Merge tag '6.11-rc-smb-client-fixes-part2' of git://git.samba.org/sfrench/cifs-2.6
[linux-stable.git] / mm / memcontrol-v1.c
blob2aeea4d8bf8e53b24748b431c16b4b72af22e923
1 // SPDX-License-Identifier: GPL-2.0-or-later
3 #include <linux/memcontrol.h>
4 #include <linux/swap.h>
5 #include <linux/mm_inline.h>
6 #include <linux/pagewalk.h>
7 #include <linux/backing-dev.h>
8 #include <linux/swap_cgroup.h>
9 #include <linux/eventfd.h>
10 #include <linux/poll.h>
11 #include <linux/sort.h>
12 #include <linux/file.h>
13 #include <linux/seq_buf.h>
15 #include "internal.h"
16 #include "swap.h"
17 #include "memcontrol-v1.h"
20 * Cgroups above their limits are maintained in a RB-Tree, independent of
21 * their hierarchy representation
24 struct mem_cgroup_tree_per_node {
25 struct rb_root rb_root;
26 struct rb_node *rb_rightmost;
27 spinlock_t lock;
30 struct mem_cgroup_tree {
31 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
34 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
37 * Maximum loops in mem_cgroup_soft_reclaim(), used for soft
38 * limit reclaim to prevent infinite loops, if they ever occur.
40 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
41 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
43 /* Stuffs for move charges at task migration. */
45 * Types of charges to be moved.
47 #define MOVE_ANON 0x1ULL
48 #define MOVE_FILE 0x2ULL
49 #define MOVE_MASK (MOVE_ANON | MOVE_FILE)
51 /* "mc" and its members are protected by cgroup_mutex */
52 static struct move_charge_struct {
53 spinlock_t lock; /* for from, to */
54 struct mm_struct *mm;
55 struct mem_cgroup *from;
56 struct mem_cgroup *to;
57 unsigned long flags;
58 unsigned long precharge;
59 unsigned long moved_charge;
60 unsigned long moved_swap;
61 struct task_struct *moving_task; /* a task moving charges */
62 wait_queue_head_t waitq; /* a waitq for other context */
63 } mc = {
64 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
65 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
68 /* for OOM */
69 struct mem_cgroup_eventfd_list {
70 struct list_head list;
71 struct eventfd_ctx *eventfd;
75 * cgroup_event represents events which userspace want to receive.
77 struct mem_cgroup_event {
79 * memcg which the event belongs to.
81 struct mem_cgroup *memcg;
83 * eventfd to signal userspace about the event.
85 struct eventfd_ctx *eventfd;
87 * Each of these stored in a list by the cgroup.
89 struct list_head list;
91 * register_event() callback will be used to add new userspace
92 * waiter for changes related to this event. Use eventfd_signal()
93 * on eventfd to send notification to userspace.
95 int (*register_event)(struct mem_cgroup *memcg,
96 struct eventfd_ctx *eventfd, const char *args);
98 * unregister_event() callback will be called when userspace closes
99 * the eventfd or on cgroup removing. This callback must be set,
100 * if you want provide notification functionality.
102 void (*unregister_event)(struct mem_cgroup *memcg,
103 struct eventfd_ctx *eventfd);
105 * All fields below needed to unregister event when
106 * userspace closes eventfd.
108 poll_table pt;
109 wait_queue_head_t *wqh;
110 wait_queue_entry_t wait;
111 struct work_struct remove;
114 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
115 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
116 #define MEMFILE_ATTR(val) ((val) & 0xffff)
118 enum {
119 RES_USAGE,
120 RES_LIMIT,
121 RES_MAX_USAGE,
122 RES_FAILCNT,
123 RES_SOFT_LIMIT,
126 #ifdef CONFIG_LOCKDEP
127 static struct lockdep_map memcg_oom_lock_dep_map = {
128 .name = "memcg_oom_lock",
130 #endif
132 DEFINE_SPINLOCK(memcg_oom_lock);
134 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
135 struct mem_cgroup_tree_per_node *mctz,
136 unsigned long new_usage_in_excess)
138 struct rb_node **p = &mctz->rb_root.rb_node;
139 struct rb_node *parent = NULL;
140 struct mem_cgroup_per_node *mz_node;
141 bool rightmost = true;
143 if (mz->on_tree)
144 return;
146 mz->usage_in_excess = new_usage_in_excess;
147 if (!mz->usage_in_excess)
148 return;
149 while (*p) {
150 parent = *p;
151 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
152 tree_node);
153 if (mz->usage_in_excess < mz_node->usage_in_excess) {
154 p = &(*p)->rb_left;
155 rightmost = false;
156 } else {
157 p = &(*p)->rb_right;
161 if (rightmost)
162 mctz->rb_rightmost = &mz->tree_node;
164 rb_link_node(&mz->tree_node, parent, p);
165 rb_insert_color(&mz->tree_node, &mctz->rb_root);
166 mz->on_tree = true;
169 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
170 struct mem_cgroup_tree_per_node *mctz)
172 if (!mz->on_tree)
173 return;
175 if (&mz->tree_node == mctz->rb_rightmost)
176 mctz->rb_rightmost = rb_prev(&mz->tree_node);
178 rb_erase(&mz->tree_node, &mctz->rb_root);
179 mz->on_tree = false;
182 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
183 struct mem_cgroup_tree_per_node *mctz)
185 unsigned long flags;
187 spin_lock_irqsave(&mctz->lock, flags);
188 __mem_cgroup_remove_exceeded(mz, mctz);
189 spin_unlock_irqrestore(&mctz->lock, flags);
192 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
194 unsigned long nr_pages = page_counter_read(&memcg->memory);
195 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
196 unsigned long excess = 0;
198 if (nr_pages > soft_limit)
199 excess = nr_pages - soft_limit;
201 return excess;
204 static void memcg1_update_tree(struct mem_cgroup *memcg, int nid)
206 unsigned long excess;
207 struct mem_cgroup_per_node *mz;
208 struct mem_cgroup_tree_per_node *mctz;
210 if (lru_gen_enabled()) {
211 if (soft_limit_excess(memcg))
212 lru_gen_soft_reclaim(memcg, nid);
213 return;
216 mctz = soft_limit_tree.rb_tree_per_node[nid];
217 if (!mctz)
218 return;
220 * Necessary to update all ancestors when hierarchy is used.
221 * because their event counter is not touched.
223 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
224 mz = memcg->nodeinfo[nid];
225 excess = soft_limit_excess(memcg);
227 * We have to update the tree if mz is on RB-tree or
228 * mem is over its softlimit.
230 if (excess || mz->on_tree) {
231 unsigned long flags;
233 spin_lock_irqsave(&mctz->lock, flags);
234 /* if on-tree, remove it */
235 if (mz->on_tree)
236 __mem_cgroup_remove_exceeded(mz, mctz);
238 * Insert again. mz->usage_in_excess will be updated.
239 * If excess is 0, no tree ops.
241 __mem_cgroup_insert_exceeded(mz, mctz, excess);
242 spin_unlock_irqrestore(&mctz->lock, flags);
247 void memcg1_remove_from_trees(struct mem_cgroup *memcg)
249 struct mem_cgroup_tree_per_node *mctz;
250 struct mem_cgroup_per_node *mz;
251 int nid;
253 for_each_node(nid) {
254 mz = memcg->nodeinfo[nid];
255 mctz = soft_limit_tree.rb_tree_per_node[nid];
256 if (mctz)
257 mem_cgroup_remove_exceeded(mz, mctz);
261 static struct mem_cgroup_per_node *
262 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
264 struct mem_cgroup_per_node *mz;
266 retry:
267 mz = NULL;
268 if (!mctz->rb_rightmost)
269 goto done; /* Nothing to reclaim from */
271 mz = rb_entry(mctz->rb_rightmost,
272 struct mem_cgroup_per_node, tree_node);
274 * Remove the node now but someone else can add it back,
275 * we will to add it back at the end of reclaim to its correct
276 * position in the tree.
278 __mem_cgroup_remove_exceeded(mz, mctz);
279 if (!soft_limit_excess(mz->memcg) ||
280 !css_tryget(&mz->memcg->css))
281 goto retry;
282 done:
283 return mz;
286 static struct mem_cgroup_per_node *
287 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
289 struct mem_cgroup_per_node *mz;
291 spin_lock_irq(&mctz->lock);
292 mz = __mem_cgroup_largest_soft_limit_node(mctz);
293 spin_unlock_irq(&mctz->lock);
294 return mz;
297 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
298 pg_data_t *pgdat,
299 gfp_t gfp_mask,
300 unsigned long *total_scanned)
302 struct mem_cgroup *victim = NULL;
303 int total = 0;
304 int loop = 0;
305 unsigned long excess;
306 unsigned long nr_scanned;
307 struct mem_cgroup_reclaim_cookie reclaim = {
308 .pgdat = pgdat,
311 excess = soft_limit_excess(root_memcg);
313 while (1) {
314 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
315 if (!victim) {
316 loop++;
317 if (loop >= 2) {
319 * If we have not been able to reclaim
320 * anything, it might because there are
321 * no reclaimable pages under this hierarchy
323 if (!total)
324 break;
326 * We want to do more targeted reclaim.
327 * excess >> 2 is not to excessive so as to
328 * reclaim too much, nor too less that we keep
329 * coming back to reclaim from this cgroup
331 if (total >= (excess >> 2) ||
332 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
333 break;
335 continue;
337 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
338 pgdat, &nr_scanned);
339 *total_scanned += nr_scanned;
340 if (!soft_limit_excess(root_memcg))
341 break;
343 mem_cgroup_iter_break(root_memcg, victim);
344 return total;
347 unsigned long memcg1_soft_limit_reclaim(pg_data_t *pgdat, int order,
348 gfp_t gfp_mask,
349 unsigned long *total_scanned)
351 unsigned long nr_reclaimed = 0;
352 struct mem_cgroup_per_node *mz, *next_mz = NULL;
353 unsigned long reclaimed;
354 int loop = 0;
355 struct mem_cgroup_tree_per_node *mctz;
356 unsigned long excess;
358 if (lru_gen_enabled())
359 return 0;
361 if (order > 0)
362 return 0;
364 mctz = soft_limit_tree.rb_tree_per_node[pgdat->node_id];
367 * Do not even bother to check the largest node if the root
368 * is empty. Do it lockless to prevent lock bouncing. Races
369 * are acceptable as soft limit is best effort anyway.
371 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
372 return 0;
375 * This loop can run a while, specially if mem_cgroup's continuously
376 * keep exceeding their soft limit and putting the system under
377 * pressure
379 do {
380 if (next_mz)
381 mz = next_mz;
382 else
383 mz = mem_cgroup_largest_soft_limit_node(mctz);
384 if (!mz)
385 break;
387 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
388 gfp_mask, total_scanned);
389 nr_reclaimed += reclaimed;
390 spin_lock_irq(&mctz->lock);
393 * If we failed to reclaim anything from this memory cgroup
394 * it is time to move on to the next cgroup
396 next_mz = NULL;
397 if (!reclaimed)
398 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
400 excess = soft_limit_excess(mz->memcg);
402 * One school of thought says that we should not add
403 * back the node to the tree if reclaim returns 0.
404 * But our reclaim could return 0, simply because due
405 * to priority we are exposing a smaller subset of
406 * memory to reclaim from. Consider this as a longer
407 * term TODO.
409 /* If excess == 0, no tree ops */
410 __mem_cgroup_insert_exceeded(mz, mctz, excess);
411 spin_unlock_irq(&mctz->lock);
412 css_put(&mz->memcg->css);
413 loop++;
415 * Could not reclaim anything and there are no more
416 * mem cgroups to try or we seem to be looping without
417 * reclaiming anything.
419 if (!nr_reclaimed &&
420 (next_mz == NULL ||
421 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
422 break;
423 } while (!nr_reclaimed);
424 if (next_mz)
425 css_put(&next_mz->memcg->css);
426 return nr_reclaimed;
430 * A routine for checking "mem" is under move_account() or not.
432 * Checking a cgroup is mc.from or mc.to or under hierarchy of
433 * moving cgroups. This is for waiting at high-memory pressure
434 * caused by "move".
436 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
438 struct mem_cgroup *from;
439 struct mem_cgroup *to;
440 bool ret = false;
442 * Unlike task_move routines, we access mc.to, mc.from not under
443 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
445 spin_lock(&mc.lock);
446 from = mc.from;
447 to = mc.to;
448 if (!from)
449 goto unlock;
451 ret = mem_cgroup_is_descendant(from, memcg) ||
452 mem_cgroup_is_descendant(to, memcg);
453 unlock:
454 spin_unlock(&mc.lock);
455 return ret;
458 bool memcg1_wait_acct_move(struct mem_cgroup *memcg)
460 if (mc.moving_task && current != mc.moving_task) {
461 if (mem_cgroup_under_move(memcg)) {
462 DEFINE_WAIT(wait);
463 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
464 /* moving charge context might have finished. */
465 if (mc.moving_task)
466 schedule();
467 finish_wait(&mc.waitq, &wait);
468 return true;
471 return false;
475 * folio_memcg_lock - Bind a folio to its memcg.
476 * @folio: The folio.
478 * This function prevents unlocked LRU folios from being moved to
479 * another cgroup.
481 * It ensures lifetime of the bound memcg. The caller is responsible
482 * for the lifetime of the folio.
484 void folio_memcg_lock(struct folio *folio)
486 struct mem_cgroup *memcg;
487 unsigned long flags;
490 * The RCU lock is held throughout the transaction. The fast
491 * path can get away without acquiring the memcg->move_lock
492 * because page moving starts with an RCU grace period.
494 rcu_read_lock();
496 if (mem_cgroup_disabled())
497 return;
498 again:
499 memcg = folio_memcg(folio);
500 if (unlikely(!memcg))
501 return;
503 #ifdef CONFIG_PROVE_LOCKING
504 local_irq_save(flags);
505 might_lock(&memcg->move_lock);
506 local_irq_restore(flags);
507 #endif
509 if (atomic_read(&memcg->moving_account) <= 0)
510 return;
512 spin_lock_irqsave(&memcg->move_lock, flags);
513 if (memcg != folio_memcg(folio)) {
514 spin_unlock_irqrestore(&memcg->move_lock, flags);
515 goto again;
519 * When charge migration first begins, we can have multiple
520 * critical sections holding the fast-path RCU lock and one
521 * holding the slowpath move_lock. Track the task who has the
522 * move_lock for folio_memcg_unlock().
524 memcg->move_lock_task = current;
525 memcg->move_lock_flags = flags;
528 static void __folio_memcg_unlock(struct mem_cgroup *memcg)
530 if (memcg && memcg->move_lock_task == current) {
531 unsigned long flags = memcg->move_lock_flags;
533 memcg->move_lock_task = NULL;
534 memcg->move_lock_flags = 0;
536 spin_unlock_irqrestore(&memcg->move_lock, flags);
539 rcu_read_unlock();
543 * folio_memcg_unlock - Release the binding between a folio and its memcg.
544 * @folio: The folio.
546 * This releases the binding created by folio_memcg_lock(). This does
547 * not change the accounting of this folio to its memcg, but it does
548 * permit others to change it.
550 void folio_memcg_unlock(struct folio *folio)
552 __folio_memcg_unlock(folio_memcg(folio));
555 #ifdef CONFIG_SWAP
557 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
558 * @entry: swap entry to be moved
559 * @from: mem_cgroup which the entry is moved from
560 * @to: mem_cgroup which the entry is moved to
562 * It succeeds only when the swap_cgroup's record for this entry is the same
563 * as the mem_cgroup's id of @from.
565 * Returns 0 on success, -EINVAL on failure.
567 * The caller must have charged to @to, IOW, called page_counter_charge() about
568 * both res and memsw, and called css_get().
570 static int mem_cgroup_move_swap_account(swp_entry_t entry,
571 struct mem_cgroup *from, struct mem_cgroup *to)
573 unsigned short old_id, new_id;
575 old_id = mem_cgroup_id(from);
576 new_id = mem_cgroup_id(to);
578 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
579 mod_memcg_state(from, MEMCG_SWAP, -1);
580 mod_memcg_state(to, MEMCG_SWAP, 1);
581 return 0;
583 return -EINVAL;
585 #else
586 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
587 struct mem_cgroup *from, struct mem_cgroup *to)
589 return -EINVAL;
591 #endif
593 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
594 struct cftype *cft)
596 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
599 #ifdef CONFIG_MMU
600 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
601 struct cftype *cft, u64 val)
603 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
605 pr_warn_once("Cgroup memory moving (move_charge_at_immigrate) is deprecated. "
606 "Please report your usecase to linux-mm@kvack.org if you "
607 "depend on this functionality.\n");
609 if (val & ~MOVE_MASK)
610 return -EINVAL;
613 * No kind of locking is needed in here, because ->can_attach() will
614 * check this value once in the beginning of the process, and then carry
615 * on with stale data. This means that changes to this value will only
616 * affect task migrations starting after the change.
618 memcg->move_charge_at_immigrate = val;
619 return 0;
621 #else
622 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
623 struct cftype *cft, u64 val)
625 return -ENOSYS;
627 #endif
629 #ifdef CONFIG_MMU
630 /* Handlers for move charge at task migration. */
631 static int mem_cgroup_do_precharge(unsigned long count)
633 int ret;
635 /* Try a single bulk charge without reclaim first, kswapd may wake */
636 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
637 if (!ret) {
638 mc.precharge += count;
639 return ret;
642 /* Try charges one by one with reclaim, but do not retry */
643 while (count--) {
644 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
645 if (ret)
646 return ret;
647 mc.precharge++;
648 cond_resched();
650 return 0;
653 union mc_target {
654 struct folio *folio;
655 swp_entry_t ent;
658 enum mc_target_type {
659 MC_TARGET_NONE = 0,
660 MC_TARGET_PAGE,
661 MC_TARGET_SWAP,
662 MC_TARGET_DEVICE,
665 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
666 unsigned long addr, pte_t ptent)
668 struct page *page = vm_normal_page(vma, addr, ptent);
670 if (!page)
671 return NULL;
672 if (PageAnon(page)) {
673 if (!(mc.flags & MOVE_ANON))
674 return NULL;
675 } else {
676 if (!(mc.flags & MOVE_FILE))
677 return NULL;
679 get_page(page);
681 return page;
684 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
685 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
686 pte_t ptent, swp_entry_t *entry)
688 struct page *page = NULL;
689 swp_entry_t ent = pte_to_swp_entry(ptent);
691 if (!(mc.flags & MOVE_ANON))
692 return NULL;
695 * Handle device private pages that are not accessible by the CPU, but
696 * stored as special swap entries in the page table.
698 if (is_device_private_entry(ent)) {
699 page = pfn_swap_entry_to_page(ent);
700 if (!get_page_unless_zero(page))
701 return NULL;
702 return page;
705 if (non_swap_entry(ent))
706 return NULL;
709 * Because swap_cache_get_folio() updates some statistics counter,
710 * we call find_get_page() with swapper_space directly.
712 page = find_get_page(swap_address_space(ent), swap_cache_index(ent));
713 entry->val = ent.val;
715 return page;
717 #else
718 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
719 pte_t ptent, swp_entry_t *entry)
721 return NULL;
723 #endif
725 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
726 unsigned long addr, pte_t ptent)
728 unsigned long index;
729 struct folio *folio;
731 if (!vma->vm_file) /* anonymous vma */
732 return NULL;
733 if (!(mc.flags & MOVE_FILE))
734 return NULL;
736 /* folio is moved even if it's not RSS of this task(page-faulted). */
737 /* shmem/tmpfs may report page out on swap: account for that too. */
738 index = linear_page_index(vma, addr);
739 folio = filemap_get_incore_folio(vma->vm_file->f_mapping, index);
740 if (IS_ERR(folio))
741 return NULL;
742 return folio_file_page(folio, index);
746 * mem_cgroup_move_account - move account of the folio
747 * @folio: The folio.
748 * @compound: charge the page as compound or small page
749 * @from: mem_cgroup which the folio is moved from.
750 * @to: mem_cgroup which the folio is moved to. @from != @to.
752 * The folio must be locked and not on the LRU.
754 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
755 * from old cgroup.
757 static int mem_cgroup_move_account(struct folio *folio,
758 bool compound,
759 struct mem_cgroup *from,
760 struct mem_cgroup *to)
762 struct lruvec *from_vec, *to_vec;
763 struct pglist_data *pgdat;
764 unsigned int nr_pages = compound ? folio_nr_pages(folio) : 1;
765 int nid, ret;
767 VM_BUG_ON(from == to);
768 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
769 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
770 VM_BUG_ON(compound && !folio_test_large(folio));
772 ret = -EINVAL;
773 if (folio_memcg(folio) != from)
774 goto out;
776 pgdat = folio_pgdat(folio);
777 from_vec = mem_cgroup_lruvec(from, pgdat);
778 to_vec = mem_cgroup_lruvec(to, pgdat);
780 folio_memcg_lock(folio);
782 if (folio_test_anon(folio)) {
783 if (folio_mapped(folio)) {
784 __mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages);
785 __mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages);
786 if (folio_test_pmd_mappable(folio)) {
787 __mod_lruvec_state(from_vec, NR_ANON_THPS,
788 -nr_pages);
789 __mod_lruvec_state(to_vec, NR_ANON_THPS,
790 nr_pages);
793 } else {
794 __mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages);
795 __mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages);
797 if (folio_test_swapbacked(folio)) {
798 __mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages);
799 __mod_lruvec_state(to_vec, NR_SHMEM, nr_pages);
802 if (folio_mapped(folio)) {
803 __mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
804 __mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
807 if (folio_test_dirty(folio)) {
808 struct address_space *mapping = folio_mapping(folio);
810 if (mapping_can_writeback(mapping)) {
811 __mod_lruvec_state(from_vec, NR_FILE_DIRTY,
812 -nr_pages);
813 __mod_lruvec_state(to_vec, NR_FILE_DIRTY,
814 nr_pages);
819 #ifdef CONFIG_SWAP
820 if (folio_test_swapcache(folio)) {
821 __mod_lruvec_state(from_vec, NR_SWAPCACHE, -nr_pages);
822 __mod_lruvec_state(to_vec, NR_SWAPCACHE, nr_pages);
824 #endif
825 if (folio_test_writeback(folio)) {
826 __mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
827 __mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
831 * All state has been migrated, let's switch to the new memcg.
833 * It is safe to change page's memcg here because the page
834 * is referenced, charged, isolated, and locked: we can't race
835 * with (un)charging, migration, LRU putback, or anything else
836 * that would rely on a stable page's memory cgroup.
838 * Note that folio_memcg_lock is a memcg lock, not a page lock,
839 * to save space. As soon as we switch page's memory cgroup to a
840 * new memcg that isn't locked, the above state can change
841 * concurrently again. Make sure we're truly done with it.
843 smp_mb();
845 css_get(&to->css);
846 css_put(&from->css);
848 folio->memcg_data = (unsigned long)to;
850 __folio_memcg_unlock(from);
852 ret = 0;
853 nid = folio_nid(folio);
855 local_irq_disable();
856 mem_cgroup_charge_statistics(to, nr_pages);
857 memcg1_check_events(to, nid);
858 mem_cgroup_charge_statistics(from, -nr_pages);
859 memcg1_check_events(from, nid);
860 local_irq_enable();
861 out:
862 return ret;
866 * get_mctgt_type - get target type of moving charge
867 * @vma: the vma the pte to be checked belongs
868 * @addr: the address corresponding to the pte to be checked
869 * @ptent: the pte to be checked
870 * @target: the pointer the target page or swap ent will be stored(can be NULL)
872 * Context: Called with pte lock held.
873 * Return:
874 * * MC_TARGET_NONE - If the pte is not a target for move charge.
875 * * MC_TARGET_PAGE - If the page corresponding to this pte is a target for
876 * move charge. If @target is not NULL, the folio is stored in target->folio
877 * with extra refcnt taken (Caller should release it).
878 * * MC_TARGET_SWAP - If the swap entry corresponding to this pte is a
879 * target for charge migration. If @target is not NULL, the entry is
880 * stored in target->ent.
881 * * MC_TARGET_DEVICE - Like MC_TARGET_PAGE but page is device memory and
882 * thus not on the lru. For now such page is charged like a regular page
883 * would be as it is just special memory taking the place of a regular page.
884 * See Documentations/vm/hmm.txt and include/linux/hmm.h
886 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
887 unsigned long addr, pte_t ptent, union mc_target *target)
889 struct page *page = NULL;
890 struct folio *folio;
891 enum mc_target_type ret = MC_TARGET_NONE;
892 swp_entry_t ent = { .val = 0 };
894 if (pte_present(ptent))
895 page = mc_handle_present_pte(vma, addr, ptent);
896 else if (pte_none_mostly(ptent))
898 * PTE markers should be treated as a none pte here, separated
899 * from other swap handling below.
901 page = mc_handle_file_pte(vma, addr, ptent);
902 else if (is_swap_pte(ptent))
903 page = mc_handle_swap_pte(vma, ptent, &ent);
905 if (page)
906 folio = page_folio(page);
907 if (target && page) {
908 if (!folio_trylock(folio)) {
909 folio_put(folio);
910 return ret;
913 * page_mapped() must be stable during the move. This
914 * pte is locked, so if it's present, the page cannot
915 * become unmapped. If it isn't, we have only partial
916 * control over the mapped state: the page lock will
917 * prevent new faults against pagecache and swapcache,
918 * so an unmapped page cannot become mapped. However,
919 * if the page is already mapped elsewhere, it can
920 * unmap, and there is nothing we can do about it.
921 * Alas, skip moving the page in this case.
923 if (!pte_present(ptent) && page_mapped(page)) {
924 folio_unlock(folio);
925 folio_put(folio);
926 return ret;
930 if (!page && !ent.val)
931 return ret;
932 if (page) {
934 * Do only loose check w/o serialization.
935 * mem_cgroup_move_account() checks the page is valid or
936 * not under LRU exclusion.
938 if (folio_memcg(folio) == mc.from) {
939 ret = MC_TARGET_PAGE;
940 if (folio_is_device_private(folio) ||
941 folio_is_device_coherent(folio))
942 ret = MC_TARGET_DEVICE;
943 if (target)
944 target->folio = folio;
946 if (!ret || !target) {
947 if (target)
948 folio_unlock(folio);
949 folio_put(folio);
953 * There is a swap entry and a page doesn't exist or isn't charged.
954 * But we cannot move a tail-page in a THP.
956 if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
957 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
958 ret = MC_TARGET_SWAP;
959 if (target)
960 target->ent = ent;
962 return ret;
965 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
967 * We don't consider PMD mapped swapping or file mapped pages because THP does
968 * not support them for now.
969 * Caller should make sure that pmd_trans_huge(pmd) is true.
971 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
972 unsigned long addr, pmd_t pmd, union mc_target *target)
974 struct page *page = NULL;
975 struct folio *folio;
976 enum mc_target_type ret = MC_TARGET_NONE;
978 if (unlikely(is_swap_pmd(pmd))) {
979 VM_BUG_ON(thp_migration_supported() &&
980 !is_pmd_migration_entry(pmd));
981 return ret;
983 page = pmd_page(pmd);
984 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
985 folio = page_folio(page);
986 if (!(mc.flags & MOVE_ANON))
987 return ret;
988 if (folio_memcg(folio) == mc.from) {
989 ret = MC_TARGET_PAGE;
990 if (target) {
991 folio_get(folio);
992 if (!folio_trylock(folio)) {
993 folio_put(folio);
994 return MC_TARGET_NONE;
996 target->folio = folio;
999 return ret;
1001 #else
1002 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
1003 unsigned long addr, pmd_t pmd, union mc_target *target)
1005 return MC_TARGET_NONE;
1007 #endif
1009 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
1010 unsigned long addr, unsigned long end,
1011 struct mm_walk *walk)
1013 struct vm_area_struct *vma = walk->vma;
1014 pte_t *pte;
1015 spinlock_t *ptl;
1017 ptl = pmd_trans_huge_lock(pmd, vma);
1018 if (ptl) {
1020 * Note their can not be MC_TARGET_DEVICE for now as we do not
1021 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
1022 * this might change.
1024 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
1025 mc.precharge += HPAGE_PMD_NR;
1026 spin_unlock(ptl);
1027 return 0;
1030 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1031 if (!pte)
1032 return 0;
1033 for (; addr != end; pte++, addr += PAGE_SIZE)
1034 if (get_mctgt_type(vma, addr, ptep_get(pte), NULL))
1035 mc.precharge++; /* increment precharge temporarily */
1036 pte_unmap_unlock(pte - 1, ptl);
1037 cond_resched();
1039 return 0;
1042 static const struct mm_walk_ops precharge_walk_ops = {
1043 .pmd_entry = mem_cgroup_count_precharge_pte_range,
1044 .walk_lock = PGWALK_RDLOCK,
1047 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
1049 unsigned long precharge;
1051 mmap_read_lock(mm);
1052 walk_page_range(mm, 0, ULONG_MAX, &precharge_walk_ops, NULL);
1053 mmap_read_unlock(mm);
1055 precharge = mc.precharge;
1056 mc.precharge = 0;
1058 return precharge;
1061 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
1063 unsigned long precharge = mem_cgroup_count_precharge(mm);
1065 VM_BUG_ON(mc.moving_task);
1066 mc.moving_task = current;
1067 return mem_cgroup_do_precharge(precharge);
1070 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
1071 static void __mem_cgroup_clear_mc(void)
1073 struct mem_cgroup *from = mc.from;
1074 struct mem_cgroup *to = mc.to;
1076 /* we must uncharge all the leftover precharges from mc.to */
1077 if (mc.precharge) {
1078 mem_cgroup_cancel_charge(mc.to, mc.precharge);
1079 mc.precharge = 0;
1082 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
1083 * we must uncharge here.
1085 if (mc.moved_charge) {
1086 mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
1087 mc.moved_charge = 0;
1089 /* we must fixup refcnts and charges */
1090 if (mc.moved_swap) {
1091 /* uncharge swap account from the old cgroup */
1092 if (!mem_cgroup_is_root(mc.from))
1093 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
1095 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
1098 * we charged both to->memory and to->memsw, so we
1099 * should uncharge to->memory.
1101 if (!mem_cgroup_is_root(mc.to))
1102 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
1104 mc.moved_swap = 0;
1106 memcg1_oom_recover(from);
1107 memcg1_oom_recover(to);
1108 wake_up_all(&mc.waitq);
1111 static void mem_cgroup_clear_mc(void)
1113 struct mm_struct *mm = mc.mm;
1116 * we must clear moving_task before waking up waiters at the end of
1117 * task migration.
1119 mc.moving_task = NULL;
1120 __mem_cgroup_clear_mc();
1121 spin_lock(&mc.lock);
1122 mc.from = NULL;
1123 mc.to = NULL;
1124 mc.mm = NULL;
1125 spin_unlock(&mc.lock);
1127 mmput(mm);
1130 int memcg1_can_attach(struct cgroup_taskset *tset)
1132 struct cgroup_subsys_state *css;
1133 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
1134 struct mem_cgroup *from;
1135 struct task_struct *leader, *p;
1136 struct mm_struct *mm;
1137 unsigned long move_flags;
1138 int ret = 0;
1140 /* charge immigration isn't supported on the default hierarchy */
1141 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1142 return 0;
1145 * Multi-process migrations only happen on the default hierarchy
1146 * where charge immigration is not used. Perform charge
1147 * immigration if @tset contains a leader and whine if there are
1148 * multiple.
1150 p = NULL;
1151 cgroup_taskset_for_each_leader(leader, css, tset) {
1152 WARN_ON_ONCE(p);
1153 p = leader;
1154 memcg = mem_cgroup_from_css(css);
1156 if (!p)
1157 return 0;
1160 * We are now committed to this value whatever it is. Changes in this
1161 * tunable will only affect upcoming migrations, not the current one.
1162 * So we need to save it, and keep it going.
1164 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
1165 if (!move_flags)
1166 return 0;
1168 from = mem_cgroup_from_task(p);
1170 VM_BUG_ON(from == memcg);
1172 mm = get_task_mm(p);
1173 if (!mm)
1174 return 0;
1175 /* We move charges only when we move a owner of the mm */
1176 if (mm->owner == p) {
1177 VM_BUG_ON(mc.from);
1178 VM_BUG_ON(mc.to);
1179 VM_BUG_ON(mc.precharge);
1180 VM_BUG_ON(mc.moved_charge);
1181 VM_BUG_ON(mc.moved_swap);
1183 spin_lock(&mc.lock);
1184 mc.mm = mm;
1185 mc.from = from;
1186 mc.to = memcg;
1187 mc.flags = move_flags;
1188 spin_unlock(&mc.lock);
1189 /* We set mc.moving_task later */
1191 ret = mem_cgroup_precharge_mc(mm);
1192 if (ret)
1193 mem_cgroup_clear_mc();
1194 } else {
1195 mmput(mm);
1197 return ret;
1200 void memcg1_cancel_attach(struct cgroup_taskset *tset)
1202 if (mc.to)
1203 mem_cgroup_clear_mc();
1206 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
1207 unsigned long addr, unsigned long end,
1208 struct mm_walk *walk)
1210 int ret = 0;
1211 struct vm_area_struct *vma = walk->vma;
1212 pte_t *pte;
1213 spinlock_t *ptl;
1214 enum mc_target_type target_type;
1215 union mc_target target;
1216 struct folio *folio;
1218 ptl = pmd_trans_huge_lock(pmd, vma);
1219 if (ptl) {
1220 if (mc.precharge < HPAGE_PMD_NR) {
1221 spin_unlock(ptl);
1222 return 0;
1224 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
1225 if (target_type == MC_TARGET_PAGE) {
1226 folio = target.folio;
1227 if (folio_isolate_lru(folio)) {
1228 if (!mem_cgroup_move_account(folio, true,
1229 mc.from, mc.to)) {
1230 mc.precharge -= HPAGE_PMD_NR;
1231 mc.moved_charge += HPAGE_PMD_NR;
1233 folio_putback_lru(folio);
1235 folio_unlock(folio);
1236 folio_put(folio);
1237 } else if (target_type == MC_TARGET_DEVICE) {
1238 folio = target.folio;
1239 if (!mem_cgroup_move_account(folio, true,
1240 mc.from, mc.to)) {
1241 mc.precharge -= HPAGE_PMD_NR;
1242 mc.moved_charge += HPAGE_PMD_NR;
1244 folio_unlock(folio);
1245 folio_put(folio);
1247 spin_unlock(ptl);
1248 return 0;
1251 retry:
1252 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1253 if (!pte)
1254 return 0;
1255 for (; addr != end; addr += PAGE_SIZE) {
1256 pte_t ptent = ptep_get(pte++);
1257 bool device = false;
1258 swp_entry_t ent;
1260 if (!mc.precharge)
1261 break;
1263 switch (get_mctgt_type(vma, addr, ptent, &target)) {
1264 case MC_TARGET_DEVICE:
1265 device = true;
1266 fallthrough;
1267 case MC_TARGET_PAGE:
1268 folio = target.folio;
1270 * We can have a part of the split pmd here. Moving it
1271 * can be done but it would be too convoluted so simply
1272 * ignore such a partial THP and keep it in original
1273 * memcg. There should be somebody mapping the head.
1275 if (folio_test_large(folio))
1276 goto put;
1277 if (!device && !folio_isolate_lru(folio))
1278 goto put;
1279 if (!mem_cgroup_move_account(folio, false,
1280 mc.from, mc.to)) {
1281 mc.precharge--;
1282 /* we uncharge from mc.from later. */
1283 mc.moved_charge++;
1285 if (!device)
1286 folio_putback_lru(folio);
1287 put: /* get_mctgt_type() gets & locks the page */
1288 folio_unlock(folio);
1289 folio_put(folio);
1290 break;
1291 case MC_TARGET_SWAP:
1292 ent = target.ent;
1293 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
1294 mc.precharge--;
1295 mem_cgroup_id_get_many(mc.to, 1);
1296 /* we fixup other refcnts and charges later. */
1297 mc.moved_swap++;
1299 break;
1300 default:
1301 break;
1304 pte_unmap_unlock(pte - 1, ptl);
1305 cond_resched();
1307 if (addr != end) {
1309 * We have consumed all precharges we got in can_attach().
1310 * We try charge one by one, but don't do any additional
1311 * charges to mc.to if we have failed in charge once in attach()
1312 * phase.
1314 ret = mem_cgroup_do_precharge(1);
1315 if (!ret)
1316 goto retry;
1319 return ret;
1322 static const struct mm_walk_ops charge_walk_ops = {
1323 .pmd_entry = mem_cgroup_move_charge_pte_range,
1324 .walk_lock = PGWALK_RDLOCK,
1327 static void mem_cgroup_move_charge(void)
1329 lru_add_drain_all();
1331 * Signal folio_memcg_lock() to take the memcg's move_lock
1332 * while we're moving its pages to another memcg. Then wait
1333 * for already started RCU-only updates to finish.
1335 atomic_inc(&mc.from->moving_account);
1336 synchronize_rcu();
1337 retry:
1338 if (unlikely(!mmap_read_trylock(mc.mm))) {
1340 * Someone who are holding the mmap_lock might be waiting in
1341 * waitq. So we cancel all extra charges, wake up all waiters,
1342 * and retry. Because we cancel precharges, we might not be able
1343 * to move enough charges, but moving charge is a best-effort
1344 * feature anyway, so it wouldn't be a big problem.
1346 __mem_cgroup_clear_mc();
1347 cond_resched();
1348 goto retry;
1351 * When we have consumed all precharges and failed in doing
1352 * additional charge, the page walk just aborts.
1354 walk_page_range(mc.mm, 0, ULONG_MAX, &charge_walk_ops, NULL);
1355 mmap_read_unlock(mc.mm);
1356 atomic_dec(&mc.from->moving_account);
1359 void memcg1_move_task(void)
1361 if (mc.to) {
1362 mem_cgroup_move_charge();
1363 mem_cgroup_clear_mc();
1367 #else /* !CONFIG_MMU */
1368 int memcg1_can_attach(struct cgroup_taskset *tset)
1370 return 0;
1372 void memcg1_cancel_attach(struct cgroup_taskset *tset)
1375 void memcg1_move_task(void)
1378 #endif
1380 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
1382 struct mem_cgroup_threshold_ary *t;
1383 unsigned long usage;
1384 int i;
1386 rcu_read_lock();
1387 if (!swap)
1388 t = rcu_dereference(memcg->thresholds.primary);
1389 else
1390 t = rcu_dereference(memcg->memsw_thresholds.primary);
1392 if (!t)
1393 goto unlock;
1395 usage = mem_cgroup_usage(memcg, swap);
1398 * current_threshold points to threshold just below or equal to usage.
1399 * If it's not true, a threshold was crossed after last
1400 * call of __mem_cgroup_threshold().
1402 i = t->current_threshold;
1405 * Iterate backward over array of thresholds starting from
1406 * current_threshold and check if a threshold is crossed.
1407 * If none of thresholds below usage is crossed, we read
1408 * only one element of the array here.
1410 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
1411 eventfd_signal(t->entries[i].eventfd);
1413 /* i = current_threshold + 1 */
1414 i++;
1417 * Iterate forward over array of thresholds starting from
1418 * current_threshold+1 and check if a threshold is crossed.
1419 * If none of thresholds above usage is crossed, we read
1420 * only one element of the array here.
1422 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
1423 eventfd_signal(t->entries[i].eventfd);
1425 /* Update current_threshold */
1426 t->current_threshold = i - 1;
1427 unlock:
1428 rcu_read_unlock();
1431 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
1433 while (memcg) {
1434 __mem_cgroup_threshold(memcg, false);
1435 if (do_memsw_account())
1436 __mem_cgroup_threshold(memcg, true);
1438 memcg = parent_mem_cgroup(memcg);
1443 * Check events in order.
1446 void memcg1_check_events(struct mem_cgroup *memcg, int nid)
1448 if (IS_ENABLED(CONFIG_PREEMPT_RT))
1449 return;
1451 /* threshold event is triggered in finer grain than soft limit */
1452 if (unlikely(mem_cgroup_event_ratelimit(memcg,
1453 MEM_CGROUP_TARGET_THRESH))) {
1454 bool do_softlimit;
1456 do_softlimit = mem_cgroup_event_ratelimit(memcg,
1457 MEM_CGROUP_TARGET_SOFTLIMIT);
1458 mem_cgroup_threshold(memcg);
1459 if (unlikely(do_softlimit))
1460 memcg1_update_tree(memcg, nid);
1464 static int compare_thresholds(const void *a, const void *b)
1466 const struct mem_cgroup_threshold *_a = a;
1467 const struct mem_cgroup_threshold *_b = b;
1469 if (_a->threshold > _b->threshold)
1470 return 1;
1472 if (_a->threshold < _b->threshold)
1473 return -1;
1475 return 0;
1478 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
1480 struct mem_cgroup_eventfd_list *ev;
1482 spin_lock(&memcg_oom_lock);
1484 list_for_each_entry(ev, &memcg->oom_notify, list)
1485 eventfd_signal(ev->eventfd);
1487 spin_unlock(&memcg_oom_lock);
1488 return 0;
1491 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
1493 struct mem_cgroup *iter;
1495 for_each_mem_cgroup_tree(iter, memcg)
1496 mem_cgroup_oom_notify_cb(iter);
1499 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
1500 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
1502 struct mem_cgroup_thresholds *thresholds;
1503 struct mem_cgroup_threshold_ary *new;
1504 unsigned long threshold;
1505 unsigned long usage;
1506 int i, size, ret;
1508 ret = page_counter_memparse(args, "-1", &threshold);
1509 if (ret)
1510 return ret;
1512 mutex_lock(&memcg->thresholds_lock);
1514 if (type == _MEM) {
1515 thresholds = &memcg->thresholds;
1516 usage = mem_cgroup_usage(memcg, false);
1517 } else if (type == _MEMSWAP) {
1518 thresholds = &memcg->memsw_thresholds;
1519 usage = mem_cgroup_usage(memcg, true);
1520 } else
1521 BUG();
1523 /* Check if a threshold crossed before adding a new one */
1524 if (thresholds->primary)
1525 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
1527 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
1529 /* Allocate memory for new array of thresholds */
1530 new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
1531 if (!new) {
1532 ret = -ENOMEM;
1533 goto unlock;
1535 new->size = size;
1537 /* Copy thresholds (if any) to new array */
1538 if (thresholds->primary)
1539 memcpy(new->entries, thresholds->primary->entries,
1540 flex_array_size(new, entries, size - 1));
1542 /* Add new threshold */
1543 new->entries[size - 1].eventfd = eventfd;
1544 new->entries[size - 1].threshold = threshold;
1546 /* Sort thresholds. Registering of new threshold isn't time-critical */
1547 sort(new->entries, size, sizeof(*new->entries),
1548 compare_thresholds, NULL);
1550 /* Find current threshold */
1551 new->current_threshold = -1;
1552 for (i = 0; i < size; i++) {
1553 if (new->entries[i].threshold <= usage) {
1555 * new->current_threshold will not be used until
1556 * rcu_assign_pointer(), so it's safe to increment
1557 * it here.
1559 ++new->current_threshold;
1560 } else
1561 break;
1564 /* Free old spare buffer and save old primary buffer as spare */
1565 kfree(thresholds->spare);
1566 thresholds->spare = thresholds->primary;
1568 rcu_assign_pointer(thresholds->primary, new);
1570 /* To be sure that nobody uses thresholds */
1571 synchronize_rcu();
1573 unlock:
1574 mutex_unlock(&memcg->thresholds_lock);
1576 return ret;
1579 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
1580 struct eventfd_ctx *eventfd, const char *args)
1582 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
1585 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
1586 struct eventfd_ctx *eventfd, const char *args)
1588 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
1591 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
1592 struct eventfd_ctx *eventfd, enum res_type type)
1594 struct mem_cgroup_thresholds *thresholds;
1595 struct mem_cgroup_threshold_ary *new;
1596 unsigned long usage;
1597 int i, j, size, entries;
1599 mutex_lock(&memcg->thresholds_lock);
1601 if (type == _MEM) {
1602 thresholds = &memcg->thresholds;
1603 usage = mem_cgroup_usage(memcg, false);
1604 } else if (type == _MEMSWAP) {
1605 thresholds = &memcg->memsw_thresholds;
1606 usage = mem_cgroup_usage(memcg, true);
1607 } else
1608 BUG();
1610 if (!thresholds->primary)
1611 goto unlock;
1613 /* Check if a threshold crossed before removing */
1614 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
1616 /* Calculate new number of threshold */
1617 size = entries = 0;
1618 for (i = 0; i < thresholds->primary->size; i++) {
1619 if (thresholds->primary->entries[i].eventfd != eventfd)
1620 size++;
1621 else
1622 entries++;
1625 new = thresholds->spare;
1627 /* If no items related to eventfd have been cleared, nothing to do */
1628 if (!entries)
1629 goto unlock;
1631 /* Set thresholds array to NULL if we don't have thresholds */
1632 if (!size) {
1633 kfree(new);
1634 new = NULL;
1635 goto swap_buffers;
1638 new->size = size;
1640 /* Copy thresholds and find current threshold */
1641 new->current_threshold = -1;
1642 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
1643 if (thresholds->primary->entries[i].eventfd == eventfd)
1644 continue;
1646 new->entries[j] = thresholds->primary->entries[i];
1647 if (new->entries[j].threshold <= usage) {
1649 * new->current_threshold will not be used
1650 * until rcu_assign_pointer(), so it's safe to increment
1651 * it here.
1653 ++new->current_threshold;
1655 j++;
1658 swap_buffers:
1659 /* Swap primary and spare array */
1660 thresholds->spare = thresholds->primary;
1662 rcu_assign_pointer(thresholds->primary, new);
1664 /* To be sure that nobody uses thresholds */
1665 synchronize_rcu();
1667 /* If all events are unregistered, free the spare array */
1668 if (!new) {
1669 kfree(thresholds->spare);
1670 thresholds->spare = NULL;
1672 unlock:
1673 mutex_unlock(&memcg->thresholds_lock);
1676 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
1677 struct eventfd_ctx *eventfd)
1679 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
1682 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
1683 struct eventfd_ctx *eventfd)
1685 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
1688 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
1689 struct eventfd_ctx *eventfd, const char *args)
1691 struct mem_cgroup_eventfd_list *event;
1693 event = kmalloc(sizeof(*event), GFP_KERNEL);
1694 if (!event)
1695 return -ENOMEM;
1697 spin_lock(&memcg_oom_lock);
1699 event->eventfd = eventfd;
1700 list_add(&event->list, &memcg->oom_notify);
1702 /* already in OOM ? */
1703 if (memcg->under_oom)
1704 eventfd_signal(eventfd);
1705 spin_unlock(&memcg_oom_lock);
1707 return 0;
1710 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
1711 struct eventfd_ctx *eventfd)
1713 struct mem_cgroup_eventfd_list *ev, *tmp;
1715 spin_lock(&memcg_oom_lock);
1717 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
1718 if (ev->eventfd == eventfd) {
1719 list_del(&ev->list);
1720 kfree(ev);
1724 spin_unlock(&memcg_oom_lock);
1728 * DO NOT USE IN NEW FILES.
1730 * "cgroup.event_control" implementation.
1732 * This is way over-engineered. It tries to support fully configurable
1733 * events for each user. Such level of flexibility is completely
1734 * unnecessary especially in the light of the planned unified hierarchy.
1736 * Please deprecate this and replace with something simpler if at all
1737 * possible.
1741 * Unregister event and free resources.
1743 * Gets called from workqueue.
1745 static void memcg_event_remove(struct work_struct *work)
1747 struct mem_cgroup_event *event =
1748 container_of(work, struct mem_cgroup_event, remove);
1749 struct mem_cgroup *memcg = event->memcg;
1751 remove_wait_queue(event->wqh, &event->wait);
1753 event->unregister_event(memcg, event->eventfd);
1755 /* Notify userspace the event is going away. */
1756 eventfd_signal(event->eventfd);
1758 eventfd_ctx_put(event->eventfd);
1759 kfree(event);
1760 css_put(&memcg->css);
1764 * Gets called on EPOLLHUP on eventfd when user closes it.
1766 * Called with wqh->lock held and interrupts disabled.
1768 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
1769 int sync, void *key)
1771 struct mem_cgroup_event *event =
1772 container_of(wait, struct mem_cgroup_event, wait);
1773 struct mem_cgroup *memcg = event->memcg;
1774 __poll_t flags = key_to_poll(key);
1776 if (flags & EPOLLHUP) {
1778 * If the event has been detached at cgroup removal, we
1779 * can simply return knowing the other side will cleanup
1780 * for us.
1782 * We can't race against event freeing since the other
1783 * side will require wqh->lock via remove_wait_queue(),
1784 * which we hold.
1786 spin_lock(&memcg->event_list_lock);
1787 if (!list_empty(&event->list)) {
1788 list_del_init(&event->list);
1790 * We are in atomic context, but cgroup_event_remove()
1791 * may sleep, so we have to call it in workqueue.
1793 schedule_work(&event->remove);
1795 spin_unlock(&memcg->event_list_lock);
1798 return 0;
1801 static void memcg_event_ptable_queue_proc(struct file *file,
1802 wait_queue_head_t *wqh, poll_table *pt)
1804 struct mem_cgroup_event *event =
1805 container_of(pt, struct mem_cgroup_event, pt);
1807 event->wqh = wqh;
1808 add_wait_queue(wqh, &event->wait);
1812 * DO NOT USE IN NEW FILES.
1814 * Parse input and register new cgroup event handler.
1816 * Input must be in format '<event_fd> <control_fd> <args>'.
1817 * Interpretation of args is defined by control file implementation.
1819 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
1820 char *buf, size_t nbytes, loff_t off)
1822 struct cgroup_subsys_state *css = of_css(of);
1823 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
1824 struct mem_cgroup_event *event;
1825 struct cgroup_subsys_state *cfile_css;
1826 unsigned int efd, cfd;
1827 struct fd efile;
1828 struct fd cfile;
1829 struct dentry *cdentry;
1830 const char *name;
1831 char *endp;
1832 int ret;
1834 if (IS_ENABLED(CONFIG_PREEMPT_RT))
1835 return -EOPNOTSUPP;
1837 buf = strstrip(buf);
1839 efd = simple_strtoul(buf, &endp, 10);
1840 if (*endp != ' ')
1841 return -EINVAL;
1842 buf = endp + 1;
1844 cfd = simple_strtoul(buf, &endp, 10);
1845 if ((*endp != ' ') && (*endp != '\0'))
1846 return -EINVAL;
1847 buf = endp + 1;
1849 event = kzalloc(sizeof(*event), GFP_KERNEL);
1850 if (!event)
1851 return -ENOMEM;
1853 event->memcg = memcg;
1854 INIT_LIST_HEAD(&event->list);
1855 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
1856 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
1857 INIT_WORK(&event->remove, memcg_event_remove);
1859 efile = fdget(efd);
1860 if (!efile.file) {
1861 ret = -EBADF;
1862 goto out_kfree;
1865 event->eventfd = eventfd_ctx_fileget(efile.file);
1866 if (IS_ERR(event->eventfd)) {
1867 ret = PTR_ERR(event->eventfd);
1868 goto out_put_efile;
1871 cfile = fdget(cfd);
1872 if (!cfile.file) {
1873 ret = -EBADF;
1874 goto out_put_eventfd;
1877 /* the process need read permission on control file */
1878 /* AV: shouldn't we check that it's been opened for read instead? */
1879 ret = file_permission(cfile.file, MAY_READ);
1880 if (ret < 0)
1881 goto out_put_cfile;
1884 * The control file must be a regular cgroup1 file. As a regular cgroup
1885 * file can't be renamed, it's safe to access its name afterwards.
1887 cdentry = cfile.file->f_path.dentry;
1888 if (cdentry->d_sb->s_type != &cgroup_fs_type || !d_is_reg(cdentry)) {
1889 ret = -EINVAL;
1890 goto out_put_cfile;
1894 * Determine the event callbacks and set them in @event. This used
1895 * to be done via struct cftype but cgroup core no longer knows
1896 * about these events. The following is crude but the whole thing
1897 * is for compatibility anyway.
1899 * DO NOT ADD NEW FILES.
1901 name = cdentry->d_name.name;
1903 if (!strcmp(name, "memory.usage_in_bytes")) {
1904 event->register_event = mem_cgroup_usage_register_event;
1905 event->unregister_event = mem_cgroup_usage_unregister_event;
1906 } else if (!strcmp(name, "memory.oom_control")) {
1907 event->register_event = mem_cgroup_oom_register_event;
1908 event->unregister_event = mem_cgroup_oom_unregister_event;
1909 } else if (!strcmp(name, "memory.pressure_level")) {
1910 event->register_event = vmpressure_register_event;
1911 event->unregister_event = vmpressure_unregister_event;
1912 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
1913 event->register_event = memsw_cgroup_usage_register_event;
1914 event->unregister_event = memsw_cgroup_usage_unregister_event;
1915 } else {
1916 ret = -EINVAL;
1917 goto out_put_cfile;
1921 * Verify @cfile should belong to @css. Also, remaining events are
1922 * automatically removed on cgroup destruction but the removal is
1923 * asynchronous, so take an extra ref on @css.
1925 cfile_css = css_tryget_online_from_dir(cdentry->d_parent,
1926 &memory_cgrp_subsys);
1927 ret = -EINVAL;
1928 if (IS_ERR(cfile_css))
1929 goto out_put_cfile;
1930 if (cfile_css != css) {
1931 css_put(cfile_css);
1932 goto out_put_cfile;
1935 ret = event->register_event(memcg, event->eventfd, buf);
1936 if (ret)
1937 goto out_put_css;
1939 vfs_poll(efile.file, &event->pt);
1941 spin_lock_irq(&memcg->event_list_lock);
1942 list_add(&event->list, &memcg->event_list);
1943 spin_unlock_irq(&memcg->event_list_lock);
1945 fdput(cfile);
1946 fdput(efile);
1948 return nbytes;
1950 out_put_css:
1951 css_put(css);
1952 out_put_cfile:
1953 fdput(cfile);
1954 out_put_eventfd:
1955 eventfd_ctx_put(event->eventfd);
1956 out_put_efile:
1957 fdput(efile);
1958 out_kfree:
1959 kfree(event);
1961 return ret;
1964 void memcg1_memcg_init(struct mem_cgroup *memcg)
1966 INIT_LIST_HEAD(&memcg->oom_notify);
1967 mutex_init(&memcg->thresholds_lock);
1968 spin_lock_init(&memcg->move_lock);
1969 INIT_LIST_HEAD(&memcg->event_list);
1970 spin_lock_init(&memcg->event_list_lock);
1973 void memcg1_css_offline(struct mem_cgroup *memcg)
1975 struct mem_cgroup_event *event, *tmp;
1978 * Unregister events and notify userspace.
1979 * Notify userspace about cgroup removing only after rmdir of cgroup
1980 * directory to avoid race between userspace and kernelspace.
1982 spin_lock_irq(&memcg->event_list_lock);
1983 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
1984 list_del_init(&event->list);
1985 schedule_work(&event->remove);
1987 spin_unlock_irq(&memcg->event_list_lock);
1991 * Check OOM-Killer is already running under our hierarchy.
1992 * If someone is running, return false.
1994 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1996 struct mem_cgroup *iter, *failed = NULL;
1998 spin_lock(&memcg_oom_lock);
2000 for_each_mem_cgroup_tree(iter, memcg) {
2001 if (iter->oom_lock) {
2003 * this subtree of our hierarchy is already locked
2004 * so we cannot give a lock.
2006 failed = iter;
2007 mem_cgroup_iter_break(memcg, iter);
2008 break;
2009 } else
2010 iter->oom_lock = true;
2013 if (failed) {
2015 * OK, we failed to lock the whole subtree so we have
2016 * to clean up what we set up to the failing subtree
2018 for_each_mem_cgroup_tree(iter, memcg) {
2019 if (iter == failed) {
2020 mem_cgroup_iter_break(memcg, iter);
2021 break;
2023 iter->oom_lock = false;
2025 } else
2026 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
2028 spin_unlock(&memcg_oom_lock);
2030 return !failed;
2033 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
2035 struct mem_cgroup *iter;
2037 spin_lock(&memcg_oom_lock);
2038 mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
2039 for_each_mem_cgroup_tree(iter, memcg)
2040 iter->oom_lock = false;
2041 spin_unlock(&memcg_oom_lock);
2044 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
2046 struct mem_cgroup *iter;
2048 spin_lock(&memcg_oom_lock);
2049 for_each_mem_cgroup_tree(iter, memcg)
2050 iter->under_oom++;
2051 spin_unlock(&memcg_oom_lock);
2054 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
2056 struct mem_cgroup *iter;
2059 * Be careful about under_oom underflows because a child memcg
2060 * could have been added after mem_cgroup_mark_under_oom.
2062 spin_lock(&memcg_oom_lock);
2063 for_each_mem_cgroup_tree(iter, memcg)
2064 if (iter->under_oom > 0)
2065 iter->under_oom--;
2066 spin_unlock(&memcg_oom_lock);
2069 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
2071 struct oom_wait_info {
2072 struct mem_cgroup *memcg;
2073 wait_queue_entry_t wait;
2076 static int memcg_oom_wake_function(wait_queue_entry_t *wait,
2077 unsigned mode, int sync, void *arg)
2079 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
2080 struct mem_cgroup *oom_wait_memcg;
2081 struct oom_wait_info *oom_wait_info;
2083 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
2084 oom_wait_memcg = oom_wait_info->memcg;
2086 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
2087 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
2088 return 0;
2089 return autoremove_wake_function(wait, mode, sync, arg);
2092 void memcg1_oom_recover(struct mem_cgroup *memcg)
2095 * For the following lockless ->under_oom test, the only required
2096 * guarantee is that it must see the state asserted by an OOM when
2097 * this function is called as a result of userland actions
2098 * triggered by the notification of the OOM. This is trivially
2099 * achieved by invoking mem_cgroup_mark_under_oom() before
2100 * triggering notification.
2102 if (memcg && memcg->under_oom)
2103 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
2107 * mem_cgroup_oom_synchronize - complete memcg OOM handling
2108 * @handle: actually kill/wait or just clean up the OOM state
2110 * This has to be called at the end of a page fault if the memcg OOM
2111 * handler was enabled.
2113 * Memcg supports userspace OOM handling where failed allocations must
2114 * sleep on a waitqueue until the userspace task resolves the
2115 * situation. Sleeping directly in the charge context with all kinds
2116 * of locks held is not a good idea, instead we remember an OOM state
2117 * in the task and mem_cgroup_oom_synchronize() has to be called at
2118 * the end of the page fault to complete the OOM handling.
2120 * Returns %true if an ongoing memcg OOM situation was detected and
2121 * completed, %false otherwise.
2123 bool mem_cgroup_oom_synchronize(bool handle)
2125 struct mem_cgroup *memcg = current->memcg_in_oom;
2126 struct oom_wait_info owait;
2127 bool locked;
2129 /* OOM is global, do not handle */
2130 if (!memcg)
2131 return false;
2133 if (!handle)
2134 goto cleanup;
2136 owait.memcg = memcg;
2137 owait.wait.flags = 0;
2138 owait.wait.func = memcg_oom_wake_function;
2139 owait.wait.private = current;
2140 INIT_LIST_HEAD(&owait.wait.entry);
2142 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2143 mem_cgroup_mark_under_oom(memcg);
2145 locked = mem_cgroup_oom_trylock(memcg);
2147 if (locked)
2148 mem_cgroup_oom_notify(memcg);
2150 schedule();
2151 mem_cgroup_unmark_under_oom(memcg);
2152 finish_wait(&memcg_oom_waitq, &owait.wait);
2154 if (locked)
2155 mem_cgroup_oom_unlock(memcg);
2156 cleanup:
2157 current->memcg_in_oom = NULL;
2158 css_put(&memcg->css);
2159 return true;
2163 bool memcg1_oom_prepare(struct mem_cgroup *memcg, bool *locked)
2166 * We are in the middle of the charge context here, so we
2167 * don't want to block when potentially sitting on a callstack
2168 * that holds all kinds of filesystem and mm locks.
2170 * cgroup1 allows disabling the OOM killer and waiting for outside
2171 * handling until the charge can succeed; remember the context and put
2172 * the task to sleep at the end of the page fault when all locks are
2173 * released.
2175 * On the other hand, in-kernel OOM killer allows for an async victim
2176 * memory reclaim (oom_reaper) and that means that we are not solely
2177 * relying on the oom victim to make a forward progress and we can
2178 * invoke the oom killer here.
2180 * Please note that mem_cgroup_out_of_memory might fail to find a
2181 * victim and then we have to bail out from the charge path.
2183 if (READ_ONCE(memcg->oom_kill_disable)) {
2184 if (current->in_user_fault) {
2185 css_get(&memcg->css);
2186 current->memcg_in_oom = memcg;
2188 return false;
2191 mem_cgroup_mark_under_oom(memcg);
2193 *locked = mem_cgroup_oom_trylock(memcg);
2195 if (*locked)
2196 mem_cgroup_oom_notify(memcg);
2198 mem_cgroup_unmark_under_oom(memcg);
2200 return true;
2203 void memcg1_oom_finish(struct mem_cgroup *memcg, bool locked)
2205 if (locked)
2206 mem_cgroup_oom_unlock(memcg);
2209 static DEFINE_MUTEX(memcg_max_mutex);
2211 static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
2212 unsigned long max, bool memsw)
2214 bool enlarge = false;
2215 bool drained = false;
2216 int ret;
2217 bool limits_invariant;
2218 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
2220 do {
2221 if (signal_pending(current)) {
2222 ret = -EINTR;
2223 break;
2226 mutex_lock(&memcg_max_mutex);
2228 * Make sure that the new limit (memsw or memory limit) doesn't
2229 * break our basic invariant rule memory.max <= memsw.max.
2231 limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
2232 max <= memcg->memsw.max;
2233 if (!limits_invariant) {
2234 mutex_unlock(&memcg_max_mutex);
2235 ret = -EINVAL;
2236 break;
2238 if (max > counter->max)
2239 enlarge = true;
2240 ret = page_counter_set_max(counter, max);
2241 mutex_unlock(&memcg_max_mutex);
2243 if (!ret)
2244 break;
2246 if (!drained) {
2247 drain_all_stock(memcg);
2248 drained = true;
2249 continue;
2252 if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL,
2253 memsw ? 0 : MEMCG_RECLAIM_MAY_SWAP, NULL)) {
2254 ret = -EBUSY;
2255 break;
2257 } while (true);
2259 if (!ret && enlarge)
2260 memcg1_oom_recover(memcg);
2262 return ret;
2266 * Reclaims as many pages from the given memcg as possible.
2268 * Caller is responsible for holding css reference for memcg.
2270 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2272 int nr_retries = MAX_RECLAIM_RETRIES;
2274 /* we call try-to-free pages for make this cgroup empty */
2275 lru_add_drain_all();
2277 drain_all_stock(memcg);
2279 /* try to free all pages in this cgroup */
2280 while (nr_retries && page_counter_read(&memcg->memory)) {
2281 if (signal_pending(current))
2282 return -EINTR;
2284 if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL,
2285 MEMCG_RECLAIM_MAY_SWAP, NULL))
2286 nr_retries--;
2289 return 0;
2292 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
2293 char *buf, size_t nbytes,
2294 loff_t off)
2296 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2298 if (mem_cgroup_is_root(memcg))
2299 return -EINVAL;
2300 return mem_cgroup_force_empty(memcg) ?: nbytes;
2303 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
2304 struct cftype *cft)
2306 return 1;
2309 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
2310 struct cftype *cft, u64 val)
2312 if (val == 1)
2313 return 0;
2315 pr_warn_once("Non-hierarchical mode is deprecated. "
2316 "Please report your usecase to linux-mm@kvack.org if you "
2317 "depend on this functionality.\n");
2319 return -EINVAL;
2322 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
2323 struct cftype *cft)
2325 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2326 struct page_counter *counter;
2328 switch (MEMFILE_TYPE(cft->private)) {
2329 case _MEM:
2330 counter = &memcg->memory;
2331 break;
2332 case _MEMSWAP:
2333 counter = &memcg->memsw;
2334 break;
2335 case _KMEM:
2336 counter = &memcg->kmem;
2337 break;
2338 case _TCP:
2339 counter = &memcg->tcpmem;
2340 break;
2341 default:
2342 BUG();
2345 switch (MEMFILE_ATTR(cft->private)) {
2346 case RES_USAGE:
2347 if (counter == &memcg->memory)
2348 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
2349 if (counter == &memcg->memsw)
2350 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
2351 return (u64)page_counter_read(counter) * PAGE_SIZE;
2352 case RES_LIMIT:
2353 return (u64)counter->max * PAGE_SIZE;
2354 case RES_MAX_USAGE:
2355 return (u64)counter->watermark * PAGE_SIZE;
2356 case RES_FAILCNT:
2357 return counter->failcnt;
2358 case RES_SOFT_LIMIT:
2359 return (u64)READ_ONCE(memcg->soft_limit) * PAGE_SIZE;
2360 default:
2361 BUG();
2366 * This function doesn't do anything useful. Its only job is to provide a read
2367 * handler for a file so that cgroup_file_mode() will add read permissions.
2369 static int mem_cgroup_dummy_seq_show(__always_unused struct seq_file *m,
2370 __always_unused void *v)
2372 return -EINVAL;
2375 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
2377 int ret;
2379 mutex_lock(&memcg_max_mutex);
2381 ret = page_counter_set_max(&memcg->tcpmem, max);
2382 if (ret)
2383 goto out;
2385 if (!memcg->tcpmem_active) {
2387 * The active flag needs to be written after the static_key
2388 * update. This is what guarantees that the socket activation
2389 * function is the last one to run. See mem_cgroup_sk_alloc()
2390 * for details, and note that we don't mark any socket as
2391 * belonging to this memcg until that flag is up.
2393 * We need to do this, because static_keys will span multiple
2394 * sites, but we can't control their order. If we mark a socket
2395 * as accounted, but the accounting functions are not patched in
2396 * yet, we'll lose accounting.
2398 * We never race with the readers in mem_cgroup_sk_alloc(),
2399 * because when this value change, the code to process it is not
2400 * patched in yet.
2402 static_branch_inc(&memcg_sockets_enabled_key);
2403 memcg->tcpmem_active = true;
2405 out:
2406 mutex_unlock(&memcg_max_mutex);
2407 return ret;
2411 * The user of this function is...
2412 * RES_LIMIT.
2414 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
2415 char *buf, size_t nbytes, loff_t off)
2417 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2418 unsigned long nr_pages;
2419 int ret;
2421 buf = strstrip(buf);
2422 ret = page_counter_memparse(buf, "-1", &nr_pages);
2423 if (ret)
2424 return ret;
2426 switch (MEMFILE_ATTR(of_cft(of)->private)) {
2427 case RES_LIMIT:
2428 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
2429 ret = -EINVAL;
2430 break;
2432 switch (MEMFILE_TYPE(of_cft(of)->private)) {
2433 case _MEM:
2434 ret = mem_cgroup_resize_max(memcg, nr_pages, false);
2435 break;
2436 case _MEMSWAP:
2437 ret = mem_cgroup_resize_max(memcg, nr_pages, true);
2438 break;
2439 case _KMEM:
2440 pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. "
2441 "Writing any value to this file has no effect. "
2442 "Please report your usecase to linux-mm@kvack.org if you "
2443 "depend on this functionality.\n");
2444 ret = 0;
2445 break;
2446 case _TCP:
2447 ret = memcg_update_tcp_max(memcg, nr_pages);
2448 break;
2450 break;
2451 case RES_SOFT_LIMIT:
2452 if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
2453 ret = -EOPNOTSUPP;
2454 } else {
2455 WRITE_ONCE(memcg->soft_limit, nr_pages);
2456 ret = 0;
2458 break;
2460 return ret ?: nbytes;
2463 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
2464 size_t nbytes, loff_t off)
2466 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2467 struct page_counter *counter;
2469 switch (MEMFILE_TYPE(of_cft(of)->private)) {
2470 case _MEM:
2471 counter = &memcg->memory;
2472 break;
2473 case _MEMSWAP:
2474 counter = &memcg->memsw;
2475 break;
2476 case _KMEM:
2477 counter = &memcg->kmem;
2478 break;
2479 case _TCP:
2480 counter = &memcg->tcpmem;
2481 break;
2482 default:
2483 BUG();
2486 switch (MEMFILE_ATTR(of_cft(of)->private)) {
2487 case RES_MAX_USAGE:
2488 page_counter_reset_watermark(counter);
2489 break;
2490 case RES_FAILCNT:
2491 counter->failcnt = 0;
2492 break;
2493 default:
2494 BUG();
2497 return nbytes;
2500 #ifdef CONFIG_NUMA
2502 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
2503 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
2504 #define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
2506 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
2507 int nid, unsigned int lru_mask, bool tree)
2509 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
2510 unsigned long nr = 0;
2511 enum lru_list lru;
2513 VM_BUG_ON((unsigned)nid >= nr_node_ids);
2515 for_each_lru(lru) {
2516 if (!(BIT(lru) & lru_mask))
2517 continue;
2518 if (tree)
2519 nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
2520 else
2521 nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
2523 return nr;
2526 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
2527 unsigned int lru_mask,
2528 bool tree)
2530 unsigned long nr = 0;
2531 enum lru_list lru;
2533 for_each_lru(lru) {
2534 if (!(BIT(lru) & lru_mask))
2535 continue;
2536 if (tree)
2537 nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
2538 else
2539 nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
2541 return nr;
2544 static int memcg_numa_stat_show(struct seq_file *m, void *v)
2546 struct numa_stat {
2547 const char *name;
2548 unsigned int lru_mask;
2551 static const struct numa_stat stats[] = {
2552 { "total", LRU_ALL },
2553 { "file", LRU_ALL_FILE },
2554 { "anon", LRU_ALL_ANON },
2555 { "unevictable", BIT(LRU_UNEVICTABLE) },
2557 const struct numa_stat *stat;
2558 int nid;
2559 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
2561 mem_cgroup_flush_stats(memcg);
2563 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
2564 seq_printf(m, "%s=%lu", stat->name,
2565 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
2566 false));
2567 for_each_node_state(nid, N_MEMORY)
2568 seq_printf(m, " N%d=%lu", nid,
2569 mem_cgroup_node_nr_lru_pages(memcg, nid,
2570 stat->lru_mask, false));
2571 seq_putc(m, '\n');
2574 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
2576 seq_printf(m, "hierarchical_%s=%lu", stat->name,
2577 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
2578 true));
2579 for_each_node_state(nid, N_MEMORY)
2580 seq_printf(m, " N%d=%lu", nid,
2581 mem_cgroup_node_nr_lru_pages(memcg, nid,
2582 stat->lru_mask, true));
2583 seq_putc(m, '\n');
2586 return 0;
2588 #endif /* CONFIG_NUMA */
2590 static const unsigned int memcg1_stats[] = {
2591 NR_FILE_PAGES,
2592 NR_ANON_MAPPED,
2593 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2594 NR_ANON_THPS,
2595 #endif
2596 NR_SHMEM,
2597 NR_FILE_MAPPED,
2598 NR_FILE_DIRTY,
2599 NR_WRITEBACK,
2600 WORKINGSET_REFAULT_ANON,
2601 WORKINGSET_REFAULT_FILE,
2602 #ifdef CONFIG_SWAP
2603 MEMCG_SWAP,
2604 NR_SWAPCACHE,
2605 #endif
2608 static const char *const memcg1_stat_names[] = {
2609 "cache",
2610 "rss",
2611 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2612 "rss_huge",
2613 #endif
2614 "shmem",
2615 "mapped_file",
2616 "dirty",
2617 "writeback",
2618 "workingset_refault_anon",
2619 "workingset_refault_file",
2620 #ifdef CONFIG_SWAP
2621 "swap",
2622 "swapcached",
2623 #endif
2626 /* Universal VM events cgroup1 shows, original sort order */
2627 static const unsigned int memcg1_events[] = {
2628 PGPGIN,
2629 PGPGOUT,
2630 PGFAULT,
2631 PGMAJFAULT,
2634 void memcg1_stat_format(struct mem_cgroup *memcg, struct seq_buf *s)
2636 unsigned long memory, memsw;
2637 struct mem_cgroup *mi;
2638 unsigned int i;
2640 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
2642 mem_cgroup_flush_stats(memcg);
2644 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
2645 unsigned long nr;
2647 nr = memcg_page_state_local_output(memcg, memcg1_stats[i]);
2648 seq_buf_printf(s, "%s %lu\n", memcg1_stat_names[i], nr);
2651 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
2652 seq_buf_printf(s, "%s %lu\n", vm_event_name(memcg1_events[i]),
2653 memcg_events_local(memcg, memcg1_events[i]));
2655 for (i = 0; i < NR_LRU_LISTS; i++)
2656 seq_buf_printf(s, "%s %lu\n", lru_list_name(i),
2657 memcg_page_state_local(memcg, NR_LRU_BASE + i) *
2658 PAGE_SIZE);
2660 /* Hierarchical information */
2661 memory = memsw = PAGE_COUNTER_MAX;
2662 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
2663 memory = min(memory, READ_ONCE(mi->memory.max));
2664 memsw = min(memsw, READ_ONCE(mi->memsw.max));
2666 seq_buf_printf(s, "hierarchical_memory_limit %llu\n",
2667 (u64)memory * PAGE_SIZE);
2668 seq_buf_printf(s, "hierarchical_memsw_limit %llu\n",
2669 (u64)memsw * PAGE_SIZE);
2671 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
2672 unsigned long nr;
2674 nr = memcg_page_state_output(memcg, memcg1_stats[i]);
2675 seq_buf_printf(s, "total_%s %llu\n", memcg1_stat_names[i],
2676 (u64)nr);
2679 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
2680 seq_buf_printf(s, "total_%s %llu\n",
2681 vm_event_name(memcg1_events[i]),
2682 (u64)memcg_events(memcg, memcg1_events[i]));
2684 for (i = 0; i < NR_LRU_LISTS; i++)
2685 seq_buf_printf(s, "total_%s %llu\n", lru_list_name(i),
2686 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
2687 PAGE_SIZE);
2689 #ifdef CONFIG_DEBUG_VM
2691 pg_data_t *pgdat;
2692 struct mem_cgroup_per_node *mz;
2693 unsigned long anon_cost = 0;
2694 unsigned long file_cost = 0;
2696 for_each_online_pgdat(pgdat) {
2697 mz = memcg->nodeinfo[pgdat->node_id];
2699 anon_cost += mz->lruvec.anon_cost;
2700 file_cost += mz->lruvec.file_cost;
2702 seq_buf_printf(s, "anon_cost %lu\n", anon_cost);
2703 seq_buf_printf(s, "file_cost %lu\n", file_cost);
2705 #endif
2708 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
2709 struct cftype *cft)
2711 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2713 return mem_cgroup_swappiness(memcg);
2716 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
2717 struct cftype *cft, u64 val)
2719 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2721 if (val > MAX_SWAPPINESS)
2722 return -EINVAL;
2724 if (!mem_cgroup_is_root(memcg))
2725 WRITE_ONCE(memcg->swappiness, val);
2726 else
2727 WRITE_ONCE(vm_swappiness, val);
2729 return 0;
2732 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
2734 struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
2736 seq_printf(sf, "oom_kill_disable %d\n", READ_ONCE(memcg->oom_kill_disable));
2737 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
2738 seq_printf(sf, "oom_kill %lu\n",
2739 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
2740 return 0;
2743 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
2744 struct cftype *cft, u64 val)
2746 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2748 /* cannot set to root cgroup and only 0 and 1 are allowed */
2749 if (mem_cgroup_is_root(memcg) || !((val == 0) || (val == 1)))
2750 return -EINVAL;
2752 WRITE_ONCE(memcg->oom_kill_disable, val);
2753 if (!val)
2754 memcg1_oom_recover(memcg);
2756 return 0;
2759 #ifdef CONFIG_SLUB_DEBUG
2760 static int mem_cgroup_slab_show(struct seq_file *m, void *p)
2763 * Deprecated.
2764 * Please, take a look at tools/cgroup/memcg_slabinfo.py .
2766 return 0;
2768 #endif
2770 struct cftype mem_cgroup_legacy_files[] = {
2772 .name = "usage_in_bytes",
2773 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
2774 .read_u64 = mem_cgroup_read_u64,
2777 .name = "max_usage_in_bytes",
2778 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
2779 .write = mem_cgroup_reset,
2780 .read_u64 = mem_cgroup_read_u64,
2783 .name = "limit_in_bytes",
2784 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
2785 .write = mem_cgroup_write,
2786 .read_u64 = mem_cgroup_read_u64,
2789 .name = "soft_limit_in_bytes",
2790 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
2791 .write = mem_cgroup_write,
2792 .read_u64 = mem_cgroup_read_u64,
2795 .name = "failcnt",
2796 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
2797 .write = mem_cgroup_reset,
2798 .read_u64 = mem_cgroup_read_u64,
2801 .name = "stat",
2802 .seq_show = memory_stat_show,
2805 .name = "force_empty",
2806 .write = mem_cgroup_force_empty_write,
2809 .name = "use_hierarchy",
2810 .write_u64 = mem_cgroup_hierarchy_write,
2811 .read_u64 = mem_cgroup_hierarchy_read,
2814 .name = "cgroup.event_control", /* XXX: for compat */
2815 .write = memcg_write_event_control,
2816 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
2819 .name = "swappiness",
2820 .read_u64 = mem_cgroup_swappiness_read,
2821 .write_u64 = mem_cgroup_swappiness_write,
2824 .name = "move_charge_at_immigrate",
2825 .read_u64 = mem_cgroup_move_charge_read,
2826 .write_u64 = mem_cgroup_move_charge_write,
2829 .name = "oom_control",
2830 .seq_show = mem_cgroup_oom_control_read,
2831 .write_u64 = mem_cgroup_oom_control_write,
2834 .name = "pressure_level",
2835 .seq_show = mem_cgroup_dummy_seq_show,
2837 #ifdef CONFIG_NUMA
2839 .name = "numa_stat",
2840 .seq_show = memcg_numa_stat_show,
2842 #endif
2844 .name = "kmem.limit_in_bytes",
2845 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
2846 .write = mem_cgroup_write,
2847 .read_u64 = mem_cgroup_read_u64,
2850 .name = "kmem.usage_in_bytes",
2851 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
2852 .read_u64 = mem_cgroup_read_u64,
2855 .name = "kmem.failcnt",
2856 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
2857 .write = mem_cgroup_reset,
2858 .read_u64 = mem_cgroup_read_u64,
2861 .name = "kmem.max_usage_in_bytes",
2862 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
2863 .write = mem_cgroup_reset,
2864 .read_u64 = mem_cgroup_read_u64,
2866 #ifdef CONFIG_SLUB_DEBUG
2868 .name = "kmem.slabinfo",
2869 .seq_show = mem_cgroup_slab_show,
2871 #endif
2873 .name = "kmem.tcp.limit_in_bytes",
2874 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
2875 .write = mem_cgroup_write,
2876 .read_u64 = mem_cgroup_read_u64,
2879 .name = "kmem.tcp.usage_in_bytes",
2880 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
2881 .read_u64 = mem_cgroup_read_u64,
2884 .name = "kmem.tcp.failcnt",
2885 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
2886 .write = mem_cgroup_reset,
2887 .read_u64 = mem_cgroup_read_u64,
2890 .name = "kmem.tcp.max_usage_in_bytes",
2891 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
2892 .write = mem_cgroup_reset,
2893 .read_u64 = mem_cgroup_read_u64,
2895 { }, /* terminate */
2898 struct cftype memsw_files[] = {
2900 .name = "memsw.usage_in_bytes",
2901 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
2902 .read_u64 = mem_cgroup_read_u64,
2905 .name = "memsw.max_usage_in_bytes",
2906 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
2907 .write = mem_cgroup_reset,
2908 .read_u64 = mem_cgroup_read_u64,
2911 .name = "memsw.limit_in_bytes",
2912 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
2913 .write = mem_cgroup_write,
2914 .read_u64 = mem_cgroup_read_u64,
2917 .name = "memsw.failcnt",
2918 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
2919 .write = mem_cgroup_reset,
2920 .read_u64 = mem_cgroup_read_u64,
2922 { }, /* terminate */
2925 void memcg1_account_kmem(struct mem_cgroup *memcg, int nr_pages)
2927 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
2928 if (nr_pages > 0)
2929 page_counter_charge(&memcg->kmem, nr_pages);
2930 else
2931 page_counter_uncharge(&memcg->kmem, -nr_pages);
2935 bool memcg1_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages,
2936 gfp_t gfp_mask)
2938 struct page_counter *fail;
2940 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
2941 memcg->tcpmem_pressure = 0;
2942 return true;
2944 memcg->tcpmem_pressure = 1;
2945 if (gfp_mask & __GFP_NOFAIL) {
2946 page_counter_charge(&memcg->tcpmem, nr_pages);
2947 return true;
2949 return false;
2952 static int __init memcg1_init(void)
2954 int node;
2956 for_each_node(node) {
2957 struct mem_cgroup_tree_per_node *rtpn;
2959 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, node);
2961 rtpn->rb_root = RB_ROOT;
2962 rtpn->rb_rightmost = NULL;
2963 spin_lock_init(&rtpn->lock);
2964 soft_limit_tree.rb_tree_per_node[node] = rtpn;
2967 return 0;
2969 subsys_initcall(memcg1_init);