sched/fair: Fix nuisance kernel-doc warning
[linux-stable.git] / kernel / sched / fair.c
blob8415d1ec2b841e04c5270816d6e116b0f3d0277a
1 /*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
23 #include <linux/sched/mm.h>
24 #include <linux/sched/topology.h>
26 #include <linux/latencytop.h>
27 #include <linux/cpumask.h>
28 #include <linux/cpuidle.h>
29 #include <linux/slab.h>
30 #include <linux/profile.h>
31 #include <linux/interrupt.h>
32 #include <linux/mempolicy.h>
33 #include <linux/migrate.h>
34 #include <linux/task_work.h>
36 #include <trace/events/sched.h>
38 #include "sched.h"
41 * Targeted preemption latency for CPU-bound tasks:
43 * NOTE: this latency value is not the same as the concept of
44 * 'timeslice length' - timeslices in CFS are of variable length
45 * and have no persistent notion like in traditional, time-slice
46 * based scheduling concepts.
48 * (to see the precise effective timeslice length of your workload,
49 * run vmstat and monitor the context-switches (cs) field)
51 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
53 unsigned int sysctl_sched_latency = 6000000ULL;
54 unsigned int normalized_sysctl_sched_latency = 6000000ULL;
57 * The initial- and re-scaling of tunables is configurable
59 * Options are:
61 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
62 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
63 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
65 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
67 enum sched_tunable_scaling sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
70 * Minimal preemption granularity for CPU-bound tasks:
72 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
74 unsigned int sysctl_sched_min_granularity = 750000ULL;
75 unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
78 * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity
80 static unsigned int sched_nr_latency = 8;
83 * After fork, child runs first. If set to 0 (default) then
84 * parent will (try to) run first.
86 unsigned int sysctl_sched_child_runs_first __read_mostly;
89 * SCHED_OTHER wake-up granularity.
91 * This option delays the preemption effects of decoupled workloads
92 * and reduces their over-scheduling. Synchronous workloads will still
93 * have immediate wakeup/sleep latencies.
95 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
97 unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
98 unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
100 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
102 #ifdef CONFIG_SMP
104 * For asym packing, by default the lower numbered cpu has higher priority.
106 int __weak arch_asym_cpu_priority(int cpu)
108 return -cpu;
110 #endif
112 #ifdef CONFIG_CFS_BANDWIDTH
114 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
115 * each time a cfs_rq requests quota.
117 * Note: in the case that the slice exceeds the runtime remaining (either due
118 * to consumption or the quota being specified to be smaller than the slice)
119 * we will always only issue the remaining available time.
121 * (default: 5 msec, units: microseconds)
123 unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
124 #endif
127 * The margin used when comparing utilization with CPU capacity:
128 * util * margin < capacity * 1024
130 * (default: ~20%)
132 unsigned int capacity_margin = 1280;
134 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
136 lw->weight += inc;
137 lw->inv_weight = 0;
140 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
142 lw->weight -= dec;
143 lw->inv_weight = 0;
146 static inline void update_load_set(struct load_weight *lw, unsigned long w)
148 lw->weight = w;
149 lw->inv_weight = 0;
153 * Increase the granularity value when there are more CPUs,
154 * because with more CPUs the 'effective latency' as visible
155 * to users decreases. But the relationship is not linear,
156 * so pick a second-best guess by going with the log2 of the
157 * number of CPUs.
159 * This idea comes from the SD scheduler of Con Kolivas:
161 static unsigned int get_update_sysctl_factor(void)
163 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
164 unsigned int factor;
166 switch (sysctl_sched_tunable_scaling) {
167 case SCHED_TUNABLESCALING_NONE:
168 factor = 1;
169 break;
170 case SCHED_TUNABLESCALING_LINEAR:
171 factor = cpus;
172 break;
173 case SCHED_TUNABLESCALING_LOG:
174 default:
175 factor = 1 + ilog2(cpus);
176 break;
179 return factor;
182 static void update_sysctl(void)
184 unsigned int factor = get_update_sysctl_factor();
186 #define SET_SYSCTL(name) \
187 (sysctl_##name = (factor) * normalized_sysctl_##name)
188 SET_SYSCTL(sched_min_granularity);
189 SET_SYSCTL(sched_latency);
190 SET_SYSCTL(sched_wakeup_granularity);
191 #undef SET_SYSCTL
194 void sched_init_granularity(void)
196 update_sysctl();
199 #define WMULT_CONST (~0U)
200 #define WMULT_SHIFT 32
202 static void __update_inv_weight(struct load_weight *lw)
204 unsigned long w;
206 if (likely(lw->inv_weight))
207 return;
209 w = scale_load_down(lw->weight);
211 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
212 lw->inv_weight = 1;
213 else if (unlikely(!w))
214 lw->inv_weight = WMULT_CONST;
215 else
216 lw->inv_weight = WMULT_CONST / w;
220 * delta_exec * weight / lw.weight
221 * OR
222 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
224 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
225 * we're guaranteed shift stays positive because inv_weight is guaranteed to
226 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
228 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
229 * weight/lw.weight <= 1, and therefore our shift will also be positive.
231 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
233 u64 fact = scale_load_down(weight);
234 int shift = WMULT_SHIFT;
236 __update_inv_weight(lw);
238 if (unlikely(fact >> 32)) {
239 while (fact >> 32) {
240 fact >>= 1;
241 shift--;
245 /* hint to use a 32x32->64 mul */
246 fact = (u64)(u32)fact * lw->inv_weight;
248 while (fact >> 32) {
249 fact >>= 1;
250 shift--;
253 return mul_u64_u32_shr(delta_exec, fact, shift);
257 const struct sched_class fair_sched_class;
259 /**************************************************************
260 * CFS operations on generic schedulable entities:
263 #ifdef CONFIG_FAIR_GROUP_SCHED
265 /* cpu runqueue to which this cfs_rq is attached */
266 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
268 return cfs_rq->rq;
271 /* An entity is a task if it doesn't "own" a runqueue */
272 #define entity_is_task(se) (!se->my_q)
274 static inline struct task_struct *task_of(struct sched_entity *se)
276 SCHED_WARN_ON(!entity_is_task(se));
277 return container_of(se, struct task_struct, se);
280 /* Walk up scheduling entities hierarchy */
281 #define for_each_sched_entity(se) \
282 for (; se; se = se->parent)
284 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
286 return p->se.cfs_rq;
289 /* runqueue on which this entity is (to be) queued */
290 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
292 return se->cfs_rq;
295 /* runqueue "owned" by this group */
296 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
298 return grp->my_q;
301 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
303 if (!cfs_rq->on_list) {
304 struct rq *rq = rq_of(cfs_rq);
305 int cpu = cpu_of(rq);
307 * Ensure we either appear before our parent (if already
308 * enqueued) or force our parent to appear after us when it is
309 * enqueued. The fact that we always enqueue bottom-up
310 * reduces this to two cases and a special case for the root
311 * cfs_rq. Furthermore, it also means that we will always reset
312 * tmp_alone_branch either when the branch is connected
313 * to a tree or when we reach the beg of the tree
315 if (cfs_rq->tg->parent &&
316 cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
318 * If parent is already on the list, we add the child
319 * just before. Thanks to circular linked property of
320 * the list, this means to put the child at the tail
321 * of the list that starts by parent.
323 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
324 &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
326 * The branch is now connected to its tree so we can
327 * reset tmp_alone_branch to the beginning of the
328 * list.
330 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
331 } else if (!cfs_rq->tg->parent) {
333 * cfs rq without parent should be put
334 * at the tail of the list.
336 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
337 &rq->leaf_cfs_rq_list);
339 * We have reach the beg of a tree so we can reset
340 * tmp_alone_branch to the beginning of the list.
342 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
343 } else {
345 * The parent has not already been added so we want to
346 * make sure that it will be put after us.
347 * tmp_alone_branch points to the beg of the branch
348 * where we will add parent.
350 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
351 rq->tmp_alone_branch);
353 * update tmp_alone_branch to points to the new beg
354 * of the branch
356 rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
359 cfs_rq->on_list = 1;
363 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
365 if (cfs_rq->on_list) {
366 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
367 cfs_rq->on_list = 0;
371 /* Iterate thr' all leaf cfs_rq's on a runqueue */
372 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
373 list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list, \
374 leaf_cfs_rq_list)
376 /* Do the two (enqueued) entities belong to the same group ? */
377 static inline struct cfs_rq *
378 is_same_group(struct sched_entity *se, struct sched_entity *pse)
380 if (se->cfs_rq == pse->cfs_rq)
381 return se->cfs_rq;
383 return NULL;
386 static inline struct sched_entity *parent_entity(struct sched_entity *se)
388 return se->parent;
391 static void
392 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
394 int se_depth, pse_depth;
397 * preemption test can be made between sibling entities who are in the
398 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
399 * both tasks until we find their ancestors who are siblings of common
400 * parent.
403 /* First walk up until both entities are at same depth */
404 se_depth = (*se)->depth;
405 pse_depth = (*pse)->depth;
407 while (se_depth > pse_depth) {
408 se_depth--;
409 *se = parent_entity(*se);
412 while (pse_depth > se_depth) {
413 pse_depth--;
414 *pse = parent_entity(*pse);
417 while (!is_same_group(*se, *pse)) {
418 *se = parent_entity(*se);
419 *pse = parent_entity(*pse);
423 #else /* !CONFIG_FAIR_GROUP_SCHED */
425 static inline struct task_struct *task_of(struct sched_entity *se)
427 return container_of(se, struct task_struct, se);
430 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
432 return container_of(cfs_rq, struct rq, cfs);
435 #define entity_is_task(se) 1
437 #define for_each_sched_entity(se) \
438 for (; se; se = NULL)
440 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
442 return &task_rq(p)->cfs;
445 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
447 struct task_struct *p = task_of(se);
448 struct rq *rq = task_rq(p);
450 return &rq->cfs;
453 /* runqueue "owned" by this group */
454 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
456 return NULL;
459 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
463 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
467 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
468 for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
470 static inline struct sched_entity *parent_entity(struct sched_entity *se)
472 return NULL;
475 static inline void
476 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
480 #endif /* CONFIG_FAIR_GROUP_SCHED */
482 static __always_inline
483 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
485 /**************************************************************
486 * Scheduling class tree data structure manipulation methods:
489 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
491 s64 delta = (s64)(vruntime - max_vruntime);
492 if (delta > 0)
493 max_vruntime = vruntime;
495 return max_vruntime;
498 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
500 s64 delta = (s64)(vruntime - min_vruntime);
501 if (delta < 0)
502 min_vruntime = vruntime;
504 return min_vruntime;
507 static inline int entity_before(struct sched_entity *a,
508 struct sched_entity *b)
510 return (s64)(a->vruntime - b->vruntime) < 0;
513 static void update_min_vruntime(struct cfs_rq *cfs_rq)
515 struct sched_entity *curr = cfs_rq->curr;
517 u64 vruntime = cfs_rq->min_vruntime;
519 if (curr) {
520 if (curr->on_rq)
521 vruntime = curr->vruntime;
522 else
523 curr = NULL;
526 if (cfs_rq->rb_leftmost) {
527 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
528 struct sched_entity,
529 run_node);
531 if (!curr)
532 vruntime = se->vruntime;
533 else
534 vruntime = min_vruntime(vruntime, se->vruntime);
537 /* ensure we never gain time by being placed backwards. */
538 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
539 #ifndef CONFIG_64BIT
540 smp_wmb();
541 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
542 #endif
546 * Enqueue an entity into the rb-tree:
548 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
550 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
551 struct rb_node *parent = NULL;
552 struct sched_entity *entry;
553 int leftmost = 1;
556 * Find the right place in the rbtree:
558 while (*link) {
559 parent = *link;
560 entry = rb_entry(parent, struct sched_entity, run_node);
562 * We dont care about collisions. Nodes with
563 * the same key stay together.
565 if (entity_before(se, entry)) {
566 link = &parent->rb_left;
567 } else {
568 link = &parent->rb_right;
569 leftmost = 0;
574 * Maintain a cache of leftmost tree entries (it is frequently
575 * used):
577 if (leftmost)
578 cfs_rq->rb_leftmost = &se->run_node;
580 rb_link_node(&se->run_node, parent, link);
581 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
584 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
586 if (cfs_rq->rb_leftmost == &se->run_node) {
587 struct rb_node *next_node;
589 next_node = rb_next(&se->run_node);
590 cfs_rq->rb_leftmost = next_node;
593 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
596 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
598 struct rb_node *left = cfs_rq->rb_leftmost;
600 if (!left)
601 return NULL;
603 return rb_entry(left, struct sched_entity, run_node);
606 static struct sched_entity *__pick_next_entity(struct sched_entity *se)
608 struct rb_node *next = rb_next(&se->run_node);
610 if (!next)
611 return NULL;
613 return rb_entry(next, struct sched_entity, run_node);
616 #ifdef CONFIG_SCHED_DEBUG
617 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
619 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
621 if (!last)
622 return NULL;
624 return rb_entry(last, struct sched_entity, run_node);
627 /**************************************************************
628 * Scheduling class statistics methods:
631 int sched_proc_update_handler(struct ctl_table *table, int write,
632 void __user *buffer, size_t *lenp,
633 loff_t *ppos)
635 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
636 unsigned int factor = get_update_sysctl_factor();
638 if (ret || !write)
639 return ret;
641 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
642 sysctl_sched_min_granularity);
644 #define WRT_SYSCTL(name) \
645 (normalized_sysctl_##name = sysctl_##name / (factor))
646 WRT_SYSCTL(sched_min_granularity);
647 WRT_SYSCTL(sched_latency);
648 WRT_SYSCTL(sched_wakeup_granularity);
649 #undef WRT_SYSCTL
651 return 0;
653 #endif
656 * delta /= w
658 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
660 if (unlikely(se->load.weight != NICE_0_LOAD))
661 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
663 return delta;
667 * The idea is to set a period in which each task runs once.
669 * When there are too many tasks (sched_nr_latency) we have to stretch
670 * this period because otherwise the slices get too small.
672 * p = (nr <= nl) ? l : l*nr/nl
674 static u64 __sched_period(unsigned long nr_running)
676 if (unlikely(nr_running > sched_nr_latency))
677 return nr_running * sysctl_sched_min_granularity;
678 else
679 return sysctl_sched_latency;
683 * We calculate the wall-time slice from the period by taking a part
684 * proportional to the weight.
686 * s = p*P[w/rw]
688 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
690 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
692 for_each_sched_entity(se) {
693 struct load_weight *load;
694 struct load_weight lw;
696 cfs_rq = cfs_rq_of(se);
697 load = &cfs_rq->load;
699 if (unlikely(!se->on_rq)) {
700 lw = cfs_rq->load;
702 update_load_add(&lw, se->load.weight);
703 load = &lw;
705 slice = __calc_delta(slice, se->load.weight, load);
707 return slice;
711 * We calculate the vruntime slice of a to-be-inserted task.
713 * vs = s/w
715 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
717 return calc_delta_fair(sched_slice(cfs_rq, se), se);
720 #ifdef CONFIG_SMP
722 #include "sched-pelt.h"
724 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
725 static unsigned long task_h_load(struct task_struct *p);
727 /* Give new sched_entity start runnable values to heavy its load in infant time */
728 void init_entity_runnable_average(struct sched_entity *se)
730 struct sched_avg *sa = &se->avg;
732 sa->last_update_time = 0;
734 * sched_avg's period_contrib should be strictly less then 1024, so
735 * we give it 1023 to make sure it is almost a period (1024us), and
736 * will definitely be update (after enqueue).
738 sa->period_contrib = 1023;
740 * Tasks are intialized with full load to be seen as heavy tasks until
741 * they get a chance to stabilize to their real load level.
742 * Group entities are intialized with zero load to reflect the fact that
743 * nothing has been attached to the task group yet.
745 if (entity_is_task(se))
746 sa->load_avg = scale_load_down(se->load.weight);
747 sa->load_sum = sa->load_avg * LOAD_AVG_MAX;
749 * At this point, util_avg won't be used in select_task_rq_fair anyway
751 sa->util_avg = 0;
752 sa->util_sum = 0;
753 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
756 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
757 static void attach_entity_cfs_rq(struct sched_entity *se);
760 * With new tasks being created, their initial util_avgs are extrapolated
761 * based on the cfs_rq's current util_avg:
763 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
765 * However, in many cases, the above util_avg does not give a desired
766 * value. Moreover, the sum of the util_avgs may be divergent, such
767 * as when the series is a harmonic series.
769 * To solve this problem, we also cap the util_avg of successive tasks to
770 * only 1/2 of the left utilization budget:
772 * util_avg_cap = (1024 - cfs_rq->avg.util_avg) / 2^n
774 * where n denotes the nth task.
776 * For example, a simplest series from the beginning would be like:
778 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ...
779 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
781 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
782 * if util_avg > util_avg_cap.
784 void post_init_entity_util_avg(struct sched_entity *se)
786 struct cfs_rq *cfs_rq = cfs_rq_of(se);
787 struct sched_avg *sa = &se->avg;
788 long cap = (long)(SCHED_CAPACITY_SCALE - cfs_rq->avg.util_avg) / 2;
790 if (cap > 0) {
791 if (cfs_rq->avg.util_avg != 0) {
792 sa->util_avg = cfs_rq->avg.util_avg * se->load.weight;
793 sa->util_avg /= (cfs_rq->avg.load_avg + 1);
795 if (sa->util_avg > cap)
796 sa->util_avg = cap;
797 } else {
798 sa->util_avg = cap;
800 sa->util_sum = sa->util_avg * LOAD_AVG_MAX;
803 if (entity_is_task(se)) {
804 struct task_struct *p = task_of(se);
805 if (p->sched_class != &fair_sched_class) {
807 * For !fair tasks do:
809 update_cfs_rq_load_avg(now, cfs_rq);
810 attach_entity_load_avg(cfs_rq, se);
811 switched_from_fair(rq, p);
813 * such that the next switched_to_fair() has the
814 * expected state.
816 se->avg.last_update_time = cfs_rq_clock_task(cfs_rq);
817 return;
821 attach_entity_cfs_rq(se);
824 #else /* !CONFIG_SMP */
825 void init_entity_runnable_average(struct sched_entity *se)
828 void post_init_entity_util_avg(struct sched_entity *se)
831 static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
834 #endif /* CONFIG_SMP */
837 * Update the current task's runtime statistics.
839 static void update_curr(struct cfs_rq *cfs_rq)
841 struct sched_entity *curr = cfs_rq->curr;
842 u64 now = rq_clock_task(rq_of(cfs_rq));
843 u64 delta_exec;
845 if (unlikely(!curr))
846 return;
848 delta_exec = now - curr->exec_start;
849 if (unlikely((s64)delta_exec <= 0))
850 return;
852 curr->exec_start = now;
854 schedstat_set(curr->statistics.exec_max,
855 max(delta_exec, curr->statistics.exec_max));
857 curr->sum_exec_runtime += delta_exec;
858 schedstat_add(cfs_rq->exec_clock, delta_exec);
860 curr->vruntime += calc_delta_fair(delta_exec, curr);
861 update_min_vruntime(cfs_rq);
863 if (entity_is_task(curr)) {
864 struct task_struct *curtask = task_of(curr);
866 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
867 cpuacct_charge(curtask, delta_exec);
868 account_group_exec_runtime(curtask, delta_exec);
871 account_cfs_rq_runtime(cfs_rq, delta_exec);
874 static void update_curr_fair(struct rq *rq)
876 update_curr(cfs_rq_of(&rq->curr->se));
879 static inline void
880 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
882 u64 wait_start, prev_wait_start;
884 if (!schedstat_enabled())
885 return;
887 wait_start = rq_clock(rq_of(cfs_rq));
888 prev_wait_start = schedstat_val(se->statistics.wait_start);
890 if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
891 likely(wait_start > prev_wait_start))
892 wait_start -= prev_wait_start;
894 schedstat_set(se->statistics.wait_start, wait_start);
897 static inline void
898 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
900 struct task_struct *p;
901 u64 delta;
903 if (!schedstat_enabled())
904 return;
906 delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start);
908 if (entity_is_task(se)) {
909 p = task_of(se);
910 if (task_on_rq_migrating(p)) {
912 * Preserve migrating task's wait time so wait_start
913 * time stamp can be adjusted to accumulate wait time
914 * prior to migration.
916 schedstat_set(se->statistics.wait_start, delta);
917 return;
919 trace_sched_stat_wait(p, delta);
922 schedstat_set(se->statistics.wait_max,
923 max(schedstat_val(se->statistics.wait_max), delta));
924 schedstat_inc(se->statistics.wait_count);
925 schedstat_add(se->statistics.wait_sum, delta);
926 schedstat_set(se->statistics.wait_start, 0);
929 static inline void
930 update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
932 struct task_struct *tsk = NULL;
933 u64 sleep_start, block_start;
935 if (!schedstat_enabled())
936 return;
938 sleep_start = schedstat_val(se->statistics.sleep_start);
939 block_start = schedstat_val(se->statistics.block_start);
941 if (entity_is_task(se))
942 tsk = task_of(se);
944 if (sleep_start) {
945 u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start;
947 if ((s64)delta < 0)
948 delta = 0;
950 if (unlikely(delta > schedstat_val(se->statistics.sleep_max)))
951 schedstat_set(se->statistics.sleep_max, delta);
953 schedstat_set(se->statistics.sleep_start, 0);
954 schedstat_add(se->statistics.sum_sleep_runtime, delta);
956 if (tsk) {
957 account_scheduler_latency(tsk, delta >> 10, 1);
958 trace_sched_stat_sleep(tsk, delta);
961 if (block_start) {
962 u64 delta = rq_clock(rq_of(cfs_rq)) - block_start;
964 if ((s64)delta < 0)
965 delta = 0;
967 if (unlikely(delta > schedstat_val(se->statistics.block_max)))
968 schedstat_set(se->statistics.block_max, delta);
970 schedstat_set(se->statistics.block_start, 0);
971 schedstat_add(se->statistics.sum_sleep_runtime, delta);
973 if (tsk) {
974 if (tsk->in_iowait) {
975 schedstat_add(se->statistics.iowait_sum, delta);
976 schedstat_inc(se->statistics.iowait_count);
977 trace_sched_stat_iowait(tsk, delta);
980 trace_sched_stat_blocked(tsk, delta);
983 * Blocking time is in units of nanosecs, so shift by
984 * 20 to get a milliseconds-range estimation of the
985 * amount of time that the task spent sleeping:
987 if (unlikely(prof_on == SLEEP_PROFILING)) {
988 profile_hits(SLEEP_PROFILING,
989 (void *)get_wchan(tsk),
990 delta >> 20);
992 account_scheduler_latency(tsk, delta >> 10, 0);
998 * Task is being enqueued - update stats:
1000 static inline void
1001 update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1003 if (!schedstat_enabled())
1004 return;
1007 * Are we enqueueing a waiting task? (for current tasks
1008 * a dequeue/enqueue event is a NOP)
1010 if (se != cfs_rq->curr)
1011 update_stats_wait_start(cfs_rq, se);
1013 if (flags & ENQUEUE_WAKEUP)
1014 update_stats_enqueue_sleeper(cfs_rq, se);
1017 static inline void
1018 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1021 if (!schedstat_enabled())
1022 return;
1025 * Mark the end of the wait period if dequeueing a
1026 * waiting task:
1028 if (se != cfs_rq->curr)
1029 update_stats_wait_end(cfs_rq, se);
1031 if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
1032 struct task_struct *tsk = task_of(se);
1034 if (tsk->state & TASK_INTERRUPTIBLE)
1035 schedstat_set(se->statistics.sleep_start,
1036 rq_clock(rq_of(cfs_rq)));
1037 if (tsk->state & TASK_UNINTERRUPTIBLE)
1038 schedstat_set(se->statistics.block_start,
1039 rq_clock(rq_of(cfs_rq)));
1044 * We are picking a new current task - update its stats:
1046 static inline void
1047 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
1050 * We are starting a new run period:
1052 se->exec_start = rq_clock_task(rq_of(cfs_rq));
1055 /**************************************************
1056 * Scheduling class queueing methods:
1059 #ifdef CONFIG_NUMA_BALANCING
1061 * Approximate time to scan a full NUMA task in ms. The task scan period is
1062 * calculated based on the tasks virtual memory size and
1063 * numa_balancing_scan_size.
1065 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
1066 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
1068 /* Portion of address space to scan in MB */
1069 unsigned int sysctl_numa_balancing_scan_size = 256;
1071 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1072 unsigned int sysctl_numa_balancing_scan_delay = 1000;
1074 struct numa_group {
1075 atomic_t refcount;
1077 spinlock_t lock; /* nr_tasks, tasks */
1078 int nr_tasks;
1079 pid_t gid;
1080 int active_nodes;
1082 struct rcu_head rcu;
1083 unsigned long total_faults;
1084 unsigned long max_faults_cpu;
1086 * Faults_cpu is used to decide whether memory should move
1087 * towards the CPU. As a consequence, these stats are weighted
1088 * more by CPU use than by memory faults.
1090 unsigned long *faults_cpu;
1091 unsigned long faults[0];
1094 static inline unsigned long group_faults_priv(struct numa_group *ng);
1095 static inline unsigned long group_faults_shared(struct numa_group *ng);
1097 static unsigned int task_nr_scan_windows(struct task_struct *p)
1099 unsigned long rss = 0;
1100 unsigned long nr_scan_pages;
1103 * Calculations based on RSS as non-present and empty pages are skipped
1104 * by the PTE scanner and NUMA hinting faults should be trapped based
1105 * on resident pages
1107 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
1108 rss = get_mm_rss(p->mm);
1109 if (!rss)
1110 rss = nr_scan_pages;
1112 rss = round_up(rss, nr_scan_pages);
1113 return rss / nr_scan_pages;
1116 /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1117 #define MAX_SCAN_WINDOW 2560
1119 static unsigned int task_scan_min(struct task_struct *p)
1121 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
1122 unsigned int scan, floor;
1123 unsigned int windows = 1;
1125 if (scan_size < MAX_SCAN_WINDOW)
1126 windows = MAX_SCAN_WINDOW / scan_size;
1127 floor = 1000 / windows;
1129 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
1130 return max_t(unsigned int, floor, scan);
1133 static unsigned int task_scan_start(struct task_struct *p)
1135 unsigned long smin = task_scan_min(p);
1136 unsigned long period = smin;
1138 /* Scale the maximum scan period with the amount of shared memory. */
1139 if (p->numa_group) {
1140 struct numa_group *ng = p->numa_group;
1141 unsigned long shared = group_faults_shared(ng);
1142 unsigned long private = group_faults_priv(ng);
1144 period *= atomic_read(&ng->refcount);
1145 period *= shared + 1;
1146 period /= private + shared + 1;
1149 return max(smin, period);
1152 static unsigned int task_scan_max(struct task_struct *p)
1154 unsigned long smin = task_scan_min(p);
1155 unsigned long smax;
1157 /* Watch for min being lower than max due to floor calculations */
1158 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
1160 /* Scale the maximum scan period with the amount of shared memory. */
1161 if (p->numa_group) {
1162 struct numa_group *ng = p->numa_group;
1163 unsigned long shared = group_faults_shared(ng);
1164 unsigned long private = group_faults_priv(ng);
1165 unsigned long period = smax;
1167 period *= atomic_read(&ng->refcount);
1168 period *= shared + 1;
1169 period /= private + shared + 1;
1171 smax = max(smax, period);
1174 return max(smin, smax);
1177 static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1179 rq->nr_numa_running += (p->numa_preferred_nid != -1);
1180 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1183 static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1185 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
1186 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1189 /* Shared or private faults. */
1190 #define NR_NUMA_HINT_FAULT_TYPES 2
1192 /* Memory and CPU locality */
1193 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1195 /* Averaged statistics, and temporary buffers. */
1196 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1198 pid_t task_numa_group_id(struct task_struct *p)
1200 return p->numa_group ? p->numa_group->gid : 0;
1204 * The averaged statistics, shared & private, memory & cpu,
1205 * occupy the first half of the array. The second half of the
1206 * array is for current counters, which are averaged into the
1207 * first set by task_numa_placement.
1209 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
1211 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
1214 static inline unsigned long task_faults(struct task_struct *p, int nid)
1216 if (!p->numa_faults)
1217 return 0;
1219 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1220 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
1223 static inline unsigned long group_faults(struct task_struct *p, int nid)
1225 if (!p->numa_group)
1226 return 0;
1228 return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1229 p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
1232 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1234 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
1235 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
1238 static inline unsigned long group_faults_priv(struct numa_group *ng)
1240 unsigned long faults = 0;
1241 int node;
1243 for_each_online_node(node) {
1244 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
1247 return faults;
1250 static inline unsigned long group_faults_shared(struct numa_group *ng)
1252 unsigned long faults = 0;
1253 int node;
1255 for_each_online_node(node) {
1256 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
1259 return faults;
1263 * A node triggering more than 1/3 as many NUMA faults as the maximum is
1264 * considered part of a numa group's pseudo-interleaving set. Migrations
1265 * between these nodes are slowed down, to allow things to settle down.
1267 #define ACTIVE_NODE_FRACTION 3
1269 static bool numa_is_active_node(int nid, struct numa_group *ng)
1271 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1274 /* Handle placement on systems where not all nodes are directly connected. */
1275 static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1276 int maxdist, bool task)
1278 unsigned long score = 0;
1279 int node;
1282 * All nodes are directly connected, and the same distance
1283 * from each other. No need for fancy placement algorithms.
1285 if (sched_numa_topology_type == NUMA_DIRECT)
1286 return 0;
1289 * This code is called for each node, introducing N^2 complexity,
1290 * which should be ok given the number of nodes rarely exceeds 8.
1292 for_each_online_node(node) {
1293 unsigned long faults;
1294 int dist = node_distance(nid, node);
1297 * The furthest away nodes in the system are not interesting
1298 * for placement; nid was already counted.
1300 if (dist == sched_max_numa_distance || node == nid)
1301 continue;
1304 * On systems with a backplane NUMA topology, compare groups
1305 * of nodes, and move tasks towards the group with the most
1306 * memory accesses. When comparing two nodes at distance
1307 * "hoplimit", only nodes closer by than "hoplimit" are part
1308 * of each group. Skip other nodes.
1310 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1311 dist > maxdist)
1312 continue;
1314 /* Add up the faults from nearby nodes. */
1315 if (task)
1316 faults = task_faults(p, node);
1317 else
1318 faults = group_faults(p, node);
1321 * On systems with a glueless mesh NUMA topology, there are
1322 * no fixed "groups of nodes". Instead, nodes that are not
1323 * directly connected bounce traffic through intermediate
1324 * nodes; a numa_group can occupy any set of nodes.
1325 * The further away a node is, the less the faults count.
1326 * This seems to result in good task placement.
1328 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1329 faults *= (sched_max_numa_distance - dist);
1330 faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
1333 score += faults;
1336 return score;
1340 * These return the fraction of accesses done by a particular task, or
1341 * task group, on a particular numa node. The group weight is given a
1342 * larger multiplier, in order to group tasks together that are almost
1343 * evenly spread out between numa nodes.
1345 static inline unsigned long task_weight(struct task_struct *p, int nid,
1346 int dist)
1348 unsigned long faults, total_faults;
1350 if (!p->numa_faults)
1351 return 0;
1353 total_faults = p->total_numa_faults;
1355 if (!total_faults)
1356 return 0;
1358 faults = task_faults(p, nid);
1359 faults += score_nearby_nodes(p, nid, dist, true);
1361 return 1000 * faults / total_faults;
1364 static inline unsigned long group_weight(struct task_struct *p, int nid,
1365 int dist)
1367 unsigned long faults, total_faults;
1369 if (!p->numa_group)
1370 return 0;
1372 total_faults = p->numa_group->total_faults;
1374 if (!total_faults)
1375 return 0;
1377 faults = group_faults(p, nid);
1378 faults += score_nearby_nodes(p, nid, dist, false);
1380 return 1000 * faults / total_faults;
1383 bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1384 int src_nid, int dst_cpu)
1386 struct numa_group *ng = p->numa_group;
1387 int dst_nid = cpu_to_node(dst_cpu);
1388 int last_cpupid, this_cpupid;
1390 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1393 * Multi-stage node selection is used in conjunction with a periodic
1394 * migration fault to build a temporal task<->page relation. By using
1395 * a two-stage filter we remove short/unlikely relations.
1397 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1398 * a task's usage of a particular page (n_p) per total usage of this
1399 * page (n_t) (in a given time-span) to a probability.
1401 * Our periodic faults will sample this probability and getting the
1402 * same result twice in a row, given these samples are fully
1403 * independent, is then given by P(n)^2, provided our sample period
1404 * is sufficiently short compared to the usage pattern.
1406 * This quadric squishes small probabilities, making it less likely we
1407 * act on an unlikely task<->page relation.
1409 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1410 if (!cpupid_pid_unset(last_cpupid) &&
1411 cpupid_to_nid(last_cpupid) != dst_nid)
1412 return false;
1414 /* Always allow migrate on private faults */
1415 if (cpupid_match_pid(p, last_cpupid))
1416 return true;
1418 /* A shared fault, but p->numa_group has not been set up yet. */
1419 if (!ng)
1420 return true;
1423 * Destination node is much more heavily used than the source
1424 * node? Allow migration.
1426 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1427 ACTIVE_NODE_FRACTION)
1428 return true;
1431 * Distribute memory according to CPU & memory use on each node,
1432 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1434 * faults_cpu(dst) 3 faults_cpu(src)
1435 * --------------- * - > ---------------
1436 * faults_mem(dst) 4 faults_mem(src)
1438 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1439 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
1442 static unsigned long weighted_cpuload(struct rq *rq);
1443 static unsigned long source_load(int cpu, int type);
1444 static unsigned long target_load(int cpu, int type);
1445 static unsigned long capacity_of(int cpu);
1447 /* Cached statistics for all CPUs within a node */
1448 struct numa_stats {
1449 unsigned long nr_running;
1450 unsigned long load;
1452 /* Total compute capacity of CPUs on a node */
1453 unsigned long compute_capacity;
1455 /* Approximate capacity in terms of runnable tasks on a node */
1456 unsigned long task_capacity;
1457 int has_free_capacity;
1461 * XXX borrowed from update_sg_lb_stats
1463 static void update_numa_stats(struct numa_stats *ns, int nid)
1465 int smt, cpu, cpus = 0;
1466 unsigned long capacity;
1468 memset(ns, 0, sizeof(*ns));
1469 for_each_cpu(cpu, cpumask_of_node(nid)) {
1470 struct rq *rq = cpu_rq(cpu);
1472 ns->nr_running += rq->nr_running;
1473 ns->load += weighted_cpuload(rq);
1474 ns->compute_capacity += capacity_of(cpu);
1476 cpus++;
1480 * If we raced with hotplug and there are no CPUs left in our mask
1481 * the @ns structure is NULL'ed and task_numa_compare() will
1482 * not find this node attractive.
1484 * We'll either bail at !has_free_capacity, or we'll detect a huge
1485 * imbalance and bail there.
1487 if (!cpus)
1488 return;
1490 /* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
1491 smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
1492 capacity = cpus / smt; /* cores */
1494 ns->task_capacity = min_t(unsigned, capacity,
1495 DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1496 ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
1499 struct task_numa_env {
1500 struct task_struct *p;
1502 int src_cpu, src_nid;
1503 int dst_cpu, dst_nid;
1505 struct numa_stats src_stats, dst_stats;
1507 int imbalance_pct;
1508 int dist;
1510 struct task_struct *best_task;
1511 long best_imp;
1512 int best_cpu;
1515 static void task_numa_assign(struct task_numa_env *env,
1516 struct task_struct *p, long imp)
1518 if (env->best_task)
1519 put_task_struct(env->best_task);
1520 if (p)
1521 get_task_struct(p);
1523 env->best_task = p;
1524 env->best_imp = imp;
1525 env->best_cpu = env->dst_cpu;
1528 static bool load_too_imbalanced(long src_load, long dst_load,
1529 struct task_numa_env *env)
1531 long imb, old_imb;
1532 long orig_src_load, orig_dst_load;
1533 long src_capacity, dst_capacity;
1536 * The load is corrected for the CPU capacity available on each node.
1538 * src_load dst_load
1539 * ------------ vs ---------
1540 * src_capacity dst_capacity
1542 src_capacity = env->src_stats.compute_capacity;
1543 dst_capacity = env->dst_stats.compute_capacity;
1545 /* We care about the slope of the imbalance, not the direction. */
1546 if (dst_load < src_load)
1547 swap(dst_load, src_load);
1549 /* Is the difference below the threshold? */
1550 imb = dst_load * src_capacity * 100 -
1551 src_load * dst_capacity * env->imbalance_pct;
1552 if (imb <= 0)
1553 return false;
1556 * The imbalance is above the allowed threshold.
1557 * Compare it with the old imbalance.
1559 orig_src_load = env->src_stats.load;
1560 orig_dst_load = env->dst_stats.load;
1562 if (orig_dst_load < orig_src_load)
1563 swap(orig_dst_load, orig_src_load);
1565 old_imb = orig_dst_load * src_capacity * 100 -
1566 orig_src_load * dst_capacity * env->imbalance_pct;
1568 /* Would this change make things worse? */
1569 return (imb > old_imb);
1573 * This checks if the overall compute and NUMA accesses of the system would
1574 * be improved if the source tasks was migrated to the target dst_cpu taking
1575 * into account that it might be best if task running on the dst_cpu should
1576 * be exchanged with the source task
1578 static void task_numa_compare(struct task_numa_env *env,
1579 long taskimp, long groupimp)
1581 struct rq *src_rq = cpu_rq(env->src_cpu);
1582 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1583 struct task_struct *cur;
1584 long src_load, dst_load;
1585 long load;
1586 long imp = env->p->numa_group ? groupimp : taskimp;
1587 long moveimp = imp;
1588 int dist = env->dist;
1590 rcu_read_lock();
1591 cur = task_rcu_dereference(&dst_rq->curr);
1592 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
1593 cur = NULL;
1596 * Because we have preemption enabled we can get migrated around and
1597 * end try selecting ourselves (current == env->p) as a swap candidate.
1599 if (cur == env->p)
1600 goto unlock;
1603 * "imp" is the fault differential for the source task between the
1604 * source and destination node. Calculate the total differential for
1605 * the source task and potential destination task. The more negative
1606 * the value is, the more rmeote accesses that would be expected to
1607 * be incurred if the tasks were swapped.
1609 if (cur) {
1610 /* Skip this swap candidate if cannot move to the source cpu */
1611 if (!cpumask_test_cpu(env->src_cpu, &cur->cpus_allowed))
1612 goto unlock;
1615 * If dst and source tasks are in the same NUMA group, or not
1616 * in any group then look only at task weights.
1618 if (cur->numa_group == env->p->numa_group) {
1619 imp = taskimp + task_weight(cur, env->src_nid, dist) -
1620 task_weight(cur, env->dst_nid, dist);
1622 * Add some hysteresis to prevent swapping the
1623 * tasks within a group over tiny differences.
1625 if (cur->numa_group)
1626 imp -= imp/16;
1627 } else {
1629 * Compare the group weights. If a task is all by
1630 * itself (not part of a group), use the task weight
1631 * instead.
1633 if (cur->numa_group)
1634 imp += group_weight(cur, env->src_nid, dist) -
1635 group_weight(cur, env->dst_nid, dist);
1636 else
1637 imp += task_weight(cur, env->src_nid, dist) -
1638 task_weight(cur, env->dst_nid, dist);
1642 if (imp <= env->best_imp && moveimp <= env->best_imp)
1643 goto unlock;
1645 if (!cur) {
1646 /* Is there capacity at our destination? */
1647 if (env->src_stats.nr_running <= env->src_stats.task_capacity &&
1648 !env->dst_stats.has_free_capacity)
1649 goto unlock;
1651 goto balance;
1654 /* Balance doesn't matter much if we're running a task per cpu */
1655 if (imp > env->best_imp && src_rq->nr_running == 1 &&
1656 dst_rq->nr_running == 1)
1657 goto assign;
1660 * In the overloaded case, try and keep the load balanced.
1662 balance:
1663 load = task_h_load(env->p);
1664 dst_load = env->dst_stats.load + load;
1665 src_load = env->src_stats.load - load;
1667 if (moveimp > imp && moveimp > env->best_imp) {
1669 * If the improvement from just moving env->p direction is
1670 * better than swapping tasks around, check if a move is
1671 * possible. Store a slightly smaller score than moveimp,
1672 * so an actually idle CPU will win.
1674 if (!load_too_imbalanced(src_load, dst_load, env)) {
1675 imp = moveimp - 1;
1676 cur = NULL;
1677 goto assign;
1681 if (imp <= env->best_imp)
1682 goto unlock;
1684 if (cur) {
1685 load = task_h_load(cur);
1686 dst_load -= load;
1687 src_load += load;
1690 if (load_too_imbalanced(src_load, dst_load, env))
1691 goto unlock;
1694 * One idle CPU per node is evaluated for a task numa move.
1695 * Call select_idle_sibling to maybe find a better one.
1697 if (!cur) {
1699 * select_idle_siblings() uses an per-cpu cpumask that
1700 * can be used from IRQ context.
1702 local_irq_disable();
1703 env->dst_cpu = select_idle_sibling(env->p, env->src_cpu,
1704 env->dst_cpu);
1705 local_irq_enable();
1708 assign:
1709 task_numa_assign(env, cur, imp);
1710 unlock:
1711 rcu_read_unlock();
1714 static void task_numa_find_cpu(struct task_numa_env *env,
1715 long taskimp, long groupimp)
1717 int cpu;
1719 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1720 /* Skip this CPU if the source task cannot migrate */
1721 if (!cpumask_test_cpu(cpu, &env->p->cpus_allowed))
1722 continue;
1724 env->dst_cpu = cpu;
1725 task_numa_compare(env, taskimp, groupimp);
1729 /* Only move tasks to a NUMA node less busy than the current node. */
1730 static bool numa_has_capacity(struct task_numa_env *env)
1732 struct numa_stats *src = &env->src_stats;
1733 struct numa_stats *dst = &env->dst_stats;
1735 if (src->has_free_capacity && !dst->has_free_capacity)
1736 return false;
1739 * Only consider a task move if the source has a higher load
1740 * than the destination, corrected for CPU capacity on each node.
1742 * src->load dst->load
1743 * --------------------- vs ---------------------
1744 * src->compute_capacity dst->compute_capacity
1746 if (src->load * dst->compute_capacity * env->imbalance_pct >
1748 dst->load * src->compute_capacity * 100)
1749 return true;
1751 return false;
1754 static int task_numa_migrate(struct task_struct *p)
1756 struct task_numa_env env = {
1757 .p = p,
1759 .src_cpu = task_cpu(p),
1760 .src_nid = task_node(p),
1762 .imbalance_pct = 112,
1764 .best_task = NULL,
1765 .best_imp = 0,
1766 .best_cpu = -1,
1768 struct sched_domain *sd;
1769 unsigned long taskweight, groupweight;
1770 int nid, ret, dist;
1771 long taskimp, groupimp;
1774 * Pick the lowest SD_NUMA domain, as that would have the smallest
1775 * imbalance and would be the first to start moving tasks about.
1777 * And we want to avoid any moving of tasks about, as that would create
1778 * random movement of tasks -- counter the numa conditions we're trying
1779 * to satisfy here.
1781 rcu_read_lock();
1782 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1783 if (sd)
1784 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
1785 rcu_read_unlock();
1788 * Cpusets can break the scheduler domain tree into smaller
1789 * balance domains, some of which do not cross NUMA boundaries.
1790 * Tasks that are "trapped" in such domains cannot be migrated
1791 * elsewhere, so there is no point in (re)trying.
1793 if (unlikely(!sd)) {
1794 p->numa_preferred_nid = task_node(p);
1795 return -EINVAL;
1798 env.dst_nid = p->numa_preferred_nid;
1799 dist = env.dist = node_distance(env.src_nid, env.dst_nid);
1800 taskweight = task_weight(p, env.src_nid, dist);
1801 groupweight = group_weight(p, env.src_nid, dist);
1802 update_numa_stats(&env.src_stats, env.src_nid);
1803 taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
1804 groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
1805 update_numa_stats(&env.dst_stats, env.dst_nid);
1807 /* Try to find a spot on the preferred nid. */
1808 if (numa_has_capacity(&env))
1809 task_numa_find_cpu(&env, taskimp, groupimp);
1812 * Look at other nodes in these cases:
1813 * - there is no space available on the preferred_nid
1814 * - the task is part of a numa_group that is interleaved across
1815 * multiple NUMA nodes; in order to better consolidate the group,
1816 * we need to check other locations.
1818 if (env.best_cpu == -1 || (p->numa_group && p->numa_group->active_nodes > 1)) {
1819 for_each_online_node(nid) {
1820 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1821 continue;
1823 dist = node_distance(env.src_nid, env.dst_nid);
1824 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1825 dist != env.dist) {
1826 taskweight = task_weight(p, env.src_nid, dist);
1827 groupweight = group_weight(p, env.src_nid, dist);
1830 /* Only consider nodes where both task and groups benefit */
1831 taskimp = task_weight(p, nid, dist) - taskweight;
1832 groupimp = group_weight(p, nid, dist) - groupweight;
1833 if (taskimp < 0 && groupimp < 0)
1834 continue;
1836 env.dist = dist;
1837 env.dst_nid = nid;
1838 update_numa_stats(&env.dst_stats, env.dst_nid);
1839 if (numa_has_capacity(&env))
1840 task_numa_find_cpu(&env, taskimp, groupimp);
1845 * If the task is part of a workload that spans multiple NUMA nodes,
1846 * and is migrating into one of the workload's active nodes, remember
1847 * this node as the task's preferred numa node, so the workload can
1848 * settle down.
1849 * A task that migrated to a second choice node will be better off
1850 * trying for a better one later. Do not set the preferred node here.
1852 if (p->numa_group) {
1853 struct numa_group *ng = p->numa_group;
1855 if (env.best_cpu == -1)
1856 nid = env.src_nid;
1857 else
1858 nid = env.dst_nid;
1860 if (ng->active_nodes > 1 && numa_is_active_node(env.dst_nid, ng))
1861 sched_setnuma(p, env.dst_nid);
1864 /* No better CPU than the current one was found. */
1865 if (env.best_cpu == -1)
1866 return -EAGAIN;
1869 * Reset the scan period if the task is being rescheduled on an
1870 * alternative node to recheck if the tasks is now properly placed.
1872 p->numa_scan_period = task_scan_start(p);
1874 if (env.best_task == NULL) {
1875 ret = migrate_task_to(p, env.best_cpu);
1876 if (ret != 0)
1877 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
1878 return ret;
1881 ret = migrate_swap(p, env.best_task);
1882 if (ret != 0)
1883 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
1884 put_task_struct(env.best_task);
1885 return ret;
1888 /* Attempt to migrate a task to a CPU on the preferred node. */
1889 static void numa_migrate_preferred(struct task_struct *p)
1891 unsigned long interval = HZ;
1893 /* This task has no NUMA fault statistics yet */
1894 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
1895 return;
1897 /* Periodically retry migrating the task to the preferred node */
1898 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1899 p->numa_migrate_retry = jiffies + interval;
1901 /* Success if task is already running on preferred CPU */
1902 if (task_node(p) == p->numa_preferred_nid)
1903 return;
1905 /* Otherwise, try migrate to a CPU on the preferred node */
1906 task_numa_migrate(p);
1910 * Find out how many nodes on the workload is actively running on. Do this by
1911 * tracking the nodes from which NUMA hinting faults are triggered. This can
1912 * be different from the set of nodes where the workload's memory is currently
1913 * located.
1915 static void numa_group_count_active_nodes(struct numa_group *numa_group)
1917 unsigned long faults, max_faults = 0;
1918 int nid, active_nodes = 0;
1920 for_each_online_node(nid) {
1921 faults = group_faults_cpu(numa_group, nid);
1922 if (faults > max_faults)
1923 max_faults = faults;
1926 for_each_online_node(nid) {
1927 faults = group_faults_cpu(numa_group, nid);
1928 if (faults * ACTIVE_NODE_FRACTION > max_faults)
1929 active_nodes++;
1932 numa_group->max_faults_cpu = max_faults;
1933 numa_group->active_nodes = active_nodes;
1937 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1938 * increments. The more local the fault statistics are, the higher the scan
1939 * period will be for the next scan window. If local/(local+remote) ratio is
1940 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1941 * the scan period will decrease. Aim for 70% local accesses.
1943 #define NUMA_PERIOD_SLOTS 10
1944 #define NUMA_PERIOD_THRESHOLD 7
1947 * Increase the scan period (slow down scanning) if the majority of
1948 * our memory is already on our local node, or if the majority of
1949 * the page accesses are shared with other processes.
1950 * Otherwise, decrease the scan period.
1952 static void update_task_scan_period(struct task_struct *p,
1953 unsigned long shared, unsigned long private)
1955 unsigned int period_slot;
1956 int lr_ratio, ps_ratio;
1957 int diff;
1959 unsigned long remote = p->numa_faults_locality[0];
1960 unsigned long local = p->numa_faults_locality[1];
1963 * If there were no record hinting faults then either the task is
1964 * completely idle or all activity is areas that are not of interest
1965 * to automatic numa balancing. Related to that, if there were failed
1966 * migration then it implies we are migrating too quickly or the local
1967 * node is overloaded. In either case, scan slower
1969 if (local + shared == 0 || p->numa_faults_locality[2]) {
1970 p->numa_scan_period = min(p->numa_scan_period_max,
1971 p->numa_scan_period << 1);
1973 p->mm->numa_next_scan = jiffies +
1974 msecs_to_jiffies(p->numa_scan_period);
1976 return;
1980 * Prepare to scale scan period relative to the current period.
1981 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1982 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1983 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1985 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1986 lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1987 ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);
1989 if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
1991 * Most memory accesses are local. There is no need to
1992 * do fast NUMA scanning, since memory is already local.
1994 int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
1995 if (!slot)
1996 slot = 1;
1997 diff = slot * period_slot;
1998 } else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
2000 * Most memory accesses are shared with other tasks.
2001 * There is no point in continuing fast NUMA scanning,
2002 * since other tasks may just move the memory elsewhere.
2004 int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
2005 if (!slot)
2006 slot = 1;
2007 diff = slot * period_slot;
2008 } else {
2010 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
2011 * yet they are not on the local NUMA node. Speed up
2012 * NUMA scanning to get the memory moved over.
2014 int ratio = max(lr_ratio, ps_ratio);
2015 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
2018 p->numa_scan_period = clamp(p->numa_scan_period + diff,
2019 task_scan_min(p), task_scan_max(p));
2020 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2024 * Get the fraction of time the task has been running since the last
2025 * NUMA placement cycle. The scheduler keeps similar statistics, but
2026 * decays those on a 32ms period, which is orders of magnitude off
2027 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
2028 * stats only if the task is so new there are no NUMA statistics yet.
2030 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
2032 u64 runtime, delta, now;
2033 /* Use the start of this time slice to avoid calculations. */
2034 now = p->se.exec_start;
2035 runtime = p->se.sum_exec_runtime;
2037 if (p->last_task_numa_placement) {
2038 delta = runtime - p->last_sum_exec_runtime;
2039 *period = now - p->last_task_numa_placement;
2040 } else {
2041 delta = p->se.avg.load_sum / p->se.load.weight;
2042 *period = LOAD_AVG_MAX;
2045 p->last_sum_exec_runtime = runtime;
2046 p->last_task_numa_placement = now;
2048 return delta;
2052 * Determine the preferred nid for a task in a numa_group. This needs to
2053 * be done in a way that produces consistent results with group_weight,
2054 * otherwise workloads might not converge.
2056 static int preferred_group_nid(struct task_struct *p, int nid)
2058 nodemask_t nodes;
2059 int dist;
2061 /* Direct connections between all NUMA nodes. */
2062 if (sched_numa_topology_type == NUMA_DIRECT)
2063 return nid;
2066 * On a system with glueless mesh NUMA topology, group_weight
2067 * scores nodes according to the number of NUMA hinting faults on
2068 * both the node itself, and on nearby nodes.
2070 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
2071 unsigned long score, max_score = 0;
2072 int node, max_node = nid;
2074 dist = sched_max_numa_distance;
2076 for_each_online_node(node) {
2077 score = group_weight(p, node, dist);
2078 if (score > max_score) {
2079 max_score = score;
2080 max_node = node;
2083 return max_node;
2087 * Finding the preferred nid in a system with NUMA backplane
2088 * interconnect topology is more involved. The goal is to locate
2089 * tasks from numa_groups near each other in the system, and
2090 * untangle workloads from different sides of the system. This requires
2091 * searching down the hierarchy of node groups, recursively searching
2092 * inside the highest scoring group of nodes. The nodemask tricks
2093 * keep the complexity of the search down.
2095 nodes = node_online_map;
2096 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
2097 unsigned long max_faults = 0;
2098 nodemask_t max_group = NODE_MASK_NONE;
2099 int a, b;
2101 /* Are there nodes at this distance from each other? */
2102 if (!find_numa_distance(dist))
2103 continue;
2105 for_each_node_mask(a, nodes) {
2106 unsigned long faults = 0;
2107 nodemask_t this_group;
2108 nodes_clear(this_group);
2110 /* Sum group's NUMA faults; includes a==b case. */
2111 for_each_node_mask(b, nodes) {
2112 if (node_distance(a, b) < dist) {
2113 faults += group_faults(p, b);
2114 node_set(b, this_group);
2115 node_clear(b, nodes);
2119 /* Remember the top group. */
2120 if (faults > max_faults) {
2121 max_faults = faults;
2122 max_group = this_group;
2124 * subtle: at the smallest distance there is
2125 * just one node left in each "group", the
2126 * winner is the preferred nid.
2128 nid = a;
2131 /* Next round, evaluate the nodes within max_group. */
2132 if (!max_faults)
2133 break;
2134 nodes = max_group;
2136 return nid;
2139 static void task_numa_placement(struct task_struct *p)
2141 int seq, nid, max_nid = -1, max_group_nid = -1;
2142 unsigned long max_faults = 0, max_group_faults = 0;
2143 unsigned long fault_types[2] = { 0, 0 };
2144 unsigned long total_faults;
2145 u64 runtime, period;
2146 spinlock_t *group_lock = NULL;
2149 * The p->mm->numa_scan_seq field gets updated without
2150 * exclusive access. Use READ_ONCE() here to ensure
2151 * that the field is read in a single access:
2153 seq = READ_ONCE(p->mm->numa_scan_seq);
2154 if (p->numa_scan_seq == seq)
2155 return;
2156 p->numa_scan_seq = seq;
2157 p->numa_scan_period_max = task_scan_max(p);
2159 total_faults = p->numa_faults_locality[0] +
2160 p->numa_faults_locality[1];
2161 runtime = numa_get_avg_runtime(p, &period);
2163 /* If the task is part of a group prevent parallel updates to group stats */
2164 if (p->numa_group) {
2165 group_lock = &p->numa_group->lock;
2166 spin_lock_irq(group_lock);
2169 /* Find the node with the highest number of faults */
2170 for_each_online_node(nid) {
2171 /* Keep track of the offsets in numa_faults array */
2172 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
2173 unsigned long faults = 0, group_faults = 0;
2174 int priv;
2176 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
2177 long diff, f_diff, f_weight;
2179 mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
2180 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
2181 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
2182 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
2184 /* Decay existing window, copy faults since last scan */
2185 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
2186 fault_types[priv] += p->numa_faults[membuf_idx];
2187 p->numa_faults[membuf_idx] = 0;
2190 * Normalize the faults_from, so all tasks in a group
2191 * count according to CPU use, instead of by the raw
2192 * number of faults. Tasks with little runtime have
2193 * little over-all impact on throughput, and thus their
2194 * faults are less important.
2196 f_weight = div64_u64(runtime << 16, period + 1);
2197 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
2198 (total_faults + 1);
2199 f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2200 p->numa_faults[cpubuf_idx] = 0;
2202 p->numa_faults[mem_idx] += diff;
2203 p->numa_faults[cpu_idx] += f_diff;
2204 faults += p->numa_faults[mem_idx];
2205 p->total_numa_faults += diff;
2206 if (p->numa_group) {
2208 * safe because we can only change our own group
2210 * mem_idx represents the offset for a given
2211 * nid and priv in a specific region because it
2212 * is at the beginning of the numa_faults array.
2214 p->numa_group->faults[mem_idx] += diff;
2215 p->numa_group->faults_cpu[mem_idx] += f_diff;
2216 p->numa_group->total_faults += diff;
2217 group_faults += p->numa_group->faults[mem_idx];
2221 if (faults > max_faults) {
2222 max_faults = faults;
2223 max_nid = nid;
2226 if (group_faults > max_group_faults) {
2227 max_group_faults = group_faults;
2228 max_group_nid = nid;
2232 update_task_scan_period(p, fault_types[0], fault_types[1]);
2234 if (p->numa_group) {
2235 numa_group_count_active_nodes(p->numa_group);
2236 spin_unlock_irq(group_lock);
2237 max_nid = preferred_group_nid(p, max_group_nid);
2240 if (max_faults) {
2241 /* Set the new preferred node */
2242 if (max_nid != p->numa_preferred_nid)
2243 sched_setnuma(p, max_nid);
2245 if (task_node(p) != p->numa_preferred_nid)
2246 numa_migrate_preferred(p);
2250 static inline int get_numa_group(struct numa_group *grp)
2252 return atomic_inc_not_zero(&grp->refcount);
2255 static inline void put_numa_group(struct numa_group *grp)
2257 if (atomic_dec_and_test(&grp->refcount))
2258 kfree_rcu(grp, rcu);
2261 static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2262 int *priv)
2264 struct numa_group *grp, *my_grp;
2265 struct task_struct *tsk;
2266 bool join = false;
2267 int cpu = cpupid_to_cpu(cpupid);
2268 int i;
2270 if (unlikely(!p->numa_group)) {
2271 unsigned int size = sizeof(struct numa_group) +
2272 4*nr_node_ids*sizeof(unsigned long);
2274 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2275 if (!grp)
2276 return;
2278 atomic_set(&grp->refcount, 1);
2279 grp->active_nodes = 1;
2280 grp->max_faults_cpu = 0;
2281 spin_lock_init(&grp->lock);
2282 grp->gid = p->pid;
2283 /* Second half of the array tracks nids where faults happen */
2284 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
2285 nr_node_ids;
2287 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2288 grp->faults[i] = p->numa_faults[i];
2290 grp->total_faults = p->total_numa_faults;
2292 grp->nr_tasks++;
2293 rcu_assign_pointer(p->numa_group, grp);
2296 rcu_read_lock();
2297 tsk = READ_ONCE(cpu_rq(cpu)->curr);
2299 if (!cpupid_match_pid(tsk, cpupid))
2300 goto no_join;
2302 grp = rcu_dereference(tsk->numa_group);
2303 if (!grp)
2304 goto no_join;
2306 my_grp = p->numa_group;
2307 if (grp == my_grp)
2308 goto no_join;
2311 * Only join the other group if its bigger; if we're the bigger group,
2312 * the other task will join us.
2314 if (my_grp->nr_tasks > grp->nr_tasks)
2315 goto no_join;
2318 * Tie-break on the grp address.
2320 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
2321 goto no_join;
2323 /* Always join threads in the same process. */
2324 if (tsk->mm == current->mm)
2325 join = true;
2327 /* Simple filter to avoid false positives due to PID collisions */
2328 if (flags & TNF_SHARED)
2329 join = true;
2331 /* Update priv based on whether false sharing was detected */
2332 *priv = !join;
2334 if (join && !get_numa_group(grp))
2335 goto no_join;
2337 rcu_read_unlock();
2339 if (!join)
2340 return;
2342 BUG_ON(irqs_disabled());
2343 double_lock_irq(&my_grp->lock, &grp->lock);
2345 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
2346 my_grp->faults[i] -= p->numa_faults[i];
2347 grp->faults[i] += p->numa_faults[i];
2349 my_grp->total_faults -= p->total_numa_faults;
2350 grp->total_faults += p->total_numa_faults;
2352 my_grp->nr_tasks--;
2353 grp->nr_tasks++;
2355 spin_unlock(&my_grp->lock);
2356 spin_unlock_irq(&grp->lock);
2358 rcu_assign_pointer(p->numa_group, grp);
2360 put_numa_group(my_grp);
2361 return;
2363 no_join:
2364 rcu_read_unlock();
2365 return;
2368 void task_numa_free(struct task_struct *p)
2370 struct numa_group *grp = p->numa_group;
2371 void *numa_faults = p->numa_faults;
2372 unsigned long flags;
2373 int i;
2375 if (grp) {
2376 spin_lock_irqsave(&grp->lock, flags);
2377 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2378 grp->faults[i] -= p->numa_faults[i];
2379 grp->total_faults -= p->total_numa_faults;
2381 grp->nr_tasks--;
2382 spin_unlock_irqrestore(&grp->lock, flags);
2383 RCU_INIT_POINTER(p->numa_group, NULL);
2384 put_numa_group(grp);
2387 p->numa_faults = NULL;
2388 kfree(numa_faults);
2392 * Got a PROT_NONE fault for a page on @node.
2394 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
2396 struct task_struct *p = current;
2397 bool migrated = flags & TNF_MIGRATED;
2398 int cpu_node = task_node(current);
2399 int local = !!(flags & TNF_FAULT_LOCAL);
2400 struct numa_group *ng;
2401 int priv;
2403 if (!static_branch_likely(&sched_numa_balancing))
2404 return;
2406 /* for example, ksmd faulting in a user's mm */
2407 if (!p->mm)
2408 return;
2410 /* Allocate buffer to track faults on a per-node basis */
2411 if (unlikely(!p->numa_faults)) {
2412 int size = sizeof(*p->numa_faults) *
2413 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
2415 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2416 if (!p->numa_faults)
2417 return;
2419 p->total_numa_faults = 0;
2420 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2424 * First accesses are treated as private, otherwise consider accesses
2425 * to be private if the accessing pid has not changed
2427 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2428 priv = 1;
2429 } else {
2430 priv = cpupid_match_pid(p, last_cpupid);
2431 if (!priv && !(flags & TNF_NO_GROUP))
2432 task_numa_group(p, last_cpupid, flags, &priv);
2436 * If a workload spans multiple NUMA nodes, a shared fault that
2437 * occurs wholly within the set of nodes that the workload is
2438 * actively using should be counted as local. This allows the
2439 * scan rate to slow down when a workload has settled down.
2441 ng = p->numa_group;
2442 if (!priv && !local && ng && ng->active_nodes > 1 &&
2443 numa_is_active_node(cpu_node, ng) &&
2444 numa_is_active_node(mem_node, ng))
2445 local = 1;
2447 task_numa_placement(p);
2450 * Retry task to preferred node migration periodically, in case it
2451 * case it previously failed, or the scheduler moved us.
2453 if (time_after(jiffies, p->numa_migrate_retry))
2454 numa_migrate_preferred(p);
2456 if (migrated)
2457 p->numa_pages_migrated += pages;
2458 if (flags & TNF_MIGRATE_FAIL)
2459 p->numa_faults_locality[2] += pages;
2461 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2462 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
2463 p->numa_faults_locality[local] += pages;
2466 static void reset_ptenuma_scan(struct task_struct *p)
2469 * We only did a read acquisition of the mmap sem, so
2470 * p->mm->numa_scan_seq is written to without exclusive access
2471 * and the update is not guaranteed to be atomic. That's not
2472 * much of an issue though, since this is just used for
2473 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2474 * expensive, to avoid any form of compiler optimizations:
2476 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
2477 p->mm->numa_scan_offset = 0;
2481 * The expensive part of numa migration is done from task_work context.
2482 * Triggered from task_tick_numa().
2484 void task_numa_work(struct callback_head *work)
2486 unsigned long migrate, next_scan, now = jiffies;
2487 struct task_struct *p = current;
2488 struct mm_struct *mm = p->mm;
2489 u64 runtime = p->se.sum_exec_runtime;
2490 struct vm_area_struct *vma;
2491 unsigned long start, end;
2492 unsigned long nr_pte_updates = 0;
2493 long pages, virtpages;
2495 SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
2497 work->next = work; /* protect against double add */
2499 * Who cares about NUMA placement when they're dying.
2501 * NOTE: make sure not to dereference p->mm before this check,
2502 * exit_task_work() happens _after_ exit_mm() so we could be called
2503 * without p->mm even though we still had it when we enqueued this
2504 * work.
2506 if (p->flags & PF_EXITING)
2507 return;
2509 if (!mm->numa_next_scan) {
2510 mm->numa_next_scan = now +
2511 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2515 * Enforce maximal scan/migration frequency..
2517 migrate = mm->numa_next_scan;
2518 if (time_before(now, migrate))
2519 return;
2521 if (p->numa_scan_period == 0) {
2522 p->numa_scan_period_max = task_scan_max(p);
2523 p->numa_scan_period = task_scan_start(p);
2526 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
2527 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2528 return;
2531 * Delay this task enough that another task of this mm will likely win
2532 * the next time around.
2534 p->node_stamp += 2 * TICK_NSEC;
2536 start = mm->numa_scan_offset;
2537 pages = sysctl_numa_balancing_scan_size;
2538 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
2539 virtpages = pages * 8; /* Scan up to this much virtual space */
2540 if (!pages)
2541 return;
2544 if (!down_read_trylock(&mm->mmap_sem))
2545 return;
2546 vma = find_vma(mm, start);
2547 if (!vma) {
2548 reset_ptenuma_scan(p);
2549 start = 0;
2550 vma = mm->mmap;
2552 for (; vma; vma = vma->vm_next) {
2553 if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
2554 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
2555 continue;
2559 * Shared library pages mapped by multiple processes are not
2560 * migrated as it is expected they are cache replicated. Avoid
2561 * hinting faults in read-only file-backed mappings or the vdso
2562 * as migrating the pages will be of marginal benefit.
2564 if (!vma->vm_mm ||
2565 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2566 continue;
2569 * Skip inaccessible VMAs to avoid any confusion between
2570 * PROT_NONE and NUMA hinting ptes
2572 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
2573 continue;
2575 do {
2576 start = max(start, vma->vm_start);
2577 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2578 end = min(end, vma->vm_end);
2579 nr_pte_updates = change_prot_numa(vma, start, end);
2582 * Try to scan sysctl_numa_balancing_size worth of
2583 * hpages that have at least one present PTE that
2584 * is not already pte-numa. If the VMA contains
2585 * areas that are unused or already full of prot_numa
2586 * PTEs, scan up to virtpages, to skip through those
2587 * areas faster.
2589 if (nr_pte_updates)
2590 pages -= (end - start) >> PAGE_SHIFT;
2591 virtpages -= (end - start) >> PAGE_SHIFT;
2593 start = end;
2594 if (pages <= 0 || virtpages <= 0)
2595 goto out;
2597 cond_resched();
2598 } while (end != vma->vm_end);
2601 out:
2603 * It is possible to reach the end of the VMA list but the last few
2604 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2605 * would find the !migratable VMA on the next scan but not reset the
2606 * scanner to the start so check it now.
2608 if (vma)
2609 mm->numa_scan_offset = start;
2610 else
2611 reset_ptenuma_scan(p);
2612 up_read(&mm->mmap_sem);
2615 * Make sure tasks use at least 32x as much time to run other code
2616 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
2617 * Usually update_task_scan_period slows down scanning enough; on an
2618 * overloaded system we need to limit overhead on a per task basis.
2620 if (unlikely(p->se.sum_exec_runtime != runtime)) {
2621 u64 diff = p->se.sum_exec_runtime - runtime;
2622 p->node_stamp += 32 * diff;
2627 * Drive the periodic memory faults..
2629 void task_tick_numa(struct rq *rq, struct task_struct *curr)
2631 struct callback_head *work = &curr->numa_work;
2632 u64 period, now;
2635 * We don't care about NUMA placement if we don't have memory.
2637 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2638 return;
2641 * Using runtime rather than walltime has the dual advantage that
2642 * we (mostly) drive the selection from busy threads and that the
2643 * task needs to have done some actual work before we bother with
2644 * NUMA placement.
2646 now = curr->se.sum_exec_runtime;
2647 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2649 if (now > curr->node_stamp + period) {
2650 if (!curr->node_stamp)
2651 curr->numa_scan_period = task_scan_start(curr);
2652 curr->node_stamp += period;
2654 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
2655 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
2656 task_work_add(curr, work, true);
2661 #else
2662 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2666 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2670 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2674 #endif /* CONFIG_NUMA_BALANCING */
2676 static void
2677 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2679 update_load_add(&cfs_rq->load, se->load.weight);
2680 if (!parent_entity(se))
2681 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
2682 #ifdef CONFIG_SMP
2683 if (entity_is_task(se)) {
2684 struct rq *rq = rq_of(cfs_rq);
2686 account_numa_enqueue(rq, task_of(se));
2687 list_add(&se->group_node, &rq->cfs_tasks);
2689 #endif
2690 cfs_rq->nr_running++;
2693 static void
2694 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2696 update_load_sub(&cfs_rq->load, se->load.weight);
2697 if (!parent_entity(se))
2698 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
2699 #ifdef CONFIG_SMP
2700 if (entity_is_task(se)) {
2701 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
2702 list_del_init(&se->group_node);
2704 #endif
2705 cfs_rq->nr_running--;
2708 #ifdef CONFIG_FAIR_GROUP_SCHED
2709 # ifdef CONFIG_SMP
2710 static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2712 long tg_weight, load, shares;
2715 * This really should be: cfs_rq->avg.load_avg, but instead we use
2716 * cfs_rq->load.weight, which is its upper bound. This helps ramp up
2717 * the shares for small weight interactive tasks.
2719 load = scale_load_down(cfs_rq->load.weight);
2721 tg_weight = atomic_long_read(&tg->load_avg);
2723 /* Ensure tg_weight >= load */
2724 tg_weight -= cfs_rq->tg_load_avg_contrib;
2725 tg_weight += load;
2727 shares = (tg->shares * load);
2728 if (tg_weight)
2729 shares /= tg_weight;
2732 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
2733 * of a group with small tg->shares value. It is a floor value which is
2734 * assigned as a minimum load.weight to the sched_entity representing
2735 * the group on a CPU.
2737 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
2738 * on an 8-core system with 8 tasks each runnable on one CPU shares has
2739 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
2740 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
2741 * instead of 0.
2743 if (shares < MIN_SHARES)
2744 shares = MIN_SHARES;
2745 if (shares > tg->shares)
2746 shares = tg->shares;
2748 return shares;
2750 # else /* CONFIG_SMP */
2751 static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2753 return tg->shares;
2755 # endif /* CONFIG_SMP */
2757 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2758 unsigned long weight)
2760 if (se->on_rq) {
2761 /* commit outstanding execution time */
2762 if (cfs_rq->curr == se)
2763 update_curr(cfs_rq);
2764 account_entity_dequeue(cfs_rq, se);
2767 update_load_set(&se->load, weight);
2769 if (se->on_rq)
2770 account_entity_enqueue(cfs_rq, se);
2773 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2775 static void update_cfs_shares(struct sched_entity *se)
2777 struct cfs_rq *cfs_rq = group_cfs_rq(se);
2778 struct task_group *tg;
2779 long shares;
2781 if (!cfs_rq)
2782 return;
2784 if (throttled_hierarchy(cfs_rq))
2785 return;
2787 tg = cfs_rq->tg;
2789 #ifndef CONFIG_SMP
2790 if (likely(se->load.weight == tg->shares))
2791 return;
2792 #endif
2793 shares = calc_cfs_shares(cfs_rq, tg);
2795 reweight_entity(cfs_rq_of(se), se, shares);
2798 #else /* CONFIG_FAIR_GROUP_SCHED */
2799 static inline void update_cfs_shares(struct sched_entity *se)
2802 #endif /* CONFIG_FAIR_GROUP_SCHED */
2804 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq)
2806 if (&this_rq()->cfs == cfs_rq) {
2808 * There are a few boundary cases this might miss but it should
2809 * get called often enough that that should (hopefully) not be
2810 * a real problem -- added to that it only calls on the local
2811 * CPU, so if we enqueue remotely we'll miss an update, but
2812 * the next tick/schedule should update.
2814 * It will not get called when we go idle, because the idle
2815 * thread is a different class (!fair), nor will the utilization
2816 * number include things like RT tasks.
2818 * As is, the util number is not freq-invariant (we'd have to
2819 * implement arch_scale_freq_capacity() for that).
2821 * See cpu_util().
2823 cpufreq_update_util(rq_of(cfs_rq), 0);
2827 #ifdef CONFIG_SMP
2829 * Approximate:
2830 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
2832 static u64 decay_load(u64 val, u64 n)
2834 unsigned int local_n;
2836 if (unlikely(n > LOAD_AVG_PERIOD * 63))
2837 return 0;
2839 /* after bounds checking we can collapse to 32-bit */
2840 local_n = n;
2843 * As y^PERIOD = 1/2, we can combine
2844 * y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
2845 * With a look-up table which covers y^n (n<PERIOD)
2847 * To achieve constant time decay_load.
2849 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
2850 val >>= local_n / LOAD_AVG_PERIOD;
2851 local_n %= LOAD_AVG_PERIOD;
2854 val = mul_u64_u32_shr(val, runnable_avg_yN_inv[local_n], 32);
2855 return val;
2858 static u32 __accumulate_pelt_segments(u64 periods, u32 d1, u32 d3)
2860 u32 c1, c2, c3 = d3; /* y^0 == 1 */
2863 * c1 = d1 y^p
2865 c1 = decay_load((u64)d1, periods);
2868 * p-1
2869 * c2 = 1024 \Sum y^n
2870 * n=1
2872 * inf inf
2873 * = 1024 ( \Sum y^n - \Sum y^n - y^0 )
2874 * n=0 n=p
2876 c2 = LOAD_AVG_MAX - decay_load(LOAD_AVG_MAX, periods) - 1024;
2878 return c1 + c2 + c3;
2881 #define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
2884 * Accumulate the three separate parts of the sum; d1 the remainder
2885 * of the last (incomplete) period, d2 the span of full periods and d3
2886 * the remainder of the (incomplete) current period.
2888 * d1 d2 d3
2889 * ^ ^ ^
2890 * | | |
2891 * |<->|<----------------->|<--->|
2892 * ... |---x---|------| ... |------|-----x (now)
2894 * p-1
2895 * u' = (u + d1) y^p + 1024 \Sum y^n + d3 y^0
2896 * n=1
2898 * = u y^p + (Step 1)
2900 * p-1
2901 * d1 y^p + 1024 \Sum y^n + d3 y^0 (Step 2)
2902 * n=1
2904 static __always_inline u32
2905 accumulate_sum(u64 delta, int cpu, struct sched_avg *sa,
2906 unsigned long weight, int running, struct cfs_rq *cfs_rq)
2908 unsigned long scale_freq, scale_cpu;
2909 u32 contrib = (u32)delta; /* p == 0 -> delta < 1024 */
2910 u64 periods;
2912 scale_freq = arch_scale_freq_capacity(NULL, cpu);
2913 scale_cpu = arch_scale_cpu_capacity(NULL, cpu);
2915 delta += sa->period_contrib;
2916 periods = delta / 1024; /* A period is 1024us (~1ms) */
2919 * Step 1: decay old *_sum if we crossed period boundaries.
2921 if (periods) {
2922 sa->load_sum = decay_load(sa->load_sum, periods);
2923 if (cfs_rq) {
2924 cfs_rq->runnable_load_sum =
2925 decay_load(cfs_rq->runnable_load_sum, periods);
2927 sa->util_sum = decay_load((u64)(sa->util_sum), periods);
2930 * Step 2
2932 delta %= 1024;
2933 contrib = __accumulate_pelt_segments(periods,
2934 1024 - sa->period_contrib, delta);
2936 sa->period_contrib = delta;
2938 contrib = cap_scale(contrib, scale_freq);
2939 if (weight) {
2940 sa->load_sum += weight * contrib;
2941 if (cfs_rq)
2942 cfs_rq->runnable_load_sum += weight * contrib;
2944 if (running)
2945 sa->util_sum += contrib * scale_cpu;
2947 return periods;
2951 * We can represent the historical contribution to runnable average as the
2952 * coefficients of a geometric series. To do this we sub-divide our runnable
2953 * history into segments of approximately 1ms (1024us); label the segment that
2954 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2956 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2957 * p0 p1 p2
2958 * (now) (~1ms ago) (~2ms ago)
2960 * Let u_i denote the fraction of p_i that the entity was runnable.
2962 * We then designate the fractions u_i as our co-efficients, yielding the
2963 * following representation of historical load:
2964 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2966 * We choose y based on the with of a reasonably scheduling period, fixing:
2967 * y^32 = 0.5
2969 * This means that the contribution to load ~32ms ago (u_32) will be weighted
2970 * approximately half as much as the contribution to load within the last ms
2971 * (u_0).
2973 * When a period "rolls over" and we have new u_0`, multiplying the previous
2974 * sum again by y is sufficient to update:
2975 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2976 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2978 static __always_inline int
2979 ___update_load_avg(u64 now, int cpu, struct sched_avg *sa,
2980 unsigned long weight, int running, struct cfs_rq *cfs_rq)
2982 u64 delta;
2984 delta = now - sa->last_update_time;
2986 * This should only happen when time goes backwards, which it
2987 * unfortunately does during sched clock init when we swap over to TSC.
2989 if ((s64)delta < 0) {
2990 sa->last_update_time = now;
2991 return 0;
2995 * Use 1024ns as the unit of measurement since it's a reasonable
2996 * approximation of 1us and fast to compute.
2998 delta >>= 10;
2999 if (!delta)
3000 return 0;
3002 sa->last_update_time += delta << 10;
3005 * running is a subset of runnable (weight) so running can't be set if
3006 * runnable is clear. But there are some corner cases where the current
3007 * se has been already dequeued but cfs_rq->curr still points to it.
3008 * This means that weight will be 0 but not running for a sched_entity
3009 * but also for a cfs_rq if the latter becomes idle. As an example,
3010 * this happens during idle_balance() which calls
3011 * update_blocked_averages()
3013 if (!weight)
3014 running = 0;
3017 * Now we know we crossed measurement unit boundaries. The *_avg
3018 * accrues by two steps:
3020 * Step 1: accumulate *_sum since last_update_time. If we haven't
3021 * crossed period boundaries, finish.
3023 if (!accumulate_sum(delta, cpu, sa, weight, running, cfs_rq))
3024 return 0;
3027 * Step 2: update *_avg.
3029 sa->load_avg = div_u64(sa->load_sum, LOAD_AVG_MAX - 1024 + sa->period_contrib);
3030 if (cfs_rq) {
3031 cfs_rq->runnable_load_avg =
3032 div_u64(cfs_rq->runnable_load_sum, LOAD_AVG_MAX - 1024 + sa->period_contrib);
3034 sa->util_avg = sa->util_sum / (LOAD_AVG_MAX - 1024 + sa->period_contrib);
3036 return 1;
3039 static int
3040 __update_load_avg_blocked_se(u64 now, int cpu, struct sched_entity *se)
3042 return ___update_load_avg(now, cpu, &se->avg, 0, 0, NULL);
3045 static int
3046 __update_load_avg_se(u64 now, int cpu, struct cfs_rq *cfs_rq, struct sched_entity *se)
3048 return ___update_load_avg(now, cpu, &se->avg,
3049 se->on_rq * scale_load_down(se->load.weight),
3050 cfs_rq->curr == se, NULL);
3053 static int
3054 __update_load_avg_cfs_rq(u64 now, int cpu, struct cfs_rq *cfs_rq)
3056 return ___update_load_avg(now, cpu, &cfs_rq->avg,
3057 scale_load_down(cfs_rq->load.weight),
3058 cfs_rq->curr != NULL, cfs_rq);
3062 * Signed add and clamp on underflow.
3064 * Explicitly do a load-store to ensure the intermediate value never hits
3065 * memory. This allows lockless observations without ever seeing the negative
3066 * values.
3068 #define add_positive(_ptr, _val) do { \
3069 typeof(_ptr) ptr = (_ptr); \
3070 typeof(_val) val = (_val); \
3071 typeof(*ptr) res, var = READ_ONCE(*ptr); \
3073 res = var + val; \
3075 if (val < 0 && res > var) \
3076 res = 0; \
3078 WRITE_ONCE(*ptr, res); \
3079 } while (0)
3081 #ifdef CONFIG_FAIR_GROUP_SCHED
3083 * update_tg_load_avg - update the tg's load avg
3084 * @cfs_rq: the cfs_rq whose avg changed
3085 * @force: update regardless of how small the difference
3087 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
3088 * However, because tg->load_avg is a global value there are performance
3089 * considerations.
3091 * In order to avoid having to look at the other cfs_rq's, we use a
3092 * differential update where we store the last value we propagated. This in
3093 * turn allows skipping updates if the differential is 'small'.
3095 * Updating tg's load_avg is necessary before update_cfs_share().
3097 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
3099 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
3102 * No need to update load_avg for root_task_group as it is not used.
3104 if (cfs_rq->tg == &root_task_group)
3105 return;
3107 if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
3108 atomic_long_add(delta, &cfs_rq->tg->load_avg);
3109 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
3114 * Called within set_task_rq() right before setting a task's cpu. The
3115 * caller only guarantees p->pi_lock is held; no other assumptions,
3116 * including the state of rq->lock, should be made.
3118 void set_task_rq_fair(struct sched_entity *se,
3119 struct cfs_rq *prev, struct cfs_rq *next)
3121 u64 p_last_update_time;
3122 u64 n_last_update_time;
3124 if (!sched_feat(ATTACH_AGE_LOAD))
3125 return;
3128 * We are supposed to update the task to "current" time, then its up to
3129 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
3130 * getting what current time is, so simply throw away the out-of-date
3131 * time. This will result in the wakee task is less decayed, but giving
3132 * the wakee more load sounds not bad.
3134 if (!(se->avg.last_update_time && prev))
3135 return;
3137 #ifndef CONFIG_64BIT
3139 u64 p_last_update_time_copy;
3140 u64 n_last_update_time_copy;
3142 do {
3143 p_last_update_time_copy = prev->load_last_update_time_copy;
3144 n_last_update_time_copy = next->load_last_update_time_copy;
3146 smp_rmb();
3148 p_last_update_time = prev->avg.last_update_time;
3149 n_last_update_time = next->avg.last_update_time;
3151 } while (p_last_update_time != p_last_update_time_copy ||
3152 n_last_update_time != n_last_update_time_copy);
3154 #else
3155 p_last_update_time = prev->avg.last_update_time;
3156 n_last_update_time = next->avg.last_update_time;
3157 #endif
3158 __update_load_avg_blocked_se(p_last_update_time, cpu_of(rq_of(prev)), se);
3159 se->avg.last_update_time = n_last_update_time;
3162 /* Take into account change of utilization of a child task group */
3163 static inline void
3164 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se)
3166 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3167 long delta = gcfs_rq->avg.util_avg - se->avg.util_avg;
3169 /* Nothing to update */
3170 if (!delta)
3171 return;
3173 /* Set new sched_entity's utilization */
3174 se->avg.util_avg = gcfs_rq->avg.util_avg;
3175 se->avg.util_sum = se->avg.util_avg * LOAD_AVG_MAX;
3177 /* Update parent cfs_rq utilization */
3178 add_positive(&cfs_rq->avg.util_avg, delta);
3179 cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * LOAD_AVG_MAX;
3182 /* Take into account change of load of a child task group */
3183 static inline void
3184 update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se)
3186 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3187 long delta, load = gcfs_rq->avg.load_avg;
3190 * If the load of group cfs_rq is null, the load of the
3191 * sched_entity will also be null so we can skip the formula
3193 if (load) {
3194 long tg_load;
3196 /* Get tg's load and ensure tg_load > 0 */
3197 tg_load = atomic_long_read(&gcfs_rq->tg->load_avg) + 1;
3199 /* Ensure tg_load >= load and updated with current load*/
3200 tg_load -= gcfs_rq->tg_load_avg_contrib;
3201 tg_load += load;
3204 * We need to compute a correction term in the case that the
3205 * task group is consuming more CPU than a task of equal
3206 * weight. A task with a weight equals to tg->shares will have
3207 * a load less or equal to scale_load_down(tg->shares).
3208 * Similarly, the sched_entities that represent the task group
3209 * at parent level, can't have a load higher than
3210 * scale_load_down(tg->shares). And the Sum of sched_entities'
3211 * load must be <= scale_load_down(tg->shares).
3213 if (tg_load > scale_load_down(gcfs_rq->tg->shares)) {
3214 /* scale gcfs_rq's load into tg's shares*/
3215 load *= scale_load_down(gcfs_rq->tg->shares);
3216 load /= tg_load;
3220 delta = load - se->avg.load_avg;
3222 /* Nothing to update */
3223 if (!delta)
3224 return;
3226 /* Set new sched_entity's load */
3227 se->avg.load_avg = load;
3228 se->avg.load_sum = se->avg.load_avg * LOAD_AVG_MAX;
3230 /* Update parent cfs_rq load */
3231 add_positive(&cfs_rq->avg.load_avg, delta);
3232 cfs_rq->avg.load_sum = cfs_rq->avg.load_avg * LOAD_AVG_MAX;
3235 * If the sched_entity is already enqueued, we also have to update the
3236 * runnable load avg.
3238 if (se->on_rq) {
3239 /* Update parent cfs_rq runnable_load_avg */
3240 add_positive(&cfs_rq->runnable_load_avg, delta);
3241 cfs_rq->runnable_load_sum = cfs_rq->runnable_load_avg * LOAD_AVG_MAX;
3245 static inline void set_tg_cfs_propagate(struct cfs_rq *cfs_rq)
3247 cfs_rq->propagate_avg = 1;
3250 static inline int test_and_clear_tg_cfs_propagate(struct sched_entity *se)
3252 struct cfs_rq *cfs_rq = group_cfs_rq(se);
3254 if (!cfs_rq->propagate_avg)
3255 return 0;
3257 cfs_rq->propagate_avg = 0;
3258 return 1;
3261 /* Update task and its cfs_rq load average */
3262 static inline int propagate_entity_load_avg(struct sched_entity *se)
3264 struct cfs_rq *cfs_rq;
3266 if (entity_is_task(se))
3267 return 0;
3269 if (!test_and_clear_tg_cfs_propagate(se))
3270 return 0;
3272 cfs_rq = cfs_rq_of(se);
3274 set_tg_cfs_propagate(cfs_rq);
3276 update_tg_cfs_util(cfs_rq, se);
3277 update_tg_cfs_load(cfs_rq, se);
3279 return 1;
3283 * Check if we need to update the load and the utilization of a blocked
3284 * group_entity:
3286 static inline bool skip_blocked_update(struct sched_entity *se)
3288 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3291 * If sched_entity still have not zero load or utilization, we have to
3292 * decay it:
3294 if (se->avg.load_avg || se->avg.util_avg)
3295 return false;
3298 * If there is a pending propagation, we have to update the load and
3299 * the utilization of the sched_entity:
3301 if (gcfs_rq->propagate_avg)
3302 return false;
3305 * Otherwise, the load and the utilization of the sched_entity is
3306 * already zero and there is no pending propagation, so it will be a
3307 * waste of time to try to decay it:
3309 return true;
3312 #else /* CONFIG_FAIR_GROUP_SCHED */
3314 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
3316 static inline int propagate_entity_load_avg(struct sched_entity *se)
3318 return 0;
3321 static inline void set_tg_cfs_propagate(struct cfs_rq *cfs_rq) {}
3323 #endif /* CONFIG_FAIR_GROUP_SCHED */
3326 * Unsigned subtract and clamp on underflow.
3328 * Explicitly do a load-store to ensure the intermediate value never hits
3329 * memory. This allows lockless observations without ever seeing the negative
3330 * values.
3332 #define sub_positive(_ptr, _val) do { \
3333 typeof(_ptr) ptr = (_ptr); \
3334 typeof(*ptr) val = (_val); \
3335 typeof(*ptr) res, var = READ_ONCE(*ptr); \
3336 res = var - val; \
3337 if (res > var) \
3338 res = 0; \
3339 WRITE_ONCE(*ptr, res); \
3340 } while (0)
3343 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
3344 * @now: current time, as per cfs_rq_clock_task()
3345 * @cfs_rq: cfs_rq to update
3347 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
3348 * avg. The immediate corollary is that all (fair) tasks must be attached, see
3349 * post_init_entity_util_avg().
3351 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
3353 * Returns true if the load decayed or we removed load.
3355 * Since both these conditions indicate a changed cfs_rq->avg.load we should
3356 * call update_tg_load_avg() when this function returns true.
3358 static inline int
3359 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
3361 struct sched_avg *sa = &cfs_rq->avg;
3362 int decayed, removed_load = 0, removed_util = 0;
3364 if (atomic_long_read(&cfs_rq->removed_load_avg)) {
3365 s64 r = atomic_long_xchg(&cfs_rq->removed_load_avg, 0);
3366 sub_positive(&sa->load_avg, r);
3367 sub_positive(&sa->load_sum, r * LOAD_AVG_MAX);
3368 removed_load = 1;
3369 set_tg_cfs_propagate(cfs_rq);
3372 if (atomic_long_read(&cfs_rq->removed_util_avg)) {
3373 long r = atomic_long_xchg(&cfs_rq->removed_util_avg, 0);
3374 sub_positive(&sa->util_avg, r);
3375 sub_positive(&sa->util_sum, r * LOAD_AVG_MAX);
3376 removed_util = 1;
3377 set_tg_cfs_propagate(cfs_rq);
3380 decayed = __update_load_avg_cfs_rq(now, cpu_of(rq_of(cfs_rq)), cfs_rq);
3382 #ifndef CONFIG_64BIT
3383 smp_wmb();
3384 cfs_rq->load_last_update_time_copy = sa->last_update_time;
3385 #endif
3387 if (decayed || removed_util)
3388 cfs_rq_util_change(cfs_rq);
3390 return decayed || removed_load;
3394 * Optional action to be done while updating the load average
3396 #define UPDATE_TG 0x1
3397 #define SKIP_AGE_LOAD 0x2
3399 /* Update task and its cfs_rq load average */
3400 static inline void update_load_avg(struct sched_entity *se, int flags)
3402 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3403 u64 now = cfs_rq_clock_task(cfs_rq);
3404 struct rq *rq = rq_of(cfs_rq);
3405 int cpu = cpu_of(rq);
3406 int decayed;
3409 * Track task load average for carrying it to new CPU after migrated, and
3410 * track group sched_entity load average for task_h_load calc in migration
3412 if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
3413 __update_load_avg_se(now, cpu, cfs_rq, se);
3415 decayed = update_cfs_rq_load_avg(now, cfs_rq);
3416 decayed |= propagate_entity_load_avg(se);
3418 if (decayed && (flags & UPDATE_TG))
3419 update_tg_load_avg(cfs_rq, 0);
3423 * attach_entity_load_avg - attach this entity to its cfs_rq load avg
3424 * @cfs_rq: cfs_rq to attach to
3425 * @se: sched_entity to attach
3427 * Must call update_cfs_rq_load_avg() before this, since we rely on
3428 * cfs_rq->avg.last_update_time being current.
3430 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3432 se->avg.last_update_time = cfs_rq->avg.last_update_time;
3433 cfs_rq->avg.load_avg += se->avg.load_avg;
3434 cfs_rq->avg.load_sum += se->avg.load_sum;
3435 cfs_rq->avg.util_avg += se->avg.util_avg;
3436 cfs_rq->avg.util_sum += se->avg.util_sum;
3437 set_tg_cfs_propagate(cfs_rq);
3439 cfs_rq_util_change(cfs_rq);
3443 * detach_entity_load_avg - detach this entity from its cfs_rq load avg
3444 * @cfs_rq: cfs_rq to detach from
3445 * @se: sched_entity to detach
3447 * Must call update_cfs_rq_load_avg() before this, since we rely on
3448 * cfs_rq->avg.last_update_time being current.
3450 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3453 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
3454 sub_positive(&cfs_rq->avg.load_sum, se->avg.load_sum);
3455 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
3456 sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
3457 set_tg_cfs_propagate(cfs_rq);
3459 cfs_rq_util_change(cfs_rq);
3462 /* Add the load generated by se into cfs_rq's load average */
3463 static inline void
3464 enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3466 struct sched_avg *sa = &se->avg;
3468 cfs_rq->runnable_load_avg += sa->load_avg;
3469 cfs_rq->runnable_load_sum += sa->load_sum;
3471 if (!sa->last_update_time) {
3472 attach_entity_load_avg(cfs_rq, se);
3473 update_tg_load_avg(cfs_rq, 0);
3477 /* Remove the runnable load generated by se from cfs_rq's runnable load average */
3478 static inline void
3479 dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3481 cfs_rq->runnable_load_avg =
3482 max_t(long, cfs_rq->runnable_load_avg - se->avg.load_avg, 0);
3483 cfs_rq->runnable_load_sum =
3484 max_t(s64, cfs_rq->runnable_load_sum - se->avg.load_sum, 0);
3487 #ifndef CONFIG_64BIT
3488 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3490 u64 last_update_time_copy;
3491 u64 last_update_time;
3493 do {
3494 last_update_time_copy = cfs_rq->load_last_update_time_copy;
3495 smp_rmb();
3496 last_update_time = cfs_rq->avg.last_update_time;
3497 } while (last_update_time != last_update_time_copy);
3499 return last_update_time;
3501 #else
3502 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3504 return cfs_rq->avg.last_update_time;
3506 #endif
3509 * Synchronize entity load avg of dequeued entity without locking
3510 * the previous rq.
3512 void sync_entity_load_avg(struct sched_entity *se)
3514 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3515 u64 last_update_time;
3517 last_update_time = cfs_rq_last_update_time(cfs_rq);
3518 __update_load_avg_blocked_se(last_update_time, cpu_of(rq_of(cfs_rq)), se);
3522 * Task first catches up with cfs_rq, and then subtract
3523 * itself from the cfs_rq (task must be off the queue now).
3525 void remove_entity_load_avg(struct sched_entity *se)
3527 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3530 * tasks cannot exit without having gone through wake_up_new_task() ->
3531 * post_init_entity_util_avg() which will have added things to the
3532 * cfs_rq, so we can remove unconditionally.
3534 * Similarly for groups, they will have passed through
3535 * post_init_entity_util_avg() before unregister_sched_fair_group()
3536 * calls this.
3539 sync_entity_load_avg(se);
3540 atomic_long_add(se->avg.load_avg, &cfs_rq->removed_load_avg);
3541 atomic_long_add(se->avg.util_avg, &cfs_rq->removed_util_avg);
3544 static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq)
3546 return cfs_rq->runnable_load_avg;
3549 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
3551 return cfs_rq->avg.load_avg;
3554 static int idle_balance(struct rq *this_rq, struct rq_flags *rf);
3556 #else /* CONFIG_SMP */
3558 static inline int
3559 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
3561 return 0;
3564 #define UPDATE_TG 0x0
3565 #define SKIP_AGE_LOAD 0x0
3567 static inline void update_load_avg(struct sched_entity *se, int not_used1)
3569 cfs_rq_util_change(cfs_rq_of(se));
3572 static inline void
3573 enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3574 static inline void
3575 dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3576 static inline void remove_entity_load_avg(struct sched_entity *se) {}
3578 static inline void
3579 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3580 static inline void
3581 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3583 static inline int idle_balance(struct rq *rq, struct rq_flags *rf)
3585 return 0;
3588 #endif /* CONFIG_SMP */
3590 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
3592 #ifdef CONFIG_SCHED_DEBUG
3593 s64 d = se->vruntime - cfs_rq->min_vruntime;
3595 if (d < 0)
3596 d = -d;
3598 if (d > 3*sysctl_sched_latency)
3599 schedstat_inc(cfs_rq->nr_spread_over);
3600 #endif
3603 static void
3604 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
3606 u64 vruntime = cfs_rq->min_vruntime;
3609 * The 'current' period is already promised to the current tasks,
3610 * however the extra weight of the new task will slow them down a
3611 * little, place the new task so that it fits in the slot that
3612 * stays open at the end.
3614 if (initial && sched_feat(START_DEBIT))
3615 vruntime += sched_vslice(cfs_rq, se);
3617 /* sleeps up to a single latency don't count. */
3618 if (!initial) {
3619 unsigned long thresh = sysctl_sched_latency;
3622 * Halve their sleep time's effect, to allow
3623 * for a gentler effect of sleepers:
3625 if (sched_feat(GENTLE_FAIR_SLEEPERS))
3626 thresh >>= 1;
3628 vruntime -= thresh;
3631 /* ensure we never gain time by being placed backwards. */
3632 se->vruntime = max_vruntime(se->vruntime, vruntime);
3635 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
3637 static inline void check_schedstat_required(void)
3639 #ifdef CONFIG_SCHEDSTATS
3640 if (schedstat_enabled())
3641 return;
3643 /* Force schedstat enabled if a dependent tracepoint is active */
3644 if (trace_sched_stat_wait_enabled() ||
3645 trace_sched_stat_sleep_enabled() ||
3646 trace_sched_stat_iowait_enabled() ||
3647 trace_sched_stat_blocked_enabled() ||
3648 trace_sched_stat_runtime_enabled()) {
3649 printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, "
3650 "stat_blocked and stat_runtime require the "
3651 "kernel parameter schedstats=enable or "
3652 "kernel.sched_schedstats=1\n");
3654 #endif
3659 * MIGRATION
3661 * dequeue
3662 * update_curr()
3663 * update_min_vruntime()
3664 * vruntime -= min_vruntime
3666 * enqueue
3667 * update_curr()
3668 * update_min_vruntime()
3669 * vruntime += min_vruntime
3671 * this way the vruntime transition between RQs is done when both
3672 * min_vruntime are up-to-date.
3674 * WAKEUP (remote)
3676 * ->migrate_task_rq_fair() (p->state == TASK_WAKING)
3677 * vruntime -= min_vruntime
3679 * enqueue
3680 * update_curr()
3681 * update_min_vruntime()
3682 * vruntime += min_vruntime
3684 * this way we don't have the most up-to-date min_vruntime on the originating
3685 * CPU and an up-to-date min_vruntime on the destination CPU.
3688 static void
3689 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3691 bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
3692 bool curr = cfs_rq->curr == se;
3695 * If we're the current task, we must renormalise before calling
3696 * update_curr().
3698 if (renorm && curr)
3699 se->vruntime += cfs_rq->min_vruntime;
3701 update_curr(cfs_rq);
3704 * Otherwise, renormalise after, such that we're placed at the current
3705 * moment in time, instead of some random moment in the past. Being
3706 * placed in the past could significantly boost this task to the
3707 * fairness detriment of existing tasks.
3709 if (renorm && !curr)
3710 se->vruntime += cfs_rq->min_vruntime;
3713 * When enqueuing a sched_entity, we must:
3714 * - Update loads to have both entity and cfs_rq synced with now.
3715 * - Add its load to cfs_rq->runnable_avg
3716 * - For group_entity, update its weight to reflect the new share of
3717 * its group cfs_rq
3718 * - Add its new weight to cfs_rq->load.weight
3720 update_load_avg(se, UPDATE_TG);
3721 enqueue_entity_load_avg(cfs_rq, se);
3722 update_cfs_shares(se);
3723 account_entity_enqueue(cfs_rq, se);
3725 if (flags & ENQUEUE_WAKEUP)
3726 place_entity(cfs_rq, se, 0);
3728 check_schedstat_required();
3729 update_stats_enqueue(cfs_rq, se, flags);
3730 check_spread(cfs_rq, se);
3731 if (!curr)
3732 __enqueue_entity(cfs_rq, se);
3733 se->on_rq = 1;
3735 if (cfs_rq->nr_running == 1) {
3736 list_add_leaf_cfs_rq(cfs_rq);
3737 check_enqueue_throttle(cfs_rq);
3741 static void __clear_buddies_last(struct sched_entity *se)
3743 for_each_sched_entity(se) {
3744 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3745 if (cfs_rq->last != se)
3746 break;
3748 cfs_rq->last = NULL;
3752 static void __clear_buddies_next(struct sched_entity *se)
3754 for_each_sched_entity(se) {
3755 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3756 if (cfs_rq->next != se)
3757 break;
3759 cfs_rq->next = NULL;
3763 static void __clear_buddies_skip(struct sched_entity *se)
3765 for_each_sched_entity(se) {
3766 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3767 if (cfs_rq->skip != se)
3768 break;
3770 cfs_rq->skip = NULL;
3774 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
3776 if (cfs_rq->last == se)
3777 __clear_buddies_last(se);
3779 if (cfs_rq->next == se)
3780 __clear_buddies_next(se);
3782 if (cfs_rq->skip == se)
3783 __clear_buddies_skip(se);
3786 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
3788 static void
3789 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3792 * Update run-time statistics of the 'current'.
3794 update_curr(cfs_rq);
3797 * When dequeuing a sched_entity, we must:
3798 * - Update loads to have both entity and cfs_rq synced with now.
3799 * - Substract its load from the cfs_rq->runnable_avg.
3800 * - Substract its previous weight from cfs_rq->load.weight.
3801 * - For group entity, update its weight to reflect the new share
3802 * of its group cfs_rq.
3804 update_load_avg(se, UPDATE_TG);
3805 dequeue_entity_load_avg(cfs_rq, se);
3807 update_stats_dequeue(cfs_rq, se, flags);
3809 clear_buddies(cfs_rq, se);
3811 if (se != cfs_rq->curr)
3812 __dequeue_entity(cfs_rq, se);
3813 se->on_rq = 0;
3814 account_entity_dequeue(cfs_rq, se);
3817 * Normalize after update_curr(); which will also have moved
3818 * min_vruntime if @se is the one holding it back. But before doing
3819 * update_min_vruntime() again, which will discount @se's position and
3820 * can move min_vruntime forward still more.
3822 if (!(flags & DEQUEUE_SLEEP))
3823 se->vruntime -= cfs_rq->min_vruntime;
3825 /* return excess runtime on last dequeue */
3826 return_cfs_rq_runtime(cfs_rq);
3828 update_cfs_shares(se);
3831 * Now advance min_vruntime if @se was the entity holding it back,
3832 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
3833 * put back on, and if we advance min_vruntime, we'll be placed back
3834 * further than we started -- ie. we'll be penalized.
3836 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE)
3837 update_min_vruntime(cfs_rq);
3841 * Preempt the current task with a newly woken task if needed:
3843 static void
3844 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
3846 unsigned long ideal_runtime, delta_exec;
3847 struct sched_entity *se;
3848 s64 delta;
3850 ideal_runtime = sched_slice(cfs_rq, curr);
3851 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
3852 if (delta_exec > ideal_runtime) {
3853 resched_curr(rq_of(cfs_rq));
3855 * The current task ran long enough, ensure it doesn't get
3856 * re-elected due to buddy favours.
3858 clear_buddies(cfs_rq, curr);
3859 return;
3863 * Ensure that a task that missed wakeup preemption by a
3864 * narrow margin doesn't have to wait for a full slice.
3865 * This also mitigates buddy induced latencies under load.
3867 if (delta_exec < sysctl_sched_min_granularity)
3868 return;
3870 se = __pick_first_entity(cfs_rq);
3871 delta = curr->vruntime - se->vruntime;
3873 if (delta < 0)
3874 return;
3876 if (delta > ideal_runtime)
3877 resched_curr(rq_of(cfs_rq));
3880 static void
3881 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
3883 /* 'current' is not kept within the tree. */
3884 if (se->on_rq) {
3886 * Any task has to be enqueued before it get to execute on
3887 * a CPU. So account for the time it spent waiting on the
3888 * runqueue.
3890 update_stats_wait_end(cfs_rq, se);
3891 __dequeue_entity(cfs_rq, se);
3892 update_load_avg(se, UPDATE_TG);
3895 update_stats_curr_start(cfs_rq, se);
3896 cfs_rq->curr = se;
3899 * Track our maximum slice length, if the CPU's load is at
3900 * least twice that of our own weight (i.e. dont track it
3901 * when there are only lesser-weight tasks around):
3903 if (schedstat_enabled() && rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
3904 schedstat_set(se->statistics.slice_max,
3905 max((u64)schedstat_val(se->statistics.slice_max),
3906 se->sum_exec_runtime - se->prev_sum_exec_runtime));
3909 se->prev_sum_exec_runtime = se->sum_exec_runtime;
3912 static int
3913 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
3916 * Pick the next process, keeping these things in mind, in this order:
3917 * 1) keep things fair between processes/task groups
3918 * 2) pick the "next" process, since someone really wants that to run
3919 * 3) pick the "last" process, for cache locality
3920 * 4) do not run the "skip" process, if something else is available
3922 static struct sched_entity *
3923 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
3925 struct sched_entity *left = __pick_first_entity(cfs_rq);
3926 struct sched_entity *se;
3929 * If curr is set we have to see if its left of the leftmost entity
3930 * still in the tree, provided there was anything in the tree at all.
3932 if (!left || (curr && entity_before(curr, left)))
3933 left = curr;
3935 se = left; /* ideally we run the leftmost entity */
3938 * Avoid running the skip buddy, if running something else can
3939 * be done without getting too unfair.
3941 if (cfs_rq->skip == se) {
3942 struct sched_entity *second;
3944 if (se == curr) {
3945 second = __pick_first_entity(cfs_rq);
3946 } else {
3947 second = __pick_next_entity(se);
3948 if (!second || (curr && entity_before(curr, second)))
3949 second = curr;
3952 if (second && wakeup_preempt_entity(second, left) < 1)
3953 se = second;
3957 * Prefer last buddy, try to return the CPU to a preempted task.
3959 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
3960 se = cfs_rq->last;
3963 * Someone really wants this to run. If it's not unfair, run it.
3965 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
3966 se = cfs_rq->next;
3968 clear_buddies(cfs_rq, se);
3970 return se;
3973 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
3975 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
3978 * If still on the runqueue then deactivate_task()
3979 * was not called and update_curr() has to be done:
3981 if (prev->on_rq)
3982 update_curr(cfs_rq);
3984 /* throttle cfs_rqs exceeding runtime */
3985 check_cfs_rq_runtime(cfs_rq);
3987 check_spread(cfs_rq, prev);
3989 if (prev->on_rq) {
3990 update_stats_wait_start(cfs_rq, prev);
3991 /* Put 'current' back into the tree. */
3992 __enqueue_entity(cfs_rq, prev);
3993 /* in !on_rq case, update occurred at dequeue */
3994 update_load_avg(prev, 0);
3996 cfs_rq->curr = NULL;
3999 static void
4000 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
4003 * Update run-time statistics of the 'current'.
4005 update_curr(cfs_rq);
4008 * Ensure that runnable average is periodically updated.
4010 update_load_avg(curr, UPDATE_TG);
4011 update_cfs_shares(curr);
4013 #ifdef CONFIG_SCHED_HRTICK
4015 * queued ticks are scheduled to match the slice, so don't bother
4016 * validating it and just reschedule.
4018 if (queued) {
4019 resched_curr(rq_of(cfs_rq));
4020 return;
4023 * don't let the period tick interfere with the hrtick preemption
4025 if (!sched_feat(DOUBLE_TICK) &&
4026 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
4027 return;
4028 #endif
4030 if (cfs_rq->nr_running > 1)
4031 check_preempt_tick(cfs_rq, curr);
4035 /**************************************************
4036 * CFS bandwidth control machinery
4039 #ifdef CONFIG_CFS_BANDWIDTH
4041 #ifdef HAVE_JUMP_LABEL
4042 static struct static_key __cfs_bandwidth_used;
4044 static inline bool cfs_bandwidth_used(void)
4046 return static_key_false(&__cfs_bandwidth_used);
4049 void cfs_bandwidth_usage_inc(void)
4051 static_key_slow_inc(&__cfs_bandwidth_used);
4054 void cfs_bandwidth_usage_dec(void)
4056 static_key_slow_dec(&__cfs_bandwidth_used);
4058 #else /* HAVE_JUMP_LABEL */
4059 static bool cfs_bandwidth_used(void)
4061 return true;
4064 void cfs_bandwidth_usage_inc(void) {}
4065 void cfs_bandwidth_usage_dec(void) {}
4066 #endif /* HAVE_JUMP_LABEL */
4069 * default period for cfs group bandwidth.
4070 * default: 0.1s, units: nanoseconds
4072 static inline u64 default_cfs_period(void)
4074 return 100000000ULL;
4077 static inline u64 sched_cfs_bandwidth_slice(void)
4079 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
4083 * Replenish runtime according to assigned quota and update expiration time.
4084 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
4085 * additional synchronization around rq->lock.
4087 * requires cfs_b->lock
4089 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
4091 u64 now;
4093 if (cfs_b->quota == RUNTIME_INF)
4094 return;
4096 now = sched_clock_cpu(smp_processor_id());
4097 cfs_b->runtime = cfs_b->quota;
4098 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
4101 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4103 return &tg->cfs_bandwidth;
4106 /* rq->task_clock normalized against any time this cfs_rq has spent throttled */
4107 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
4109 if (unlikely(cfs_rq->throttle_count))
4110 return cfs_rq->throttled_clock_task - cfs_rq->throttled_clock_task_time;
4112 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
4115 /* returns 0 on failure to allocate runtime */
4116 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4118 struct task_group *tg = cfs_rq->tg;
4119 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
4120 u64 amount = 0, min_amount, expires;
4122 /* note: this is a positive sum as runtime_remaining <= 0 */
4123 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
4125 raw_spin_lock(&cfs_b->lock);
4126 if (cfs_b->quota == RUNTIME_INF)
4127 amount = min_amount;
4128 else {
4129 start_cfs_bandwidth(cfs_b);
4131 if (cfs_b->runtime > 0) {
4132 amount = min(cfs_b->runtime, min_amount);
4133 cfs_b->runtime -= amount;
4134 cfs_b->idle = 0;
4137 expires = cfs_b->runtime_expires;
4138 raw_spin_unlock(&cfs_b->lock);
4140 cfs_rq->runtime_remaining += amount;
4142 * we may have advanced our local expiration to account for allowed
4143 * spread between our sched_clock and the one on which runtime was
4144 * issued.
4146 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
4147 cfs_rq->runtime_expires = expires;
4149 return cfs_rq->runtime_remaining > 0;
4153 * Note: This depends on the synchronization provided by sched_clock and the
4154 * fact that rq->clock snapshots this value.
4156 static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4158 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4160 /* if the deadline is ahead of our clock, nothing to do */
4161 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
4162 return;
4164 if (cfs_rq->runtime_remaining < 0)
4165 return;
4168 * If the local deadline has passed we have to consider the
4169 * possibility that our sched_clock is 'fast' and the global deadline
4170 * has not truly expired.
4172 * Fortunately we can check determine whether this the case by checking
4173 * whether the global deadline has advanced. It is valid to compare
4174 * cfs_b->runtime_expires without any locks since we only care about
4175 * exact equality, so a partial write will still work.
4178 if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
4179 /* extend local deadline, drift is bounded above by 2 ticks */
4180 cfs_rq->runtime_expires += TICK_NSEC;
4181 } else {
4182 /* global deadline is ahead, expiration has passed */
4183 cfs_rq->runtime_remaining = 0;
4187 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
4189 /* dock delta_exec before expiring quota (as it could span periods) */
4190 cfs_rq->runtime_remaining -= delta_exec;
4191 expire_cfs_rq_runtime(cfs_rq);
4193 if (likely(cfs_rq->runtime_remaining > 0))
4194 return;
4197 * if we're unable to extend our runtime we resched so that the active
4198 * hierarchy can be throttled
4200 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
4201 resched_curr(rq_of(cfs_rq));
4204 static __always_inline
4205 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
4207 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
4208 return;
4210 __account_cfs_rq_runtime(cfs_rq, delta_exec);
4213 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4215 return cfs_bandwidth_used() && cfs_rq->throttled;
4218 /* check whether cfs_rq, or any parent, is throttled */
4219 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4221 return cfs_bandwidth_used() && cfs_rq->throttle_count;
4225 * Ensure that neither of the group entities corresponding to src_cpu or
4226 * dest_cpu are members of a throttled hierarchy when performing group
4227 * load-balance operations.
4229 static inline int throttled_lb_pair(struct task_group *tg,
4230 int src_cpu, int dest_cpu)
4232 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
4234 src_cfs_rq = tg->cfs_rq[src_cpu];
4235 dest_cfs_rq = tg->cfs_rq[dest_cpu];
4237 return throttled_hierarchy(src_cfs_rq) ||
4238 throttled_hierarchy(dest_cfs_rq);
4241 /* updated child weight may affect parent so we have to do this bottom up */
4242 static int tg_unthrottle_up(struct task_group *tg, void *data)
4244 struct rq *rq = data;
4245 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4247 cfs_rq->throttle_count--;
4248 if (!cfs_rq->throttle_count) {
4249 /* adjust cfs_rq_clock_task() */
4250 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
4251 cfs_rq->throttled_clock_task;
4254 return 0;
4257 static int tg_throttle_down(struct task_group *tg, void *data)
4259 struct rq *rq = data;
4260 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4262 /* group is entering throttled state, stop time */
4263 if (!cfs_rq->throttle_count)
4264 cfs_rq->throttled_clock_task = rq_clock_task(rq);
4265 cfs_rq->throttle_count++;
4267 return 0;
4270 static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
4272 struct rq *rq = rq_of(cfs_rq);
4273 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4274 struct sched_entity *se;
4275 long task_delta, dequeue = 1;
4276 bool empty;
4278 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
4280 /* freeze hierarchy runnable averages while throttled */
4281 rcu_read_lock();
4282 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
4283 rcu_read_unlock();
4285 task_delta = cfs_rq->h_nr_running;
4286 for_each_sched_entity(se) {
4287 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
4288 /* throttled entity or throttle-on-deactivate */
4289 if (!se->on_rq)
4290 break;
4292 if (dequeue)
4293 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
4294 qcfs_rq->h_nr_running -= task_delta;
4296 if (qcfs_rq->load.weight)
4297 dequeue = 0;
4300 if (!se)
4301 sub_nr_running(rq, task_delta);
4303 cfs_rq->throttled = 1;
4304 cfs_rq->throttled_clock = rq_clock(rq);
4305 raw_spin_lock(&cfs_b->lock);
4306 empty = list_empty(&cfs_b->throttled_cfs_rq);
4309 * Add to the _head_ of the list, so that an already-started
4310 * distribute_cfs_runtime will not see us
4312 list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
4315 * If we're the first throttled task, make sure the bandwidth
4316 * timer is running.
4318 if (empty)
4319 start_cfs_bandwidth(cfs_b);
4321 raw_spin_unlock(&cfs_b->lock);
4324 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
4326 struct rq *rq = rq_of(cfs_rq);
4327 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4328 struct sched_entity *se;
4329 int enqueue = 1;
4330 long task_delta;
4332 se = cfs_rq->tg->se[cpu_of(rq)];
4334 cfs_rq->throttled = 0;
4336 update_rq_clock(rq);
4338 raw_spin_lock(&cfs_b->lock);
4339 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
4340 list_del_rcu(&cfs_rq->throttled_list);
4341 raw_spin_unlock(&cfs_b->lock);
4343 /* update hierarchical throttle state */
4344 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
4346 if (!cfs_rq->load.weight)
4347 return;
4349 task_delta = cfs_rq->h_nr_running;
4350 for_each_sched_entity(se) {
4351 if (se->on_rq)
4352 enqueue = 0;
4354 cfs_rq = cfs_rq_of(se);
4355 if (enqueue)
4356 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
4357 cfs_rq->h_nr_running += task_delta;
4359 if (cfs_rq_throttled(cfs_rq))
4360 break;
4363 if (!se)
4364 add_nr_running(rq, task_delta);
4366 /* determine whether we need to wake up potentially idle cpu */
4367 if (rq->curr == rq->idle && rq->cfs.nr_running)
4368 resched_curr(rq);
4371 static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
4372 u64 remaining, u64 expires)
4374 struct cfs_rq *cfs_rq;
4375 u64 runtime;
4376 u64 starting_runtime = remaining;
4378 rcu_read_lock();
4379 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
4380 throttled_list) {
4381 struct rq *rq = rq_of(cfs_rq);
4382 struct rq_flags rf;
4384 rq_lock(rq, &rf);
4385 if (!cfs_rq_throttled(cfs_rq))
4386 goto next;
4388 runtime = -cfs_rq->runtime_remaining + 1;
4389 if (runtime > remaining)
4390 runtime = remaining;
4391 remaining -= runtime;
4393 cfs_rq->runtime_remaining += runtime;
4394 cfs_rq->runtime_expires = expires;
4396 /* we check whether we're throttled above */
4397 if (cfs_rq->runtime_remaining > 0)
4398 unthrottle_cfs_rq(cfs_rq);
4400 next:
4401 rq_unlock(rq, &rf);
4403 if (!remaining)
4404 break;
4406 rcu_read_unlock();
4408 return starting_runtime - remaining;
4412 * Responsible for refilling a task_group's bandwidth and unthrottling its
4413 * cfs_rqs as appropriate. If there has been no activity within the last
4414 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
4415 * used to track this state.
4417 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
4419 u64 runtime, runtime_expires;
4420 int throttled;
4422 /* no need to continue the timer with no bandwidth constraint */
4423 if (cfs_b->quota == RUNTIME_INF)
4424 goto out_deactivate;
4426 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
4427 cfs_b->nr_periods += overrun;
4430 * idle depends on !throttled (for the case of a large deficit), and if
4431 * we're going inactive then everything else can be deferred
4433 if (cfs_b->idle && !throttled)
4434 goto out_deactivate;
4436 __refill_cfs_bandwidth_runtime(cfs_b);
4438 if (!throttled) {
4439 /* mark as potentially idle for the upcoming period */
4440 cfs_b->idle = 1;
4441 return 0;
4444 /* account preceding periods in which throttling occurred */
4445 cfs_b->nr_throttled += overrun;
4447 runtime_expires = cfs_b->runtime_expires;
4450 * This check is repeated as we are holding onto the new bandwidth while
4451 * we unthrottle. This can potentially race with an unthrottled group
4452 * trying to acquire new bandwidth from the global pool. This can result
4453 * in us over-using our runtime if it is all used during this loop, but
4454 * only by limited amounts in that extreme case.
4456 while (throttled && cfs_b->runtime > 0) {
4457 runtime = cfs_b->runtime;
4458 raw_spin_unlock(&cfs_b->lock);
4459 /* we can't nest cfs_b->lock while distributing bandwidth */
4460 runtime = distribute_cfs_runtime(cfs_b, runtime,
4461 runtime_expires);
4462 raw_spin_lock(&cfs_b->lock);
4464 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
4466 cfs_b->runtime -= min(runtime, cfs_b->runtime);
4470 * While we are ensured activity in the period following an
4471 * unthrottle, this also covers the case in which the new bandwidth is
4472 * insufficient to cover the existing bandwidth deficit. (Forcing the
4473 * timer to remain active while there are any throttled entities.)
4475 cfs_b->idle = 0;
4477 return 0;
4479 out_deactivate:
4480 return 1;
4483 /* a cfs_rq won't donate quota below this amount */
4484 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
4485 /* minimum remaining period time to redistribute slack quota */
4486 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
4487 /* how long we wait to gather additional slack before distributing */
4488 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
4491 * Are we near the end of the current quota period?
4493 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
4494 * hrtimer base being cleared by hrtimer_start. In the case of
4495 * migrate_hrtimers, base is never cleared, so we are fine.
4497 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
4499 struct hrtimer *refresh_timer = &cfs_b->period_timer;
4500 u64 remaining;
4502 /* if the call-back is running a quota refresh is already occurring */
4503 if (hrtimer_callback_running(refresh_timer))
4504 return 1;
4506 /* is a quota refresh about to occur? */
4507 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
4508 if (remaining < min_expire)
4509 return 1;
4511 return 0;
4514 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
4516 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
4518 /* if there's a quota refresh soon don't bother with slack */
4519 if (runtime_refresh_within(cfs_b, min_left))
4520 return;
4522 hrtimer_start(&cfs_b->slack_timer,
4523 ns_to_ktime(cfs_bandwidth_slack_period),
4524 HRTIMER_MODE_REL);
4527 /* we know any runtime found here is valid as update_curr() precedes return */
4528 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4530 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4531 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
4533 if (slack_runtime <= 0)
4534 return;
4536 raw_spin_lock(&cfs_b->lock);
4537 if (cfs_b->quota != RUNTIME_INF &&
4538 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
4539 cfs_b->runtime += slack_runtime;
4541 /* we are under rq->lock, defer unthrottling using a timer */
4542 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
4543 !list_empty(&cfs_b->throttled_cfs_rq))
4544 start_cfs_slack_bandwidth(cfs_b);
4546 raw_spin_unlock(&cfs_b->lock);
4548 /* even if it's not valid for return we don't want to try again */
4549 cfs_rq->runtime_remaining -= slack_runtime;
4552 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4554 if (!cfs_bandwidth_used())
4555 return;
4557 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
4558 return;
4560 __return_cfs_rq_runtime(cfs_rq);
4564 * This is done with a timer (instead of inline with bandwidth return) since
4565 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
4567 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
4569 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
4570 u64 expires;
4572 /* confirm we're still not at a refresh boundary */
4573 raw_spin_lock(&cfs_b->lock);
4574 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
4575 raw_spin_unlock(&cfs_b->lock);
4576 return;
4579 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
4580 runtime = cfs_b->runtime;
4582 expires = cfs_b->runtime_expires;
4583 raw_spin_unlock(&cfs_b->lock);
4585 if (!runtime)
4586 return;
4588 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
4590 raw_spin_lock(&cfs_b->lock);
4591 if (expires == cfs_b->runtime_expires)
4592 cfs_b->runtime -= min(runtime, cfs_b->runtime);
4593 raw_spin_unlock(&cfs_b->lock);
4597 * When a group wakes up we want to make sure that its quota is not already
4598 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
4599 * runtime as update_curr() throttling can not not trigger until it's on-rq.
4601 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
4603 if (!cfs_bandwidth_used())
4604 return;
4606 /* an active group must be handled by the update_curr()->put() path */
4607 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
4608 return;
4610 /* ensure the group is not already throttled */
4611 if (cfs_rq_throttled(cfs_rq))
4612 return;
4614 /* update runtime allocation */
4615 account_cfs_rq_runtime(cfs_rq, 0);
4616 if (cfs_rq->runtime_remaining <= 0)
4617 throttle_cfs_rq(cfs_rq);
4620 static void sync_throttle(struct task_group *tg, int cpu)
4622 struct cfs_rq *pcfs_rq, *cfs_rq;
4624 if (!cfs_bandwidth_used())
4625 return;
4627 if (!tg->parent)
4628 return;
4630 cfs_rq = tg->cfs_rq[cpu];
4631 pcfs_rq = tg->parent->cfs_rq[cpu];
4633 cfs_rq->throttle_count = pcfs_rq->throttle_count;
4634 cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu));
4637 /* conditionally throttle active cfs_rq's from put_prev_entity() */
4638 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4640 if (!cfs_bandwidth_used())
4641 return false;
4643 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
4644 return false;
4647 * it's possible for a throttled entity to be forced into a running
4648 * state (e.g. set_curr_task), in this case we're finished.
4650 if (cfs_rq_throttled(cfs_rq))
4651 return true;
4653 throttle_cfs_rq(cfs_rq);
4654 return true;
4657 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
4659 struct cfs_bandwidth *cfs_b =
4660 container_of(timer, struct cfs_bandwidth, slack_timer);
4662 do_sched_cfs_slack_timer(cfs_b);
4664 return HRTIMER_NORESTART;
4667 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
4669 struct cfs_bandwidth *cfs_b =
4670 container_of(timer, struct cfs_bandwidth, period_timer);
4671 int overrun;
4672 int idle = 0;
4674 raw_spin_lock(&cfs_b->lock);
4675 for (;;) {
4676 overrun = hrtimer_forward_now(timer, cfs_b->period);
4677 if (!overrun)
4678 break;
4680 idle = do_sched_cfs_period_timer(cfs_b, overrun);
4682 if (idle)
4683 cfs_b->period_active = 0;
4684 raw_spin_unlock(&cfs_b->lock);
4686 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
4689 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4691 raw_spin_lock_init(&cfs_b->lock);
4692 cfs_b->runtime = 0;
4693 cfs_b->quota = RUNTIME_INF;
4694 cfs_b->period = ns_to_ktime(default_cfs_period());
4696 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
4697 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
4698 cfs_b->period_timer.function = sched_cfs_period_timer;
4699 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4700 cfs_b->slack_timer.function = sched_cfs_slack_timer;
4703 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4705 cfs_rq->runtime_enabled = 0;
4706 INIT_LIST_HEAD(&cfs_rq->throttled_list);
4709 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4711 lockdep_assert_held(&cfs_b->lock);
4713 if (!cfs_b->period_active) {
4714 cfs_b->period_active = 1;
4715 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
4716 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
4720 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4722 /* init_cfs_bandwidth() was not called */
4723 if (!cfs_b->throttled_cfs_rq.next)
4724 return;
4726 hrtimer_cancel(&cfs_b->period_timer);
4727 hrtimer_cancel(&cfs_b->slack_timer);
4731 * Both these cpu hotplug callbacks race against unregister_fair_sched_group()
4733 * The race is harmless, since modifying bandwidth settings of unhooked group
4734 * bits doesn't do much.
4737 /* cpu online calback */
4738 static void __maybe_unused update_runtime_enabled(struct rq *rq)
4740 struct task_group *tg;
4742 lockdep_assert_held(&rq->lock);
4744 rcu_read_lock();
4745 list_for_each_entry_rcu(tg, &task_groups, list) {
4746 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
4747 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4749 raw_spin_lock(&cfs_b->lock);
4750 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
4751 raw_spin_unlock(&cfs_b->lock);
4753 rcu_read_unlock();
4756 /* cpu offline callback */
4757 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
4759 struct task_group *tg;
4761 lockdep_assert_held(&rq->lock);
4763 rcu_read_lock();
4764 list_for_each_entry_rcu(tg, &task_groups, list) {
4765 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4767 if (!cfs_rq->runtime_enabled)
4768 continue;
4771 * clock_task is not advancing so we just need to make sure
4772 * there's some valid quota amount
4774 cfs_rq->runtime_remaining = 1;
4776 * Offline rq is schedulable till cpu is completely disabled
4777 * in take_cpu_down(), so we prevent new cfs throttling here.
4779 cfs_rq->runtime_enabled = 0;
4781 if (cfs_rq_throttled(cfs_rq))
4782 unthrottle_cfs_rq(cfs_rq);
4784 rcu_read_unlock();
4787 #else /* CONFIG_CFS_BANDWIDTH */
4788 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
4790 return rq_clock_task(rq_of(cfs_rq));
4793 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
4794 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
4795 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
4796 static inline void sync_throttle(struct task_group *tg, int cpu) {}
4797 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
4799 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4801 return 0;
4804 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4806 return 0;
4809 static inline int throttled_lb_pair(struct task_group *tg,
4810 int src_cpu, int dest_cpu)
4812 return 0;
4815 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4817 #ifdef CONFIG_FAIR_GROUP_SCHED
4818 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
4819 #endif
4821 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4823 return NULL;
4825 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4826 static inline void update_runtime_enabled(struct rq *rq) {}
4827 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
4829 #endif /* CONFIG_CFS_BANDWIDTH */
4831 /**************************************************
4832 * CFS operations on tasks:
4835 #ifdef CONFIG_SCHED_HRTICK
4836 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
4838 struct sched_entity *se = &p->se;
4839 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4841 SCHED_WARN_ON(task_rq(p) != rq);
4843 if (rq->cfs.h_nr_running > 1) {
4844 u64 slice = sched_slice(cfs_rq, se);
4845 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
4846 s64 delta = slice - ran;
4848 if (delta < 0) {
4849 if (rq->curr == p)
4850 resched_curr(rq);
4851 return;
4853 hrtick_start(rq, delta);
4858 * called from enqueue/dequeue and updates the hrtick when the
4859 * current task is from our class and nr_running is low enough
4860 * to matter.
4862 static void hrtick_update(struct rq *rq)
4864 struct task_struct *curr = rq->curr;
4866 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
4867 return;
4869 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
4870 hrtick_start_fair(rq, curr);
4872 #else /* !CONFIG_SCHED_HRTICK */
4873 static inline void
4874 hrtick_start_fair(struct rq *rq, struct task_struct *p)
4878 static inline void hrtick_update(struct rq *rq)
4881 #endif
4884 * The enqueue_task method is called before nr_running is
4885 * increased. Here we update the fair scheduling stats and
4886 * then put the task into the rbtree:
4888 static void
4889 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
4891 struct cfs_rq *cfs_rq;
4892 struct sched_entity *se = &p->se;
4895 * If in_iowait is set, the code below may not trigger any cpufreq
4896 * utilization updates, so do it here explicitly with the IOWAIT flag
4897 * passed.
4899 if (p->in_iowait)
4900 cpufreq_update_this_cpu(rq, SCHED_CPUFREQ_IOWAIT);
4902 for_each_sched_entity(se) {
4903 if (se->on_rq)
4904 break;
4905 cfs_rq = cfs_rq_of(se);
4906 enqueue_entity(cfs_rq, se, flags);
4909 * end evaluation on encountering a throttled cfs_rq
4911 * note: in the case of encountering a throttled cfs_rq we will
4912 * post the final h_nr_running increment below.
4914 if (cfs_rq_throttled(cfs_rq))
4915 break;
4916 cfs_rq->h_nr_running++;
4918 flags = ENQUEUE_WAKEUP;
4921 for_each_sched_entity(se) {
4922 cfs_rq = cfs_rq_of(se);
4923 cfs_rq->h_nr_running++;
4925 if (cfs_rq_throttled(cfs_rq))
4926 break;
4928 update_load_avg(se, UPDATE_TG);
4929 update_cfs_shares(se);
4932 if (!se)
4933 add_nr_running(rq, 1);
4935 hrtick_update(rq);
4938 static void set_next_buddy(struct sched_entity *se);
4941 * The dequeue_task method is called before nr_running is
4942 * decreased. We remove the task from the rbtree and
4943 * update the fair scheduling stats:
4945 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
4947 struct cfs_rq *cfs_rq;
4948 struct sched_entity *se = &p->se;
4949 int task_sleep = flags & DEQUEUE_SLEEP;
4951 for_each_sched_entity(se) {
4952 cfs_rq = cfs_rq_of(se);
4953 dequeue_entity(cfs_rq, se, flags);
4956 * end evaluation on encountering a throttled cfs_rq
4958 * note: in the case of encountering a throttled cfs_rq we will
4959 * post the final h_nr_running decrement below.
4961 if (cfs_rq_throttled(cfs_rq))
4962 break;
4963 cfs_rq->h_nr_running--;
4965 /* Don't dequeue parent if it has other entities besides us */
4966 if (cfs_rq->load.weight) {
4967 /* Avoid re-evaluating load for this entity: */
4968 se = parent_entity(se);
4970 * Bias pick_next to pick a task from this cfs_rq, as
4971 * p is sleeping when it is within its sched_slice.
4973 if (task_sleep && se && !throttled_hierarchy(cfs_rq))
4974 set_next_buddy(se);
4975 break;
4977 flags |= DEQUEUE_SLEEP;
4980 for_each_sched_entity(se) {
4981 cfs_rq = cfs_rq_of(se);
4982 cfs_rq->h_nr_running--;
4984 if (cfs_rq_throttled(cfs_rq))
4985 break;
4987 update_load_avg(se, UPDATE_TG);
4988 update_cfs_shares(se);
4991 if (!se)
4992 sub_nr_running(rq, 1);
4994 hrtick_update(rq);
4997 #ifdef CONFIG_SMP
4999 /* Working cpumask for: load_balance, load_balance_newidle. */
5000 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
5001 DEFINE_PER_CPU(cpumask_var_t, select_idle_mask);
5003 #ifdef CONFIG_NO_HZ_COMMON
5005 * per rq 'load' arrray crap; XXX kill this.
5009 * The exact cpuload calculated at every tick would be:
5011 * load' = (1 - 1/2^i) * load + (1/2^i) * cur_load
5013 * If a cpu misses updates for n ticks (as it was idle) and update gets
5014 * called on the n+1-th tick when cpu may be busy, then we have:
5016 * load_n = (1 - 1/2^i)^n * load_0
5017 * load_n+1 = (1 - 1/2^i) * load_n + (1/2^i) * cur_load
5019 * decay_load_missed() below does efficient calculation of
5021 * load' = (1 - 1/2^i)^n * load
5023 * Because x^(n+m) := x^n * x^m we can decompose any x^n in power-of-2 factors.
5024 * This allows us to precompute the above in said factors, thereby allowing the
5025 * reduction of an arbitrary n in O(log_2 n) steps. (See also
5026 * fixed_power_int())
5028 * The calculation is approximated on a 128 point scale.
5030 #define DEGRADE_SHIFT 7
5032 static const u8 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
5033 static const u8 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
5034 { 0, 0, 0, 0, 0, 0, 0, 0 },
5035 { 64, 32, 8, 0, 0, 0, 0, 0 },
5036 { 96, 72, 40, 12, 1, 0, 0, 0 },
5037 { 112, 98, 75, 43, 15, 1, 0, 0 },
5038 { 120, 112, 98, 76, 45, 16, 2, 0 }
5042 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
5043 * would be when CPU is idle and so we just decay the old load without
5044 * adding any new load.
5046 static unsigned long
5047 decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
5049 int j = 0;
5051 if (!missed_updates)
5052 return load;
5054 if (missed_updates >= degrade_zero_ticks[idx])
5055 return 0;
5057 if (idx == 1)
5058 return load >> missed_updates;
5060 while (missed_updates) {
5061 if (missed_updates % 2)
5062 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
5064 missed_updates >>= 1;
5065 j++;
5067 return load;
5069 #endif /* CONFIG_NO_HZ_COMMON */
5072 * __cpu_load_update - update the rq->cpu_load[] statistics
5073 * @this_rq: The rq to update statistics for
5074 * @this_load: The current load
5075 * @pending_updates: The number of missed updates
5077 * Update rq->cpu_load[] statistics. This function is usually called every
5078 * scheduler tick (TICK_NSEC).
5080 * This function computes a decaying average:
5082 * load[i]' = (1 - 1/2^i) * load[i] + (1/2^i) * load
5084 * Because of NOHZ it might not get called on every tick which gives need for
5085 * the @pending_updates argument.
5087 * load[i]_n = (1 - 1/2^i) * load[i]_n-1 + (1/2^i) * load_n-1
5088 * = A * load[i]_n-1 + B ; A := (1 - 1/2^i), B := (1/2^i) * load
5089 * = A * (A * load[i]_n-2 + B) + B
5090 * = A * (A * (A * load[i]_n-3 + B) + B) + B
5091 * = A^3 * load[i]_n-3 + (A^2 + A + 1) * B
5092 * = A^n * load[i]_0 + (A^(n-1) + A^(n-2) + ... + 1) * B
5093 * = A^n * load[i]_0 + ((1 - A^n) / (1 - A)) * B
5094 * = (1 - 1/2^i)^n * (load[i]_0 - load) + load
5096 * In the above we've assumed load_n := load, which is true for NOHZ_FULL as
5097 * any change in load would have resulted in the tick being turned back on.
5099 * For regular NOHZ, this reduces to:
5101 * load[i]_n = (1 - 1/2^i)^n * load[i]_0
5103 * see decay_load_misses(). For NOHZ_FULL we get to subtract and add the extra
5104 * term.
5106 static void cpu_load_update(struct rq *this_rq, unsigned long this_load,
5107 unsigned long pending_updates)
5109 unsigned long __maybe_unused tickless_load = this_rq->cpu_load[0];
5110 int i, scale;
5112 this_rq->nr_load_updates++;
5114 /* Update our load: */
5115 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
5116 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
5117 unsigned long old_load, new_load;
5119 /* scale is effectively 1 << i now, and >> i divides by scale */
5121 old_load = this_rq->cpu_load[i];
5122 #ifdef CONFIG_NO_HZ_COMMON
5123 old_load = decay_load_missed(old_load, pending_updates - 1, i);
5124 if (tickless_load) {
5125 old_load -= decay_load_missed(tickless_load, pending_updates - 1, i);
5127 * old_load can never be a negative value because a
5128 * decayed tickless_load cannot be greater than the
5129 * original tickless_load.
5131 old_load += tickless_load;
5133 #endif
5134 new_load = this_load;
5136 * Round up the averaging division if load is increasing. This
5137 * prevents us from getting stuck on 9 if the load is 10, for
5138 * example.
5140 if (new_load > old_load)
5141 new_load += scale - 1;
5143 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
5146 sched_avg_update(this_rq);
5149 /* Used instead of source_load when we know the type == 0 */
5150 static unsigned long weighted_cpuload(struct rq *rq)
5152 return cfs_rq_runnable_load_avg(&rq->cfs);
5155 #ifdef CONFIG_NO_HZ_COMMON
5157 * There is no sane way to deal with nohz on smp when using jiffies because the
5158 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
5159 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
5161 * Therefore we need to avoid the delta approach from the regular tick when
5162 * possible since that would seriously skew the load calculation. This is why we
5163 * use cpu_load_update_periodic() for CPUs out of nohz. However we'll rely on
5164 * jiffies deltas for updates happening while in nohz mode (idle ticks, idle
5165 * loop exit, nohz_idle_balance, nohz full exit...)
5167 * This means we might still be one tick off for nohz periods.
5170 static void cpu_load_update_nohz(struct rq *this_rq,
5171 unsigned long curr_jiffies,
5172 unsigned long load)
5174 unsigned long pending_updates;
5176 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
5177 if (pending_updates) {
5178 this_rq->last_load_update_tick = curr_jiffies;
5180 * In the regular NOHZ case, we were idle, this means load 0.
5181 * In the NOHZ_FULL case, we were non-idle, we should consider
5182 * its weighted load.
5184 cpu_load_update(this_rq, load, pending_updates);
5189 * Called from nohz_idle_balance() to update the load ratings before doing the
5190 * idle balance.
5192 static void cpu_load_update_idle(struct rq *this_rq)
5195 * bail if there's load or we're actually up-to-date.
5197 if (weighted_cpuload(this_rq))
5198 return;
5200 cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), 0);
5204 * Record CPU load on nohz entry so we know the tickless load to account
5205 * on nohz exit. cpu_load[0] happens then to be updated more frequently
5206 * than other cpu_load[idx] but it should be fine as cpu_load readers
5207 * shouldn't rely into synchronized cpu_load[*] updates.
5209 void cpu_load_update_nohz_start(void)
5211 struct rq *this_rq = this_rq();
5214 * This is all lockless but should be fine. If weighted_cpuload changes
5215 * concurrently we'll exit nohz. And cpu_load write can race with
5216 * cpu_load_update_idle() but both updater would be writing the same.
5218 this_rq->cpu_load[0] = weighted_cpuload(this_rq);
5222 * Account the tickless load in the end of a nohz frame.
5224 void cpu_load_update_nohz_stop(void)
5226 unsigned long curr_jiffies = READ_ONCE(jiffies);
5227 struct rq *this_rq = this_rq();
5228 unsigned long load;
5229 struct rq_flags rf;
5231 if (curr_jiffies == this_rq->last_load_update_tick)
5232 return;
5234 load = weighted_cpuload(this_rq);
5235 rq_lock(this_rq, &rf);
5236 update_rq_clock(this_rq);
5237 cpu_load_update_nohz(this_rq, curr_jiffies, load);
5238 rq_unlock(this_rq, &rf);
5240 #else /* !CONFIG_NO_HZ_COMMON */
5241 static inline void cpu_load_update_nohz(struct rq *this_rq,
5242 unsigned long curr_jiffies,
5243 unsigned long load) { }
5244 #endif /* CONFIG_NO_HZ_COMMON */
5246 static void cpu_load_update_periodic(struct rq *this_rq, unsigned long load)
5248 #ifdef CONFIG_NO_HZ_COMMON
5249 /* See the mess around cpu_load_update_nohz(). */
5250 this_rq->last_load_update_tick = READ_ONCE(jiffies);
5251 #endif
5252 cpu_load_update(this_rq, load, 1);
5256 * Called from scheduler_tick()
5258 void cpu_load_update_active(struct rq *this_rq)
5260 unsigned long load = weighted_cpuload(this_rq);
5262 if (tick_nohz_tick_stopped())
5263 cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), load);
5264 else
5265 cpu_load_update_periodic(this_rq, load);
5269 * Return a low guess at the load of a migration-source cpu weighted
5270 * according to the scheduling class and "nice" value.
5272 * We want to under-estimate the load of migration sources, to
5273 * balance conservatively.
5275 static unsigned long source_load(int cpu, int type)
5277 struct rq *rq = cpu_rq(cpu);
5278 unsigned long total = weighted_cpuload(rq);
5280 if (type == 0 || !sched_feat(LB_BIAS))
5281 return total;
5283 return min(rq->cpu_load[type-1], total);
5287 * Return a high guess at the load of a migration-target cpu weighted
5288 * according to the scheduling class and "nice" value.
5290 static unsigned long target_load(int cpu, int type)
5292 struct rq *rq = cpu_rq(cpu);
5293 unsigned long total = weighted_cpuload(rq);
5295 if (type == 0 || !sched_feat(LB_BIAS))
5296 return total;
5298 return max(rq->cpu_load[type-1], total);
5301 static unsigned long capacity_of(int cpu)
5303 return cpu_rq(cpu)->cpu_capacity;
5306 static unsigned long capacity_orig_of(int cpu)
5308 return cpu_rq(cpu)->cpu_capacity_orig;
5311 static unsigned long cpu_avg_load_per_task(int cpu)
5313 struct rq *rq = cpu_rq(cpu);
5314 unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
5315 unsigned long load_avg = weighted_cpuload(rq);
5317 if (nr_running)
5318 return load_avg / nr_running;
5320 return 0;
5323 static void record_wakee(struct task_struct *p)
5326 * Only decay a single time; tasks that have less then 1 wakeup per
5327 * jiffy will not have built up many flips.
5329 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
5330 current->wakee_flips >>= 1;
5331 current->wakee_flip_decay_ts = jiffies;
5334 if (current->last_wakee != p) {
5335 current->last_wakee = p;
5336 current->wakee_flips++;
5341 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
5343 * A waker of many should wake a different task than the one last awakened
5344 * at a frequency roughly N times higher than one of its wakees.
5346 * In order to determine whether we should let the load spread vs consolidating
5347 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
5348 * partner, and a factor of lls_size higher frequency in the other.
5350 * With both conditions met, we can be relatively sure that the relationship is
5351 * non-monogamous, with partner count exceeding socket size.
5353 * Waker/wakee being client/server, worker/dispatcher, interrupt source or
5354 * whatever is irrelevant, spread criteria is apparent partner count exceeds
5355 * socket size.
5357 static int wake_wide(struct task_struct *p)
5359 unsigned int master = current->wakee_flips;
5360 unsigned int slave = p->wakee_flips;
5361 int factor = this_cpu_read(sd_llc_size);
5363 if (master < slave)
5364 swap(master, slave);
5365 if (slave < factor || master < slave * factor)
5366 return 0;
5367 return 1;
5370 struct llc_stats {
5371 unsigned long nr_running;
5372 unsigned long load;
5373 unsigned long capacity;
5374 int has_capacity;
5377 static bool get_llc_stats(struct llc_stats *stats, int cpu)
5379 struct sched_domain_shared *sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
5381 if (!sds)
5382 return false;
5384 stats->nr_running = READ_ONCE(sds->nr_running);
5385 stats->load = READ_ONCE(sds->load);
5386 stats->capacity = READ_ONCE(sds->capacity);
5387 stats->has_capacity = stats->nr_running < per_cpu(sd_llc_size, cpu);
5389 return true;
5393 * Can a task be moved from prev_cpu to this_cpu without causing a load
5394 * imbalance that would trigger the load balancer?
5396 * Since we're running on 'stale' values, we might in fact create an imbalance
5397 * but recomputing these values is expensive, as that'd mean iteration 2 cache
5398 * domains worth of CPUs.
5400 static bool
5401 wake_affine_llc(struct sched_domain *sd, struct task_struct *p,
5402 int this_cpu, int prev_cpu, int sync)
5404 struct llc_stats prev_stats, this_stats;
5405 s64 this_eff_load, prev_eff_load;
5406 unsigned long task_load;
5408 if (!get_llc_stats(&prev_stats, prev_cpu) ||
5409 !get_llc_stats(&this_stats, this_cpu))
5410 return false;
5413 * If sync wakeup then subtract the (maximum possible)
5414 * effect of the currently running task from the load
5415 * of the current LLC.
5417 if (sync) {
5418 unsigned long current_load = task_h_load(current);
5420 /* in this case load hits 0 and this LLC is considered 'idle' */
5421 if (current_load > this_stats.load)
5422 return true;
5424 this_stats.load -= current_load;
5428 * The has_capacity stuff is not SMT aware, but by trying to balance
5429 * the nr_running on both ends we try and fill the domain at equal
5430 * rates, thereby first consuming cores before siblings.
5433 /* if the old cache has capacity, stay there */
5434 if (prev_stats.has_capacity && prev_stats.nr_running < this_stats.nr_running+1)
5435 return false;
5437 /* if this cache has capacity, come here */
5438 if (this_stats.has_capacity && this_stats.nr_running+1 < prev_stats.nr_running)
5439 return true;
5442 * Check to see if we can move the load without causing too much
5443 * imbalance.
5445 task_load = task_h_load(p);
5447 this_eff_load = 100;
5448 this_eff_load *= prev_stats.capacity;
5450 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
5451 prev_eff_load *= this_stats.capacity;
5453 this_eff_load *= this_stats.load + task_load;
5454 prev_eff_load *= prev_stats.load - task_load;
5456 return this_eff_load <= prev_eff_load;
5459 static int wake_affine(struct sched_domain *sd, struct task_struct *p,
5460 int prev_cpu, int sync)
5462 int this_cpu = smp_processor_id();
5463 bool affine;
5466 * Default to no affine wakeups; wake_affine() should not effect a task
5467 * placement the load-balancer feels inclined to undo. The conservative
5468 * option is therefore to not move tasks when they wake up.
5470 affine = false;
5473 * If the wakeup is across cache domains, try to evaluate if movement
5474 * makes sense, otherwise rely on select_idle_siblings() to do
5475 * placement inside the cache domain.
5477 if (!cpus_share_cache(prev_cpu, this_cpu))
5478 affine = wake_affine_llc(sd, p, this_cpu, prev_cpu, sync);
5480 schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts);
5481 if (affine) {
5482 schedstat_inc(sd->ttwu_move_affine);
5483 schedstat_inc(p->se.statistics.nr_wakeups_affine);
5486 return affine;
5489 static inline int task_util(struct task_struct *p);
5490 static int cpu_util_wake(int cpu, struct task_struct *p);
5492 static unsigned long capacity_spare_wake(int cpu, struct task_struct *p)
5494 return capacity_orig_of(cpu) - cpu_util_wake(cpu, p);
5498 * find_idlest_group finds and returns the least busy CPU group within the
5499 * domain.
5501 static struct sched_group *
5502 find_idlest_group(struct sched_domain *sd, struct task_struct *p,
5503 int this_cpu, int sd_flag)
5505 struct sched_group *idlest = NULL, *group = sd->groups;
5506 struct sched_group *most_spare_sg = NULL;
5507 unsigned long min_runnable_load = ULONG_MAX, this_runnable_load = 0;
5508 unsigned long min_avg_load = ULONG_MAX, this_avg_load = 0;
5509 unsigned long most_spare = 0, this_spare = 0;
5510 int load_idx = sd->forkexec_idx;
5511 int imbalance_scale = 100 + (sd->imbalance_pct-100)/2;
5512 unsigned long imbalance = scale_load_down(NICE_0_LOAD) *
5513 (sd->imbalance_pct-100) / 100;
5515 if (sd_flag & SD_BALANCE_WAKE)
5516 load_idx = sd->wake_idx;
5518 do {
5519 unsigned long load, avg_load, runnable_load;
5520 unsigned long spare_cap, max_spare_cap;
5521 int local_group;
5522 int i;
5524 /* Skip over this group if it has no CPUs allowed */
5525 if (!cpumask_intersects(sched_group_span(group),
5526 &p->cpus_allowed))
5527 continue;
5529 local_group = cpumask_test_cpu(this_cpu,
5530 sched_group_span(group));
5533 * Tally up the load of all CPUs in the group and find
5534 * the group containing the CPU with most spare capacity.
5536 avg_load = 0;
5537 runnable_load = 0;
5538 max_spare_cap = 0;
5540 for_each_cpu(i, sched_group_span(group)) {
5541 /* Bias balancing toward cpus of our domain */
5542 if (local_group)
5543 load = source_load(i, load_idx);
5544 else
5545 load = target_load(i, load_idx);
5547 runnable_load += load;
5549 avg_load += cfs_rq_load_avg(&cpu_rq(i)->cfs);
5551 spare_cap = capacity_spare_wake(i, p);
5553 if (spare_cap > max_spare_cap)
5554 max_spare_cap = spare_cap;
5557 /* Adjust by relative CPU capacity of the group */
5558 avg_load = (avg_load * SCHED_CAPACITY_SCALE) /
5559 group->sgc->capacity;
5560 runnable_load = (runnable_load * SCHED_CAPACITY_SCALE) /
5561 group->sgc->capacity;
5563 if (local_group) {
5564 this_runnable_load = runnable_load;
5565 this_avg_load = avg_load;
5566 this_spare = max_spare_cap;
5567 } else {
5568 if (min_runnable_load > (runnable_load + imbalance)) {
5570 * The runnable load is significantly smaller
5571 * so we can pick this new cpu
5573 min_runnable_load = runnable_load;
5574 min_avg_load = avg_load;
5575 idlest = group;
5576 } else if ((runnable_load < (min_runnable_load + imbalance)) &&
5577 (100*min_avg_load > imbalance_scale*avg_load)) {
5579 * The runnable loads are close so take the
5580 * blocked load into account through avg_load.
5582 min_avg_load = avg_load;
5583 idlest = group;
5586 if (most_spare < max_spare_cap) {
5587 most_spare = max_spare_cap;
5588 most_spare_sg = group;
5591 } while (group = group->next, group != sd->groups);
5594 * The cross-over point between using spare capacity or least load
5595 * is too conservative for high utilization tasks on partially
5596 * utilized systems if we require spare_capacity > task_util(p),
5597 * so we allow for some task stuffing by using
5598 * spare_capacity > task_util(p)/2.
5600 * Spare capacity can't be used for fork because the utilization has
5601 * not been set yet, we must first select a rq to compute the initial
5602 * utilization.
5604 if (sd_flag & SD_BALANCE_FORK)
5605 goto skip_spare;
5607 if (this_spare > task_util(p) / 2 &&
5608 imbalance_scale*this_spare > 100*most_spare)
5609 return NULL;
5611 if (most_spare > task_util(p) / 2)
5612 return most_spare_sg;
5614 skip_spare:
5615 if (!idlest)
5616 return NULL;
5618 if (min_runnable_load > (this_runnable_load + imbalance))
5619 return NULL;
5621 if ((this_runnable_load < (min_runnable_load + imbalance)) &&
5622 (100*this_avg_load < imbalance_scale*min_avg_load))
5623 return NULL;
5625 return idlest;
5629 * find_idlest_cpu - find the idlest cpu among the cpus in group.
5631 static int
5632 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
5634 unsigned long load, min_load = ULONG_MAX;
5635 unsigned int min_exit_latency = UINT_MAX;
5636 u64 latest_idle_timestamp = 0;
5637 int least_loaded_cpu = this_cpu;
5638 int shallowest_idle_cpu = -1;
5639 int i;
5641 /* Check if we have any choice: */
5642 if (group->group_weight == 1)
5643 return cpumask_first(sched_group_span(group));
5645 /* Traverse only the allowed CPUs */
5646 for_each_cpu_and(i, sched_group_span(group), &p->cpus_allowed) {
5647 if (idle_cpu(i)) {
5648 struct rq *rq = cpu_rq(i);
5649 struct cpuidle_state *idle = idle_get_state(rq);
5650 if (idle && idle->exit_latency < min_exit_latency) {
5652 * We give priority to a CPU whose idle state
5653 * has the smallest exit latency irrespective
5654 * of any idle timestamp.
5656 min_exit_latency = idle->exit_latency;
5657 latest_idle_timestamp = rq->idle_stamp;
5658 shallowest_idle_cpu = i;
5659 } else if ((!idle || idle->exit_latency == min_exit_latency) &&
5660 rq->idle_stamp > latest_idle_timestamp) {
5662 * If equal or no active idle state, then
5663 * the most recently idled CPU might have
5664 * a warmer cache.
5666 latest_idle_timestamp = rq->idle_stamp;
5667 shallowest_idle_cpu = i;
5669 } else if (shallowest_idle_cpu == -1) {
5670 load = weighted_cpuload(cpu_rq(i));
5671 if (load < min_load || (load == min_load && i == this_cpu)) {
5672 min_load = load;
5673 least_loaded_cpu = i;
5678 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
5681 #ifdef CONFIG_SCHED_SMT
5683 static inline void set_idle_cores(int cpu, int val)
5685 struct sched_domain_shared *sds;
5687 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
5688 if (sds)
5689 WRITE_ONCE(sds->has_idle_cores, val);
5692 static inline bool test_idle_cores(int cpu, bool def)
5694 struct sched_domain_shared *sds;
5696 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
5697 if (sds)
5698 return READ_ONCE(sds->has_idle_cores);
5700 return def;
5704 * Scans the local SMT mask to see if the entire core is idle, and records this
5705 * information in sd_llc_shared->has_idle_cores.
5707 * Since SMT siblings share all cache levels, inspecting this limited remote
5708 * state should be fairly cheap.
5710 void __update_idle_core(struct rq *rq)
5712 int core = cpu_of(rq);
5713 int cpu;
5715 rcu_read_lock();
5716 if (test_idle_cores(core, true))
5717 goto unlock;
5719 for_each_cpu(cpu, cpu_smt_mask(core)) {
5720 if (cpu == core)
5721 continue;
5723 if (!idle_cpu(cpu))
5724 goto unlock;
5727 set_idle_cores(core, 1);
5728 unlock:
5729 rcu_read_unlock();
5733 * Scan the entire LLC domain for idle cores; this dynamically switches off if
5734 * there are no idle cores left in the system; tracked through
5735 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
5737 static int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
5739 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
5740 int core, cpu;
5742 if (!static_branch_likely(&sched_smt_present))
5743 return -1;
5745 if (!test_idle_cores(target, false))
5746 return -1;
5748 cpumask_and(cpus, sched_domain_span(sd), &p->cpus_allowed);
5750 for_each_cpu_wrap(core, cpus, target) {
5751 bool idle = true;
5753 for_each_cpu(cpu, cpu_smt_mask(core)) {
5754 cpumask_clear_cpu(cpu, cpus);
5755 if (!idle_cpu(cpu))
5756 idle = false;
5759 if (idle)
5760 return core;
5764 * Failed to find an idle core; stop looking for one.
5766 set_idle_cores(target, 0);
5768 return -1;
5772 * Scan the local SMT mask for idle CPUs.
5774 static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
5776 int cpu;
5778 if (!static_branch_likely(&sched_smt_present))
5779 return -1;
5781 for_each_cpu(cpu, cpu_smt_mask(target)) {
5782 if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
5783 continue;
5784 if (idle_cpu(cpu))
5785 return cpu;
5788 return -1;
5791 #else /* CONFIG_SCHED_SMT */
5793 static inline int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
5795 return -1;
5798 static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
5800 return -1;
5803 #endif /* CONFIG_SCHED_SMT */
5806 * Scan the LLC domain for idle CPUs; this is dynamically regulated by
5807 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
5808 * average idle time for this rq (as found in rq->avg_idle).
5810 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, int target)
5812 struct sched_domain *this_sd;
5813 u64 avg_cost, avg_idle;
5814 u64 time, cost;
5815 s64 delta;
5816 int cpu, nr = INT_MAX;
5818 this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc));
5819 if (!this_sd)
5820 return -1;
5823 * Due to large variance we need a large fuzz factor; hackbench in
5824 * particularly is sensitive here.
5826 avg_idle = this_rq()->avg_idle / 512;
5827 avg_cost = this_sd->avg_scan_cost + 1;
5829 if (sched_feat(SIS_AVG_CPU) && avg_idle < avg_cost)
5830 return -1;
5832 if (sched_feat(SIS_PROP)) {
5833 u64 span_avg = sd->span_weight * avg_idle;
5834 if (span_avg > 4*avg_cost)
5835 nr = div_u64(span_avg, avg_cost);
5836 else
5837 nr = 4;
5840 time = local_clock();
5842 for_each_cpu_wrap(cpu, sched_domain_span(sd), target) {
5843 if (!--nr)
5844 return -1;
5845 if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
5846 continue;
5847 if (idle_cpu(cpu))
5848 break;
5851 time = local_clock() - time;
5852 cost = this_sd->avg_scan_cost;
5853 delta = (s64)(time - cost) / 8;
5854 this_sd->avg_scan_cost += delta;
5856 return cpu;
5860 * Try and locate an idle core/thread in the LLC cache domain.
5862 static int select_idle_sibling(struct task_struct *p, int prev, int target)
5864 struct sched_domain *sd;
5865 int i;
5867 if (idle_cpu(target))
5868 return target;
5871 * If the previous cpu is cache affine and idle, don't be stupid.
5873 if (prev != target && cpus_share_cache(prev, target) && idle_cpu(prev))
5874 return prev;
5876 sd = rcu_dereference(per_cpu(sd_llc, target));
5877 if (!sd)
5878 return target;
5880 i = select_idle_core(p, sd, target);
5881 if ((unsigned)i < nr_cpumask_bits)
5882 return i;
5884 i = select_idle_cpu(p, sd, target);
5885 if ((unsigned)i < nr_cpumask_bits)
5886 return i;
5888 i = select_idle_smt(p, sd, target);
5889 if ((unsigned)i < nr_cpumask_bits)
5890 return i;
5892 return target;
5896 * cpu_util returns the amount of capacity of a CPU that is used by CFS
5897 * tasks. The unit of the return value must be the one of capacity so we can
5898 * compare the utilization with the capacity of the CPU that is available for
5899 * CFS task (ie cpu_capacity).
5901 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
5902 * recent utilization of currently non-runnable tasks on a CPU. It represents
5903 * the amount of utilization of a CPU in the range [0..capacity_orig] where
5904 * capacity_orig is the cpu_capacity available at the highest frequency
5905 * (arch_scale_freq_capacity()).
5906 * The utilization of a CPU converges towards a sum equal to or less than the
5907 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
5908 * the running time on this CPU scaled by capacity_curr.
5910 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
5911 * higher than capacity_orig because of unfortunate rounding in
5912 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
5913 * the average stabilizes with the new running time. We need to check that the
5914 * utilization stays within the range of [0..capacity_orig] and cap it if
5915 * necessary. Without utilization capping, a group could be seen as overloaded
5916 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
5917 * available capacity. We allow utilization to overshoot capacity_curr (but not
5918 * capacity_orig) as it useful for predicting the capacity required after task
5919 * migrations (scheduler-driven DVFS).
5921 static int cpu_util(int cpu)
5923 unsigned long util = cpu_rq(cpu)->cfs.avg.util_avg;
5924 unsigned long capacity = capacity_orig_of(cpu);
5926 return (util >= capacity) ? capacity : util;
5929 static inline int task_util(struct task_struct *p)
5931 return p->se.avg.util_avg;
5935 * cpu_util_wake: Compute cpu utilization with any contributions from
5936 * the waking task p removed.
5938 static int cpu_util_wake(int cpu, struct task_struct *p)
5940 unsigned long util, capacity;
5942 /* Task has no contribution or is new */
5943 if (cpu != task_cpu(p) || !p->se.avg.last_update_time)
5944 return cpu_util(cpu);
5946 capacity = capacity_orig_of(cpu);
5947 util = max_t(long, cpu_rq(cpu)->cfs.avg.util_avg - task_util(p), 0);
5949 return (util >= capacity) ? capacity : util;
5953 * Disable WAKE_AFFINE in the case where task @p doesn't fit in the
5954 * capacity of either the waking CPU @cpu or the previous CPU @prev_cpu.
5956 * In that case WAKE_AFFINE doesn't make sense and we'll let
5957 * BALANCE_WAKE sort things out.
5959 static int wake_cap(struct task_struct *p, int cpu, int prev_cpu)
5961 long min_cap, max_cap;
5963 min_cap = min(capacity_orig_of(prev_cpu), capacity_orig_of(cpu));
5964 max_cap = cpu_rq(cpu)->rd->max_cpu_capacity;
5966 /* Minimum capacity is close to max, no need to abort wake_affine */
5967 if (max_cap - min_cap < max_cap >> 3)
5968 return 0;
5970 /* Bring task utilization in sync with prev_cpu */
5971 sync_entity_load_avg(&p->se);
5973 return min_cap * 1024 < task_util(p) * capacity_margin;
5977 * select_task_rq_fair: Select target runqueue for the waking task in domains
5978 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
5979 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
5981 * Balances load by selecting the idlest cpu in the idlest group, or under
5982 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
5984 * Returns the target cpu number.
5986 * preempt must be disabled.
5988 static int
5989 select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
5991 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
5992 int cpu = smp_processor_id();
5993 int new_cpu = prev_cpu;
5994 int want_affine = 0;
5995 int sync = wake_flags & WF_SYNC;
5997 if (sd_flag & SD_BALANCE_WAKE) {
5998 record_wakee(p);
5999 want_affine = !wake_wide(p) && !wake_cap(p, cpu, prev_cpu)
6000 && cpumask_test_cpu(cpu, &p->cpus_allowed);
6003 rcu_read_lock();
6004 for_each_domain(cpu, tmp) {
6005 if (!(tmp->flags & SD_LOAD_BALANCE))
6006 break;
6009 * If both cpu and prev_cpu are part of this domain,
6010 * cpu is a valid SD_WAKE_AFFINE target.
6012 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
6013 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
6014 affine_sd = tmp;
6015 break;
6018 if (tmp->flags & sd_flag)
6019 sd = tmp;
6020 else if (!want_affine)
6021 break;
6024 if (affine_sd) {
6025 sd = NULL; /* Prefer wake_affine over balance flags */
6026 if (cpu == prev_cpu)
6027 goto pick_cpu;
6029 if (wake_affine(affine_sd, p, prev_cpu, sync))
6030 new_cpu = cpu;
6033 if (!sd) {
6034 pick_cpu:
6035 if (sd_flag & SD_BALANCE_WAKE) /* XXX always ? */
6036 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
6038 } else while (sd) {
6039 struct sched_group *group;
6040 int weight;
6042 if (!(sd->flags & sd_flag)) {
6043 sd = sd->child;
6044 continue;
6047 group = find_idlest_group(sd, p, cpu, sd_flag);
6048 if (!group) {
6049 sd = sd->child;
6050 continue;
6053 new_cpu = find_idlest_cpu(group, p, cpu);
6054 if (new_cpu == -1 || new_cpu == cpu) {
6055 /* Now try balancing at a lower domain level of cpu */
6056 sd = sd->child;
6057 continue;
6060 /* Now try balancing at a lower domain level of new_cpu */
6061 cpu = new_cpu;
6062 weight = sd->span_weight;
6063 sd = NULL;
6064 for_each_domain(cpu, tmp) {
6065 if (weight <= tmp->span_weight)
6066 break;
6067 if (tmp->flags & sd_flag)
6068 sd = tmp;
6070 /* while loop will break here if sd == NULL */
6072 rcu_read_unlock();
6074 return new_cpu;
6078 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
6079 * cfs_rq_of(p) references at time of call are still valid and identify the
6080 * previous cpu. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
6082 static void migrate_task_rq_fair(struct task_struct *p)
6085 * As blocked tasks retain absolute vruntime the migration needs to
6086 * deal with this by subtracting the old and adding the new
6087 * min_vruntime -- the latter is done by enqueue_entity() when placing
6088 * the task on the new runqueue.
6090 if (p->state == TASK_WAKING) {
6091 struct sched_entity *se = &p->se;
6092 struct cfs_rq *cfs_rq = cfs_rq_of(se);
6093 u64 min_vruntime;
6095 #ifndef CONFIG_64BIT
6096 u64 min_vruntime_copy;
6098 do {
6099 min_vruntime_copy = cfs_rq->min_vruntime_copy;
6100 smp_rmb();
6101 min_vruntime = cfs_rq->min_vruntime;
6102 } while (min_vruntime != min_vruntime_copy);
6103 #else
6104 min_vruntime = cfs_rq->min_vruntime;
6105 #endif
6107 se->vruntime -= min_vruntime;
6111 * We are supposed to update the task to "current" time, then its up to date
6112 * and ready to go to new CPU/cfs_rq. But we have difficulty in getting
6113 * what current time is, so simply throw away the out-of-date time. This
6114 * will result in the wakee task is less decayed, but giving the wakee more
6115 * load sounds not bad.
6117 remove_entity_load_avg(&p->se);
6119 /* Tell new CPU we are migrated */
6120 p->se.avg.last_update_time = 0;
6122 /* We have migrated, no longer consider this task hot */
6123 p->se.exec_start = 0;
6126 static void task_dead_fair(struct task_struct *p)
6128 remove_entity_load_avg(&p->se);
6130 #endif /* CONFIG_SMP */
6132 static unsigned long
6133 wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
6135 unsigned long gran = sysctl_sched_wakeup_granularity;
6138 * Since its curr running now, convert the gran from real-time
6139 * to virtual-time in his units.
6141 * By using 'se' instead of 'curr' we penalize light tasks, so
6142 * they get preempted easier. That is, if 'se' < 'curr' then
6143 * the resulting gran will be larger, therefore penalizing the
6144 * lighter, if otoh 'se' > 'curr' then the resulting gran will
6145 * be smaller, again penalizing the lighter task.
6147 * This is especially important for buddies when the leftmost
6148 * task is higher priority than the buddy.
6150 return calc_delta_fair(gran, se);
6154 * Should 'se' preempt 'curr'.
6156 * |s1
6157 * |s2
6158 * |s3
6160 * |<--->|c
6162 * w(c, s1) = -1
6163 * w(c, s2) = 0
6164 * w(c, s3) = 1
6167 static int
6168 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
6170 s64 gran, vdiff = curr->vruntime - se->vruntime;
6172 if (vdiff <= 0)
6173 return -1;
6175 gran = wakeup_gran(curr, se);
6176 if (vdiff > gran)
6177 return 1;
6179 return 0;
6182 static void set_last_buddy(struct sched_entity *se)
6184 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
6185 return;
6187 for_each_sched_entity(se) {
6188 if (SCHED_WARN_ON(!se->on_rq))
6189 return;
6190 cfs_rq_of(se)->last = se;
6194 static void set_next_buddy(struct sched_entity *se)
6196 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
6197 return;
6199 for_each_sched_entity(se) {
6200 if (SCHED_WARN_ON(!se->on_rq))
6201 return;
6202 cfs_rq_of(se)->next = se;
6206 static void set_skip_buddy(struct sched_entity *se)
6208 for_each_sched_entity(se)
6209 cfs_rq_of(se)->skip = se;
6213 * Preempt the current task with a newly woken task if needed:
6215 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
6217 struct task_struct *curr = rq->curr;
6218 struct sched_entity *se = &curr->se, *pse = &p->se;
6219 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
6220 int scale = cfs_rq->nr_running >= sched_nr_latency;
6221 int next_buddy_marked = 0;
6223 if (unlikely(se == pse))
6224 return;
6227 * This is possible from callers such as attach_tasks(), in which we
6228 * unconditionally check_prempt_curr() after an enqueue (which may have
6229 * lead to a throttle). This both saves work and prevents false
6230 * next-buddy nomination below.
6232 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
6233 return;
6235 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
6236 set_next_buddy(pse);
6237 next_buddy_marked = 1;
6241 * We can come here with TIF_NEED_RESCHED already set from new task
6242 * wake up path.
6244 * Note: this also catches the edge-case of curr being in a throttled
6245 * group (e.g. via set_curr_task), since update_curr() (in the
6246 * enqueue of curr) will have resulted in resched being set. This
6247 * prevents us from potentially nominating it as a false LAST_BUDDY
6248 * below.
6250 if (test_tsk_need_resched(curr))
6251 return;
6253 /* Idle tasks are by definition preempted by non-idle tasks. */
6254 if (unlikely(curr->policy == SCHED_IDLE) &&
6255 likely(p->policy != SCHED_IDLE))
6256 goto preempt;
6259 * Batch and idle tasks do not preempt non-idle tasks (their preemption
6260 * is driven by the tick):
6262 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
6263 return;
6265 find_matching_se(&se, &pse);
6266 update_curr(cfs_rq_of(se));
6267 BUG_ON(!pse);
6268 if (wakeup_preempt_entity(se, pse) == 1) {
6270 * Bias pick_next to pick the sched entity that is
6271 * triggering this preemption.
6273 if (!next_buddy_marked)
6274 set_next_buddy(pse);
6275 goto preempt;
6278 return;
6280 preempt:
6281 resched_curr(rq);
6283 * Only set the backward buddy when the current task is still
6284 * on the rq. This can happen when a wakeup gets interleaved
6285 * with schedule on the ->pre_schedule() or idle_balance()
6286 * point, either of which can * drop the rq lock.
6288 * Also, during early boot the idle thread is in the fair class,
6289 * for obvious reasons its a bad idea to schedule back to it.
6291 if (unlikely(!se->on_rq || curr == rq->idle))
6292 return;
6294 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
6295 set_last_buddy(se);
6298 static struct task_struct *
6299 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6301 struct cfs_rq *cfs_rq = &rq->cfs;
6302 struct sched_entity *se;
6303 struct task_struct *p;
6304 int new_tasks;
6306 again:
6307 if (!cfs_rq->nr_running)
6308 goto idle;
6310 #ifdef CONFIG_FAIR_GROUP_SCHED
6311 if (prev->sched_class != &fair_sched_class)
6312 goto simple;
6315 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
6316 * likely that a next task is from the same cgroup as the current.
6318 * Therefore attempt to avoid putting and setting the entire cgroup
6319 * hierarchy, only change the part that actually changes.
6322 do {
6323 struct sched_entity *curr = cfs_rq->curr;
6326 * Since we got here without doing put_prev_entity() we also
6327 * have to consider cfs_rq->curr. If it is still a runnable
6328 * entity, update_curr() will update its vruntime, otherwise
6329 * forget we've ever seen it.
6331 if (curr) {
6332 if (curr->on_rq)
6333 update_curr(cfs_rq);
6334 else
6335 curr = NULL;
6338 * This call to check_cfs_rq_runtime() will do the
6339 * throttle and dequeue its entity in the parent(s).
6340 * Therefore the nr_running test will indeed
6341 * be correct.
6343 if (unlikely(check_cfs_rq_runtime(cfs_rq))) {
6344 cfs_rq = &rq->cfs;
6346 if (!cfs_rq->nr_running)
6347 goto idle;
6349 goto simple;
6353 se = pick_next_entity(cfs_rq, curr);
6354 cfs_rq = group_cfs_rq(se);
6355 } while (cfs_rq);
6357 p = task_of(se);
6360 * Since we haven't yet done put_prev_entity and if the selected task
6361 * is a different task than we started out with, try and touch the
6362 * least amount of cfs_rqs.
6364 if (prev != p) {
6365 struct sched_entity *pse = &prev->se;
6367 while (!(cfs_rq = is_same_group(se, pse))) {
6368 int se_depth = se->depth;
6369 int pse_depth = pse->depth;
6371 if (se_depth <= pse_depth) {
6372 put_prev_entity(cfs_rq_of(pse), pse);
6373 pse = parent_entity(pse);
6375 if (se_depth >= pse_depth) {
6376 set_next_entity(cfs_rq_of(se), se);
6377 se = parent_entity(se);
6381 put_prev_entity(cfs_rq, pse);
6382 set_next_entity(cfs_rq, se);
6385 if (hrtick_enabled(rq))
6386 hrtick_start_fair(rq, p);
6388 return p;
6389 simple:
6390 #endif
6392 put_prev_task(rq, prev);
6394 do {
6395 se = pick_next_entity(cfs_rq, NULL);
6396 set_next_entity(cfs_rq, se);
6397 cfs_rq = group_cfs_rq(se);
6398 } while (cfs_rq);
6400 p = task_of(se);
6402 if (hrtick_enabled(rq))
6403 hrtick_start_fair(rq, p);
6405 return p;
6407 idle:
6408 new_tasks = idle_balance(rq, rf);
6411 * Because idle_balance() releases (and re-acquires) rq->lock, it is
6412 * possible for any higher priority task to appear. In that case we
6413 * must re-start the pick_next_entity() loop.
6415 if (new_tasks < 0)
6416 return RETRY_TASK;
6418 if (new_tasks > 0)
6419 goto again;
6421 return NULL;
6425 * Account for a descheduled task:
6427 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
6429 struct sched_entity *se = &prev->se;
6430 struct cfs_rq *cfs_rq;
6432 for_each_sched_entity(se) {
6433 cfs_rq = cfs_rq_of(se);
6434 put_prev_entity(cfs_rq, se);
6439 * sched_yield() is very simple
6441 * The magic of dealing with the ->skip buddy is in pick_next_entity.
6443 static void yield_task_fair(struct rq *rq)
6445 struct task_struct *curr = rq->curr;
6446 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
6447 struct sched_entity *se = &curr->se;
6450 * Are we the only task in the tree?
6452 if (unlikely(rq->nr_running == 1))
6453 return;
6455 clear_buddies(cfs_rq, se);
6457 if (curr->policy != SCHED_BATCH) {
6458 update_rq_clock(rq);
6460 * Update run-time statistics of the 'current'.
6462 update_curr(cfs_rq);
6464 * Tell update_rq_clock() that we've just updated,
6465 * so we don't do microscopic update in schedule()
6466 * and double the fastpath cost.
6468 rq_clock_skip_update(rq, true);
6471 set_skip_buddy(se);
6474 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
6476 struct sched_entity *se = &p->se;
6478 /* throttled hierarchies are not runnable */
6479 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
6480 return false;
6482 /* Tell the scheduler that we'd really like pse to run next. */
6483 set_next_buddy(se);
6485 yield_task_fair(rq);
6487 return true;
6490 #ifdef CONFIG_SMP
6491 /**************************************************
6492 * Fair scheduling class load-balancing methods.
6494 * BASICS
6496 * The purpose of load-balancing is to achieve the same basic fairness the
6497 * per-cpu scheduler provides, namely provide a proportional amount of compute
6498 * time to each task. This is expressed in the following equation:
6500 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
6502 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
6503 * W_i,0 is defined as:
6505 * W_i,0 = \Sum_j w_i,j (2)
6507 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
6508 * is derived from the nice value as per sched_prio_to_weight[].
6510 * The weight average is an exponential decay average of the instantaneous
6511 * weight:
6513 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
6515 * C_i is the compute capacity of cpu i, typically it is the
6516 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
6517 * can also include other factors [XXX].
6519 * To achieve this balance we define a measure of imbalance which follows
6520 * directly from (1):
6522 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
6524 * We them move tasks around to minimize the imbalance. In the continuous
6525 * function space it is obvious this converges, in the discrete case we get
6526 * a few fun cases generally called infeasible weight scenarios.
6528 * [XXX expand on:
6529 * - infeasible weights;
6530 * - local vs global optima in the discrete case. ]
6533 * SCHED DOMAINS
6535 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
6536 * for all i,j solution, we create a tree of cpus that follows the hardware
6537 * topology where each level pairs two lower groups (or better). This results
6538 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
6539 * tree to only the first of the previous level and we decrease the frequency
6540 * of load-balance at each level inv. proportional to the number of cpus in
6541 * the groups.
6543 * This yields:
6545 * log_2 n 1 n
6546 * \Sum { --- * --- * 2^i } = O(n) (5)
6547 * i = 0 2^i 2^i
6548 * `- size of each group
6549 * | | `- number of cpus doing load-balance
6550 * | `- freq
6551 * `- sum over all levels
6553 * Coupled with a limit on how many tasks we can migrate every balance pass,
6554 * this makes (5) the runtime complexity of the balancer.
6556 * An important property here is that each CPU is still (indirectly) connected
6557 * to every other cpu in at most O(log n) steps:
6559 * The adjacency matrix of the resulting graph is given by:
6561 * log_2 n
6562 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
6563 * k = 0
6565 * And you'll find that:
6567 * A^(log_2 n)_i,j != 0 for all i,j (7)
6569 * Showing there's indeed a path between every cpu in at most O(log n) steps.
6570 * The task movement gives a factor of O(m), giving a convergence complexity
6571 * of:
6573 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
6576 * WORK CONSERVING
6578 * In order to avoid CPUs going idle while there's still work to do, new idle
6579 * balancing is more aggressive and has the newly idle cpu iterate up the domain
6580 * tree itself instead of relying on other CPUs to bring it work.
6582 * This adds some complexity to both (5) and (8) but it reduces the total idle
6583 * time.
6585 * [XXX more?]
6588 * CGROUPS
6590 * Cgroups make a horror show out of (2), instead of a simple sum we get:
6592 * s_k,i
6593 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
6594 * S_k
6596 * Where
6598 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
6600 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
6602 * The big problem is S_k, its a global sum needed to compute a local (W_i)
6603 * property.
6605 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
6606 * rewrite all of this once again.]
6609 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
6611 enum fbq_type { regular, remote, all };
6613 #define LBF_ALL_PINNED 0x01
6614 #define LBF_NEED_BREAK 0x02
6615 #define LBF_DST_PINNED 0x04
6616 #define LBF_SOME_PINNED 0x08
6618 struct lb_env {
6619 struct sched_domain *sd;
6621 struct rq *src_rq;
6622 int src_cpu;
6624 int dst_cpu;
6625 struct rq *dst_rq;
6627 struct cpumask *dst_grpmask;
6628 int new_dst_cpu;
6629 enum cpu_idle_type idle;
6630 long imbalance;
6631 /* The set of CPUs under consideration for load-balancing */
6632 struct cpumask *cpus;
6634 unsigned int flags;
6636 unsigned int loop;
6637 unsigned int loop_break;
6638 unsigned int loop_max;
6640 enum fbq_type fbq_type;
6641 struct list_head tasks;
6645 * Is this task likely cache-hot:
6647 static int task_hot(struct task_struct *p, struct lb_env *env)
6649 s64 delta;
6651 lockdep_assert_held(&env->src_rq->lock);
6653 if (p->sched_class != &fair_sched_class)
6654 return 0;
6656 if (unlikely(p->policy == SCHED_IDLE))
6657 return 0;
6660 * Buddy candidates are cache hot:
6662 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
6663 (&p->se == cfs_rq_of(&p->se)->next ||
6664 &p->se == cfs_rq_of(&p->se)->last))
6665 return 1;
6667 if (sysctl_sched_migration_cost == -1)
6668 return 1;
6669 if (sysctl_sched_migration_cost == 0)
6670 return 0;
6672 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
6674 return delta < (s64)sysctl_sched_migration_cost;
6677 #ifdef CONFIG_NUMA_BALANCING
6679 * Returns 1, if task migration degrades locality
6680 * Returns 0, if task migration improves locality i.e migration preferred.
6681 * Returns -1, if task migration is not affected by locality.
6683 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
6685 struct numa_group *numa_group = rcu_dereference(p->numa_group);
6686 unsigned long src_faults, dst_faults;
6687 int src_nid, dst_nid;
6689 if (!static_branch_likely(&sched_numa_balancing))
6690 return -1;
6692 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
6693 return -1;
6695 src_nid = cpu_to_node(env->src_cpu);
6696 dst_nid = cpu_to_node(env->dst_cpu);
6698 if (src_nid == dst_nid)
6699 return -1;
6701 /* Migrating away from the preferred node is always bad. */
6702 if (src_nid == p->numa_preferred_nid) {
6703 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
6704 return 1;
6705 else
6706 return -1;
6709 /* Encourage migration to the preferred node. */
6710 if (dst_nid == p->numa_preferred_nid)
6711 return 0;
6713 /* Leaving a core idle is often worse than degrading locality. */
6714 if (env->idle != CPU_NOT_IDLE)
6715 return -1;
6717 if (numa_group) {
6718 src_faults = group_faults(p, src_nid);
6719 dst_faults = group_faults(p, dst_nid);
6720 } else {
6721 src_faults = task_faults(p, src_nid);
6722 dst_faults = task_faults(p, dst_nid);
6725 return dst_faults < src_faults;
6728 #else
6729 static inline int migrate_degrades_locality(struct task_struct *p,
6730 struct lb_env *env)
6732 return -1;
6734 #endif
6737 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
6739 static
6740 int can_migrate_task(struct task_struct *p, struct lb_env *env)
6742 int tsk_cache_hot;
6744 lockdep_assert_held(&env->src_rq->lock);
6747 * We do not migrate tasks that are:
6748 * 1) throttled_lb_pair, or
6749 * 2) cannot be migrated to this CPU due to cpus_allowed, or
6750 * 3) running (obviously), or
6751 * 4) are cache-hot on their current CPU.
6753 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
6754 return 0;
6756 if (!cpumask_test_cpu(env->dst_cpu, &p->cpus_allowed)) {
6757 int cpu;
6759 schedstat_inc(p->se.statistics.nr_failed_migrations_affine);
6761 env->flags |= LBF_SOME_PINNED;
6764 * Remember if this task can be migrated to any other cpu in
6765 * our sched_group. We may want to revisit it if we couldn't
6766 * meet load balance goals by pulling other tasks on src_cpu.
6768 * Avoid computing new_dst_cpu for NEWLY_IDLE or if we have
6769 * already computed one in current iteration.
6771 if (env->idle == CPU_NEWLY_IDLE || (env->flags & LBF_DST_PINNED))
6772 return 0;
6774 /* Prevent to re-select dst_cpu via env's cpus */
6775 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
6776 if (cpumask_test_cpu(cpu, &p->cpus_allowed)) {
6777 env->flags |= LBF_DST_PINNED;
6778 env->new_dst_cpu = cpu;
6779 break;
6783 return 0;
6786 /* Record that we found atleast one task that could run on dst_cpu */
6787 env->flags &= ~LBF_ALL_PINNED;
6789 if (task_running(env->src_rq, p)) {
6790 schedstat_inc(p->se.statistics.nr_failed_migrations_running);
6791 return 0;
6795 * Aggressive migration if:
6796 * 1) destination numa is preferred
6797 * 2) task is cache cold, or
6798 * 3) too many balance attempts have failed.
6800 tsk_cache_hot = migrate_degrades_locality(p, env);
6801 if (tsk_cache_hot == -1)
6802 tsk_cache_hot = task_hot(p, env);
6804 if (tsk_cache_hot <= 0 ||
6805 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
6806 if (tsk_cache_hot == 1) {
6807 schedstat_inc(env->sd->lb_hot_gained[env->idle]);
6808 schedstat_inc(p->se.statistics.nr_forced_migrations);
6810 return 1;
6813 schedstat_inc(p->se.statistics.nr_failed_migrations_hot);
6814 return 0;
6818 * detach_task() -- detach the task for the migration specified in env
6820 static void detach_task(struct task_struct *p, struct lb_env *env)
6822 lockdep_assert_held(&env->src_rq->lock);
6824 p->on_rq = TASK_ON_RQ_MIGRATING;
6825 deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
6826 set_task_cpu(p, env->dst_cpu);
6830 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
6831 * part of active balancing operations within "domain".
6833 * Returns a task if successful and NULL otherwise.
6835 static struct task_struct *detach_one_task(struct lb_env *env)
6837 struct task_struct *p, *n;
6839 lockdep_assert_held(&env->src_rq->lock);
6841 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
6842 if (!can_migrate_task(p, env))
6843 continue;
6845 detach_task(p, env);
6848 * Right now, this is only the second place where
6849 * lb_gained[env->idle] is updated (other is detach_tasks)
6850 * so we can safely collect stats here rather than
6851 * inside detach_tasks().
6853 schedstat_inc(env->sd->lb_gained[env->idle]);
6854 return p;
6856 return NULL;
6859 static const unsigned int sched_nr_migrate_break = 32;
6862 * detach_tasks() -- tries to detach up to imbalance weighted load from
6863 * busiest_rq, as part of a balancing operation within domain "sd".
6865 * Returns number of detached tasks if successful and 0 otherwise.
6867 static int detach_tasks(struct lb_env *env)
6869 struct list_head *tasks = &env->src_rq->cfs_tasks;
6870 struct task_struct *p;
6871 unsigned long load;
6872 int detached = 0;
6874 lockdep_assert_held(&env->src_rq->lock);
6876 if (env->imbalance <= 0)
6877 return 0;
6879 while (!list_empty(tasks)) {
6881 * We don't want to steal all, otherwise we may be treated likewise,
6882 * which could at worst lead to a livelock crash.
6884 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
6885 break;
6887 p = list_first_entry(tasks, struct task_struct, se.group_node);
6889 env->loop++;
6890 /* We've more or less seen every task there is, call it quits */
6891 if (env->loop > env->loop_max)
6892 break;
6894 /* take a breather every nr_migrate tasks */
6895 if (env->loop > env->loop_break) {
6896 env->loop_break += sched_nr_migrate_break;
6897 env->flags |= LBF_NEED_BREAK;
6898 break;
6901 if (!can_migrate_task(p, env))
6902 goto next;
6904 load = task_h_load(p);
6906 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
6907 goto next;
6909 if ((load / 2) > env->imbalance)
6910 goto next;
6912 detach_task(p, env);
6913 list_add(&p->se.group_node, &env->tasks);
6915 detached++;
6916 env->imbalance -= load;
6918 #ifdef CONFIG_PREEMPT
6920 * NEWIDLE balancing is a source of latency, so preemptible
6921 * kernels will stop after the first task is detached to minimize
6922 * the critical section.
6924 if (env->idle == CPU_NEWLY_IDLE)
6925 break;
6926 #endif
6929 * We only want to steal up to the prescribed amount of
6930 * weighted load.
6932 if (env->imbalance <= 0)
6933 break;
6935 continue;
6936 next:
6937 list_move_tail(&p->se.group_node, tasks);
6941 * Right now, this is one of only two places we collect this stat
6942 * so we can safely collect detach_one_task() stats here rather
6943 * than inside detach_one_task().
6945 schedstat_add(env->sd->lb_gained[env->idle], detached);
6947 return detached;
6951 * attach_task() -- attach the task detached by detach_task() to its new rq.
6953 static void attach_task(struct rq *rq, struct task_struct *p)
6955 lockdep_assert_held(&rq->lock);
6957 BUG_ON(task_rq(p) != rq);
6958 activate_task(rq, p, ENQUEUE_NOCLOCK);
6959 p->on_rq = TASK_ON_RQ_QUEUED;
6960 check_preempt_curr(rq, p, 0);
6964 * attach_one_task() -- attaches the task returned from detach_one_task() to
6965 * its new rq.
6967 static void attach_one_task(struct rq *rq, struct task_struct *p)
6969 struct rq_flags rf;
6971 rq_lock(rq, &rf);
6972 update_rq_clock(rq);
6973 attach_task(rq, p);
6974 rq_unlock(rq, &rf);
6978 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
6979 * new rq.
6981 static void attach_tasks(struct lb_env *env)
6983 struct list_head *tasks = &env->tasks;
6984 struct task_struct *p;
6985 struct rq_flags rf;
6987 rq_lock(env->dst_rq, &rf);
6988 update_rq_clock(env->dst_rq);
6990 while (!list_empty(tasks)) {
6991 p = list_first_entry(tasks, struct task_struct, se.group_node);
6992 list_del_init(&p->se.group_node);
6994 attach_task(env->dst_rq, p);
6997 rq_unlock(env->dst_rq, &rf);
7000 #ifdef CONFIG_FAIR_GROUP_SCHED
7002 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
7004 if (cfs_rq->load.weight)
7005 return false;
7007 if (cfs_rq->avg.load_sum)
7008 return false;
7010 if (cfs_rq->avg.util_sum)
7011 return false;
7013 if (cfs_rq->runnable_load_sum)
7014 return false;
7016 return true;
7019 static void update_blocked_averages(int cpu)
7021 struct rq *rq = cpu_rq(cpu);
7022 struct cfs_rq *cfs_rq, *pos;
7023 struct rq_flags rf;
7025 rq_lock_irqsave(rq, &rf);
7026 update_rq_clock(rq);
7029 * Iterates the task_group tree in a bottom up fashion, see
7030 * list_add_leaf_cfs_rq() for details.
7032 for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) {
7033 struct sched_entity *se;
7035 /* throttled entities do not contribute to load */
7036 if (throttled_hierarchy(cfs_rq))
7037 continue;
7039 if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq))
7040 update_tg_load_avg(cfs_rq, 0);
7042 /* Propagate pending load changes to the parent, if any: */
7043 se = cfs_rq->tg->se[cpu];
7044 if (se && !skip_blocked_update(se))
7045 update_load_avg(se, 0);
7048 * There can be a lot of idle CPU cgroups. Don't let fully
7049 * decayed cfs_rqs linger on the list.
7051 if (cfs_rq_is_decayed(cfs_rq))
7052 list_del_leaf_cfs_rq(cfs_rq);
7054 rq_unlock_irqrestore(rq, &rf);
7058 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
7059 * This needs to be done in a top-down fashion because the load of a child
7060 * group is a fraction of its parents load.
7062 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
7064 struct rq *rq = rq_of(cfs_rq);
7065 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
7066 unsigned long now = jiffies;
7067 unsigned long load;
7069 if (cfs_rq->last_h_load_update == now)
7070 return;
7072 cfs_rq->h_load_next = NULL;
7073 for_each_sched_entity(se) {
7074 cfs_rq = cfs_rq_of(se);
7075 cfs_rq->h_load_next = se;
7076 if (cfs_rq->last_h_load_update == now)
7077 break;
7080 if (!se) {
7081 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
7082 cfs_rq->last_h_load_update = now;
7085 while ((se = cfs_rq->h_load_next) != NULL) {
7086 load = cfs_rq->h_load;
7087 load = div64_ul(load * se->avg.load_avg,
7088 cfs_rq_load_avg(cfs_rq) + 1);
7089 cfs_rq = group_cfs_rq(se);
7090 cfs_rq->h_load = load;
7091 cfs_rq->last_h_load_update = now;
7095 static unsigned long task_h_load(struct task_struct *p)
7097 struct cfs_rq *cfs_rq = task_cfs_rq(p);
7099 update_cfs_rq_h_load(cfs_rq);
7100 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
7101 cfs_rq_load_avg(cfs_rq) + 1);
7103 #else
7104 static inline void update_blocked_averages(int cpu)
7106 struct rq *rq = cpu_rq(cpu);
7107 struct cfs_rq *cfs_rq = &rq->cfs;
7108 struct rq_flags rf;
7110 rq_lock_irqsave(rq, &rf);
7111 update_rq_clock(rq);
7112 update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq);
7113 rq_unlock_irqrestore(rq, &rf);
7116 static unsigned long task_h_load(struct task_struct *p)
7118 return p->se.avg.load_avg;
7120 #endif
7122 /********** Helpers for find_busiest_group ************************/
7124 enum group_type {
7125 group_other = 0,
7126 group_imbalanced,
7127 group_overloaded,
7131 * sg_lb_stats - stats of a sched_group required for load_balancing
7133 struct sg_lb_stats {
7134 unsigned long avg_load; /*Avg load across the CPUs of the group */
7135 unsigned long group_load; /* Total load over the CPUs of the group */
7136 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
7137 unsigned long load_per_task;
7138 unsigned long group_capacity;
7139 unsigned long group_util; /* Total utilization of the group */
7140 unsigned int sum_nr_running; /* Nr tasks running in the group */
7141 unsigned int idle_cpus;
7142 unsigned int group_weight;
7143 enum group_type group_type;
7144 int group_no_capacity;
7145 #ifdef CONFIG_NUMA_BALANCING
7146 unsigned int nr_numa_running;
7147 unsigned int nr_preferred_running;
7148 #endif
7152 * sd_lb_stats - Structure to store the statistics of a sched_domain
7153 * during load balancing.
7155 struct sd_lb_stats {
7156 struct sched_group *busiest; /* Busiest group in this sd */
7157 struct sched_group *local; /* Local group in this sd */
7158 unsigned long total_running;
7159 unsigned long total_load; /* Total load of all groups in sd */
7160 unsigned long total_capacity; /* Total capacity of all groups in sd */
7161 unsigned long avg_load; /* Average load across all groups in sd */
7163 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
7164 struct sg_lb_stats local_stat; /* Statistics of the local group */
7167 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
7170 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
7171 * local_stat because update_sg_lb_stats() does a full clear/assignment.
7172 * We must however clear busiest_stat::avg_load because
7173 * update_sd_pick_busiest() reads this before assignment.
7175 *sds = (struct sd_lb_stats){
7176 .busiest = NULL,
7177 .local = NULL,
7178 .total_running = 0UL,
7179 .total_load = 0UL,
7180 .total_capacity = 0UL,
7181 .busiest_stat = {
7182 .avg_load = 0UL,
7183 .sum_nr_running = 0,
7184 .group_type = group_other,
7190 * get_sd_load_idx - Obtain the load index for a given sched domain.
7191 * @sd: The sched_domain whose load_idx is to be obtained.
7192 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
7194 * Return: The load index.
7196 static inline int get_sd_load_idx(struct sched_domain *sd,
7197 enum cpu_idle_type idle)
7199 int load_idx;
7201 switch (idle) {
7202 case CPU_NOT_IDLE:
7203 load_idx = sd->busy_idx;
7204 break;
7206 case CPU_NEWLY_IDLE:
7207 load_idx = sd->newidle_idx;
7208 break;
7209 default:
7210 load_idx = sd->idle_idx;
7211 break;
7214 return load_idx;
7217 static unsigned long scale_rt_capacity(int cpu)
7219 struct rq *rq = cpu_rq(cpu);
7220 u64 total, used, age_stamp, avg;
7221 s64 delta;
7224 * Since we're reading these variables without serialization make sure
7225 * we read them once before doing sanity checks on them.
7227 age_stamp = READ_ONCE(rq->age_stamp);
7228 avg = READ_ONCE(rq->rt_avg);
7229 delta = __rq_clock_broken(rq) - age_stamp;
7231 if (unlikely(delta < 0))
7232 delta = 0;
7234 total = sched_avg_period() + delta;
7236 used = div_u64(avg, total);
7238 if (likely(used < SCHED_CAPACITY_SCALE))
7239 return SCHED_CAPACITY_SCALE - used;
7241 return 1;
7244 static void update_cpu_capacity(struct sched_domain *sd, int cpu)
7246 unsigned long capacity = arch_scale_cpu_capacity(sd, cpu);
7247 struct sched_group *sdg = sd->groups;
7249 cpu_rq(cpu)->cpu_capacity_orig = capacity;
7251 capacity *= scale_rt_capacity(cpu);
7252 capacity >>= SCHED_CAPACITY_SHIFT;
7254 if (!capacity)
7255 capacity = 1;
7257 cpu_rq(cpu)->cpu_capacity = capacity;
7258 sdg->sgc->capacity = capacity;
7259 sdg->sgc->min_capacity = capacity;
7262 void update_group_capacity(struct sched_domain *sd, int cpu)
7264 struct sched_domain *child = sd->child;
7265 struct sched_group *group, *sdg = sd->groups;
7266 unsigned long capacity, min_capacity;
7267 unsigned long interval;
7269 interval = msecs_to_jiffies(sd->balance_interval);
7270 interval = clamp(interval, 1UL, max_load_balance_interval);
7271 sdg->sgc->next_update = jiffies + interval;
7273 if (!child) {
7274 update_cpu_capacity(sd, cpu);
7275 return;
7278 capacity = 0;
7279 min_capacity = ULONG_MAX;
7281 if (child->flags & SD_OVERLAP) {
7283 * SD_OVERLAP domains cannot assume that child groups
7284 * span the current group.
7287 for_each_cpu(cpu, sched_group_span(sdg)) {
7288 struct sched_group_capacity *sgc;
7289 struct rq *rq = cpu_rq(cpu);
7292 * build_sched_domains() -> init_sched_groups_capacity()
7293 * gets here before we've attached the domains to the
7294 * runqueues.
7296 * Use capacity_of(), which is set irrespective of domains
7297 * in update_cpu_capacity().
7299 * This avoids capacity from being 0 and
7300 * causing divide-by-zero issues on boot.
7302 if (unlikely(!rq->sd)) {
7303 capacity += capacity_of(cpu);
7304 } else {
7305 sgc = rq->sd->groups->sgc;
7306 capacity += sgc->capacity;
7309 min_capacity = min(capacity, min_capacity);
7311 } else {
7313 * !SD_OVERLAP domains can assume that child groups
7314 * span the current group.
7317 group = child->groups;
7318 do {
7319 struct sched_group_capacity *sgc = group->sgc;
7321 capacity += sgc->capacity;
7322 min_capacity = min(sgc->min_capacity, min_capacity);
7323 group = group->next;
7324 } while (group != child->groups);
7327 sdg->sgc->capacity = capacity;
7328 sdg->sgc->min_capacity = min_capacity;
7332 * Check whether the capacity of the rq has been noticeably reduced by side
7333 * activity. The imbalance_pct is used for the threshold.
7334 * Return true is the capacity is reduced
7336 static inline int
7337 check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
7339 return ((rq->cpu_capacity * sd->imbalance_pct) <
7340 (rq->cpu_capacity_orig * 100));
7344 * Group imbalance indicates (and tries to solve) the problem where balancing
7345 * groups is inadequate due to ->cpus_allowed constraints.
7347 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
7348 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
7349 * Something like:
7351 * { 0 1 2 3 } { 4 5 6 7 }
7352 * * * * *
7354 * If we were to balance group-wise we'd place two tasks in the first group and
7355 * two tasks in the second group. Clearly this is undesired as it will overload
7356 * cpu 3 and leave one of the cpus in the second group unused.
7358 * The current solution to this issue is detecting the skew in the first group
7359 * by noticing the lower domain failed to reach balance and had difficulty
7360 * moving tasks due to affinity constraints.
7362 * When this is so detected; this group becomes a candidate for busiest; see
7363 * update_sd_pick_busiest(). And calculate_imbalance() and
7364 * find_busiest_group() avoid some of the usual balance conditions to allow it
7365 * to create an effective group imbalance.
7367 * This is a somewhat tricky proposition since the next run might not find the
7368 * group imbalance and decide the groups need to be balanced again. A most
7369 * subtle and fragile situation.
7372 static inline int sg_imbalanced(struct sched_group *group)
7374 return group->sgc->imbalance;
7378 * group_has_capacity returns true if the group has spare capacity that could
7379 * be used by some tasks.
7380 * We consider that a group has spare capacity if the * number of task is
7381 * smaller than the number of CPUs or if the utilization is lower than the
7382 * available capacity for CFS tasks.
7383 * For the latter, we use a threshold to stabilize the state, to take into
7384 * account the variance of the tasks' load and to return true if the available
7385 * capacity in meaningful for the load balancer.
7386 * As an example, an available capacity of 1% can appear but it doesn't make
7387 * any benefit for the load balance.
7389 static inline bool
7390 group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
7392 if (sgs->sum_nr_running < sgs->group_weight)
7393 return true;
7395 if ((sgs->group_capacity * 100) >
7396 (sgs->group_util * env->sd->imbalance_pct))
7397 return true;
7399 return false;
7403 * group_is_overloaded returns true if the group has more tasks than it can
7404 * handle.
7405 * group_is_overloaded is not equals to !group_has_capacity because a group
7406 * with the exact right number of tasks, has no more spare capacity but is not
7407 * overloaded so both group_has_capacity and group_is_overloaded return
7408 * false.
7410 static inline bool
7411 group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
7413 if (sgs->sum_nr_running <= sgs->group_weight)
7414 return false;
7416 if ((sgs->group_capacity * 100) <
7417 (sgs->group_util * env->sd->imbalance_pct))
7418 return true;
7420 return false;
7424 * group_smaller_cpu_capacity: Returns true if sched_group sg has smaller
7425 * per-CPU capacity than sched_group ref.
7427 static inline bool
7428 group_smaller_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
7430 return sg->sgc->min_capacity * capacity_margin <
7431 ref->sgc->min_capacity * 1024;
7434 static inline enum
7435 group_type group_classify(struct sched_group *group,
7436 struct sg_lb_stats *sgs)
7438 if (sgs->group_no_capacity)
7439 return group_overloaded;
7441 if (sg_imbalanced(group))
7442 return group_imbalanced;
7444 return group_other;
7448 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
7449 * @env: The load balancing environment.
7450 * @group: sched_group whose statistics are to be updated.
7451 * @load_idx: Load index of sched_domain of this_cpu for load calc.
7452 * @local_group: Does group contain this_cpu.
7453 * @sgs: variable to hold the statistics for this group.
7454 * @overload: Indicate more than one runnable task for any CPU.
7456 static inline void update_sg_lb_stats(struct lb_env *env,
7457 struct sched_group *group, int load_idx,
7458 int local_group, struct sg_lb_stats *sgs,
7459 bool *overload)
7461 unsigned long load;
7462 int i, nr_running;
7464 memset(sgs, 0, sizeof(*sgs));
7466 for_each_cpu_and(i, sched_group_span(group), env->cpus) {
7467 struct rq *rq = cpu_rq(i);
7469 /* Bias balancing toward cpus of our domain */
7470 if (local_group)
7471 load = target_load(i, load_idx);
7472 else
7473 load = source_load(i, load_idx);
7475 sgs->group_load += load;
7476 sgs->group_util += cpu_util(i);
7477 sgs->sum_nr_running += rq->cfs.h_nr_running;
7479 nr_running = rq->nr_running;
7480 if (nr_running > 1)
7481 *overload = true;
7483 #ifdef CONFIG_NUMA_BALANCING
7484 sgs->nr_numa_running += rq->nr_numa_running;
7485 sgs->nr_preferred_running += rq->nr_preferred_running;
7486 #endif
7487 sgs->sum_weighted_load += weighted_cpuload(rq);
7489 * No need to call idle_cpu() if nr_running is not 0
7491 if (!nr_running && idle_cpu(i))
7492 sgs->idle_cpus++;
7495 /* Adjust by relative CPU capacity of the group */
7496 sgs->group_capacity = group->sgc->capacity;
7497 sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
7499 if (sgs->sum_nr_running)
7500 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
7502 sgs->group_weight = group->group_weight;
7504 sgs->group_no_capacity = group_is_overloaded(env, sgs);
7505 sgs->group_type = group_classify(group, sgs);
7509 * update_sd_pick_busiest - return 1 on busiest group
7510 * @env: The load balancing environment.
7511 * @sds: sched_domain statistics
7512 * @sg: sched_group candidate to be checked for being the busiest
7513 * @sgs: sched_group statistics
7515 * Determine if @sg is a busier group than the previously selected
7516 * busiest group.
7518 * Return: %true if @sg is a busier group than the previously selected
7519 * busiest group. %false otherwise.
7521 static bool update_sd_pick_busiest(struct lb_env *env,
7522 struct sd_lb_stats *sds,
7523 struct sched_group *sg,
7524 struct sg_lb_stats *sgs)
7526 struct sg_lb_stats *busiest = &sds->busiest_stat;
7528 if (sgs->group_type > busiest->group_type)
7529 return true;
7531 if (sgs->group_type < busiest->group_type)
7532 return false;
7534 if (sgs->avg_load <= busiest->avg_load)
7535 return false;
7537 if (!(env->sd->flags & SD_ASYM_CPUCAPACITY))
7538 goto asym_packing;
7541 * Candidate sg has no more than one task per CPU and
7542 * has higher per-CPU capacity. Migrating tasks to less
7543 * capable CPUs may harm throughput. Maximize throughput,
7544 * power/energy consequences are not considered.
7546 if (sgs->sum_nr_running <= sgs->group_weight &&
7547 group_smaller_cpu_capacity(sds->local, sg))
7548 return false;
7550 asym_packing:
7551 /* This is the busiest node in its class. */
7552 if (!(env->sd->flags & SD_ASYM_PACKING))
7553 return true;
7555 /* No ASYM_PACKING if target cpu is already busy */
7556 if (env->idle == CPU_NOT_IDLE)
7557 return true;
7559 * ASYM_PACKING needs to move all the work to the highest
7560 * prority CPUs in the group, therefore mark all groups
7561 * of lower priority than ourself as busy.
7563 if (sgs->sum_nr_running &&
7564 sched_asym_prefer(env->dst_cpu, sg->asym_prefer_cpu)) {
7565 if (!sds->busiest)
7566 return true;
7568 /* Prefer to move from lowest priority cpu's work */
7569 if (sched_asym_prefer(sds->busiest->asym_prefer_cpu,
7570 sg->asym_prefer_cpu))
7571 return true;
7574 return false;
7577 #ifdef CONFIG_NUMA_BALANCING
7578 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
7580 if (sgs->sum_nr_running > sgs->nr_numa_running)
7581 return regular;
7582 if (sgs->sum_nr_running > sgs->nr_preferred_running)
7583 return remote;
7584 return all;
7587 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
7589 if (rq->nr_running > rq->nr_numa_running)
7590 return regular;
7591 if (rq->nr_running > rq->nr_preferred_running)
7592 return remote;
7593 return all;
7595 #else
7596 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
7598 return all;
7601 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
7603 return regular;
7605 #endif /* CONFIG_NUMA_BALANCING */
7608 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
7609 * @env: The load balancing environment.
7610 * @sds: variable to hold the statistics for this sched_domain.
7612 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
7614 struct sched_domain_shared *shared = env->sd->shared;
7615 struct sched_domain *child = env->sd->child;
7616 struct sched_group *sg = env->sd->groups;
7617 struct sg_lb_stats *local = &sds->local_stat;
7618 struct sg_lb_stats tmp_sgs;
7619 int load_idx, prefer_sibling = 0;
7620 bool overload = false;
7622 if (child && child->flags & SD_PREFER_SIBLING)
7623 prefer_sibling = 1;
7625 load_idx = get_sd_load_idx(env->sd, env->idle);
7627 do {
7628 struct sg_lb_stats *sgs = &tmp_sgs;
7629 int local_group;
7631 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
7632 if (local_group) {
7633 sds->local = sg;
7634 sgs = local;
7636 if (env->idle != CPU_NEWLY_IDLE ||
7637 time_after_eq(jiffies, sg->sgc->next_update))
7638 update_group_capacity(env->sd, env->dst_cpu);
7641 update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
7642 &overload);
7644 if (local_group)
7645 goto next_group;
7648 * In case the child domain prefers tasks go to siblings
7649 * first, lower the sg capacity so that we'll try
7650 * and move all the excess tasks away. We lower the capacity
7651 * of a group only if the local group has the capacity to fit
7652 * these excess tasks. The extra check prevents the case where
7653 * you always pull from the heaviest group when it is already
7654 * under-utilized (possible with a large weight task outweighs
7655 * the tasks on the system).
7657 if (prefer_sibling && sds->local &&
7658 group_has_capacity(env, local) &&
7659 (sgs->sum_nr_running > local->sum_nr_running + 1)) {
7660 sgs->group_no_capacity = 1;
7661 sgs->group_type = group_classify(sg, sgs);
7664 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
7665 sds->busiest = sg;
7666 sds->busiest_stat = *sgs;
7669 next_group:
7670 /* Now, start updating sd_lb_stats */
7671 sds->total_running += sgs->sum_nr_running;
7672 sds->total_load += sgs->group_load;
7673 sds->total_capacity += sgs->group_capacity;
7675 sg = sg->next;
7676 } while (sg != env->sd->groups);
7678 if (env->sd->flags & SD_NUMA)
7679 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
7681 if (!env->sd->parent) {
7682 /* update overload indicator if we are at root domain */
7683 if (env->dst_rq->rd->overload != overload)
7684 env->dst_rq->rd->overload = overload;
7687 if (!shared)
7688 return;
7691 * Since these are sums over groups they can contain some CPUs
7692 * multiple times for the NUMA domains.
7694 * Currently only wake_affine_llc() and find_busiest_group()
7695 * uses these numbers, only the last is affected by this problem.
7697 * XXX fix that.
7699 WRITE_ONCE(shared->nr_running, sds->total_running);
7700 WRITE_ONCE(shared->load, sds->total_load);
7701 WRITE_ONCE(shared->capacity, sds->total_capacity);
7705 * check_asym_packing - Check to see if the group is packed into the
7706 * sched domain.
7708 * This is primarily intended to used at the sibling level. Some
7709 * cores like POWER7 prefer to use lower numbered SMT threads. In the
7710 * case of POWER7, it can move to lower SMT modes only when higher
7711 * threads are idle. When in lower SMT modes, the threads will
7712 * perform better since they share less core resources. Hence when we
7713 * have idle threads, we want them to be the higher ones.
7715 * This packing function is run on idle threads. It checks to see if
7716 * the busiest CPU in this domain (core in the P7 case) has a higher
7717 * CPU number than the packing function is being run on. Here we are
7718 * assuming lower CPU number will be equivalent to lower a SMT thread
7719 * number.
7721 * Return: 1 when packing is required and a task should be moved to
7722 * this CPU. The amount of the imbalance is returned in env->imbalance.
7724 * @env: The load balancing environment.
7725 * @sds: Statistics of the sched_domain which is to be packed
7727 static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
7729 int busiest_cpu;
7731 if (!(env->sd->flags & SD_ASYM_PACKING))
7732 return 0;
7734 if (env->idle == CPU_NOT_IDLE)
7735 return 0;
7737 if (!sds->busiest)
7738 return 0;
7740 busiest_cpu = sds->busiest->asym_prefer_cpu;
7741 if (sched_asym_prefer(busiest_cpu, env->dst_cpu))
7742 return 0;
7744 env->imbalance = DIV_ROUND_CLOSEST(
7745 sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
7746 SCHED_CAPACITY_SCALE);
7748 return 1;
7752 * fix_small_imbalance - Calculate the minor imbalance that exists
7753 * amongst the groups of a sched_domain, during
7754 * load balancing.
7755 * @env: The load balancing environment.
7756 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
7758 static inline
7759 void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
7761 unsigned long tmp, capa_now = 0, capa_move = 0;
7762 unsigned int imbn = 2;
7763 unsigned long scaled_busy_load_per_task;
7764 struct sg_lb_stats *local, *busiest;
7766 local = &sds->local_stat;
7767 busiest = &sds->busiest_stat;
7769 if (!local->sum_nr_running)
7770 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
7771 else if (busiest->load_per_task > local->load_per_task)
7772 imbn = 1;
7774 scaled_busy_load_per_task =
7775 (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
7776 busiest->group_capacity;
7778 if (busiest->avg_load + scaled_busy_load_per_task >=
7779 local->avg_load + (scaled_busy_load_per_task * imbn)) {
7780 env->imbalance = busiest->load_per_task;
7781 return;
7785 * OK, we don't have enough imbalance to justify moving tasks,
7786 * however we may be able to increase total CPU capacity used by
7787 * moving them.
7790 capa_now += busiest->group_capacity *
7791 min(busiest->load_per_task, busiest->avg_load);
7792 capa_now += local->group_capacity *
7793 min(local->load_per_task, local->avg_load);
7794 capa_now /= SCHED_CAPACITY_SCALE;
7796 /* Amount of load we'd subtract */
7797 if (busiest->avg_load > scaled_busy_load_per_task) {
7798 capa_move += busiest->group_capacity *
7799 min(busiest->load_per_task,
7800 busiest->avg_load - scaled_busy_load_per_task);
7803 /* Amount of load we'd add */
7804 if (busiest->avg_load * busiest->group_capacity <
7805 busiest->load_per_task * SCHED_CAPACITY_SCALE) {
7806 tmp = (busiest->avg_load * busiest->group_capacity) /
7807 local->group_capacity;
7808 } else {
7809 tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
7810 local->group_capacity;
7812 capa_move += local->group_capacity *
7813 min(local->load_per_task, local->avg_load + tmp);
7814 capa_move /= SCHED_CAPACITY_SCALE;
7816 /* Move if we gain throughput */
7817 if (capa_move > capa_now)
7818 env->imbalance = busiest->load_per_task;
7822 * calculate_imbalance - Calculate the amount of imbalance present within the
7823 * groups of a given sched_domain during load balance.
7824 * @env: load balance environment
7825 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
7827 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
7829 unsigned long max_pull, load_above_capacity = ~0UL;
7830 struct sg_lb_stats *local, *busiest;
7832 local = &sds->local_stat;
7833 busiest = &sds->busiest_stat;
7835 if (busiest->group_type == group_imbalanced) {
7837 * In the group_imb case we cannot rely on group-wide averages
7838 * to ensure cpu-load equilibrium, look at wider averages. XXX
7840 busiest->load_per_task =
7841 min(busiest->load_per_task, sds->avg_load);
7845 * Avg load of busiest sg can be less and avg load of local sg can
7846 * be greater than avg load across all sgs of sd because avg load
7847 * factors in sg capacity and sgs with smaller group_type are
7848 * skipped when updating the busiest sg:
7850 if (busiest->avg_load <= sds->avg_load ||
7851 local->avg_load >= sds->avg_load) {
7852 env->imbalance = 0;
7853 return fix_small_imbalance(env, sds);
7857 * If there aren't any idle cpus, avoid creating some.
7859 if (busiest->group_type == group_overloaded &&
7860 local->group_type == group_overloaded) {
7861 load_above_capacity = busiest->sum_nr_running * SCHED_CAPACITY_SCALE;
7862 if (load_above_capacity > busiest->group_capacity) {
7863 load_above_capacity -= busiest->group_capacity;
7864 load_above_capacity *= scale_load_down(NICE_0_LOAD);
7865 load_above_capacity /= busiest->group_capacity;
7866 } else
7867 load_above_capacity = ~0UL;
7871 * We're trying to get all the cpus to the average_load, so we don't
7872 * want to push ourselves above the average load, nor do we wish to
7873 * reduce the max loaded cpu below the average load. At the same time,
7874 * we also don't want to reduce the group load below the group
7875 * capacity. Thus we look for the minimum possible imbalance.
7877 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
7879 /* How much load to actually move to equalise the imbalance */
7880 env->imbalance = min(
7881 max_pull * busiest->group_capacity,
7882 (sds->avg_load - local->avg_load) * local->group_capacity
7883 ) / SCHED_CAPACITY_SCALE;
7886 * if *imbalance is less than the average load per runnable task
7887 * there is no guarantee that any tasks will be moved so we'll have
7888 * a think about bumping its value to force at least one task to be
7889 * moved
7891 if (env->imbalance < busiest->load_per_task)
7892 return fix_small_imbalance(env, sds);
7895 /******* find_busiest_group() helpers end here *********************/
7898 * find_busiest_group - Returns the busiest group within the sched_domain
7899 * if there is an imbalance.
7901 * Also calculates the amount of weighted load which should be moved
7902 * to restore balance.
7904 * @env: The load balancing environment.
7906 * Return: - The busiest group if imbalance exists.
7908 static struct sched_group *find_busiest_group(struct lb_env *env)
7910 struct sg_lb_stats *local, *busiest;
7911 struct sd_lb_stats sds;
7913 init_sd_lb_stats(&sds);
7916 * Compute the various statistics relavent for load balancing at
7917 * this level.
7919 update_sd_lb_stats(env, &sds);
7920 local = &sds.local_stat;
7921 busiest = &sds.busiest_stat;
7923 /* ASYM feature bypasses nice load balance check */
7924 if (check_asym_packing(env, &sds))
7925 return sds.busiest;
7927 /* There is no busy sibling group to pull tasks from */
7928 if (!sds.busiest || busiest->sum_nr_running == 0)
7929 goto out_balanced;
7931 /* XXX broken for overlapping NUMA groups */
7932 sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
7933 / sds.total_capacity;
7936 * If the busiest group is imbalanced the below checks don't
7937 * work because they assume all things are equal, which typically
7938 * isn't true due to cpus_allowed constraints and the like.
7940 if (busiest->group_type == group_imbalanced)
7941 goto force_balance;
7943 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
7944 if (env->idle == CPU_NEWLY_IDLE && group_has_capacity(env, local) &&
7945 busiest->group_no_capacity)
7946 goto force_balance;
7949 * If the local group is busier than the selected busiest group
7950 * don't try and pull any tasks.
7952 if (local->avg_load >= busiest->avg_load)
7953 goto out_balanced;
7956 * Don't pull any tasks if this group is already above the domain
7957 * average load.
7959 if (local->avg_load >= sds.avg_load)
7960 goto out_balanced;
7962 if (env->idle == CPU_IDLE) {
7964 * This cpu is idle. If the busiest group is not overloaded
7965 * and there is no imbalance between this and busiest group
7966 * wrt idle cpus, it is balanced. The imbalance becomes
7967 * significant if the diff is greater than 1 otherwise we
7968 * might end up to just move the imbalance on another group
7970 if ((busiest->group_type != group_overloaded) &&
7971 (local->idle_cpus <= (busiest->idle_cpus + 1)))
7972 goto out_balanced;
7973 } else {
7975 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
7976 * imbalance_pct to be conservative.
7978 if (100 * busiest->avg_load <=
7979 env->sd->imbalance_pct * local->avg_load)
7980 goto out_balanced;
7983 force_balance:
7984 /* Looks like there is an imbalance. Compute it */
7985 calculate_imbalance(env, &sds);
7986 return sds.busiest;
7988 out_balanced:
7989 env->imbalance = 0;
7990 return NULL;
7994 * find_busiest_queue - find the busiest runqueue among the cpus in group.
7996 static struct rq *find_busiest_queue(struct lb_env *env,
7997 struct sched_group *group)
7999 struct rq *busiest = NULL, *rq;
8000 unsigned long busiest_load = 0, busiest_capacity = 1;
8001 int i;
8003 for_each_cpu_and(i, sched_group_span(group), env->cpus) {
8004 unsigned long capacity, wl;
8005 enum fbq_type rt;
8007 rq = cpu_rq(i);
8008 rt = fbq_classify_rq(rq);
8011 * We classify groups/runqueues into three groups:
8012 * - regular: there are !numa tasks
8013 * - remote: there are numa tasks that run on the 'wrong' node
8014 * - all: there is no distinction
8016 * In order to avoid migrating ideally placed numa tasks,
8017 * ignore those when there's better options.
8019 * If we ignore the actual busiest queue to migrate another
8020 * task, the next balance pass can still reduce the busiest
8021 * queue by moving tasks around inside the node.
8023 * If we cannot move enough load due to this classification
8024 * the next pass will adjust the group classification and
8025 * allow migration of more tasks.
8027 * Both cases only affect the total convergence complexity.
8029 if (rt > env->fbq_type)
8030 continue;
8032 capacity = capacity_of(i);
8034 wl = weighted_cpuload(rq);
8037 * When comparing with imbalance, use weighted_cpuload()
8038 * which is not scaled with the cpu capacity.
8041 if (rq->nr_running == 1 && wl > env->imbalance &&
8042 !check_cpu_capacity(rq, env->sd))
8043 continue;
8046 * For the load comparisons with the other cpu's, consider
8047 * the weighted_cpuload() scaled with the cpu capacity, so
8048 * that the load can be moved away from the cpu that is
8049 * potentially running at a lower capacity.
8051 * Thus we're looking for max(wl_i / capacity_i), crosswise
8052 * multiplication to rid ourselves of the division works out
8053 * to: wl_i * capacity_j > wl_j * capacity_i; where j is
8054 * our previous maximum.
8056 if (wl * busiest_capacity > busiest_load * capacity) {
8057 busiest_load = wl;
8058 busiest_capacity = capacity;
8059 busiest = rq;
8063 return busiest;
8067 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
8068 * so long as it is large enough.
8070 #define MAX_PINNED_INTERVAL 512
8072 static int need_active_balance(struct lb_env *env)
8074 struct sched_domain *sd = env->sd;
8076 if (env->idle == CPU_NEWLY_IDLE) {
8079 * ASYM_PACKING needs to force migrate tasks from busy but
8080 * lower priority CPUs in order to pack all tasks in the
8081 * highest priority CPUs.
8083 if ((sd->flags & SD_ASYM_PACKING) &&
8084 sched_asym_prefer(env->dst_cpu, env->src_cpu))
8085 return 1;
8089 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
8090 * It's worth migrating the task if the src_cpu's capacity is reduced
8091 * because of other sched_class or IRQs if more capacity stays
8092 * available on dst_cpu.
8094 if ((env->idle != CPU_NOT_IDLE) &&
8095 (env->src_rq->cfs.h_nr_running == 1)) {
8096 if ((check_cpu_capacity(env->src_rq, sd)) &&
8097 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
8098 return 1;
8101 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
8104 static int active_load_balance_cpu_stop(void *data);
8106 static int should_we_balance(struct lb_env *env)
8108 struct sched_group *sg = env->sd->groups;
8109 int cpu, balance_cpu = -1;
8112 * In the newly idle case, we will allow all the cpu's
8113 * to do the newly idle load balance.
8115 if (env->idle == CPU_NEWLY_IDLE)
8116 return 1;
8118 /* Try to find first idle cpu */
8119 for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) {
8120 if (!idle_cpu(cpu))
8121 continue;
8123 balance_cpu = cpu;
8124 break;
8127 if (balance_cpu == -1)
8128 balance_cpu = group_balance_cpu(sg);
8131 * First idle cpu or the first cpu(busiest) in this sched group
8132 * is eligible for doing load balancing at this and above domains.
8134 return balance_cpu == env->dst_cpu;
8138 * Check this_cpu to ensure it is balanced within domain. Attempt to move
8139 * tasks if there is an imbalance.
8141 static int load_balance(int this_cpu, struct rq *this_rq,
8142 struct sched_domain *sd, enum cpu_idle_type idle,
8143 int *continue_balancing)
8145 int ld_moved, cur_ld_moved, active_balance = 0;
8146 struct sched_domain *sd_parent = sd->parent;
8147 struct sched_group *group;
8148 struct rq *busiest;
8149 struct rq_flags rf;
8150 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
8152 struct lb_env env = {
8153 .sd = sd,
8154 .dst_cpu = this_cpu,
8155 .dst_rq = this_rq,
8156 .dst_grpmask = sched_group_span(sd->groups),
8157 .idle = idle,
8158 .loop_break = sched_nr_migrate_break,
8159 .cpus = cpus,
8160 .fbq_type = all,
8161 .tasks = LIST_HEAD_INIT(env.tasks),
8164 cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
8166 schedstat_inc(sd->lb_count[idle]);
8168 redo:
8169 if (!should_we_balance(&env)) {
8170 *continue_balancing = 0;
8171 goto out_balanced;
8174 group = find_busiest_group(&env);
8175 if (!group) {
8176 schedstat_inc(sd->lb_nobusyg[idle]);
8177 goto out_balanced;
8180 busiest = find_busiest_queue(&env, group);
8181 if (!busiest) {
8182 schedstat_inc(sd->lb_nobusyq[idle]);
8183 goto out_balanced;
8186 BUG_ON(busiest == env.dst_rq);
8188 schedstat_add(sd->lb_imbalance[idle], env.imbalance);
8190 env.src_cpu = busiest->cpu;
8191 env.src_rq = busiest;
8193 ld_moved = 0;
8194 if (busiest->nr_running > 1) {
8196 * Attempt to move tasks. If find_busiest_group has found
8197 * an imbalance but busiest->nr_running <= 1, the group is
8198 * still unbalanced. ld_moved simply stays zero, so it is
8199 * correctly treated as an imbalance.
8201 env.flags |= LBF_ALL_PINNED;
8202 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
8204 more_balance:
8205 rq_lock_irqsave(busiest, &rf);
8206 update_rq_clock(busiest);
8209 * cur_ld_moved - load moved in current iteration
8210 * ld_moved - cumulative load moved across iterations
8212 cur_ld_moved = detach_tasks(&env);
8215 * We've detached some tasks from busiest_rq. Every
8216 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
8217 * unlock busiest->lock, and we are able to be sure
8218 * that nobody can manipulate the tasks in parallel.
8219 * See task_rq_lock() family for the details.
8222 rq_unlock(busiest, &rf);
8224 if (cur_ld_moved) {
8225 attach_tasks(&env);
8226 ld_moved += cur_ld_moved;
8229 local_irq_restore(rf.flags);
8231 if (env.flags & LBF_NEED_BREAK) {
8232 env.flags &= ~LBF_NEED_BREAK;
8233 goto more_balance;
8237 * Revisit (affine) tasks on src_cpu that couldn't be moved to
8238 * us and move them to an alternate dst_cpu in our sched_group
8239 * where they can run. The upper limit on how many times we
8240 * iterate on same src_cpu is dependent on number of cpus in our
8241 * sched_group.
8243 * This changes load balance semantics a bit on who can move
8244 * load to a given_cpu. In addition to the given_cpu itself
8245 * (or a ilb_cpu acting on its behalf where given_cpu is
8246 * nohz-idle), we now have balance_cpu in a position to move
8247 * load to given_cpu. In rare situations, this may cause
8248 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
8249 * _independently_ and at _same_ time to move some load to
8250 * given_cpu) causing exceess load to be moved to given_cpu.
8251 * This however should not happen so much in practice and
8252 * moreover subsequent load balance cycles should correct the
8253 * excess load moved.
8255 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
8257 /* Prevent to re-select dst_cpu via env's cpus */
8258 cpumask_clear_cpu(env.dst_cpu, env.cpus);
8260 env.dst_rq = cpu_rq(env.new_dst_cpu);
8261 env.dst_cpu = env.new_dst_cpu;
8262 env.flags &= ~LBF_DST_PINNED;
8263 env.loop = 0;
8264 env.loop_break = sched_nr_migrate_break;
8267 * Go back to "more_balance" rather than "redo" since we
8268 * need to continue with same src_cpu.
8270 goto more_balance;
8274 * We failed to reach balance because of affinity.
8276 if (sd_parent) {
8277 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
8279 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
8280 *group_imbalance = 1;
8283 /* All tasks on this runqueue were pinned by CPU affinity */
8284 if (unlikely(env.flags & LBF_ALL_PINNED)) {
8285 cpumask_clear_cpu(cpu_of(busiest), cpus);
8287 * Attempting to continue load balancing at the current
8288 * sched_domain level only makes sense if there are
8289 * active CPUs remaining as possible busiest CPUs to
8290 * pull load from which are not contained within the
8291 * destination group that is receiving any migrated
8292 * load.
8294 if (!cpumask_subset(cpus, env.dst_grpmask)) {
8295 env.loop = 0;
8296 env.loop_break = sched_nr_migrate_break;
8297 goto redo;
8299 goto out_all_pinned;
8303 if (!ld_moved) {
8304 schedstat_inc(sd->lb_failed[idle]);
8306 * Increment the failure counter only on periodic balance.
8307 * We do not want newidle balance, which can be very
8308 * frequent, pollute the failure counter causing
8309 * excessive cache_hot migrations and active balances.
8311 if (idle != CPU_NEWLY_IDLE)
8312 sd->nr_balance_failed++;
8314 if (need_active_balance(&env)) {
8315 unsigned long flags;
8317 raw_spin_lock_irqsave(&busiest->lock, flags);
8319 /* don't kick the active_load_balance_cpu_stop,
8320 * if the curr task on busiest cpu can't be
8321 * moved to this_cpu
8323 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
8324 raw_spin_unlock_irqrestore(&busiest->lock,
8325 flags);
8326 env.flags |= LBF_ALL_PINNED;
8327 goto out_one_pinned;
8331 * ->active_balance synchronizes accesses to
8332 * ->active_balance_work. Once set, it's cleared
8333 * only after active load balance is finished.
8335 if (!busiest->active_balance) {
8336 busiest->active_balance = 1;
8337 busiest->push_cpu = this_cpu;
8338 active_balance = 1;
8340 raw_spin_unlock_irqrestore(&busiest->lock, flags);
8342 if (active_balance) {
8343 stop_one_cpu_nowait(cpu_of(busiest),
8344 active_load_balance_cpu_stop, busiest,
8345 &busiest->active_balance_work);
8348 /* We've kicked active balancing, force task migration. */
8349 sd->nr_balance_failed = sd->cache_nice_tries+1;
8351 } else
8352 sd->nr_balance_failed = 0;
8354 if (likely(!active_balance)) {
8355 /* We were unbalanced, so reset the balancing interval */
8356 sd->balance_interval = sd->min_interval;
8357 } else {
8359 * If we've begun active balancing, start to back off. This
8360 * case may not be covered by the all_pinned logic if there
8361 * is only 1 task on the busy runqueue (because we don't call
8362 * detach_tasks).
8364 if (sd->balance_interval < sd->max_interval)
8365 sd->balance_interval *= 2;
8368 goto out;
8370 out_balanced:
8372 * We reach balance although we may have faced some affinity
8373 * constraints. Clear the imbalance flag if it was set.
8375 if (sd_parent) {
8376 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
8378 if (*group_imbalance)
8379 *group_imbalance = 0;
8382 out_all_pinned:
8384 * We reach balance because all tasks are pinned at this level so
8385 * we can't migrate them. Let the imbalance flag set so parent level
8386 * can try to migrate them.
8388 schedstat_inc(sd->lb_balanced[idle]);
8390 sd->nr_balance_failed = 0;
8392 out_one_pinned:
8393 /* tune up the balancing interval */
8394 if (((env.flags & LBF_ALL_PINNED) &&
8395 sd->balance_interval < MAX_PINNED_INTERVAL) ||
8396 (sd->balance_interval < sd->max_interval))
8397 sd->balance_interval *= 2;
8399 ld_moved = 0;
8400 out:
8401 return ld_moved;
8404 static inline unsigned long
8405 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
8407 unsigned long interval = sd->balance_interval;
8409 if (cpu_busy)
8410 interval *= sd->busy_factor;
8412 /* scale ms to jiffies */
8413 interval = msecs_to_jiffies(interval);
8414 interval = clamp(interval, 1UL, max_load_balance_interval);
8416 return interval;
8419 static inline void
8420 update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
8422 unsigned long interval, next;
8424 /* used by idle balance, so cpu_busy = 0 */
8425 interval = get_sd_balance_interval(sd, 0);
8426 next = sd->last_balance + interval;
8428 if (time_after(*next_balance, next))
8429 *next_balance = next;
8433 * idle_balance is called by schedule() if this_cpu is about to become
8434 * idle. Attempts to pull tasks from other CPUs.
8436 static int idle_balance(struct rq *this_rq, struct rq_flags *rf)
8438 unsigned long next_balance = jiffies + HZ;
8439 int this_cpu = this_rq->cpu;
8440 struct sched_domain *sd;
8441 int pulled_task = 0;
8442 u64 curr_cost = 0;
8445 * We must set idle_stamp _before_ calling idle_balance(), such that we
8446 * measure the duration of idle_balance() as idle time.
8448 this_rq->idle_stamp = rq_clock(this_rq);
8451 * This is OK, because current is on_cpu, which avoids it being picked
8452 * for load-balance and preemption/IRQs are still disabled avoiding
8453 * further scheduler activity on it and we're being very careful to
8454 * re-start the picking loop.
8456 rq_unpin_lock(this_rq, rf);
8458 if (this_rq->avg_idle < sysctl_sched_migration_cost ||
8459 !this_rq->rd->overload) {
8460 rcu_read_lock();
8461 sd = rcu_dereference_check_sched_domain(this_rq->sd);
8462 if (sd)
8463 update_next_balance(sd, &next_balance);
8464 rcu_read_unlock();
8466 goto out;
8469 raw_spin_unlock(&this_rq->lock);
8471 update_blocked_averages(this_cpu);
8472 rcu_read_lock();
8473 for_each_domain(this_cpu, sd) {
8474 int continue_balancing = 1;
8475 u64 t0, domain_cost;
8477 if (!(sd->flags & SD_LOAD_BALANCE))
8478 continue;
8480 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
8481 update_next_balance(sd, &next_balance);
8482 break;
8485 if (sd->flags & SD_BALANCE_NEWIDLE) {
8486 t0 = sched_clock_cpu(this_cpu);
8488 pulled_task = load_balance(this_cpu, this_rq,
8489 sd, CPU_NEWLY_IDLE,
8490 &continue_balancing);
8492 domain_cost = sched_clock_cpu(this_cpu) - t0;
8493 if (domain_cost > sd->max_newidle_lb_cost)
8494 sd->max_newidle_lb_cost = domain_cost;
8496 curr_cost += domain_cost;
8499 update_next_balance(sd, &next_balance);
8502 * Stop searching for tasks to pull if there are
8503 * now runnable tasks on this rq.
8505 if (pulled_task || this_rq->nr_running > 0)
8506 break;
8508 rcu_read_unlock();
8510 raw_spin_lock(&this_rq->lock);
8512 if (curr_cost > this_rq->max_idle_balance_cost)
8513 this_rq->max_idle_balance_cost = curr_cost;
8516 * While browsing the domains, we released the rq lock, a task could
8517 * have been enqueued in the meantime. Since we're not going idle,
8518 * pretend we pulled a task.
8520 if (this_rq->cfs.h_nr_running && !pulled_task)
8521 pulled_task = 1;
8523 out:
8524 /* Move the next balance forward */
8525 if (time_after(this_rq->next_balance, next_balance))
8526 this_rq->next_balance = next_balance;
8528 /* Is there a task of a high priority class? */
8529 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
8530 pulled_task = -1;
8532 if (pulled_task)
8533 this_rq->idle_stamp = 0;
8535 rq_repin_lock(this_rq, rf);
8537 return pulled_task;
8541 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
8542 * running tasks off the busiest CPU onto idle CPUs. It requires at
8543 * least 1 task to be running on each physical CPU where possible, and
8544 * avoids physical / logical imbalances.
8546 static int active_load_balance_cpu_stop(void *data)
8548 struct rq *busiest_rq = data;
8549 int busiest_cpu = cpu_of(busiest_rq);
8550 int target_cpu = busiest_rq->push_cpu;
8551 struct rq *target_rq = cpu_rq(target_cpu);
8552 struct sched_domain *sd;
8553 struct task_struct *p = NULL;
8554 struct rq_flags rf;
8556 rq_lock_irq(busiest_rq, &rf);
8558 /* make sure the requested cpu hasn't gone down in the meantime */
8559 if (unlikely(busiest_cpu != smp_processor_id() ||
8560 !busiest_rq->active_balance))
8561 goto out_unlock;
8563 /* Is there any task to move? */
8564 if (busiest_rq->nr_running <= 1)
8565 goto out_unlock;
8568 * This condition is "impossible", if it occurs
8569 * we need to fix it. Originally reported by
8570 * Bjorn Helgaas on a 128-cpu setup.
8572 BUG_ON(busiest_rq == target_rq);
8574 /* Search for an sd spanning us and the target CPU. */
8575 rcu_read_lock();
8576 for_each_domain(target_cpu, sd) {
8577 if ((sd->flags & SD_LOAD_BALANCE) &&
8578 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
8579 break;
8582 if (likely(sd)) {
8583 struct lb_env env = {
8584 .sd = sd,
8585 .dst_cpu = target_cpu,
8586 .dst_rq = target_rq,
8587 .src_cpu = busiest_rq->cpu,
8588 .src_rq = busiest_rq,
8589 .idle = CPU_IDLE,
8591 * can_migrate_task() doesn't need to compute new_dst_cpu
8592 * for active balancing. Since we have CPU_IDLE, but no
8593 * @dst_grpmask we need to make that test go away with lying
8594 * about DST_PINNED.
8596 .flags = LBF_DST_PINNED,
8599 schedstat_inc(sd->alb_count);
8600 update_rq_clock(busiest_rq);
8602 p = detach_one_task(&env);
8603 if (p) {
8604 schedstat_inc(sd->alb_pushed);
8605 /* Active balancing done, reset the failure counter. */
8606 sd->nr_balance_failed = 0;
8607 } else {
8608 schedstat_inc(sd->alb_failed);
8611 rcu_read_unlock();
8612 out_unlock:
8613 busiest_rq->active_balance = 0;
8614 rq_unlock(busiest_rq, &rf);
8616 if (p)
8617 attach_one_task(target_rq, p);
8619 local_irq_enable();
8621 return 0;
8624 static inline int on_null_domain(struct rq *rq)
8626 return unlikely(!rcu_dereference_sched(rq->sd));
8629 #ifdef CONFIG_NO_HZ_COMMON
8631 * idle load balancing details
8632 * - When one of the busy CPUs notice that there may be an idle rebalancing
8633 * needed, they will kick the idle load balancer, which then does idle
8634 * load balancing for all the idle CPUs.
8636 static struct {
8637 cpumask_var_t idle_cpus_mask;
8638 atomic_t nr_cpus;
8639 unsigned long next_balance; /* in jiffy units */
8640 } nohz ____cacheline_aligned;
8642 static inline int find_new_ilb(void)
8644 int ilb = cpumask_first(nohz.idle_cpus_mask);
8646 if (ilb < nr_cpu_ids && idle_cpu(ilb))
8647 return ilb;
8649 return nr_cpu_ids;
8653 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
8654 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
8655 * CPU (if there is one).
8657 static void nohz_balancer_kick(void)
8659 int ilb_cpu;
8661 nohz.next_balance++;
8663 ilb_cpu = find_new_ilb();
8665 if (ilb_cpu >= nr_cpu_ids)
8666 return;
8668 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
8669 return;
8671 * Use smp_send_reschedule() instead of resched_cpu().
8672 * This way we generate a sched IPI on the target cpu which
8673 * is idle. And the softirq performing nohz idle load balance
8674 * will be run before returning from the IPI.
8676 smp_send_reschedule(ilb_cpu);
8677 return;
8680 void nohz_balance_exit_idle(unsigned int cpu)
8682 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
8684 * Completely isolated CPUs don't ever set, so we must test.
8686 if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
8687 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
8688 atomic_dec(&nohz.nr_cpus);
8690 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
8694 static inline void set_cpu_sd_state_busy(void)
8696 struct sched_domain *sd;
8697 int cpu = smp_processor_id();
8699 rcu_read_lock();
8700 sd = rcu_dereference(per_cpu(sd_llc, cpu));
8702 if (!sd || !sd->nohz_idle)
8703 goto unlock;
8704 sd->nohz_idle = 0;
8706 atomic_inc(&sd->shared->nr_busy_cpus);
8707 unlock:
8708 rcu_read_unlock();
8711 void set_cpu_sd_state_idle(void)
8713 struct sched_domain *sd;
8714 int cpu = smp_processor_id();
8716 rcu_read_lock();
8717 sd = rcu_dereference(per_cpu(sd_llc, cpu));
8719 if (!sd || sd->nohz_idle)
8720 goto unlock;
8721 sd->nohz_idle = 1;
8723 atomic_dec(&sd->shared->nr_busy_cpus);
8724 unlock:
8725 rcu_read_unlock();
8729 * This routine will record that the cpu is going idle with tick stopped.
8730 * This info will be used in performing idle load balancing in the future.
8732 void nohz_balance_enter_idle(int cpu)
8735 * If this cpu is going down, then nothing needs to be done.
8737 if (!cpu_active(cpu))
8738 return;
8740 /* Spare idle load balancing on CPUs that don't want to be disturbed: */
8741 if (!is_housekeeping_cpu(cpu))
8742 return;
8744 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
8745 return;
8748 * If we're a completely isolated CPU, we don't play.
8750 if (on_null_domain(cpu_rq(cpu)))
8751 return;
8753 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
8754 atomic_inc(&nohz.nr_cpus);
8755 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
8757 #endif
8759 static DEFINE_SPINLOCK(balancing);
8762 * Scale the max load_balance interval with the number of CPUs in the system.
8763 * This trades load-balance latency on larger machines for less cross talk.
8765 void update_max_interval(void)
8767 max_load_balance_interval = HZ*num_online_cpus()/10;
8771 * It checks each scheduling domain to see if it is due to be balanced,
8772 * and initiates a balancing operation if so.
8774 * Balancing parameters are set up in init_sched_domains.
8776 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
8778 int continue_balancing = 1;
8779 int cpu = rq->cpu;
8780 unsigned long interval;
8781 struct sched_domain *sd;
8782 /* Earliest time when we have to do rebalance again */
8783 unsigned long next_balance = jiffies + 60*HZ;
8784 int update_next_balance = 0;
8785 int need_serialize, need_decay = 0;
8786 u64 max_cost = 0;
8788 update_blocked_averages(cpu);
8790 rcu_read_lock();
8791 for_each_domain(cpu, sd) {
8793 * Decay the newidle max times here because this is a regular
8794 * visit to all the domains. Decay ~1% per second.
8796 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
8797 sd->max_newidle_lb_cost =
8798 (sd->max_newidle_lb_cost * 253) / 256;
8799 sd->next_decay_max_lb_cost = jiffies + HZ;
8800 need_decay = 1;
8802 max_cost += sd->max_newidle_lb_cost;
8804 if (!(sd->flags & SD_LOAD_BALANCE))
8805 continue;
8808 * Stop the load balance at this level. There is another
8809 * CPU in our sched group which is doing load balancing more
8810 * actively.
8812 if (!continue_balancing) {
8813 if (need_decay)
8814 continue;
8815 break;
8818 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
8820 need_serialize = sd->flags & SD_SERIALIZE;
8821 if (need_serialize) {
8822 if (!spin_trylock(&balancing))
8823 goto out;
8826 if (time_after_eq(jiffies, sd->last_balance + interval)) {
8827 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
8829 * The LBF_DST_PINNED logic could have changed
8830 * env->dst_cpu, so we can't know our idle
8831 * state even if we migrated tasks. Update it.
8833 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
8835 sd->last_balance = jiffies;
8836 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
8838 if (need_serialize)
8839 spin_unlock(&balancing);
8840 out:
8841 if (time_after(next_balance, sd->last_balance + interval)) {
8842 next_balance = sd->last_balance + interval;
8843 update_next_balance = 1;
8846 if (need_decay) {
8848 * Ensure the rq-wide value also decays but keep it at a
8849 * reasonable floor to avoid funnies with rq->avg_idle.
8851 rq->max_idle_balance_cost =
8852 max((u64)sysctl_sched_migration_cost, max_cost);
8854 rcu_read_unlock();
8857 * next_balance will be updated only when there is a need.
8858 * When the cpu is attached to null domain for ex, it will not be
8859 * updated.
8861 if (likely(update_next_balance)) {
8862 rq->next_balance = next_balance;
8864 #ifdef CONFIG_NO_HZ_COMMON
8866 * If this CPU has been elected to perform the nohz idle
8867 * balance. Other idle CPUs have already rebalanced with
8868 * nohz_idle_balance() and nohz.next_balance has been
8869 * updated accordingly. This CPU is now running the idle load
8870 * balance for itself and we need to update the
8871 * nohz.next_balance accordingly.
8873 if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
8874 nohz.next_balance = rq->next_balance;
8875 #endif
8879 #ifdef CONFIG_NO_HZ_COMMON
8881 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
8882 * rebalancing for all the cpus for whom scheduler ticks are stopped.
8884 static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
8886 int this_cpu = this_rq->cpu;
8887 struct rq *rq;
8888 int balance_cpu;
8889 /* Earliest time when we have to do rebalance again */
8890 unsigned long next_balance = jiffies + 60*HZ;
8891 int update_next_balance = 0;
8893 if (idle != CPU_IDLE ||
8894 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
8895 goto end;
8897 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8898 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
8899 continue;
8902 * If this cpu gets work to do, stop the load balancing
8903 * work being done for other cpus. Next load
8904 * balancing owner will pick it up.
8906 if (need_resched())
8907 break;
8909 rq = cpu_rq(balance_cpu);
8912 * If time for next balance is due,
8913 * do the balance.
8915 if (time_after_eq(jiffies, rq->next_balance)) {
8916 struct rq_flags rf;
8918 rq_lock_irq(rq, &rf);
8919 update_rq_clock(rq);
8920 cpu_load_update_idle(rq);
8921 rq_unlock_irq(rq, &rf);
8923 rebalance_domains(rq, CPU_IDLE);
8926 if (time_after(next_balance, rq->next_balance)) {
8927 next_balance = rq->next_balance;
8928 update_next_balance = 1;
8933 * next_balance will be updated only when there is a need.
8934 * When the CPU is attached to null domain for ex, it will not be
8935 * updated.
8937 if (likely(update_next_balance))
8938 nohz.next_balance = next_balance;
8939 end:
8940 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
8944 * Current heuristic for kicking the idle load balancer in the presence
8945 * of an idle cpu in the system.
8946 * - This rq has more than one task.
8947 * - This rq has at least one CFS task and the capacity of the CPU is
8948 * significantly reduced because of RT tasks or IRQs.
8949 * - At parent of LLC scheduler domain level, this cpu's scheduler group has
8950 * multiple busy cpu.
8951 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
8952 * domain span are idle.
8954 static inline bool nohz_kick_needed(struct rq *rq)
8956 unsigned long now = jiffies;
8957 struct sched_domain_shared *sds;
8958 struct sched_domain *sd;
8959 int nr_busy, i, cpu = rq->cpu;
8960 bool kick = false;
8962 if (unlikely(rq->idle_balance))
8963 return false;
8966 * We may be recently in ticked or tickless idle mode. At the first
8967 * busy tick after returning from idle, we will update the busy stats.
8969 set_cpu_sd_state_busy();
8970 nohz_balance_exit_idle(cpu);
8973 * None are in tickless mode and hence no need for NOHZ idle load
8974 * balancing.
8976 if (likely(!atomic_read(&nohz.nr_cpus)))
8977 return false;
8979 if (time_before(now, nohz.next_balance))
8980 return false;
8982 if (rq->nr_running >= 2)
8983 return true;
8985 rcu_read_lock();
8986 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
8987 if (sds) {
8989 * XXX: write a coherent comment on why we do this.
8990 * See also: http://lkml.kernel.org/r/20111202010832.602203411@sbsiddha-desk.sc.intel.com
8992 nr_busy = atomic_read(&sds->nr_busy_cpus);
8993 if (nr_busy > 1) {
8994 kick = true;
8995 goto unlock;
9000 sd = rcu_dereference(rq->sd);
9001 if (sd) {
9002 if ((rq->cfs.h_nr_running >= 1) &&
9003 check_cpu_capacity(rq, sd)) {
9004 kick = true;
9005 goto unlock;
9009 sd = rcu_dereference(per_cpu(sd_asym, cpu));
9010 if (sd) {
9011 for_each_cpu(i, sched_domain_span(sd)) {
9012 if (i == cpu ||
9013 !cpumask_test_cpu(i, nohz.idle_cpus_mask))
9014 continue;
9016 if (sched_asym_prefer(i, cpu)) {
9017 kick = true;
9018 goto unlock;
9022 unlock:
9023 rcu_read_unlock();
9024 return kick;
9026 #else
9027 static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
9028 #endif
9031 * run_rebalance_domains is triggered when needed from the scheduler tick.
9032 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
9034 static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
9036 struct rq *this_rq = this_rq();
9037 enum cpu_idle_type idle = this_rq->idle_balance ?
9038 CPU_IDLE : CPU_NOT_IDLE;
9041 * If this cpu has a pending nohz_balance_kick, then do the
9042 * balancing on behalf of the other idle cpus whose ticks are
9043 * stopped. Do nohz_idle_balance *before* rebalance_domains to
9044 * give the idle cpus a chance to load balance. Else we may
9045 * load balance only within the local sched_domain hierarchy
9046 * and abort nohz_idle_balance altogether if we pull some load.
9048 nohz_idle_balance(this_rq, idle);
9049 rebalance_domains(this_rq, idle);
9053 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
9055 void trigger_load_balance(struct rq *rq)
9057 /* Don't need to rebalance while attached to NULL domain */
9058 if (unlikely(on_null_domain(rq)))
9059 return;
9061 if (time_after_eq(jiffies, rq->next_balance))
9062 raise_softirq(SCHED_SOFTIRQ);
9063 #ifdef CONFIG_NO_HZ_COMMON
9064 if (nohz_kick_needed(rq))
9065 nohz_balancer_kick();
9066 #endif
9069 static void rq_online_fair(struct rq *rq)
9071 update_sysctl();
9073 update_runtime_enabled(rq);
9076 static void rq_offline_fair(struct rq *rq)
9078 update_sysctl();
9080 /* Ensure any throttled groups are reachable by pick_next_task */
9081 unthrottle_offline_cfs_rqs(rq);
9084 #endif /* CONFIG_SMP */
9087 * scheduler tick hitting a task of our scheduling class:
9089 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
9091 struct cfs_rq *cfs_rq;
9092 struct sched_entity *se = &curr->se;
9094 for_each_sched_entity(se) {
9095 cfs_rq = cfs_rq_of(se);
9096 entity_tick(cfs_rq, se, queued);
9099 if (static_branch_unlikely(&sched_numa_balancing))
9100 task_tick_numa(rq, curr);
9104 * called on fork with the child task as argument from the parent's context
9105 * - child not yet on the tasklist
9106 * - preemption disabled
9108 static void task_fork_fair(struct task_struct *p)
9110 struct cfs_rq *cfs_rq;
9111 struct sched_entity *se = &p->se, *curr;
9112 struct rq *rq = this_rq();
9113 struct rq_flags rf;
9115 rq_lock(rq, &rf);
9116 update_rq_clock(rq);
9118 cfs_rq = task_cfs_rq(current);
9119 curr = cfs_rq->curr;
9120 if (curr) {
9121 update_curr(cfs_rq);
9122 se->vruntime = curr->vruntime;
9124 place_entity(cfs_rq, se, 1);
9126 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
9128 * Upon rescheduling, sched_class::put_prev_task() will place
9129 * 'current' within the tree based on its new key value.
9131 swap(curr->vruntime, se->vruntime);
9132 resched_curr(rq);
9135 se->vruntime -= cfs_rq->min_vruntime;
9136 rq_unlock(rq, &rf);
9140 * Priority of the task has changed. Check to see if we preempt
9141 * the current task.
9143 static void
9144 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
9146 if (!task_on_rq_queued(p))
9147 return;
9150 * Reschedule if we are currently running on this runqueue and
9151 * our priority decreased, or if we are not currently running on
9152 * this runqueue and our priority is higher than the current's
9154 if (rq->curr == p) {
9155 if (p->prio > oldprio)
9156 resched_curr(rq);
9157 } else
9158 check_preempt_curr(rq, p, 0);
9161 static inline bool vruntime_normalized(struct task_struct *p)
9163 struct sched_entity *se = &p->se;
9166 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
9167 * the dequeue_entity(.flags=0) will already have normalized the
9168 * vruntime.
9170 if (p->on_rq)
9171 return true;
9174 * When !on_rq, vruntime of the task has usually NOT been normalized.
9175 * But there are some cases where it has already been normalized:
9177 * - A forked child which is waiting for being woken up by
9178 * wake_up_new_task().
9179 * - A task which has been woken up by try_to_wake_up() and
9180 * waiting for actually being woken up by sched_ttwu_pending().
9182 if (!se->sum_exec_runtime || p->state == TASK_WAKING)
9183 return true;
9185 return false;
9188 #ifdef CONFIG_FAIR_GROUP_SCHED
9190 * Propagate the changes of the sched_entity across the tg tree to make it
9191 * visible to the root
9193 static void propagate_entity_cfs_rq(struct sched_entity *se)
9195 struct cfs_rq *cfs_rq;
9197 /* Start to propagate at parent */
9198 se = se->parent;
9200 for_each_sched_entity(se) {
9201 cfs_rq = cfs_rq_of(se);
9203 if (cfs_rq_throttled(cfs_rq))
9204 break;
9206 update_load_avg(se, UPDATE_TG);
9209 #else
9210 static void propagate_entity_cfs_rq(struct sched_entity *se) { }
9211 #endif
9213 static void detach_entity_cfs_rq(struct sched_entity *se)
9215 struct cfs_rq *cfs_rq = cfs_rq_of(se);
9217 /* Catch up with the cfs_rq and remove our load when we leave */
9218 update_load_avg(se, 0);
9219 detach_entity_load_avg(cfs_rq, se);
9220 update_tg_load_avg(cfs_rq, false);
9221 propagate_entity_cfs_rq(se);
9224 static void attach_entity_cfs_rq(struct sched_entity *se)
9226 struct cfs_rq *cfs_rq = cfs_rq_of(se);
9228 #ifdef CONFIG_FAIR_GROUP_SCHED
9230 * Since the real-depth could have been changed (only FAIR
9231 * class maintain depth value), reset depth properly.
9233 se->depth = se->parent ? se->parent->depth + 1 : 0;
9234 #endif
9236 /* Synchronize entity with its cfs_rq */
9237 update_load_avg(se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
9238 attach_entity_load_avg(cfs_rq, se);
9239 update_tg_load_avg(cfs_rq, false);
9240 propagate_entity_cfs_rq(se);
9243 static void detach_task_cfs_rq(struct task_struct *p)
9245 struct sched_entity *se = &p->se;
9246 struct cfs_rq *cfs_rq = cfs_rq_of(se);
9248 if (!vruntime_normalized(p)) {
9250 * Fix up our vruntime so that the current sleep doesn't
9251 * cause 'unlimited' sleep bonus.
9253 place_entity(cfs_rq, se, 0);
9254 se->vruntime -= cfs_rq->min_vruntime;
9257 detach_entity_cfs_rq(se);
9260 static void attach_task_cfs_rq(struct task_struct *p)
9262 struct sched_entity *se = &p->se;
9263 struct cfs_rq *cfs_rq = cfs_rq_of(se);
9265 attach_entity_cfs_rq(se);
9267 if (!vruntime_normalized(p))
9268 se->vruntime += cfs_rq->min_vruntime;
9271 static void switched_from_fair(struct rq *rq, struct task_struct *p)
9273 detach_task_cfs_rq(p);
9276 static void switched_to_fair(struct rq *rq, struct task_struct *p)
9278 attach_task_cfs_rq(p);
9280 if (task_on_rq_queued(p)) {
9282 * We were most likely switched from sched_rt, so
9283 * kick off the schedule if running, otherwise just see
9284 * if we can still preempt the current task.
9286 if (rq->curr == p)
9287 resched_curr(rq);
9288 else
9289 check_preempt_curr(rq, p, 0);
9293 /* Account for a task changing its policy or group.
9295 * This routine is mostly called to set cfs_rq->curr field when a task
9296 * migrates between groups/classes.
9298 static void set_curr_task_fair(struct rq *rq)
9300 struct sched_entity *se = &rq->curr->se;
9302 for_each_sched_entity(se) {
9303 struct cfs_rq *cfs_rq = cfs_rq_of(se);
9305 set_next_entity(cfs_rq, se);
9306 /* ensure bandwidth has been allocated on our new cfs_rq */
9307 account_cfs_rq_runtime(cfs_rq, 0);
9311 void init_cfs_rq(struct cfs_rq *cfs_rq)
9313 cfs_rq->tasks_timeline = RB_ROOT;
9314 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
9315 #ifndef CONFIG_64BIT
9316 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
9317 #endif
9318 #ifdef CONFIG_SMP
9319 #ifdef CONFIG_FAIR_GROUP_SCHED
9320 cfs_rq->propagate_avg = 0;
9321 #endif
9322 atomic_long_set(&cfs_rq->removed_load_avg, 0);
9323 atomic_long_set(&cfs_rq->removed_util_avg, 0);
9324 #endif
9327 #ifdef CONFIG_FAIR_GROUP_SCHED
9328 static void task_set_group_fair(struct task_struct *p)
9330 struct sched_entity *se = &p->se;
9332 set_task_rq(p, task_cpu(p));
9333 se->depth = se->parent ? se->parent->depth + 1 : 0;
9336 static void task_move_group_fair(struct task_struct *p)
9338 detach_task_cfs_rq(p);
9339 set_task_rq(p, task_cpu(p));
9341 #ifdef CONFIG_SMP
9342 /* Tell se's cfs_rq has been changed -- migrated */
9343 p->se.avg.last_update_time = 0;
9344 #endif
9345 attach_task_cfs_rq(p);
9348 static void task_change_group_fair(struct task_struct *p, int type)
9350 switch (type) {
9351 case TASK_SET_GROUP:
9352 task_set_group_fair(p);
9353 break;
9355 case TASK_MOVE_GROUP:
9356 task_move_group_fair(p);
9357 break;
9361 void free_fair_sched_group(struct task_group *tg)
9363 int i;
9365 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
9367 for_each_possible_cpu(i) {
9368 if (tg->cfs_rq)
9369 kfree(tg->cfs_rq[i]);
9370 if (tg->se)
9371 kfree(tg->se[i]);
9374 kfree(tg->cfs_rq);
9375 kfree(tg->se);
9378 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9380 struct sched_entity *se;
9381 struct cfs_rq *cfs_rq;
9382 int i;
9384 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
9385 if (!tg->cfs_rq)
9386 goto err;
9387 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
9388 if (!tg->se)
9389 goto err;
9391 tg->shares = NICE_0_LOAD;
9393 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
9395 for_each_possible_cpu(i) {
9396 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
9397 GFP_KERNEL, cpu_to_node(i));
9398 if (!cfs_rq)
9399 goto err;
9401 se = kzalloc_node(sizeof(struct sched_entity),
9402 GFP_KERNEL, cpu_to_node(i));
9403 if (!se)
9404 goto err_free_rq;
9406 init_cfs_rq(cfs_rq);
9407 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
9408 init_entity_runnable_average(se);
9411 return 1;
9413 err_free_rq:
9414 kfree(cfs_rq);
9415 err:
9416 return 0;
9419 void online_fair_sched_group(struct task_group *tg)
9421 struct sched_entity *se;
9422 struct rq *rq;
9423 int i;
9425 for_each_possible_cpu(i) {
9426 rq = cpu_rq(i);
9427 se = tg->se[i];
9429 raw_spin_lock_irq(&rq->lock);
9430 update_rq_clock(rq);
9431 attach_entity_cfs_rq(se);
9432 sync_throttle(tg, i);
9433 raw_spin_unlock_irq(&rq->lock);
9437 void unregister_fair_sched_group(struct task_group *tg)
9439 unsigned long flags;
9440 struct rq *rq;
9441 int cpu;
9443 for_each_possible_cpu(cpu) {
9444 if (tg->se[cpu])
9445 remove_entity_load_avg(tg->se[cpu]);
9448 * Only empty task groups can be destroyed; so we can speculatively
9449 * check on_list without danger of it being re-added.
9451 if (!tg->cfs_rq[cpu]->on_list)
9452 continue;
9454 rq = cpu_rq(cpu);
9456 raw_spin_lock_irqsave(&rq->lock, flags);
9457 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
9458 raw_spin_unlock_irqrestore(&rq->lock, flags);
9462 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
9463 struct sched_entity *se, int cpu,
9464 struct sched_entity *parent)
9466 struct rq *rq = cpu_rq(cpu);
9468 cfs_rq->tg = tg;
9469 cfs_rq->rq = rq;
9470 init_cfs_rq_runtime(cfs_rq);
9472 tg->cfs_rq[cpu] = cfs_rq;
9473 tg->se[cpu] = se;
9475 /* se could be NULL for root_task_group */
9476 if (!se)
9477 return;
9479 if (!parent) {
9480 se->cfs_rq = &rq->cfs;
9481 se->depth = 0;
9482 } else {
9483 se->cfs_rq = parent->my_q;
9484 se->depth = parent->depth + 1;
9487 se->my_q = cfs_rq;
9488 /* guarantee group entities always have weight */
9489 update_load_set(&se->load, NICE_0_LOAD);
9490 se->parent = parent;
9493 static DEFINE_MUTEX(shares_mutex);
9495 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
9497 int i;
9500 * We can't change the weight of the root cgroup.
9502 if (!tg->se[0])
9503 return -EINVAL;
9505 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
9507 mutex_lock(&shares_mutex);
9508 if (tg->shares == shares)
9509 goto done;
9511 tg->shares = shares;
9512 for_each_possible_cpu(i) {
9513 struct rq *rq = cpu_rq(i);
9514 struct sched_entity *se = tg->se[i];
9515 struct rq_flags rf;
9517 /* Propagate contribution to hierarchy */
9518 rq_lock_irqsave(rq, &rf);
9519 update_rq_clock(rq);
9520 for_each_sched_entity(se) {
9521 update_load_avg(se, UPDATE_TG);
9522 update_cfs_shares(se);
9524 rq_unlock_irqrestore(rq, &rf);
9527 done:
9528 mutex_unlock(&shares_mutex);
9529 return 0;
9531 #else /* CONFIG_FAIR_GROUP_SCHED */
9533 void free_fair_sched_group(struct task_group *tg) { }
9535 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9537 return 1;
9540 void online_fair_sched_group(struct task_group *tg) { }
9542 void unregister_fair_sched_group(struct task_group *tg) { }
9544 #endif /* CONFIG_FAIR_GROUP_SCHED */
9547 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
9549 struct sched_entity *se = &task->se;
9550 unsigned int rr_interval = 0;
9553 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
9554 * idle runqueue:
9556 if (rq->cfs.load.weight)
9557 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
9559 return rr_interval;
9563 * All the scheduling class methods:
9565 const struct sched_class fair_sched_class = {
9566 .next = &idle_sched_class,
9567 .enqueue_task = enqueue_task_fair,
9568 .dequeue_task = dequeue_task_fair,
9569 .yield_task = yield_task_fair,
9570 .yield_to_task = yield_to_task_fair,
9572 .check_preempt_curr = check_preempt_wakeup,
9574 .pick_next_task = pick_next_task_fair,
9575 .put_prev_task = put_prev_task_fair,
9577 #ifdef CONFIG_SMP
9578 .select_task_rq = select_task_rq_fair,
9579 .migrate_task_rq = migrate_task_rq_fair,
9581 .rq_online = rq_online_fair,
9582 .rq_offline = rq_offline_fair,
9584 .task_dead = task_dead_fair,
9585 .set_cpus_allowed = set_cpus_allowed_common,
9586 #endif
9588 .set_curr_task = set_curr_task_fair,
9589 .task_tick = task_tick_fair,
9590 .task_fork = task_fork_fair,
9592 .prio_changed = prio_changed_fair,
9593 .switched_from = switched_from_fair,
9594 .switched_to = switched_to_fair,
9596 .get_rr_interval = get_rr_interval_fair,
9598 .update_curr = update_curr_fair,
9600 #ifdef CONFIG_FAIR_GROUP_SCHED
9601 .task_change_group = task_change_group_fair,
9602 #endif
9605 #ifdef CONFIG_SCHED_DEBUG
9606 void print_cfs_stats(struct seq_file *m, int cpu)
9608 struct cfs_rq *cfs_rq, *pos;
9610 rcu_read_lock();
9611 for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos)
9612 print_cfs_rq(m, cpu, cfs_rq);
9613 rcu_read_unlock();
9616 #ifdef CONFIG_NUMA_BALANCING
9617 void show_numa_stats(struct task_struct *p, struct seq_file *m)
9619 int node;
9620 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
9622 for_each_online_node(node) {
9623 if (p->numa_faults) {
9624 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
9625 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
9627 if (p->numa_group) {
9628 gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)],
9629 gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)];
9631 print_numa_stats(m, node, tsf, tpf, gsf, gpf);
9634 #endif /* CONFIG_NUMA_BALANCING */
9635 #endif /* CONFIG_SCHED_DEBUG */
9637 __init void init_sched_fair_class(void)
9639 #ifdef CONFIG_SMP
9640 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
9642 #ifdef CONFIG_NO_HZ_COMMON
9643 nohz.next_balance = jiffies;
9644 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
9645 #endif
9646 #endif /* SMP */