Merge tag '6.11-rc-smb-client-fixes-part2' of git://git.samba.org/sfrench/cifs-2.6
[linux-stable.git] / drivers / firewire / ohci.c
blob314a29c0fd3e9b9ee00a1424218e8cdaca5a9489
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Driver for OHCI 1394 controllers
5 * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
6 */
8 #include <linux/bitops.h>
9 #include <linux/bug.h>
10 #include <linux/compiler.h>
11 #include <linux/delay.h>
12 #include <linux/device.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/firewire.h>
15 #include <linux/firewire-constants.h>
16 #include <linux/init.h>
17 #include <linux/interrupt.h>
18 #include <linux/io.h>
19 #include <linux/kernel.h>
20 #include <linux/list.h>
21 #include <linux/mm.h>
22 #include <linux/module.h>
23 #include <linux/moduleparam.h>
24 #include <linux/mutex.h>
25 #include <linux/pci.h>
26 #include <linux/pci_ids.h>
27 #include <linux/slab.h>
28 #include <linux/spinlock.h>
29 #include <linux/string.h>
30 #include <linux/time.h>
31 #include <linux/vmalloc.h>
32 #include <linux/workqueue.h>
34 #include <asm/byteorder.h>
35 #include <asm/page.h>
37 #ifdef CONFIG_PPC_PMAC
38 #include <asm/pmac_feature.h>
39 #endif
41 #include "core.h"
42 #include "ohci.h"
43 #include "packet-header-definitions.h"
44 #include "phy-packet-definitions.h"
46 #include <trace/events/firewire.h>
48 static u32 cond_le32_to_cpu(__le32 value, bool has_be_header_quirk);
50 #define CREATE_TRACE_POINTS
51 #include <trace/events/firewire_ohci.h>
53 #define ohci_info(ohci, f, args...) dev_info(ohci->card.device, f, ##args)
54 #define ohci_notice(ohci, f, args...) dev_notice(ohci->card.device, f, ##args)
55 #define ohci_err(ohci, f, args...) dev_err(ohci->card.device, f, ##args)
57 #define DESCRIPTOR_OUTPUT_MORE 0
58 #define DESCRIPTOR_OUTPUT_LAST (1 << 12)
59 #define DESCRIPTOR_INPUT_MORE (2 << 12)
60 #define DESCRIPTOR_INPUT_LAST (3 << 12)
61 #define DESCRIPTOR_STATUS (1 << 11)
62 #define DESCRIPTOR_KEY_IMMEDIATE (2 << 8)
63 #define DESCRIPTOR_PING (1 << 7)
64 #define DESCRIPTOR_YY (1 << 6)
65 #define DESCRIPTOR_NO_IRQ (0 << 4)
66 #define DESCRIPTOR_IRQ_ERROR (1 << 4)
67 #define DESCRIPTOR_IRQ_ALWAYS (3 << 4)
68 #define DESCRIPTOR_BRANCH_ALWAYS (3 << 2)
69 #define DESCRIPTOR_WAIT (3 << 0)
71 #define DESCRIPTOR_CMD (0xf << 12)
73 struct descriptor {
74 __le16 req_count;
75 __le16 control;
76 __le32 data_address;
77 __le32 branch_address;
78 __le16 res_count;
79 __le16 transfer_status;
80 } __attribute__((aligned(16)));
82 #define CONTROL_SET(regs) (regs)
83 #define CONTROL_CLEAR(regs) ((regs) + 4)
84 #define COMMAND_PTR(regs) ((regs) + 12)
85 #define CONTEXT_MATCH(regs) ((regs) + 16)
87 #define AR_BUFFER_SIZE (32*1024)
88 #define AR_BUFFERS_MIN DIV_ROUND_UP(AR_BUFFER_SIZE, PAGE_SIZE)
89 /* we need at least two pages for proper list management */
90 #define AR_BUFFERS (AR_BUFFERS_MIN >= 2 ? AR_BUFFERS_MIN : 2)
92 #define MAX_ASYNC_PAYLOAD 4096
93 #define MAX_AR_PACKET_SIZE (16 + MAX_ASYNC_PAYLOAD + 4)
94 #define AR_WRAPAROUND_PAGES DIV_ROUND_UP(MAX_AR_PACKET_SIZE, PAGE_SIZE)
96 struct ar_context {
97 struct fw_ohci *ohci;
98 struct page *pages[AR_BUFFERS];
99 void *buffer;
100 struct descriptor *descriptors;
101 dma_addr_t descriptors_bus;
102 void *pointer;
103 unsigned int last_buffer_index;
104 u32 regs;
105 struct tasklet_struct tasklet;
108 struct context;
110 typedef int (*descriptor_callback_t)(struct context *ctx,
111 struct descriptor *d,
112 struct descriptor *last);
115 * A buffer that contains a block of DMA-able coherent memory used for
116 * storing a portion of a DMA descriptor program.
118 struct descriptor_buffer {
119 struct list_head list;
120 dma_addr_t buffer_bus;
121 size_t buffer_size;
122 size_t used;
123 struct descriptor buffer[];
126 struct context {
127 struct fw_ohci *ohci;
128 u32 regs;
129 int total_allocation;
130 u32 current_bus;
131 bool running;
132 bool flushing;
135 * List of page-sized buffers for storing DMA descriptors.
136 * Head of list contains buffers in use and tail of list contains
137 * free buffers.
139 struct list_head buffer_list;
142 * Pointer to a buffer inside buffer_list that contains the tail
143 * end of the current DMA program.
145 struct descriptor_buffer *buffer_tail;
148 * The descriptor containing the branch address of the first
149 * descriptor that has not yet been filled by the device.
151 struct descriptor *last;
154 * The last descriptor block in the DMA program. It contains the branch
155 * address that must be updated upon appending a new descriptor.
157 struct descriptor *prev;
158 int prev_z;
160 descriptor_callback_t callback;
162 struct tasklet_struct tasklet;
165 #define IT_HEADER_SY(v) ((v) << 0)
166 #define IT_HEADER_TCODE(v) ((v) << 4)
167 #define IT_HEADER_CHANNEL(v) ((v) << 8)
168 #define IT_HEADER_TAG(v) ((v) << 14)
169 #define IT_HEADER_SPEED(v) ((v) << 16)
170 #define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
172 struct iso_context {
173 struct fw_iso_context base;
174 struct context context;
175 void *header;
176 size_t header_length;
177 unsigned long flushing_completions;
178 u32 mc_buffer_bus;
179 u16 mc_completed;
180 u16 last_timestamp;
181 u8 sync;
182 u8 tags;
185 #define CONFIG_ROM_SIZE 1024
187 struct fw_ohci {
188 struct fw_card card;
190 __iomem char *registers;
191 int node_id;
192 int generation;
193 int request_generation; /* for timestamping incoming requests */
194 unsigned quirks;
195 unsigned int pri_req_max;
196 u32 bus_time;
197 bool bus_time_running;
198 bool is_root;
199 bool csr_state_setclear_abdicate;
200 int n_ir;
201 int n_it;
203 * Spinlock for accessing fw_ohci data. Never call out of
204 * this driver with this lock held.
206 spinlock_t lock;
208 struct mutex phy_reg_mutex;
210 void *misc_buffer;
211 dma_addr_t misc_buffer_bus;
213 struct ar_context ar_request_ctx;
214 struct ar_context ar_response_ctx;
215 struct context at_request_ctx;
216 struct context at_response_ctx;
218 u32 it_context_support;
219 u32 it_context_mask; /* unoccupied IT contexts */
220 struct iso_context *it_context_list;
221 u64 ir_context_channels; /* unoccupied channels */
222 u32 ir_context_support;
223 u32 ir_context_mask; /* unoccupied IR contexts */
224 struct iso_context *ir_context_list;
225 u64 mc_channels; /* channels in use by the multichannel IR context */
226 bool mc_allocated;
228 __be32 *config_rom;
229 dma_addr_t config_rom_bus;
230 __be32 *next_config_rom;
231 dma_addr_t next_config_rom_bus;
232 __be32 next_header;
234 __le32 *self_id;
235 dma_addr_t self_id_bus;
236 struct work_struct bus_reset_work;
238 u32 self_id_buffer[512];
241 static struct workqueue_struct *selfid_workqueue;
243 static inline struct fw_ohci *fw_ohci(struct fw_card *card)
245 return container_of(card, struct fw_ohci, card);
248 #define IT_CONTEXT_CYCLE_MATCH_ENABLE 0x80000000
249 #define IR_CONTEXT_BUFFER_FILL 0x80000000
250 #define IR_CONTEXT_ISOCH_HEADER 0x40000000
251 #define IR_CONTEXT_CYCLE_MATCH_ENABLE 0x20000000
252 #define IR_CONTEXT_MULTI_CHANNEL_MODE 0x10000000
253 #define IR_CONTEXT_DUAL_BUFFER_MODE 0x08000000
255 #define CONTEXT_RUN 0x8000
256 #define CONTEXT_WAKE 0x1000
257 #define CONTEXT_DEAD 0x0800
258 #define CONTEXT_ACTIVE 0x0400
260 #define OHCI1394_MAX_AT_REQ_RETRIES 0xf
261 #define OHCI1394_MAX_AT_RESP_RETRIES 0x2
262 #define OHCI1394_MAX_PHYS_RESP_RETRIES 0x8
264 #define OHCI1394_REGISTER_SIZE 0x800
265 #define OHCI1394_PCI_HCI_Control 0x40
266 #define SELF_ID_BUF_SIZE 0x800
267 #define OHCI_TCODE_PHY_PACKET 0x0e
268 #define OHCI_VERSION_1_1 0x010010
270 static char ohci_driver_name[] = KBUILD_MODNAME;
272 #define PCI_VENDOR_ID_PINNACLE_SYSTEMS 0x11bd
273 #define PCI_DEVICE_ID_AGERE_FW643 0x5901
274 #define PCI_DEVICE_ID_CREATIVE_SB1394 0x4001
275 #define PCI_DEVICE_ID_JMICRON_JMB38X_FW 0x2380
276 #define PCI_DEVICE_ID_TI_TSB12LV22 0x8009
277 #define PCI_DEVICE_ID_TI_TSB12LV26 0x8020
278 #define PCI_DEVICE_ID_TI_TSB82AA2 0x8025
279 #define PCI_DEVICE_ID_VIA_VT630X 0x3044
280 #define PCI_REV_ID_VIA_VT6306 0x46
281 #define PCI_DEVICE_ID_VIA_VT6315 0x3403
283 #define QUIRK_CYCLE_TIMER 0x1
284 #define QUIRK_RESET_PACKET 0x2
285 #define QUIRK_BE_HEADERS 0x4
286 #define QUIRK_NO_1394A 0x8
287 #define QUIRK_NO_MSI 0x10
288 #define QUIRK_TI_SLLZ059 0x20
289 #define QUIRK_IR_WAKE 0x40
291 // On PCI Express Root Complex in any type of AMD Ryzen machine, VIA VT6306/6307/6308 with Asmedia
292 // ASM1083/1085 brings an inconvenience that the read accesses to 'Isochronous Cycle Timer' register
293 // (at offset 0xf0 in PCI I/O space) often causes unexpected system reboot. The mechanism is not
294 // clear, since the read access to the other registers is enough safe; e.g. 'Node ID' register,
295 // while it is probable due to detection of any type of PCIe error.
296 #define QUIRK_REBOOT_BY_CYCLE_TIMER_READ 0x80000000
298 #if IS_ENABLED(CONFIG_X86)
300 static bool has_reboot_by_cycle_timer_read_quirk(const struct fw_ohci *ohci)
302 return !!(ohci->quirks & QUIRK_REBOOT_BY_CYCLE_TIMER_READ);
305 #define PCI_DEVICE_ID_ASMEDIA_ASM108X 0x1080
307 static bool detect_vt630x_with_asm1083_on_amd_ryzen_machine(const struct pci_dev *pdev)
309 const struct pci_dev *pcie_to_pci_bridge;
311 // Detect any type of AMD Ryzen machine.
312 if (!static_cpu_has(X86_FEATURE_ZEN))
313 return false;
315 // Detect VIA VT6306/6307/6308.
316 if (pdev->vendor != PCI_VENDOR_ID_VIA)
317 return false;
318 if (pdev->device != PCI_DEVICE_ID_VIA_VT630X)
319 return false;
321 // Detect Asmedia ASM1083/1085.
322 pcie_to_pci_bridge = pdev->bus->self;
323 if (pcie_to_pci_bridge->vendor != PCI_VENDOR_ID_ASMEDIA)
324 return false;
325 if (pcie_to_pci_bridge->device != PCI_DEVICE_ID_ASMEDIA_ASM108X)
326 return false;
328 return true;
331 #else
332 #define has_reboot_by_cycle_timer_read_quirk(ohci) false
333 #define detect_vt630x_with_asm1083_on_amd_ryzen_machine(pdev) false
334 #endif
336 /* In case of multiple matches in ohci_quirks[], only the first one is used. */
337 static const struct {
338 unsigned short vendor, device, revision, flags;
339 } ohci_quirks[] = {
340 {PCI_VENDOR_ID_AL, PCI_ANY_ID, PCI_ANY_ID,
341 QUIRK_CYCLE_TIMER},
343 {PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_FW, PCI_ANY_ID,
344 QUIRK_BE_HEADERS},
346 {PCI_VENDOR_ID_ATT, PCI_DEVICE_ID_AGERE_FW643, 6,
347 QUIRK_NO_MSI},
349 {PCI_VENDOR_ID_CREATIVE, PCI_DEVICE_ID_CREATIVE_SB1394, PCI_ANY_ID,
350 QUIRK_RESET_PACKET},
352 {PCI_VENDOR_ID_JMICRON, PCI_DEVICE_ID_JMICRON_JMB38X_FW, PCI_ANY_ID,
353 QUIRK_NO_MSI},
355 {PCI_VENDOR_ID_NEC, PCI_ANY_ID, PCI_ANY_ID,
356 QUIRK_CYCLE_TIMER},
358 {PCI_VENDOR_ID_O2, PCI_ANY_ID, PCI_ANY_ID,
359 QUIRK_NO_MSI},
361 {PCI_VENDOR_ID_RICOH, PCI_ANY_ID, PCI_ANY_ID,
362 QUIRK_CYCLE_TIMER | QUIRK_NO_MSI},
364 {PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV22, PCI_ANY_ID,
365 QUIRK_CYCLE_TIMER | QUIRK_RESET_PACKET | QUIRK_NO_1394A},
367 {PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV26, PCI_ANY_ID,
368 QUIRK_RESET_PACKET | QUIRK_TI_SLLZ059},
370 {PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB82AA2, PCI_ANY_ID,
371 QUIRK_RESET_PACKET | QUIRK_TI_SLLZ059},
373 {PCI_VENDOR_ID_TI, PCI_ANY_ID, PCI_ANY_ID,
374 QUIRK_RESET_PACKET},
376 {PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_VT630X, PCI_REV_ID_VIA_VT6306,
377 QUIRK_CYCLE_TIMER | QUIRK_IR_WAKE},
379 {PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_VT6315, 0,
380 QUIRK_CYCLE_TIMER /* FIXME: necessary? */ | QUIRK_NO_MSI},
382 {PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_VT6315, PCI_ANY_ID,
383 QUIRK_NO_MSI},
385 {PCI_VENDOR_ID_VIA, PCI_ANY_ID, PCI_ANY_ID,
386 QUIRK_CYCLE_TIMER | QUIRK_NO_MSI},
389 /* This overrides anything that was found in ohci_quirks[]. */
390 static int param_quirks;
391 module_param_named(quirks, param_quirks, int, 0644);
392 MODULE_PARM_DESC(quirks, "Chip quirks (default = 0"
393 ", nonatomic cycle timer = " __stringify(QUIRK_CYCLE_TIMER)
394 ", reset packet generation = " __stringify(QUIRK_RESET_PACKET)
395 ", AR/selfID endianness = " __stringify(QUIRK_BE_HEADERS)
396 ", no 1394a enhancements = " __stringify(QUIRK_NO_1394A)
397 ", disable MSI = " __stringify(QUIRK_NO_MSI)
398 ", TI SLLZ059 erratum = " __stringify(QUIRK_TI_SLLZ059)
399 ", IR wake unreliable = " __stringify(QUIRK_IR_WAKE)
400 ")");
402 #define OHCI_PARAM_DEBUG_AT_AR 1
403 #define OHCI_PARAM_DEBUG_SELFIDS 2
404 #define OHCI_PARAM_DEBUG_IRQS 4
406 static int param_debug;
407 module_param_named(debug, param_debug, int, 0644);
408 MODULE_PARM_DESC(debug, "Verbose logging (default = 0"
409 ", AT/AR events = " __stringify(OHCI_PARAM_DEBUG_AT_AR)
410 ", self-IDs = " __stringify(OHCI_PARAM_DEBUG_SELFIDS)
411 ", IRQs = " __stringify(OHCI_PARAM_DEBUG_IRQS)
412 ", or a combination, or all = -1)");
414 static bool param_remote_dma;
415 module_param_named(remote_dma, param_remote_dma, bool, 0444);
416 MODULE_PARM_DESC(remote_dma, "Enable unfiltered remote DMA (default = N)");
418 static void log_irqs(struct fw_ohci *ohci, u32 evt)
420 if (likely(!(param_debug & OHCI_PARAM_DEBUG_IRQS)))
421 return;
423 ohci_notice(ohci, "IRQ %08x%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n", evt,
424 evt & OHCI1394_selfIDComplete ? " selfID" : "",
425 evt & OHCI1394_RQPkt ? " AR_req" : "",
426 evt & OHCI1394_RSPkt ? " AR_resp" : "",
427 evt & OHCI1394_reqTxComplete ? " AT_req" : "",
428 evt & OHCI1394_respTxComplete ? " AT_resp" : "",
429 evt & OHCI1394_isochRx ? " IR" : "",
430 evt & OHCI1394_isochTx ? " IT" : "",
431 evt & OHCI1394_postedWriteErr ? " postedWriteErr" : "",
432 evt & OHCI1394_cycleTooLong ? " cycleTooLong" : "",
433 evt & OHCI1394_cycle64Seconds ? " cycle64Seconds" : "",
434 evt & OHCI1394_cycleInconsistent ? " cycleInconsistent" : "",
435 evt & OHCI1394_regAccessFail ? " regAccessFail" : "",
436 evt & OHCI1394_unrecoverableError ? " unrecoverableError" : "",
437 evt & OHCI1394_busReset ? " busReset" : "",
438 evt & ~(OHCI1394_selfIDComplete | OHCI1394_RQPkt |
439 OHCI1394_RSPkt | OHCI1394_reqTxComplete |
440 OHCI1394_respTxComplete | OHCI1394_isochRx |
441 OHCI1394_isochTx | OHCI1394_postedWriteErr |
442 OHCI1394_cycleTooLong | OHCI1394_cycle64Seconds |
443 OHCI1394_cycleInconsistent |
444 OHCI1394_regAccessFail | OHCI1394_busReset)
445 ? " ?" : "");
448 static void log_selfids(struct fw_ohci *ohci, int generation, int self_id_count)
450 static const char *const speed[] = {
451 [0] = "S100", [1] = "S200", [2] = "S400", [3] = "beta",
453 static const char *const power[] = {
454 [0] = "+0W", [1] = "+15W", [2] = "+30W", [3] = "+45W",
455 [4] = "-3W", [5] = " ?W", [6] = "-3..-6W", [7] = "-3..-10W",
457 static const char port[] = {
458 [PHY_PACKET_SELF_ID_PORT_STATUS_NONE] = '.',
459 [PHY_PACKET_SELF_ID_PORT_STATUS_NCONN] = '-',
460 [PHY_PACKET_SELF_ID_PORT_STATUS_PARENT] = 'p',
461 [PHY_PACKET_SELF_ID_PORT_STATUS_CHILD] = 'c',
463 struct self_id_sequence_enumerator enumerator = {
464 .cursor = ohci->self_id_buffer,
465 .quadlet_count = self_id_count,
468 if (likely(!(param_debug & OHCI_PARAM_DEBUG_SELFIDS)))
469 return;
471 ohci_notice(ohci, "%d selfIDs, generation %d, local node ID %04x\n",
472 self_id_count, generation, ohci->node_id);
474 while (enumerator.quadlet_count > 0) {
475 unsigned int quadlet_count;
476 unsigned int port_index;
477 const u32 *s;
478 int i;
480 s = self_id_sequence_enumerator_next(&enumerator, &quadlet_count);
481 if (IS_ERR(s))
482 break;
484 ohci_notice(ohci,
485 "selfID 0: %08x, phy %d [%c%c%c] %s gc=%d %s %s%s%s\n",
487 phy_packet_self_id_get_phy_id(*s),
488 port[self_id_sequence_get_port_status(s, quadlet_count, 0)],
489 port[self_id_sequence_get_port_status(s, quadlet_count, 1)],
490 port[self_id_sequence_get_port_status(s, quadlet_count, 2)],
491 speed[*s >> 14 & 3], *s >> 16 & 63,
492 power[*s >> 8 & 7], *s >> 22 & 1 ? "L" : "",
493 *s >> 11 & 1 ? "c" : "", *s & 2 ? "i" : "");
495 port_index = 3;
496 for (i = 1; i < quadlet_count; ++i) {
497 ohci_notice(ohci,
498 "selfID n: %08x, phy %d [%c%c%c%c%c%c%c%c]\n",
499 s[i],
500 phy_packet_self_id_get_phy_id(s[i]),
501 port[self_id_sequence_get_port_status(s, quadlet_count, port_index)],
502 port[self_id_sequence_get_port_status(s, quadlet_count, port_index + 1)],
503 port[self_id_sequence_get_port_status(s, quadlet_count, port_index + 2)],
504 port[self_id_sequence_get_port_status(s, quadlet_count, port_index + 3)],
505 port[self_id_sequence_get_port_status(s, quadlet_count, port_index + 4)],
506 port[self_id_sequence_get_port_status(s, quadlet_count, port_index + 5)],
507 port[self_id_sequence_get_port_status(s, quadlet_count, port_index + 6)],
508 port[self_id_sequence_get_port_status(s, quadlet_count, port_index + 7)]
511 port_index += 8;
516 static const char *evts[] = {
517 [0x00] = "evt_no_status", [0x01] = "-reserved-",
518 [0x02] = "evt_long_packet", [0x03] = "evt_missing_ack",
519 [0x04] = "evt_underrun", [0x05] = "evt_overrun",
520 [0x06] = "evt_descriptor_read", [0x07] = "evt_data_read",
521 [0x08] = "evt_data_write", [0x09] = "evt_bus_reset",
522 [0x0a] = "evt_timeout", [0x0b] = "evt_tcode_err",
523 [0x0c] = "-reserved-", [0x0d] = "-reserved-",
524 [0x0e] = "evt_unknown", [0x0f] = "evt_flushed",
525 [0x10] = "-reserved-", [0x11] = "ack_complete",
526 [0x12] = "ack_pending ", [0x13] = "-reserved-",
527 [0x14] = "ack_busy_X", [0x15] = "ack_busy_A",
528 [0x16] = "ack_busy_B", [0x17] = "-reserved-",
529 [0x18] = "-reserved-", [0x19] = "-reserved-",
530 [0x1a] = "-reserved-", [0x1b] = "ack_tardy",
531 [0x1c] = "-reserved-", [0x1d] = "ack_data_error",
532 [0x1e] = "ack_type_error", [0x1f] = "-reserved-",
533 [0x20] = "pending/cancelled",
535 static const char *tcodes[] = {
536 [0x0] = "QW req", [0x1] = "BW req",
537 [0x2] = "W resp", [0x3] = "-reserved-",
538 [0x4] = "QR req", [0x5] = "BR req",
539 [0x6] = "QR resp", [0x7] = "BR resp",
540 [0x8] = "cycle start", [0x9] = "Lk req",
541 [0xa] = "async stream packet", [0xb] = "Lk resp",
542 [0xc] = "-reserved-", [0xd] = "-reserved-",
543 [0xe] = "link internal", [0xf] = "-reserved-",
546 static void log_ar_at_event(struct fw_ohci *ohci,
547 char dir, int speed, u32 *header, int evt)
549 int tcode = async_header_get_tcode(header);
550 char specific[12];
552 if (likely(!(param_debug & OHCI_PARAM_DEBUG_AT_AR)))
553 return;
555 if (unlikely(evt >= ARRAY_SIZE(evts)))
556 evt = 0x1f;
558 if (evt == OHCI1394_evt_bus_reset) {
559 ohci_notice(ohci, "A%c evt_bus_reset, generation %d\n",
560 dir, (header[2] >> 16) & 0xff);
561 return;
564 switch (tcode) {
565 case TCODE_WRITE_QUADLET_REQUEST:
566 case TCODE_READ_QUADLET_RESPONSE:
567 case TCODE_CYCLE_START:
568 snprintf(specific, sizeof(specific), " = %08x",
569 be32_to_cpu((__force __be32)header[3]));
570 break;
571 case TCODE_WRITE_BLOCK_REQUEST:
572 case TCODE_READ_BLOCK_REQUEST:
573 case TCODE_READ_BLOCK_RESPONSE:
574 case TCODE_LOCK_REQUEST:
575 case TCODE_LOCK_RESPONSE:
576 snprintf(specific, sizeof(specific), " %x,%x",
577 async_header_get_data_length(header),
578 async_header_get_extended_tcode(header));
579 break;
580 default:
581 specific[0] = '\0';
584 switch (tcode) {
585 case TCODE_STREAM_DATA:
586 ohci_notice(ohci, "A%c %s, %s\n",
587 dir, evts[evt], tcodes[tcode]);
588 break;
589 case 0xe:
590 ohci_notice(ohci, "A%c %s, PHY %08x %08x\n",
591 dir, evts[evt], header[1], header[2]);
592 break;
593 case TCODE_WRITE_QUADLET_REQUEST:
594 case TCODE_WRITE_BLOCK_REQUEST:
595 case TCODE_READ_QUADLET_REQUEST:
596 case TCODE_READ_BLOCK_REQUEST:
597 case TCODE_LOCK_REQUEST:
598 ohci_notice(ohci,
599 "A%c spd %x tl %02x, %04x -> %04x, %s, %s, %012llx%s\n",
600 dir, speed, async_header_get_tlabel(header),
601 async_header_get_source(header), async_header_get_destination(header),
602 evts[evt], tcodes[tcode], async_header_get_offset(header), specific);
603 break;
604 default:
605 ohci_notice(ohci,
606 "A%c spd %x tl %02x, %04x -> %04x, %s, %s%s\n",
607 dir, speed, async_header_get_tlabel(header),
608 async_header_get_source(header), async_header_get_destination(header),
609 evts[evt], tcodes[tcode], specific);
613 static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
615 writel(data, ohci->registers + offset);
618 static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
620 return readl(ohci->registers + offset);
623 static inline void flush_writes(const struct fw_ohci *ohci)
625 /* Do a dummy read to flush writes. */
626 reg_read(ohci, OHCI1394_Version);
630 * Beware! read_phy_reg(), write_phy_reg(), update_phy_reg(), and
631 * read_paged_phy_reg() require the caller to hold ohci->phy_reg_mutex.
632 * In other words, only use ohci_read_phy_reg() and ohci_update_phy_reg()
633 * directly. Exceptions are intrinsically serialized contexts like pci_probe.
635 static int read_phy_reg(struct fw_ohci *ohci, int addr)
637 u32 val;
638 int i;
640 reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
641 for (i = 0; i < 3 + 100; i++) {
642 val = reg_read(ohci, OHCI1394_PhyControl);
643 if (!~val)
644 return -ENODEV; /* Card was ejected. */
646 if (val & OHCI1394_PhyControl_ReadDone)
647 return OHCI1394_PhyControl_ReadData(val);
650 * Try a few times without waiting. Sleeping is necessary
651 * only when the link/PHY interface is busy.
653 if (i >= 3)
654 msleep(1);
656 ohci_err(ohci, "failed to read phy reg %d\n", addr);
657 dump_stack();
659 return -EBUSY;
662 static int write_phy_reg(const struct fw_ohci *ohci, int addr, u32 val)
664 int i;
666 reg_write(ohci, OHCI1394_PhyControl,
667 OHCI1394_PhyControl_Write(addr, val));
668 for (i = 0; i < 3 + 100; i++) {
669 val = reg_read(ohci, OHCI1394_PhyControl);
670 if (!~val)
671 return -ENODEV; /* Card was ejected. */
673 if (!(val & OHCI1394_PhyControl_WritePending))
674 return 0;
676 if (i >= 3)
677 msleep(1);
679 ohci_err(ohci, "failed to write phy reg %d, val %u\n", addr, val);
680 dump_stack();
682 return -EBUSY;
685 static int update_phy_reg(struct fw_ohci *ohci, int addr,
686 int clear_bits, int set_bits)
688 int ret = read_phy_reg(ohci, addr);
689 if (ret < 0)
690 return ret;
693 * The interrupt status bits are cleared by writing a one bit.
694 * Avoid clearing them unless explicitly requested in set_bits.
696 if (addr == 5)
697 clear_bits |= PHY_INT_STATUS_BITS;
699 return write_phy_reg(ohci, addr, (ret & ~clear_bits) | set_bits);
702 static int read_paged_phy_reg(struct fw_ohci *ohci, int page, int addr)
704 int ret;
706 ret = update_phy_reg(ohci, 7, PHY_PAGE_SELECT, page << 5);
707 if (ret < 0)
708 return ret;
710 return read_phy_reg(ohci, addr);
713 static int ohci_read_phy_reg(struct fw_card *card, int addr)
715 struct fw_ohci *ohci = fw_ohci(card);
716 int ret;
718 mutex_lock(&ohci->phy_reg_mutex);
719 ret = read_phy_reg(ohci, addr);
720 mutex_unlock(&ohci->phy_reg_mutex);
722 return ret;
725 static int ohci_update_phy_reg(struct fw_card *card, int addr,
726 int clear_bits, int set_bits)
728 struct fw_ohci *ohci = fw_ohci(card);
729 int ret;
731 mutex_lock(&ohci->phy_reg_mutex);
732 ret = update_phy_reg(ohci, addr, clear_bits, set_bits);
733 mutex_unlock(&ohci->phy_reg_mutex);
735 return ret;
738 static inline dma_addr_t ar_buffer_bus(struct ar_context *ctx, unsigned int i)
740 return page_private(ctx->pages[i]);
743 static void ar_context_link_page(struct ar_context *ctx, unsigned int index)
745 struct descriptor *d;
747 d = &ctx->descriptors[index];
748 d->branch_address &= cpu_to_le32(~0xf);
749 d->res_count = cpu_to_le16(PAGE_SIZE);
750 d->transfer_status = 0;
752 wmb(); /* finish init of new descriptors before branch_address update */
753 d = &ctx->descriptors[ctx->last_buffer_index];
754 d->branch_address |= cpu_to_le32(1);
756 ctx->last_buffer_index = index;
758 reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
761 static void ar_context_release(struct ar_context *ctx)
763 struct device *dev = ctx->ohci->card.device;
764 unsigned int i;
766 if (!ctx->buffer)
767 return;
769 vunmap(ctx->buffer);
771 for (i = 0; i < AR_BUFFERS; i++) {
772 if (ctx->pages[i])
773 dma_free_pages(dev, PAGE_SIZE, ctx->pages[i],
774 ar_buffer_bus(ctx, i), DMA_FROM_DEVICE);
778 static void ar_context_abort(struct ar_context *ctx, const char *error_msg)
780 struct fw_ohci *ohci = ctx->ohci;
782 if (reg_read(ohci, CONTROL_CLEAR(ctx->regs)) & CONTEXT_RUN) {
783 reg_write(ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
784 flush_writes(ohci);
786 ohci_err(ohci, "AR error: %s; DMA stopped\n", error_msg);
788 /* FIXME: restart? */
791 static inline unsigned int ar_next_buffer_index(unsigned int index)
793 return (index + 1) % AR_BUFFERS;
796 static inline unsigned int ar_first_buffer_index(struct ar_context *ctx)
798 return ar_next_buffer_index(ctx->last_buffer_index);
802 * We search for the buffer that contains the last AR packet DMA data written
803 * by the controller.
805 static unsigned int ar_search_last_active_buffer(struct ar_context *ctx,
806 unsigned int *buffer_offset)
808 unsigned int i, next_i, last = ctx->last_buffer_index;
809 __le16 res_count, next_res_count;
811 i = ar_first_buffer_index(ctx);
812 res_count = READ_ONCE(ctx->descriptors[i].res_count);
814 /* A buffer that is not yet completely filled must be the last one. */
815 while (i != last && res_count == 0) {
817 /* Peek at the next descriptor. */
818 next_i = ar_next_buffer_index(i);
819 rmb(); /* read descriptors in order */
820 next_res_count = READ_ONCE(ctx->descriptors[next_i].res_count);
822 * If the next descriptor is still empty, we must stop at this
823 * descriptor.
825 if (next_res_count == cpu_to_le16(PAGE_SIZE)) {
827 * The exception is when the DMA data for one packet is
828 * split over three buffers; in this case, the middle
829 * buffer's descriptor might be never updated by the
830 * controller and look still empty, and we have to peek
831 * at the third one.
833 if (MAX_AR_PACKET_SIZE > PAGE_SIZE && i != last) {
834 next_i = ar_next_buffer_index(next_i);
835 rmb();
836 next_res_count = READ_ONCE(ctx->descriptors[next_i].res_count);
837 if (next_res_count != cpu_to_le16(PAGE_SIZE))
838 goto next_buffer_is_active;
841 break;
844 next_buffer_is_active:
845 i = next_i;
846 res_count = next_res_count;
849 rmb(); /* read res_count before the DMA data */
851 *buffer_offset = PAGE_SIZE - le16_to_cpu(res_count);
852 if (*buffer_offset > PAGE_SIZE) {
853 *buffer_offset = 0;
854 ar_context_abort(ctx, "corrupted descriptor");
857 return i;
860 static void ar_sync_buffers_for_cpu(struct ar_context *ctx,
861 unsigned int end_buffer_index,
862 unsigned int end_buffer_offset)
864 unsigned int i;
866 i = ar_first_buffer_index(ctx);
867 while (i != end_buffer_index) {
868 dma_sync_single_for_cpu(ctx->ohci->card.device,
869 ar_buffer_bus(ctx, i),
870 PAGE_SIZE, DMA_FROM_DEVICE);
871 i = ar_next_buffer_index(i);
873 if (end_buffer_offset > 0)
874 dma_sync_single_for_cpu(ctx->ohci->card.device,
875 ar_buffer_bus(ctx, i),
876 end_buffer_offset, DMA_FROM_DEVICE);
879 #if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
880 static u32 cond_le32_to_cpu(__le32 value, bool has_be_header_quirk)
882 return has_be_header_quirk ? (__force __u32)value : le32_to_cpu(value);
885 static bool has_be_header_quirk(const struct fw_ohci *ohci)
887 return !!(ohci->quirks & QUIRK_BE_HEADERS);
889 #else
890 static u32 cond_le32_to_cpu(__le32 value, bool has_be_header_quirk __maybe_unused)
892 return le32_to_cpu(value);
895 static bool has_be_header_quirk(const struct fw_ohci *ohci)
897 return false;
899 #endif
901 static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
903 struct fw_ohci *ohci = ctx->ohci;
904 struct fw_packet p;
905 u32 status, length, tcode;
906 int evt;
908 p.header[0] = cond_le32_to_cpu(buffer[0], has_be_header_quirk(ohci));
909 p.header[1] = cond_le32_to_cpu(buffer[1], has_be_header_quirk(ohci));
910 p.header[2] = cond_le32_to_cpu(buffer[2], has_be_header_quirk(ohci));
912 tcode = async_header_get_tcode(p.header);
913 switch (tcode) {
914 case TCODE_WRITE_QUADLET_REQUEST:
915 case TCODE_READ_QUADLET_RESPONSE:
916 p.header[3] = (__force __u32) buffer[3];
917 p.header_length = 16;
918 p.payload_length = 0;
919 break;
921 case TCODE_READ_BLOCK_REQUEST :
922 p.header[3] = cond_le32_to_cpu(buffer[3], has_be_header_quirk(ohci));
923 p.header_length = 16;
924 p.payload_length = 0;
925 break;
927 case TCODE_WRITE_BLOCK_REQUEST:
928 case TCODE_READ_BLOCK_RESPONSE:
929 case TCODE_LOCK_REQUEST:
930 case TCODE_LOCK_RESPONSE:
931 p.header[3] = cond_le32_to_cpu(buffer[3], has_be_header_quirk(ohci));
932 p.header_length = 16;
933 p.payload_length = async_header_get_data_length(p.header);
934 if (p.payload_length > MAX_ASYNC_PAYLOAD) {
935 ar_context_abort(ctx, "invalid packet length");
936 return NULL;
938 break;
940 case TCODE_WRITE_RESPONSE:
941 case TCODE_READ_QUADLET_REQUEST:
942 case OHCI_TCODE_PHY_PACKET:
943 p.header_length = 12;
944 p.payload_length = 0;
945 break;
947 default:
948 ar_context_abort(ctx, "invalid tcode");
949 return NULL;
952 p.payload = (void *) buffer + p.header_length;
954 /* FIXME: What to do about evt_* errors? */
955 length = (p.header_length + p.payload_length + 3) / 4;
956 status = cond_le32_to_cpu(buffer[length], has_be_header_quirk(ohci));
957 evt = (status >> 16) & 0x1f;
959 p.ack = evt - 16;
960 p.speed = (status >> 21) & 0x7;
961 p.timestamp = status & 0xffff;
962 p.generation = ohci->request_generation;
964 log_ar_at_event(ohci, 'R', p.speed, p.header, evt);
967 * Several controllers, notably from NEC and VIA, forget to
968 * write ack_complete status at PHY packet reception.
970 if (evt == OHCI1394_evt_no_status && tcode == OHCI1394_phy_tcode)
971 p.ack = ACK_COMPLETE;
974 * The OHCI bus reset handler synthesizes a PHY packet with
975 * the new generation number when a bus reset happens (see
976 * section 8.4.2.3). This helps us determine when a request
977 * was received and make sure we send the response in the same
978 * generation. We only need this for requests; for responses
979 * we use the unique tlabel for finding the matching
980 * request.
982 * Alas some chips sometimes emit bus reset packets with a
983 * wrong generation. We set the correct generation for these
984 * at a slightly incorrect time (in bus_reset_work).
986 if (evt == OHCI1394_evt_bus_reset) {
987 if (!(ohci->quirks & QUIRK_RESET_PACKET))
988 ohci->request_generation = (p.header[2] >> 16) & 0xff;
989 } else if (ctx == &ohci->ar_request_ctx) {
990 fw_core_handle_request(&ohci->card, &p);
991 } else {
992 fw_core_handle_response(&ohci->card, &p);
995 return buffer + length + 1;
998 static void *handle_ar_packets(struct ar_context *ctx, void *p, void *end)
1000 void *next;
1002 while (p < end) {
1003 next = handle_ar_packet(ctx, p);
1004 if (!next)
1005 return p;
1006 p = next;
1009 return p;
1012 static void ar_recycle_buffers(struct ar_context *ctx, unsigned int end_buffer)
1014 unsigned int i;
1016 i = ar_first_buffer_index(ctx);
1017 while (i != end_buffer) {
1018 dma_sync_single_for_device(ctx->ohci->card.device,
1019 ar_buffer_bus(ctx, i),
1020 PAGE_SIZE, DMA_FROM_DEVICE);
1021 ar_context_link_page(ctx, i);
1022 i = ar_next_buffer_index(i);
1026 static void ar_context_tasklet(unsigned long data)
1028 struct ar_context *ctx = (struct ar_context *)data;
1029 unsigned int end_buffer_index, end_buffer_offset;
1030 void *p, *end;
1032 p = ctx->pointer;
1033 if (!p)
1034 return;
1036 end_buffer_index = ar_search_last_active_buffer(ctx,
1037 &end_buffer_offset);
1038 ar_sync_buffers_for_cpu(ctx, end_buffer_index, end_buffer_offset);
1039 end = ctx->buffer + end_buffer_index * PAGE_SIZE + end_buffer_offset;
1041 if (end_buffer_index < ar_first_buffer_index(ctx)) {
1043 * The filled part of the overall buffer wraps around; handle
1044 * all packets up to the buffer end here. If the last packet
1045 * wraps around, its tail will be visible after the buffer end
1046 * because the buffer start pages are mapped there again.
1048 void *buffer_end = ctx->buffer + AR_BUFFERS * PAGE_SIZE;
1049 p = handle_ar_packets(ctx, p, buffer_end);
1050 if (p < buffer_end)
1051 goto error;
1052 /* adjust p to point back into the actual buffer */
1053 p -= AR_BUFFERS * PAGE_SIZE;
1056 p = handle_ar_packets(ctx, p, end);
1057 if (p != end) {
1058 if (p > end)
1059 ar_context_abort(ctx, "inconsistent descriptor");
1060 goto error;
1063 ctx->pointer = p;
1064 ar_recycle_buffers(ctx, end_buffer_index);
1066 return;
1068 error:
1069 ctx->pointer = NULL;
1072 static int ar_context_init(struct ar_context *ctx, struct fw_ohci *ohci,
1073 unsigned int descriptors_offset, u32 regs)
1075 struct device *dev = ohci->card.device;
1076 unsigned int i;
1077 dma_addr_t dma_addr;
1078 struct page *pages[AR_BUFFERS + AR_WRAPAROUND_PAGES];
1079 struct descriptor *d;
1081 ctx->regs = regs;
1082 ctx->ohci = ohci;
1083 tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);
1085 for (i = 0; i < AR_BUFFERS; i++) {
1086 ctx->pages[i] = dma_alloc_pages(dev, PAGE_SIZE, &dma_addr,
1087 DMA_FROM_DEVICE, GFP_KERNEL);
1088 if (!ctx->pages[i])
1089 goto out_of_memory;
1090 set_page_private(ctx->pages[i], dma_addr);
1091 dma_sync_single_for_device(dev, dma_addr, PAGE_SIZE,
1092 DMA_FROM_DEVICE);
1095 for (i = 0; i < AR_BUFFERS; i++)
1096 pages[i] = ctx->pages[i];
1097 for (i = 0; i < AR_WRAPAROUND_PAGES; i++)
1098 pages[AR_BUFFERS + i] = ctx->pages[i];
1099 ctx->buffer = vmap(pages, ARRAY_SIZE(pages), VM_MAP, PAGE_KERNEL);
1100 if (!ctx->buffer)
1101 goto out_of_memory;
1103 ctx->descriptors = ohci->misc_buffer + descriptors_offset;
1104 ctx->descriptors_bus = ohci->misc_buffer_bus + descriptors_offset;
1106 for (i = 0; i < AR_BUFFERS; i++) {
1107 d = &ctx->descriptors[i];
1108 d->req_count = cpu_to_le16(PAGE_SIZE);
1109 d->control = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
1110 DESCRIPTOR_STATUS |
1111 DESCRIPTOR_BRANCH_ALWAYS);
1112 d->data_address = cpu_to_le32(ar_buffer_bus(ctx, i));
1113 d->branch_address = cpu_to_le32(ctx->descriptors_bus +
1114 ar_next_buffer_index(i) * sizeof(struct descriptor));
1117 return 0;
1119 out_of_memory:
1120 ar_context_release(ctx);
1122 return -ENOMEM;
1125 static void ar_context_run(struct ar_context *ctx)
1127 unsigned int i;
1129 for (i = 0; i < AR_BUFFERS; i++)
1130 ar_context_link_page(ctx, i);
1132 ctx->pointer = ctx->buffer;
1134 reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ctx->descriptors_bus | 1);
1135 reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
1138 static struct descriptor *find_branch_descriptor(struct descriptor *d, int z)
1140 __le16 branch;
1142 branch = d->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS);
1144 /* figure out which descriptor the branch address goes in */
1145 if (z == 2 && branch == cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
1146 return d;
1147 else
1148 return d + z - 1;
1151 static void context_tasklet(unsigned long data)
1153 struct context *ctx = (struct context *) data;
1154 struct descriptor *d, *last;
1155 u32 address;
1156 int z;
1157 struct descriptor_buffer *desc;
1159 desc = list_entry(ctx->buffer_list.next,
1160 struct descriptor_buffer, list);
1161 last = ctx->last;
1162 while (last->branch_address != 0) {
1163 struct descriptor_buffer *old_desc = desc;
1164 address = le32_to_cpu(last->branch_address);
1165 z = address & 0xf;
1166 address &= ~0xf;
1167 ctx->current_bus = address;
1169 /* If the branch address points to a buffer outside of the
1170 * current buffer, advance to the next buffer. */
1171 if (address < desc->buffer_bus ||
1172 address >= desc->buffer_bus + desc->used)
1173 desc = list_entry(desc->list.next,
1174 struct descriptor_buffer, list);
1175 d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d);
1176 last = find_branch_descriptor(d, z);
1178 if (!ctx->callback(ctx, d, last))
1179 break;
1181 if (old_desc != desc) {
1182 /* If we've advanced to the next buffer, move the
1183 * previous buffer to the free list. */
1184 unsigned long flags;
1185 old_desc->used = 0;
1186 spin_lock_irqsave(&ctx->ohci->lock, flags);
1187 list_move_tail(&old_desc->list, &ctx->buffer_list);
1188 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1190 ctx->last = last;
1195 * Allocate a new buffer and add it to the list of free buffers for this
1196 * context. Must be called with ohci->lock held.
1198 static int context_add_buffer(struct context *ctx)
1200 struct descriptor_buffer *desc;
1201 dma_addr_t bus_addr;
1202 int offset;
1205 * 16MB of descriptors should be far more than enough for any DMA
1206 * program. This will catch run-away userspace or DoS attacks.
1208 if (ctx->total_allocation >= 16*1024*1024)
1209 return -ENOMEM;
1211 desc = dmam_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE, &bus_addr, GFP_ATOMIC);
1212 if (!desc)
1213 return -ENOMEM;
1215 offset = (void *)&desc->buffer - (void *)desc;
1217 * Some controllers, like JMicron ones, always issue 0x20-byte DMA reads
1218 * for descriptors, even 0x10-byte ones. This can cause page faults when
1219 * an IOMMU is in use and the oversized read crosses a page boundary.
1220 * Work around this by always leaving at least 0x10 bytes of padding.
1222 desc->buffer_size = PAGE_SIZE - offset - 0x10;
1223 desc->buffer_bus = bus_addr + offset;
1224 desc->used = 0;
1226 list_add_tail(&desc->list, &ctx->buffer_list);
1227 ctx->total_allocation += PAGE_SIZE;
1229 return 0;
1232 static int context_init(struct context *ctx, struct fw_ohci *ohci,
1233 u32 regs, descriptor_callback_t callback)
1235 ctx->ohci = ohci;
1236 ctx->regs = regs;
1237 ctx->total_allocation = 0;
1239 INIT_LIST_HEAD(&ctx->buffer_list);
1240 if (context_add_buffer(ctx) < 0)
1241 return -ENOMEM;
1243 ctx->buffer_tail = list_entry(ctx->buffer_list.next,
1244 struct descriptor_buffer, list);
1246 tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
1247 ctx->callback = callback;
1250 * We put a dummy descriptor in the buffer that has a NULL
1251 * branch address and looks like it's been sent. That way we
1252 * have a descriptor to append DMA programs to.
1254 memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer));
1255 ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
1256 ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011);
1257 ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer);
1258 ctx->last = ctx->buffer_tail->buffer;
1259 ctx->prev = ctx->buffer_tail->buffer;
1260 ctx->prev_z = 1;
1262 return 0;
1265 static void context_release(struct context *ctx)
1267 struct fw_card *card = &ctx->ohci->card;
1268 struct descriptor_buffer *desc, *tmp;
1270 list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list) {
1271 dmam_free_coherent(card->device, PAGE_SIZE, desc,
1272 desc->buffer_bus - ((void *)&desc->buffer - (void *)desc));
1276 /* Must be called with ohci->lock held */
1277 static struct descriptor *context_get_descriptors(struct context *ctx,
1278 int z, dma_addr_t *d_bus)
1280 struct descriptor *d = NULL;
1281 struct descriptor_buffer *desc = ctx->buffer_tail;
1283 if (z * sizeof(*d) > desc->buffer_size)
1284 return NULL;
1286 if (z * sizeof(*d) > desc->buffer_size - desc->used) {
1287 /* No room for the descriptor in this buffer, so advance to the
1288 * next one. */
1290 if (desc->list.next == &ctx->buffer_list) {
1291 /* If there is no free buffer next in the list,
1292 * allocate one. */
1293 if (context_add_buffer(ctx) < 0)
1294 return NULL;
1296 desc = list_entry(desc->list.next,
1297 struct descriptor_buffer, list);
1298 ctx->buffer_tail = desc;
1301 d = desc->buffer + desc->used / sizeof(*d);
1302 memset(d, 0, z * sizeof(*d));
1303 *d_bus = desc->buffer_bus + desc->used;
1305 return d;
1308 static void context_run(struct context *ctx, u32 extra)
1310 struct fw_ohci *ohci = ctx->ohci;
1312 reg_write(ohci, COMMAND_PTR(ctx->regs),
1313 le32_to_cpu(ctx->last->branch_address));
1314 reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
1315 reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
1316 ctx->running = true;
1317 flush_writes(ohci);
1320 static void context_append(struct context *ctx,
1321 struct descriptor *d, int z, int extra)
1323 dma_addr_t d_bus;
1324 struct descriptor_buffer *desc = ctx->buffer_tail;
1325 struct descriptor *d_branch;
1327 d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d);
1329 desc->used += (z + extra) * sizeof(*d);
1331 wmb(); /* finish init of new descriptors before branch_address update */
1333 d_branch = find_branch_descriptor(ctx->prev, ctx->prev_z);
1334 d_branch->branch_address = cpu_to_le32(d_bus | z);
1337 * VT6306 incorrectly checks only the single descriptor at the
1338 * CommandPtr when the wake bit is written, so if it's a
1339 * multi-descriptor block starting with an INPUT_MORE, put a copy of
1340 * the branch address in the first descriptor.
1342 * Not doing this for transmit contexts since not sure how it interacts
1343 * with skip addresses.
1345 if (unlikely(ctx->ohci->quirks & QUIRK_IR_WAKE) &&
1346 d_branch != ctx->prev &&
1347 (ctx->prev->control & cpu_to_le16(DESCRIPTOR_CMD)) ==
1348 cpu_to_le16(DESCRIPTOR_INPUT_MORE)) {
1349 ctx->prev->branch_address = cpu_to_le32(d_bus | z);
1352 ctx->prev = d;
1353 ctx->prev_z = z;
1356 static void context_stop(struct context *ctx)
1358 struct fw_ohci *ohci = ctx->ohci;
1359 u32 reg;
1360 int i;
1362 reg_write(ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
1363 ctx->running = false;
1365 for (i = 0; i < 1000; i++) {
1366 reg = reg_read(ohci, CONTROL_SET(ctx->regs));
1367 if ((reg & CONTEXT_ACTIVE) == 0)
1368 return;
1370 if (i)
1371 udelay(10);
1373 ohci_err(ohci, "DMA context still active (0x%08x)\n", reg);
1376 struct driver_data {
1377 u8 inline_data[8];
1378 struct fw_packet *packet;
1382 * This function apppends a packet to the DMA queue for transmission.
1383 * Must always be called with the ochi->lock held to ensure proper
1384 * generation handling and locking around packet queue manipulation.
1386 static int at_context_queue_packet(struct context *ctx,
1387 struct fw_packet *packet)
1389 struct fw_ohci *ohci = ctx->ohci;
1390 dma_addr_t d_bus, payload_bus;
1391 struct driver_data *driver_data;
1392 struct descriptor *d, *last;
1393 __le32 *header;
1394 int z, tcode;
1396 d = context_get_descriptors(ctx, 4, &d_bus);
1397 if (d == NULL) {
1398 packet->ack = RCODE_SEND_ERROR;
1399 return -1;
1402 d[0].control = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
1403 d[0].res_count = cpu_to_le16(packet->timestamp);
1406 * The DMA format for asynchronous link packets is different
1407 * from the IEEE1394 layout, so shift the fields around
1408 * accordingly.
1411 tcode = async_header_get_tcode(packet->header);
1412 header = (__le32 *) &d[1];
1413 switch (tcode) {
1414 case TCODE_WRITE_QUADLET_REQUEST:
1415 case TCODE_WRITE_BLOCK_REQUEST:
1416 case TCODE_WRITE_RESPONSE:
1417 case TCODE_READ_QUADLET_REQUEST:
1418 case TCODE_READ_BLOCK_REQUEST:
1419 case TCODE_READ_QUADLET_RESPONSE:
1420 case TCODE_READ_BLOCK_RESPONSE:
1421 case TCODE_LOCK_REQUEST:
1422 case TCODE_LOCK_RESPONSE:
1423 header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
1424 (packet->speed << 16));
1425 header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
1426 (packet->header[0] & 0xffff0000));
1427 header[2] = cpu_to_le32(packet->header[2]);
1429 if (tcode_is_block_packet(tcode))
1430 header[3] = cpu_to_le32(packet->header[3]);
1431 else
1432 header[3] = (__force __le32) packet->header[3];
1434 d[0].req_count = cpu_to_le16(packet->header_length);
1435 break;
1437 case TCODE_LINK_INTERNAL:
1438 header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
1439 (packet->speed << 16));
1440 header[1] = cpu_to_le32(packet->header[1]);
1441 header[2] = cpu_to_le32(packet->header[2]);
1442 d[0].req_count = cpu_to_le16(12);
1444 if (is_ping_packet(&packet->header[1]))
1445 d[0].control |= cpu_to_le16(DESCRIPTOR_PING);
1446 break;
1448 case TCODE_STREAM_DATA:
1449 header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
1450 (packet->speed << 16));
1451 header[1] = cpu_to_le32(packet->header[0] & 0xffff0000);
1452 d[0].req_count = cpu_to_le16(8);
1453 break;
1455 default:
1456 /* BUG(); */
1457 packet->ack = RCODE_SEND_ERROR;
1458 return -1;
1461 BUILD_BUG_ON(sizeof(struct driver_data) > sizeof(struct descriptor));
1462 driver_data = (struct driver_data *) &d[3];
1463 driver_data->packet = packet;
1464 packet->driver_data = driver_data;
1466 if (packet->payload_length > 0) {
1467 if (packet->payload_length > sizeof(driver_data->inline_data)) {
1468 payload_bus = dma_map_single(ohci->card.device,
1469 packet->payload,
1470 packet->payload_length,
1471 DMA_TO_DEVICE);
1472 if (dma_mapping_error(ohci->card.device, payload_bus)) {
1473 packet->ack = RCODE_SEND_ERROR;
1474 return -1;
1476 packet->payload_bus = payload_bus;
1477 packet->payload_mapped = true;
1478 } else {
1479 memcpy(driver_data->inline_data, packet->payload,
1480 packet->payload_length);
1481 payload_bus = d_bus + 3 * sizeof(*d);
1484 d[2].req_count = cpu_to_le16(packet->payload_length);
1485 d[2].data_address = cpu_to_le32(payload_bus);
1486 last = &d[2];
1487 z = 3;
1488 } else {
1489 last = &d[0];
1490 z = 2;
1493 last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
1494 DESCRIPTOR_IRQ_ALWAYS |
1495 DESCRIPTOR_BRANCH_ALWAYS);
1497 /* FIXME: Document how the locking works. */
1498 if (ohci->generation != packet->generation) {
1499 if (packet->payload_mapped)
1500 dma_unmap_single(ohci->card.device, payload_bus,
1501 packet->payload_length, DMA_TO_DEVICE);
1502 packet->ack = RCODE_GENERATION;
1503 return -1;
1506 context_append(ctx, d, z, 4 - z);
1508 if (ctx->running)
1509 reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
1510 else
1511 context_run(ctx, 0);
1513 return 0;
1516 static void at_context_flush(struct context *ctx)
1518 tasklet_disable(&ctx->tasklet);
1520 ctx->flushing = true;
1521 context_tasklet((unsigned long)ctx);
1522 ctx->flushing = false;
1524 tasklet_enable(&ctx->tasklet);
1527 static int handle_at_packet(struct context *context,
1528 struct descriptor *d,
1529 struct descriptor *last)
1531 struct driver_data *driver_data;
1532 struct fw_packet *packet;
1533 struct fw_ohci *ohci = context->ohci;
1534 int evt;
1536 if (last->transfer_status == 0 && !context->flushing)
1537 /* This descriptor isn't done yet, stop iteration. */
1538 return 0;
1540 driver_data = (struct driver_data *) &d[3];
1541 packet = driver_data->packet;
1542 if (packet == NULL)
1543 /* This packet was cancelled, just continue. */
1544 return 1;
1546 if (packet->payload_mapped)
1547 dma_unmap_single(ohci->card.device, packet->payload_bus,
1548 packet->payload_length, DMA_TO_DEVICE);
1550 evt = le16_to_cpu(last->transfer_status) & 0x1f;
1551 packet->timestamp = le16_to_cpu(last->res_count);
1553 log_ar_at_event(ohci, 'T', packet->speed, packet->header, evt);
1555 switch (evt) {
1556 case OHCI1394_evt_timeout:
1557 /* Async response transmit timed out. */
1558 packet->ack = RCODE_CANCELLED;
1559 break;
1561 case OHCI1394_evt_flushed:
1563 * The packet was flushed should give same error as
1564 * when we try to use a stale generation count.
1566 packet->ack = RCODE_GENERATION;
1567 break;
1569 case OHCI1394_evt_missing_ack:
1570 if (context->flushing)
1571 packet->ack = RCODE_GENERATION;
1572 else {
1574 * Using a valid (current) generation count, but the
1575 * node is not on the bus or not sending acks.
1577 packet->ack = RCODE_NO_ACK;
1579 break;
1581 case ACK_COMPLETE + 0x10:
1582 case ACK_PENDING + 0x10:
1583 case ACK_BUSY_X + 0x10:
1584 case ACK_BUSY_A + 0x10:
1585 case ACK_BUSY_B + 0x10:
1586 case ACK_DATA_ERROR + 0x10:
1587 case ACK_TYPE_ERROR + 0x10:
1588 packet->ack = evt - 0x10;
1589 break;
1591 case OHCI1394_evt_no_status:
1592 if (context->flushing) {
1593 packet->ack = RCODE_GENERATION;
1594 break;
1596 fallthrough;
1598 default:
1599 packet->ack = RCODE_SEND_ERROR;
1600 break;
1603 packet->callback(packet, &ohci->card, packet->ack);
1605 return 1;
1608 static u32 get_cycle_time(struct fw_ohci *ohci);
1610 static void handle_local_rom(struct fw_ohci *ohci,
1611 struct fw_packet *packet, u32 csr)
1613 struct fw_packet response;
1614 int tcode, length, i;
1616 tcode = async_header_get_tcode(packet->header);
1617 if (tcode_is_block_packet(tcode))
1618 length = async_header_get_data_length(packet->header);
1619 else
1620 length = 4;
1622 i = csr - CSR_CONFIG_ROM;
1623 if (i + length > CONFIG_ROM_SIZE) {
1624 fw_fill_response(&response, packet->header,
1625 RCODE_ADDRESS_ERROR, NULL, 0);
1626 } else if (!tcode_is_read_request(tcode)) {
1627 fw_fill_response(&response, packet->header,
1628 RCODE_TYPE_ERROR, NULL, 0);
1629 } else {
1630 fw_fill_response(&response, packet->header, RCODE_COMPLETE,
1631 (void *) ohci->config_rom + i, length);
1634 // Timestamping on behalf of the hardware.
1635 response.timestamp = cycle_time_to_ohci_tstamp(get_cycle_time(ohci));
1636 fw_core_handle_response(&ohci->card, &response);
1639 static void handle_local_lock(struct fw_ohci *ohci,
1640 struct fw_packet *packet, u32 csr)
1642 struct fw_packet response;
1643 int tcode, length, ext_tcode, sel, try;
1644 __be32 *payload, lock_old;
1645 u32 lock_arg, lock_data;
1647 tcode = async_header_get_tcode(packet->header);
1648 length = async_header_get_data_length(packet->header);
1649 payload = packet->payload;
1650 ext_tcode = async_header_get_extended_tcode(packet->header);
1652 if (tcode == TCODE_LOCK_REQUEST &&
1653 ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
1654 lock_arg = be32_to_cpu(payload[0]);
1655 lock_data = be32_to_cpu(payload[1]);
1656 } else if (tcode == TCODE_READ_QUADLET_REQUEST) {
1657 lock_arg = 0;
1658 lock_data = 0;
1659 } else {
1660 fw_fill_response(&response, packet->header,
1661 RCODE_TYPE_ERROR, NULL, 0);
1662 goto out;
1665 sel = (csr - CSR_BUS_MANAGER_ID) / 4;
1666 reg_write(ohci, OHCI1394_CSRData, lock_data);
1667 reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
1668 reg_write(ohci, OHCI1394_CSRControl, sel);
1670 for (try = 0; try < 20; try++)
1671 if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000) {
1672 lock_old = cpu_to_be32(reg_read(ohci,
1673 OHCI1394_CSRData));
1674 fw_fill_response(&response, packet->header,
1675 RCODE_COMPLETE,
1676 &lock_old, sizeof(lock_old));
1677 goto out;
1680 ohci_err(ohci, "swap not done (CSR lock timeout)\n");
1681 fw_fill_response(&response, packet->header, RCODE_BUSY, NULL, 0);
1683 out:
1684 // Timestamping on behalf of the hardware.
1685 response.timestamp = cycle_time_to_ohci_tstamp(get_cycle_time(ohci));
1686 fw_core_handle_response(&ohci->card, &response);
1689 static void handle_local_request(struct context *ctx, struct fw_packet *packet)
1691 u64 offset, csr;
1693 if (ctx == &ctx->ohci->at_request_ctx) {
1694 packet->ack = ACK_PENDING;
1695 packet->callback(packet, &ctx->ohci->card, packet->ack);
1698 offset = async_header_get_offset(packet->header);
1699 csr = offset - CSR_REGISTER_BASE;
1701 /* Handle config rom reads. */
1702 if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
1703 handle_local_rom(ctx->ohci, packet, csr);
1704 else switch (csr) {
1705 case CSR_BUS_MANAGER_ID:
1706 case CSR_BANDWIDTH_AVAILABLE:
1707 case CSR_CHANNELS_AVAILABLE_HI:
1708 case CSR_CHANNELS_AVAILABLE_LO:
1709 handle_local_lock(ctx->ohci, packet, csr);
1710 break;
1711 default:
1712 if (ctx == &ctx->ohci->at_request_ctx)
1713 fw_core_handle_request(&ctx->ohci->card, packet);
1714 else
1715 fw_core_handle_response(&ctx->ohci->card, packet);
1716 break;
1719 if (ctx == &ctx->ohci->at_response_ctx) {
1720 packet->ack = ACK_COMPLETE;
1721 packet->callback(packet, &ctx->ohci->card, packet->ack);
1725 static void at_context_transmit(struct context *ctx, struct fw_packet *packet)
1727 unsigned long flags;
1728 int ret;
1730 spin_lock_irqsave(&ctx->ohci->lock, flags);
1732 if (async_header_get_destination(packet->header) == ctx->ohci->node_id &&
1733 ctx->ohci->generation == packet->generation) {
1734 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1736 // Timestamping on behalf of the hardware.
1737 packet->timestamp = cycle_time_to_ohci_tstamp(get_cycle_time(ctx->ohci));
1739 handle_local_request(ctx, packet);
1740 return;
1743 ret = at_context_queue_packet(ctx, packet);
1744 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1746 if (ret < 0) {
1747 // Timestamping on behalf of the hardware.
1748 packet->timestamp = cycle_time_to_ohci_tstamp(get_cycle_time(ctx->ohci));
1750 packet->callback(packet, &ctx->ohci->card, packet->ack);
1754 static void detect_dead_context(struct fw_ohci *ohci,
1755 const char *name, unsigned int regs)
1757 u32 ctl;
1759 ctl = reg_read(ohci, CONTROL_SET(regs));
1760 if (ctl & CONTEXT_DEAD)
1761 ohci_err(ohci, "DMA context %s has stopped, error code: %s\n",
1762 name, evts[ctl & 0x1f]);
1765 static void handle_dead_contexts(struct fw_ohci *ohci)
1767 unsigned int i;
1768 char name[8];
1770 detect_dead_context(ohci, "ATReq", OHCI1394_AsReqTrContextBase);
1771 detect_dead_context(ohci, "ATRsp", OHCI1394_AsRspTrContextBase);
1772 detect_dead_context(ohci, "ARReq", OHCI1394_AsReqRcvContextBase);
1773 detect_dead_context(ohci, "ARRsp", OHCI1394_AsRspRcvContextBase);
1774 for (i = 0; i < 32; ++i) {
1775 if (!(ohci->it_context_support & (1 << i)))
1776 continue;
1777 sprintf(name, "IT%u", i);
1778 detect_dead_context(ohci, name, OHCI1394_IsoXmitContextBase(i));
1780 for (i = 0; i < 32; ++i) {
1781 if (!(ohci->ir_context_support & (1 << i)))
1782 continue;
1783 sprintf(name, "IR%u", i);
1784 detect_dead_context(ohci, name, OHCI1394_IsoRcvContextBase(i));
1786 /* TODO: maybe try to flush and restart the dead contexts */
1789 static u32 cycle_timer_ticks(u32 cycle_timer)
1791 u32 ticks;
1793 ticks = cycle_timer & 0xfff;
1794 ticks += 3072 * ((cycle_timer >> 12) & 0x1fff);
1795 ticks += (3072 * 8000) * (cycle_timer >> 25);
1797 return ticks;
1801 * Some controllers exhibit one or more of the following bugs when updating the
1802 * iso cycle timer register:
1803 * - When the lowest six bits are wrapping around to zero, a read that happens
1804 * at the same time will return garbage in the lowest ten bits.
1805 * - When the cycleOffset field wraps around to zero, the cycleCount field is
1806 * not incremented for about 60 ns.
1807 * - Occasionally, the entire register reads zero.
1809 * To catch these, we read the register three times and ensure that the
1810 * difference between each two consecutive reads is approximately the same, i.e.
1811 * less than twice the other. Furthermore, any negative difference indicates an
1812 * error. (A PCI read should take at least 20 ticks of the 24.576 MHz timer to
1813 * execute, so we have enough precision to compute the ratio of the differences.)
1815 static u32 get_cycle_time(struct fw_ohci *ohci)
1817 u32 c0, c1, c2;
1818 u32 t0, t1, t2;
1819 s32 diff01, diff12;
1820 int i;
1822 if (has_reboot_by_cycle_timer_read_quirk(ohci))
1823 return 0;
1825 c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1827 if (ohci->quirks & QUIRK_CYCLE_TIMER) {
1828 i = 0;
1829 c1 = c2;
1830 c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1831 do {
1832 c0 = c1;
1833 c1 = c2;
1834 c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1835 t0 = cycle_timer_ticks(c0);
1836 t1 = cycle_timer_ticks(c1);
1837 t2 = cycle_timer_ticks(c2);
1838 diff01 = t1 - t0;
1839 diff12 = t2 - t1;
1840 } while ((diff01 <= 0 || diff12 <= 0 ||
1841 diff01 / diff12 >= 2 || diff12 / diff01 >= 2)
1842 && i++ < 20);
1845 return c2;
1849 * This function has to be called at least every 64 seconds. The bus_time
1850 * field stores not only the upper 25 bits of the BUS_TIME register but also
1851 * the most significant bit of the cycle timer in bit 6 so that we can detect
1852 * changes in this bit.
1854 static u32 update_bus_time(struct fw_ohci *ohci)
1856 u32 cycle_time_seconds = get_cycle_time(ohci) >> 25;
1858 if (unlikely(!ohci->bus_time_running)) {
1859 reg_write(ohci, OHCI1394_IntMaskSet, OHCI1394_cycle64Seconds);
1860 ohci->bus_time = (lower_32_bits(ktime_get_seconds()) & ~0x7f) |
1861 (cycle_time_seconds & 0x40);
1862 ohci->bus_time_running = true;
1865 if ((ohci->bus_time & 0x40) != (cycle_time_seconds & 0x40))
1866 ohci->bus_time += 0x40;
1868 return ohci->bus_time | cycle_time_seconds;
1871 static int get_status_for_port(struct fw_ohci *ohci, int port_index,
1872 enum phy_packet_self_id_port_status *status)
1874 int reg;
1876 mutex_lock(&ohci->phy_reg_mutex);
1877 reg = write_phy_reg(ohci, 7, port_index);
1878 if (reg >= 0)
1879 reg = read_phy_reg(ohci, 8);
1880 mutex_unlock(&ohci->phy_reg_mutex);
1881 if (reg < 0)
1882 return reg;
1884 switch (reg & 0x0f) {
1885 case 0x06:
1886 // is child node (connected to parent node)
1887 *status = PHY_PACKET_SELF_ID_PORT_STATUS_PARENT;
1888 break;
1889 case 0x0e:
1890 // is parent node (connected to child node)
1891 *status = PHY_PACKET_SELF_ID_PORT_STATUS_CHILD;
1892 break;
1893 default:
1894 // not connected
1895 *status = PHY_PACKET_SELF_ID_PORT_STATUS_NCONN;
1896 break;
1899 return 0;
1902 static int get_self_id_pos(struct fw_ohci *ohci, u32 self_id,
1903 int self_id_count)
1905 unsigned int left_phy_id = phy_packet_self_id_get_phy_id(self_id);
1906 int i;
1908 for (i = 0; i < self_id_count; i++) {
1909 u32 entry = ohci->self_id_buffer[i];
1910 unsigned int right_phy_id = phy_packet_self_id_get_phy_id(entry);
1912 if (left_phy_id == right_phy_id)
1913 return -1;
1914 if (left_phy_id < right_phy_id)
1915 return i;
1917 return i;
1920 static bool initiated_reset(struct fw_ohci *ohci)
1922 int reg;
1923 int ret = false;
1925 mutex_lock(&ohci->phy_reg_mutex);
1926 reg = write_phy_reg(ohci, 7, 0xe0); /* Select page 7 */
1927 if (reg >= 0) {
1928 reg = read_phy_reg(ohci, 8);
1929 reg |= 0x40;
1930 reg = write_phy_reg(ohci, 8, reg); /* set PMODE bit */
1931 if (reg >= 0) {
1932 reg = read_phy_reg(ohci, 12); /* read register 12 */
1933 if (reg >= 0) {
1934 if ((reg & 0x08) == 0x08) {
1935 /* bit 3 indicates "initiated reset" */
1936 ret = true;
1941 mutex_unlock(&ohci->phy_reg_mutex);
1942 return ret;
1946 * TI TSB82AA2B and TSB12LV26 do not receive the selfID of a locally
1947 * attached TSB41BA3D phy; see http://www.ti.com/litv/pdf/sllz059.
1948 * Construct the selfID from phy register contents.
1950 static int find_and_insert_self_id(struct fw_ohci *ohci, int self_id_count)
1952 int reg, i, pos;
1953 u32 self_id = 0;
1955 // link active 1, speed 3, bridge 0, contender 1, more packets 0.
1956 phy_packet_set_packet_identifier(&self_id, PHY_PACKET_PACKET_IDENTIFIER_SELF_ID);
1957 phy_packet_self_id_zero_set_link_active(&self_id, true);
1958 phy_packet_self_id_zero_set_scode(&self_id, SCODE_800);
1959 phy_packet_self_id_zero_set_contender(&self_id, true);
1961 reg = reg_read(ohci, OHCI1394_NodeID);
1962 if (!(reg & OHCI1394_NodeID_idValid)) {
1963 ohci_notice(ohci,
1964 "node ID not valid, new bus reset in progress\n");
1965 return -EBUSY;
1967 phy_packet_self_id_set_phy_id(&self_id, reg & 0x3f);
1969 reg = ohci_read_phy_reg(&ohci->card, 4);
1970 if (reg < 0)
1971 return reg;
1972 phy_packet_self_id_zero_set_power_class(&self_id, reg & 0x07);
1974 reg = ohci_read_phy_reg(&ohci->card, 1);
1975 if (reg < 0)
1976 return reg;
1977 phy_packet_self_id_zero_set_gap_count(&self_id, reg & 0x3f);
1979 for (i = 0; i < 3; i++) {
1980 enum phy_packet_self_id_port_status status;
1981 int err;
1983 err = get_status_for_port(ohci, i, &status);
1984 if (err < 0)
1985 return err;
1987 self_id_sequence_set_port_status(&self_id, 1, i, status);
1990 phy_packet_self_id_zero_set_initiated_reset(&self_id, initiated_reset(ohci));
1992 pos = get_self_id_pos(ohci, self_id, self_id_count);
1993 if (pos >= 0) {
1994 memmove(&(ohci->self_id_buffer[pos+1]),
1995 &(ohci->self_id_buffer[pos]),
1996 (self_id_count - pos) * sizeof(*ohci->self_id_buffer));
1997 ohci->self_id_buffer[pos] = self_id;
1998 self_id_count++;
2000 return self_id_count;
2003 static void bus_reset_work(struct work_struct *work)
2005 struct fw_ohci *ohci =
2006 container_of(work, struct fw_ohci, bus_reset_work);
2007 int self_id_count, generation, new_generation, i, j;
2008 u32 reg, quadlet;
2009 void *free_rom = NULL;
2010 dma_addr_t free_rom_bus = 0;
2011 bool is_new_root;
2013 reg = reg_read(ohci, OHCI1394_NodeID);
2014 if (!(reg & OHCI1394_NodeID_idValid)) {
2015 ohci_notice(ohci,
2016 "node ID not valid, new bus reset in progress\n");
2017 return;
2019 if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
2020 ohci_notice(ohci, "malconfigured bus\n");
2021 return;
2023 ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
2024 OHCI1394_NodeID_nodeNumber);
2026 is_new_root = (reg & OHCI1394_NodeID_root) != 0;
2027 if (!(ohci->is_root && is_new_root))
2028 reg_write(ohci, OHCI1394_LinkControlSet,
2029 OHCI1394_LinkControl_cycleMaster);
2030 ohci->is_root = is_new_root;
2032 reg = reg_read(ohci, OHCI1394_SelfIDCount);
2033 if (ohci1394_self_id_count_is_error(reg)) {
2034 ohci_notice(ohci, "self ID receive error\n");
2035 return;
2038 * The count in the SelfIDCount register is the number of
2039 * bytes in the self ID receive buffer. Since we also receive
2040 * the inverted quadlets and a header quadlet, we shift one
2041 * bit extra to get the actual number of self IDs.
2043 self_id_count = ohci1394_self_id_count_get_size(reg) >> 1;
2045 if (self_id_count > 252) {
2046 ohci_notice(ohci, "bad selfIDSize (%08x)\n", reg);
2047 return;
2050 quadlet = cond_le32_to_cpu(ohci->self_id[0], has_be_header_quirk(ohci));
2051 generation = ohci1394_self_id_receive_q0_get_generation(quadlet);
2052 rmb();
2054 for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
2055 u32 id = cond_le32_to_cpu(ohci->self_id[i], has_be_header_quirk(ohci));
2056 u32 id2 = cond_le32_to_cpu(ohci->self_id[i + 1], has_be_header_quirk(ohci));
2058 if (id != ~id2) {
2060 * If the invalid data looks like a cycle start packet,
2061 * it's likely to be the result of the cycle master
2062 * having a wrong gap count. In this case, the self IDs
2063 * so far are valid and should be processed so that the
2064 * bus manager can then correct the gap count.
2066 if (id == 0xffff008f) {
2067 ohci_notice(ohci, "ignoring spurious self IDs\n");
2068 self_id_count = j;
2069 break;
2072 ohci_notice(ohci, "bad self ID %d/%d (%08x != ~%08x)\n",
2073 j, self_id_count, id, id2);
2074 return;
2076 ohci->self_id_buffer[j] = id;
2079 if (ohci->quirks & QUIRK_TI_SLLZ059) {
2080 self_id_count = find_and_insert_self_id(ohci, self_id_count);
2081 if (self_id_count < 0) {
2082 ohci_notice(ohci,
2083 "could not construct local self ID\n");
2084 return;
2088 if (self_id_count == 0) {
2089 ohci_notice(ohci, "no self IDs\n");
2090 return;
2092 rmb();
2095 * Check the consistency of the self IDs we just read. The
2096 * problem we face is that a new bus reset can start while we
2097 * read out the self IDs from the DMA buffer. If this happens,
2098 * the DMA buffer will be overwritten with new self IDs and we
2099 * will read out inconsistent data. The OHCI specification
2100 * (section 11.2) recommends a technique similar to
2101 * linux/seqlock.h, where we remember the generation of the
2102 * self IDs in the buffer before reading them out and compare
2103 * it to the current generation after reading them out. If
2104 * the two generations match we know we have a consistent set
2105 * of self IDs.
2108 reg = reg_read(ohci, OHCI1394_SelfIDCount);
2109 new_generation = ohci1394_self_id_count_get_generation(reg);
2110 if (new_generation != generation) {
2111 ohci_notice(ohci, "new bus reset, discarding self ids\n");
2112 return;
2115 /* FIXME: Document how the locking works. */
2116 spin_lock_irq(&ohci->lock);
2118 ohci->generation = -1; /* prevent AT packet queueing */
2119 context_stop(&ohci->at_request_ctx);
2120 context_stop(&ohci->at_response_ctx);
2122 spin_unlock_irq(&ohci->lock);
2125 * Per OHCI 1.2 draft, clause 7.2.3.3, hardware may leave unsent
2126 * packets in the AT queues and software needs to drain them.
2127 * Some OHCI 1.1 controllers (JMicron) apparently require this too.
2129 at_context_flush(&ohci->at_request_ctx);
2130 at_context_flush(&ohci->at_response_ctx);
2132 spin_lock_irq(&ohci->lock);
2134 ohci->generation = generation;
2135 reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
2136 reg_write(ohci, OHCI1394_IntMaskSet, OHCI1394_busReset);
2138 if (ohci->quirks & QUIRK_RESET_PACKET)
2139 ohci->request_generation = generation;
2142 * This next bit is unrelated to the AT context stuff but we
2143 * have to do it under the spinlock also. If a new config rom
2144 * was set up before this reset, the old one is now no longer
2145 * in use and we can free it. Update the config rom pointers
2146 * to point to the current config rom and clear the
2147 * next_config_rom pointer so a new update can take place.
2150 if (ohci->next_config_rom != NULL) {
2151 if (ohci->next_config_rom != ohci->config_rom) {
2152 free_rom = ohci->config_rom;
2153 free_rom_bus = ohci->config_rom_bus;
2155 ohci->config_rom = ohci->next_config_rom;
2156 ohci->config_rom_bus = ohci->next_config_rom_bus;
2157 ohci->next_config_rom = NULL;
2160 * Restore config_rom image and manually update
2161 * config_rom registers. Writing the header quadlet
2162 * will indicate that the config rom is ready, so we
2163 * do that last.
2165 reg_write(ohci, OHCI1394_BusOptions,
2166 be32_to_cpu(ohci->config_rom[2]));
2167 ohci->config_rom[0] = ohci->next_header;
2168 reg_write(ohci, OHCI1394_ConfigROMhdr,
2169 be32_to_cpu(ohci->next_header));
2172 if (param_remote_dma) {
2173 reg_write(ohci, OHCI1394_PhyReqFilterHiSet, ~0);
2174 reg_write(ohci, OHCI1394_PhyReqFilterLoSet, ~0);
2177 spin_unlock_irq(&ohci->lock);
2179 if (free_rom)
2180 dmam_free_coherent(ohci->card.device, CONFIG_ROM_SIZE, free_rom, free_rom_bus);
2182 log_selfids(ohci, generation, self_id_count);
2184 fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
2185 self_id_count, ohci->self_id_buffer,
2186 ohci->csr_state_setclear_abdicate);
2187 ohci->csr_state_setclear_abdicate = false;
2190 static irqreturn_t irq_handler(int irq, void *data)
2192 struct fw_ohci *ohci = data;
2193 u32 event, iso_event;
2194 int i;
2196 event = reg_read(ohci, OHCI1394_IntEventClear);
2198 if (!event || !~event)
2199 return IRQ_NONE;
2202 * busReset and postedWriteErr events must not be cleared yet
2203 * (OHCI 1.1 clauses 7.2.3.2 and 13.2.8.1)
2205 reg_write(ohci, OHCI1394_IntEventClear,
2206 event & ~(OHCI1394_busReset | OHCI1394_postedWriteErr));
2207 trace_irqs(ohci->card.index, event);
2208 log_irqs(ohci, event);
2209 // The flag is masked again at bus_reset_work() scheduled by selfID event.
2210 if (event & OHCI1394_busReset)
2211 reg_write(ohci, OHCI1394_IntMaskClear, OHCI1394_busReset);
2213 if (event & OHCI1394_selfIDComplete) {
2214 if (trace_self_id_complete_enabled()) {
2215 u32 reg = reg_read(ohci, OHCI1394_SelfIDCount);
2217 trace_self_id_complete(ohci->card.index, reg, ohci->self_id,
2218 has_be_header_quirk(ohci));
2220 queue_work(selfid_workqueue, &ohci->bus_reset_work);
2223 if (event & OHCI1394_RQPkt)
2224 tasklet_schedule(&ohci->ar_request_ctx.tasklet);
2226 if (event & OHCI1394_RSPkt)
2227 tasklet_schedule(&ohci->ar_response_ctx.tasklet);
2229 if (event & OHCI1394_reqTxComplete)
2230 tasklet_schedule(&ohci->at_request_ctx.tasklet);
2232 if (event & OHCI1394_respTxComplete)
2233 tasklet_schedule(&ohci->at_response_ctx.tasklet);
2235 if (event & OHCI1394_isochRx) {
2236 iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
2237 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);
2239 while (iso_event) {
2240 i = ffs(iso_event) - 1;
2241 tasklet_schedule(
2242 &ohci->ir_context_list[i].context.tasklet);
2243 iso_event &= ~(1 << i);
2247 if (event & OHCI1394_isochTx) {
2248 iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
2249 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);
2251 while (iso_event) {
2252 i = ffs(iso_event) - 1;
2253 tasklet_schedule(
2254 &ohci->it_context_list[i].context.tasklet);
2255 iso_event &= ~(1 << i);
2259 if (unlikely(event & OHCI1394_regAccessFail))
2260 ohci_err(ohci, "register access failure\n");
2262 if (unlikely(event & OHCI1394_postedWriteErr)) {
2263 reg_read(ohci, OHCI1394_PostedWriteAddressHi);
2264 reg_read(ohci, OHCI1394_PostedWriteAddressLo);
2265 reg_write(ohci, OHCI1394_IntEventClear,
2266 OHCI1394_postedWriteErr);
2267 if (printk_ratelimit())
2268 ohci_err(ohci, "PCI posted write error\n");
2271 if (unlikely(event & OHCI1394_cycleTooLong)) {
2272 if (printk_ratelimit())
2273 ohci_notice(ohci, "isochronous cycle too long\n");
2274 reg_write(ohci, OHCI1394_LinkControlSet,
2275 OHCI1394_LinkControl_cycleMaster);
2278 if (unlikely(event & OHCI1394_cycleInconsistent)) {
2280 * We need to clear this event bit in order to make
2281 * cycleMatch isochronous I/O work. In theory we should
2282 * stop active cycleMatch iso contexts now and restart
2283 * them at least two cycles later. (FIXME?)
2285 if (printk_ratelimit())
2286 ohci_notice(ohci, "isochronous cycle inconsistent\n");
2289 if (unlikely(event & OHCI1394_unrecoverableError))
2290 handle_dead_contexts(ohci);
2292 if (event & OHCI1394_cycle64Seconds) {
2293 spin_lock(&ohci->lock);
2294 update_bus_time(ohci);
2295 spin_unlock(&ohci->lock);
2296 } else
2297 flush_writes(ohci);
2299 return IRQ_HANDLED;
2302 static int software_reset(struct fw_ohci *ohci)
2304 u32 val;
2305 int i;
2307 reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
2308 for (i = 0; i < 500; i++) {
2309 val = reg_read(ohci, OHCI1394_HCControlSet);
2310 if (!~val)
2311 return -ENODEV; /* Card was ejected. */
2313 if (!(val & OHCI1394_HCControl_softReset))
2314 return 0;
2316 msleep(1);
2319 return -EBUSY;
2322 static void copy_config_rom(__be32 *dest, const __be32 *src, size_t length)
2324 size_t size = length * 4;
2326 memcpy(dest, src, size);
2327 if (size < CONFIG_ROM_SIZE)
2328 memset(&dest[length], 0, CONFIG_ROM_SIZE - size);
2331 static int configure_1394a_enhancements(struct fw_ohci *ohci)
2333 bool enable_1394a;
2334 int ret, clear, set, offset;
2336 /* Check if the driver should configure link and PHY. */
2337 if (!(reg_read(ohci, OHCI1394_HCControlSet) &
2338 OHCI1394_HCControl_programPhyEnable))
2339 return 0;
2341 /* Paranoia: check whether the PHY supports 1394a, too. */
2342 enable_1394a = false;
2343 ret = read_phy_reg(ohci, 2);
2344 if (ret < 0)
2345 return ret;
2346 if ((ret & PHY_EXTENDED_REGISTERS) == PHY_EXTENDED_REGISTERS) {
2347 ret = read_paged_phy_reg(ohci, 1, 8);
2348 if (ret < 0)
2349 return ret;
2350 if (ret >= 1)
2351 enable_1394a = true;
2354 if (ohci->quirks & QUIRK_NO_1394A)
2355 enable_1394a = false;
2357 /* Configure PHY and link consistently. */
2358 if (enable_1394a) {
2359 clear = 0;
2360 set = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
2361 } else {
2362 clear = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
2363 set = 0;
2365 ret = update_phy_reg(ohci, 5, clear, set);
2366 if (ret < 0)
2367 return ret;
2369 if (enable_1394a)
2370 offset = OHCI1394_HCControlSet;
2371 else
2372 offset = OHCI1394_HCControlClear;
2373 reg_write(ohci, offset, OHCI1394_HCControl_aPhyEnhanceEnable);
2375 /* Clean up: configuration has been taken care of. */
2376 reg_write(ohci, OHCI1394_HCControlClear,
2377 OHCI1394_HCControl_programPhyEnable);
2379 return 0;
2382 static int probe_tsb41ba3d(struct fw_ohci *ohci)
2384 /* TI vendor ID = 0x080028, TSB41BA3D product ID = 0x833005 (sic) */
2385 static const u8 id[] = { 0x08, 0x00, 0x28, 0x83, 0x30, 0x05, };
2386 int reg, i;
2388 reg = read_phy_reg(ohci, 2);
2389 if (reg < 0)
2390 return reg;
2391 if ((reg & PHY_EXTENDED_REGISTERS) != PHY_EXTENDED_REGISTERS)
2392 return 0;
2394 for (i = ARRAY_SIZE(id) - 1; i >= 0; i--) {
2395 reg = read_paged_phy_reg(ohci, 1, i + 10);
2396 if (reg < 0)
2397 return reg;
2398 if (reg != id[i])
2399 return 0;
2401 return 1;
2404 static int ohci_enable(struct fw_card *card,
2405 const __be32 *config_rom, size_t length)
2407 struct fw_ohci *ohci = fw_ohci(card);
2408 u32 lps, version, irqs;
2409 int i, ret;
2411 ret = software_reset(ohci);
2412 if (ret < 0) {
2413 ohci_err(ohci, "failed to reset ohci card\n");
2414 return ret;
2418 * Now enable LPS, which we need in order to start accessing
2419 * most of the registers. In fact, on some cards (ALI M5251),
2420 * accessing registers in the SClk domain without LPS enabled
2421 * will lock up the machine. Wait 50msec to make sure we have
2422 * full link enabled. However, with some cards (well, at least
2423 * a JMicron PCIe card), we have to try again sometimes.
2425 * TI TSB82AA2 + TSB81BA3(A) cards signal LPS enabled early but
2426 * cannot actually use the phy at that time. These need tens of
2427 * millisecods pause between LPS write and first phy access too.
2430 reg_write(ohci, OHCI1394_HCControlSet,
2431 OHCI1394_HCControl_LPS |
2432 OHCI1394_HCControl_postedWriteEnable);
2433 flush_writes(ohci);
2435 for (lps = 0, i = 0; !lps && i < 3; i++) {
2436 msleep(50);
2437 lps = reg_read(ohci, OHCI1394_HCControlSet) &
2438 OHCI1394_HCControl_LPS;
2441 if (!lps) {
2442 ohci_err(ohci, "failed to set Link Power Status\n");
2443 return -EIO;
2446 if (ohci->quirks & QUIRK_TI_SLLZ059) {
2447 ret = probe_tsb41ba3d(ohci);
2448 if (ret < 0)
2449 return ret;
2450 if (ret)
2451 ohci_notice(ohci, "local TSB41BA3D phy\n");
2452 else
2453 ohci->quirks &= ~QUIRK_TI_SLLZ059;
2456 reg_write(ohci, OHCI1394_HCControlClear,
2457 OHCI1394_HCControl_noByteSwapData);
2459 reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
2460 reg_write(ohci, OHCI1394_LinkControlSet,
2461 OHCI1394_LinkControl_cycleTimerEnable |
2462 OHCI1394_LinkControl_cycleMaster);
2464 reg_write(ohci, OHCI1394_ATRetries,
2465 OHCI1394_MAX_AT_REQ_RETRIES |
2466 (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
2467 (OHCI1394_MAX_PHYS_RESP_RETRIES << 8) |
2468 (200 << 16));
2470 ohci->bus_time_running = false;
2472 for (i = 0; i < 32; i++)
2473 if (ohci->ir_context_support & (1 << i))
2474 reg_write(ohci, OHCI1394_IsoRcvContextControlClear(i),
2475 IR_CONTEXT_MULTI_CHANNEL_MODE);
2477 version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
2478 if (version >= OHCI_VERSION_1_1) {
2479 reg_write(ohci, OHCI1394_InitialChannelsAvailableHi,
2480 0xfffffffe);
2481 card->broadcast_channel_auto_allocated = true;
2484 /* Get implemented bits of the priority arbitration request counter. */
2485 reg_write(ohci, OHCI1394_FairnessControl, 0x3f);
2486 ohci->pri_req_max = reg_read(ohci, OHCI1394_FairnessControl) & 0x3f;
2487 reg_write(ohci, OHCI1394_FairnessControl, 0);
2488 card->priority_budget_implemented = ohci->pri_req_max != 0;
2490 reg_write(ohci, OHCI1394_PhyUpperBound, FW_MAX_PHYSICAL_RANGE >> 16);
2491 reg_write(ohci, OHCI1394_IntEventClear, ~0);
2492 reg_write(ohci, OHCI1394_IntMaskClear, ~0);
2494 ret = configure_1394a_enhancements(ohci);
2495 if (ret < 0)
2496 return ret;
2498 /* Activate link_on bit and contender bit in our self ID packets.*/
2499 ret = ohci_update_phy_reg(card, 4, 0, PHY_LINK_ACTIVE | PHY_CONTENDER);
2500 if (ret < 0)
2501 return ret;
2504 * When the link is not yet enabled, the atomic config rom
2505 * update mechanism described below in ohci_set_config_rom()
2506 * is not active. We have to update ConfigRomHeader and
2507 * BusOptions manually, and the write to ConfigROMmap takes
2508 * effect immediately. We tie this to the enabling of the
2509 * link, so we have a valid config rom before enabling - the
2510 * OHCI requires that ConfigROMhdr and BusOptions have valid
2511 * values before enabling.
2513 * However, when the ConfigROMmap is written, some controllers
2514 * always read back quadlets 0 and 2 from the config rom to
2515 * the ConfigRomHeader and BusOptions registers on bus reset.
2516 * They shouldn't do that in this initial case where the link
2517 * isn't enabled. This means we have to use the same
2518 * workaround here, setting the bus header to 0 and then write
2519 * the right values in the bus reset tasklet.
2522 if (config_rom) {
2523 ohci->next_config_rom = dmam_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2524 &ohci->next_config_rom_bus, GFP_KERNEL);
2525 if (ohci->next_config_rom == NULL)
2526 return -ENOMEM;
2528 copy_config_rom(ohci->next_config_rom, config_rom, length);
2529 } else {
2531 * In the suspend case, config_rom is NULL, which
2532 * means that we just reuse the old config rom.
2534 ohci->next_config_rom = ohci->config_rom;
2535 ohci->next_config_rom_bus = ohci->config_rom_bus;
2538 ohci->next_header = ohci->next_config_rom[0];
2539 ohci->next_config_rom[0] = 0;
2540 reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
2541 reg_write(ohci, OHCI1394_BusOptions,
2542 be32_to_cpu(ohci->next_config_rom[2]));
2543 reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
2545 reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);
2547 irqs = OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
2548 OHCI1394_RQPkt | OHCI1394_RSPkt |
2549 OHCI1394_isochTx | OHCI1394_isochRx |
2550 OHCI1394_postedWriteErr |
2551 OHCI1394_selfIDComplete |
2552 OHCI1394_regAccessFail |
2553 OHCI1394_cycleInconsistent |
2554 OHCI1394_unrecoverableError |
2555 OHCI1394_cycleTooLong |
2556 OHCI1394_masterIntEnable |
2557 OHCI1394_busReset;
2558 reg_write(ohci, OHCI1394_IntMaskSet, irqs);
2560 reg_write(ohci, OHCI1394_HCControlSet,
2561 OHCI1394_HCControl_linkEnable |
2562 OHCI1394_HCControl_BIBimageValid);
2564 reg_write(ohci, OHCI1394_LinkControlSet,
2565 OHCI1394_LinkControl_rcvSelfID |
2566 OHCI1394_LinkControl_rcvPhyPkt);
2568 ar_context_run(&ohci->ar_request_ctx);
2569 ar_context_run(&ohci->ar_response_ctx);
2571 flush_writes(ohci);
2573 /* We are ready to go, reset bus to finish initialization. */
2574 fw_schedule_bus_reset(&ohci->card, false, true);
2576 return 0;
2579 static int ohci_set_config_rom(struct fw_card *card,
2580 const __be32 *config_rom, size_t length)
2582 struct fw_ohci *ohci;
2583 __be32 *next_config_rom;
2584 dma_addr_t next_config_rom_bus;
2586 ohci = fw_ohci(card);
2589 * When the OHCI controller is enabled, the config rom update
2590 * mechanism is a bit tricky, but easy enough to use. See
2591 * section 5.5.6 in the OHCI specification.
2593 * The OHCI controller caches the new config rom address in a
2594 * shadow register (ConfigROMmapNext) and needs a bus reset
2595 * for the changes to take place. When the bus reset is
2596 * detected, the controller loads the new values for the
2597 * ConfigRomHeader and BusOptions registers from the specified
2598 * config rom and loads ConfigROMmap from the ConfigROMmapNext
2599 * shadow register. All automatically and atomically.
2601 * Now, there's a twist to this story. The automatic load of
2602 * ConfigRomHeader and BusOptions doesn't honor the
2603 * noByteSwapData bit, so with a be32 config rom, the
2604 * controller will load be32 values in to these registers
2605 * during the atomic update, even on litte endian
2606 * architectures. The workaround we use is to put a 0 in the
2607 * header quadlet; 0 is endian agnostic and means that the
2608 * config rom isn't ready yet. In the bus reset tasklet we
2609 * then set up the real values for the two registers.
2611 * We use ohci->lock to avoid racing with the code that sets
2612 * ohci->next_config_rom to NULL (see bus_reset_work).
2615 next_config_rom = dmam_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2616 &next_config_rom_bus, GFP_KERNEL);
2617 if (next_config_rom == NULL)
2618 return -ENOMEM;
2620 spin_lock_irq(&ohci->lock);
2623 * If there is not an already pending config_rom update,
2624 * push our new allocation into the ohci->next_config_rom
2625 * and then mark the local variable as null so that we
2626 * won't deallocate the new buffer.
2628 * OTOH, if there is a pending config_rom update, just
2629 * use that buffer with the new config_rom data, and
2630 * let this routine free the unused DMA allocation.
2633 if (ohci->next_config_rom == NULL) {
2634 ohci->next_config_rom = next_config_rom;
2635 ohci->next_config_rom_bus = next_config_rom_bus;
2636 next_config_rom = NULL;
2639 copy_config_rom(ohci->next_config_rom, config_rom, length);
2641 ohci->next_header = config_rom[0];
2642 ohci->next_config_rom[0] = 0;
2644 reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
2646 spin_unlock_irq(&ohci->lock);
2648 /* If we didn't use the DMA allocation, delete it. */
2649 if (next_config_rom != NULL) {
2650 dmam_free_coherent(ohci->card.device, CONFIG_ROM_SIZE, next_config_rom,
2651 next_config_rom_bus);
2655 * Now initiate a bus reset to have the changes take
2656 * effect. We clean up the old config rom memory and DMA
2657 * mappings in the bus reset tasklet, since the OHCI
2658 * controller could need to access it before the bus reset
2659 * takes effect.
2662 fw_schedule_bus_reset(&ohci->card, true, true);
2664 return 0;
2667 static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
2669 struct fw_ohci *ohci = fw_ohci(card);
2671 at_context_transmit(&ohci->at_request_ctx, packet);
2674 static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
2676 struct fw_ohci *ohci = fw_ohci(card);
2678 at_context_transmit(&ohci->at_response_ctx, packet);
2681 static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
2683 struct fw_ohci *ohci = fw_ohci(card);
2684 struct context *ctx = &ohci->at_request_ctx;
2685 struct driver_data *driver_data = packet->driver_data;
2686 int ret = -ENOENT;
2688 tasklet_disable_in_atomic(&ctx->tasklet);
2690 if (packet->ack != 0)
2691 goto out;
2693 if (packet->payload_mapped)
2694 dma_unmap_single(ohci->card.device, packet->payload_bus,
2695 packet->payload_length, DMA_TO_DEVICE);
2697 log_ar_at_event(ohci, 'T', packet->speed, packet->header, 0x20);
2698 driver_data->packet = NULL;
2699 packet->ack = RCODE_CANCELLED;
2701 // Timestamping on behalf of the hardware.
2702 packet->timestamp = cycle_time_to_ohci_tstamp(get_cycle_time(ohci));
2704 packet->callback(packet, &ohci->card, packet->ack);
2705 ret = 0;
2706 out:
2707 tasklet_enable(&ctx->tasklet);
2709 return ret;
2712 static int ohci_enable_phys_dma(struct fw_card *card,
2713 int node_id, int generation)
2715 struct fw_ohci *ohci = fw_ohci(card);
2716 unsigned long flags;
2717 int n, ret = 0;
2719 if (param_remote_dma)
2720 return 0;
2723 * FIXME: Make sure this bitmask is cleared when we clear the busReset
2724 * interrupt bit. Clear physReqResourceAllBuses on bus reset.
2727 spin_lock_irqsave(&ohci->lock, flags);
2729 if (ohci->generation != generation) {
2730 ret = -ESTALE;
2731 goto out;
2735 * Note, if the node ID contains a non-local bus ID, physical DMA is
2736 * enabled for _all_ nodes on remote buses.
2739 n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
2740 if (n < 32)
2741 reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
2742 else
2743 reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));
2745 flush_writes(ohci);
2746 out:
2747 spin_unlock_irqrestore(&ohci->lock, flags);
2749 return ret;
2752 static u32 ohci_read_csr(struct fw_card *card, int csr_offset)
2754 struct fw_ohci *ohci = fw_ohci(card);
2755 unsigned long flags;
2756 u32 value;
2758 switch (csr_offset) {
2759 case CSR_STATE_CLEAR:
2760 case CSR_STATE_SET:
2761 if (ohci->is_root &&
2762 (reg_read(ohci, OHCI1394_LinkControlSet) &
2763 OHCI1394_LinkControl_cycleMaster))
2764 value = CSR_STATE_BIT_CMSTR;
2765 else
2766 value = 0;
2767 if (ohci->csr_state_setclear_abdicate)
2768 value |= CSR_STATE_BIT_ABDICATE;
2770 return value;
2772 case CSR_NODE_IDS:
2773 return reg_read(ohci, OHCI1394_NodeID) << 16;
2775 case CSR_CYCLE_TIME:
2776 return get_cycle_time(ohci);
2778 case CSR_BUS_TIME:
2780 * We might be called just after the cycle timer has wrapped
2781 * around but just before the cycle64Seconds handler, so we
2782 * better check here, too, if the bus time needs to be updated.
2784 spin_lock_irqsave(&ohci->lock, flags);
2785 value = update_bus_time(ohci);
2786 spin_unlock_irqrestore(&ohci->lock, flags);
2787 return value;
2789 case CSR_BUSY_TIMEOUT:
2790 value = reg_read(ohci, OHCI1394_ATRetries);
2791 return (value >> 4) & 0x0ffff00f;
2793 case CSR_PRIORITY_BUDGET:
2794 return (reg_read(ohci, OHCI1394_FairnessControl) & 0x3f) |
2795 (ohci->pri_req_max << 8);
2797 default:
2798 WARN_ON(1);
2799 return 0;
2803 static void ohci_write_csr(struct fw_card *card, int csr_offset, u32 value)
2805 struct fw_ohci *ohci = fw_ohci(card);
2806 unsigned long flags;
2808 switch (csr_offset) {
2809 case CSR_STATE_CLEAR:
2810 if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2811 reg_write(ohci, OHCI1394_LinkControlClear,
2812 OHCI1394_LinkControl_cycleMaster);
2813 flush_writes(ohci);
2815 if (value & CSR_STATE_BIT_ABDICATE)
2816 ohci->csr_state_setclear_abdicate = false;
2817 break;
2819 case CSR_STATE_SET:
2820 if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2821 reg_write(ohci, OHCI1394_LinkControlSet,
2822 OHCI1394_LinkControl_cycleMaster);
2823 flush_writes(ohci);
2825 if (value & CSR_STATE_BIT_ABDICATE)
2826 ohci->csr_state_setclear_abdicate = true;
2827 break;
2829 case CSR_NODE_IDS:
2830 reg_write(ohci, OHCI1394_NodeID, value >> 16);
2831 flush_writes(ohci);
2832 break;
2834 case CSR_CYCLE_TIME:
2835 reg_write(ohci, OHCI1394_IsochronousCycleTimer, value);
2836 reg_write(ohci, OHCI1394_IntEventSet,
2837 OHCI1394_cycleInconsistent);
2838 flush_writes(ohci);
2839 break;
2841 case CSR_BUS_TIME:
2842 spin_lock_irqsave(&ohci->lock, flags);
2843 ohci->bus_time = (update_bus_time(ohci) & 0x40) |
2844 (value & ~0x7f);
2845 spin_unlock_irqrestore(&ohci->lock, flags);
2846 break;
2848 case CSR_BUSY_TIMEOUT:
2849 value = (value & 0xf) | ((value & 0xf) << 4) |
2850 ((value & 0xf) << 8) | ((value & 0x0ffff000) << 4);
2851 reg_write(ohci, OHCI1394_ATRetries, value);
2852 flush_writes(ohci);
2853 break;
2855 case CSR_PRIORITY_BUDGET:
2856 reg_write(ohci, OHCI1394_FairnessControl, value & 0x3f);
2857 flush_writes(ohci);
2858 break;
2860 default:
2861 WARN_ON(1);
2862 break;
2866 static void flush_iso_completions(struct iso_context *ctx, enum fw_iso_context_completions_cause cause)
2868 trace_isoc_inbound_single_completions(&ctx->base, ctx->last_timestamp, cause, ctx->header,
2869 ctx->header_length);
2870 trace_isoc_outbound_completions(&ctx->base, ctx->last_timestamp, cause, ctx->header,
2871 ctx->header_length);
2873 ctx->base.callback.sc(&ctx->base, ctx->last_timestamp,
2874 ctx->header_length, ctx->header,
2875 ctx->base.callback_data);
2876 ctx->header_length = 0;
2879 static void copy_iso_headers(struct iso_context *ctx, const u32 *dma_hdr)
2881 u32 *ctx_hdr;
2883 if (ctx->header_length + ctx->base.header_size > PAGE_SIZE) {
2884 if (ctx->base.drop_overflow_headers)
2885 return;
2886 flush_iso_completions(ctx, FW_ISO_CONTEXT_COMPLETIONS_CAUSE_HEADER_OVERFLOW);
2889 ctx_hdr = ctx->header + ctx->header_length;
2890 ctx->last_timestamp = (u16)le32_to_cpu((__force __le32)dma_hdr[0]);
2893 * The two iso header quadlets are byteswapped to little
2894 * endian by the controller, but we want to present them
2895 * as big endian for consistency with the bus endianness.
2897 if (ctx->base.header_size > 0)
2898 ctx_hdr[0] = swab32(dma_hdr[1]); /* iso packet header */
2899 if (ctx->base.header_size > 4)
2900 ctx_hdr[1] = swab32(dma_hdr[0]); /* timestamp */
2901 if (ctx->base.header_size > 8)
2902 memcpy(&ctx_hdr[2], &dma_hdr[2], ctx->base.header_size - 8);
2903 ctx->header_length += ctx->base.header_size;
2906 static int handle_ir_packet_per_buffer(struct context *context,
2907 struct descriptor *d,
2908 struct descriptor *last)
2910 struct iso_context *ctx =
2911 container_of(context, struct iso_context, context);
2912 struct descriptor *pd;
2913 u32 buffer_dma;
2915 for (pd = d; pd <= last; pd++)
2916 if (pd->transfer_status)
2917 break;
2918 if (pd > last)
2919 /* Descriptor(s) not done yet, stop iteration */
2920 return 0;
2922 while (!(d->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))) {
2923 d++;
2924 buffer_dma = le32_to_cpu(d->data_address);
2925 dma_sync_single_range_for_cpu(context->ohci->card.device,
2926 buffer_dma & PAGE_MASK,
2927 buffer_dma & ~PAGE_MASK,
2928 le16_to_cpu(d->req_count),
2929 DMA_FROM_DEVICE);
2932 copy_iso_headers(ctx, (u32 *) (last + 1));
2934 if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS))
2935 flush_iso_completions(ctx, FW_ISO_CONTEXT_COMPLETIONS_CAUSE_IRQ);
2937 return 1;
2940 /* d == last because each descriptor block is only a single descriptor. */
2941 static int handle_ir_buffer_fill(struct context *context,
2942 struct descriptor *d,
2943 struct descriptor *last)
2945 struct iso_context *ctx =
2946 container_of(context, struct iso_context, context);
2947 unsigned int req_count, res_count, completed;
2948 u32 buffer_dma;
2950 req_count = le16_to_cpu(last->req_count);
2951 res_count = le16_to_cpu(READ_ONCE(last->res_count));
2952 completed = req_count - res_count;
2953 buffer_dma = le32_to_cpu(last->data_address);
2955 if (completed > 0) {
2956 ctx->mc_buffer_bus = buffer_dma;
2957 ctx->mc_completed = completed;
2960 if (res_count != 0)
2961 /* Descriptor(s) not done yet, stop iteration */
2962 return 0;
2964 dma_sync_single_range_for_cpu(context->ohci->card.device,
2965 buffer_dma & PAGE_MASK,
2966 buffer_dma & ~PAGE_MASK,
2967 completed, DMA_FROM_DEVICE);
2969 if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS)) {
2970 trace_isoc_inbound_multiple_completions(&ctx->base, completed,
2971 FW_ISO_CONTEXT_COMPLETIONS_CAUSE_IRQ);
2973 ctx->base.callback.mc(&ctx->base,
2974 buffer_dma + completed,
2975 ctx->base.callback_data);
2976 ctx->mc_completed = 0;
2979 return 1;
2982 static void flush_ir_buffer_fill(struct iso_context *ctx)
2984 dma_sync_single_range_for_cpu(ctx->context.ohci->card.device,
2985 ctx->mc_buffer_bus & PAGE_MASK,
2986 ctx->mc_buffer_bus & ~PAGE_MASK,
2987 ctx->mc_completed, DMA_FROM_DEVICE);
2989 trace_isoc_inbound_multiple_completions(&ctx->base, ctx->mc_completed,
2990 FW_ISO_CONTEXT_COMPLETIONS_CAUSE_FLUSH);
2992 ctx->base.callback.mc(&ctx->base,
2993 ctx->mc_buffer_bus + ctx->mc_completed,
2994 ctx->base.callback_data);
2995 ctx->mc_completed = 0;
2998 static inline void sync_it_packet_for_cpu(struct context *context,
2999 struct descriptor *pd)
3001 __le16 control;
3002 u32 buffer_dma;
3004 /* only packets beginning with OUTPUT_MORE* have data buffers */
3005 if (pd->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
3006 return;
3008 /* skip over the OUTPUT_MORE_IMMEDIATE descriptor */
3009 pd += 2;
3012 * If the packet has a header, the first OUTPUT_MORE/LAST descriptor's
3013 * data buffer is in the context program's coherent page and must not
3014 * be synced.
3016 if ((le32_to_cpu(pd->data_address) & PAGE_MASK) ==
3017 (context->current_bus & PAGE_MASK)) {
3018 if (pd->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
3019 return;
3020 pd++;
3023 do {
3024 buffer_dma = le32_to_cpu(pd->data_address);
3025 dma_sync_single_range_for_cpu(context->ohci->card.device,
3026 buffer_dma & PAGE_MASK,
3027 buffer_dma & ~PAGE_MASK,
3028 le16_to_cpu(pd->req_count),
3029 DMA_TO_DEVICE);
3030 control = pd->control;
3031 pd++;
3032 } while (!(control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS)));
3035 static int handle_it_packet(struct context *context,
3036 struct descriptor *d,
3037 struct descriptor *last)
3039 struct iso_context *ctx =
3040 container_of(context, struct iso_context, context);
3041 struct descriptor *pd;
3042 __be32 *ctx_hdr;
3044 for (pd = d; pd <= last; pd++)
3045 if (pd->transfer_status)
3046 break;
3047 if (pd > last)
3048 /* Descriptor(s) not done yet, stop iteration */
3049 return 0;
3051 sync_it_packet_for_cpu(context, d);
3053 if (ctx->header_length + 4 > PAGE_SIZE) {
3054 if (ctx->base.drop_overflow_headers)
3055 return 1;
3056 flush_iso_completions(ctx, FW_ISO_CONTEXT_COMPLETIONS_CAUSE_HEADER_OVERFLOW);
3059 ctx_hdr = ctx->header + ctx->header_length;
3060 ctx->last_timestamp = le16_to_cpu(last->res_count);
3061 /* Present this value as big-endian to match the receive code */
3062 *ctx_hdr = cpu_to_be32((le16_to_cpu(pd->transfer_status) << 16) |
3063 le16_to_cpu(pd->res_count));
3064 ctx->header_length += 4;
3066 if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS))
3067 flush_iso_completions(ctx, FW_ISO_CONTEXT_COMPLETIONS_CAUSE_IRQ);
3069 return 1;
3072 static void set_multichannel_mask(struct fw_ohci *ohci, u64 channels)
3074 u32 hi = channels >> 32, lo = channels;
3076 reg_write(ohci, OHCI1394_IRMultiChanMaskHiClear, ~hi);
3077 reg_write(ohci, OHCI1394_IRMultiChanMaskLoClear, ~lo);
3078 reg_write(ohci, OHCI1394_IRMultiChanMaskHiSet, hi);
3079 reg_write(ohci, OHCI1394_IRMultiChanMaskLoSet, lo);
3080 ohci->mc_channels = channels;
3083 static struct fw_iso_context *ohci_allocate_iso_context(struct fw_card *card,
3084 int type, int channel, size_t header_size)
3086 struct fw_ohci *ohci = fw_ohci(card);
3087 struct iso_context *ctx;
3088 descriptor_callback_t callback;
3089 u64 *channels;
3090 u32 *mask, regs;
3091 int index, ret = -EBUSY;
3093 spin_lock_irq(&ohci->lock);
3095 switch (type) {
3096 case FW_ISO_CONTEXT_TRANSMIT:
3097 mask = &ohci->it_context_mask;
3098 callback = handle_it_packet;
3099 index = ffs(*mask) - 1;
3100 if (index >= 0) {
3101 *mask &= ~(1 << index);
3102 regs = OHCI1394_IsoXmitContextBase(index);
3103 ctx = &ohci->it_context_list[index];
3105 break;
3107 case FW_ISO_CONTEXT_RECEIVE:
3108 channels = &ohci->ir_context_channels;
3109 mask = &ohci->ir_context_mask;
3110 callback = handle_ir_packet_per_buffer;
3111 index = *channels & 1ULL << channel ? ffs(*mask) - 1 : -1;
3112 if (index >= 0) {
3113 *channels &= ~(1ULL << channel);
3114 *mask &= ~(1 << index);
3115 regs = OHCI1394_IsoRcvContextBase(index);
3116 ctx = &ohci->ir_context_list[index];
3118 break;
3120 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3121 mask = &ohci->ir_context_mask;
3122 callback = handle_ir_buffer_fill;
3123 index = !ohci->mc_allocated ? ffs(*mask) - 1 : -1;
3124 if (index >= 0) {
3125 ohci->mc_allocated = true;
3126 *mask &= ~(1 << index);
3127 regs = OHCI1394_IsoRcvContextBase(index);
3128 ctx = &ohci->ir_context_list[index];
3130 break;
3132 default:
3133 index = -1;
3134 ret = -ENOSYS;
3137 spin_unlock_irq(&ohci->lock);
3139 if (index < 0)
3140 return ERR_PTR(ret);
3142 memset(ctx, 0, sizeof(*ctx));
3143 ctx->header_length = 0;
3144 ctx->header = (void *) __get_free_page(GFP_KERNEL);
3145 if (ctx->header == NULL) {
3146 ret = -ENOMEM;
3147 goto out;
3149 ret = context_init(&ctx->context, ohci, regs, callback);
3150 if (ret < 0)
3151 goto out_with_header;
3153 if (type == FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL) {
3154 set_multichannel_mask(ohci, 0);
3155 ctx->mc_completed = 0;
3158 return &ctx->base;
3160 out_with_header:
3161 free_page((unsigned long)ctx->header);
3162 out:
3163 spin_lock_irq(&ohci->lock);
3165 switch (type) {
3166 case FW_ISO_CONTEXT_RECEIVE:
3167 *channels |= 1ULL << channel;
3168 break;
3170 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3171 ohci->mc_allocated = false;
3172 break;
3174 *mask |= 1 << index;
3176 spin_unlock_irq(&ohci->lock);
3178 return ERR_PTR(ret);
3181 static int ohci_start_iso(struct fw_iso_context *base,
3182 s32 cycle, u32 sync, u32 tags)
3184 struct iso_context *ctx = container_of(base, struct iso_context, base);
3185 struct fw_ohci *ohci = ctx->context.ohci;
3186 u32 control = IR_CONTEXT_ISOCH_HEADER, match;
3187 int index;
3189 /* the controller cannot start without any queued packets */
3190 if (ctx->context.last->branch_address == 0)
3191 return -ENODATA;
3193 switch (ctx->base.type) {
3194 case FW_ISO_CONTEXT_TRANSMIT:
3195 index = ctx - ohci->it_context_list;
3196 match = 0;
3197 if (cycle >= 0)
3198 match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
3199 (cycle & 0x7fff) << 16;
3201 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
3202 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
3203 context_run(&ctx->context, match);
3204 break;
3206 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3207 control |= IR_CONTEXT_BUFFER_FILL|IR_CONTEXT_MULTI_CHANNEL_MODE;
3208 fallthrough;
3209 case FW_ISO_CONTEXT_RECEIVE:
3210 index = ctx - ohci->ir_context_list;
3211 match = (tags << 28) | (sync << 8) | ctx->base.channel;
3212 if (cycle >= 0) {
3213 match |= (cycle & 0x07fff) << 12;
3214 control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
3217 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
3218 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
3219 reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
3220 context_run(&ctx->context, control);
3222 ctx->sync = sync;
3223 ctx->tags = tags;
3225 break;
3228 return 0;
3231 static int ohci_stop_iso(struct fw_iso_context *base)
3233 struct fw_ohci *ohci = fw_ohci(base->card);
3234 struct iso_context *ctx = container_of(base, struct iso_context, base);
3235 int index;
3237 switch (ctx->base.type) {
3238 case FW_ISO_CONTEXT_TRANSMIT:
3239 index = ctx - ohci->it_context_list;
3240 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
3241 break;
3243 case FW_ISO_CONTEXT_RECEIVE:
3244 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3245 index = ctx - ohci->ir_context_list;
3246 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
3247 break;
3249 flush_writes(ohci);
3250 context_stop(&ctx->context);
3251 tasklet_kill(&ctx->context.tasklet);
3253 return 0;
3256 static void ohci_free_iso_context(struct fw_iso_context *base)
3258 struct fw_ohci *ohci = fw_ohci(base->card);
3259 struct iso_context *ctx = container_of(base, struct iso_context, base);
3260 unsigned long flags;
3261 int index;
3263 ohci_stop_iso(base);
3264 context_release(&ctx->context);
3265 free_page((unsigned long)ctx->header);
3267 spin_lock_irqsave(&ohci->lock, flags);
3269 switch (base->type) {
3270 case FW_ISO_CONTEXT_TRANSMIT:
3271 index = ctx - ohci->it_context_list;
3272 ohci->it_context_mask |= 1 << index;
3273 break;
3275 case FW_ISO_CONTEXT_RECEIVE:
3276 index = ctx - ohci->ir_context_list;
3277 ohci->ir_context_mask |= 1 << index;
3278 ohci->ir_context_channels |= 1ULL << base->channel;
3279 break;
3281 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3282 index = ctx - ohci->ir_context_list;
3283 ohci->ir_context_mask |= 1 << index;
3284 ohci->ir_context_channels |= ohci->mc_channels;
3285 ohci->mc_channels = 0;
3286 ohci->mc_allocated = false;
3287 break;
3290 spin_unlock_irqrestore(&ohci->lock, flags);
3293 static int ohci_set_iso_channels(struct fw_iso_context *base, u64 *channels)
3295 struct fw_ohci *ohci = fw_ohci(base->card);
3296 unsigned long flags;
3297 int ret;
3299 switch (base->type) {
3300 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3302 spin_lock_irqsave(&ohci->lock, flags);
3304 /* Don't allow multichannel to grab other contexts' channels. */
3305 if (~ohci->ir_context_channels & ~ohci->mc_channels & *channels) {
3306 *channels = ohci->ir_context_channels;
3307 ret = -EBUSY;
3308 } else {
3309 set_multichannel_mask(ohci, *channels);
3310 ret = 0;
3313 spin_unlock_irqrestore(&ohci->lock, flags);
3315 break;
3316 default:
3317 ret = -EINVAL;
3320 return ret;
3323 #ifdef CONFIG_PM
3324 static void ohci_resume_iso_dma(struct fw_ohci *ohci)
3326 int i;
3327 struct iso_context *ctx;
3329 for (i = 0 ; i < ohci->n_ir ; i++) {
3330 ctx = &ohci->ir_context_list[i];
3331 if (ctx->context.running)
3332 ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags);
3335 for (i = 0 ; i < ohci->n_it ; i++) {
3336 ctx = &ohci->it_context_list[i];
3337 if (ctx->context.running)
3338 ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags);
3341 #endif
3343 static int queue_iso_transmit(struct iso_context *ctx,
3344 struct fw_iso_packet *packet,
3345 struct fw_iso_buffer *buffer,
3346 unsigned long payload)
3348 struct descriptor *d, *last, *pd;
3349 struct fw_iso_packet *p;
3350 __le32 *header;
3351 dma_addr_t d_bus, page_bus;
3352 u32 z, header_z, payload_z, irq;
3353 u32 payload_index, payload_end_index, next_page_index;
3354 int page, end_page, i, length, offset;
3356 p = packet;
3357 payload_index = payload;
3359 if (p->skip)
3360 z = 1;
3361 else
3362 z = 2;
3363 if (p->header_length > 0)
3364 z++;
3366 /* Determine the first page the payload isn't contained in. */
3367 end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
3368 if (p->payload_length > 0)
3369 payload_z = end_page - (payload_index >> PAGE_SHIFT);
3370 else
3371 payload_z = 0;
3373 z += payload_z;
3375 /* Get header size in number of descriptors. */
3376 header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
3378 d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
3379 if (d == NULL)
3380 return -ENOMEM;
3382 if (!p->skip) {
3383 d[0].control = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
3384 d[0].req_count = cpu_to_le16(8);
3386 * Link the skip address to this descriptor itself. This causes
3387 * a context to skip a cycle whenever lost cycles or FIFO
3388 * overruns occur, without dropping the data. The application
3389 * should then decide whether this is an error condition or not.
3390 * FIXME: Make the context's cycle-lost behaviour configurable?
3392 d[0].branch_address = cpu_to_le32(d_bus | z);
3394 header = (__le32 *) &d[1];
3395 header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
3396 IT_HEADER_TAG(p->tag) |
3397 IT_HEADER_TCODE(TCODE_STREAM_DATA) |
3398 IT_HEADER_CHANNEL(ctx->base.channel) |
3399 IT_HEADER_SPEED(ctx->base.speed));
3400 header[1] =
3401 cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length +
3402 p->payload_length));
3405 if (p->header_length > 0) {
3406 d[2].req_count = cpu_to_le16(p->header_length);
3407 d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
3408 memcpy(&d[z], p->header, p->header_length);
3411 pd = d + z - payload_z;
3412 payload_end_index = payload_index + p->payload_length;
3413 for (i = 0; i < payload_z; i++) {
3414 page = payload_index >> PAGE_SHIFT;
3415 offset = payload_index & ~PAGE_MASK;
3416 next_page_index = (page + 1) << PAGE_SHIFT;
3417 length =
3418 min(next_page_index, payload_end_index) - payload_index;
3419 pd[i].req_count = cpu_to_le16(length);
3421 page_bus = page_private(buffer->pages[page]);
3422 pd[i].data_address = cpu_to_le32(page_bus + offset);
3424 dma_sync_single_range_for_device(ctx->context.ohci->card.device,
3425 page_bus, offset, length,
3426 DMA_TO_DEVICE);
3428 payload_index += length;
3431 if (p->interrupt)
3432 irq = DESCRIPTOR_IRQ_ALWAYS;
3433 else
3434 irq = DESCRIPTOR_NO_IRQ;
3436 last = z == 2 ? d : d + z - 1;
3437 last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
3438 DESCRIPTOR_STATUS |
3439 DESCRIPTOR_BRANCH_ALWAYS |
3440 irq);
3442 context_append(&ctx->context, d, z, header_z);
3444 return 0;
3447 static int queue_iso_packet_per_buffer(struct iso_context *ctx,
3448 struct fw_iso_packet *packet,
3449 struct fw_iso_buffer *buffer,
3450 unsigned long payload)
3452 struct device *device = ctx->context.ohci->card.device;
3453 struct descriptor *d, *pd;
3454 dma_addr_t d_bus, page_bus;
3455 u32 z, header_z, rest;
3456 int i, j, length;
3457 int page, offset, packet_count, header_size, payload_per_buffer;
3460 * The OHCI controller puts the isochronous header and trailer in the
3461 * buffer, so we need at least 8 bytes.
3463 packet_count = packet->header_length / ctx->base.header_size;
3464 header_size = max(ctx->base.header_size, (size_t)8);
3466 /* Get header size in number of descriptors. */
3467 header_z = DIV_ROUND_UP(header_size, sizeof(*d));
3468 page = payload >> PAGE_SHIFT;
3469 offset = payload & ~PAGE_MASK;
3470 payload_per_buffer = packet->payload_length / packet_count;
3472 for (i = 0; i < packet_count; i++) {
3473 /* d points to the header descriptor */
3474 z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1;
3475 d = context_get_descriptors(&ctx->context,
3476 z + header_z, &d_bus);
3477 if (d == NULL)
3478 return -ENOMEM;
3480 d->control = cpu_to_le16(DESCRIPTOR_STATUS |
3481 DESCRIPTOR_INPUT_MORE);
3482 if (packet->skip && i == 0)
3483 d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
3484 d->req_count = cpu_to_le16(header_size);
3485 d->res_count = d->req_count;
3486 d->transfer_status = 0;
3487 d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d)));
3489 rest = payload_per_buffer;
3490 pd = d;
3491 for (j = 1; j < z; j++) {
3492 pd++;
3493 pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
3494 DESCRIPTOR_INPUT_MORE);
3496 if (offset + rest < PAGE_SIZE)
3497 length = rest;
3498 else
3499 length = PAGE_SIZE - offset;
3500 pd->req_count = cpu_to_le16(length);
3501 pd->res_count = pd->req_count;
3502 pd->transfer_status = 0;
3504 page_bus = page_private(buffer->pages[page]);
3505 pd->data_address = cpu_to_le32(page_bus + offset);
3507 dma_sync_single_range_for_device(device, page_bus,
3508 offset, length,
3509 DMA_FROM_DEVICE);
3511 offset = (offset + length) & ~PAGE_MASK;
3512 rest -= length;
3513 if (offset == 0)
3514 page++;
3516 pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
3517 DESCRIPTOR_INPUT_LAST |
3518 DESCRIPTOR_BRANCH_ALWAYS);
3519 if (packet->interrupt && i == packet_count - 1)
3520 pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
3522 context_append(&ctx->context, d, z, header_z);
3525 return 0;
3528 static int queue_iso_buffer_fill(struct iso_context *ctx,
3529 struct fw_iso_packet *packet,
3530 struct fw_iso_buffer *buffer,
3531 unsigned long payload)
3533 struct descriptor *d;
3534 dma_addr_t d_bus, page_bus;
3535 int page, offset, rest, z, i, length;
3537 page = payload >> PAGE_SHIFT;
3538 offset = payload & ~PAGE_MASK;
3539 rest = packet->payload_length;
3541 /* We need one descriptor for each page in the buffer. */
3542 z = DIV_ROUND_UP(offset + rest, PAGE_SIZE);
3544 if (WARN_ON(offset & 3 || rest & 3 || page + z > buffer->page_count))
3545 return -EFAULT;
3547 for (i = 0; i < z; i++) {
3548 d = context_get_descriptors(&ctx->context, 1, &d_bus);
3549 if (d == NULL)
3550 return -ENOMEM;
3552 d->control = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
3553 DESCRIPTOR_BRANCH_ALWAYS);
3554 if (packet->skip && i == 0)
3555 d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
3556 if (packet->interrupt && i == z - 1)
3557 d->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
3559 if (offset + rest < PAGE_SIZE)
3560 length = rest;
3561 else
3562 length = PAGE_SIZE - offset;
3563 d->req_count = cpu_to_le16(length);
3564 d->res_count = d->req_count;
3565 d->transfer_status = 0;
3567 page_bus = page_private(buffer->pages[page]);
3568 d->data_address = cpu_to_le32(page_bus + offset);
3570 dma_sync_single_range_for_device(ctx->context.ohci->card.device,
3571 page_bus, offset, length,
3572 DMA_FROM_DEVICE);
3574 rest -= length;
3575 offset = 0;
3576 page++;
3578 context_append(&ctx->context, d, 1, 0);
3581 return 0;
3584 static int ohci_queue_iso(struct fw_iso_context *base,
3585 struct fw_iso_packet *packet,
3586 struct fw_iso_buffer *buffer,
3587 unsigned long payload)
3589 struct iso_context *ctx = container_of(base, struct iso_context, base);
3590 unsigned long flags;
3591 int ret = -ENOSYS;
3593 spin_lock_irqsave(&ctx->context.ohci->lock, flags);
3594 switch (base->type) {
3595 case FW_ISO_CONTEXT_TRANSMIT:
3596 ret = queue_iso_transmit(ctx, packet, buffer, payload);
3597 break;
3598 case FW_ISO_CONTEXT_RECEIVE:
3599 ret = queue_iso_packet_per_buffer(ctx, packet, buffer, payload);
3600 break;
3601 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3602 ret = queue_iso_buffer_fill(ctx, packet, buffer, payload);
3603 break;
3605 spin_unlock_irqrestore(&ctx->context.ohci->lock, flags);
3607 return ret;
3610 static void ohci_flush_queue_iso(struct fw_iso_context *base)
3612 struct context *ctx =
3613 &container_of(base, struct iso_context, base)->context;
3615 reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
3618 static int ohci_flush_iso_completions(struct fw_iso_context *base)
3620 struct iso_context *ctx = container_of(base, struct iso_context, base);
3621 int ret = 0;
3623 tasklet_disable_in_atomic(&ctx->context.tasklet);
3625 if (!test_and_set_bit_lock(0, &ctx->flushing_completions)) {
3626 context_tasklet((unsigned long)&ctx->context);
3628 switch (base->type) {
3629 case FW_ISO_CONTEXT_TRANSMIT:
3630 case FW_ISO_CONTEXT_RECEIVE:
3631 if (ctx->header_length != 0)
3632 flush_iso_completions(ctx, FW_ISO_CONTEXT_COMPLETIONS_CAUSE_FLUSH);
3633 break;
3634 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3635 if (ctx->mc_completed != 0)
3636 flush_ir_buffer_fill(ctx);
3637 break;
3638 default:
3639 ret = -ENOSYS;
3642 clear_bit_unlock(0, &ctx->flushing_completions);
3643 smp_mb__after_atomic();
3646 tasklet_enable(&ctx->context.tasklet);
3648 return ret;
3651 static const struct fw_card_driver ohci_driver = {
3652 .enable = ohci_enable,
3653 .read_phy_reg = ohci_read_phy_reg,
3654 .update_phy_reg = ohci_update_phy_reg,
3655 .set_config_rom = ohci_set_config_rom,
3656 .send_request = ohci_send_request,
3657 .send_response = ohci_send_response,
3658 .cancel_packet = ohci_cancel_packet,
3659 .enable_phys_dma = ohci_enable_phys_dma,
3660 .read_csr = ohci_read_csr,
3661 .write_csr = ohci_write_csr,
3663 .allocate_iso_context = ohci_allocate_iso_context,
3664 .free_iso_context = ohci_free_iso_context,
3665 .set_iso_channels = ohci_set_iso_channels,
3666 .queue_iso = ohci_queue_iso,
3667 .flush_queue_iso = ohci_flush_queue_iso,
3668 .flush_iso_completions = ohci_flush_iso_completions,
3669 .start_iso = ohci_start_iso,
3670 .stop_iso = ohci_stop_iso,
3673 #ifdef CONFIG_PPC_PMAC
3674 static void pmac_ohci_on(struct pci_dev *dev)
3676 if (machine_is(powermac)) {
3677 struct device_node *ofn = pci_device_to_OF_node(dev);
3679 if (ofn) {
3680 pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1);
3681 pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1);
3686 static void pmac_ohci_off(struct pci_dev *dev)
3688 if (machine_is(powermac)) {
3689 struct device_node *ofn = pci_device_to_OF_node(dev);
3691 if (ofn) {
3692 pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0);
3693 pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0);
3697 #else
3698 static inline void pmac_ohci_on(struct pci_dev *dev) {}
3699 static inline void pmac_ohci_off(struct pci_dev *dev) {}
3700 #endif /* CONFIG_PPC_PMAC */
3702 static void release_ohci(struct device *dev, void *data)
3704 struct pci_dev *pdev = to_pci_dev(dev);
3705 struct fw_ohci *ohci = pci_get_drvdata(pdev);
3707 pmac_ohci_off(pdev);
3709 ar_context_release(&ohci->ar_response_ctx);
3710 ar_context_release(&ohci->ar_request_ctx);
3712 dev_notice(dev, "removed fw-ohci device\n");
3715 static int pci_probe(struct pci_dev *dev,
3716 const struct pci_device_id *ent)
3718 struct fw_ohci *ohci;
3719 u32 bus_options, max_receive, link_speed, version;
3720 u64 guid;
3721 int i, flags, irq, err;
3722 size_t size;
3724 if (dev->vendor == PCI_VENDOR_ID_PINNACLE_SYSTEMS) {
3725 dev_err(&dev->dev, "Pinnacle MovieBoard is not yet supported\n");
3726 return -ENOSYS;
3729 ohci = devres_alloc(release_ohci, sizeof(*ohci), GFP_KERNEL);
3730 if (ohci == NULL)
3731 return -ENOMEM;
3732 fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);
3733 pci_set_drvdata(dev, ohci);
3734 pmac_ohci_on(dev);
3735 devres_add(&dev->dev, ohci);
3737 err = pcim_enable_device(dev);
3738 if (err) {
3739 dev_err(&dev->dev, "failed to enable OHCI hardware\n");
3740 return err;
3743 pci_set_master(dev);
3744 pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
3746 spin_lock_init(&ohci->lock);
3747 mutex_init(&ohci->phy_reg_mutex);
3749 INIT_WORK(&ohci->bus_reset_work, bus_reset_work);
3751 if (!(pci_resource_flags(dev, 0) & IORESOURCE_MEM) ||
3752 pci_resource_len(dev, 0) < OHCI1394_REGISTER_SIZE) {
3753 ohci_err(ohci, "invalid MMIO resource\n");
3754 return -ENXIO;
3757 err = pcim_iomap_regions(dev, 1 << 0, ohci_driver_name);
3758 if (err) {
3759 ohci_err(ohci, "request and map MMIO resource unavailable\n");
3760 return -ENXIO;
3762 ohci->registers = pcim_iomap_table(dev)[0];
3764 for (i = 0; i < ARRAY_SIZE(ohci_quirks); i++)
3765 if ((ohci_quirks[i].vendor == dev->vendor) &&
3766 (ohci_quirks[i].device == (unsigned short)PCI_ANY_ID ||
3767 ohci_quirks[i].device == dev->device) &&
3768 (ohci_quirks[i].revision == (unsigned short)PCI_ANY_ID ||
3769 ohci_quirks[i].revision >= dev->revision)) {
3770 ohci->quirks = ohci_quirks[i].flags;
3771 break;
3773 if (param_quirks)
3774 ohci->quirks = param_quirks;
3776 if (detect_vt630x_with_asm1083_on_amd_ryzen_machine(dev))
3777 ohci->quirks |= QUIRK_REBOOT_BY_CYCLE_TIMER_READ;
3780 * Because dma_alloc_coherent() allocates at least one page,
3781 * we save space by using a common buffer for the AR request/
3782 * response descriptors and the self IDs buffer.
3784 BUILD_BUG_ON(AR_BUFFERS * sizeof(struct descriptor) > PAGE_SIZE/4);
3785 BUILD_BUG_ON(SELF_ID_BUF_SIZE > PAGE_SIZE/2);
3786 ohci->misc_buffer = dmam_alloc_coherent(&dev->dev, PAGE_SIZE, &ohci->misc_buffer_bus,
3787 GFP_KERNEL);
3788 if (!ohci->misc_buffer)
3789 return -ENOMEM;
3791 err = ar_context_init(&ohci->ar_request_ctx, ohci, 0,
3792 OHCI1394_AsReqRcvContextControlSet);
3793 if (err < 0)
3794 return err;
3796 err = ar_context_init(&ohci->ar_response_ctx, ohci, PAGE_SIZE/4,
3797 OHCI1394_AsRspRcvContextControlSet);
3798 if (err < 0)
3799 return err;
3801 err = context_init(&ohci->at_request_ctx, ohci,
3802 OHCI1394_AsReqTrContextControlSet, handle_at_packet);
3803 if (err < 0)
3804 return err;
3806 err = context_init(&ohci->at_response_ctx, ohci,
3807 OHCI1394_AsRspTrContextControlSet, handle_at_packet);
3808 if (err < 0)
3809 return err;
3811 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
3812 ohci->ir_context_channels = ~0ULL;
3813 ohci->ir_context_support = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
3814 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
3815 ohci->ir_context_mask = ohci->ir_context_support;
3816 ohci->n_ir = hweight32(ohci->ir_context_mask);
3817 size = sizeof(struct iso_context) * ohci->n_ir;
3818 ohci->ir_context_list = devm_kzalloc(&dev->dev, size, GFP_KERNEL);
3819 if (!ohci->ir_context_list)
3820 return -ENOMEM;
3822 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
3823 ohci->it_context_support = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
3824 /* JMicron JMB38x often shows 0 at first read, just ignore it */
3825 if (!ohci->it_context_support) {
3826 ohci_notice(ohci, "overriding IsoXmitIntMask\n");
3827 ohci->it_context_support = 0xf;
3829 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
3830 ohci->it_context_mask = ohci->it_context_support;
3831 ohci->n_it = hweight32(ohci->it_context_mask);
3832 size = sizeof(struct iso_context) * ohci->n_it;
3833 ohci->it_context_list = devm_kzalloc(&dev->dev, size, GFP_KERNEL);
3834 if (!ohci->it_context_list)
3835 return -ENOMEM;
3837 ohci->self_id = ohci->misc_buffer + PAGE_SIZE/2;
3838 ohci->self_id_bus = ohci->misc_buffer_bus + PAGE_SIZE/2;
3840 bus_options = reg_read(ohci, OHCI1394_BusOptions);
3841 max_receive = (bus_options >> 12) & 0xf;
3842 link_speed = bus_options & 0x7;
3843 guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
3844 reg_read(ohci, OHCI1394_GUIDLo);
3846 flags = PCI_IRQ_INTX;
3847 if (!(ohci->quirks & QUIRK_NO_MSI))
3848 flags |= PCI_IRQ_MSI;
3849 err = pci_alloc_irq_vectors(dev, 1, 1, flags);
3850 if (err < 0)
3851 return err;
3852 irq = pci_irq_vector(dev, 0);
3853 if (irq < 0) {
3854 err = irq;
3855 goto fail_msi;
3858 err = request_threaded_irq(irq, irq_handler, NULL,
3859 pci_dev_msi_enabled(dev) ? 0 : IRQF_SHARED, ohci_driver_name,
3860 ohci);
3861 if (err < 0) {
3862 ohci_err(ohci, "failed to allocate interrupt %d\n", irq);
3863 goto fail_msi;
3866 err = fw_card_add(&ohci->card, max_receive, link_speed, guid);
3867 if (err)
3868 goto fail_irq;
3870 version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
3871 ohci_notice(ohci,
3872 "added OHCI v%x.%x device as card %d, "
3873 "%d IR + %d IT contexts, quirks 0x%x%s\n",
3874 version >> 16, version & 0xff, ohci->card.index,
3875 ohci->n_ir, ohci->n_it, ohci->quirks,
3876 reg_read(ohci, OHCI1394_PhyUpperBound) ?
3877 ", physUB" : "");
3879 return 0;
3881 fail_irq:
3882 free_irq(irq, ohci);
3883 fail_msi:
3884 pci_free_irq_vectors(dev);
3886 return err;
3889 static void pci_remove(struct pci_dev *dev)
3891 struct fw_ohci *ohci = pci_get_drvdata(dev);
3892 int irq;
3895 * If the removal is happening from the suspend state, LPS won't be
3896 * enabled and host registers (eg., IntMaskClear) won't be accessible.
3898 if (reg_read(ohci, OHCI1394_HCControlSet) & OHCI1394_HCControl_LPS) {
3899 reg_write(ohci, OHCI1394_IntMaskClear, ~0);
3900 flush_writes(ohci);
3902 cancel_work_sync(&ohci->bus_reset_work);
3903 fw_core_remove_card(&ohci->card);
3906 * FIXME: Fail all pending packets here, now that the upper
3907 * layers can't queue any more.
3910 software_reset(ohci);
3912 irq = pci_irq_vector(dev, 0);
3913 if (irq >= 0)
3914 free_irq(irq, ohci);
3915 pci_free_irq_vectors(dev);
3917 dev_notice(&dev->dev, "removing fw-ohci device\n");
3920 #ifdef CONFIG_PM
3921 static int pci_suspend(struct pci_dev *dev, pm_message_t state)
3923 struct fw_ohci *ohci = pci_get_drvdata(dev);
3924 int err;
3926 software_reset(ohci);
3927 err = pci_save_state(dev);
3928 if (err) {
3929 ohci_err(ohci, "pci_save_state failed\n");
3930 return err;
3932 err = pci_set_power_state(dev, pci_choose_state(dev, state));
3933 if (err)
3934 ohci_err(ohci, "pci_set_power_state failed with %d\n", err);
3935 pmac_ohci_off(dev);
3937 return 0;
3940 static int pci_resume(struct pci_dev *dev)
3942 struct fw_ohci *ohci = pci_get_drvdata(dev);
3943 int err;
3945 pmac_ohci_on(dev);
3946 pci_set_power_state(dev, PCI_D0);
3947 pci_restore_state(dev);
3948 err = pci_enable_device(dev);
3949 if (err) {
3950 ohci_err(ohci, "pci_enable_device failed\n");
3951 return err;
3954 /* Some systems don't setup GUID register on resume from ram */
3955 if (!reg_read(ohci, OHCI1394_GUIDLo) &&
3956 !reg_read(ohci, OHCI1394_GUIDHi)) {
3957 reg_write(ohci, OHCI1394_GUIDLo, (u32)ohci->card.guid);
3958 reg_write(ohci, OHCI1394_GUIDHi, (u32)(ohci->card.guid >> 32));
3961 err = ohci_enable(&ohci->card, NULL, 0);
3962 if (err)
3963 return err;
3965 ohci_resume_iso_dma(ohci);
3967 return 0;
3969 #endif
3971 static const struct pci_device_id pci_table[] = {
3972 { PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
3976 MODULE_DEVICE_TABLE(pci, pci_table);
3978 static struct pci_driver fw_ohci_pci_driver = {
3979 .name = ohci_driver_name,
3980 .id_table = pci_table,
3981 .probe = pci_probe,
3982 .remove = pci_remove,
3983 #ifdef CONFIG_PM
3984 .resume = pci_resume,
3985 .suspend = pci_suspend,
3986 #endif
3989 static int __init fw_ohci_init(void)
3991 selfid_workqueue = alloc_workqueue(KBUILD_MODNAME, WQ_MEM_RECLAIM, 0);
3992 if (!selfid_workqueue)
3993 return -ENOMEM;
3995 return pci_register_driver(&fw_ohci_pci_driver);
3998 static void __exit fw_ohci_cleanup(void)
4000 pci_unregister_driver(&fw_ohci_pci_driver);
4001 destroy_workqueue(selfid_workqueue);
4004 module_init(fw_ohci_init);
4005 module_exit(fw_ohci_cleanup);
4007 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
4008 MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
4009 MODULE_LICENSE("GPL");
4011 /* Provide a module alias so root-on-sbp2 initrds don't break. */
4012 MODULE_ALIAS("ohci1394");