2 * TI EDMA DMA engine driver
4 * Copyright 2012 Texas Instruments
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License as
8 * published by the Free Software Foundation version 2.
10 * This program is distributed "as is" WITHOUT ANY WARRANTY of any
11 * kind, whether express or implied; without even the implied warranty
12 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
16 #include <linux/dmaengine.h>
17 #include <linux/dma-mapping.h>
18 #include <linux/edma.h>
19 #include <linux/err.h>
20 #include <linux/init.h>
21 #include <linux/interrupt.h>
22 #include <linux/list.h>
23 #include <linux/module.h>
24 #include <linux/platform_device.h>
25 #include <linux/slab.h>
26 #include <linux/spinlock.h>
28 #include <linux/of_dma.h>
29 #include <linux/of_irq.h>
30 #include <linux/of_address.h>
31 #include <linux/of_device.h>
32 #include <linux/pm_runtime.h>
34 #include <linux/platform_data/edma.h>
36 #include "dmaengine.h"
39 /* Offsets matching "struct edmacc_param" */
42 #define PARM_A_B_CNT 0x08
44 #define PARM_SRC_DST_BIDX 0x10
45 #define PARM_LINK_BCNTRLD 0x14
46 #define PARM_SRC_DST_CIDX 0x18
47 #define PARM_CCNT 0x1c
49 #define PARM_SIZE 0x20
51 /* Offsets for EDMA CC global channel registers and their shadows */
52 #define SH_ER 0x00 /* 64 bits */
53 #define SH_ECR 0x08 /* 64 bits */
54 #define SH_ESR 0x10 /* 64 bits */
55 #define SH_CER 0x18 /* 64 bits */
56 #define SH_EER 0x20 /* 64 bits */
57 #define SH_EECR 0x28 /* 64 bits */
58 #define SH_EESR 0x30 /* 64 bits */
59 #define SH_SER 0x38 /* 64 bits */
60 #define SH_SECR 0x40 /* 64 bits */
61 #define SH_IER 0x50 /* 64 bits */
62 #define SH_IECR 0x58 /* 64 bits */
63 #define SH_IESR 0x60 /* 64 bits */
64 #define SH_IPR 0x68 /* 64 bits */
65 #define SH_ICR 0x70 /* 64 bits */
75 /* Offsets for EDMA CC global registers */
76 #define EDMA_REV 0x0000
77 #define EDMA_CCCFG 0x0004
78 #define EDMA_QCHMAP 0x0200 /* 8 registers */
79 #define EDMA_DMAQNUM 0x0240 /* 8 registers (4 on OMAP-L1xx) */
80 #define EDMA_QDMAQNUM 0x0260
81 #define EDMA_QUETCMAP 0x0280
82 #define EDMA_QUEPRI 0x0284
83 #define EDMA_EMR 0x0300 /* 64 bits */
84 #define EDMA_EMCR 0x0308 /* 64 bits */
85 #define EDMA_QEMR 0x0310
86 #define EDMA_QEMCR 0x0314
87 #define EDMA_CCERR 0x0318
88 #define EDMA_CCERRCLR 0x031c
89 #define EDMA_EEVAL 0x0320
90 #define EDMA_DRAE 0x0340 /* 4 x 64 bits*/
91 #define EDMA_QRAE 0x0380 /* 4 registers */
92 #define EDMA_QUEEVTENTRY 0x0400 /* 2 x 16 registers */
93 #define EDMA_QSTAT 0x0600 /* 2 registers */
94 #define EDMA_QWMTHRA 0x0620
95 #define EDMA_QWMTHRB 0x0624
96 #define EDMA_CCSTAT 0x0640
98 #define EDMA_M 0x1000 /* global channel registers */
99 #define EDMA_ECR 0x1008
100 #define EDMA_ECRH 0x100C
101 #define EDMA_SHADOW0 0x2000 /* 4 shadow regions */
102 #define EDMA_PARM 0x4000 /* PaRAM entries */
104 #define PARM_OFFSET(param_no) (EDMA_PARM + ((param_no) << 5))
106 #define EDMA_DCHMAP 0x0100 /* 64 registers */
109 #define GET_NUM_DMACH(x) (x & 0x7) /* bits 0-2 */
110 #define GET_NUM_QDMACH(x) ((x & 0x70) >> 4) /* bits 4-6 */
111 #define GET_NUM_PAENTRY(x) ((x & 0x7000) >> 12) /* bits 12-14 */
112 #define GET_NUM_EVQUE(x) ((x & 0x70000) >> 16) /* bits 16-18 */
113 #define GET_NUM_REGN(x) ((x & 0x300000) >> 20) /* bits 20-21 */
114 #define CHMAP_EXIST BIT(24)
116 /* CCSTAT register */
117 #define EDMA_CCSTAT_ACTV BIT(4)
120 * Max of 20 segments per channel to conserve PaRAM slots
121 * Also note that MAX_NR_SG should be atleast the no.of periods
122 * that are required for ASoC, otherwise DMA prep calls will
123 * fail. Today davinci-pcm is the only user of this driver and
124 * requires atleast 17 slots, so we setup the default to 20.
127 #define EDMA_MAX_SLOTS MAX_NR_SG
128 #define EDMA_DESCRIPTORS 16
130 #define EDMA_CHANNEL_ANY -1 /* for edma_alloc_channel() */
131 #define EDMA_SLOT_ANY -1 /* for edma_alloc_slot() */
132 #define EDMA_CONT_PARAMS_ANY 1001
133 #define EDMA_CONT_PARAMS_FIXED_EXACT 1002
134 #define EDMA_CONT_PARAMS_FIXED_NOT_EXACT 1003
136 /* PaRAM slots are laid out like this */
137 struct edmacc_param
{
148 /* fields in edmacc_param.opt */
151 #define SYNCDIM BIT(2)
152 #define STATIC BIT(3)
153 #define EDMA_FWID (0x07 << 8)
154 #define TCCMODE BIT(11)
155 #define EDMA_TCC(t) ((t) << 12)
156 #define TCINTEN BIT(20)
157 #define ITCINTEN BIT(21)
158 #define TCCHEN BIT(22)
159 #define ITCCHEN BIT(23)
164 struct edmacc_param param
;
168 struct virt_dma_desc vdesc
;
169 struct list_head node
;
170 enum dma_transfer_direction direction
;
174 struct edma_chan
*echan
;
178 * The following 4 elements are used for residue accounting.
180 * - processed_stat: the number of SG elements we have traversed
181 * so far to cover accounting. This is updated directly to processed
182 * during edma_callback and is always <= processed, because processed
183 * refers to the number of pending transfer (programmed to EDMA
184 * controller), where as processed_stat tracks number of transfers
185 * accounted for so far.
187 * - residue: The amount of bytes we have left to transfer for this desc
189 * - residue_stat: The residue in bytes of data we have covered
190 * so far for accounting. This is updated directly to residue
191 * during callbacks to keep it current.
193 * - sg_len: Tracks the length of the current intermediate transfer,
194 * this is required to update the residue during intermediate transfer
195 * completion callback.
202 struct edma_pset pset
[0];
208 struct device_node
*node
;
213 struct virt_dma_chan vchan
;
214 struct list_head node
;
215 struct edma_desc
*edesc
;
221 int slot
[EDMA_MAX_SLOTS
];
223 struct dma_slave_config cfg
;
228 struct edma_soc_info
*info
;
233 /* eDMA3 resource information */
234 unsigned num_channels
;
235 unsigned num_qchannels
;
240 enum dma_event_q default_queue
;
243 unsigned int ccerrint
;
246 * The slot_inuse bit for each PaRAM slot is clear unless the slot is
247 * in use by Linux or if it is allocated to be used by DSP.
249 unsigned long *slot_inuse
;
251 struct dma_device dma_slave
;
252 struct dma_device
*dma_memcpy
;
253 struct edma_chan
*slave_chans
;
254 struct edma_tc
*tc_list
;
258 /* dummy param set used to (re)initialize parameter RAM slots */
259 static const struct edmacc_param dummy_paramset
= {
260 .link_bcntrld
= 0xffff,
264 #define EDMA_BINDING_LEGACY 0
265 #define EDMA_BINDING_TPCC 1
266 static const u32 edma_binding_type
[] = {
267 [EDMA_BINDING_LEGACY
] = EDMA_BINDING_LEGACY
,
268 [EDMA_BINDING_TPCC
] = EDMA_BINDING_TPCC
,
271 static const struct of_device_id edma_of_ids
[] = {
273 .compatible
= "ti,edma3",
274 .data
= &edma_binding_type
[EDMA_BINDING_LEGACY
],
277 .compatible
= "ti,edma3-tpcc",
278 .data
= &edma_binding_type
[EDMA_BINDING_TPCC
],
282 MODULE_DEVICE_TABLE(of
, edma_of_ids
);
284 static const struct of_device_id edma_tptc_of_ids
[] = {
285 { .compatible
= "ti,edma3-tptc", },
288 MODULE_DEVICE_TABLE(of
, edma_tptc_of_ids
);
290 static inline unsigned int edma_read(struct edma_cc
*ecc
, int offset
)
292 return (unsigned int)__raw_readl(ecc
->base
+ offset
);
295 static inline void edma_write(struct edma_cc
*ecc
, int offset
, int val
)
297 __raw_writel(val
, ecc
->base
+ offset
);
300 static inline void edma_modify(struct edma_cc
*ecc
, int offset
, unsigned and,
303 unsigned val
= edma_read(ecc
, offset
);
307 edma_write(ecc
, offset
, val
);
310 static inline void edma_and(struct edma_cc
*ecc
, int offset
, unsigned and)
312 unsigned val
= edma_read(ecc
, offset
);
315 edma_write(ecc
, offset
, val
);
318 static inline void edma_or(struct edma_cc
*ecc
, int offset
, unsigned or)
320 unsigned val
= edma_read(ecc
, offset
);
323 edma_write(ecc
, offset
, val
);
326 static inline unsigned int edma_read_array(struct edma_cc
*ecc
, int offset
,
329 return edma_read(ecc
, offset
+ (i
<< 2));
332 static inline void edma_write_array(struct edma_cc
*ecc
, int offset
, int i
,
335 edma_write(ecc
, offset
+ (i
<< 2), val
);
338 static inline void edma_modify_array(struct edma_cc
*ecc
, int offset
, int i
,
339 unsigned and, unsigned or)
341 edma_modify(ecc
, offset
+ (i
<< 2), and, or);
344 static inline void edma_or_array(struct edma_cc
*ecc
, int offset
, int i
,
347 edma_or(ecc
, offset
+ (i
<< 2), or);
350 static inline void edma_or_array2(struct edma_cc
*ecc
, int offset
, int i
, int j
,
353 edma_or(ecc
, offset
+ ((i
* 2 + j
) << 2), or);
356 static inline void edma_write_array2(struct edma_cc
*ecc
, int offset
, int i
,
359 edma_write(ecc
, offset
+ ((i
* 2 + j
) << 2), val
);
362 static inline unsigned int edma_shadow0_read(struct edma_cc
*ecc
, int offset
)
364 return edma_read(ecc
, EDMA_SHADOW0
+ offset
);
367 static inline unsigned int edma_shadow0_read_array(struct edma_cc
*ecc
,
370 return edma_read(ecc
, EDMA_SHADOW0
+ offset
+ (i
<< 2));
373 static inline void edma_shadow0_write(struct edma_cc
*ecc
, int offset
,
376 edma_write(ecc
, EDMA_SHADOW0
+ offset
, val
);
379 static inline void edma_shadow0_write_array(struct edma_cc
*ecc
, int offset
,
382 edma_write(ecc
, EDMA_SHADOW0
+ offset
+ (i
<< 2), val
);
385 static inline unsigned int edma_param_read(struct edma_cc
*ecc
, int offset
,
388 return edma_read(ecc
, EDMA_PARM
+ offset
+ (param_no
<< 5));
391 static inline void edma_param_write(struct edma_cc
*ecc
, int offset
,
392 int param_no
, unsigned val
)
394 edma_write(ecc
, EDMA_PARM
+ offset
+ (param_no
<< 5), val
);
397 static inline void edma_param_modify(struct edma_cc
*ecc
, int offset
,
398 int param_no
, unsigned and, unsigned or)
400 edma_modify(ecc
, EDMA_PARM
+ offset
+ (param_no
<< 5), and, or);
403 static inline void edma_param_and(struct edma_cc
*ecc
, int offset
, int param_no
,
406 edma_and(ecc
, EDMA_PARM
+ offset
+ (param_no
<< 5), and);
409 static inline void edma_param_or(struct edma_cc
*ecc
, int offset
, int param_no
,
412 edma_or(ecc
, EDMA_PARM
+ offset
+ (param_no
<< 5), or);
415 static inline void edma_set_bits(int offset
, int len
, unsigned long *p
)
417 for (; len
> 0; len
--)
418 set_bit(offset
+ (len
- 1), p
);
421 static void edma_assign_priority_to_queue(struct edma_cc
*ecc
, int queue_no
,
424 int bit
= queue_no
* 4;
426 edma_modify(ecc
, EDMA_QUEPRI
, ~(0x7 << bit
), ((priority
& 0x7) << bit
));
429 static void edma_set_chmap(struct edma_chan
*echan
, int slot
)
431 struct edma_cc
*ecc
= echan
->ecc
;
432 int channel
= EDMA_CHAN_SLOT(echan
->ch_num
);
434 if (ecc
->chmap_exist
) {
435 slot
= EDMA_CHAN_SLOT(slot
);
436 edma_write_array(ecc
, EDMA_DCHMAP
, channel
, (slot
<< 5));
440 static void edma_setup_interrupt(struct edma_chan
*echan
, bool enable
)
442 struct edma_cc
*ecc
= echan
->ecc
;
443 int channel
= EDMA_CHAN_SLOT(echan
->ch_num
);
446 edma_shadow0_write_array(ecc
, SH_ICR
, channel
>> 5,
447 BIT(channel
& 0x1f));
448 edma_shadow0_write_array(ecc
, SH_IESR
, channel
>> 5,
449 BIT(channel
& 0x1f));
451 edma_shadow0_write_array(ecc
, SH_IECR
, channel
>> 5,
452 BIT(channel
& 0x1f));
457 * paRAM slot management functions
459 static void edma_write_slot(struct edma_cc
*ecc
, unsigned slot
,
460 const struct edmacc_param
*param
)
462 slot
= EDMA_CHAN_SLOT(slot
);
463 if (slot
>= ecc
->num_slots
)
465 memcpy_toio(ecc
->base
+ PARM_OFFSET(slot
), param
, PARM_SIZE
);
468 static int edma_read_slot(struct edma_cc
*ecc
, unsigned slot
,
469 struct edmacc_param
*param
)
471 slot
= EDMA_CHAN_SLOT(slot
);
472 if (slot
>= ecc
->num_slots
)
474 memcpy_fromio(param
, ecc
->base
+ PARM_OFFSET(slot
), PARM_SIZE
);
480 * edma_alloc_slot - allocate DMA parameter RAM
481 * @ecc: pointer to edma_cc struct
482 * @slot: specific slot to allocate; negative for "any unused slot"
484 * This allocates a parameter RAM slot, initializing it to hold a
485 * dummy transfer. Slots allocated using this routine have not been
486 * mapped to a hardware DMA channel, and will normally be used by
487 * linking to them from a slot associated with a DMA channel.
489 * Normal use is to pass EDMA_SLOT_ANY as the @slot, but specific
490 * slots may be allocated on behalf of DSP firmware.
492 * Returns the number of the slot, else negative errno.
494 static int edma_alloc_slot(struct edma_cc
*ecc
, int slot
)
497 slot
= EDMA_CHAN_SLOT(slot
);
498 /* Requesting entry paRAM slot for a HW triggered channel. */
499 if (ecc
->chmap_exist
&& slot
< ecc
->num_channels
)
500 slot
= EDMA_SLOT_ANY
;
504 if (ecc
->chmap_exist
)
507 slot
= ecc
->num_channels
;
509 slot
= find_next_zero_bit(ecc
->slot_inuse
,
512 if (slot
== ecc
->num_slots
)
514 if (!test_and_set_bit(slot
, ecc
->slot_inuse
))
517 } else if (slot
>= ecc
->num_slots
) {
519 } else if (test_and_set_bit(slot
, ecc
->slot_inuse
)) {
523 edma_write_slot(ecc
, slot
, &dummy_paramset
);
525 return EDMA_CTLR_CHAN(ecc
->id
, slot
);
528 static void edma_free_slot(struct edma_cc
*ecc
, unsigned slot
)
530 slot
= EDMA_CHAN_SLOT(slot
);
531 if (slot
>= ecc
->num_slots
)
534 edma_write_slot(ecc
, slot
, &dummy_paramset
);
535 clear_bit(slot
, ecc
->slot_inuse
);
539 * edma_link - link one parameter RAM slot to another
540 * @ecc: pointer to edma_cc struct
541 * @from: parameter RAM slot originating the link
542 * @to: parameter RAM slot which is the link target
544 * The originating slot should not be part of any active DMA transfer.
546 static void edma_link(struct edma_cc
*ecc
, unsigned from
, unsigned to
)
548 if (unlikely(EDMA_CTLR(from
) != EDMA_CTLR(to
)))
549 dev_warn(ecc
->dev
, "Ignoring eDMA instance for linking\n");
551 from
= EDMA_CHAN_SLOT(from
);
552 to
= EDMA_CHAN_SLOT(to
);
553 if (from
>= ecc
->num_slots
|| to
>= ecc
->num_slots
)
556 edma_param_modify(ecc
, PARM_LINK_BCNTRLD
, from
, 0xffff0000,
561 * edma_get_position - returns the current transfer point
562 * @ecc: pointer to edma_cc struct
563 * @slot: parameter RAM slot being examined
564 * @dst: true selects the dest position, false the source
566 * Returns the position of the current active slot
568 static dma_addr_t
edma_get_position(struct edma_cc
*ecc
, unsigned slot
,
573 slot
= EDMA_CHAN_SLOT(slot
);
574 offs
= PARM_OFFSET(slot
);
575 offs
+= dst
? PARM_DST
: PARM_SRC
;
577 return edma_read(ecc
, offs
);
581 * Channels with event associations will be triggered by their hardware
582 * events, and channels without such associations will be triggered by
583 * software. (At this writing there is no interface for using software
584 * triggers except with channels that don't support hardware triggers.)
586 static void edma_start(struct edma_chan
*echan
)
588 struct edma_cc
*ecc
= echan
->ecc
;
589 int channel
= EDMA_CHAN_SLOT(echan
->ch_num
);
590 int j
= (channel
>> 5);
591 unsigned int mask
= BIT(channel
& 0x1f);
593 if (!echan
->hw_triggered
) {
594 /* EDMA channels without event association */
595 dev_dbg(ecc
->dev
, "ESR%d %08x\n", j
,
596 edma_shadow0_read_array(ecc
, SH_ESR
, j
));
597 edma_shadow0_write_array(ecc
, SH_ESR
, j
, mask
);
599 /* EDMA channel with event association */
600 dev_dbg(ecc
->dev
, "ER%d %08x\n", j
,
601 edma_shadow0_read_array(ecc
, SH_ER
, j
));
602 /* Clear any pending event or error */
603 edma_write_array(ecc
, EDMA_ECR
, j
, mask
);
604 edma_write_array(ecc
, EDMA_EMCR
, j
, mask
);
606 edma_shadow0_write_array(ecc
, SH_SECR
, j
, mask
);
607 edma_shadow0_write_array(ecc
, SH_EESR
, j
, mask
);
608 dev_dbg(ecc
->dev
, "EER%d %08x\n", j
,
609 edma_shadow0_read_array(ecc
, SH_EER
, j
));
613 static void edma_stop(struct edma_chan
*echan
)
615 struct edma_cc
*ecc
= echan
->ecc
;
616 int channel
= EDMA_CHAN_SLOT(echan
->ch_num
);
617 int j
= (channel
>> 5);
618 unsigned int mask
= BIT(channel
& 0x1f);
620 edma_shadow0_write_array(ecc
, SH_EECR
, j
, mask
);
621 edma_shadow0_write_array(ecc
, SH_ECR
, j
, mask
);
622 edma_shadow0_write_array(ecc
, SH_SECR
, j
, mask
);
623 edma_write_array(ecc
, EDMA_EMCR
, j
, mask
);
625 /* clear possibly pending completion interrupt */
626 edma_shadow0_write_array(ecc
, SH_ICR
, j
, mask
);
628 dev_dbg(ecc
->dev
, "EER%d %08x\n", j
,
629 edma_shadow0_read_array(ecc
, SH_EER
, j
));
631 /* REVISIT: consider guarding against inappropriate event
632 * chaining by overwriting with dummy_paramset.
637 * Temporarily disable EDMA hardware events on the specified channel,
638 * preventing them from triggering new transfers
640 static void edma_pause(struct edma_chan
*echan
)
642 int channel
= EDMA_CHAN_SLOT(echan
->ch_num
);
643 unsigned int mask
= BIT(channel
& 0x1f);
645 edma_shadow0_write_array(echan
->ecc
, SH_EECR
, channel
>> 5, mask
);
648 /* Re-enable EDMA hardware events on the specified channel. */
649 static void edma_resume(struct edma_chan
*echan
)
651 int channel
= EDMA_CHAN_SLOT(echan
->ch_num
);
652 unsigned int mask
= BIT(channel
& 0x1f);
654 edma_shadow0_write_array(echan
->ecc
, SH_EESR
, channel
>> 5, mask
);
657 static void edma_trigger_channel(struct edma_chan
*echan
)
659 struct edma_cc
*ecc
= echan
->ecc
;
660 int channel
= EDMA_CHAN_SLOT(echan
->ch_num
);
661 unsigned int mask
= BIT(channel
& 0x1f);
663 edma_shadow0_write_array(ecc
, SH_ESR
, (channel
>> 5), mask
);
665 dev_dbg(ecc
->dev
, "ESR%d %08x\n", (channel
>> 5),
666 edma_shadow0_read_array(ecc
, SH_ESR
, (channel
>> 5)));
669 static void edma_clean_channel(struct edma_chan
*echan
)
671 struct edma_cc
*ecc
= echan
->ecc
;
672 int channel
= EDMA_CHAN_SLOT(echan
->ch_num
);
673 int j
= (channel
>> 5);
674 unsigned int mask
= BIT(channel
& 0x1f);
676 dev_dbg(ecc
->dev
, "EMR%d %08x\n", j
, edma_read_array(ecc
, EDMA_EMR
, j
));
677 edma_shadow0_write_array(ecc
, SH_ECR
, j
, mask
);
678 /* Clear the corresponding EMR bits */
679 edma_write_array(ecc
, EDMA_EMCR
, j
, mask
);
681 edma_shadow0_write_array(ecc
, SH_SECR
, j
, mask
);
682 edma_write(ecc
, EDMA_CCERRCLR
, BIT(16) | BIT(1) | BIT(0));
685 /* Move channel to a specific event queue */
686 static void edma_assign_channel_eventq(struct edma_chan
*echan
,
687 enum dma_event_q eventq_no
)
689 struct edma_cc
*ecc
= echan
->ecc
;
690 int channel
= EDMA_CHAN_SLOT(echan
->ch_num
);
691 int bit
= (channel
& 0x7) * 4;
693 /* default to low priority queue */
694 if (eventq_no
== EVENTQ_DEFAULT
)
695 eventq_no
= ecc
->default_queue
;
696 if (eventq_no
>= ecc
->num_tc
)
700 edma_modify_array(ecc
, EDMA_DMAQNUM
, (channel
>> 3), ~(0x7 << bit
),
704 static int edma_alloc_channel(struct edma_chan
*echan
,
705 enum dma_event_q eventq_no
)
707 struct edma_cc
*ecc
= echan
->ecc
;
708 int channel
= EDMA_CHAN_SLOT(echan
->ch_num
);
710 /* ensure access through shadow region 0 */
711 edma_or_array2(ecc
, EDMA_DRAE
, 0, channel
>> 5, BIT(channel
& 0x1f));
713 /* ensure no events are pending */
716 edma_setup_interrupt(echan
, true);
718 edma_assign_channel_eventq(echan
, eventq_no
);
723 static void edma_free_channel(struct edma_chan
*echan
)
725 /* ensure no events are pending */
727 /* REVISIT should probably take out of shadow region 0 */
728 edma_setup_interrupt(echan
, false);
731 static inline struct edma_cc
*to_edma_cc(struct dma_device
*d
)
733 return container_of(d
, struct edma_cc
, dma_slave
);
736 static inline struct edma_chan
*to_edma_chan(struct dma_chan
*c
)
738 return container_of(c
, struct edma_chan
, vchan
.chan
);
741 static inline struct edma_desc
*to_edma_desc(struct dma_async_tx_descriptor
*tx
)
743 return container_of(tx
, struct edma_desc
, vdesc
.tx
);
746 static void edma_desc_free(struct virt_dma_desc
*vdesc
)
748 kfree(container_of(vdesc
, struct edma_desc
, vdesc
));
751 /* Dispatch a queued descriptor to the controller (caller holds lock) */
752 static void edma_execute(struct edma_chan
*echan
)
754 struct edma_cc
*ecc
= echan
->ecc
;
755 struct virt_dma_desc
*vdesc
;
756 struct edma_desc
*edesc
;
757 struct device
*dev
= echan
->vchan
.chan
.device
->dev
;
758 int i
, j
, left
, nslots
;
761 /* Setup is needed for the first transfer */
762 vdesc
= vchan_next_desc(&echan
->vchan
);
765 list_del(&vdesc
->node
);
766 echan
->edesc
= to_edma_desc(&vdesc
->tx
);
769 edesc
= echan
->edesc
;
771 /* Find out how many left */
772 left
= edesc
->pset_nr
- edesc
->processed
;
773 nslots
= min(MAX_NR_SG
, left
);
776 /* Write descriptor PaRAM set(s) */
777 for (i
= 0; i
< nslots
; i
++) {
778 j
= i
+ edesc
->processed
;
779 edma_write_slot(ecc
, echan
->slot
[i
], &edesc
->pset
[j
].param
);
780 edesc
->sg_len
+= edesc
->pset
[j
].len
;
793 j
, echan
->ch_num
, echan
->slot
[i
],
794 edesc
->pset
[j
].param
.opt
,
795 edesc
->pset
[j
].param
.src
,
796 edesc
->pset
[j
].param
.dst
,
797 edesc
->pset
[j
].param
.a_b_cnt
,
798 edesc
->pset
[j
].param
.ccnt
,
799 edesc
->pset
[j
].param
.src_dst_bidx
,
800 edesc
->pset
[j
].param
.src_dst_cidx
,
801 edesc
->pset
[j
].param
.link_bcntrld
);
802 /* Link to the previous slot if not the last set */
803 if (i
!= (nslots
- 1))
804 edma_link(ecc
, echan
->slot
[i
], echan
->slot
[i
+ 1]);
807 edesc
->processed
+= nslots
;
810 * If this is either the last set in a set of SG-list transactions
811 * then setup a link to the dummy slot, this results in all future
812 * events being absorbed and that's OK because we're done
814 if (edesc
->processed
== edesc
->pset_nr
) {
816 edma_link(ecc
, echan
->slot
[nslots
- 1], echan
->slot
[1]);
818 edma_link(ecc
, echan
->slot
[nslots
- 1],
819 echan
->ecc
->dummy_slot
);
824 * This happens due to setup times between intermediate
825 * transfers in long SG lists which have to be broken up into
826 * transfers of MAX_NR_SG
828 dev_dbg(dev
, "missed event on channel %d\n", echan
->ch_num
);
829 edma_clean_channel(echan
);
832 edma_trigger_channel(echan
);
834 } else if (edesc
->processed
<= MAX_NR_SG
) {
835 dev_dbg(dev
, "first transfer starting on channel %d\n",
839 dev_dbg(dev
, "chan: %d: completed %d elements, resuming\n",
840 echan
->ch_num
, edesc
->processed
);
845 static int edma_terminate_all(struct dma_chan
*chan
)
847 struct edma_chan
*echan
= to_edma_chan(chan
);
851 spin_lock_irqsave(&echan
->vchan
.lock
, flags
);
854 * Stop DMA activity: we assume the callback will not be called
855 * after edma_dma() returns (even if it does, it will see
856 * echan->edesc is NULL and exit.)
860 /* Move the cyclic channel back to default queue */
861 if (!echan
->tc
&& echan
->edesc
->cyclic
)
862 edma_assign_channel_eventq(echan
, EVENTQ_DEFAULT
);
864 * free the running request descriptor
865 * since it is not in any of the vdesc lists
867 edma_desc_free(&echan
->edesc
->vdesc
);
871 vchan_get_all_descriptors(&echan
->vchan
, &head
);
872 spin_unlock_irqrestore(&echan
->vchan
.lock
, flags
);
873 vchan_dma_desc_free_list(&echan
->vchan
, &head
);
878 static void edma_synchronize(struct dma_chan
*chan
)
880 struct edma_chan
*echan
= to_edma_chan(chan
);
882 vchan_synchronize(&echan
->vchan
);
885 static int edma_slave_config(struct dma_chan
*chan
,
886 struct dma_slave_config
*cfg
)
888 struct edma_chan
*echan
= to_edma_chan(chan
);
890 if (cfg
->src_addr_width
== DMA_SLAVE_BUSWIDTH_8_BYTES
||
891 cfg
->dst_addr_width
== DMA_SLAVE_BUSWIDTH_8_BYTES
)
894 memcpy(&echan
->cfg
, cfg
, sizeof(echan
->cfg
));
899 static int edma_dma_pause(struct dma_chan
*chan
)
901 struct edma_chan
*echan
= to_edma_chan(chan
);
910 static int edma_dma_resume(struct dma_chan
*chan
)
912 struct edma_chan
*echan
= to_edma_chan(chan
);
919 * A PaRAM set configuration abstraction used by other modes
920 * @chan: Channel who's PaRAM set we're configuring
921 * @pset: PaRAM set to initialize and setup.
922 * @src_addr: Source address of the DMA
923 * @dst_addr: Destination address of the DMA
924 * @burst: In units of dev_width, how much to send
925 * @dev_width: How much is the dev_width
926 * @dma_length: Total length of the DMA transfer
927 * @direction: Direction of the transfer
929 static int edma_config_pset(struct dma_chan
*chan
, struct edma_pset
*epset
,
930 dma_addr_t src_addr
, dma_addr_t dst_addr
, u32 burst
,
931 unsigned int acnt
, unsigned int dma_length
,
932 enum dma_transfer_direction direction
)
934 struct edma_chan
*echan
= to_edma_chan(chan
);
935 struct device
*dev
= chan
->device
->dev
;
936 struct edmacc_param
*param
= &epset
->param
;
937 int bcnt
, ccnt
, cidx
;
938 int src_bidx
, dst_bidx
, src_cidx
, dst_cidx
;
941 /* src/dst_maxburst == 0 is the same case as src/dst_maxburst == 1 */
945 * If the maxburst is equal to the fifo width, use
946 * A-synced transfers. This allows for large contiguous
947 * buffer transfers using only one PaRAM set.
951 * For the A-sync case, bcnt and ccnt are the remainder
952 * and quotient respectively of the division of:
953 * (dma_length / acnt) by (SZ_64K -1). This is so
954 * that in case bcnt over flows, we have ccnt to use.
955 * Note: In A-sync tranfer only, bcntrld is used, but it
956 * only applies for sg_dma_len(sg) >= SZ_64K.
957 * In this case, the best way adopted is- bccnt for the
958 * first frame will be the remainder below. Then for
959 * every successive frame, bcnt will be SZ_64K-1. This
960 * is assured as bcntrld = 0xffff in end of function.
963 ccnt
= dma_length
/ acnt
/ (SZ_64K
- 1);
964 bcnt
= dma_length
/ acnt
- ccnt
* (SZ_64K
- 1);
966 * If bcnt is non-zero, we have a remainder and hence an
967 * extra frame to transfer, so increment ccnt.
976 * If maxburst is greater than the fifo address_width,
977 * use AB-synced transfers where A count is the fifo
978 * address_width and B count is the maxburst. In this
979 * case, we are limited to transfers of C count frames
980 * of (address_width * maxburst) where C count is limited
981 * to SZ_64K-1. This places an upper bound on the length
982 * of an SG segment that can be handled.
986 ccnt
= dma_length
/ (acnt
* bcnt
);
987 if (ccnt
> (SZ_64K
- 1)) {
988 dev_err(dev
, "Exceeded max SG segment size\n");
994 epset
->len
= dma_length
;
996 if (direction
== DMA_MEM_TO_DEV
) {
1001 epset
->addr
= src_addr
;
1002 } else if (direction
== DMA_DEV_TO_MEM
) {
1007 epset
->addr
= dst_addr
;
1008 } else if (direction
== DMA_MEM_TO_MEM
) {
1014 dev_err(dev
, "%s: direction not implemented yet\n", __func__
);
1018 param
->opt
= EDMA_TCC(EDMA_CHAN_SLOT(echan
->ch_num
));
1019 /* Configure A or AB synchronized transfers */
1021 param
->opt
|= SYNCDIM
;
1023 param
->src
= src_addr
;
1024 param
->dst
= dst_addr
;
1026 param
->src_dst_bidx
= (dst_bidx
<< 16) | src_bidx
;
1027 param
->src_dst_cidx
= (dst_cidx
<< 16) | src_cidx
;
1029 param
->a_b_cnt
= bcnt
<< 16 | acnt
;
1032 * Only time when (bcntrld) auto reload is required is for
1033 * A-sync case, and in this case, a requirement of reload value
1034 * of SZ_64K-1 only is assured. 'link' is initially set to NULL
1035 * and then later will be populated by edma_execute.
1037 param
->link_bcntrld
= 0xffffffff;
1041 static struct dma_async_tx_descriptor
*edma_prep_slave_sg(
1042 struct dma_chan
*chan
, struct scatterlist
*sgl
,
1043 unsigned int sg_len
, enum dma_transfer_direction direction
,
1044 unsigned long tx_flags
, void *context
)
1046 struct edma_chan
*echan
= to_edma_chan(chan
);
1047 struct device
*dev
= chan
->device
->dev
;
1048 struct edma_desc
*edesc
;
1049 dma_addr_t src_addr
= 0, dst_addr
= 0;
1050 enum dma_slave_buswidth dev_width
;
1052 struct scatterlist
*sg
;
1055 if (unlikely(!echan
|| !sgl
|| !sg_len
))
1058 if (direction
== DMA_DEV_TO_MEM
) {
1059 src_addr
= echan
->cfg
.src_addr
;
1060 dev_width
= echan
->cfg
.src_addr_width
;
1061 burst
= echan
->cfg
.src_maxburst
;
1062 } else if (direction
== DMA_MEM_TO_DEV
) {
1063 dst_addr
= echan
->cfg
.dst_addr
;
1064 dev_width
= echan
->cfg
.dst_addr_width
;
1065 burst
= echan
->cfg
.dst_maxburst
;
1067 dev_err(dev
, "%s: bad direction: %d\n", __func__
, direction
);
1071 if (dev_width
== DMA_SLAVE_BUSWIDTH_UNDEFINED
) {
1072 dev_err(dev
, "%s: Undefined slave buswidth\n", __func__
);
1076 edesc
= kzalloc(sizeof(*edesc
) + sg_len
* sizeof(edesc
->pset
[0]),
1081 edesc
->pset_nr
= sg_len
;
1083 edesc
->direction
= direction
;
1084 edesc
->echan
= echan
;
1086 /* Allocate a PaRAM slot, if needed */
1087 nslots
= min_t(unsigned, MAX_NR_SG
, sg_len
);
1089 for (i
= 0; i
< nslots
; i
++) {
1090 if (echan
->slot
[i
] < 0) {
1092 edma_alloc_slot(echan
->ecc
, EDMA_SLOT_ANY
);
1093 if (echan
->slot
[i
] < 0) {
1095 dev_err(dev
, "%s: Failed to allocate slot\n",
1102 /* Configure PaRAM sets for each SG */
1103 for_each_sg(sgl
, sg
, sg_len
, i
) {
1104 /* Get address for each SG */
1105 if (direction
== DMA_DEV_TO_MEM
)
1106 dst_addr
= sg_dma_address(sg
);
1108 src_addr
= sg_dma_address(sg
);
1110 ret
= edma_config_pset(chan
, &edesc
->pset
[i
], src_addr
,
1111 dst_addr
, burst
, dev_width
,
1112 sg_dma_len(sg
), direction
);
1118 edesc
->absync
= ret
;
1119 edesc
->residue
+= sg_dma_len(sg
);
1121 if (i
== sg_len
- 1)
1122 /* Enable completion interrupt */
1123 edesc
->pset
[i
].param
.opt
|= TCINTEN
;
1124 else if (!((i
+1) % MAX_NR_SG
))
1126 * Enable early completion interrupt for the
1127 * intermediateset. In this case the driver will be
1128 * notified when the paRAM set is submitted to TC. This
1129 * will allow more time to set up the next set of slots.
1131 edesc
->pset
[i
].param
.opt
|= (TCINTEN
| TCCMODE
);
1133 edesc
->residue_stat
= edesc
->residue
;
1135 return vchan_tx_prep(&echan
->vchan
, &edesc
->vdesc
, tx_flags
);
1138 static struct dma_async_tx_descriptor
*edma_prep_dma_memcpy(
1139 struct dma_chan
*chan
, dma_addr_t dest
, dma_addr_t src
,
1140 size_t len
, unsigned long tx_flags
)
1143 struct edma_desc
*edesc
;
1144 struct device
*dev
= chan
->device
->dev
;
1145 struct edma_chan
*echan
= to_edma_chan(chan
);
1146 unsigned int width
, pset_len
;
1148 if (unlikely(!echan
|| !len
))
1153 * Transfer size less than 64K can be handled with one paRAM
1154 * slot and with one burst.
1162 * Transfer size bigger than 64K will be handled with maximum of
1164 * slot1: (full_length / 32767) times 32767 bytes bursts.
1165 * ACNT = 32767, length1: (full_length / 32767) * 32767
1166 * slot2: the remaining amount of data after slot1.
1167 * ACNT = full_length - length1, length2 = ACNT
1169 * When the full_length is multibple of 32767 one slot can be
1170 * used to complete the transfer.
1173 pset_len
= rounddown(len
, width
);
1174 /* One slot is enough for lengths multiple of (SZ_32K -1) */
1175 if (unlikely(pset_len
== len
))
1181 edesc
= kzalloc(sizeof(*edesc
) + nslots
* sizeof(edesc
->pset
[0]),
1186 edesc
->pset_nr
= nslots
;
1187 edesc
->residue
= edesc
->residue_stat
= len
;
1188 edesc
->direction
= DMA_MEM_TO_MEM
;
1189 edesc
->echan
= echan
;
1191 ret
= edma_config_pset(chan
, &edesc
->pset
[0], src
, dest
, 1,
1192 width
, pset_len
, DMA_MEM_TO_MEM
);
1198 edesc
->absync
= ret
;
1200 edesc
->pset
[0].param
.opt
|= ITCCHEN
;
1202 /* Enable transfer complete interrupt */
1203 edesc
->pset
[0].param
.opt
|= TCINTEN
;
1205 /* Enable transfer complete chaining for the first slot */
1206 edesc
->pset
[0].param
.opt
|= TCCHEN
;
1208 if (echan
->slot
[1] < 0) {
1209 echan
->slot
[1] = edma_alloc_slot(echan
->ecc
,
1211 if (echan
->slot
[1] < 0) {
1213 dev_err(dev
, "%s: Failed to allocate slot\n",
1220 pset_len
= width
= len
% (SZ_32K
- 1);
1222 ret
= edma_config_pset(chan
, &edesc
->pset
[1], src
, dest
, 1,
1223 width
, pset_len
, DMA_MEM_TO_MEM
);
1229 edesc
->pset
[1].param
.opt
|= ITCCHEN
;
1230 edesc
->pset
[1].param
.opt
|= TCINTEN
;
1233 return vchan_tx_prep(&echan
->vchan
, &edesc
->vdesc
, tx_flags
);
1236 static struct dma_async_tx_descriptor
*edma_prep_dma_cyclic(
1237 struct dma_chan
*chan
, dma_addr_t buf_addr
, size_t buf_len
,
1238 size_t period_len
, enum dma_transfer_direction direction
,
1239 unsigned long tx_flags
)
1241 struct edma_chan
*echan
= to_edma_chan(chan
);
1242 struct device
*dev
= chan
->device
->dev
;
1243 struct edma_desc
*edesc
;
1244 dma_addr_t src_addr
, dst_addr
;
1245 enum dma_slave_buswidth dev_width
;
1246 bool use_intermediate
= false;
1250 if (unlikely(!echan
|| !buf_len
|| !period_len
))
1253 if (direction
== DMA_DEV_TO_MEM
) {
1254 src_addr
= echan
->cfg
.src_addr
;
1255 dst_addr
= buf_addr
;
1256 dev_width
= echan
->cfg
.src_addr_width
;
1257 burst
= echan
->cfg
.src_maxburst
;
1258 } else if (direction
== DMA_MEM_TO_DEV
) {
1259 src_addr
= buf_addr
;
1260 dst_addr
= echan
->cfg
.dst_addr
;
1261 dev_width
= echan
->cfg
.dst_addr_width
;
1262 burst
= echan
->cfg
.dst_maxburst
;
1264 dev_err(dev
, "%s: bad direction: %d\n", __func__
, direction
);
1268 if (dev_width
== DMA_SLAVE_BUSWIDTH_UNDEFINED
) {
1269 dev_err(dev
, "%s: Undefined slave buswidth\n", __func__
);
1273 if (unlikely(buf_len
% period_len
)) {
1274 dev_err(dev
, "Period should be multiple of Buffer length\n");
1278 nslots
= (buf_len
/ period_len
) + 1;
1281 * Cyclic DMA users such as audio cannot tolerate delays introduced
1282 * by cases where the number of periods is more than the maximum
1283 * number of SGs the EDMA driver can handle at a time. For DMA types
1284 * such as Slave SGs, such delays are tolerable and synchronized,
1285 * but the synchronization is difficult to achieve with Cyclic and
1286 * cannot be guaranteed, so we error out early.
1288 if (nslots
> MAX_NR_SG
) {
1290 * If the burst and period sizes are the same, we can put
1291 * the full buffer into a single period and activate
1292 * intermediate interrupts. This will produce interrupts
1293 * after each burst, which is also after each desired period.
1295 if (burst
== period_len
) {
1296 period_len
= buf_len
;
1298 use_intermediate
= true;
1304 edesc
= kzalloc(sizeof(*edesc
) + nslots
* sizeof(edesc
->pset
[0]),
1310 edesc
->pset_nr
= nslots
;
1311 edesc
->residue
= edesc
->residue_stat
= buf_len
;
1312 edesc
->direction
= direction
;
1313 edesc
->echan
= echan
;
1315 dev_dbg(dev
, "%s: channel=%d nslots=%d period_len=%zu buf_len=%zu\n",
1316 __func__
, echan
->ch_num
, nslots
, period_len
, buf_len
);
1318 for (i
= 0; i
< nslots
; i
++) {
1319 /* Allocate a PaRAM slot, if needed */
1320 if (echan
->slot
[i
] < 0) {
1322 edma_alloc_slot(echan
->ecc
, EDMA_SLOT_ANY
);
1323 if (echan
->slot
[i
] < 0) {
1325 dev_err(dev
, "%s: Failed to allocate slot\n",
1331 if (i
== nslots
- 1) {
1332 memcpy(&edesc
->pset
[i
], &edesc
->pset
[0],
1333 sizeof(edesc
->pset
[0]));
1337 ret
= edma_config_pset(chan
, &edesc
->pset
[i
], src_addr
,
1338 dst_addr
, burst
, dev_width
, period_len
,
1345 if (direction
== DMA_DEV_TO_MEM
)
1346 dst_addr
+= period_len
;
1348 src_addr
+= period_len
;
1350 dev_vdbg(dev
, "%s: Configure period %d of buf:\n", __func__
, i
);
1363 i
, echan
->ch_num
, echan
->slot
[i
],
1364 edesc
->pset
[i
].param
.opt
,
1365 edesc
->pset
[i
].param
.src
,
1366 edesc
->pset
[i
].param
.dst
,
1367 edesc
->pset
[i
].param
.a_b_cnt
,
1368 edesc
->pset
[i
].param
.ccnt
,
1369 edesc
->pset
[i
].param
.src_dst_bidx
,
1370 edesc
->pset
[i
].param
.src_dst_cidx
,
1371 edesc
->pset
[i
].param
.link_bcntrld
);
1373 edesc
->absync
= ret
;
1376 * Enable period interrupt only if it is requested
1378 if (tx_flags
& DMA_PREP_INTERRUPT
) {
1379 edesc
->pset
[i
].param
.opt
|= TCINTEN
;
1381 /* Also enable intermediate interrupts if necessary */
1382 if (use_intermediate
)
1383 edesc
->pset
[i
].param
.opt
|= ITCINTEN
;
1387 /* Place the cyclic channel to highest priority queue */
1389 edma_assign_channel_eventq(echan
, EVENTQ_0
);
1391 return vchan_tx_prep(&echan
->vchan
, &edesc
->vdesc
, tx_flags
);
1394 static void edma_completion_handler(struct edma_chan
*echan
)
1396 struct device
*dev
= echan
->vchan
.chan
.device
->dev
;
1397 struct edma_desc
*edesc
;
1399 spin_lock(&echan
->vchan
.lock
);
1400 edesc
= echan
->edesc
;
1402 if (edesc
->cyclic
) {
1403 vchan_cyclic_callback(&edesc
->vdesc
);
1404 spin_unlock(&echan
->vchan
.lock
);
1406 } else if (edesc
->processed
== edesc
->pset_nr
) {
1409 vchan_cookie_complete(&edesc
->vdesc
);
1410 echan
->edesc
= NULL
;
1412 dev_dbg(dev
, "Transfer completed on channel %d\n",
1415 dev_dbg(dev
, "Sub transfer completed on channel %d\n",
1420 /* Update statistics for tx_status */
1421 edesc
->residue
-= edesc
->sg_len
;
1422 edesc
->residue_stat
= edesc
->residue
;
1423 edesc
->processed_stat
= edesc
->processed
;
1425 edma_execute(echan
);
1428 spin_unlock(&echan
->vchan
.lock
);
1431 /* eDMA interrupt handler */
1432 static irqreturn_t
dma_irq_handler(int irq
, void *data
)
1434 struct edma_cc
*ecc
= data
;
1444 dev_vdbg(ecc
->dev
, "dma_irq_handler\n");
1446 sh_ipr
= edma_shadow0_read_array(ecc
, SH_IPR
, 0);
1448 sh_ipr
= edma_shadow0_read_array(ecc
, SH_IPR
, 1);
1451 sh_ier
= edma_shadow0_read_array(ecc
, SH_IER
, 1);
1454 sh_ier
= edma_shadow0_read_array(ecc
, SH_IER
, 0);
1462 slot
= __ffs(sh_ipr
);
1463 sh_ipr
&= ~(BIT(slot
));
1465 if (sh_ier
& BIT(slot
)) {
1466 channel
= (bank
<< 5) | slot
;
1467 /* Clear the corresponding IPR bits */
1468 edma_shadow0_write_array(ecc
, SH_ICR
, bank
, BIT(slot
));
1469 edma_completion_handler(&ecc
->slave_chans
[channel
]);
1473 edma_shadow0_write(ecc
, SH_IEVAL
, 1);
1477 static void edma_error_handler(struct edma_chan
*echan
)
1479 struct edma_cc
*ecc
= echan
->ecc
;
1480 struct device
*dev
= echan
->vchan
.chan
.device
->dev
;
1481 struct edmacc_param p
;
1487 spin_lock(&echan
->vchan
.lock
);
1489 err
= edma_read_slot(ecc
, echan
->slot
[0], &p
);
1492 * Issue later based on missed flag which will be sure
1494 * (1) we finished transmitting an intermediate slot and
1495 * edma_execute is coming up.
1496 * (2) or we finished current transfer and issue will
1497 * call edma_execute.
1499 * Important note: issuing can be dangerous here and
1500 * lead to some nasty recursion when we are in a NULL
1501 * slot. So we avoid doing so and set the missed flag.
1503 if (err
|| (p
.a_b_cnt
== 0 && p
.ccnt
== 0)) {
1504 dev_dbg(dev
, "Error on null slot, setting miss\n");
1508 * The slot is already programmed but the event got
1509 * missed, so its safe to issue it here.
1511 dev_dbg(dev
, "Missed event, TRIGGERING\n");
1512 edma_clean_channel(echan
);
1515 edma_trigger_channel(echan
);
1517 spin_unlock(&echan
->vchan
.lock
);
1520 static inline bool edma_error_pending(struct edma_cc
*ecc
)
1522 if (edma_read_array(ecc
, EDMA_EMR
, 0) ||
1523 edma_read_array(ecc
, EDMA_EMR
, 1) ||
1524 edma_read(ecc
, EDMA_QEMR
) || edma_read(ecc
, EDMA_CCERR
))
1530 /* eDMA error interrupt handler */
1531 static irqreturn_t
dma_ccerr_handler(int irq
, void *data
)
1533 struct edma_cc
*ecc
= data
;
1536 unsigned int cnt
= 0;
1543 dev_vdbg(ecc
->dev
, "dma_ccerr_handler\n");
1545 if (!edma_error_pending(ecc
)) {
1547 * The registers indicate no pending error event but the irq
1548 * handler has been called.
1549 * Ask eDMA to re-evaluate the error registers.
1551 dev_err(ecc
->dev
, "%s: Error interrupt without error event!\n",
1553 edma_write(ecc
, EDMA_EEVAL
, 1);
1558 /* Event missed register(s) */
1559 for (j
= 0; j
< 2; j
++) {
1562 val
= edma_read_array(ecc
, EDMA_EMR
, j
);
1566 dev_dbg(ecc
->dev
, "EMR%d 0x%08x\n", j
, val
);
1568 for (i
= find_next_bit(&emr
, 32, 0); i
< 32;
1569 i
= find_next_bit(&emr
, 32, i
+ 1)) {
1570 int k
= (j
<< 5) + i
;
1572 /* Clear the corresponding EMR bits */
1573 edma_write_array(ecc
, EDMA_EMCR
, j
, BIT(i
));
1575 edma_shadow0_write_array(ecc
, SH_SECR
, j
,
1577 edma_error_handler(&ecc
->slave_chans
[k
]);
1581 val
= edma_read(ecc
, EDMA_QEMR
);
1583 dev_dbg(ecc
->dev
, "QEMR 0x%02x\n", val
);
1584 /* Not reported, just clear the interrupt reason. */
1585 edma_write(ecc
, EDMA_QEMCR
, val
);
1586 edma_shadow0_write(ecc
, SH_QSECR
, val
);
1589 val
= edma_read(ecc
, EDMA_CCERR
);
1591 dev_warn(ecc
->dev
, "CCERR 0x%08x\n", val
);
1592 /* Not reported, just clear the interrupt reason. */
1593 edma_write(ecc
, EDMA_CCERRCLR
, val
);
1596 if (!edma_error_pending(ecc
))
1602 edma_write(ecc
, EDMA_EEVAL
, 1);
1606 /* Alloc channel resources */
1607 static int edma_alloc_chan_resources(struct dma_chan
*chan
)
1609 struct edma_chan
*echan
= to_edma_chan(chan
);
1610 struct edma_cc
*ecc
= echan
->ecc
;
1611 struct device
*dev
= ecc
->dev
;
1612 enum dma_event_q eventq_no
= EVENTQ_DEFAULT
;
1616 eventq_no
= echan
->tc
->id
;
1617 } else if (ecc
->tc_list
) {
1618 /* memcpy channel */
1619 echan
->tc
= &ecc
->tc_list
[ecc
->info
->default_queue
];
1620 eventq_no
= echan
->tc
->id
;
1623 ret
= edma_alloc_channel(echan
, eventq_no
);
1627 echan
->slot
[0] = edma_alloc_slot(ecc
, echan
->ch_num
);
1628 if (echan
->slot
[0] < 0) {
1629 dev_err(dev
, "Entry slot allocation failed for channel %u\n",
1630 EDMA_CHAN_SLOT(echan
->ch_num
));
1631 ret
= echan
->slot
[0];
1635 /* Set up channel -> slot mapping for the entry slot */
1636 edma_set_chmap(echan
, echan
->slot
[0]);
1637 echan
->alloced
= true;
1639 dev_dbg(dev
, "Got eDMA channel %d for virt channel %d (%s trigger)\n",
1640 EDMA_CHAN_SLOT(echan
->ch_num
), chan
->chan_id
,
1641 echan
->hw_triggered
? "HW" : "SW");
1646 edma_free_channel(echan
);
1650 /* Free channel resources */
1651 static void edma_free_chan_resources(struct dma_chan
*chan
)
1653 struct edma_chan
*echan
= to_edma_chan(chan
);
1654 struct device
*dev
= echan
->ecc
->dev
;
1657 /* Terminate transfers */
1660 vchan_free_chan_resources(&echan
->vchan
);
1662 /* Free EDMA PaRAM slots */
1663 for (i
= 0; i
< EDMA_MAX_SLOTS
; i
++) {
1664 if (echan
->slot
[i
] >= 0) {
1665 edma_free_slot(echan
->ecc
, echan
->slot
[i
]);
1666 echan
->slot
[i
] = -1;
1670 /* Set entry slot to the dummy slot */
1671 edma_set_chmap(echan
, echan
->ecc
->dummy_slot
);
1673 /* Free EDMA channel */
1674 if (echan
->alloced
) {
1675 edma_free_channel(echan
);
1676 echan
->alloced
= false;
1680 echan
->hw_triggered
= false;
1682 dev_dbg(dev
, "Free eDMA channel %d for virt channel %d\n",
1683 EDMA_CHAN_SLOT(echan
->ch_num
), chan
->chan_id
);
1686 /* Send pending descriptor to hardware */
1687 static void edma_issue_pending(struct dma_chan
*chan
)
1689 struct edma_chan
*echan
= to_edma_chan(chan
);
1690 unsigned long flags
;
1692 spin_lock_irqsave(&echan
->vchan
.lock
, flags
);
1693 if (vchan_issue_pending(&echan
->vchan
) && !echan
->edesc
)
1694 edma_execute(echan
);
1695 spin_unlock_irqrestore(&echan
->vchan
.lock
, flags
);
1699 * This limit exists to avoid a possible infinite loop when waiting for proof
1700 * that a particular transfer is completed. This limit can be hit if there
1701 * are large bursts to/from slow devices or the CPU is never able to catch
1702 * the DMA hardware idle. On an AM335x transfering 48 bytes from the UART
1703 * RX-FIFO, as many as 55 loops have been seen.
1705 #define EDMA_MAX_TR_WAIT_LOOPS 1000
1707 static u32
edma_residue(struct edma_desc
*edesc
)
1709 bool dst
= edesc
->direction
== DMA_DEV_TO_MEM
;
1710 int loop_count
= EDMA_MAX_TR_WAIT_LOOPS
;
1711 struct edma_chan
*echan
= edesc
->echan
;
1712 struct edma_pset
*pset
= edesc
->pset
;
1713 dma_addr_t done
, pos
;
1717 * We always read the dst/src position from the first RamPar
1718 * pset. That's the one which is active now.
1720 pos
= edma_get_position(echan
->ecc
, echan
->slot
[0], dst
);
1723 * "pos" may represent a transfer request that is still being
1724 * processed by the EDMACC or EDMATC. We will busy wait until
1725 * any one of the situations occurs:
1726 * 1. the DMA hardware is idle
1727 * 2. a new transfer request is setup
1728 * 3. we hit the loop limit
1730 while (edma_read(echan
->ecc
, EDMA_CCSTAT
) & EDMA_CCSTAT_ACTV
) {
1731 /* check if a new transfer request is setup */
1732 if (edma_get_position(echan
->ecc
,
1733 echan
->slot
[0], dst
) != pos
) {
1737 if (!--loop_count
) {
1738 dev_dbg_ratelimited(echan
->vchan
.chan
.device
->dev
,
1739 "%s: timeout waiting for PaRAM update\n",
1748 * Cyclic is simple. Just subtract pset[0].addr from pos.
1750 * We never update edesc->residue in the cyclic case, so we
1751 * can tell the remaining room to the end of the circular
1754 if (edesc
->cyclic
) {
1755 done
= pos
- pset
->addr
;
1756 edesc
->residue_stat
= edesc
->residue
- done
;
1757 return edesc
->residue_stat
;
1761 * For SG operation we catch up with the last processed
1764 pset
+= edesc
->processed_stat
;
1766 for (i
= edesc
->processed_stat
; i
< edesc
->processed
; i
++, pset
++) {
1768 * If we are inside this pset address range, we know
1769 * this is the active one. Get the current delta and
1770 * stop walking the psets.
1772 if (pos
>= pset
->addr
&& pos
< pset
->addr
+ pset
->len
)
1773 return edesc
->residue_stat
- (pos
- pset
->addr
);
1775 /* Otherwise mark it done and update residue_stat. */
1776 edesc
->processed_stat
++;
1777 edesc
->residue_stat
-= pset
->len
;
1779 return edesc
->residue_stat
;
1782 /* Check request completion status */
1783 static enum dma_status
edma_tx_status(struct dma_chan
*chan
,
1784 dma_cookie_t cookie
,
1785 struct dma_tx_state
*txstate
)
1787 struct edma_chan
*echan
= to_edma_chan(chan
);
1788 struct virt_dma_desc
*vdesc
;
1789 enum dma_status ret
;
1790 unsigned long flags
;
1792 ret
= dma_cookie_status(chan
, cookie
, txstate
);
1793 if (ret
== DMA_COMPLETE
|| !txstate
)
1796 spin_lock_irqsave(&echan
->vchan
.lock
, flags
);
1797 if (echan
->edesc
&& echan
->edesc
->vdesc
.tx
.cookie
== cookie
)
1798 txstate
->residue
= edma_residue(echan
->edesc
);
1799 else if ((vdesc
= vchan_find_desc(&echan
->vchan
, cookie
)))
1800 txstate
->residue
= to_edma_desc(&vdesc
->tx
)->residue
;
1801 spin_unlock_irqrestore(&echan
->vchan
.lock
, flags
);
1806 static bool edma_is_memcpy_channel(int ch_num
, s32
*memcpy_channels
)
1808 if (!memcpy_channels
)
1810 while (*memcpy_channels
!= -1) {
1811 if (*memcpy_channels
== ch_num
)
1818 #define EDMA_DMA_BUSWIDTHS (BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
1819 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
1820 BIT(DMA_SLAVE_BUSWIDTH_3_BYTES) | \
1821 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))
1823 static void edma_dma_init(struct edma_cc
*ecc
, bool legacy_mode
)
1825 struct dma_device
*s_ddev
= &ecc
->dma_slave
;
1826 struct dma_device
*m_ddev
= NULL
;
1827 s32
*memcpy_channels
= ecc
->info
->memcpy_channels
;
1830 dma_cap_zero(s_ddev
->cap_mask
);
1831 dma_cap_set(DMA_SLAVE
, s_ddev
->cap_mask
);
1832 dma_cap_set(DMA_CYCLIC
, s_ddev
->cap_mask
);
1833 if (ecc
->legacy_mode
&& !memcpy_channels
) {
1835 "Legacy memcpy is enabled, things might not work\n");
1837 dma_cap_set(DMA_MEMCPY
, s_ddev
->cap_mask
);
1838 s_ddev
->device_prep_dma_memcpy
= edma_prep_dma_memcpy
;
1839 s_ddev
->directions
= BIT(DMA_MEM_TO_MEM
);
1842 s_ddev
->device_prep_slave_sg
= edma_prep_slave_sg
;
1843 s_ddev
->device_prep_dma_cyclic
= edma_prep_dma_cyclic
;
1844 s_ddev
->device_alloc_chan_resources
= edma_alloc_chan_resources
;
1845 s_ddev
->device_free_chan_resources
= edma_free_chan_resources
;
1846 s_ddev
->device_issue_pending
= edma_issue_pending
;
1847 s_ddev
->device_tx_status
= edma_tx_status
;
1848 s_ddev
->device_config
= edma_slave_config
;
1849 s_ddev
->device_pause
= edma_dma_pause
;
1850 s_ddev
->device_resume
= edma_dma_resume
;
1851 s_ddev
->device_terminate_all
= edma_terminate_all
;
1852 s_ddev
->device_synchronize
= edma_synchronize
;
1854 s_ddev
->src_addr_widths
= EDMA_DMA_BUSWIDTHS
;
1855 s_ddev
->dst_addr_widths
= EDMA_DMA_BUSWIDTHS
;
1856 s_ddev
->directions
|= (BIT(DMA_DEV_TO_MEM
) | BIT(DMA_MEM_TO_DEV
));
1857 s_ddev
->residue_granularity
= DMA_RESIDUE_GRANULARITY_BURST
;
1859 s_ddev
->dev
= ecc
->dev
;
1860 INIT_LIST_HEAD(&s_ddev
->channels
);
1862 if (memcpy_channels
) {
1863 m_ddev
= devm_kzalloc(ecc
->dev
, sizeof(*m_ddev
), GFP_KERNEL
);
1864 ecc
->dma_memcpy
= m_ddev
;
1866 dma_cap_zero(m_ddev
->cap_mask
);
1867 dma_cap_set(DMA_MEMCPY
, m_ddev
->cap_mask
);
1869 m_ddev
->device_prep_dma_memcpy
= edma_prep_dma_memcpy
;
1870 m_ddev
->device_alloc_chan_resources
= edma_alloc_chan_resources
;
1871 m_ddev
->device_free_chan_resources
= edma_free_chan_resources
;
1872 m_ddev
->device_issue_pending
= edma_issue_pending
;
1873 m_ddev
->device_tx_status
= edma_tx_status
;
1874 m_ddev
->device_config
= edma_slave_config
;
1875 m_ddev
->device_pause
= edma_dma_pause
;
1876 m_ddev
->device_resume
= edma_dma_resume
;
1877 m_ddev
->device_terminate_all
= edma_terminate_all
;
1878 m_ddev
->device_synchronize
= edma_synchronize
;
1880 m_ddev
->src_addr_widths
= EDMA_DMA_BUSWIDTHS
;
1881 m_ddev
->dst_addr_widths
= EDMA_DMA_BUSWIDTHS
;
1882 m_ddev
->directions
= BIT(DMA_MEM_TO_MEM
);
1883 m_ddev
->residue_granularity
= DMA_RESIDUE_GRANULARITY_BURST
;
1885 m_ddev
->dev
= ecc
->dev
;
1886 INIT_LIST_HEAD(&m_ddev
->channels
);
1887 } else if (!ecc
->legacy_mode
) {
1888 dev_info(ecc
->dev
, "memcpy is disabled\n");
1891 for (i
= 0; i
< ecc
->num_channels
; i
++) {
1892 struct edma_chan
*echan
= &ecc
->slave_chans
[i
];
1893 echan
->ch_num
= EDMA_CTLR_CHAN(ecc
->id
, i
);
1895 echan
->vchan
.desc_free
= edma_desc_free
;
1897 if (m_ddev
&& edma_is_memcpy_channel(i
, memcpy_channels
))
1898 vchan_init(&echan
->vchan
, m_ddev
);
1900 vchan_init(&echan
->vchan
, s_ddev
);
1902 INIT_LIST_HEAD(&echan
->node
);
1903 for (j
= 0; j
< EDMA_MAX_SLOTS
; j
++)
1904 echan
->slot
[j
] = -1;
1908 static int edma_setup_from_hw(struct device
*dev
, struct edma_soc_info
*pdata
,
1909 struct edma_cc
*ecc
)
1913 s8 (*queue_priority_map
)[2];
1915 /* Decode the eDMA3 configuration from CCCFG register */
1916 cccfg
= edma_read(ecc
, EDMA_CCCFG
);
1918 value
= GET_NUM_REGN(cccfg
);
1919 ecc
->num_region
= BIT(value
);
1921 value
= GET_NUM_DMACH(cccfg
);
1922 ecc
->num_channels
= BIT(value
+ 1);
1924 value
= GET_NUM_QDMACH(cccfg
);
1925 ecc
->num_qchannels
= value
* 2;
1927 value
= GET_NUM_PAENTRY(cccfg
);
1928 ecc
->num_slots
= BIT(value
+ 4);
1930 value
= GET_NUM_EVQUE(cccfg
);
1931 ecc
->num_tc
= value
+ 1;
1933 ecc
->chmap_exist
= (cccfg
& CHMAP_EXIST
) ? true : false;
1935 dev_dbg(dev
, "eDMA3 CC HW configuration (cccfg: 0x%08x):\n", cccfg
);
1936 dev_dbg(dev
, "num_region: %u\n", ecc
->num_region
);
1937 dev_dbg(dev
, "num_channels: %u\n", ecc
->num_channels
);
1938 dev_dbg(dev
, "num_qchannels: %u\n", ecc
->num_qchannels
);
1939 dev_dbg(dev
, "num_slots: %u\n", ecc
->num_slots
);
1940 dev_dbg(dev
, "num_tc: %u\n", ecc
->num_tc
);
1941 dev_dbg(dev
, "chmap_exist: %s\n", ecc
->chmap_exist
? "yes" : "no");
1943 /* Nothing need to be done if queue priority is provided */
1944 if (pdata
->queue_priority_mapping
)
1948 * Configure TC/queue priority as follows:
1953 * The meaning of priority numbers: 0 highest priority, 7 lowest
1954 * priority. So Q0 is the highest priority queue and the last queue has
1955 * the lowest priority.
1957 queue_priority_map
= devm_kcalloc(dev
, ecc
->num_tc
+ 1, sizeof(s8
),
1959 if (!queue_priority_map
)
1962 for (i
= 0; i
< ecc
->num_tc
; i
++) {
1963 queue_priority_map
[i
][0] = i
;
1964 queue_priority_map
[i
][1] = i
;
1966 queue_priority_map
[i
][0] = -1;
1967 queue_priority_map
[i
][1] = -1;
1969 pdata
->queue_priority_mapping
= queue_priority_map
;
1970 /* Default queue has the lowest priority */
1971 pdata
->default_queue
= i
- 1;
1976 #if IS_ENABLED(CONFIG_OF)
1977 static int edma_xbar_event_map(struct device
*dev
, struct edma_soc_info
*pdata
,
1980 const char pname
[] = "ti,edma-xbar-event-map";
1981 struct resource res
;
1983 s16 (*xbar_chans
)[2];
1984 size_t nelm
= sz
/ sizeof(s16
);
1985 u32 shift
, offset
, mux
;
1988 xbar_chans
= devm_kcalloc(dev
, nelm
+ 2, sizeof(s16
), GFP_KERNEL
);
1992 ret
= of_address_to_resource(dev
->of_node
, 1, &res
);
1996 xbar
= devm_ioremap(dev
, res
.start
, resource_size(&res
));
2000 ret
= of_property_read_u16_array(dev
->of_node
, pname
, (u16
*)xbar_chans
,
2005 /* Invalidate last entry for the other user of this mess */
2007 xbar_chans
[nelm
][0] = -1;
2008 xbar_chans
[nelm
][1] = -1;
2010 for (i
= 0; i
< nelm
; i
++) {
2011 shift
= (xbar_chans
[i
][1] & 0x03) << 3;
2012 offset
= xbar_chans
[i
][1] & 0xfffffffc;
2013 mux
= readl(xbar
+ offset
);
2014 mux
&= ~(0xff << shift
);
2015 mux
|= xbar_chans
[i
][0] << shift
;
2016 writel(mux
, (xbar
+ offset
));
2019 pdata
->xbar_chans
= (const s16 (*)[2]) xbar_chans
;
2023 static struct edma_soc_info
*edma_setup_info_from_dt(struct device
*dev
,
2026 struct edma_soc_info
*info
;
2027 struct property
*prop
;
2030 info
= devm_kzalloc(dev
, sizeof(struct edma_soc_info
), GFP_KERNEL
);
2032 return ERR_PTR(-ENOMEM
);
2035 prop
= of_find_property(dev
->of_node
, "ti,edma-xbar-event-map",
2038 ret
= edma_xbar_event_map(dev
, info
, sz
);
2040 return ERR_PTR(ret
);
2045 /* Get the list of channels allocated to be used for memcpy */
2046 prop
= of_find_property(dev
->of_node
, "ti,edma-memcpy-channels", &sz
);
2048 const char pname
[] = "ti,edma-memcpy-channels";
2049 size_t nelm
= sz
/ sizeof(s32
);
2052 memcpy_ch
= devm_kcalloc(dev
, nelm
+ 1, sizeof(s32
),
2055 return ERR_PTR(-ENOMEM
);
2057 ret
= of_property_read_u32_array(dev
->of_node
, pname
,
2058 (u32
*)memcpy_ch
, nelm
);
2060 return ERR_PTR(ret
);
2062 memcpy_ch
[nelm
] = -1;
2063 info
->memcpy_channels
= memcpy_ch
;
2066 prop
= of_find_property(dev
->of_node
, "ti,edma-reserved-slot-ranges",
2069 const char pname
[] = "ti,edma-reserved-slot-ranges";
2071 s16 (*rsv_slots
)[2];
2072 size_t nelm
= sz
/ sizeof(*tmp
);
2073 struct edma_rsv_info
*rsv_info
;
2079 tmp
= kcalloc(nelm
, sizeof(*tmp
), GFP_KERNEL
);
2081 return ERR_PTR(-ENOMEM
);
2083 rsv_info
= devm_kzalloc(dev
, sizeof(*rsv_info
), GFP_KERNEL
);
2086 return ERR_PTR(-ENOMEM
);
2089 rsv_slots
= devm_kcalloc(dev
, nelm
+ 1, sizeof(*rsv_slots
),
2093 return ERR_PTR(-ENOMEM
);
2096 ret
= of_property_read_u32_array(dev
->of_node
, pname
,
2097 (u32
*)tmp
, nelm
* 2);
2100 return ERR_PTR(ret
);
2103 for (i
= 0; i
< nelm
; i
++) {
2104 rsv_slots
[i
][0] = tmp
[i
][0];
2105 rsv_slots
[i
][1] = tmp
[i
][1];
2107 rsv_slots
[nelm
][0] = -1;
2108 rsv_slots
[nelm
][1] = -1;
2110 info
->rsv
= rsv_info
;
2111 info
->rsv
->rsv_slots
= (const s16 (*)[2])rsv_slots
;
2119 static struct dma_chan
*of_edma_xlate(struct of_phandle_args
*dma_spec
,
2120 struct of_dma
*ofdma
)
2122 struct edma_cc
*ecc
= ofdma
->of_dma_data
;
2123 struct dma_chan
*chan
= NULL
;
2124 struct edma_chan
*echan
;
2127 if (!ecc
|| dma_spec
->args_count
< 1)
2130 for (i
= 0; i
< ecc
->num_channels
; i
++) {
2131 echan
= &ecc
->slave_chans
[i
];
2132 if (echan
->ch_num
== dma_spec
->args
[0]) {
2133 chan
= &echan
->vchan
.chan
;
2141 if (echan
->ecc
->legacy_mode
&& dma_spec
->args_count
== 1)
2144 if (!echan
->ecc
->legacy_mode
&& dma_spec
->args_count
== 2 &&
2145 dma_spec
->args
[1] < echan
->ecc
->num_tc
) {
2146 echan
->tc
= &echan
->ecc
->tc_list
[dma_spec
->args
[1]];
2152 /* The channel is going to be used as HW synchronized */
2153 echan
->hw_triggered
= true;
2154 return dma_get_slave_channel(chan
);
2157 static struct edma_soc_info
*edma_setup_info_from_dt(struct device
*dev
,
2160 return ERR_PTR(-EINVAL
);
2163 static struct dma_chan
*of_edma_xlate(struct of_phandle_args
*dma_spec
,
2164 struct of_dma
*ofdma
)
2170 static int edma_probe(struct platform_device
*pdev
)
2172 struct edma_soc_info
*info
= pdev
->dev
.platform_data
;
2173 s8 (*queue_priority_mapping
)[2];
2175 const s16 (*rsv_slots
)[2];
2176 const s16 (*xbar_chans
)[2];
2179 struct resource
*mem
;
2180 struct device_node
*node
= pdev
->dev
.of_node
;
2181 struct device
*dev
= &pdev
->dev
;
2182 struct edma_cc
*ecc
;
2183 bool legacy_mode
= true;
2187 const struct of_device_id
*match
;
2189 match
= of_match_node(edma_of_ids
, node
);
2190 if (match
&& (*(u32
*)match
->data
) == EDMA_BINDING_TPCC
)
2191 legacy_mode
= false;
2193 info
= edma_setup_info_from_dt(dev
, legacy_mode
);
2195 dev_err(dev
, "failed to get DT data\n");
2196 return PTR_ERR(info
);
2203 pm_runtime_enable(dev
);
2204 ret
= pm_runtime_get_sync(dev
);
2206 dev_err(dev
, "pm_runtime_get_sync() failed\n");
2210 ret
= dma_set_mask_and_coherent(dev
, DMA_BIT_MASK(32));
2214 ecc
= devm_kzalloc(dev
, sizeof(*ecc
), GFP_KERNEL
);
2220 ecc
->legacy_mode
= legacy_mode
;
2221 /* When booting with DT the pdev->id is -1 */
2225 mem
= platform_get_resource_byname(pdev
, IORESOURCE_MEM
, "edma3_cc");
2227 dev_dbg(dev
, "mem resource not found, using index 0\n");
2228 mem
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
2230 dev_err(dev
, "no mem resource?\n");
2234 ecc
->base
= devm_ioremap_resource(dev
, mem
);
2235 if (IS_ERR(ecc
->base
))
2236 return PTR_ERR(ecc
->base
);
2238 platform_set_drvdata(pdev
, ecc
);
2240 /* Get eDMA3 configuration from IP */
2241 ret
= edma_setup_from_hw(dev
, info
, ecc
);
2245 /* Allocate memory based on the information we got from the IP */
2246 ecc
->slave_chans
= devm_kcalloc(dev
, ecc
->num_channels
,
2247 sizeof(*ecc
->slave_chans
), GFP_KERNEL
);
2248 if (!ecc
->slave_chans
)
2251 ecc
->slot_inuse
= devm_kcalloc(dev
, BITS_TO_LONGS(ecc
->num_slots
),
2252 sizeof(unsigned long), GFP_KERNEL
);
2253 if (!ecc
->slot_inuse
)
2256 ecc
->default_queue
= info
->default_queue
;
2258 for (i
= 0; i
< ecc
->num_slots
; i
++)
2259 edma_write_slot(ecc
, i
, &dummy_paramset
);
2262 /* Set the reserved slots in inuse list */
2263 rsv_slots
= info
->rsv
->rsv_slots
;
2265 for (i
= 0; rsv_slots
[i
][0] != -1; i
++) {
2266 off
= rsv_slots
[i
][0];
2267 ln
= rsv_slots
[i
][1];
2268 edma_set_bits(off
, ln
, ecc
->slot_inuse
);
2273 /* Clear the xbar mapped channels in unused list */
2274 xbar_chans
= info
->xbar_chans
;
2276 for (i
= 0; xbar_chans
[i
][1] != -1; i
++) {
2277 off
= xbar_chans
[i
][1];
2281 irq
= platform_get_irq_byname(pdev
, "edma3_ccint");
2282 if (irq
< 0 && node
)
2283 irq
= irq_of_parse_and_map(node
, 0);
2286 irq_name
= devm_kasprintf(dev
, GFP_KERNEL
, "%s_ccint",
2288 ret
= devm_request_irq(dev
, irq
, dma_irq_handler
, 0, irq_name
,
2291 dev_err(dev
, "CCINT (%d) failed --> %d\n", irq
, ret
);
2297 irq
= platform_get_irq_byname(pdev
, "edma3_ccerrint");
2298 if (irq
< 0 && node
)
2299 irq
= irq_of_parse_and_map(node
, 2);
2302 irq_name
= devm_kasprintf(dev
, GFP_KERNEL
, "%s_ccerrint",
2304 ret
= devm_request_irq(dev
, irq
, dma_ccerr_handler
, 0, irq_name
,
2307 dev_err(dev
, "CCERRINT (%d) failed --> %d\n", irq
, ret
);
2310 ecc
->ccerrint
= irq
;
2313 ecc
->dummy_slot
= edma_alloc_slot(ecc
, EDMA_SLOT_ANY
);
2314 if (ecc
->dummy_slot
< 0) {
2315 dev_err(dev
, "Can't allocate PaRAM dummy slot\n");
2316 return ecc
->dummy_slot
;
2319 queue_priority_mapping
= info
->queue_priority_mapping
;
2321 if (!ecc
->legacy_mode
) {
2322 int lowest_priority
= 0;
2323 struct of_phandle_args tc_args
;
2325 ecc
->tc_list
= devm_kcalloc(dev
, ecc
->num_tc
,
2326 sizeof(*ecc
->tc_list
), GFP_KERNEL
);
2331 ret
= of_parse_phandle_with_fixed_args(node
, "ti,tptcs",
2333 if (ret
|| i
== ecc
->num_tc
)
2336 ecc
->tc_list
[i
].node
= tc_args
.np
;
2337 ecc
->tc_list
[i
].id
= i
;
2338 queue_priority_mapping
[i
][1] = tc_args
.args
[0];
2339 if (queue_priority_mapping
[i
][1] > lowest_priority
) {
2340 lowest_priority
= queue_priority_mapping
[i
][1];
2341 info
->default_queue
= i
;
2346 /* Event queue priority mapping */
2347 for (i
= 0; queue_priority_mapping
[i
][0] != -1; i
++)
2348 edma_assign_priority_to_queue(ecc
, queue_priority_mapping
[i
][0],
2349 queue_priority_mapping
[i
][1]);
2351 for (i
= 0; i
< ecc
->num_region
; i
++) {
2352 edma_write_array2(ecc
, EDMA_DRAE
, i
, 0, 0x0);
2353 edma_write_array2(ecc
, EDMA_DRAE
, i
, 1, 0x0);
2354 edma_write_array(ecc
, EDMA_QRAE
, i
, 0x0);
2358 /* Init the dma device and channels */
2359 edma_dma_init(ecc
, legacy_mode
);
2361 for (i
= 0; i
< ecc
->num_channels
; i
++) {
2362 /* Assign all channels to the default queue */
2363 edma_assign_channel_eventq(&ecc
->slave_chans
[i
],
2364 info
->default_queue
);
2365 /* Set entry slot to the dummy slot */
2366 edma_set_chmap(&ecc
->slave_chans
[i
], ecc
->dummy_slot
);
2369 ecc
->dma_slave
.filter
.map
= info
->slave_map
;
2370 ecc
->dma_slave
.filter
.mapcnt
= info
->slavecnt
;
2371 ecc
->dma_slave
.filter
.fn
= edma_filter_fn
;
2373 ret
= dma_async_device_register(&ecc
->dma_slave
);
2375 dev_err(dev
, "slave ddev registration failed (%d)\n", ret
);
2379 if (ecc
->dma_memcpy
) {
2380 ret
= dma_async_device_register(ecc
->dma_memcpy
);
2382 dev_err(dev
, "memcpy ddev registration failed (%d)\n",
2384 dma_async_device_unregister(&ecc
->dma_slave
);
2390 of_dma_controller_register(node
, of_edma_xlate
, ecc
);
2392 dev_info(dev
, "TI EDMA DMA engine driver\n");
2397 edma_free_slot(ecc
, ecc
->dummy_slot
);
2401 static void edma_cleanupp_vchan(struct dma_device
*dmadev
)
2403 struct edma_chan
*echan
, *_echan
;
2405 list_for_each_entry_safe(echan
, _echan
,
2406 &dmadev
->channels
, vchan
.chan
.device_node
) {
2407 list_del(&echan
->vchan
.chan
.device_node
);
2408 tasklet_kill(&echan
->vchan
.task
);
2412 static int edma_remove(struct platform_device
*pdev
)
2414 struct device
*dev
= &pdev
->dev
;
2415 struct edma_cc
*ecc
= dev_get_drvdata(dev
);
2417 devm_free_irq(dev
, ecc
->ccint
, ecc
);
2418 devm_free_irq(dev
, ecc
->ccerrint
, ecc
);
2420 edma_cleanupp_vchan(&ecc
->dma_slave
);
2423 of_dma_controller_free(dev
->of_node
);
2424 dma_async_device_unregister(&ecc
->dma_slave
);
2425 if (ecc
->dma_memcpy
)
2426 dma_async_device_unregister(ecc
->dma_memcpy
);
2427 edma_free_slot(ecc
, ecc
->dummy_slot
);
2432 #ifdef CONFIG_PM_SLEEP
2433 static int edma_pm_suspend(struct device
*dev
)
2435 struct edma_cc
*ecc
= dev_get_drvdata(dev
);
2436 struct edma_chan
*echan
= ecc
->slave_chans
;
2439 for (i
= 0; i
< ecc
->num_channels
; i
++) {
2440 if (echan
[i
].alloced
)
2441 edma_setup_interrupt(&echan
[i
], false);
2447 static int edma_pm_resume(struct device
*dev
)
2449 struct edma_cc
*ecc
= dev_get_drvdata(dev
);
2450 struct edma_chan
*echan
= ecc
->slave_chans
;
2452 s8 (*queue_priority_mapping
)[2];
2454 /* re initialize dummy slot to dummy param set */
2455 edma_write_slot(ecc
, ecc
->dummy_slot
, &dummy_paramset
);
2457 queue_priority_mapping
= ecc
->info
->queue_priority_mapping
;
2459 /* Event queue priority mapping */
2460 for (i
= 0; queue_priority_mapping
[i
][0] != -1; i
++)
2461 edma_assign_priority_to_queue(ecc
, queue_priority_mapping
[i
][0],
2462 queue_priority_mapping
[i
][1]);
2464 for (i
= 0; i
< ecc
->num_channels
; i
++) {
2465 if (echan
[i
].alloced
) {
2466 /* ensure access through shadow region 0 */
2467 edma_or_array2(ecc
, EDMA_DRAE
, 0, i
>> 5,
2470 edma_setup_interrupt(&echan
[i
], true);
2472 /* Set up channel -> slot mapping for the entry slot */
2473 edma_set_chmap(&echan
[i
], echan
[i
].slot
[0]);
2481 static const struct dev_pm_ops edma_pm_ops
= {
2482 SET_LATE_SYSTEM_SLEEP_PM_OPS(edma_pm_suspend
, edma_pm_resume
)
2485 static struct platform_driver edma_driver
= {
2486 .probe
= edma_probe
,
2487 .remove
= edma_remove
,
2491 .of_match_table
= edma_of_ids
,
2495 static int edma_tptc_probe(struct platform_device
*pdev
)
2497 pm_runtime_enable(&pdev
->dev
);
2498 return pm_runtime_get_sync(&pdev
->dev
);
2501 static struct platform_driver edma_tptc_driver
= {
2502 .probe
= edma_tptc_probe
,
2504 .name
= "edma3-tptc",
2505 .of_match_table
= edma_tptc_of_ids
,
2509 bool edma_filter_fn(struct dma_chan
*chan
, void *param
)
2513 if (chan
->device
->dev
->driver
== &edma_driver
.driver
) {
2514 struct edma_chan
*echan
= to_edma_chan(chan
);
2515 unsigned ch_req
= *(unsigned *)param
;
2516 if (ch_req
== echan
->ch_num
) {
2517 /* The channel is going to be used as HW synchronized */
2518 echan
->hw_triggered
= true;
2524 EXPORT_SYMBOL(edma_filter_fn
);
2526 static int edma_init(void)
2530 ret
= platform_driver_register(&edma_tptc_driver
);
2534 return platform_driver_register(&edma_driver
);
2536 subsys_initcall(edma_init
);
2538 static void __exit
edma_exit(void)
2540 platform_driver_unregister(&edma_driver
);
2541 platform_driver_unregister(&edma_tptc_driver
);
2543 module_exit(edma_exit
);
2545 MODULE_AUTHOR("Matt Porter <matt.porter@linaro.org>");
2546 MODULE_DESCRIPTION("TI EDMA DMA engine driver");
2547 MODULE_LICENSE("GPL v2");