1570 * -ENOMEM: stay on the from list
1571 * Other errno: put on ret_folios list
1573 switch(rc) {
1574 case -ENOMEM:
1576 * When memory is low, don't bother to try to migrate
1577 * other folios, just exit.
1579 stats->nr_failed_pages += nr_pages + nr_retry_pages;
1580 return -ENOMEM;
1581 case -EAGAIN:
1582 retry++;
1583 nr_retry_pages += nr_pages;
1584 break;
1585 case MIGRATEPAGE_SUCCESS:
1586 stats->nr_succeeded += nr_pages;
1587 break;
1588 default:
1590 * Permanent failure (-EBUSY, etc.):
1591 * unlike -EAGAIN case, the failed folio is
1592 * removed from migration folio list and not
1593 * retried in the next outer loop.
1595 nr_failed++;
1596 stats->nr_failed_pages += nr_pages;
1597 break;
1602 * nr_failed is number of hugetlb folios failed to be migrated. After
1603 * NR_MAX_MIGRATE_PAGES_RETRY attempts, give up and count retried hugetlb
1604 * folios as failed.
1606 nr_failed += retry;
1607 stats->nr_failed_pages += nr_retry_pages;
1609 return nr_failed;
1613 * migrate_pages_batch() first unmaps folios in the from list as many as
1614 * possible, then move the unmapped folios.
1616 * We only batch migration if mode == MIGRATE_ASYNC to avoid to wait a
1617 * lock or bit when we have locked more than one folio. Which may cause
1618 * deadlock (e.g., for loop device). So, if mode != MIGRATE_ASYNC, the
1619 * length of the from list must be <= 1.
1621 static int migrate_pages_batch(struct list_head *from,
1622 new_folio_t get_new_folio, free_folio_t put_new_folio,
1623 unsigned long private, enum migrate_mode mode, int reason,
1624 struct list_head *ret_folios, struct list_head *split_folios,
1625 struct migrate_pages_stats *stats, int nr_pass)
1627 int retry = 1;
1628 int thp_retry = 1;
1629 int nr_failed = 0;
1630 int nr_retry_pages = 0;
1631 int pass = 0;
1632 bool is_thp = false;
1633 bool is_large = false;
1634 struct folio *folio, *folio2, *dst = NULL, *dst2;
1635 int rc, rc_saved = 0, nr_pages;
1636 LIST_HEAD(unmap_folios);
1637 LIST_HEAD(dst_folios);
1638 bool nosplit = (reason == MR_NUMA_MISPLACED);
1640 VM_WARN_ON_ONCE(mode != MIGRATE_ASYNC &&
1641 !list_empty(from) && !list_is_singular(from));
1643 for (pass = 0; pass < nr_pass && retry; pass++) {
1644 retry = 0;
1645 thp_retry = 0;
1646 nr_retry_pages = 0;
1648 list_for_each_entry_safe(folio, folio2, from, lru) {
1649 is_large = folio_test_large(folio);
1650 is_thp = is_large && folio_test_pmd_mappable(folio);
1651 nr_pages = folio_nr_pages(folio);
1653 cond_resched();
1656 * The rare folio on the deferred split list should
1657 * be split now. It should not count as a failure:
1658 * but increment nr_failed because, without doing so,
1659 * migrate_pages() may report success with (split but
1660 * unmigrated) pages still on its fromlist; whereas it
1661 * always reports success when its fromlist is empty.
1662 * stats->nr_thp_failed should be increased too,
1663 * otherwise stats inconsistency will happen when
1664 * migrate_pages_batch is called via migrate_pages()
1665 * with MIGRATE_SYNC and MIGRATE_ASYNC.
1667 * Only check it without removing it from the list.
1668 * Since the folio can be on deferred_split_scan()
1669 * local list and removing it can cause the local list
1670 * corruption. Folio split process below can handle it
1671 * with the help of folio_ref_freeze().
1673 * nr_pages > 2 is needed to avoid checking order-1
1674 * page cache folios. They exist, in contrast to
1675 * non-existent order-1 anonymous folios, and do not
1676 * use _deferred_list.
1678 if (nr_pages > 2 &&
1679 !list_empty(&folio->_deferred_list)) {
1680 if (try_split_folio(folio, split_folios) == 0) {
1681 nr_failed++;
1682 stats->nr_thp_failed += is_thp;
1683 stats->nr_thp_split += is_thp;
1684 stats->nr_split++;
1685 continue;
1690 * Large folio migration might be unsupported or
1691 * the allocation might be failed so we should retry
1692 * on the same folio with the large folio split
1693 * to normal folios.
1695 * Split folios are put in split_folios, and
1696 * we will migrate them after the rest of the
1697 * list is processed.
1699 if (!thp_migration_supported() && is_thp) {
1700 nr_failed++;
1701 stats->nr_thp_failed++;
1702 if (!try_split_folio(folio, split_folios)) {
1703 stats->nr_thp_split++;
1704 stats->nr_split++;
1705 continue;
1707 stats->nr_failed_pages += nr_pages;
1708 list_move_tail(&folio->lru, ret_folios);
1709 continue;
1712 rc = migrate_folio_unmap(get_new_folio, put_new_folio,
1713 private, folio, &dst, mode, reason,
1714 ret_folios);
1716 * The rules are:
1717 * Success: folio will be freed
1718 * Unmap: folio will be put on unmap_folios list,
1719 * dst folio put on dst_folios list
1720 * -EAGAIN: stay on the from list
1721 * -ENOMEM: stay on the from list
1722 * Other errno: put on ret_folios list
1724 switch(rc) {
1725 case -ENOMEM:
1727 * When memory is low, don't bother to try to migrate
1728 * other folios, move unmapped folios, then exit.
1730 nr_failed++;
1731 stats->nr_thp_failed += is_thp;
1732 /* Large folio NUMA faulting doesn't split to retry. */
1733 if (is_large && !nosplit) {
1734 int ret = try_split_folio(folio, split_folios);
1736 if (!ret) {
1737 stats->nr_thp_split += is_thp;
1738 stats->nr_split++;
1739 break;
1740 } else if (reason == MR_LONGTERM_PIN &&
1741 ret == -EAGAIN) {
1743 * Try again to split large folio to
1744 * mitigate the failure of longterm pinning.
1746 retry++;
1747 thp_retry += is_thp;
1748 nr_retry_pages += nr_pages;
1749 /* Undo duplicated failure counting. */
1750 nr_failed--;
1751 stats->nr_thp_failed -= is_thp;
1752 break;
1756 stats->nr_failed_pages += nr_pages + nr_retry_pages;
1757 /* nr_failed isn't updated for not used */
1758 stats->nr_thp_failed += thp_retry;
1759 rc_saved = rc;
1760 if (list_empty(&unmap_folios))
1761 goto out;
1762 else
1763 goto move;
1764 case -EAGAIN:
1765 retry++;
1766 thp_retry += is_thp;
1767 nr_retry_pages += nr_pages;
1768 break;
1769 case MIGRATEPAGE_SUCCESS:
1770 stats->nr_succeeded += nr_pages;
1771 stats->nr_thp_succeeded += is_thp;
1772 break;
1773 case MIGRATEPAGE_UNMAP:
1774 list_move_tail(&folio->lru, &unmap_folios);
1775 list_add_tail(&dst->lru, &dst_folios);
1776 break;
1777 default:
1779 * Permanent failure (-EBUSY, etc.):
1780 * unlike -EAGAIN case, the failed folio is
1781 * removed from migration folio list and not
1782 * retried in the next outer loop.
1784 nr_failed++;
1785 stats->nr_thp_failed += is_thp;
1786 stats->nr_failed_pages += nr_pages;
1787 break;
1791 nr_failed += retry;
1792 stats->nr_thp_failed += thp_retry;
1793 stats->nr_failed_pages += nr_retry_pages;
1794 move:
1795 /* Flush TLBs for all unmapped folios */
1796 try_to_unmap_flush();
1798 retry = 1;
1799 for (pass = 0; pass < nr_pass && retry; pass++) {
1800 retry = 0;
1801 thp_retry = 0;
1802 nr_retry_pages = 0;
1804 dst = list_first_entry(&dst_folios, struct folio, lru);
1805 dst2 = list_next_entry(dst, lru);
1806 list_for_each_entry_safe(folio, folio2, &unmap_folios, lru) {
1807 is_thp = folio_test_large(folio) && folio_test_pmd_mappable(folio);
1808 nr_pages = folio_nr_pages(folio);
1810 cond_resched();
1812 rc = migrate_folio_move(put_new_folio, private,
1813 folio, dst, mode,
1814 reason, ret_folios);
1816 * The rules are:
1817 * Success: folio will be freed
1818 * -EAGAIN: stay on the unmap_folios list
1819 * Other errno: put on ret_folios list
1821 switch(rc) {
1822 case -EAGAIN:
1823 retry++;
1824 thp_retry += is_thp;
1825 nr_retry_pages += nr_pages;
1826 break;
1827 case MIGRATEPAGE_SUCCESS:
1828 stats->nr_succeeded += nr_pages;
1829 stats->nr_thp_succeeded += is_thp;
1830 break;
1831 default:
1832 nr_failed++;
1833 stats->nr_thp_failed += is_thp;
1834 stats->nr_failed_pages += nr_pages;
1835 break;
1837 dst = dst2;
1838 dst2 = list_next_entry(dst, lru);
1841 nr_failed += retry;
1842 stats->nr_thp_failed += thp_retry;
1843 stats->nr_failed_pages += nr_retry_pages;
1845 rc = rc_saved ? : nr_failed;
1846 out:
1847 /* Cleanup remaining folios */
1848 dst = list_first_entry(&dst_folios, struct folio, lru);
1849 dst2 = list_next_entry(dst, lru);
1850 list_for_each_entry_safe(folio, folio2, &unmap_folios, lru) {
1851 int old_page_state = 0;
1852 struct anon_vma *anon_vma = NULL;
1854 __migrate_folio_extract(dst, &old_page_state, &anon_vma);
1855 migrate_folio_undo_src(folio, old_page_state & PAGE_WAS_MAPPED,
1856 anon_vma, true, ret_folios);
1857 list_del(&dst->lru);
1858 migrate_folio_undo_dst(dst, true, put_new_folio, private);
1859 dst = dst2;
1860 dst2 = list_next_entry(dst, lru);
1863 return rc;
1866 static int migrate_pages_sync(struct list_head *from, new_folio_t get_new_folio,
1867 free_folio_t put_new_folio, unsigned long private,
1868 enum migrate_mode mode, int reason,
1869 struct list_head *ret_folios, struct list_head *split_folios,
1870 struct migrate_pages_stats *stats)
1872 int rc, nr_failed = 0;
1873 LIST_HEAD(folios);
1874 struct migrate_pages_stats astats;
1876 memset(&astats, 0, sizeof(astats));
1877 /* Try to migrate in batch with MIGRATE_ASYNC mode firstly */
1878 rc = migrate_pages_batch(from, get_new_folio, put_new_folio, private, MIGRATE_ASYNC,
1879 reason, &folios, split_folios, &astats,
1880 NR_MAX_MIGRATE_ASYNC_RETRY);
1881 stats->nr_succeeded += astats.nr_succeeded;
1882 stats->nr_thp_succeeded += astats.nr_thp_succeeded;
1883 stats->nr_thp_split += astats.nr_thp_split;
1884 stats->nr_split += astats.nr_split;
1885 if (rc < 0) {
1886 stats->nr_failed_pages += astats.nr_failed_pages;
1887 stats->nr_thp_failed += astats.nr_thp_failed;
1888 list_splice_tail(&folios, ret_folios);
1889 return rc;
1891 stats->nr_thp_failed += astats.nr_thp_split;
1893 * Do not count rc, as pages will be retried below.
1894 * Count nr_split only, since it includes nr_thp_split.
1896 nr_failed += astats.nr_split;
1898 * Fall back to migrate all failed folios one by one synchronously. All
1899 * failed folios except split THPs will be retried, so their failure
1900 * isn't counted
1902 list_splice_tail_init(&folios, from);
1903 while (!list_empty(from)) {
1904 list_move(from->next, &folios);
1905 rc = migrate_pages_batch(&folios, get_new_folio, put_new_folio,
1906 private, mode, reason, ret_folios,
1907 split_folios, stats, NR_MAX_MIGRATE_SYNC_RETRY);
1908 list_splice_tail_init(&folios, ret_folios);
1909 if (rc < 0)
1910 return rc;
1911 nr_failed += rc;
1914 return nr_failed;
1918 * migrate_pages - migrate the folios specified in a list, to the free folios
1919 * supplied as the target for the page migration
1921 * @from: The list of folios to be migrated.
1922 * @get_new_folio: The function used to allocate free folios to be used
1923 * as the target of the folio migration.
1924 * @put_new_folio: The function used to free target folios if migration
1925 * fails, or NULL if no special handling is necessary.
1926 * @private: Private data to be passed on to get_new_folio()
1927 * @mode: The migration mode that specifies the constraints for
1928 * folio migration, if any.
1929 * @reason: The reason for folio migration.
1930 * @ret_succeeded: Set to the number of folios migrated successfully if
1931 * the caller passes a non-NULL pointer.
1933 * The function returns after NR_MAX_MIGRATE_PAGES_RETRY attempts or if no folios
1934 * are movable any more because the list has become empty or no retryable folios
1935 * exist any more. It is caller's responsibility to call putback_movable_pages()
1936 * only if ret != 0.
1938 * Returns the number of {normal folio, large folio, hugetlb} that were not
1939 * migrated, or an error code. The number of large folio splits will be
1940 * considered as the number of non-migrated large folio, no matter how many
1941 * split folios of the large folio are migrated successfully.
1943 int migrate_pages(struct list_head *from, new_folio_t get_new_folio,
1944 free_folio_t put_new_folio, unsigned long private,
1945 enum migrate_mode mode, int reason, unsigned int *ret_succeeded)
1947 int rc, rc_gather;
1948 int nr_pages;
1949 struct folio *folio, *folio2;
1950 LIST_HEAD(folios);
1951 LIST_HEAD(ret_folios);
1952 LIST_HEAD(split_folios);
1953 struct migrate_pages_stats stats;
1955 trace_mm_migrate_pages_start(mode, reason);
1957 memset(&stats, 0, sizeof(stats));
1959 rc_gather = migrate_hugetlbs(from, get_new_folio, put_new_folio, private,
1960 mode, reason, &stats, &ret_folios);
1961 if (rc_gather < 0)
1962 goto out;
1964 again:
1965 nr_pages = 0;
1966 list_for_each_entry_safe(folio, folio2, from, lru) {
1967 /* Retried hugetlb folios will be kept in list */
1968 if (folio_test_hugetlb(folio)) {
1969 list_move_tail(&folio->lru, &ret_folios);
1970 continue;
1973 nr_pages += folio_nr_pages(folio);
1974 if (nr_pages >= NR_MAX_BATCHED_MIGRATION)
1975 break;
1977 if (nr_pages >= NR_MAX_BATCHED_MIGRATION)
1978 list_cut_before(&folios, from, &folio2->lru);
1979 else
1980 list_splice_init(from, &folios);
1981 if (mode == MIGRATE_ASYNC)
1982 rc = migrate_pages_batch(&folios, get_new_folio, put_new_folio,
1983 private, mode, reason, &ret_folios,
1984 &split_folios, &stats,
1985 NR_MAX_MIGRATE_PAGES_RETRY);
1986 else
1987 rc = migrate_pages_sync(&folios, get_new_folio, put_new_folio,
1988 private, mode, reason, &ret_folios,
1989 &split_folios, &stats);
1990 list_splice_tail_init(&folios, &ret_folios);
1991 if (rc < 0) {
1992 rc_gather = rc;
1993 list_splice_tail(&split_folios, &ret_folios);
1994 goto out;
1996 if (!list_empty(&split_folios)) {
1998 * Failure isn't counted since all split folios of a large folio
1999 * is counted as 1 failure already. And, we only try to migrate
2000 * with minimal effort, force MIGRATE_ASYNC mode and retry once.
2002 migrate_pages_batch(&split_folios, get_new_folio,
2003 put_new_folio, private, MIGRATE_ASYNC, reason,
2004 &ret_folios, NULL, &stats, 1);
2005 list_splice_tail_init(&split_folios, &ret_folios);
2007 rc_gather += rc;
2008 if (!list_empty(from))
2009 goto again;
2010 out:
2012 * Put the permanent failure folio back to migration list, they
2013 * will be put back to the right list by the caller.
2015 list_splice(&ret_folios, from);
2018 * Return 0 in case all split folios of fail-to-migrate large folios
2019 * are migrated successfully.
2021 if (list_empty(from))
2022 rc_gather = 0;
2024 count_vm_events(PGMIGRATE_SUCCESS, stats.nr_succeeded);
2025 count_vm_events(PGMIGRATE_FAIL, stats.nr_failed_pages);
2026 count_vm_events(THP_MIGRATION_SUCCESS, stats.nr_thp_succeeded);
2027 count_vm_events(THP_MIGRATION_FAIL, stats.nr_thp_failed);
2028 count_vm_events(THP_MIGRATION_SPLIT, stats.nr_thp_split);
2029 trace_mm_migrate_pages(stats.nr_succeeded, stats.nr_failed_pages,
2030 stats.nr_thp_succeeded, stats.nr_thp_failed,
2031 stats.nr_thp_split, stats.nr_split, mode,
2032 reason);
2034 if (ret_succeeded)
2035 *ret_succeeded = stats.nr_succeeded;
2037 return rc_gather;
2040 struct folio *alloc_migration_target(struct folio *src, unsigned long private)
2042 struct migration_target_control *mtc;
2043 gfp_t gfp_mask;
2044 unsigned int order = 0;
2045 int nid;
2046 int zidx;
2048 mtc = (struct migration_target_control *)private;
2049 gfp_mask = mtc->gfp_mask;
2050 nid = mtc->nid;
2051 if (nid == NUMA_NO_NODE)
2052 nid = folio_nid(src);
2054 if (folio_test_hugetlb(src)) {
2055 struct hstate *h = folio_hstate(src);
2057 gfp_mask = htlb_modify_alloc_mask(h, gfp_mask);
2058 return alloc_hugetlb_folio_nodemask(h, nid,
2059 mtc->nmask, gfp_mask,
2060 htlb_allow_alloc_fallback(mtc->reason));
2063 if (folio_test_large(src)) {
2065 * clear __GFP_RECLAIM to make the migration callback
2066 * consistent with regular THP allocations.
2068 gfp_mask &= ~__GFP_RECLAIM;
2069 gfp_mask |= GFP_TRANSHUGE;
2070 order = folio_order(src);
2072 zidx = zone_idx(folio_zone(src));
2073 if (is_highmem_idx(zidx) || zidx == ZONE_MOVABLE)
2074 gfp_mask |= __GFP_HIGHMEM;
2076 return __folio_alloc(gfp_mask, order, nid, mtc->nmask);
2079 #ifdef CONFIG_NUMA
2081 static int store_status(int __user *status, int start, int value, int nr)
2083 while (nr-- > 0) {
2084 if (put_user(value, status + start))
2085 return -EFAULT;
2086 start++;
2089 return 0;
2092 static int do_move_pages_to_node(struct list_head *pagelist, int node)
2094 int err;
2095 struct migration_target_control mtc = {
2096 .nid = node,
2097 .gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE,
2098 .reason = MR_SYSCALL,
2101 err = migrate_pages(pagelist, alloc_migration_target, NULL,
2102 (unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL, NULL);
2103 if (err)
2104 putback_movable_pages(pagelist);
2105 return err;
2109 * Resolves the given address to a struct page, isolates it from the LRU and
2110 * puts it to the given pagelist.
2111 * Returns:
2112 * errno - if the page cannot be found/isolated
2113 * 0 - when it doesn't have to be migrated because it is already on the
2114 * target node
2115 * 1 - when it has been queued
2117 static int add_page_for_migration(struct mm_struct *mm, const void __user *p,
2118 int node, struct list_head *pagelist, bool migrate_all)
2120 struct vm_area_struct *vma;
2121 unsigned long addr;
2122 struct page *page;
2123 struct folio *folio;
2124 int err;
2126 mmap_read_lock(mm);
2127 addr = (unsigned long)untagged_addr_remote(mm, p);
2129 err = -EFAULT;
2130 vma = vma_lookup(mm, addr);
2131 if (!vma || !vma_migratable(vma))
2132 goto out;
2134 /* FOLL_DUMP to ignore special (like zero) pages */
2135 page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP);
2137 err = PTR_ERR(page);
2138 if (IS_ERR(page))
2139 goto out;
2141 err = -ENOENT;
2142 if (!page)
2143 goto out;
2145 folio = page_folio(page);
2146 if (folio_is_zone_device(folio))
2147 goto out_putfolio;
2149 err = 0;
2150 if (folio_nid(folio) == node)
2151 goto out_putfolio;
2153 err = -EACCES;
2154 if (folio_likely_mapped_shared(folio) && !migrate_all)
2155 goto out_putfolio;
2157 err = -EBUSY;
2158 if (folio_test_hugetlb(folio)) {
2159 if (isolate_hugetlb(folio, pagelist))
2160 err = 1;
2161 } else {
2162 if (!folio_isolate_lru(folio))
2163 goto out_putfolio;
2165 err = 1;
2166 list_add_tail(&folio->lru, pagelist);
2167 node_stat_mod_folio(folio,
2168 NR_ISOLATED_ANON + folio_is_file_lru(folio),
2169 folio_nr_pages(folio));
2171 out_putfolio:
2173 * Either remove the duplicate refcount from folio_isolate_lru()
2174 * or drop the folio ref if it was not isolated.
2176 folio_put(folio);
2177 out:
2178 mmap_read_unlock(mm);
2179 return err;
2182 static int move_pages_and_store_status(int node,
2183 struct list_head *pagelist, int __user *status,
2184 int start, int i, unsigned long nr_pages)
2186 int err;
2188 if (list_empty(pagelist))
2189 return 0;
2191 err = do_move_pages_to_node(pagelist, node);
2192 if (err) {
2194 * Positive err means the number of failed
2195 * pages to migrate. Since we are going to
2196 * abort and return the number of non-migrated
2197 * pages, so need to include the rest of the
2198 * nr_pages that have not been attempted as
2199 * well.
2201 if (err > 0)
2202 err += nr_pages - i;
2203 return err;
2205 return store_status(status, start, node, i - start);
2209 * Migrate an array of page address onto an array of nodes and fill
2210 * the corresponding array of status.
2212 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
2213 unsigned long nr_pages,
2214 const void __user * __user *pages,
2215 const int __user *nodes,
2216 int __user *status, int flags)
2218 compat_uptr_t __user *compat_pages = (void __user *)pages;
2219 int current_node = NUMA_NO_NODE;
2220 LIST_HEAD(pagelist);
2221 int start, i;
2222 int err = 0, err1;
2224 lru_cache_disable();
2226 for (i = start = 0; i < nr_pages; i++) {
2227 const void __user *p;
2228 int node;
2230 err = -EFAULT;
2231 if (in_compat_syscall()) {
2232 compat_uptr_t cp;
2234 if (get_user(cp, compat_pages + i))
2235 goto out_flush;
2237 p = compat_ptr(cp);
2238 } else {
2239 if (get_user(p, pages + i))
2240 goto out_flush;
2242 if (get_user(node, nodes + i))
2243 goto out_flush;
2245 err = -ENODEV;
2246 if (node < 0 || node >= MAX_NUMNODES)
2247 goto out_flush;
2248 if (!node_state(node, N_MEMORY))
2249 goto out_flush;
2251 err = -EACCES;
2252 if (!node_isset(node, task_nodes))
2253 goto out_flush;
2255 if (current_node == NUMA_NO_NODE) {
2256 current_node = node;
2257 start = i;
2258 } else if (node != current_node) {
2259 err = move_pages_and_store_status(current_node,
2260 &pagelist, status, start, i, nr_pages);
2261 if (err)
2262 goto out;
2263 start = i;
2264 current_node = node;
2268 * Errors in the page lookup or isolation are not fatal and we simply
2269 * report them via status
2271 err = add_page_for_migration(mm, p, current_node, &pagelist,
2272 flags & MPOL_MF_MOVE_ALL);
2274 if (err > 0) {
2275 /* The page is successfully queued for migration */
2276 continue;
2280 * The move_pages() man page does not have an -EEXIST choice, so
2281 * use -EFAULT instead.
2283 if (err == -EEXIST)
2284 err = -EFAULT;
2287 * If the page is already on the target node (!err), store the
2288 * node, otherwise, store the err.
2290 err = store_status(status, i, err ? : current_node, 1);
2291 if (err)
2292 goto out_flush;
2294 err = move_pages_and_store_status(current_node, &pagelist,
2295 status, start, i, nr_pages);
2296 if (err) {
2297 /* We have accounted for page i */
2298 if (err > 0)
2299 err--;
2300 goto out;
2302 current_node = NUMA_NO_NODE;
2304 out_flush:
2305 /* Make sure we do not overwrite the existing error */
2306 err1 = move_pages_and_store_status(current_node, &pagelist,
2307 status, start, i, nr_pages);
2308 if (err >= 0)
2309 err = err1;
2310 out:
2311 lru_cache_enable();
2312 return err;
2316 * Determine the nodes of an array of pages and store it in an array of status.
2318 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
2319 const void __user **pages, int *status)
2321 unsigned long i;
2323 mmap_read_lock(mm);
2325 for (i = 0; i < nr_pages; i++) {
2326 unsigned long addr = (unsigned long)(*pages);
2327 struct vm_area_struct *vma;
2328 struct page *page;
2329 int err = -EFAULT;
2331 vma = vma_lookup(mm, addr);
2332 if (!vma)
2333 goto set_status;
2335 /* FOLL_DUMP to ignore special (like zero) pages */
2336 page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP);
2338 err = PTR_ERR(page);
2339 if (IS_ERR(page))
2340 goto set_status;
2342 err = -ENOENT;
2343 if (!page)
2344 goto set_status;
2346 if (!is_zone_device_page(page))
2347 err = page_to_nid(page);
2349 put_page(page);
2350 set_status:
2351 *status = err;
2353 pages++;
2354 status++;
2357 mmap_read_unlock(mm);
2360 static int get_compat_pages_array(const void __user *chunk_pages[],
2361 const void __user * __user *pages,
2362 unsigned long chunk_nr)
2364 compat_uptr_t __user *pages32 = (compat_uptr_t __user *)pages;
2365 compat_uptr_t p;
2366 int i;
2368 for (i = 0; i < chunk_nr; i++) {
2369 if (get_user(p, pages32 + i))
2370 return -EFAULT;
2371 chunk_pages[i] = compat_ptr(p);
2374 return 0;
2378 * Determine the nodes of a user array of pages and store it in
2379 * a user array of status.
2381 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
2382 const void __user * __user *pages,
2383 int __user *status)
2385 #define DO_PAGES_STAT_CHUNK_NR 16UL
2386 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
2387 int chunk_status[DO_PAGES_STAT_CHUNK_NR];
2389 while (nr_pages) {
2390 unsigned long chunk_nr = min(nr_pages, DO_PAGES_STAT_CHUNK_NR);
2392 if (in_compat_syscall()) {
2393 if (get_compat_pages_array(chunk_pages, pages,
2394 chunk_nr))
2395 break;
2396 } else {
2397 if (copy_from_user(chunk_pages, pages,
2398 chunk_nr * sizeof(*chunk_pages)))
2399 break;
2402 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
2404 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
2405 break;
2407 pages += chunk_nr;
2408 status += chunk_nr;
2409 nr_pages -= chunk_nr;
2411 return nr_pages ? -EFAULT : 0;
2414 static struct mm_struct *find_mm_struct(pid_t pid, nodemask_t *mem_nodes)
2416 struct task_struct *task;
2417 struct mm_struct *mm;
2420 * There is no need to check if current process has the right to modify
2421 * the specified process when they are same.
2423 if (!pid) {
2424 mmget(current->mm);
2425 *mem_nodes = cpuset_mems_allowed(current);
2426 return current->mm;
2429 /* Find the mm_struct */
2430 rcu_read_lock();
2431 task = find_task_by_vpid(pid);
2432 if (!task) {
2433 rcu_read_unlock();
2434 return ERR_PTR(-ESRCH);
2436 get_task_struct(task);
2439 * Check if this process has the right to modify the specified
2440 * process. Use the regular "ptrace_may_access()" checks.
2442 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
2443 rcu_read_unlock();
2444 mm = ERR_PTR(-EPERM);
2445 goto out;
2447 rcu_read_unlock();
2449 mm = ERR_PTR(security_task_movememory(task));
2450 if (IS_ERR(mm))
2451 goto out;
2452 *mem_nodes = cpuset_mems_allowed(task);
2453 mm = get_task_mm(task);
2454 out:
2455 put_task_struct(task);
2456 if (!mm)
2457 mm = ERR_PTR(-EINVAL);
2458 return mm;
2462 * Move a list of pages in the address space of the currently executing
2463 * process.
2465 static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
2466 const void __user * __user *pages,
2467 const int __user *nodes,
2468 int __user *status, int flags)
2470 struct mm_struct *mm;
2471 int err;
2472 nodemask_t task_nodes;
2474 /* Check flags */
2475 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
2476 return -EINVAL;
2478 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
2479 return -EPERM;
2481 mm = find_mm_struct(pid, &task_nodes);
2482 if (IS_ERR(mm))
2483 return PTR_ERR(mm);
2485 if (nodes)
2486 err = do_pages_move(mm, task_nodes, nr_pages, pages,
2487 nodes, status, flags);
2488 else
2489 err = do_pages_stat(mm, nr_pages, pages, status);
2491 mmput(mm);
2492 return err;
2495 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
2496 const void __user * __user *, pages,
2497 const int __user *, nodes,
2498 int __user *, status, int, flags)
2500 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
2503 #ifdef CONFIG_NUMA_BALANCING
2505 * Returns true if this is a safe migration target node for misplaced NUMA
2506 * pages. Currently it only checks the watermarks which is crude.
2508 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
2509 unsigned long nr_migrate_pages)
2511 int z;
2513 for (z = pgdat->nr_zones - 1; z >= 0; z--) {
2514 struct zone *zone = pgdat->node_zones + z;
2516 if (!managed_zone(zone))
2517 continue;
2519 /* Avoid waking kswapd by allocating pages_to_migrate pages. */
2520 if (!zone_watermark_ok(zone, 0,
2521 high_wmark_pages(zone) +
2522 nr_migrate_pages,
2523 ZONE_MOVABLE, 0))
2524 continue;
2525 return true;
2527 return false;
2530 static struct folio *alloc_misplaced_dst_folio(struct folio *src,
2531 unsigned long data)
2533 int nid = (int) data;
2534 int order = folio_order(src);
2535 gfp_t gfp = __GFP_THISNODE;
2537 if (order > 0)
2538 gfp |= GFP_TRANSHUGE_LIGHT;
2539 else {
2540 gfp |= GFP_HIGHUSER_MOVABLE | __GFP_NOMEMALLOC | __GFP_NORETRY |
2541 __GFP_NOWARN;
2542 gfp &= ~__GFP_RECLAIM;
2544 return __folio_alloc_node(gfp, order, nid);
2548 * Prepare for calling migrate_misplaced_folio() by isolating the folio if
2549 * permitted. Must be called with the PTL still held.
2551 int migrate_misplaced_folio_prepare(struct folio *folio,
2552 struct vm_area_struct *vma, int node)
2554 int nr_pages = folio_nr_pages(folio);
2555 pg_data_t *pgdat = NODE_DATA(node);
2557 if (folio_is_file_lru(folio)) {
2559 * Do not migrate file folios that are mapped in multiple
2560 * processes with execute permissions as they are probably
2561 * shared libraries.
2563 * See folio_likely_mapped_shared() on possible imprecision
2564 * when we cannot easily detect if a folio is shared.
2566 if ((vma->vm_flags & VM_EXEC) &&
2567 folio_likely_mapped_shared(folio))
2568 return -EACCES;
2571 * Do not migrate dirty folios as not all filesystems can move
2572 * dirty folios in MIGRATE_ASYNC mode which is a waste of
2573 * cycles.
2575 if (folio_test_dirty(folio))
2576 return -EAGAIN;
2579 /* Avoid migrating to a node that is nearly full */
2580 if (!migrate_balanced_pgdat(pgdat, nr_pages)) {
2581 int z;
2583 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING))
2584 return -EAGAIN;
2585 for (z = pgdat->nr_zones - 1; z >= 0; z--) {
2586 if (managed_zone(pgdat->node_zones + z))
2587 break;
2591 * If there are no managed zones, it should not proceed
2592 * further.
2594 if (z < 0)
2595 return -EAGAIN;
2597 wakeup_kswapd(pgdat->node_zones + z, 0,
2598 folio_order(folio), ZONE_MOVABLE);
2599 return -EAGAIN;
2602 if (!folio_isolate_lru(folio))
2603 return -EAGAIN;
2605 node_stat_mod_folio(folio, NR_ISOLATED_ANON + folio_is_file_lru(folio),
2606 nr_pages);
2607 return 0;
2611 * Attempt to migrate a misplaced folio to the specified destination
2612 * node. Caller is expected to have isolated the folio by calling
2613 * migrate_misplaced_folio_prepare(), which will result in an
2614 * elevated reference count on the folio. This function will un-isolate the
2615 * folio, dereferencing the folio before returning.
2617 int migrate_misplaced_folio(struct folio *folio, struct vm_area_struct *vma,
2618 int node)
2620 pg_data_t *pgdat = NODE_DATA(node);
2621 int nr_remaining;
2622 unsigned int nr_succeeded;
2623 LIST_HEAD(migratepages);
2625 list_add(&folio->lru, &migratepages);
2626 nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_folio,
2627 NULL, node, MIGRATE_ASYNC,
2628 MR_NUMA_MISPLACED, &nr_succeeded);
2629 if (nr_remaining && !list_empty(&migratepages))
2630 putback_movable_pages(&migratepages);
2631 if (nr_succeeded) {
2632 count_vm_numa_events(NUMA_PAGE_MIGRATE, nr_succeeded);
2633 if (!node_is_toptier(folio_nid(folio)) && node_is_toptier(node))
2634 mod_node_page_state(pgdat, PGPROMOTE_SUCCESS,
2635 nr_succeeded);
2637 BUG_ON(!list_empty(&migratepages));
2638 return nr_remaining ? -EAGAIN : 0;
2640 #endif /* CONFIG_NUMA_BALANCING */
2641 #endif /* CONFIG_NUMA */