net/smc: make sure EPOLLOUT is raised
[linux-stable.git] / kernel / sys.c
blobab96b988234732dcb44e8aa4426b928bad19b884
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/kernel/sys.c
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 */
8 #include <linux/export.h>
9 #include <linux/mm.h>
10 #include <linux/utsname.h>
11 #include <linux/mman.h>
12 #include <linux/reboot.h>
13 #include <linux/prctl.h>
14 #include <linux/highuid.h>
15 #include <linux/fs.h>
16 #include <linux/kmod.h>
17 #include <linux/perf_event.h>
18 #include <linux/resource.h>
19 #include <linux/kernel.h>
20 #include <linux/workqueue.h>
21 #include <linux/capability.h>
22 #include <linux/device.h>
23 #include <linux/key.h>
24 #include <linux/times.h>
25 #include <linux/posix-timers.h>
26 #include <linux/security.h>
27 #include <linux/dcookies.h>
28 #include <linux/suspend.h>
29 #include <linux/tty.h>
30 #include <linux/signal.h>
31 #include <linux/cn_proc.h>
32 #include <linux/getcpu.h>
33 #include <linux/task_io_accounting_ops.h>
34 #include <linux/seccomp.h>
35 #include <linux/cpu.h>
36 #include <linux/personality.h>
37 #include <linux/ptrace.h>
38 #include <linux/fs_struct.h>
39 #include <linux/file.h>
40 #include <linux/mount.h>
41 #include <linux/gfp.h>
42 #include <linux/syscore_ops.h>
43 #include <linux/version.h>
44 #include <linux/ctype.h>
46 #include <linux/compat.h>
47 #include <linux/syscalls.h>
48 #include <linux/kprobes.h>
49 #include <linux/user_namespace.h>
50 #include <linux/binfmts.h>
52 #include <linux/sched.h>
53 #include <linux/sched/autogroup.h>
54 #include <linux/sched/loadavg.h>
55 #include <linux/sched/stat.h>
56 #include <linux/sched/mm.h>
57 #include <linux/sched/coredump.h>
58 #include <linux/sched/task.h>
59 #include <linux/sched/cputime.h>
60 #include <linux/rcupdate.h>
61 #include <linux/uidgid.h>
62 #include <linux/cred.h>
64 #include <linux/nospec.h>
66 #include <linux/kmsg_dump.h>
67 /* Move somewhere else to avoid recompiling? */
68 #include <generated/utsrelease.h>
70 #include <linux/uaccess.h>
71 #include <asm/io.h>
72 #include <asm/unistd.h>
74 #ifndef SET_UNALIGN_CTL
75 # define SET_UNALIGN_CTL(a, b) (-EINVAL)
76 #endif
77 #ifndef GET_UNALIGN_CTL
78 # define GET_UNALIGN_CTL(a, b) (-EINVAL)
79 #endif
80 #ifndef SET_FPEMU_CTL
81 # define SET_FPEMU_CTL(a, b) (-EINVAL)
82 #endif
83 #ifndef GET_FPEMU_CTL
84 # define GET_FPEMU_CTL(a, b) (-EINVAL)
85 #endif
86 #ifndef SET_FPEXC_CTL
87 # define SET_FPEXC_CTL(a, b) (-EINVAL)
88 #endif
89 #ifndef GET_FPEXC_CTL
90 # define GET_FPEXC_CTL(a, b) (-EINVAL)
91 #endif
92 #ifndef GET_ENDIAN
93 # define GET_ENDIAN(a, b) (-EINVAL)
94 #endif
95 #ifndef SET_ENDIAN
96 # define SET_ENDIAN(a, b) (-EINVAL)
97 #endif
98 #ifndef GET_TSC_CTL
99 # define GET_TSC_CTL(a) (-EINVAL)
100 #endif
101 #ifndef SET_TSC_CTL
102 # define SET_TSC_CTL(a) (-EINVAL)
103 #endif
104 #ifndef MPX_ENABLE_MANAGEMENT
105 # define MPX_ENABLE_MANAGEMENT() (-EINVAL)
106 #endif
107 #ifndef MPX_DISABLE_MANAGEMENT
108 # define MPX_DISABLE_MANAGEMENT() (-EINVAL)
109 #endif
110 #ifndef GET_FP_MODE
111 # define GET_FP_MODE(a) (-EINVAL)
112 #endif
113 #ifndef SET_FP_MODE
114 # define SET_FP_MODE(a,b) (-EINVAL)
115 #endif
118 * this is where the system-wide overflow UID and GID are defined, for
119 * architectures that now have 32-bit UID/GID but didn't in the past
122 int overflowuid = DEFAULT_OVERFLOWUID;
123 int overflowgid = DEFAULT_OVERFLOWGID;
125 EXPORT_SYMBOL(overflowuid);
126 EXPORT_SYMBOL(overflowgid);
129 * the same as above, but for filesystems which can only store a 16-bit
130 * UID and GID. as such, this is needed on all architectures
133 int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
134 int fs_overflowgid = DEFAULT_FS_OVERFLOWUID;
136 EXPORT_SYMBOL(fs_overflowuid);
137 EXPORT_SYMBOL(fs_overflowgid);
140 * Returns true if current's euid is same as p's uid or euid,
141 * or has CAP_SYS_NICE to p's user_ns.
143 * Called with rcu_read_lock, creds are safe
145 static bool set_one_prio_perm(struct task_struct *p)
147 const struct cred *cred = current_cred(), *pcred = __task_cred(p);
149 if (uid_eq(pcred->uid, cred->euid) ||
150 uid_eq(pcred->euid, cred->euid))
151 return true;
152 if (ns_capable(pcred->user_ns, CAP_SYS_NICE))
153 return true;
154 return false;
158 * set the priority of a task
159 * - the caller must hold the RCU read lock
161 static int set_one_prio(struct task_struct *p, int niceval, int error)
163 int no_nice;
165 if (!set_one_prio_perm(p)) {
166 error = -EPERM;
167 goto out;
169 if (niceval < task_nice(p) && !can_nice(p, niceval)) {
170 error = -EACCES;
171 goto out;
173 no_nice = security_task_setnice(p, niceval);
174 if (no_nice) {
175 error = no_nice;
176 goto out;
178 if (error == -ESRCH)
179 error = 0;
180 set_user_nice(p, niceval);
181 out:
182 return error;
185 SYSCALL_DEFINE3(setpriority, int, which, int, who, int, niceval)
187 struct task_struct *g, *p;
188 struct user_struct *user;
189 const struct cred *cred = current_cred();
190 int error = -EINVAL;
191 struct pid *pgrp;
192 kuid_t uid;
194 if (which > PRIO_USER || which < PRIO_PROCESS)
195 goto out;
197 /* normalize: avoid signed division (rounding problems) */
198 error = -ESRCH;
199 if (niceval < MIN_NICE)
200 niceval = MIN_NICE;
201 if (niceval > MAX_NICE)
202 niceval = MAX_NICE;
204 rcu_read_lock();
205 read_lock(&tasklist_lock);
206 switch (which) {
207 case PRIO_PROCESS:
208 if (who)
209 p = find_task_by_vpid(who);
210 else
211 p = current;
212 if (p)
213 error = set_one_prio(p, niceval, error);
214 break;
215 case PRIO_PGRP:
216 if (who)
217 pgrp = find_vpid(who);
218 else
219 pgrp = task_pgrp(current);
220 do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
221 error = set_one_prio(p, niceval, error);
222 } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
223 break;
224 case PRIO_USER:
225 uid = make_kuid(cred->user_ns, who);
226 user = cred->user;
227 if (!who)
228 uid = cred->uid;
229 else if (!uid_eq(uid, cred->uid)) {
230 user = find_user(uid);
231 if (!user)
232 goto out_unlock; /* No processes for this user */
234 do_each_thread(g, p) {
235 if (uid_eq(task_uid(p), uid) && task_pid_vnr(p))
236 error = set_one_prio(p, niceval, error);
237 } while_each_thread(g, p);
238 if (!uid_eq(uid, cred->uid))
239 free_uid(user); /* For find_user() */
240 break;
242 out_unlock:
243 read_unlock(&tasklist_lock);
244 rcu_read_unlock();
245 out:
246 return error;
250 * Ugh. To avoid negative return values, "getpriority()" will
251 * not return the normal nice-value, but a negated value that
252 * has been offset by 20 (ie it returns 40..1 instead of -20..19)
253 * to stay compatible.
255 SYSCALL_DEFINE2(getpriority, int, which, int, who)
257 struct task_struct *g, *p;
258 struct user_struct *user;
259 const struct cred *cred = current_cred();
260 long niceval, retval = -ESRCH;
261 struct pid *pgrp;
262 kuid_t uid;
264 if (which > PRIO_USER || which < PRIO_PROCESS)
265 return -EINVAL;
267 rcu_read_lock();
268 read_lock(&tasklist_lock);
269 switch (which) {
270 case PRIO_PROCESS:
271 if (who)
272 p = find_task_by_vpid(who);
273 else
274 p = current;
275 if (p) {
276 niceval = nice_to_rlimit(task_nice(p));
277 if (niceval > retval)
278 retval = niceval;
280 break;
281 case PRIO_PGRP:
282 if (who)
283 pgrp = find_vpid(who);
284 else
285 pgrp = task_pgrp(current);
286 do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
287 niceval = nice_to_rlimit(task_nice(p));
288 if (niceval > retval)
289 retval = niceval;
290 } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
291 break;
292 case PRIO_USER:
293 uid = make_kuid(cred->user_ns, who);
294 user = cred->user;
295 if (!who)
296 uid = cred->uid;
297 else if (!uid_eq(uid, cred->uid)) {
298 user = find_user(uid);
299 if (!user)
300 goto out_unlock; /* No processes for this user */
302 do_each_thread(g, p) {
303 if (uid_eq(task_uid(p), uid) && task_pid_vnr(p)) {
304 niceval = nice_to_rlimit(task_nice(p));
305 if (niceval > retval)
306 retval = niceval;
308 } while_each_thread(g, p);
309 if (!uid_eq(uid, cred->uid))
310 free_uid(user); /* for find_user() */
311 break;
313 out_unlock:
314 read_unlock(&tasklist_lock);
315 rcu_read_unlock();
317 return retval;
321 * Unprivileged users may change the real gid to the effective gid
322 * or vice versa. (BSD-style)
324 * If you set the real gid at all, or set the effective gid to a value not
325 * equal to the real gid, then the saved gid is set to the new effective gid.
327 * This makes it possible for a setgid program to completely drop its
328 * privileges, which is often a useful assertion to make when you are doing
329 * a security audit over a program.
331 * The general idea is that a program which uses just setregid() will be
332 * 100% compatible with BSD. A program which uses just setgid() will be
333 * 100% compatible with POSIX with saved IDs.
335 * SMP: There are not races, the GIDs are checked only by filesystem
336 * operations (as far as semantic preservation is concerned).
338 #ifdef CONFIG_MULTIUSER
339 SYSCALL_DEFINE2(setregid, gid_t, rgid, gid_t, egid)
341 struct user_namespace *ns = current_user_ns();
342 const struct cred *old;
343 struct cred *new;
344 int retval;
345 kgid_t krgid, kegid;
347 krgid = make_kgid(ns, rgid);
348 kegid = make_kgid(ns, egid);
350 if ((rgid != (gid_t) -1) && !gid_valid(krgid))
351 return -EINVAL;
352 if ((egid != (gid_t) -1) && !gid_valid(kegid))
353 return -EINVAL;
355 new = prepare_creds();
356 if (!new)
357 return -ENOMEM;
358 old = current_cred();
360 retval = -EPERM;
361 if (rgid != (gid_t) -1) {
362 if (gid_eq(old->gid, krgid) ||
363 gid_eq(old->egid, krgid) ||
364 ns_capable(old->user_ns, CAP_SETGID))
365 new->gid = krgid;
366 else
367 goto error;
369 if (egid != (gid_t) -1) {
370 if (gid_eq(old->gid, kegid) ||
371 gid_eq(old->egid, kegid) ||
372 gid_eq(old->sgid, kegid) ||
373 ns_capable(old->user_ns, CAP_SETGID))
374 new->egid = kegid;
375 else
376 goto error;
379 if (rgid != (gid_t) -1 ||
380 (egid != (gid_t) -1 && !gid_eq(kegid, old->gid)))
381 new->sgid = new->egid;
382 new->fsgid = new->egid;
384 return commit_creds(new);
386 error:
387 abort_creds(new);
388 return retval;
392 * setgid() is implemented like SysV w/ SAVED_IDS
394 * SMP: Same implicit races as above.
396 SYSCALL_DEFINE1(setgid, gid_t, gid)
398 struct user_namespace *ns = current_user_ns();
399 const struct cred *old;
400 struct cred *new;
401 int retval;
402 kgid_t kgid;
404 kgid = make_kgid(ns, gid);
405 if (!gid_valid(kgid))
406 return -EINVAL;
408 new = prepare_creds();
409 if (!new)
410 return -ENOMEM;
411 old = current_cred();
413 retval = -EPERM;
414 if (ns_capable(old->user_ns, CAP_SETGID))
415 new->gid = new->egid = new->sgid = new->fsgid = kgid;
416 else if (gid_eq(kgid, old->gid) || gid_eq(kgid, old->sgid))
417 new->egid = new->fsgid = kgid;
418 else
419 goto error;
421 return commit_creds(new);
423 error:
424 abort_creds(new);
425 return retval;
429 * change the user struct in a credentials set to match the new UID
431 static int set_user(struct cred *new)
433 struct user_struct *new_user;
435 new_user = alloc_uid(new->uid);
436 if (!new_user)
437 return -EAGAIN;
440 * We don't fail in case of NPROC limit excess here because too many
441 * poorly written programs don't check set*uid() return code, assuming
442 * it never fails if called by root. We may still enforce NPROC limit
443 * for programs doing set*uid()+execve() by harmlessly deferring the
444 * failure to the execve() stage.
446 if (atomic_read(&new_user->processes) >= rlimit(RLIMIT_NPROC) &&
447 new_user != INIT_USER)
448 current->flags |= PF_NPROC_EXCEEDED;
449 else
450 current->flags &= ~PF_NPROC_EXCEEDED;
452 free_uid(new->user);
453 new->user = new_user;
454 return 0;
458 * Unprivileged users may change the real uid to the effective uid
459 * or vice versa. (BSD-style)
461 * If you set the real uid at all, or set the effective uid to a value not
462 * equal to the real uid, then the saved uid is set to the new effective uid.
464 * This makes it possible for a setuid program to completely drop its
465 * privileges, which is often a useful assertion to make when you are doing
466 * a security audit over a program.
468 * The general idea is that a program which uses just setreuid() will be
469 * 100% compatible with BSD. A program which uses just setuid() will be
470 * 100% compatible with POSIX with saved IDs.
472 SYSCALL_DEFINE2(setreuid, uid_t, ruid, uid_t, euid)
474 struct user_namespace *ns = current_user_ns();
475 const struct cred *old;
476 struct cred *new;
477 int retval;
478 kuid_t kruid, keuid;
480 kruid = make_kuid(ns, ruid);
481 keuid = make_kuid(ns, euid);
483 if ((ruid != (uid_t) -1) && !uid_valid(kruid))
484 return -EINVAL;
485 if ((euid != (uid_t) -1) && !uid_valid(keuid))
486 return -EINVAL;
488 new = prepare_creds();
489 if (!new)
490 return -ENOMEM;
491 old = current_cred();
493 retval = -EPERM;
494 if (ruid != (uid_t) -1) {
495 new->uid = kruid;
496 if (!uid_eq(old->uid, kruid) &&
497 !uid_eq(old->euid, kruid) &&
498 !ns_capable(old->user_ns, CAP_SETUID))
499 goto error;
502 if (euid != (uid_t) -1) {
503 new->euid = keuid;
504 if (!uid_eq(old->uid, keuid) &&
505 !uid_eq(old->euid, keuid) &&
506 !uid_eq(old->suid, keuid) &&
507 !ns_capable(old->user_ns, CAP_SETUID))
508 goto error;
511 if (!uid_eq(new->uid, old->uid)) {
512 retval = set_user(new);
513 if (retval < 0)
514 goto error;
516 if (ruid != (uid_t) -1 ||
517 (euid != (uid_t) -1 && !uid_eq(keuid, old->uid)))
518 new->suid = new->euid;
519 new->fsuid = new->euid;
521 retval = security_task_fix_setuid(new, old, LSM_SETID_RE);
522 if (retval < 0)
523 goto error;
525 return commit_creds(new);
527 error:
528 abort_creds(new);
529 return retval;
533 * setuid() is implemented like SysV with SAVED_IDS
535 * Note that SAVED_ID's is deficient in that a setuid root program
536 * like sendmail, for example, cannot set its uid to be a normal
537 * user and then switch back, because if you're root, setuid() sets
538 * the saved uid too. If you don't like this, blame the bright people
539 * in the POSIX committee and/or USG. Note that the BSD-style setreuid()
540 * will allow a root program to temporarily drop privileges and be able to
541 * regain them by swapping the real and effective uid.
543 SYSCALL_DEFINE1(setuid, uid_t, uid)
545 struct user_namespace *ns = current_user_ns();
546 const struct cred *old;
547 struct cred *new;
548 int retval;
549 kuid_t kuid;
551 kuid = make_kuid(ns, uid);
552 if (!uid_valid(kuid))
553 return -EINVAL;
555 new = prepare_creds();
556 if (!new)
557 return -ENOMEM;
558 old = current_cred();
560 retval = -EPERM;
561 if (ns_capable(old->user_ns, CAP_SETUID)) {
562 new->suid = new->uid = kuid;
563 if (!uid_eq(kuid, old->uid)) {
564 retval = set_user(new);
565 if (retval < 0)
566 goto error;
568 } else if (!uid_eq(kuid, old->uid) && !uid_eq(kuid, new->suid)) {
569 goto error;
572 new->fsuid = new->euid = kuid;
574 retval = security_task_fix_setuid(new, old, LSM_SETID_ID);
575 if (retval < 0)
576 goto error;
578 return commit_creds(new);
580 error:
581 abort_creds(new);
582 return retval;
587 * This function implements a generic ability to update ruid, euid,
588 * and suid. This allows you to implement the 4.4 compatible seteuid().
590 SYSCALL_DEFINE3(setresuid, uid_t, ruid, uid_t, euid, uid_t, suid)
592 struct user_namespace *ns = current_user_ns();
593 const struct cred *old;
594 struct cred *new;
595 int retval;
596 kuid_t kruid, keuid, ksuid;
598 kruid = make_kuid(ns, ruid);
599 keuid = make_kuid(ns, euid);
600 ksuid = make_kuid(ns, suid);
602 if ((ruid != (uid_t) -1) && !uid_valid(kruid))
603 return -EINVAL;
605 if ((euid != (uid_t) -1) && !uid_valid(keuid))
606 return -EINVAL;
608 if ((suid != (uid_t) -1) && !uid_valid(ksuid))
609 return -EINVAL;
611 new = prepare_creds();
612 if (!new)
613 return -ENOMEM;
615 old = current_cred();
617 retval = -EPERM;
618 if (!ns_capable(old->user_ns, CAP_SETUID)) {
619 if (ruid != (uid_t) -1 && !uid_eq(kruid, old->uid) &&
620 !uid_eq(kruid, old->euid) && !uid_eq(kruid, old->suid))
621 goto error;
622 if (euid != (uid_t) -1 && !uid_eq(keuid, old->uid) &&
623 !uid_eq(keuid, old->euid) && !uid_eq(keuid, old->suid))
624 goto error;
625 if (suid != (uid_t) -1 && !uid_eq(ksuid, old->uid) &&
626 !uid_eq(ksuid, old->euid) && !uid_eq(ksuid, old->suid))
627 goto error;
630 if (ruid != (uid_t) -1) {
631 new->uid = kruid;
632 if (!uid_eq(kruid, old->uid)) {
633 retval = set_user(new);
634 if (retval < 0)
635 goto error;
638 if (euid != (uid_t) -1)
639 new->euid = keuid;
640 if (suid != (uid_t) -1)
641 new->suid = ksuid;
642 new->fsuid = new->euid;
644 retval = security_task_fix_setuid(new, old, LSM_SETID_RES);
645 if (retval < 0)
646 goto error;
648 return commit_creds(new);
650 error:
651 abort_creds(new);
652 return retval;
655 SYSCALL_DEFINE3(getresuid, uid_t __user *, ruidp, uid_t __user *, euidp, uid_t __user *, suidp)
657 const struct cred *cred = current_cred();
658 int retval;
659 uid_t ruid, euid, suid;
661 ruid = from_kuid_munged(cred->user_ns, cred->uid);
662 euid = from_kuid_munged(cred->user_ns, cred->euid);
663 suid = from_kuid_munged(cred->user_ns, cred->suid);
665 retval = put_user(ruid, ruidp);
666 if (!retval) {
667 retval = put_user(euid, euidp);
668 if (!retval)
669 return put_user(suid, suidp);
671 return retval;
675 * Same as above, but for rgid, egid, sgid.
677 SYSCALL_DEFINE3(setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid)
679 struct user_namespace *ns = current_user_ns();
680 const struct cred *old;
681 struct cred *new;
682 int retval;
683 kgid_t krgid, kegid, ksgid;
685 krgid = make_kgid(ns, rgid);
686 kegid = make_kgid(ns, egid);
687 ksgid = make_kgid(ns, sgid);
689 if ((rgid != (gid_t) -1) && !gid_valid(krgid))
690 return -EINVAL;
691 if ((egid != (gid_t) -1) && !gid_valid(kegid))
692 return -EINVAL;
693 if ((sgid != (gid_t) -1) && !gid_valid(ksgid))
694 return -EINVAL;
696 new = prepare_creds();
697 if (!new)
698 return -ENOMEM;
699 old = current_cred();
701 retval = -EPERM;
702 if (!ns_capable(old->user_ns, CAP_SETGID)) {
703 if (rgid != (gid_t) -1 && !gid_eq(krgid, old->gid) &&
704 !gid_eq(krgid, old->egid) && !gid_eq(krgid, old->sgid))
705 goto error;
706 if (egid != (gid_t) -1 && !gid_eq(kegid, old->gid) &&
707 !gid_eq(kegid, old->egid) && !gid_eq(kegid, old->sgid))
708 goto error;
709 if (sgid != (gid_t) -1 && !gid_eq(ksgid, old->gid) &&
710 !gid_eq(ksgid, old->egid) && !gid_eq(ksgid, old->sgid))
711 goto error;
714 if (rgid != (gid_t) -1)
715 new->gid = krgid;
716 if (egid != (gid_t) -1)
717 new->egid = kegid;
718 if (sgid != (gid_t) -1)
719 new->sgid = ksgid;
720 new->fsgid = new->egid;
722 return commit_creds(new);
724 error:
725 abort_creds(new);
726 return retval;
729 SYSCALL_DEFINE3(getresgid, gid_t __user *, rgidp, gid_t __user *, egidp, gid_t __user *, sgidp)
731 const struct cred *cred = current_cred();
732 int retval;
733 gid_t rgid, egid, sgid;
735 rgid = from_kgid_munged(cred->user_ns, cred->gid);
736 egid = from_kgid_munged(cred->user_ns, cred->egid);
737 sgid = from_kgid_munged(cred->user_ns, cred->sgid);
739 retval = put_user(rgid, rgidp);
740 if (!retval) {
741 retval = put_user(egid, egidp);
742 if (!retval)
743 retval = put_user(sgid, sgidp);
746 return retval;
751 * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
752 * is used for "access()" and for the NFS daemon (letting nfsd stay at
753 * whatever uid it wants to). It normally shadows "euid", except when
754 * explicitly set by setfsuid() or for access..
756 SYSCALL_DEFINE1(setfsuid, uid_t, uid)
758 const struct cred *old;
759 struct cred *new;
760 uid_t old_fsuid;
761 kuid_t kuid;
763 old = current_cred();
764 old_fsuid = from_kuid_munged(old->user_ns, old->fsuid);
766 kuid = make_kuid(old->user_ns, uid);
767 if (!uid_valid(kuid))
768 return old_fsuid;
770 new = prepare_creds();
771 if (!new)
772 return old_fsuid;
774 if (uid_eq(kuid, old->uid) || uid_eq(kuid, old->euid) ||
775 uid_eq(kuid, old->suid) || uid_eq(kuid, old->fsuid) ||
776 ns_capable(old->user_ns, CAP_SETUID)) {
777 if (!uid_eq(kuid, old->fsuid)) {
778 new->fsuid = kuid;
779 if (security_task_fix_setuid(new, old, LSM_SETID_FS) == 0)
780 goto change_okay;
784 abort_creds(new);
785 return old_fsuid;
787 change_okay:
788 commit_creds(new);
789 return old_fsuid;
793 * Samma på svenska..
795 SYSCALL_DEFINE1(setfsgid, gid_t, gid)
797 const struct cred *old;
798 struct cred *new;
799 gid_t old_fsgid;
800 kgid_t kgid;
802 old = current_cred();
803 old_fsgid = from_kgid_munged(old->user_ns, old->fsgid);
805 kgid = make_kgid(old->user_ns, gid);
806 if (!gid_valid(kgid))
807 return old_fsgid;
809 new = prepare_creds();
810 if (!new)
811 return old_fsgid;
813 if (gid_eq(kgid, old->gid) || gid_eq(kgid, old->egid) ||
814 gid_eq(kgid, old->sgid) || gid_eq(kgid, old->fsgid) ||
815 ns_capable(old->user_ns, CAP_SETGID)) {
816 if (!gid_eq(kgid, old->fsgid)) {
817 new->fsgid = kgid;
818 goto change_okay;
822 abort_creds(new);
823 return old_fsgid;
825 change_okay:
826 commit_creds(new);
827 return old_fsgid;
829 #endif /* CONFIG_MULTIUSER */
832 * sys_getpid - return the thread group id of the current process
834 * Note, despite the name, this returns the tgid not the pid. The tgid and
835 * the pid are identical unless CLONE_THREAD was specified on clone() in
836 * which case the tgid is the same in all threads of the same group.
838 * This is SMP safe as current->tgid does not change.
840 SYSCALL_DEFINE0(getpid)
842 return task_tgid_vnr(current);
845 /* Thread ID - the internal kernel "pid" */
846 SYSCALL_DEFINE0(gettid)
848 return task_pid_vnr(current);
852 * Accessing ->real_parent is not SMP-safe, it could
853 * change from under us. However, we can use a stale
854 * value of ->real_parent under rcu_read_lock(), see
855 * release_task()->call_rcu(delayed_put_task_struct).
857 SYSCALL_DEFINE0(getppid)
859 int pid;
861 rcu_read_lock();
862 pid = task_tgid_vnr(rcu_dereference(current->real_parent));
863 rcu_read_unlock();
865 return pid;
868 SYSCALL_DEFINE0(getuid)
870 /* Only we change this so SMP safe */
871 return from_kuid_munged(current_user_ns(), current_uid());
874 SYSCALL_DEFINE0(geteuid)
876 /* Only we change this so SMP safe */
877 return from_kuid_munged(current_user_ns(), current_euid());
880 SYSCALL_DEFINE0(getgid)
882 /* Only we change this so SMP safe */
883 return from_kgid_munged(current_user_ns(), current_gid());
886 SYSCALL_DEFINE0(getegid)
888 /* Only we change this so SMP safe */
889 return from_kgid_munged(current_user_ns(), current_egid());
892 static void do_sys_times(struct tms *tms)
894 u64 tgutime, tgstime, cutime, cstime;
896 thread_group_cputime_adjusted(current, &tgutime, &tgstime);
897 cutime = current->signal->cutime;
898 cstime = current->signal->cstime;
899 tms->tms_utime = nsec_to_clock_t(tgutime);
900 tms->tms_stime = nsec_to_clock_t(tgstime);
901 tms->tms_cutime = nsec_to_clock_t(cutime);
902 tms->tms_cstime = nsec_to_clock_t(cstime);
905 SYSCALL_DEFINE1(times, struct tms __user *, tbuf)
907 if (tbuf) {
908 struct tms tmp;
910 do_sys_times(&tmp);
911 if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
912 return -EFAULT;
914 force_successful_syscall_return();
915 return (long) jiffies_64_to_clock_t(get_jiffies_64());
918 #ifdef CONFIG_COMPAT
919 static compat_clock_t clock_t_to_compat_clock_t(clock_t x)
921 return compat_jiffies_to_clock_t(clock_t_to_jiffies(x));
924 COMPAT_SYSCALL_DEFINE1(times, struct compat_tms __user *, tbuf)
926 if (tbuf) {
927 struct tms tms;
928 struct compat_tms tmp;
930 do_sys_times(&tms);
931 /* Convert our struct tms to the compat version. */
932 tmp.tms_utime = clock_t_to_compat_clock_t(tms.tms_utime);
933 tmp.tms_stime = clock_t_to_compat_clock_t(tms.tms_stime);
934 tmp.tms_cutime = clock_t_to_compat_clock_t(tms.tms_cutime);
935 tmp.tms_cstime = clock_t_to_compat_clock_t(tms.tms_cstime);
936 if (copy_to_user(tbuf, &tmp, sizeof(tmp)))
937 return -EFAULT;
939 force_successful_syscall_return();
940 return compat_jiffies_to_clock_t(jiffies);
942 #endif
945 * This needs some heavy checking ...
946 * I just haven't the stomach for it. I also don't fully
947 * understand sessions/pgrp etc. Let somebody who does explain it.
949 * OK, I think I have the protection semantics right.... this is really
950 * only important on a multi-user system anyway, to make sure one user
951 * can't send a signal to a process owned by another. -TYT, 12/12/91
953 * !PF_FORKNOEXEC check to conform completely to POSIX.
955 SYSCALL_DEFINE2(setpgid, pid_t, pid, pid_t, pgid)
957 struct task_struct *p;
958 struct task_struct *group_leader = current->group_leader;
959 struct pid *pgrp;
960 int err;
962 if (!pid)
963 pid = task_pid_vnr(group_leader);
964 if (!pgid)
965 pgid = pid;
966 if (pgid < 0)
967 return -EINVAL;
968 rcu_read_lock();
970 /* From this point forward we keep holding onto the tasklist lock
971 * so that our parent does not change from under us. -DaveM
973 write_lock_irq(&tasklist_lock);
975 err = -ESRCH;
976 p = find_task_by_vpid(pid);
977 if (!p)
978 goto out;
980 err = -EINVAL;
981 if (!thread_group_leader(p))
982 goto out;
984 if (same_thread_group(p->real_parent, group_leader)) {
985 err = -EPERM;
986 if (task_session(p) != task_session(group_leader))
987 goto out;
988 err = -EACCES;
989 if (!(p->flags & PF_FORKNOEXEC))
990 goto out;
991 } else {
992 err = -ESRCH;
993 if (p != group_leader)
994 goto out;
997 err = -EPERM;
998 if (p->signal->leader)
999 goto out;
1001 pgrp = task_pid(p);
1002 if (pgid != pid) {
1003 struct task_struct *g;
1005 pgrp = find_vpid(pgid);
1006 g = pid_task(pgrp, PIDTYPE_PGID);
1007 if (!g || task_session(g) != task_session(group_leader))
1008 goto out;
1011 err = security_task_setpgid(p, pgid);
1012 if (err)
1013 goto out;
1015 if (task_pgrp(p) != pgrp)
1016 change_pid(p, PIDTYPE_PGID, pgrp);
1018 err = 0;
1019 out:
1020 /* All paths lead to here, thus we are safe. -DaveM */
1021 write_unlock_irq(&tasklist_lock);
1022 rcu_read_unlock();
1023 return err;
1026 SYSCALL_DEFINE1(getpgid, pid_t, pid)
1028 struct task_struct *p;
1029 struct pid *grp;
1030 int retval;
1032 rcu_read_lock();
1033 if (!pid)
1034 grp = task_pgrp(current);
1035 else {
1036 retval = -ESRCH;
1037 p = find_task_by_vpid(pid);
1038 if (!p)
1039 goto out;
1040 grp = task_pgrp(p);
1041 if (!grp)
1042 goto out;
1044 retval = security_task_getpgid(p);
1045 if (retval)
1046 goto out;
1048 retval = pid_vnr(grp);
1049 out:
1050 rcu_read_unlock();
1051 return retval;
1054 #ifdef __ARCH_WANT_SYS_GETPGRP
1056 SYSCALL_DEFINE0(getpgrp)
1058 return sys_getpgid(0);
1061 #endif
1063 SYSCALL_DEFINE1(getsid, pid_t, pid)
1065 struct task_struct *p;
1066 struct pid *sid;
1067 int retval;
1069 rcu_read_lock();
1070 if (!pid)
1071 sid = task_session(current);
1072 else {
1073 retval = -ESRCH;
1074 p = find_task_by_vpid(pid);
1075 if (!p)
1076 goto out;
1077 sid = task_session(p);
1078 if (!sid)
1079 goto out;
1081 retval = security_task_getsid(p);
1082 if (retval)
1083 goto out;
1085 retval = pid_vnr(sid);
1086 out:
1087 rcu_read_unlock();
1088 return retval;
1091 static void set_special_pids(struct pid *pid)
1093 struct task_struct *curr = current->group_leader;
1095 if (task_session(curr) != pid)
1096 change_pid(curr, PIDTYPE_SID, pid);
1098 if (task_pgrp(curr) != pid)
1099 change_pid(curr, PIDTYPE_PGID, pid);
1102 SYSCALL_DEFINE0(setsid)
1104 struct task_struct *group_leader = current->group_leader;
1105 struct pid *sid = task_pid(group_leader);
1106 pid_t session = pid_vnr(sid);
1107 int err = -EPERM;
1109 write_lock_irq(&tasklist_lock);
1110 /* Fail if I am already a session leader */
1111 if (group_leader->signal->leader)
1112 goto out;
1114 /* Fail if a process group id already exists that equals the
1115 * proposed session id.
1117 if (pid_task(sid, PIDTYPE_PGID))
1118 goto out;
1120 group_leader->signal->leader = 1;
1121 set_special_pids(sid);
1123 proc_clear_tty(group_leader);
1125 err = session;
1126 out:
1127 write_unlock_irq(&tasklist_lock);
1128 if (err > 0) {
1129 proc_sid_connector(group_leader);
1130 sched_autogroup_create_attach(group_leader);
1132 return err;
1135 DECLARE_RWSEM(uts_sem);
1137 #ifdef COMPAT_UTS_MACHINE
1138 #define override_architecture(name) \
1139 (personality(current->personality) == PER_LINUX32 && \
1140 copy_to_user(name->machine, COMPAT_UTS_MACHINE, \
1141 sizeof(COMPAT_UTS_MACHINE)))
1142 #else
1143 #define override_architecture(name) 0
1144 #endif
1147 * Work around broken programs that cannot handle "Linux 3.0".
1148 * Instead we map 3.x to 2.6.40+x, so e.g. 3.0 would be 2.6.40
1149 * And we map 4.x to 2.6.60+x, so 4.0 would be 2.6.60.
1151 static int override_release(char __user *release, size_t len)
1153 int ret = 0;
1155 if (current->personality & UNAME26) {
1156 const char *rest = UTS_RELEASE;
1157 char buf[65] = { 0 };
1158 int ndots = 0;
1159 unsigned v;
1160 size_t copy;
1162 while (*rest) {
1163 if (*rest == '.' && ++ndots >= 3)
1164 break;
1165 if (!isdigit(*rest) && *rest != '.')
1166 break;
1167 rest++;
1169 v = ((LINUX_VERSION_CODE >> 8) & 0xff) + 60;
1170 copy = clamp_t(size_t, len, 1, sizeof(buf));
1171 copy = scnprintf(buf, copy, "2.6.%u%s", v, rest);
1172 ret = copy_to_user(release, buf, copy + 1);
1174 return ret;
1177 SYSCALL_DEFINE1(newuname, struct new_utsname __user *, name)
1179 struct new_utsname tmp;
1181 down_read(&uts_sem);
1182 memcpy(&tmp, utsname(), sizeof(tmp));
1183 up_read(&uts_sem);
1184 if (copy_to_user(name, &tmp, sizeof(tmp)))
1185 return -EFAULT;
1187 if (override_release(name->release, sizeof(name->release)))
1188 return -EFAULT;
1189 if (override_architecture(name))
1190 return -EFAULT;
1191 return 0;
1194 #ifdef __ARCH_WANT_SYS_OLD_UNAME
1196 * Old cruft
1198 SYSCALL_DEFINE1(uname, struct old_utsname __user *, name)
1200 struct old_utsname tmp;
1202 if (!name)
1203 return -EFAULT;
1205 down_read(&uts_sem);
1206 memcpy(&tmp, utsname(), sizeof(tmp));
1207 up_read(&uts_sem);
1208 if (copy_to_user(name, &tmp, sizeof(tmp)))
1209 return -EFAULT;
1211 if (override_release(name->release, sizeof(name->release)))
1212 return -EFAULT;
1213 if (override_architecture(name))
1214 return -EFAULT;
1215 return 0;
1218 SYSCALL_DEFINE1(olduname, struct oldold_utsname __user *, name)
1220 struct oldold_utsname tmp = {};
1222 if (!name)
1223 return -EFAULT;
1225 down_read(&uts_sem);
1226 memcpy(&tmp.sysname, &utsname()->sysname, __OLD_UTS_LEN);
1227 memcpy(&tmp.nodename, &utsname()->nodename, __OLD_UTS_LEN);
1228 memcpy(&tmp.release, &utsname()->release, __OLD_UTS_LEN);
1229 memcpy(&tmp.version, &utsname()->version, __OLD_UTS_LEN);
1230 memcpy(&tmp.machine, &utsname()->machine, __OLD_UTS_LEN);
1231 up_read(&uts_sem);
1232 if (copy_to_user(name, &tmp, sizeof(tmp)))
1233 return -EFAULT;
1235 if (override_architecture(name))
1236 return -EFAULT;
1237 if (override_release(name->release, sizeof(name->release)))
1238 return -EFAULT;
1239 return 0;
1241 #endif
1243 SYSCALL_DEFINE2(sethostname, char __user *, name, int, len)
1245 int errno;
1246 char tmp[__NEW_UTS_LEN];
1248 if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1249 return -EPERM;
1251 if (len < 0 || len > __NEW_UTS_LEN)
1252 return -EINVAL;
1253 errno = -EFAULT;
1254 if (!copy_from_user(tmp, name, len)) {
1255 struct new_utsname *u;
1257 down_write(&uts_sem);
1258 u = utsname();
1259 memcpy(u->nodename, tmp, len);
1260 memset(u->nodename + len, 0, sizeof(u->nodename) - len);
1261 errno = 0;
1262 uts_proc_notify(UTS_PROC_HOSTNAME);
1263 up_write(&uts_sem);
1265 return errno;
1268 #ifdef __ARCH_WANT_SYS_GETHOSTNAME
1270 SYSCALL_DEFINE2(gethostname, char __user *, name, int, len)
1272 int i;
1273 struct new_utsname *u;
1274 char tmp[__NEW_UTS_LEN + 1];
1276 if (len < 0)
1277 return -EINVAL;
1278 down_read(&uts_sem);
1279 u = utsname();
1280 i = 1 + strlen(u->nodename);
1281 if (i > len)
1282 i = len;
1283 memcpy(tmp, u->nodename, i);
1284 up_read(&uts_sem);
1285 if (copy_to_user(name, tmp, i))
1286 return -EFAULT;
1287 return 0;
1290 #endif
1293 * Only setdomainname; getdomainname can be implemented by calling
1294 * uname()
1296 SYSCALL_DEFINE2(setdomainname, char __user *, name, int, len)
1298 int errno;
1299 char tmp[__NEW_UTS_LEN];
1301 if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1302 return -EPERM;
1303 if (len < 0 || len > __NEW_UTS_LEN)
1304 return -EINVAL;
1306 errno = -EFAULT;
1307 if (!copy_from_user(tmp, name, len)) {
1308 struct new_utsname *u;
1310 down_write(&uts_sem);
1311 u = utsname();
1312 memcpy(u->domainname, tmp, len);
1313 memset(u->domainname + len, 0, sizeof(u->domainname) - len);
1314 errno = 0;
1315 uts_proc_notify(UTS_PROC_DOMAINNAME);
1316 up_write(&uts_sem);
1318 return errno;
1321 SYSCALL_DEFINE2(getrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1323 struct rlimit value;
1324 int ret;
1326 ret = do_prlimit(current, resource, NULL, &value);
1327 if (!ret)
1328 ret = copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
1330 return ret;
1333 #ifdef CONFIG_COMPAT
1335 COMPAT_SYSCALL_DEFINE2(setrlimit, unsigned int, resource,
1336 struct compat_rlimit __user *, rlim)
1338 struct rlimit r;
1339 struct compat_rlimit r32;
1341 if (copy_from_user(&r32, rlim, sizeof(struct compat_rlimit)))
1342 return -EFAULT;
1344 if (r32.rlim_cur == COMPAT_RLIM_INFINITY)
1345 r.rlim_cur = RLIM_INFINITY;
1346 else
1347 r.rlim_cur = r32.rlim_cur;
1348 if (r32.rlim_max == COMPAT_RLIM_INFINITY)
1349 r.rlim_max = RLIM_INFINITY;
1350 else
1351 r.rlim_max = r32.rlim_max;
1352 return do_prlimit(current, resource, &r, NULL);
1355 COMPAT_SYSCALL_DEFINE2(getrlimit, unsigned int, resource,
1356 struct compat_rlimit __user *, rlim)
1358 struct rlimit r;
1359 int ret;
1361 ret = do_prlimit(current, resource, NULL, &r);
1362 if (!ret) {
1363 struct compat_rlimit r32;
1364 if (r.rlim_cur > COMPAT_RLIM_INFINITY)
1365 r32.rlim_cur = COMPAT_RLIM_INFINITY;
1366 else
1367 r32.rlim_cur = r.rlim_cur;
1368 if (r.rlim_max > COMPAT_RLIM_INFINITY)
1369 r32.rlim_max = COMPAT_RLIM_INFINITY;
1370 else
1371 r32.rlim_max = r.rlim_max;
1373 if (copy_to_user(rlim, &r32, sizeof(struct compat_rlimit)))
1374 return -EFAULT;
1376 return ret;
1379 #endif
1381 #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1384 * Back compatibility for getrlimit. Needed for some apps.
1386 SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1387 struct rlimit __user *, rlim)
1389 struct rlimit x;
1390 if (resource >= RLIM_NLIMITS)
1391 return -EINVAL;
1393 resource = array_index_nospec(resource, RLIM_NLIMITS);
1394 task_lock(current->group_leader);
1395 x = current->signal->rlim[resource];
1396 task_unlock(current->group_leader);
1397 if (x.rlim_cur > 0x7FFFFFFF)
1398 x.rlim_cur = 0x7FFFFFFF;
1399 if (x.rlim_max > 0x7FFFFFFF)
1400 x.rlim_max = 0x7FFFFFFF;
1401 return copy_to_user(rlim, &x, sizeof(x)) ? -EFAULT : 0;
1404 #ifdef CONFIG_COMPAT
1405 COMPAT_SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1406 struct compat_rlimit __user *, rlim)
1408 struct rlimit r;
1410 if (resource >= RLIM_NLIMITS)
1411 return -EINVAL;
1413 resource = array_index_nospec(resource, RLIM_NLIMITS);
1414 task_lock(current->group_leader);
1415 r = current->signal->rlim[resource];
1416 task_unlock(current->group_leader);
1417 if (r.rlim_cur > 0x7FFFFFFF)
1418 r.rlim_cur = 0x7FFFFFFF;
1419 if (r.rlim_max > 0x7FFFFFFF)
1420 r.rlim_max = 0x7FFFFFFF;
1422 if (put_user(r.rlim_cur, &rlim->rlim_cur) ||
1423 put_user(r.rlim_max, &rlim->rlim_max))
1424 return -EFAULT;
1425 return 0;
1427 #endif
1429 #endif
1431 static inline bool rlim64_is_infinity(__u64 rlim64)
1433 #if BITS_PER_LONG < 64
1434 return rlim64 >= ULONG_MAX;
1435 #else
1436 return rlim64 == RLIM64_INFINITY;
1437 #endif
1440 static void rlim_to_rlim64(const struct rlimit *rlim, struct rlimit64 *rlim64)
1442 if (rlim->rlim_cur == RLIM_INFINITY)
1443 rlim64->rlim_cur = RLIM64_INFINITY;
1444 else
1445 rlim64->rlim_cur = rlim->rlim_cur;
1446 if (rlim->rlim_max == RLIM_INFINITY)
1447 rlim64->rlim_max = RLIM64_INFINITY;
1448 else
1449 rlim64->rlim_max = rlim->rlim_max;
1452 static void rlim64_to_rlim(const struct rlimit64 *rlim64, struct rlimit *rlim)
1454 if (rlim64_is_infinity(rlim64->rlim_cur))
1455 rlim->rlim_cur = RLIM_INFINITY;
1456 else
1457 rlim->rlim_cur = (unsigned long)rlim64->rlim_cur;
1458 if (rlim64_is_infinity(rlim64->rlim_max))
1459 rlim->rlim_max = RLIM_INFINITY;
1460 else
1461 rlim->rlim_max = (unsigned long)rlim64->rlim_max;
1464 /* make sure you are allowed to change @tsk limits before calling this */
1465 int do_prlimit(struct task_struct *tsk, unsigned int resource,
1466 struct rlimit *new_rlim, struct rlimit *old_rlim)
1468 struct rlimit *rlim;
1469 int retval = 0;
1471 if (resource >= RLIM_NLIMITS)
1472 return -EINVAL;
1473 if (new_rlim) {
1474 if (new_rlim->rlim_cur > new_rlim->rlim_max)
1475 return -EINVAL;
1476 if (resource == RLIMIT_NOFILE &&
1477 new_rlim->rlim_max > sysctl_nr_open)
1478 return -EPERM;
1481 /* protect tsk->signal and tsk->sighand from disappearing */
1482 read_lock(&tasklist_lock);
1483 if (!tsk->sighand) {
1484 retval = -ESRCH;
1485 goto out;
1488 rlim = tsk->signal->rlim + resource;
1489 task_lock(tsk->group_leader);
1490 if (new_rlim) {
1491 /* Keep the capable check against init_user_ns until
1492 cgroups can contain all limits */
1493 if (new_rlim->rlim_max > rlim->rlim_max &&
1494 !capable(CAP_SYS_RESOURCE))
1495 retval = -EPERM;
1496 if (!retval)
1497 retval = security_task_setrlimit(tsk, resource, new_rlim);
1498 if (resource == RLIMIT_CPU && new_rlim->rlim_cur == 0) {
1500 * The caller is asking for an immediate RLIMIT_CPU
1501 * expiry. But we use the zero value to mean "it was
1502 * never set". So let's cheat and make it one second
1503 * instead
1505 new_rlim->rlim_cur = 1;
1508 if (!retval) {
1509 if (old_rlim)
1510 *old_rlim = *rlim;
1511 if (new_rlim)
1512 *rlim = *new_rlim;
1514 task_unlock(tsk->group_leader);
1517 * RLIMIT_CPU handling. Note that the kernel fails to return an error
1518 * code if it rejected the user's attempt to set RLIMIT_CPU. This is a
1519 * very long-standing error, and fixing it now risks breakage of
1520 * applications, so we live with it
1522 if (!retval && new_rlim && resource == RLIMIT_CPU &&
1523 new_rlim->rlim_cur != RLIM_INFINITY &&
1524 IS_ENABLED(CONFIG_POSIX_TIMERS))
1525 update_rlimit_cpu(tsk, new_rlim->rlim_cur);
1526 out:
1527 read_unlock(&tasklist_lock);
1528 return retval;
1531 /* rcu lock must be held */
1532 static int check_prlimit_permission(struct task_struct *task,
1533 unsigned int flags)
1535 const struct cred *cred = current_cred(), *tcred;
1536 bool id_match;
1538 if (current == task)
1539 return 0;
1541 tcred = __task_cred(task);
1542 id_match = (uid_eq(cred->uid, tcred->euid) &&
1543 uid_eq(cred->uid, tcred->suid) &&
1544 uid_eq(cred->uid, tcred->uid) &&
1545 gid_eq(cred->gid, tcred->egid) &&
1546 gid_eq(cred->gid, tcred->sgid) &&
1547 gid_eq(cred->gid, tcred->gid));
1548 if (!id_match && !ns_capable(tcred->user_ns, CAP_SYS_RESOURCE))
1549 return -EPERM;
1551 return security_task_prlimit(cred, tcred, flags);
1554 SYSCALL_DEFINE4(prlimit64, pid_t, pid, unsigned int, resource,
1555 const struct rlimit64 __user *, new_rlim,
1556 struct rlimit64 __user *, old_rlim)
1558 struct rlimit64 old64, new64;
1559 struct rlimit old, new;
1560 struct task_struct *tsk;
1561 unsigned int checkflags = 0;
1562 int ret;
1564 if (old_rlim)
1565 checkflags |= LSM_PRLIMIT_READ;
1567 if (new_rlim) {
1568 if (copy_from_user(&new64, new_rlim, sizeof(new64)))
1569 return -EFAULT;
1570 rlim64_to_rlim(&new64, &new);
1571 checkflags |= LSM_PRLIMIT_WRITE;
1574 rcu_read_lock();
1575 tsk = pid ? find_task_by_vpid(pid) : current;
1576 if (!tsk) {
1577 rcu_read_unlock();
1578 return -ESRCH;
1580 ret = check_prlimit_permission(tsk, checkflags);
1581 if (ret) {
1582 rcu_read_unlock();
1583 return ret;
1585 get_task_struct(tsk);
1586 rcu_read_unlock();
1588 ret = do_prlimit(tsk, resource, new_rlim ? &new : NULL,
1589 old_rlim ? &old : NULL);
1591 if (!ret && old_rlim) {
1592 rlim_to_rlim64(&old, &old64);
1593 if (copy_to_user(old_rlim, &old64, sizeof(old64)))
1594 ret = -EFAULT;
1597 put_task_struct(tsk);
1598 return ret;
1601 SYSCALL_DEFINE2(setrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1603 struct rlimit new_rlim;
1605 if (copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
1606 return -EFAULT;
1607 return do_prlimit(current, resource, &new_rlim, NULL);
1611 * It would make sense to put struct rusage in the task_struct,
1612 * except that would make the task_struct be *really big*. After
1613 * task_struct gets moved into malloc'ed memory, it would
1614 * make sense to do this. It will make moving the rest of the information
1615 * a lot simpler! (Which we're not doing right now because we're not
1616 * measuring them yet).
1618 * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1619 * races with threads incrementing their own counters. But since word
1620 * reads are atomic, we either get new values or old values and we don't
1621 * care which for the sums. We always take the siglock to protect reading
1622 * the c* fields from p->signal from races with exit.c updating those
1623 * fields when reaping, so a sample either gets all the additions of a
1624 * given child after it's reaped, or none so this sample is before reaping.
1626 * Locking:
1627 * We need to take the siglock for CHILDEREN, SELF and BOTH
1628 * for the cases current multithreaded, non-current single threaded
1629 * non-current multithreaded. Thread traversal is now safe with
1630 * the siglock held.
1631 * Strictly speaking, we donot need to take the siglock if we are current and
1632 * single threaded, as no one else can take our signal_struct away, no one
1633 * else can reap the children to update signal->c* counters, and no one else
1634 * can race with the signal-> fields. If we do not take any lock, the
1635 * signal-> fields could be read out of order while another thread was just
1636 * exiting. So we should place a read memory barrier when we avoid the lock.
1637 * On the writer side, write memory barrier is implied in __exit_signal
1638 * as __exit_signal releases the siglock spinlock after updating the signal->
1639 * fields. But we don't do this yet to keep things simple.
1643 static void accumulate_thread_rusage(struct task_struct *t, struct rusage *r)
1645 r->ru_nvcsw += t->nvcsw;
1646 r->ru_nivcsw += t->nivcsw;
1647 r->ru_minflt += t->min_flt;
1648 r->ru_majflt += t->maj_flt;
1649 r->ru_inblock += task_io_get_inblock(t);
1650 r->ru_oublock += task_io_get_oublock(t);
1653 void getrusage(struct task_struct *p, int who, struct rusage *r)
1655 struct task_struct *t;
1656 unsigned long flags;
1657 u64 tgutime, tgstime, utime, stime;
1658 unsigned long maxrss = 0;
1660 memset((char *)r, 0, sizeof (*r));
1661 utime = stime = 0;
1663 if (who == RUSAGE_THREAD) {
1664 task_cputime_adjusted(current, &utime, &stime);
1665 accumulate_thread_rusage(p, r);
1666 maxrss = p->signal->maxrss;
1667 goto out;
1670 if (!lock_task_sighand(p, &flags))
1671 return;
1673 switch (who) {
1674 case RUSAGE_BOTH:
1675 case RUSAGE_CHILDREN:
1676 utime = p->signal->cutime;
1677 stime = p->signal->cstime;
1678 r->ru_nvcsw = p->signal->cnvcsw;
1679 r->ru_nivcsw = p->signal->cnivcsw;
1680 r->ru_minflt = p->signal->cmin_flt;
1681 r->ru_majflt = p->signal->cmaj_flt;
1682 r->ru_inblock = p->signal->cinblock;
1683 r->ru_oublock = p->signal->coublock;
1684 maxrss = p->signal->cmaxrss;
1686 if (who == RUSAGE_CHILDREN)
1687 break;
1689 case RUSAGE_SELF:
1690 thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1691 utime += tgutime;
1692 stime += tgstime;
1693 r->ru_nvcsw += p->signal->nvcsw;
1694 r->ru_nivcsw += p->signal->nivcsw;
1695 r->ru_minflt += p->signal->min_flt;
1696 r->ru_majflt += p->signal->maj_flt;
1697 r->ru_inblock += p->signal->inblock;
1698 r->ru_oublock += p->signal->oublock;
1699 if (maxrss < p->signal->maxrss)
1700 maxrss = p->signal->maxrss;
1701 t = p;
1702 do {
1703 accumulate_thread_rusage(t, r);
1704 } while_each_thread(p, t);
1705 break;
1707 default:
1708 BUG();
1710 unlock_task_sighand(p, &flags);
1712 out:
1713 r->ru_utime = ns_to_timeval(utime);
1714 r->ru_stime = ns_to_timeval(stime);
1716 if (who != RUSAGE_CHILDREN) {
1717 struct mm_struct *mm = get_task_mm(p);
1719 if (mm) {
1720 setmax_mm_hiwater_rss(&maxrss, mm);
1721 mmput(mm);
1724 r->ru_maxrss = maxrss * (PAGE_SIZE / 1024); /* convert pages to KBs */
1727 SYSCALL_DEFINE2(getrusage, int, who, struct rusage __user *, ru)
1729 struct rusage r;
1731 if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1732 who != RUSAGE_THREAD)
1733 return -EINVAL;
1735 getrusage(current, who, &r);
1736 return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
1739 #ifdef CONFIG_COMPAT
1740 COMPAT_SYSCALL_DEFINE2(getrusage, int, who, struct compat_rusage __user *, ru)
1742 struct rusage r;
1744 if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1745 who != RUSAGE_THREAD)
1746 return -EINVAL;
1748 getrusage(current, who, &r);
1749 return put_compat_rusage(&r, ru);
1751 #endif
1753 SYSCALL_DEFINE1(umask, int, mask)
1755 mask = xchg(&current->fs->umask, mask & S_IRWXUGO);
1756 return mask;
1759 static int prctl_set_mm_exe_file(struct mm_struct *mm, unsigned int fd)
1761 struct fd exe;
1762 struct file *old_exe, *exe_file;
1763 struct inode *inode;
1764 int err;
1766 exe = fdget(fd);
1767 if (!exe.file)
1768 return -EBADF;
1770 inode = file_inode(exe.file);
1773 * Because the original mm->exe_file points to executable file, make
1774 * sure that this one is executable as well, to avoid breaking an
1775 * overall picture.
1777 err = -EACCES;
1778 if (!S_ISREG(inode->i_mode) || path_noexec(&exe.file->f_path))
1779 goto exit;
1781 err = inode_permission(inode, MAY_EXEC);
1782 if (err)
1783 goto exit;
1786 * Forbid mm->exe_file change if old file still mapped.
1788 exe_file = get_mm_exe_file(mm);
1789 err = -EBUSY;
1790 if (exe_file) {
1791 struct vm_area_struct *vma;
1793 down_read(&mm->mmap_sem);
1794 for (vma = mm->mmap; vma; vma = vma->vm_next) {
1795 if (!vma->vm_file)
1796 continue;
1797 if (path_equal(&vma->vm_file->f_path,
1798 &exe_file->f_path))
1799 goto exit_err;
1802 up_read(&mm->mmap_sem);
1803 fput(exe_file);
1806 err = 0;
1807 /* set the new file, lockless */
1808 get_file(exe.file);
1809 old_exe = xchg(&mm->exe_file, exe.file);
1810 if (old_exe)
1811 fput(old_exe);
1812 exit:
1813 fdput(exe);
1814 return err;
1815 exit_err:
1816 up_read(&mm->mmap_sem);
1817 fput(exe_file);
1818 goto exit;
1822 * WARNING: we don't require any capability here so be very careful
1823 * in what is allowed for modification from userspace.
1825 static int validate_prctl_map(struct prctl_mm_map *prctl_map)
1827 unsigned long mmap_max_addr = TASK_SIZE;
1828 struct mm_struct *mm = current->mm;
1829 int error = -EINVAL, i;
1831 static const unsigned char offsets[] = {
1832 offsetof(struct prctl_mm_map, start_code),
1833 offsetof(struct prctl_mm_map, end_code),
1834 offsetof(struct prctl_mm_map, start_data),
1835 offsetof(struct prctl_mm_map, end_data),
1836 offsetof(struct prctl_mm_map, start_brk),
1837 offsetof(struct prctl_mm_map, brk),
1838 offsetof(struct prctl_mm_map, start_stack),
1839 offsetof(struct prctl_mm_map, arg_start),
1840 offsetof(struct prctl_mm_map, arg_end),
1841 offsetof(struct prctl_mm_map, env_start),
1842 offsetof(struct prctl_mm_map, env_end),
1846 * Make sure the members are not somewhere outside
1847 * of allowed address space.
1849 for (i = 0; i < ARRAY_SIZE(offsets); i++) {
1850 u64 val = *(u64 *)((char *)prctl_map + offsets[i]);
1852 if ((unsigned long)val >= mmap_max_addr ||
1853 (unsigned long)val < mmap_min_addr)
1854 goto out;
1858 * Make sure the pairs are ordered.
1860 #define __prctl_check_order(__m1, __op, __m2) \
1861 ((unsigned long)prctl_map->__m1 __op \
1862 (unsigned long)prctl_map->__m2) ? 0 : -EINVAL
1863 error = __prctl_check_order(start_code, <, end_code);
1864 error |= __prctl_check_order(start_data,<=, end_data);
1865 error |= __prctl_check_order(start_brk, <=, brk);
1866 error |= __prctl_check_order(arg_start, <=, arg_end);
1867 error |= __prctl_check_order(env_start, <=, env_end);
1868 if (error)
1869 goto out;
1870 #undef __prctl_check_order
1872 error = -EINVAL;
1875 * @brk should be after @end_data in traditional maps.
1877 if (prctl_map->start_brk <= prctl_map->end_data ||
1878 prctl_map->brk <= prctl_map->end_data)
1879 goto out;
1882 * Neither we should allow to override limits if they set.
1884 if (check_data_rlimit(rlimit(RLIMIT_DATA), prctl_map->brk,
1885 prctl_map->start_brk, prctl_map->end_data,
1886 prctl_map->start_data))
1887 goto out;
1890 * Someone is trying to cheat the auxv vector.
1892 if (prctl_map->auxv_size) {
1893 if (!prctl_map->auxv || prctl_map->auxv_size > sizeof(mm->saved_auxv))
1894 goto out;
1898 * Finally, make sure the caller has the rights to
1899 * change /proc/pid/exe link: only local sys admin should
1900 * be allowed to.
1902 if (prctl_map->exe_fd != (u32)-1) {
1903 if (!ns_capable(current_user_ns(), CAP_SYS_ADMIN))
1904 goto out;
1907 error = 0;
1908 out:
1909 return error;
1912 #ifdef CONFIG_CHECKPOINT_RESTORE
1913 static int prctl_set_mm_map(int opt, const void __user *addr, unsigned long data_size)
1915 struct prctl_mm_map prctl_map = { .exe_fd = (u32)-1, };
1916 unsigned long user_auxv[AT_VECTOR_SIZE];
1917 struct mm_struct *mm = current->mm;
1918 int error;
1920 BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv));
1921 BUILD_BUG_ON(sizeof(struct prctl_mm_map) > 256);
1923 if (opt == PR_SET_MM_MAP_SIZE)
1924 return put_user((unsigned int)sizeof(prctl_map),
1925 (unsigned int __user *)addr);
1927 if (data_size != sizeof(prctl_map))
1928 return -EINVAL;
1930 if (copy_from_user(&prctl_map, addr, sizeof(prctl_map)))
1931 return -EFAULT;
1933 error = validate_prctl_map(&prctl_map);
1934 if (error)
1935 return error;
1937 if (prctl_map.auxv_size) {
1938 memset(user_auxv, 0, sizeof(user_auxv));
1939 if (copy_from_user(user_auxv,
1940 (const void __user *)prctl_map.auxv,
1941 prctl_map.auxv_size))
1942 return -EFAULT;
1944 /* Last entry must be AT_NULL as specification requires */
1945 user_auxv[AT_VECTOR_SIZE - 2] = AT_NULL;
1946 user_auxv[AT_VECTOR_SIZE - 1] = AT_NULL;
1949 if (prctl_map.exe_fd != (u32)-1) {
1950 error = prctl_set_mm_exe_file(mm, prctl_map.exe_fd);
1951 if (error)
1952 return error;
1955 down_write(&mm->mmap_sem);
1958 * We don't validate if these members are pointing to
1959 * real present VMAs because application may have correspond
1960 * VMAs already unmapped and kernel uses these members for statistics
1961 * output in procfs mostly, except
1963 * - @start_brk/@brk which are used in do_brk but kernel lookups
1964 * for VMAs when updating these memvers so anything wrong written
1965 * here cause kernel to swear at userspace program but won't lead
1966 * to any problem in kernel itself
1969 mm->start_code = prctl_map.start_code;
1970 mm->end_code = prctl_map.end_code;
1971 mm->start_data = prctl_map.start_data;
1972 mm->end_data = prctl_map.end_data;
1973 mm->start_brk = prctl_map.start_brk;
1974 mm->brk = prctl_map.brk;
1975 mm->start_stack = prctl_map.start_stack;
1976 mm->arg_start = prctl_map.arg_start;
1977 mm->arg_end = prctl_map.arg_end;
1978 mm->env_start = prctl_map.env_start;
1979 mm->env_end = prctl_map.env_end;
1982 * Note this update of @saved_auxv is lockless thus
1983 * if someone reads this member in procfs while we're
1984 * updating -- it may get partly updated results. It's
1985 * known and acceptable trade off: we leave it as is to
1986 * not introduce additional locks here making the kernel
1987 * more complex.
1989 if (prctl_map.auxv_size)
1990 memcpy(mm->saved_auxv, user_auxv, sizeof(user_auxv));
1992 up_write(&mm->mmap_sem);
1993 return 0;
1995 #endif /* CONFIG_CHECKPOINT_RESTORE */
1997 static int prctl_set_auxv(struct mm_struct *mm, unsigned long addr,
1998 unsigned long len)
2001 * This doesn't move the auxiliary vector itself since it's pinned to
2002 * mm_struct, but it permits filling the vector with new values. It's
2003 * up to the caller to provide sane values here, otherwise userspace
2004 * tools which use this vector might be unhappy.
2006 unsigned long user_auxv[AT_VECTOR_SIZE];
2008 if (len > sizeof(user_auxv))
2009 return -EINVAL;
2011 if (copy_from_user(user_auxv, (const void __user *)addr, len))
2012 return -EFAULT;
2014 /* Make sure the last entry is always AT_NULL */
2015 user_auxv[AT_VECTOR_SIZE - 2] = 0;
2016 user_auxv[AT_VECTOR_SIZE - 1] = 0;
2018 BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv));
2020 task_lock(current);
2021 memcpy(mm->saved_auxv, user_auxv, len);
2022 task_unlock(current);
2024 return 0;
2027 static int prctl_set_mm(int opt, unsigned long addr,
2028 unsigned long arg4, unsigned long arg5)
2030 struct mm_struct *mm = current->mm;
2031 struct prctl_mm_map prctl_map;
2032 struct vm_area_struct *vma;
2033 int error;
2035 if (arg5 || (arg4 && (opt != PR_SET_MM_AUXV &&
2036 opt != PR_SET_MM_MAP &&
2037 opt != PR_SET_MM_MAP_SIZE)))
2038 return -EINVAL;
2040 #ifdef CONFIG_CHECKPOINT_RESTORE
2041 if (opt == PR_SET_MM_MAP || opt == PR_SET_MM_MAP_SIZE)
2042 return prctl_set_mm_map(opt, (const void __user *)addr, arg4);
2043 #endif
2045 if (!capable(CAP_SYS_RESOURCE))
2046 return -EPERM;
2048 if (opt == PR_SET_MM_EXE_FILE)
2049 return prctl_set_mm_exe_file(mm, (unsigned int)addr);
2051 if (opt == PR_SET_MM_AUXV)
2052 return prctl_set_auxv(mm, addr, arg4);
2054 if (addr >= TASK_SIZE || addr < mmap_min_addr)
2055 return -EINVAL;
2057 error = -EINVAL;
2059 down_write(&mm->mmap_sem);
2060 vma = find_vma(mm, addr);
2062 prctl_map.start_code = mm->start_code;
2063 prctl_map.end_code = mm->end_code;
2064 prctl_map.start_data = mm->start_data;
2065 prctl_map.end_data = mm->end_data;
2066 prctl_map.start_brk = mm->start_brk;
2067 prctl_map.brk = mm->brk;
2068 prctl_map.start_stack = mm->start_stack;
2069 prctl_map.arg_start = mm->arg_start;
2070 prctl_map.arg_end = mm->arg_end;
2071 prctl_map.env_start = mm->env_start;
2072 prctl_map.env_end = mm->env_end;
2073 prctl_map.auxv = NULL;
2074 prctl_map.auxv_size = 0;
2075 prctl_map.exe_fd = -1;
2077 switch (opt) {
2078 case PR_SET_MM_START_CODE:
2079 prctl_map.start_code = addr;
2080 break;
2081 case PR_SET_MM_END_CODE:
2082 prctl_map.end_code = addr;
2083 break;
2084 case PR_SET_MM_START_DATA:
2085 prctl_map.start_data = addr;
2086 break;
2087 case PR_SET_MM_END_DATA:
2088 prctl_map.end_data = addr;
2089 break;
2090 case PR_SET_MM_START_STACK:
2091 prctl_map.start_stack = addr;
2092 break;
2093 case PR_SET_MM_START_BRK:
2094 prctl_map.start_brk = addr;
2095 break;
2096 case PR_SET_MM_BRK:
2097 prctl_map.brk = addr;
2098 break;
2099 case PR_SET_MM_ARG_START:
2100 prctl_map.arg_start = addr;
2101 break;
2102 case PR_SET_MM_ARG_END:
2103 prctl_map.arg_end = addr;
2104 break;
2105 case PR_SET_MM_ENV_START:
2106 prctl_map.env_start = addr;
2107 break;
2108 case PR_SET_MM_ENV_END:
2109 prctl_map.env_end = addr;
2110 break;
2111 default:
2112 goto out;
2115 error = validate_prctl_map(&prctl_map);
2116 if (error)
2117 goto out;
2119 switch (opt) {
2121 * If command line arguments and environment
2122 * are placed somewhere else on stack, we can
2123 * set them up here, ARG_START/END to setup
2124 * command line argumets and ENV_START/END
2125 * for environment.
2127 case PR_SET_MM_START_STACK:
2128 case PR_SET_MM_ARG_START:
2129 case PR_SET_MM_ARG_END:
2130 case PR_SET_MM_ENV_START:
2131 case PR_SET_MM_ENV_END:
2132 if (!vma) {
2133 error = -EFAULT;
2134 goto out;
2138 mm->start_code = prctl_map.start_code;
2139 mm->end_code = prctl_map.end_code;
2140 mm->start_data = prctl_map.start_data;
2141 mm->end_data = prctl_map.end_data;
2142 mm->start_brk = prctl_map.start_brk;
2143 mm->brk = prctl_map.brk;
2144 mm->start_stack = prctl_map.start_stack;
2145 mm->arg_start = prctl_map.arg_start;
2146 mm->arg_end = prctl_map.arg_end;
2147 mm->env_start = prctl_map.env_start;
2148 mm->env_end = prctl_map.env_end;
2150 error = 0;
2151 out:
2152 up_write(&mm->mmap_sem);
2153 return error;
2156 #ifdef CONFIG_CHECKPOINT_RESTORE
2157 static int prctl_get_tid_address(struct task_struct *me, int __user **tid_addr)
2159 return put_user(me->clear_child_tid, tid_addr);
2161 #else
2162 static int prctl_get_tid_address(struct task_struct *me, int __user **tid_addr)
2164 return -EINVAL;
2166 #endif
2168 static int propagate_has_child_subreaper(struct task_struct *p, void *data)
2171 * If task has has_child_subreaper - all its decendants
2172 * already have these flag too and new decendants will
2173 * inherit it on fork, skip them.
2175 * If we've found child_reaper - skip descendants in
2176 * it's subtree as they will never get out pidns.
2178 if (p->signal->has_child_subreaper ||
2179 is_child_reaper(task_pid(p)))
2180 return 0;
2182 p->signal->has_child_subreaper = 1;
2183 return 1;
2186 int __weak arch_prctl_spec_ctrl_get(struct task_struct *t, unsigned long which)
2188 return -EINVAL;
2191 int __weak arch_prctl_spec_ctrl_set(struct task_struct *t, unsigned long which,
2192 unsigned long ctrl)
2194 return -EINVAL;
2197 SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3,
2198 unsigned long, arg4, unsigned long, arg5)
2200 struct task_struct *me = current;
2201 unsigned char comm[sizeof(me->comm)];
2202 long error;
2204 error = security_task_prctl(option, arg2, arg3, arg4, arg5);
2205 if (error != -ENOSYS)
2206 return error;
2208 error = 0;
2209 switch (option) {
2210 case PR_SET_PDEATHSIG:
2211 if (!valid_signal(arg2)) {
2212 error = -EINVAL;
2213 break;
2215 me->pdeath_signal = arg2;
2216 break;
2217 case PR_GET_PDEATHSIG:
2218 error = put_user(me->pdeath_signal, (int __user *)arg2);
2219 break;
2220 case PR_GET_DUMPABLE:
2221 error = get_dumpable(me->mm);
2222 break;
2223 case PR_SET_DUMPABLE:
2224 if (arg2 != SUID_DUMP_DISABLE && arg2 != SUID_DUMP_USER) {
2225 error = -EINVAL;
2226 break;
2228 set_dumpable(me->mm, arg2);
2229 break;
2231 case PR_SET_UNALIGN:
2232 error = SET_UNALIGN_CTL(me, arg2);
2233 break;
2234 case PR_GET_UNALIGN:
2235 error = GET_UNALIGN_CTL(me, arg2);
2236 break;
2237 case PR_SET_FPEMU:
2238 error = SET_FPEMU_CTL(me, arg2);
2239 break;
2240 case PR_GET_FPEMU:
2241 error = GET_FPEMU_CTL(me, arg2);
2242 break;
2243 case PR_SET_FPEXC:
2244 error = SET_FPEXC_CTL(me, arg2);
2245 break;
2246 case PR_GET_FPEXC:
2247 error = GET_FPEXC_CTL(me, arg2);
2248 break;
2249 case PR_GET_TIMING:
2250 error = PR_TIMING_STATISTICAL;
2251 break;
2252 case PR_SET_TIMING:
2253 if (arg2 != PR_TIMING_STATISTICAL)
2254 error = -EINVAL;
2255 break;
2256 case PR_SET_NAME:
2257 comm[sizeof(me->comm) - 1] = 0;
2258 if (strncpy_from_user(comm, (char __user *)arg2,
2259 sizeof(me->comm) - 1) < 0)
2260 return -EFAULT;
2261 set_task_comm(me, comm);
2262 proc_comm_connector(me);
2263 break;
2264 case PR_GET_NAME:
2265 get_task_comm(comm, me);
2266 if (copy_to_user((char __user *)arg2, comm, sizeof(comm)))
2267 return -EFAULT;
2268 break;
2269 case PR_GET_ENDIAN:
2270 error = GET_ENDIAN(me, arg2);
2271 break;
2272 case PR_SET_ENDIAN:
2273 error = SET_ENDIAN(me, arg2);
2274 break;
2275 case PR_GET_SECCOMP:
2276 error = prctl_get_seccomp();
2277 break;
2278 case PR_SET_SECCOMP:
2279 error = prctl_set_seccomp(arg2, (char __user *)arg3);
2280 break;
2281 case PR_GET_TSC:
2282 error = GET_TSC_CTL(arg2);
2283 break;
2284 case PR_SET_TSC:
2285 error = SET_TSC_CTL(arg2);
2286 break;
2287 case PR_TASK_PERF_EVENTS_DISABLE:
2288 error = perf_event_task_disable();
2289 break;
2290 case PR_TASK_PERF_EVENTS_ENABLE:
2291 error = perf_event_task_enable();
2292 break;
2293 case PR_GET_TIMERSLACK:
2294 if (current->timer_slack_ns > ULONG_MAX)
2295 error = ULONG_MAX;
2296 else
2297 error = current->timer_slack_ns;
2298 break;
2299 case PR_SET_TIMERSLACK:
2300 if (arg2 <= 0)
2301 current->timer_slack_ns =
2302 current->default_timer_slack_ns;
2303 else
2304 current->timer_slack_ns = arg2;
2305 break;
2306 case PR_MCE_KILL:
2307 if (arg4 | arg5)
2308 return -EINVAL;
2309 switch (arg2) {
2310 case PR_MCE_KILL_CLEAR:
2311 if (arg3 != 0)
2312 return -EINVAL;
2313 current->flags &= ~PF_MCE_PROCESS;
2314 break;
2315 case PR_MCE_KILL_SET:
2316 current->flags |= PF_MCE_PROCESS;
2317 if (arg3 == PR_MCE_KILL_EARLY)
2318 current->flags |= PF_MCE_EARLY;
2319 else if (arg3 == PR_MCE_KILL_LATE)
2320 current->flags &= ~PF_MCE_EARLY;
2321 else if (arg3 == PR_MCE_KILL_DEFAULT)
2322 current->flags &=
2323 ~(PF_MCE_EARLY|PF_MCE_PROCESS);
2324 else
2325 return -EINVAL;
2326 break;
2327 default:
2328 return -EINVAL;
2330 break;
2331 case PR_MCE_KILL_GET:
2332 if (arg2 | arg3 | arg4 | arg5)
2333 return -EINVAL;
2334 if (current->flags & PF_MCE_PROCESS)
2335 error = (current->flags & PF_MCE_EARLY) ?
2336 PR_MCE_KILL_EARLY : PR_MCE_KILL_LATE;
2337 else
2338 error = PR_MCE_KILL_DEFAULT;
2339 break;
2340 case PR_SET_MM:
2341 error = prctl_set_mm(arg2, arg3, arg4, arg5);
2342 break;
2343 case PR_GET_TID_ADDRESS:
2344 error = prctl_get_tid_address(me, (int __user **)arg2);
2345 break;
2346 case PR_SET_CHILD_SUBREAPER:
2347 me->signal->is_child_subreaper = !!arg2;
2348 if (!arg2)
2349 break;
2351 walk_process_tree(me, propagate_has_child_subreaper, NULL);
2352 break;
2353 case PR_GET_CHILD_SUBREAPER:
2354 error = put_user(me->signal->is_child_subreaper,
2355 (int __user *)arg2);
2356 break;
2357 case PR_SET_NO_NEW_PRIVS:
2358 if (arg2 != 1 || arg3 || arg4 || arg5)
2359 return -EINVAL;
2361 task_set_no_new_privs(current);
2362 break;
2363 case PR_GET_NO_NEW_PRIVS:
2364 if (arg2 || arg3 || arg4 || arg5)
2365 return -EINVAL;
2366 return task_no_new_privs(current) ? 1 : 0;
2367 case PR_GET_THP_DISABLE:
2368 if (arg2 || arg3 || arg4 || arg5)
2369 return -EINVAL;
2370 error = !!test_bit(MMF_DISABLE_THP, &me->mm->flags);
2371 break;
2372 case PR_SET_THP_DISABLE:
2373 if (arg3 || arg4 || arg5)
2374 return -EINVAL;
2375 if (down_write_killable(&me->mm->mmap_sem))
2376 return -EINTR;
2377 if (arg2)
2378 set_bit(MMF_DISABLE_THP, &me->mm->flags);
2379 else
2380 clear_bit(MMF_DISABLE_THP, &me->mm->flags);
2381 up_write(&me->mm->mmap_sem);
2382 break;
2383 case PR_MPX_ENABLE_MANAGEMENT:
2384 if (arg2 || arg3 || arg4 || arg5)
2385 return -EINVAL;
2386 error = MPX_ENABLE_MANAGEMENT();
2387 break;
2388 case PR_MPX_DISABLE_MANAGEMENT:
2389 if (arg2 || arg3 || arg4 || arg5)
2390 return -EINVAL;
2391 error = MPX_DISABLE_MANAGEMENT();
2392 break;
2393 case PR_SET_FP_MODE:
2394 error = SET_FP_MODE(me, arg2);
2395 break;
2396 case PR_GET_FP_MODE:
2397 error = GET_FP_MODE(me);
2398 break;
2399 case PR_GET_SPECULATION_CTRL:
2400 if (arg3 || arg4 || arg5)
2401 return -EINVAL;
2402 error = arch_prctl_spec_ctrl_get(me, arg2);
2403 break;
2404 case PR_SET_SPECULATION_CTRL:
2405 if (arg4 || arg5)
2406 return -EINVAL;
2407 error = arch_prctl_spec_ctrl_set(me, arg2, arg3);
2408 break;
2409 default:
2410 error = -EINVAL;
2411 break;
2413 return error;
2416 SYSCALL_DEFINE3(getcpu, unsigned __user *, cpup, unsigned __user *, nodep,
2417 struct getcpu_cache __user *, unused)
2419 int err = 0;
2420 int cpu = raw_smp_processor_id();
2422 if (cpup)
2423 err |= put_user(cpu, cpup);
2424 if (nodep)
2425 err |= put_user(cpu_to_node(cpu), nodep);
2426 return err ? -EFAULT : 0;
2430 * do_sysinfo - fill in sysinfo struct
2431 * @info: pointer to buffer to fill
2433 static int do_sysinfo(struct sysinfo *info)
2435 unsigned long mem_total, sav_total;
2436 unsigned int mem_unit, bitcount;
2437 struct timespec tp;
2439 memset(info, 0, sizeof(struct sysinfo));
2441 get_monotonic_boottime(&tp);
2442 info->uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
2444 get_avenrun(info->loads, 0, SI_LOAD_SHIFT - FSHIFT);
2446 info->procs = nr_threads;
2448 si_meminfo(info);
2449 si_swapinfo(info);
2452 * If the sum of all the available memory (i.e. ram + swap)
2453 * is less than can be stored in a 32 bit unsigned long then
2454 * we can be binary compatible with 2.2.x kernels. If not,
2455 * well, in that case 2.2.x was broken anyways...
2457 * -Erik Andersen <andersee@debian.org>
2460 mem_total = info->totalram + info->totalswap;
2461 if (mem_total < info->totalram || mem_total < info->totalswap)
2462 goto out;
2463 bitcount = 0;
2464 mem_unit = info->mem_unit;
2465 while (mem_unit > 1) {
2466 bitcount++;
2467 mem_unit >>= 1;
2468 sav_total = mem_total;
2469 mem_total <<= 1;
2470 if (mem_total < sav_total)
2471 goto out;
2475 * If mem_total did not overflow, multiply all memory values by
2476 * info->mem_unit and set it to 1. This leaves things compatible
2477 * with 2.2.x, and also retains compatibility with earlier 2.4.x
2478 * kernels...
2481 info->mem_unit = 1;
2482 info->totalram <<= bitcount;
2483 info->freeram <<= bitcount;
2484 info->sharedram <<= bitcount;
2485 info->bufferram <<= bitcount;
2486 info->totalswap <<= bitcount;
2487 info->freeswap <<= bitcount;
2488 info->totalhigh <<= bitcount;
2489 info->freehigh <<= bitcount;
2491 out:
2492 return 0;
2495 SYSCALL_DEFINE1(sysinfo, struct sysinfo __user *, info)
2497 struct sysinfo val;
2499 do_sysinfo(&val);
2501 if (copy_to_user(info, &val, sizeof(struct sysinfo)))
2502 return -EFAULT;
2504 return 0;
2507 #ifdef CONFIG_COMPAT
2508 struct compat_sysinfo {
2509 s32 uptime;
2510 u32 loads[3];
2511 u32 totalram;
2512 u32 freeram;
2513 u32 sharedram;
2514 u32 bufferram;
2515 u32 totalswap;
2516 u32 freeswap;
2517 u16 procs;
2518 u16 pad;
2519 u32 totalhigh;
2520 u32 freehigh;
2521 u32 mem_unit;
2522 char _f[20-2*sizeof(u32)-sizeof(int)];
2525 COMPAT_SYSCALL_DEFINE1(sysinfo, struct compat_sysinfo __user *, info)
2527 struct sysinfo s;
2529 do_sysinfo(&s);
2531 /* Check to see if any memory value is too large for 32-bit and scale
2532 * down if needed
2534 if (upper_32_bits(s.totalram) || upper_32_bits(s.totalswap)) {
2535 int bitcount = 0;
2537 while (s.mem_unit < PAGE_SIZE) {
2538 s.mem_unit <<= 1;
2539 bitcount++;
2542 s.totalram >>= bitcount;
2543 s.freeram >>= bitcount;
2544 s.sharedram >>= bitcount;
2545 s.bufferram >>= bitcount;
2546 s.totalswap >>= bitcount;
2547 s.freeswap >>= bitcount;
2548 s.totalhigh >>= bitcount;
2549 s.freehigh >>= bitcount;
2552 if (!access_ok(VERIFY_WRITE, info, sizeof(struct compat_sysinfo)) ||
2553 __put_user(s.uptime, &info->uptime) ||
2554 __put_user(s.loads[0], &info->loads[0]) ||
2555 __put_user(s.loads[1], &info->loads[1]) ||
2556 __put_user(s.loads[2], &info->loads[2]) ||
2557 __put_user(s.totalram, &info->totalram) ||
2558 __put_user(s.freeram, &info->freeram) ||
2559 __put_user(s.sharedram, &info->sharedram) ||
2560 __put_user(s.bufferram, &info->bufferram) ||
2561 __put_user(s.totalswap, &info->totalswap) ||
2562 __put_user(s.freeswap, &info->freeswap) ||
2563 __put_user(s.procs, &info->procs) ||
2564 __put_user(s.totalhigh, &info->totalhigh) ||
2565 __put_user(s.freehigh, &info->freehigh) ||
2566 __put_user(s.mem_unit, &info->mem_unit))
2567 return -EFAULT;
2569 return 0;
2571 #endif /* CONFIG_COMPAT */