4 * @remark Copyright 2002-2009 OProfile authors
5 * @remark Read the file COPYING
7 * @author John Levon <levon@movementarian.org>
8 * @author Barry Kasindorf
9 * @author Robert Richter <robert.richter@amd.com>
11 * This is the core of the buffer management. Each
12 * CPU buffer is processed and entered into the
13 * global event buffer. Such processing is necessary
14 * in several circumstances, mentioned below.
16 * The processing does the job of converting the
17 * transitory EIP value into a persistent dentry/offset
18 * value that the profiler can record at its leisure.
20 * See fs/dcookies.c for a description of the dentry/offset
24 #include <linux/file.h>
26 #include <linux/workqueue.h>
27 #include <linux/notifier.h>
28 #include <linux/dcookies.h>
29 #include <linux/profile.h>
30 #include <linux/module.h>
32 #include <linux/oprofile.h>
33 #include <linux/sched.h>
34 #include <linux/sched/mm.h>
35 #include <linux/sched/task.h>
36 #include <linux/gfp.h>
38 #include "oprofile_stats.h"
39 #include "event_buffer.h"
40 #include "cpu_buffer.h"
41 #include "buffer_sync.h"
43 static LIST_HEAD(dying_tasks
);
44 static LIST_HEAD(dead_tasks
);
45 static cpumask_var_t marked_cpus
;
46 static DEFINE_SPINLOCK(task_mortuary
);
47 static void process_task_mortuary(void);
49 /* Take ownership of the task struct and place it on the
50 * list for processing. Only after two full buffer syncs
51 * does the task eventually get freed, because by then
52 * we are sure we will not reference it again.
53 * Can be invoked from softirq via RCU callback due to
54 * call_rcu() of the task struct, hence the _irqsave.
57 task_free_notify(struct notifier_block
*self
, unsigned long val
, void *data
)
60 struct task_struct
*task
= data
;
61 spin_lock_irqsave(&task_mortuary
, flags
);
62 list_add(&task
->tasks
, &dying_tasks
);
63 spin_unlock_irqrestore(&task_mortuary
, flags
);
68 /* The task is on its way out. A sync of the buffer means we can catch
69 * any remaining samples for this task.
72 task_exit_notify(struct notifier_block
*self
, unsigned long val
, void *data
)
74 /* To avoid latency problems, we only process the current CPU,
75 * hoping that most samples for the task are on this CPU
77 sync_buffer(raw_smp_processor_id());
82 /* The task is about to try a do_munmap(). We peek at what it's going to
83 * do, and if it's an executable region, process the samples first, so
84 * we don't lose any. This does not have to be exact, it's a QoI issue
88 munmap_notify(struct notifier_block
*self
, unsigned long val
, void *data
)
90 unsigned long addr
= (unsigned long)data
;
91 struct mm_struct
*mm
= current
->mm
;
92 struct vm_area_struct
*mpnt
;
94 down_read(&mm
->mmap_sem
);
96 mpnt
= find_vma(mm
, addr
);
97 if (mpnt
&& mpnt
->vm_file
&& (mpnt
->vm_flags
& VM_EXEC
)) {
98 up_read(&mm
->mmap_sem
);
99 /* To avoid latency problems, we only process the current CPU,
100 * hoping that most samples for the task are on this CPU
102 sync_buffer(raw_smp_processor_id());
106 up_read(&mm
->mmap_sem
);
111 /* We need to be told about new modules so we don't attribute to a previously
112 * loaded module, or drop the samples on the floor.
115 module_load_notify(struct notifier_block
*self
, unsigned long val
, void *data
)
117 #ifdef CONFIG_MODULES
118 if (val
!= MODULE_STATE_COMING
)
121 /* FIXME: should we process all CPU buffers ? */
122 mutex_lock(&buffer_mutex
);
123 add_event_entry(ESCAPE_CODE
);
124 add_event_entry(MODULE_LOADED_CODE
);
125 mutex_unlock(&buffer_mutex
);
131 static struct notifier_block task_free_nb
= {
132 .notifier_call
= task_free_notify
,
135 static struct notifier_block task_exit_nb
= {
136 .notifier_call
= task_exit_notify
,
139 static struct notifier_block munmap_nb
= {
140 .notifier_call
= munmap_notify
,
143 static struct notifier_block module_load_nb
= {
144 .notifier_call
= module_load_notify
,
147 static void free_all_tasks(void)
149 /* make sure we don't leak task structs */
150 process_task_mortuary();
151 process_task_mortuary();
158 if (!zalloc_cpumask_var(&marked_cpus
, GFP_KERNEL
))
161 err
= task_handoff_register(&task_free_nb
);
164 err
= profile_event_register(PROFILE_TASK_EXIT
, &task_exit_nb
);
167 err
= profile_event_register(PROFILE_MUNMAP
, &munmap_nb
);
170 err
= register_module_notifier(&module_load_nb
);
179 profile_event_unregister(PROFILE_MUNMAP
, &munmap_nb
);
181 profile_event_unregister(PROFILE_TASK_EXIT
, &task_exit_nb
);
183 task_handoff_unregister(&task_free_nb
);
186 free_cpumask_var(marked_cpus
);
194 unregister_module_notifier(&module_load_nb
);
195 profile_event_unregister(PROFILE_MUNMAP
, &munmap_nb
);
196 profile_event_unregister(PROFILE_TASK_EXIT
, &task_exit_nb
);
197 task_handoff_unregister(&task_free_nb
);
198 barrier(); /* do all of the above first */
203 free_cpumask_var(marked_cpus
);
207 /* Optimisation. We can manage without taking the dcookie sem
208 * because we cannot reach this code without at least one
209 * dcookie user still being registered (namely, the reader
210 * of the event buffer). */
211 static inline unsigned long fast_get_dcookie(const struct path
*path
)
213 unsigned long cookie
;
215 if (path
->dentry
->d_flags
& DCACHE_COOKIE
)
216 return (unsigned long)path
->dentry
;
217 get_dcookie(path
, &cookie
);
222 /* Look up the dcookie for the task's mm->exe_file,
223 * which corresponds loosely to "application name". This is
224 * not strictly necessary but allows oprofile to associate
225 * shared-library samples with particular applications
227 static unsigned long get_exec_dcookie(struct mm_struct
*mm
)
229 unsigned long cookie
= NO_COOKIE
;
230 struct file
*exe_file
;
235 exe_file
= get_mm_exe_file(mm
);
239 cookie
= fast_get_dcookie(&exe_file
->f_path
);
246 /* Convert the EIP value of a sample into a persistent dentry/offset
247 * pair that can then be added to the global event buffer. We make
248 * sure to do this lookup before a mm->mmap modification happens so
249 * we don't lose track.
251 * The caller must ensure the mm is not nil (ie: not a kernel thread).
254 lookup_dcookie(struct mm_struct
*mm
, unsigned long addr
, off_t
*offset
)
256 unsigned long cookie
= NO_COOKIE
;
257 struct vm_area_struct
*vma
;
259 down_read(&mm
->mmap_sem
);
260 for (vma
= find_vma(mm
, addr
); vma
; vma
= vma
->vm_next
) {
262 if (addr
< vma
->vm_start
|| addr
>= vma
->vm_end
)
266 cookie
= fast_get_dcookie(&vma
->vm_file
->f_path
);
267 *offset
= (vma
->vm_pgoff
<< PAGE_SHIFT
) + addr
-
270 /* must be an anonymous map */
278 cookie
= INVALID_COOKIE
;
279 up_read(&mm
->mmap_sem
);
284 static unsigned long last_cookie
= INVALID_COOKIE
;
286 static void add_cpu_switch(int i
)
288 add_event_entry(ESCAPE_CODE
);
289 add_event_entry(CPU_SWITCH_CODE
);
291 last_cookie
= INVALID_COOKIE
;
294 static void add_kernel_ctx_switch(unsigned int in_kernel
)
296 add_event_entry(ESCAPE_CODE
);
298 add_event_entry(KERNEL_ENTER_SWITCH_CODE
);
300 add_event_entry(KERNEL_EXIT_SWITCH_CODE
);
304 add_user_ctx_switch(struct task_struct
const *task
, unsigned long cookie
)
306 add_event_entry(ESCAPE_CODE
);
307 add_event_entry(CTX_SWITCH_CODE
);
308 add_event_entry(task
->pid
);
309 add_event_entry(cookie
);
310 /* Another code for daemon back-compat */
311 add_event_entry(ESCAPE_CODE
);
312 add_event_entry(CTX_TGID_CODE
);
313 add_event_entry(task
->tgid
);
317 static void add_cookie_switch(unsigned long cookie
)
319 add_event_entry(ESCAPE_CODE
);
320 add_event_entry(COOKIE_SWITCH_CODE
);
321 add_event_entry(cookie
);
325 static void add_trace_begin(void)
327 add_event_entry(ESCAPE_CODE
);
328 add_event_entry(TRACE_BEGIN_CODE
);
331 static void add_data(struct op_entry
*entry
, struct mm_struct
*mm
)
333 unsigned long code
, pc
, val
;
334 unsigned long cookie
;
337 if (!op_cpu_buffer_get_data(entry
, &code
))
339 if (!op_cpu_buffer_get_data(entry
, &pc
))
341 if (!op_cpu_buffer_get_size(entry
))
345 cookie
= lookup_dcookie(mm
, pc
, &offset
);
347 if (cookie
== NO_COOKIE
)
349 if (cookie
== INVALID_COOKIE
) {
350 atomic_inc(&oprofile_stats
.sample_lost_no_mapping
);
353 if (cookie
!= last_cookie
) {
354 add_cookie_switch(cookie
);
355 last_cookie
= cookie
;
360 add_event_entry(ESCAPE_CODE
);
361 add_event_entry(code
);
362 add_event_entry(offset
); /* Offset from Dcookie */
364 while (op_cpu_buffer_get_data(entry
, &val
))
365 add_event_entry(val
);
368 static inline void add_sample_entry(unsigned long offset
, unsigned long event
)
370 add_event_entry(offset
);
371 add_event_entry(event
);
376 * Add a sample to the global event buffer. If possible the
377 * sample is converted into a persistent dentry/offset pair
378 * for later lookup from userspace. Return 0 on failure.
381 add_sample(struct mm_struct
*mm
, struct op_sample
*s
, int in_kernel
)
383 unsigned long cookie
;
387 add_sample_entry(s
->eip
, s
->event
);
391 /* add userspace sample */
394 atomic_inc(&oprofile_stats
.sample_lost_no_mm
);
398 cookie
= lookup_dcookie(mm
, s
->eip
, &offset
);
400 if (cookie
== INVALID_COOKIE
) {
401 atomic_inc(&oprofile_stats
.sample_lost_no_mapping
);
405 if (cookie
!= last_cookie
) {
406 add_cookie_switch(cookie
);
407 last_cookie
= cookie
;
410 add_sample_entry(offset
, s
->event
);
416 static void release_mm(struct mm_struct
*mm
)
423 static inline int is_code(unsigned long val
)
425 return val
== ESCAPE_CODE
;
429 /* Move tasks along towards death. Any tasks on dead_tasks
430 * will definitely have no remaining references in any
431 * CPU buffers at this point, because we use two lists,
432 * and to have reached the list, it must have gone through
433 * one full sync already.
435 static void process_task_mortuary(void)
438 LIST_HEAD(local_dead_tasks
);
439 struct task_struct
*task
;
440 struct task_struct
*ttask
;
442 spin_lock_irqsave(&task_mortuary
, flags
);
444 list_splice_init(&dead_tasks
, &local_dead_tasks
);
445 list_splice_init(&dying_tasks
, &dead_tasks
);
447 spin_unlock_irqrestore(&task_mortuary
, flags
);
449 list_for_each_entry_safe(task
, ttask
, &local_dead_tasks
, tasks
) {
450 list_del(&task
->tasks
);
456 static void mark_done(int cpu
)
460 cpumask_set_cpu(cpu
, marked_cpus
);
462 for_each_online_cpu(i
) {
463 if (!cpumask_test_cpu(i
, marked_cpus
))
467 /* All CPUs have been processed at least once,
468 * we can process the mortuary once
470 process_task_mortuary();
472 cpumask_clear(marked_cpus
);
476 /* FIXME: this is not sufficient if we implement syscall barrier backtrace
477 * traversal, the code switch to sb_sample_start at first kernel enter/exit
478 * switch so we need a fifth state and some special handling in sync_buffer()
487 /* Sync one of the CPU's buffers into the global event buffer.
488 * Here we need to go through each batch of samples punctuated
489 * by context switch notes, taking the task's mmap_sem and doing
490 * lookup in task->mm->mmap to convert EIP into dcookie/offset
493 void sync_buffer(int cpu
)
495 struct mm_struct
*mm
= NULL
;
496 struct mm_struct
*oldmm
;
498 struct task_struct
*new;
499 unsigned long cookie
= 0;
501 sync_buffer_state state
= sb_buffer_start
;
503 unsigned long available
;
505 struct op_entry entry
;
506 struct op_sample
*sample
;
508 mutex_lock(&buffer_mutex
);
512 op_cpu_buffer_reset(cpu
);
513 available
= op_cpu_buffer_entries(cpu
);
515 for (i
= 0; i
< available
; ++i
) {
516 sample
= op_cpu_buffer_read_entry(&entry
, cpu
);
520 if (is_code(sample
->eip
)) {
521 flags
= sample
->event
;
522 if (flags
& TRACE_BEGIN
) {
526 if (flags
& KERNEL_CTX_SWITCH
) {
527 /* kernel/userspace switch */
528 in_kernel
= flags
& IS_KERNEL
;
529 if (state
== sb_buffer_start
)
530 state
= sb_sample_start
;
531 add_kernel_ctx_switch(flags
& IS_KERNEL
);
533 if (flags
& USER_CTX_SWITCH
534 && op_cpu_buffer_get_data(&entry
, &val
)) {
535 /* userspace context switch */
536 new = (struct task_struct
*)val
;
539 mm
= get_task_mm(new);
541 cookie
= get_exec_dcookie(mm
);
542 add_user_ctx_switch(new, cookie
);
544 if (op_cpu_buffer_get_size(&entry
))
545 add_data(&entry
, mm
);
549 if (state
< sb_bt_start
)
553 if (add_sample(mm
, sample
, in_kernel
))
556 /* ignore backtraces if failed to add a sample */
557 if (state
== sb_bt_start
) {
558 state
= sb_bt_ignore
;
559 atomic_inc(&oprofile_stats
.bt_lost_no_mapping
);
566 mutex_unlock(&buffer_mutex
);
569 /* The function can be used to add a buffer worth of data directly to
570 * the kernel buffer. The buffer is assumed to be a circular buffer.
571 * Take the entries from index start and end at index end, wrapping
574 void oprofile_put_buff(unsigned long *buf
, unsigned int start
,
575 unsigned int stop
, unsigned int max
)
581 mutex_lock(&buffer_mutex
);
583 add_event_entry(buf
[i
++]);
589 mutex_unlock(&buffer_mutex
);