locking/csd_lock: Use smp_cond_acquire() in csd_lock_wait()
[linux-stable.git] / mm / vmalloc.c
blobfb42a5bffe4733f6e5b1e65d09009934ef2b781b
1 /*
2 * linux/mm/vmalloc.c
4 * Copyright (C) 1993 Linus Torvalds
5 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
6 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
7 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
8 * Numa awareness, Christoph Lameter, SGI, June 2005
9 */
11 #include <linux/vmalloc.h>
12 #include <linux/mm.h>
13 #include <linux/module.h>
14 #include <linux/highmem.h>
15 #include <linux/sched.h>
16 #include <linux/slab.h>
17 #include <linux/spinlock.h>
18 #include <linux/interrupt.h>
19 #include <linux/proc_fs.h>
20 #include <linux/seq_file.h>
21 #include <linux/debugobjects.h>
22 #include <linux/kallsyms.h>
23 #include <linux/list.h>
24 #include <linux/rbtree.h>
25 #include <linux/radix-tree.h>
26 #include <linux/rcupdate.h>
27 #include <linux/pfn.h>
28 #include <linux/kmemleak.h>
29 #include <linux/atomic.h>
30 #include <linux/compiler.h>
31 #include <linux/llist.h>
32 #include <linux/bitops.h>
34 #include <asm/uaccess.h>
35 #include <asm/tlbflush.h>
36 #include <asm/shmparam.h>
38 #include "internal.h"
40 struct vfree_deferred {
41 struct llist_head list;
42 struct work_struct wq;
44 static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
46 static void __vunmap(const void *, int);
48 static void free_work(struct work_struct *w)
50 struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
51 struct llist_node *llnode = llist_del_all(&p->list);
52 while (llnode) {
53 void *p = llnode;
54 llnode = llist_next(llnode);
55 __vunmap(p, 1);
59 /*** Page table manipulation functions ***/
61 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
63 pte_t *pte;
65 pte = pte_offset_kernel(pmd, addr);
66 do {
67 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
68 WARN_ON(!pte_none(ptent) && !pte_present(ptent));
69 } while (pte++, addr += PAGE_SIZE, addr != end);
72 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
74 pmd_t *pmd;
75 unsigned long next;
77 pmd = pmd_offset(pud, addr);
78 do {
79 next = pmd_addr_end(addr, end);
80 if (pmd_clear_huge(pmd))
81 continue;
82 if (pmd_none_or_clear_bad(pmd))
83 continue;
84 vunmap_pte_range(pmd, addr, next);
85 } while (pmd++, addr = next, addr != end);
88 static void vunmap_pud_range(pgd_t *pgd, unsigned long addr, unsigned long end)
90 pud_t *pud;
91 unsigned long next;
93 pud = pud_offset(pgd, addr);
94 do {
95 next = pud_addr_end(addr, end);
96 if (pud_clear_huge(pud))
97 continue;
98 if (pud_none_or_clear_bad(pud))
99 continue;
100 vunmap_pmd_range(pud, addr, next);
101 } while (pud++, addr = next, addr != end);
104 static void vunmap_page_range(unsigned long addr, unsigned long end)
106 pgd_t *pgd;
107 unsigned long next;
109 BUG_ON(addr >= end);
110 pgd = pgd_offset_k(addr);
111 do {
112 next = pgd_addr_end(addr, end);
113 if (pgd_none_or_clear_bad(pgd))
114 continue;
115 vunmap_pud_range(pgd, addr, next);
116 } while (pgd++, addr = next, addr != end);
119 static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
120 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
122 pte_t *pte;
125 * nr is a running index into the array which helps higher level
126 * callers keep track of where we're up to.
129 pte = pte_alloc_kernel(pmd, addr);
130 if (!pte)
131 return -ENOMEM;
132 do {
133 struct page *page = pages[*nr];
135 if (WARN_ON(!pte_none(*pte)))
136 return -EBUSY;
137 if (WARN_ON(!page))
138 return -ENOMEM;
139 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
140 (*nr)++;
141 } while (pte++, addr += PAGE_SIZE, addr != end);
142 return 0;
145 static int vmap_pmd_range(pud_t *pud, unsigned long addr,
146 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
148 pmd_t *pmd;
149 unsigned long next;
151 pmd = pmd_alloc(&init_mm, pud, addr);
152 if (!pmd)
153 return -ENOMEM;
154 do {
155 next = pmd_addr_end(addr, end);
156 if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
157 return -ENOMEM;
158 } while (pmd++, addr = next, addr != end);
159 return 0;
162 static int vmap_pud_range(pgd_t *pgd, unsigned long addr,
163 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
165 pud_t *pud;
166 unsigned long next;
168 pud = pud_alloc(&init_mm, pgd, addr);
169 if (!pud)
170 return -ENOMEM;
171 do {
172 next = pud_addr_end(addr, end);
173 if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
174 return -ENOMEM;
175 } while (pud++, addr = next, addr != end);
176 return 0;
180 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
181 * will have pfns corresponding to the "pages" array.
183 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
185 static int vmap_page_range_noflush(unsigned long start, unsigned long end,
186 pgprot_t prot, struct page **pages)
188 pgd_t *pgd;
189 unsigned long next;
190 unsigned long addr = start;
191 int err = 0;
192 int nr = 0;
194 BUG_ON(addr >= end);
195 pgd = pgd_offset_k(addr);
196 do {
197 next = pgd_addr_end(addr, end);
198 err = vmap_pud_range(pgd, addr, next, prot, pages, &nr);
199 if (err)
200 return err;
201 } while (pgd++, addr = next, addr != end);
203 return nr;
206 static int vmap_page_range(unsigned long start, unsigned long end,
207 pgprot_t prot, struct page **pages)
209 int ret;
211 ret = vmap_page_range_noflush(start, end, prot, pages);
212 flush_cache_vmap(start, end);
213 return ret;
216 int is_vmalloc_or_module_addr(const void *x)
219 * ARM, x86-64 and sparc64 put modules in a special place,
220 * and fall back on vmalloc() if that fails. Others
221 * just put it in the vmalloc space.
223 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
224 unsigned long addr = (unsigned long)x;
225 if (addr >= MODULES_VADDR && addr < MODULES_END)
226 return 1;
227 #endif
228 return is_vmalloc_addr(x);
232 * Walk a vmap address to the struct page it maps.
234 struct page *vmalloc_to_page(const void *vmalloc_addr)
236 unsigned long addr = (unsigned long) vmalloc_addr;
237 struct page *page = NULL;
238 pgd_t *pgd = pgd_offset_k(addr);
241 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
242 * architectures that do not vmalloc module space
244 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
246 if (!pgd_none(*pgd)) {
247 pud_t *pud = pud_offset(pgd, addr);
248 if (!pud_none(*pud)) {
249 pmd_t *pmd = pmd_offset(pud, addr);
250 if (!pmd_none(*pmd)) {
251 pte_t *ptep, pte;
253 ptep = pte_offset_map(pmd, addr);
254 pte = *ptep;
255 if (pte_present(pte))
256 page = pte_page(pte);
257 pte_unmap(ptep);
261 return page;
263 EXPORT_SYMBOL(vmalloc_to_page);
266 * Map a vmalloc()-space virtual address to the physical page frame number.
268 unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
270 return page_to_pfn(vmalloc_to_page(vmalloc_addr));
272 EXPORT_SYMBOL(vmalloc_to_pfn);
275 /*** Global kva allocator ***/
277 #define VM_LAZY_FREE 0x01
278 #define VM_LAZY_FREEING 0x02
279 #define VM_VM_AREA 0x04
281 static DEFINE_SPINLOCK(vmap_area_lock);
282 /* Export for kexec only */
283 LIST_HEAD(vmap_area_list);
284 static struct rb_root vmap_area_root = RB_ROOT;
286 /* The vmap cache globals are protected by vmap_area_lock */
287 static struct rb_node *free_vmap_cache;
288 static unsigned long cached_hole_size;
289 static unsigned long cached_vstart;
290 static unsigned long cached_align;
292 static unsigned long vmap_area_pcpu_hole;
294 static struct vmap_area *__find_vmap_area(unsigned long addr)
296 struct rb_node *n = vmap_area_root.rb_node;
298 while (n) {
299 struct vmap_area *va;
301 va = rb_entry(n, struct vmap_area, rb_node);
302 if (addr < va->va_start)
303 n = n->rb_left;
304 else if (addr >= va->va_end)
305 n = n->rb_right;
306 else
307 return va;
310 return NULL;
313 static void __insert_vmap_area(struct vmap_area *va)
315 struct rb_node **p = &vmap_area_root.rb_node;
316 struct rb_node *parent = NULL;
317 struct rb_node *tmp;
319 while (*p) {
320 struct vmap_area *tmp_va;
322 parent = *p;
323 tmp_va = rb_entry(parent, struct vmap_area, rb_node);
324 if (va->va_start < tmp_va->va_end)
325 p = &(*p)->rb_left;
326 else if (va->va_end > tmp_va->va_start)
327 p = &(*p)->rb_right;
328 else
329 BUG();
332 rb_link_node(&va->rb_node, parent, p);
333 rb_insert_color(&va->rb_node, &vmap_area_root);
335 /* address-sort this list */
336 tmp = rb_prev(&va->rb_node);
337 if (tmp) {
338 struct vmap_area *prev;
339 prev = rb_entry(tmp, struct vmap_area, rb_node);
340 list_add_rcu(&va->list, &prev->list);
341 } else
342 list_add_rcu(&va->list, &vmap_area_list);
345 static void purge_vmap_area_lazy(void);
348 * Allocate a region of KVA of the specified size and alignment, within the
349 * vstart and vend.
351 static struct vmap_area *alloc_vmap_area(unsigned long size,
352 unsigned long align,
353 unsigned long vstart, unsigned long vend,
354 int node, gfp_t gfp_mask)
356 struct vmap_area *va;
357 struct rb_node *n;
358 unsigned long addr;
359 int purged = 0;
360 struct vmap_area *first;
362 BUG_ON(!size);
363 BUG_ON(offset_in_page(size));
364 BUG_ON(!is_power_of_2(align));
366 va = kmalloc_node(sizeof(struct vmap_area),
367 gfp_mask & GFP_RECLAIM_MASK, node);
368 if (unlikely(!va))
369 return ERR_PTR(-ENOMEM);
372 * Only scan the relevant parts containing pointers to other objects
373 * to avoid false negatives.
375 kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask & GFP_RECLAIM_MASK);
377 retry:
378 spin_lock(&vmap_area_lock);
380 * Invalidate cache if we have more permissive parameters.
381 * cached_hole_size notes the largest hole noticed _below_
382 * the vmap_area cached in free_vmap_cache: if size fits
383 * into that hole, we want to scan from vstart to reuse
384 * the hole instead of allocating above free_vmap_cache.
385 * Note that __free_vmap_area may update free_vmap_cache
386 * without updating cached_hole_size or cached_align.
388 if (!free_vmap_cache ||
389 size < cached_hole_size ||
390 vstart < cached_vstart ||
391 align < cached_align) {
392 nocache:
393 cached_hole_size = 0;
394 free_vmap_cache = NULL;
396 /* record if we encounter less permissive parameters */
397 cached_vstart = vstart;
398 cached_align = align;
400 /* find starting point for our search */
401 if (free_vmap_cache) {
402 first = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
403 addr = ALIGN(first->va_end, align);
404 if (addr < vstart)
405 goto nocache;
406 if (addr + size < addr)
407 goto overflow;
409 } else {
410 addr = ALIGN(vstart, align);
411 if (addr + size < addr)
412 goto overflow;
414 n = vmap_area_root.rb_node;
415 first = NULL;
417 while (n) {
418 struct vmap_area *tmp;
419 tmp = rb_entry(n, struct vmap_area, rb_node);
420 if (tmp->va_end >= addr) {
421 first = tmp;
422 if (tmp->va_start <= addr)
423 break;
424 n = n->rb_left;
425 } else
426 n = n->rb_right;
429 if (!first)
430 goto found;
433 /* from the starting point, walk areas until a suitable hole is found */
434 while (addr + size > first->va_start && addr + size <= vend) {
435 if (addr + cached_hole_size < first->va_start)
436 cached_hole_size = first->va_start - addr;
437 addr = ALIGN(first->va_end, align);
438 if (addr + size < addr)
439 goto overflow;
441 if (list_is_last(&first->list, &vmap_area_list))
442 goto found;
444 first = list_next_entry(first, list);
447 found:
448 if (addr + size > vend)
449 goto overflow;
451 va->va_start = addr;
452 va->va_end = addr + size;
453 va->flags = 0;
454 __insert_vmap_area(va);
455 free_vmap_cache = &va->rb_node;
456 spin_unlock(&vmap_area_lock);
458 BUG_ON(!IS_ALIGNED(va->va_start, align));
459 BUG_ON(va->va_start < vstart);
460 BUG_ON(va->va_end > vend);
462 return va;
464 overflow:
465 spin_unlock(&vmap_area_lock);
466 if (!purged) {
467 purge_vmap_area_lazy();
468 purged = 1;
469 goto retry;
471 if (printk_ratelimit())
472 pr_warn("vmap allocation for size %lu failed: "
473 "use vmalloc=<size> to increase size.\n", size);
474 kfree(va);
475 return ERR_PTR(-EBUSY);
478 static void __free_vmap_area(struct vmap_area *va)
480 BUG_ON(RB_EMPTY_NODE(&va->rb_node));
482 if (free_vmap_cache) {
483 if (va->va_end < cached_vstart) {
484 free_vmap_cache = NULL;
485 } else {
486 struct vmap_area *cache;
487 cache = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
488 if (va->va_start <= cache->va_start) {
489 free_vmap_cache = rb_prev(&va->rb_node);
491 * We don't try to update cached_hole_size or
492 * cached_align, but it won't go very wrong.
497 rb_erase(&va->rb_node, &vmap_area_root);
498 RB_CLEAR_NODE(&va->rb_node);
499 list_del_rcu(&va->list);
502 * Track the highest possible candidate for pcpu area
503 * allocation. Areas outside of vmalloc area can be returned
504 * here too, consider only end addresses which fall inside
505 * vmalloc area proper.
507 if (va->va_end > VMALLOC_START && va->va_end <= VMALLOC_END)
508 vmap_area_pcpu_hole = max(vmap_area_pcpu_hole, va->va_end);
510 kfree_rcu(va, rcu_head);
514 * Free a region of KVA allocated by alloc_vmap_area
516 static void free_vmap_area(struct vmap_area *va)
518 spin_lock(&vmap_area_lock);
519 __free_vmap_area(va);
520 spin_unlock(&vmap_area_lock);
524 * Clear the pagetable entries of a given vmap_area
526 static void unmap_vmap_area(struct vmap_area *va)
528 vunmap_page_range(va->va_start, va->va_end);
531 static void vmap_debug_free_range(unsigned long start, unsigned long end)
534 * Unmap page tables and force a TLB flush immediately if
535 * CONFIG_DEBUG_PAGEALLOC is set. This catches use after free
536 * bugs similarly to those in linear kernel virtual address
537 * space after a page has been freed.
539 * All the lazy freeing logic is still retained, in order to
540 * minimise intrusiveness of this debugging feature.
542 * This is going to be *slow* (linear kernel virtual address
543 * debugging doesn't do a broadcast TLB flush so it is a lot
544 * faster).
546 #ifdef CONFIG_DEBUG_PAGEALLOC
547 vunmap_page_range(start, end);
548 flush_tlb_kernel_range(start, end);
549 #endif
553 * lazy_max_pages is the maximum amount of virtual address space we gather up
554 * before attempting to purge with a TLB flush.
556 * There is a tradeoff here: a larger number will cover more kernel page tables
557 * and take slightly longer to purge, but it will linearly reduce the number of
558 * global TLB flushes that must be performed. It would seem natural to scale
559 * this number up linearly with the number of CPUs (because vmapping activity
560 * could also scale linearly with the number of CPUs), however it is likely
561 * that in practice, workloads might be constrained in other ways that mean
562 * vmap activity will not scale linearly with CPUs. Also, I want to be
563 * conservative and not introduce a big latency on huge systems, so go with
564 * a less aggressive log scale. It will still be an improvement over the old
565 * code, and it will be simple to change the scale factor if we find that it
566 * becomes a problem on bigger systems.
568 static unsigned long lazy_max_pages(void)
570 unsigned int log;
572 log = fls(num_online_cpus());
574 return log * (32UL * 1024 * 1024 / PAGE_SIZE);
577 static atomic_t vmap_lazy_nr = ATOMIC_INIT(0);
579 /* for per-CPU blocks */
580 static void purge_fragmented_blocks_allcpus(void);
583 * called before a call to iounmap() if the caller wants vm_area_struct's
584 * immediately freed.
586 void set_iounmap_nonlazy(void)
588 atomic_set(&vmap_lazy_nr, lazy_max_pages()+1);
592 * Purges all lazily-freed vmap areas.
594 * If sync is 0 then don't purge if there is already a purge in progress.
595 * If force_flush is 1, then flush kernel TLBs between *start and *end even
596 * if we found no lazy vmap areas to unmap (callers can use this to optimise
597 * their own TLB flushing).
598 * Returns with *start = min(*start, lowest purged address)
599 * *end = max(*end, highest purged address)
601 static void __purge_vmap_area_lazy(unsigned long *start, unsigned long *end,
602 int sync, int force_flush)
604 static DEFINE_SPINLOCK(purge_lock);
605 LIST_HEAD(valist);
606 struct vmap_area *va;
607 struct vmap_area *n_va;
608 int nr = 0;
611 * If sync is 0 but force_flush is 1, we'll go sync anyway but callers
612 * should not expect such behaviour. This just simplifies locking for
613 * the case that isn't actually used at the moment anyway.
615 if (!sync && !force_flush) {
616 if (!spin_trylock(&purge_lock))
617 return;
618 } else
619 spin_lock(&purge_lock);
621 if (sync)
622 purge_fragmented_blocks_allcpus();
624 rcu_read_lock();
625 list_for_each_entry_rcu(va, &vmap_area_list, list) {
626 if (va->flags & VM_LAZY_FREE) {
627 if (va->va_start < *start)
628 *start = va->va_start;
629 if (va->va_end > *end)
630 *end = va->va_end;
631 nr += (va->va_end - va->va_start) >> PAGE_SHIFT;
632 list_add_tail(&va->purge_list, &valist);
633 va->flags |= VM_LAZY_FREEING;
634 va->flags &= ~VM_LAZY_FREE;
637 rcu_read_unlock();
639 if (nr)
640 atomic_sub(nr, &vmap_lazy_nr);
642 if (nr || force_flush)
643 flush_tlb_kernel_range(*start, *end);
645 if (nr) {
646 spin_lock(&vmap_area_lock);
647 list_for_each_entry_safe(va, n_va, &valist, purge_list)
648 __free_vmap_area(va);
649 spin_unlock(&vmap_area_lock);
651 spin_unlock(&purge_lock);
655 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
656 * is already purging.
658 static void try_purge_vmap_area_lazy(void)
660 unsigned long start = ULONG_MAX, end = 0;
662 __purge_vmap_area_lazy(&start, &end, 0, 0);
666 * Kick off a purge of the outstanding lazy areas.
668 static void purge_vmap_area_lazy(void)
670 unsigned long start = ULONG_MAX, end = 0;
672 __purge_vmap_area_lazy(&start, &end, 1, 0);
676 * Free a vmap area, caller ensuring that the area has been unmapped
677 * and flush_cache_vunmap had been called for the correct range
678 * previously.
680 static void free_vmap_area_noflush(struct vmap_area *va)
682 va->flags |= VM_LAZY_FREE;
683 atomic_add((va->va_end - va->va_start) >> PAGE_SHIFT, &vmap_lazy_nr);
684 if (unlikely(atomic_read(&vmap_lazy_nr) > lazy_max_pages()))
685 try_purge_vmap_area_lazy();
689 * Free and unmap a vmap area, caller ensuring flush_cache_vunmap had been
690 * called for the correct range previously.
692 static void free_unmap_vmap_area_noflush(struct vmap_area *va)
694 unmap_vmap_area(va);
695 free_vmap_area_noflush(va);
699 * Free and unmap a vmap area
701 static void free_unmap_vmap_area(struct vmap_area *va)
703 flush_cache_vunmap(va->va_start, va->va_end);
704 free_unmap_vmap_area_noflush(va);
707 static struct vmap_area *find_vmap_area(unsigned long addr)
709 struct vmap_area *va;
711 spin_lock(&vmap_area_lock);
712 va = __find_vmap_area(addr);
713 spin_unlock(&vmap_area_lock);
715 return va;
718 static void free_unmap_vmap_area_addr(unsigned long addr)
720 struct vmap_area *va;
722 va = find_vmap_area(addr);
723 BUG_ON(!va);
724 free_unmap_vmap_area(va);
728 /*** Per cpu kva allocator ***/
731 * vmap space is limited especially on 32 bit architectures. Ensure there is
732 * room for at least 16 percpu vmap blocks per CPU.
735 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
736 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess
737 * instead (we just need a rough idea)
739 #if BITS_PER_LONG == 32
740 #define VMALLOC_SPACE (128UL*1024*1024)
741 #else
742 #define VMALLOC_SPACE (128UL*1024*1024*1024)
743 #endif
745 #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE)
746 #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */
747 #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */
748 #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2)
749 #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */
750 #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */
751 #define VMAP_BBMAP_BITS \
752 VMAP_MIN(VMAP_BBMAP_BITS_MAX, \
753 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \
754 VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
756 #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE)
758 static bool vmap_initialized __read_mostly = false;
760 struct vmap_block_queue {
761 spinlock_t lock;
762 struct list_head free;
765 struct vmap_block {
766 spinlock_t lock;
767 struct vmap_area *va;
768 unsigned long free, dirty;
769 unsigned long dirty_min, dirty_max; /*< dirty range */
770 struct list_head free_list;
771 struct rcu_head rcu_head;
772 struct list_head purge;
775 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
776 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
779 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
780 * in the free path. Could get rid of this if we change the API to return a
781 * "cookie" from alloc, to be passed to free. But no big deal yet.
783 static DEFINE_SPINLOCK(vmap_block_tree_lock);
784 static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
787 * We should probably have a fallback mechanism to allocate virtual memory
788 * out of partially filled vmap blocks. However vmap block sizing should be
789 * fairly reasonable according to the vmalloc size, so it shouldn't be a
790 * big problem.
793 static unsigned long addr_to_vb_idx(unsigned long addr)
795 addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
796 addr /= VMAP_BLOCK_SIZE;
797 return addr;
800 static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
802 unsigned long addr;
804 addr = va_start + (pages_off << PAGE_SHIFT);
805 BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
806 return (void *)addr;
810 * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
811 * block. Of course pages number can't exceed VMAP_BBMAP_BITS
812 * @order: how many 2^order pages should be occupied in newly allocated block
813 * @gfp_mask: flags for the page level allocator
815 * Returns: virtual address in a newly allocated block or ERR_PTR(-errno)
817 static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
819 struct vmap_block_queue *vbq;
820 struct vmap_block *vb;
821 struct vmap_area *va;
822 unsigned long vb_idx;
823 int node, err;
824 void *vaddr;
826 node = numa_node_id();
828 vb = kmalloc_node(sizeof(struct vmap_block),
829 gfp_mask & GFP_RECLAIM_MASK, node);
830 if (unlikely(!vb))
831 return ERR_PTR(-ENOMEM);
833 va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
834 VMALLOC_START, VMALLOC_END,
835 node, gfp_mask);
836 if (IS_ERR(va)) {
837 kfree(vb);
838 return ERR_CAST(va);
841 err = radix_tree_preload(gfp_mask);
842 if (unlikely(err)) {
843 kfree(vb);
844 free_vmap_area(va);
845 return ERR_PTR(err);
848 vaddr = vmap_block_vaddr(va->va_start, 0);
849 spin_lock_init(&vb->lock);
850 vb->va = va;
851 /* At least something should be left free */
852 BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
853 vb->free = VMAP_BBMAP_BITS - (1UL << order);
854 vb->dirty = 0;
855 vb->dirty_min = VMAP_BBMAP_BITS;
856 vb->dirty_max = 0;
857 INIT_LIST_HEAD(&vb->free_list);
859 vb_idx = addr_to_vb_idx(va->va_start);
860 spin_lock(&vmap_block_tree_lock);
861 err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
862 spin_unlock(&vmap_block_tree_lock);
863 BUG_ON(err);
864 radix_tree_preload_end();
866 vbq = &get_cpu_var(vmap_block_queue);
867 spin_lock(&vbq->lock);
868 list_add_tail_rcu(&vb->free_list, &vbq->free);
869 spin_unlock(&vbq->lock);
870 put_cpu_var(vmap_block_queue);
872 return vaddr;
875 static void free_vmap_block(struct vmap_block *vb)
877 struct vmap_block *tmp;
878 unsigned long vb_idx;
880 vb_idx = addr_to_vb_idx(vb->va->va_start);
881 spin_lock(&vmap_block_tree_lock);
882 tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
883 spin_unlock(&vmap_block_tree_lock);
884 BUG_ON(tmp != vb);
886 free_vmap_area_noflush(vb->va);
887 kfree_rcu(vb, rcu_head);
890 static void purge_fragmented_blocks(int cpu)
892 LIST_HEAD(purge);
893 struct vmap_block *vb;
894 struct vmap_block *n_vb;
895 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
897 rcu_read_lock();
898 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
900 if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
901 continue;
903 spin_lock(&vb->lock);
904 if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
905 vb->free = 0; /* prevent further allocs after releasing lock */
906 vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
907 vb->dirty_min = 0;
908 vb->dirty_max = VMAP_BBMAP_BITS;
909 spin_lock(&vbq->lock);
910 list_del_rcu(&vb->free_list);
911 spin_unlock(&vbq->lock);
912 spin_unlock(&vb->lock);
913 list_add_tail(&vb->purge, &purge);
914 } else
915 spin_unlock(&vb->lock);
917 rcu_read_unlock();
919 list_for_each_entry_safe(vb, n_vb, &purge, purge) {
920 list_del(&vb->purge);
921 free_vmap_block(vb);
925 static void purge_fragmented_blocks_allcpus(void)
927 int cpu;
929 for_each_possible_cpu(cpu)
930 purge_fragmented_blocks(cpu);
933 static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
935 struct vmap_block_queue *vbq;
936 struct vmap_block *vb;
937 void *vaddr = NULL;
938 unsigned int order;
940 BUG_ON(offset_in_page(size));
941 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
942 if (WARN_ON(size == 0)) {
944 * Allocating 0 bytes isn't what caller wants since
945 * get_order(0) returns funny result. Just warn and terminate
946 * early.
948 return NULL;
950 order = get_order(size);
952 rcu_read_lock();
953 vbq = &get_cpu_var(vmap_block_queue);
954 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
955 unsigned long pages_off;
957 spin_lock(&vb->lock);
958 if (vb->free < (1UL << order)) {
959 spin_unlock(&vb->lock);
960 continue;
963 pages_off = VMAP_BBMAP_BITS - vb->free;
964 vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
965 vb->free -= 1UL << order;
966 if (vb->free == 0) {
967 spin_lock(&vbq->lock);
968 list_del_rcu(&vb->free_list);
969 spin_unlock(&vbq->lock);
972 spin_unlock(&vb->lock);
973 break;
976 put_cpu_var(vmap_block_queue);
977 rcu_read_unlock();
979 /* Allocate new block if nothing was found */
980 if (!vaddr)
981 vaddr = new_vmap_block(order, gfp_mask);
983 return vaddr;
986 static void vb_free(const void *addr, unsigned long size)
988 unsigned long offset;
989 unsigned long vb_idx;
990 unsigned int order;
991 struct vmap_block *vb;
993 BUG_ON(offset_in_page(size));
994 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
996 flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);
998 order = get_order(size);
1000 offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
1001 offset >>= PAGE_SHIFT;
1003 vb_idx = addr_to_vb_idx((unsigned long)addr);
1004 rcu_read_lock();
1005 vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
1006 rcu_read_unlock();
1007 BUG_ON(!vb);
1009 vunmap_page_range((unsigned long)addr, (unsigned long)addr + size);
1011 spin_lock(&vb->lock);
1013 /* Expand dirty range */
1014 vb->dirty_min = min(vb->dirty_min, offset);
1015 vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
1017 vb->dirty += 1UL << order;
1018 if (vb->dirty == VMAP_BBMAP_BITS) {
1019 BUG_ON(vb->free);
1020 spin_unlock(&vb->lock);
1021 free_vmap_block(vb);
1022 } else
1023 spin_unlock(&vb->lock);
1027 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
1029 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
1030 * to amortize TLB flushing overheads. What this means is that any page you
1031 * have now, may, in a former life, have been mapped into kernel virtual
1032 * address by the vmap layer and so there might be some CPUs with TLB entries
1033 * still referencing that page (additional to the regular 1:1 kernel mapping).
1035 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
1036 * be sure that none of the pages we have control over will have any aliases
1037 * from the vmap layer.
1039 void vm_unmap_aliases(void)
1041 unsigned long start = ULONG_MAX, end = 0;
1042 int cpu;
1043 int flush = 0;
1045 if (unlikely(!vmap_initialized))
1046 return;
1048 for_each_possible_cpu(cpu) {
1049 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1050 struct vmap_block *vb;
1052 rcu_read_lock();
1053 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1054 spin_lock(&vb->lock);
1055 if (vb->dirty) {
1056 unsigned long va_start = vb->va->va_start;
1057 unsigned long s, e;
1059 s = va_start + (vb->dirty_min << PAGE_SHIFT);
1060 e = va_start + (vb->dirty_max << PAGE_SHIFT);
1062 start = min(s, start);
1063 end = max(e, end);
1065 flush = 1;
1067 spin_unlock(&vb->lock);
1069 rcu_read_unlock();
1072 __purge_vmap_area_lazy(&start, &end, 1, flush);
1074 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
1077 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
1078 * @mem: the pointer returned by vm_map_ram
1079 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
1081 void vm_unmap_ram(const void *mem, unsigned int count)
1083 unsigned long size = count << PAGE_SHIFT;
1084 unsigned long addr = (unsigned long)mem;
1086 BUG_ON(!addr);
1087 BUG_ON(addr < VMALLOC_START);
1088 BUG_ON(addr > VMALLOC_END);
1089 BUG_ON(!IS_ALIGNED(addr, PAGE_SIZE));
1091 debug_check_no_locks_freed(mem, size);
1092 vmap_debug_free_range(addr, addr+size);
1094 if (likely(count <= VMAP_MAX_ALLOC))
1095 vb_free(mem, size);
1096 else
1097 free_unmap_vmap_area_addr(addr);
1099 EXPORT_SYMBOL(vm_unmap_ram);
1102 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
1103 * @pages: an array of pointers to the pages to be mapped
1104 * @count: number of pages
1105 * @node: prefer to allocate data structures on this node
1106 * @prot: memory protection to use. PAGE_KERNEL for regular RAM
1108 * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
1109 * faster than vmap so it's good. But if you mix long-life and short-life
1110 * objects with vm_map_ram(), it could consume lots of address space through
1111 * fragmentation (especially on a 32bit machine). You could see failures in
1112 * the end. Please use this function for short-lived objects.
1114 * Returns: a pointer to the address that has been mapped, or %NULL on failure
1116 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
1118 unsigned long size = count << PAGE_SHIFT;
1119 unsigned long addr;
1120 void *mem;
1122 if (likely(count <= VMAP_MAX_ALLOC)) {
1123 mem = vb_alloc(size, GFP_KERNEL);
1124 if (IS_ERR(mem))
1125 return NULL;
1126 addr = (unsigned long)mem;
1127 } else {
1128 struct vmap_area *va;
1129 va = alloc_vmap_area(size, PAGE_SIZE,
1130 VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
1131 if (IS_ERR(va))
1132 return NULL;
1134 addr = va->va_start;
1135 mem = (void *)addr;
1137 if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
1138 vm_unmap_ram(mem, count);
1139 return NULL;
1141 return mem;
1143 EXPORT_SYMBOL(vm_map_ram);
1145 static struct vm_struct *vmlist __initdata;
1147 * vm_area_add_early - add vmap area early during boot
1148 * @vm: vm_struct to add
1150 * This function is used to add fixed kernel vm area to vmlist before
1151 * vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags
1152 * should contain proper values and the other fields should be zero.
1154 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1156 void __init vm_area_add_early(struct vm_struct *vm)
1158 struct vm_struct *tmp, **p;
1160 BUG_ON(vmap_initialized);
1161 for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
1162 if (tmp->addr >= vm->addr) {
1163 BUG_ON(tmp->addr < vm->addr + vm->size);
1164 break;
1165 } else
1166 BUG_ON(tmp->addr + tmp->size > vm->addr);
1168 vm->next = *p;
1169 *p = vm;
1173 * vm_area_register_early - register vmap area early during boot
1174 * @vm: vm_struct to register
1175 * @align: requested alignment
1177 * This function is used to register kernel vm area before
1178 * vmalloc_init() is called. @vm->size and @vm->flags should contain
1179 * proper values on entry and other fields should be zero. On return,
1180 * vm->addr contains the allocated address.
1182 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1184 void __init vm_area_register_early(struct vm_struct *vm, size_t align)
1186 static size_t vm_init_off __initdata;
1187 unsigned long addr;
1189 addr = ALIGN(VMALLOC_START + vm_init_off, align);
1190 vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
1192 vm->addr = (void *)addr;
1194 vm_area_add_early(vm);
1197 void __init vmalloc_init(void)
1199 struct vmap_area *va;
1200 struct vm_struct *tmp;
1201 int i;
1203 for_each_possible_cpu(i) {
1204 struct vmap_block_queue *vbq;
1205 struct vfree_deferred *p;
1207 vbq = &per_cpu(vmap_block_queue, i);
1208 spin_lock_init(&vbq->lock);
1209 INIT_LIST_HEAD(&vbq->free);
1210 p = &per_cpu(vfree_deferred, i);
1211 init_llist_head(&p->list);
1212 INIT_WORK(&p->wq, free_work);
1215 /* Import existing vmlist entries. */
1216 for (tmp = vmlist; tmp; tmp = tmp->next) {
1217 va = kzalloc(sizeof(struct vmap_area), GFP_NOWAIT);
1218 va->flags = VM_VM_AREA;
1219 va->va_start = (unsigned long)tmp->addr;
1220 va->va_end = va->va_start + tmp->size;
1221 va->vm = tmp;
1222 __insert_vmap_area(va);
1225 vmap_area_pcpu_hole = VMALLOC_END;
1227 vmap_initialized = true;
1231 * map_kernel_range_noflush - map kernel VM area with the specified pages
1232 * @addr: start of the VM area to map
1233 * @size: size of the VM area to map
1234 * @prot: page protection flags to use
1235 * @pages: pages to map
1237 * Map PFN_UP(@size) pages at @addr. The VM area @addr and @size
1238 * specify should have been allocated using get_vm_area() and its
1239 * friends.
1241 * NOTE:
1242 * This function does NOT do any cache flushing. The caller is
1243 * responsible for calling flush_cache_vmap() on to-be-mapped areas
1244 * before calling this function.
1246 * RETURNS:
1247 * The number of pages mapped on success, -errno on failure.
1249 int map_kernel_range_noflush(unsigned long addr, unsigned long size,
1250 pgprot_t prot, struct page **pages)
1252 return vmap_page_range_noflush(addr, addr + size, prot, pages);
1256 * unmap_kernel_range_noflush - unmap kernel VM area
1257 * @addr: start of the VM area to unmap
1258 * @size: size of the VM area to unmap
1260 * Unmap PFN_UP(@size) pages at @addr. The VM area @addr and @size
1261 * specify should have been allocated using get_vm_area() and its
1262 * friends.
1264 * NOTE:
1265 * This function does NOT do any cache flushing. The caller is
1266 * responsible for calling flush_cache_vunmap() on to-be-mapped areas
1267 * before calling this function and flush_tlb_kernel_range() after.
1269 void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)
1271 vunmap_page_range(addr, addr + size);
1273 EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush);
1276 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
1277 * @addr: start of the VM area to unmap
1278 * @size: size of the VM area to unmap
1280 * Similar to unmap_kernel_range_noflush() but flushes vcache before
1281 * the unmapping and tlb after.
1283 void unmap_kernel_range(unsigned long addr, unsigned long size)
1285 unsigned long end = addr + size;
1287 flush_cache_vunmap(addr, end);
1288 vunmap_page_range(addr, end);
1289 flush_tlb_kernel_range(addr, end);
1291 EXPORT_SYMBOL_GPL(unmap_kernel_range);
1293 int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page **pages)
1295 unsigned long addr = (unsigned long)area->addr;
1296 unsigned long end = addr + get_vm_area_size(area);
1297 int err;
1299 err = vmap_page_range(addr, end, prot, pages);
1301 return err > 0 ? 0 : err;
1303 EXPORT_SYMBOL_GPL(map_vm_area);
1305 static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
1306 unsigned long flags, const void *caller)
1308 spin_lock(&vmap_area_lock);
1309 vm->flags = flags;
1310 vm->addr = (void *)va->va_start;
1311 vm->size = va->va_end - va->va_start;
1312 vm->caller = caller;
1313 va->vm = vm;
1314 va->flags |= VM_VM_AREA;
1315 spin_unlock(&vmap_area_lock);
1318 static void clear_vm_uninitialized_flag(struct vm_struct *vm)
1321 * Before removing VM_UNINITIALIZED,
1322 * we should make sure that vm has proper values.
1323 * Pair with smp_rmb() in show_numa_info().
1325 smp_wmb();
1326 vm->flags &= ~VM_UNINITIALIZED;
1329 static struct vm_struct *__get_vm_area_node(unsigned long size,
1330 unsigned long align, unsigned long flags, unsigned long start,
1331 unsigned long end, int node, gfp_t gfp_mask, const void *caller)
1333 struct vmap_area *va;
1334 struct vm_struct *area;
1336 BUG_ON(in_interrupt());
1337 if (flags & VM_IOREMAP)
1338 align = 1ul << clamp_t(int, fls_long(size),
1339 PAGE_SHIFT, IOREMAP_MAX_ORDER);
1341 size = PAGE_ALIGN(size);
1342 if (unlikely(!size))
1343 return NULL;
1345 area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
1346 if (unlikely(!area))
1347 return NULL;
1349 if (!(flags & VM_NO_GUARD))
1350 size += PAGE_SIZE;
1352 va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
1353 if (IS_ERR(va)) {
1354 kfree(area);
1355 return NULL;
1358 setup_vmalloc_vm(area, va, flags, caller);
1360 return area;
1363 struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
1364 unsigned long start, unsigned long end)
1366 return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
1367 GFP_KERNEL, __builtin_return_address(0));
1369 EXPORT_SYMBOL_GPL(__get_vm_area);
1371 struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
1372 unsigned long start, unsigned long end,
1373 const void *caller)
1375 return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
1376 GFP_KERNEL, caller);
1380 * get_vm_area - reserve a contiguous kernel virtual area
1381 * @size: size of the area
1382 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
1384 * Search an area of @size in the kernel virtual mapping area,
1385 * and reserved it for out purposes. Returns the area descriptor
1386 * on success or %NULL on failure.
1388 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
1390 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
1391 NUMA_NO_NODE, GFP_KERNEL,
1392 __builtin_return_address(0));
1395 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
1396 const void *caller)
1398 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
1399 NUMA_NO_NODE, GFP_KERNEL, caller);
1403 * find_vm_area - find a continuous kernel virtual area
1404 * @addr: base address
1406 * Search for the kernel VM area starting at @addr, and return it.
1407 * It is up to the caller to do all required locking to keep the returned
1408 * pointer valid.
1410 struct vm_struct *find_vm_area(const void *addr)
1412 struct vmap_area *va;
1414 va = find_vmap_area((unsigned long)addr);
1415 if (va && va->flags & VM_VM_AREA)
1416 return va->vm;
1418 return NULL;
1422 * remove_vm_area - find and remove a continuous kernel virtual area
1423 * @addr: base address
1425 * Search for the kernel VM area starting at @addr, and remove it.
1426 * This function returns the found VM area, but using it is NOT safe
1427 * on SMP machines, except for its size or flags.
1429 struct vm_struct *remove_vm_area(const void *addr)
1431 struct vmap_area *va;
1433 va = find_vmap_area((unsigned long)addr);
1434 if (va && va->flags & VM_VM_AREA) {
1435 struct vm_struct *vm = va->vm;
1437 spin_lock(&vmap_area_lock);
1438 va->vm = NULL;
1439 va->flags &= ~VM_VM_AREA;
1440 spin_unlock(&vmap_area_lock);
1442 vmap_debug_free_range(va->va_start, va->va_end);
1443 kasan_free_shadow(vm);
1444 free_unmap_vmap_area(va);
1446 return vm;
1448 return NULL;
1451 static void __vunmap(const void *addr, int deallocate_pages)
1453 struct vm_struct *area;
1455 if (!addr)
1456 return;
1458 if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
1459 addr))
1460 return;
1462 area = remove_vm_area(addr);
1463 if (unlikely(!area)) {
1464 WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
1465 addr);
1466 return;
1469 debug_check_no_locks_freed(addr, get_vm_area_size(area));
1470 debug_check_no_obj_freed(addr, get_vm_area_size(area));
1472 if (deallocate_pages) {
1473 int i;
1475 for (i = 0; i < area->nr_pages; i++) {
1476 struct page *page = area->pages[i];
1478 BUG_ON(!page);
1479 __free_kmem_pages(page, 0);
1482 kvfree(area->pages);
1485 kfree(area);
1486 return;
1490 * vfree - release memory allocated by vmalloc()
1491 * @addr: memory base address
1493 * Free the virtually continuous memory area starting at @addr, as
1494 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
1495 * NULL, no operation is performed.
1497 * Must not be called in NMI context (strictly speaking, only if we don't
1498 * have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
1499 * conventions for vfree() arch-depenedent would be a really bad idea)
1501 * NOTE: assumes that the object at *addr has a size >= sizeof(llist_node)
1503 void vfree(const void *addr)
1505 BUG_ON(in_nmi());
1507 kmemleak_free(addr);
1509 if (!addr)
1510 return;
1511 if (unlikely(in_interrupt())) {
1512 struct vfree_deferred *p = this_cpu_ptr(&vfree_deferred);
1513 if (llist_add((struct llist_node *)addr, &p->list))
1514 schedule_work(&p->wq);
1515 } else
1516 __vunmap(addr, 1);
1518 EXPORT_SYMBOL(vfree);
1521 * vunmap - release virtual mapping obtained by vmap()
1522 * @addr: memory base address
1524 * Free the virtually contiguous memory area starting at @addr,
1525 * which was created from the page array passed to vmap().
1527 * Must not be called in interrupt context.
1529 void vunmap(const void *addr)
1531 BUG_ON(in_interrupt());
1532 might_sleep();
1533 if (addr)
1534 __vunmap(addr, 0);
1536 EXPORT_SYMBOL(vunmap);
1539 * vmap - map an array of pages into virtually contiguous space
1540 * @pages: array of page pointers
1541 * @count: number of pages to map
1542 * @flags: vm_area->flags
1543 * @prot: page protection for the mapping
1545 * Maps @count pages from @pages into contiguous kernel virtual
1546 * space.
1548 void *vmap(struct page **pages, unsigned int count,
1549 unsigned long flags, pgprot_t prot)
1551 struct vm_struct *area;
1553 might_sleep();
1555 if (count > totalram_pages)
1556 return NULL;
1558 area = get_vm_area_caller((count << PAGE_SHIFT), flags,
1559 __builtin_return_address(0));
1560 if (!area)
1561 return NULL;
1563 if (map_vm_area(area, prot, pages)) {
1564 vunmap(area->addr);
1565 return NULL;
1568 return area->addr;
1570 EXPORT_SYMBOL(vmap);
1572 static void *__vmalloc_node(unsigned long size, unsigned long align,
1573 gfp_t gfp_mask, pgprot_t prot,
1574 int node, const void *caller);
1575 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
1576 pgprot_t prot, int node)
1578 const int order = 0;
1579 struct page **pages;
1580 unsigned int nr_pages, array_size, i;
1581 const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
1582 const gfp_t alloc_mask = gfp_mask | __GFP_NOWARN;
1584 nr_pages = get_vm_area_size(area) >> PAGE_SHIFT;
1585 array_size = (nr_pages * sizeof(struct page *));
1587 area->nr_pages = nr_pages;
1588 /* Please note that the recursion is strictly bounded. */
1589 if (array_size > PAGE_SIZE) {
1590 pages = __vmalloc_node(array_size, 1, nested_gfp|__GFP_HIGHMEM,
1591 PAGE_KERNEL, node, area->caller);
1592 } else {
1593 pages = kmalloc_node(array_size, nested_gfp, node);
1595 area->pages = pages;
1596 if (!area->pages) {
1597 remove_vm_area(area->addr);
1598 kfree(area);
1599 return NULL;
1602 for (i = 0; i < area->nr_pages; i++) {
1603 struct page *page;
1605 if (node == NUMA_NO_NODE)
1606 page = alloc_kmem_pages(alloc_mask, order);
1607 else
1608 page = alloc_kmem_pages_node(node, alloc_mask, order);
1610 if (unlikely(!page)) {
1611 /* Successfully allocated i pages, free them in __vunmap() */
1612 area->nr_pages = i;
1613 goto fail;
1615 area->pages[i] = page;
1616 if (gfpflags_allow_blocking(gfp_mask))
1617 cond_resched();
1620 if (map_vm_area(area, prot, pages))
1621 goto fail;
1622 return area->addr;
1624 fail:
1625 warn_alloc_failed(gfp_mask, order,
1626 "vmalloc: allocation failure, allocated %ld of %ld bytes\n",
1627 (area->nr_pages*PAGE_SIZE), area->size);
1628 vfree(area->addr);
1629 return NULL;
1633 * __vmalloc_node_range - allocate virtually contiguous memory
1634 * @size: allocation size
1635 * @align: desired alignment
1636 * @start: vm area range start
1637 * @end: vm area range end
1638 * @gfp_mask: flags for the page level allocator
1639 * @prot: protection mask for the allocated pages
1640 * @vm_flags: additional vm area flags (e.g. %VM_NO_GUARD)
1641 * @node: node to use for allocation or NUMA_NO_NODE
1642 * @caller: caller's return address
1644 * Allocate enough pages to cover @size from the page level
1645 * allocator with @gfp_mask flags. Map them into contiguous
1646 * kernel virtual space, using a pagetable protection of @prot.
1648 void *__vmalloc_node_range(unsigned long size, unsigned long align,
1649 unsigned long start, unsigned long end, gfp_t gfp_mask,
1650 pgprot_t prot, unsigned long vm_flags, int node,
1651 const void *caller)
1653 struct vm_struct *area;
1654 void *addr;
1655 unsigned long real_size = size;
1657 size = PAGE_ALIGN(size);
1658 if (!size || (size >> PAGE_SHIFT) > totalram_pages)
1659 goto fail;
1661 area = __get_vm_area_node(size, align, VM_ALLOC | VM_UNINITIALIZED |
1662 vm_flags, start, end, node, gfp_mask, caller);
1663 if (!area)
1664 goto fail;
1666 addr = __vmalloc_area_node(area, gfp_mask, prot, node);
1667 if (!addr)
1668 return NULL;
1671 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
1672 * flag. It means that vm_struct is not fully initialized.
1673 * Now, it is fully initialized, so remove this flag here.
1675 clear_vm_uninitialized_flag(area);
1678 * A ref_count = 2 is needed because vm_struct allocated in
1679 * __get_vm_area_node() contains a reference to the virtual address of
1680 * the vmalloc'ed block.
1682 kmemleak_alloc(addr, real_size, 2, gfp_mask);
1684 return addr;
1686 fail:
1687 warn_alloc_failed(gfp_mask, 0,
1688 "vmalloc: allocation failure: %lu bytes\n",
1689 real_size);
1690 return NULL;
1694 * __vmalloc_node - allocate virtually contiguous memory
1695 * @size: allocation size
1696 * @align: desired alignment
1697 * @gfp_mask: flags for the page level allocator
1698 * @prot: protection mask for the allocated pages
1699 * @node: node to use for allocation or NUMA_NO_NODE
1700 * @caller: caller's return address
1702 * Allocate enough pages to cover @size from the page level
1703 * allocator with @gfp_mask flags. Map them into contiguous
1704 * kernel virtual space, using a pagetable protection of @prot.
1706 static void *__vmalloc_node(unsigned long size, unsigned long align,
1707 gfp_t gfp_mask, pgprot_t prot,
1708 int node, const void *caller)
1710 return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
1711 gfp_mask, prot, 0, node, caller);
1714 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
1716 return __vmalloc_node(size, 1, gfp_mask, prot, NUMA_NO_NODE,
1717 __builtin_return_address(0));
1719 EXPORT_SYMBOL(__vmalloc);
1721 static inline void *__vmalloc_node_flags(unsigned long size,
1722 int node, gfp_t flags)
1724 return __vmalloc_node(size, 1, flags, PAGE_KERNEL,
1725 node, __builtin_return_address(0));
1729 * vmalloc - allocate virtually contiguous memory
1730 * @size: allocation size
1731 * Allocate enough pages to cover @size from the page level
1732 * allocator and map them into contiguous kernel virtual space.
1734 * For tight control over page level allocator and protection flags
1735 * use __vmalloc() instead.
1737 void *vmalloc(unsigned long size)
1739 return __vmalloc_node_flags(size, NUMA_NO_NODE,
1740 GFP_KERNEL | __GFP_HIGHMEM);
1742 EXPORT_SYMBOL(vmalloc);
1745 * vzalloc - allocate virtually contiguous memory with zero fill
1746 * @size: allocation size
1747 * Allocate enough pages to cover @size from the page level
1748 * allocator and map them into contiguous kernel virtual space.
1749 * The memory allocated is set to zero.
1751 * For tight control over page level allocator and protection flags
1752 * use __vmalloc() instead.
1754 void *vzalloc(unsigned long size)
1756 return __vmalloc_node_flags(size, NUMA_NO_NODE,
1757 GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
1759 EXPORT_SYMBOL(vzalloc);
1762 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
1763 * @size: allocation size
1765 * The resulting memory area is zeroed so it can be mapped to userspace
1766 * without leaking data.
1768 void *vmalloc_user(unsigned long size)
1770 struct vm_struct *area;
1771 void *ret;
1773 ret = __vmalloc_node(size, SHMLBA,
1774 GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
1775 PAGE_KERNEL, NUMA_NO_NODE,
1776 __builtin_return_address(0));
1777 if (ret) {
1778 area = find_vm_area(ret);
1779 area->flags |= VM_USERMAP;
1781 return ret;
1783 EXPORT_SYMBOL(vmalloc_user);
1786 * vmalloc_node - allocate memory on a specific node
1787 * @size: allocation size
1788 * @node: numa node
1790 * Allocate enough pages to cover @size from the page level
1791 * allocator and map them into contiguous kernel virtual space.
1793 * For tight control over page level allocator and protection flags
1794 * use __vmalloc() instead.
1796 void *vmalloc_node(unsigned long size, int node)
1798 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
1799 node, __builtin_return_address(0));
1801 EXPORT_SYMBOL(vmalloc_node);
1804 * vzalloc_node - allocate memory on a specific node with zero fill
1805 * @size: allocation size
1806 * @node: numa node
1808 * Allocate enough pages to cover @size from the page level
1809 * allocator and map them into contiguous kernel virtual space.
1810 * The memory allocated is set to zero.
1812 * For tight control over page level allocator and protection flags
1813 * use __vmalloc_node() instead.
1815 void *vzalloc_node(unsigned long size, int node)
1817 return __vmalloc_node_flags(size, node,
1818 GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
1820 EXPORT_SYMBOL(vzalloc_node);
1822 #ifndef PAGE_KERNEL_EXEC
1823 # define PAGE_KERNEL_EXEC PAGE_KERNEL
1824 #endif
1827 * vmalloc_exec - allocate virtually contiguous, executable memory
1828 * @size: allocation size
1830 * Kernel-internal function to allocate enough pages to cover @size
1831 * the page level allocator and map them into contiguous and
1832 * executable kernel virtual space.
1834 * For tight control over page level allocator and protection flags
1835 * use __vmalloc() instead.
1838 void *vmalloc_exec(unsigned long size)
1840 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC,
1841 NUMA_NO_NODE, __builtin_return_address(0));
1844 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
1845 #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
1846 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
1847 #define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL
1848 #else
1849 #define GFP_VMALLOC32 GFP_KERNEL
1850 #endif
1853 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
1854 * @size: allocation size
1856 * Allocate enough 32bit PA addressable pages to cover @size from the
1857 * page level allocator and map them into contiguous kernel virtual space.
1859 void *vmalloc_32(unsigned long size)
1861 return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL,
1862 NUMA_NO_NODE, __builtin_return_address(0));
1864 EXPORT_SYMBOL(vmalloc_32);
1867 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
1868 * @size: allocation size
1870 * The resulting memory area is 32bit addressable and zeroed so it can be
1871 * mapped to userspace without leaking data.
1873 void *vmalloc_32_user(unsigned long size)
1875 struct vm_struct *area;
1876 void *ret;
1878 ret = __vmalloc_node(size, 1, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
1879 NUMA_NO_NODE, __builtin_return_address(0));
1880 if (ret) {
1881 area = find_vm_area(ret);
1882 area->flags |= VM_USERMAP;
1884 return ret;
1886 EXPORT_SYMBOL(vmalloc_32_user);
1889 * small helper routine , copy contents to buf from addr.
1890 * If the page is not present, fill zero.
1893 static int aligned_vread(char *buf, char *addr, unsigned long count)
1895 struct page *p;
1896 int copied = 0;
1898 while (count) {
1899 unsigned long offset, length;
1901 offset = offset_in_page(addr);
1902 length = PAGE_SIZE - offset;
1903 if (length > count)
1904 length = count;
1905 p = vmalloc_to_page(addr);
1907 * To do safe access to this _mapped_ area, we need
1908 * lock. But adding lock here means that we need to add
1909 * overhead of vmalloc()/vfree() calles for this _debug_
1910 * interface, rarely used. Instead of that, we'll use
1911 * kmap() and get small overhead in this access function.
1913 if (p) {
1915 * we can expect USER0 is not used (see vread/vwrite's
1916 * function description)
1918 void *map = kmap_atomic(p);
1919 memcpy(buf, map + offset, length);
1920 kunmap_atomic(map);
1921 } else
1922 memset(buf, 0, length);
1924 addr += length;
1925 buf += length;
1926 copied += length;
1927 count -= length;
1929 return copied;
1932 static int aligned_vwrite(char *buf, char *addr, unsigned long count)
1934 struct page *p;
1935 int copied = 0;
1937 while (count) {
1938 unsigned long offset, length;
1940 offset = offset_in_page(addr);
1941 length = PAGE_SIZE - offset;
1942 if (length > count)
1943 length = count;
1944 p = vmalloc_to_page(addr);
1946 * To do safe access to this _mapped_ area, we need
1947 * lock. But adding lock here means that we need to add
1948 * overhead of vmalloc()/vfree() calles for this _debug_
1949 * interface, rarely used. Instead of that, we'll use
1950 * kmap() and get small overhead in this access function.
1952 if (p) {
1954 * we can expect USER0 is not used (see vread/vwrite's
1955 * function description)
1957 void *map = kmap_atomic(p);
1958 memcpy(map + offset, buf, length);
1959 kunmap_atomic(map);
1961 addr += length;
1962 buf += length;
1963 copied += length;
1964 count -= length;
1966 return copied;
1970 * vread() - read vmalloc area in a safe way.
1971 * @buf: buffer for reading data
1972 * @addr: vm address.
1973 * @count: number of bytes to be read.
1975 * Returns # of bytes which addr and buf should be increased.
1976 * (same number to @count). Returns 0 if [addr...addr+count) doesn't
1977 * includes any intersect with alive vmalloc area.
1979 * This function checks that addr is a valid vmalloc'ed area, and
1980 * copy data from that area to a given buffer. If the given memory range
1981 * of [addr...addr+count) includes some valid address, data is copied to
1982 * proper area of @buf. If there are memory holes, they'll be zero-filled.
1983 * IOREMAP area is treated as memory hole and no copy is done.
1985 * If [addr...addr+count) doesn't includes any intersects with alive
1986 * vm_struct area, returns 0. @buf should be kernel's buffer.
1988 * Note: In usual ops, vread() is never necessary because the caller
1989 * should know vmalloc() area is valid and can use memcpy().
1990 * This is for routines which have to access vmalloc area without
1991 * any informaion, as /dev/kmem.
1995 long vread(char *buf, char *addr, unsigned long count)
1997 struct vmap_area *va;
1998 struct vm_struct *vm;
1999 char *vaddr, *buf_start = buf;
2000 unsigned long buflen = count;
2001 unsigned long n;
2003 /* Don't allow overflow */
2004 if ((unsigned long) addr + count < count)
2005 count = -(unsigned long) addr;
2007 spin_lock(&vmap_area_lock);
2008 list_for_each_entry(va, &vmap_area_list, list) {
2009 if (!count)
2010 break;
2012 if (!(va->flags & VM_VM_AREA))
2013 continue;
2015 vm = va->vm;
2016 vaddr = (char *) vm->addr;
2017 if (addr >= vaddr + get_vm_area_size(vm))
2018 continue;
2019 while (addr < vaddr) {
2020 if (count == 0)
2021 goto finished;
2022 *buf = '\0';
2023 buf++;
2024 addr++;
2025 count--;
2027 n = vaddr + get_vm_area_size(vm) - addr;
2028 if (n > count)
2029 n = count;
2030 if (!(vm->flags & VM_IOREMAP))
2031 aligned_vread(buf, addr, n);
2032 else /* IOREMAP area is treated as memory hole */
2033 memset(buf, 0, n);
2034 buf += n;
2035 addr += n;
2036 count -= n;
2038 finished:
2039 spin_unlock(&vmap_area_lock);
2041 if (buf == buf_start)
2042 return 0;
2043 /* zero-fill memory holes */
2044 if (buf != buf_start + buflen)
2045 memset(buf, 0, buflen - (buf - buf_start));
2047 return buflen;
2051 * vwrite() - write vmalloc area in a safe way.
2052 * @buf: buffer for source data
2053 * @addr: vm address.
2054 * @count: number of bytes to be read.
2056 * Returns # of bytes which addr and buf should be incresed.
2057 * (same number to @count).
2058 * If [addr...addr+count) doesn't includes any intersect with valid
2059 * vmalloc area, returns 0.
2061 * This function checks that addr is a valid vmalloc'ed area, and
2062 * copy data from a buffer to the given addr. If specified range of
2063 * [addr...addr+count) includes some valid address, data is copied from
2064 * proper area of @buf. If there are memory holes, no copy to hole.
2065 * IOREMAP area is treated as memory hole and no copy is done.
2067 * If [addr...addr+count) doesn't includes any intersects with alive
2068 * vm_struct area, returns 0. @buf should be kernel's buffer.
2070 * Note: In usual ops, vwrite() is never necessary because the caller
2071 * should know vmalloc() area is valid and can use memcpy().
2072 * This is for routines which have to access vmalloc area without
2073 * any informaion, as /dev/kmem.
2076 long vwrite(char *buf, char *addr, unsigned long count)
2078 struct vmap_area *va;
2079 struct vm_struct *vm;
2080 char *vaddr;
2081 unsigned long n, buflen;
2082 int copied = 0;
2084 /* Don't allow overflow */
2085 if ((unsigned long) addr + count < count)
2086 count = -(unsigned long) addr;
2087 buflen = count;
2089 spin_lock(&vmap_area_lock);
2090 list_for_each_entry(va, &vmap_area_list, list) {
2091 if (!count)
2092 break;
2094 if (!(va->flags & VM_VM_AREA))
2095 continue;
2097 vm = va->vm;
2098 vaddr = (char *) vm->addr;
2099 if (addr >= vaddr + get_vm_area_size(vm))
2100 continue;
2101 while (addr < vaddr) {
2102 if (count == 0)
2103 goto finished;
2104 buf++;
2105 addr++;
2106 count--;
2108 n = vaddr + get_vm_area_size(vm) - addr;
2109 if (n > count)
2110 n = count;
2111 if (!(vm->flags & VM_IOREMAP)) {
2112 aligned_vwrite(buf, addr, n);
2113 copied++;
2115 buf += n;
2116 addr += n;
2117 count -= n;
2119 finished:
2120 spin_unlock(&vmap_area_lock);
2121 if (!copied)
2122 return 0;
2123 return buflen;
2127 * remap_vmalloc_range_partial - map vmalloc pages to userspace
2128 * @vma: vma to cover
2129 * @uaddr: target user address to start at
2130 * @kaddr: virtual address of vmalloc kernel memory
2131 * @size: size of map area
2133 * Returns: 0 for success, -Exxx on failure
2135 * This function checks that @kaddr is a valid vmalloc'ed area,
2136 * and that it is big enough to cover the range starting at
2137 * @uaddr in @vma. Will return failure if that criteria isn't
2138 * met.
2140 * Similar to remap_pfn_range() (see mm/memory.c)
2142 int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
2143 void *kaddr, unsigned long size)
2145 struct vm_struct *area;
2147 size = PAGE_ALIGN(size);
2149 if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
2150 return -EINVAL;
2152 area = find_vm_area(kaddr);
2153 if (!area)
2154 return -EINVAL;
2156 if (!(area->flags & VM_USERMAP))
2157 return -EINVAL;
2159 if (kaddr + size > area->addr + area->size)
2160 return -EINVAL;
2162 do {
2163 struct page *page = vmalloc_to_page(kaddr);
2164 int ret;
2166 ret = vm_insert_page(vma, uaddr, page);
2167 if (ret)
2168 return ret;
2170 uaddr += PAGE_SIZE;
2171 kaddr += PAGE_SIZE;
2172 size -= PAGE_SIZE;
2173 } while (size > 0);
2175 vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
2177 return 0;
2179 EXPORT_SYMBOL(remap_vmalloc_range_partial);
2182 * remap_vmalloc_range - map vmalloc pages to userspace
2183 * @vma: vma to cover (map full range of vma)
2184 * @addr: vmalloc memory
2185 * @pgoff: number of pages into addr before first page to map
2187 * Returns: 0 for success, -Exxx on failure
2189 * This function checks that addr is a valid vmalloc'ed area, and
2190 * that it is big enough to cover the vma. Will return failure if
2191 * that criteria isn't met.
2193 * Similar to remap_pfn_range() (see mm/memory.c)
2195 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
2196 unsigned long pgoff)
2198 return remap_vmalloc_range_partial(vma, vma->vm_start,
2199 addr + (pgoff << PAGE_SHIFT),
2200 vma->vm_end - vma->vm_start);
2202 EXPORT_SYMBOL(remap_vmalloc_range);
2205 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
2206 * have one.
2208 void __weak vmalloc_sync_all(void)
2213 static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data)
2215 pte_t ***p = data;
2217 if (p) {
2218 *(*p) = pte;
2219 (*p)++;
2221 return 0;
2225 * alloc_vm_area - allocate a range of kernel address space
2226 * @size: size of the area
2227 * @ptes: returns the PTEs for the address space
2229 * Returns: NULL on failure, vm_struct on success
2231 * This function reserves a range of kernel address space, and
2232 * allocates pagetables to map that range. No actual mappings
2233 * are created.
2235 * If @ptes is non-NULL, pointers to the PTEs (in init_mm)
2236 * allocated for the VM area are returned.
2238 struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
2240 struct vm_struct *area;
2242 area = get_vm_area_caller(size, VM_IOREMAP,
2243 __builtin_return_address(0));
2244 if (area == NULL)
2245 return NULL;
2248 * This ensures that page tables are constructed for this region
2249 * of kernel virtual address space and mapped into init_mm.
2251 if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
2252 size, f, ptes ? &ptes : NULL)) {
2253 free_vm_area(area);
2254 return NULL;
2257 return area;
2259 EXPORT_SYMBOL_GPL(alloc_vm_area);
2261 void free_vm_area(struct vm_struct *area)
2263 struct vm_struct *ret;
2264 ret = remove_vm_area(area->addr);
2265 BUG_ON(ret != area);
2266 kfree(area);
2268 EXPORT_SYMBOL_GPL(free_vm_area);
2270 #ifdef CONFIG_SMP
2271 static struct vmap_area *node_to_va(struct rb_node *n)
2273 return n ? rb_entry(n, struct vmap_area, rb_node) : NULL;
2277 * pvm_find_next_prev - find the next and prev vmap_area surrounding @end
2278 * @end: target address
2279 * @pnext: out arg for the next vmap_area
2280 * @pprev: out arg for the previous vmap_area
2282 * Returns: %true if either or both of next and prev are found,
2283 * %false if no vmap_area exists
2285 * Find vmap_areas end addresses of which enclose @end. ie. if not
2286 * NULL, *pnext->va_end > @end and *pprev->va_end <= @end.
2288 static bool pvm_find_next_prev(unsigned long end,
2289 struct vmap_area **pnext,
2290 struct vmap_area **pprev)
2292 struct rb_node *n = vmap_area_root.rb_node;
2293 struct vmap_area *va = NULL;
2295 while (n) {
2296 va = rb_entry(n, struct vmap_area, rb_node);
2297 if (end < va->va_end)
2298 n = n->rb_left;
2299 else if (end > va->va_end)
2300 n = n->rb_right;
2301 else
2302 break;
2305 if (!va)
2306 return false;
2308 if (va->va_end > end) {
2309 *pnext = va;
2310 *pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2311 } else {
2312 *pprev = va;
2313 *pnext = node_to_va(rb_next(&(*pprev)->rb_node));
2315 return true;
2319 * pvm_determine_end - find the highest aligned address between two vmap_areas
2320 * @pnext: in/out arg for the next vmap_area
2321 * @pprev: in/out arg for the previous vmap_area
2322 * @align: alignment
2324 * Returns: determined end address
2326 * Find the highest aligned address between *@pnext and *@pprev below
2327 * VMALLOC_END. *@pnext and *@pprev are adjusted so that the aligned
2328 * down address is between the end addresses of the two vmap_areas.
2330 * Please note that the address returned by this function may fall
2331 * inside *@pnext vmap_area. The caller is responsible for checking
2332 * that.
2334 static unsigned long pvm_determine_end(struct vmap_area **pnext,
2335 struct vmap_area **pprev,
2336 unsigned long align)
2338 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2339 unsigned long addr;
2341 if (*pnext)
2342 addr = min((*pnext)->va_start & ~(align - 1), vmalloc_end);
2343 else
2344 addr = vmalloc_end;
2346 while (*pprev && (*pprev)->va_end > addr) {
2347 *pnext = *pprev;
2348 *pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2351 return addr;
2355 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
2356 * @offsets: array containing offset of each area
2357 * @sizes: array containing size of each area
2358 * @nr_vms: the number of areas to allocate
2359 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
2361 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
2362 * vm_structs on success, %NULL on failure
2364 * Percpu allocator wants to use congruent vm areas so that it can
2365 * maintain the offsets among percpu areas. This function allocates
2366 * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to
2367 * be scattered pretty far, distance between two areas easily going up
2368 * to gigabytes. To avoid interacting with regular vmallocs, these
2369 * areas are allocated from top.
2371 * Despite its complicated look, this allocator is rather simple. It
2372 * does everything top-down and scans areas from the end looking for
2373 * matching slot. While scanning, if any of the areas overlaps with
2374 * existing vmap_area, the base address is pulled down to fit the
2375 * area. Scanning is repeated till all the areas fit and then all
2376 * necessary data structres are inserted and the result is returned.
2378 struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
2379 const size_t *sizes, int nr_vms,
2380 size_t align)
2382 const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
2383 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2384 struct vmap_area **vas, *prev, *next;
2385 struct vm_struct **vms;
2386 int area, area2, last_area, term_area;
2387 unsigned long base, start, end, last_end;
2388 bool purged = false;
2390 /* verify parameters and allocate data structures */
2391 BUG_ON(offset_in_page(align) || !is_power_of_2(align));
2392 for (last_area = 0, area = 0; area < nr_vms; area++) {
2393 start = offsets[area];
2394 end = start + sizes[area];
2396 /* is everything aligned properly? */
2397 BUG_ON(!IS_ALIGNED(offsets[area], align));
2398 BUG_ON(!IS_ALIGNED(sizes[area], align));
2400 /* detect the area with the highest address */
2401 if (start > offsets[last_area])
2402 last_area = area;
2404 for (area2 = 0; area2 < nr_vms; area2++) {
2405 unsigned long start2 = offsets[area2];
2406 unsigned long end2 = start2 + sizes[area2];
2408 if (area2 == area)
2409 continue;
2411 BUG_ON(start2 >= start && start2 < end);
2412 BUG_ON(end2 <= end && end2 > start);
2415 last_end = offsets[last_area] + sizes[last_area];
2417 if (vmalloc_end - vmalloc_start < last_end) {
2418 WARN_ON(true);
2419 return NULL;
2422 vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
2423 vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
2424 if (!vas || !vms)
2425 goto err_free2;
2427 for (area = 0; area < nr_vms; area++) {
2428 vas[area] = kzalloc(sizeof(struct vmap_area), GFP_KERNEL);
2429 vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
2430 if (!vas[area] || !vms[area])
2431 goto err_free;
2433 retry:
2434 spin_lock(&vmap_area_lock);
2436 /* start scanning - we scan from the top, begin with the last area */
2437 area = term_area = last_area;
2438 start = offsets[area];
2439 end = start + sizes[area];
2441 if (!pvm_find_next_prev(vmap_area_pcpu_hole, &next, &prev)) {
2442 base = vmalloc_end - last_end;
2443 goto found;
2445 base = pvm_determine_end(&next, &prev, align) - end;
2447 while (true) {
2448 BUG_ON(next && next->va_end <= base + end);
2449 BUG_ON(prev && prev->va_end > base + end);
2452 * base might have underflowed, add last_end before
2453 * comparing.
2455 if (base + last_end < vmalloc_start + last_end) {
2456 spin_unlock(&vmap_area_lock);
2457 if (!purged) {
2458 purge_vmap_area_lazy();
2459 purged = true;
2460 goto retry;
2462 goto err_free;
2466 * If next overlaps, move base downwards so that it's
2467 * right below next and then recheck.
2469 if (next && next->va_start < base + end) {
2470 base = pvm_determine_end(&next, &prev, align) - end;
2471 term_area = area;
2472 continue;
2476 * If prev overlaps, shift down next and prev and move
2477 * base so that it's right below new next and then
2478 * recheck.
2480 if (prev && prev->va_end > base + start) {
2481 next = prev;
2482 prev = node_to_va(rb_prev(&next->rb_node));
2483 base = pvm_determine_end(&next, &prev, align) - end;
2484 term_area = area;
2485 continue;
2489 * This area fits, move on to the previous one. If
2490 * the previous one is the terminal one, we're done.
2492 area = (area + nr_vms - 1) % nr_vms;
2493 if (area == term_area)
2494 break;
2495 start = offsets[area];
2496 end = start + sizes[area];
2497 pvm_find_next_prev(base + end, &next, &prev);
2499 found:
2500 /* we've found a fitting base, insert all va's */
2501 for (area = 0; area < nr_vms; area++) {
2502 struct vmap_area *va = vas[area];
2504 va->va_start = base + offsets[area];
2505 va->va_end = va->va_start + sizes[area];
2506 __insert_vmap_area(va);
2509 vmap_area_pcpu_hole = base + offsets[last_area];
2511 spin_unlock(&vmap_area_lock);
2513 /* insert all vm's */
2514 for (area = 0; area < nr_vms; area++)
2515 setup_vmalloc_vm(vms[area], vas[area], VM_ALLOC,
2516 pcpu_get_vm_areas);
2518 kfree(vas);
2519 return vms;
2521 err_free:
2522 for (area = 0; area < nr_vms; area++) {
2523 kfree(vas[area]);
2524 kfree(vms[area]);
2526 err_free2:
2527 kfree(vas);
2528 kfree(vms);
2529 return NULL;
2533 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
2534 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
2535 * @nr_vms: the number of allocated areas
2537 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
2539 void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
2541 int i;
2543 for (i = 0; i < nr_vms; i++)
2544 free_vm_area(vms[i]);
2545 kfree(vms);
2547 #endif /* CONFIG_SMP */
2549 #ifdef CONFIG_PROC_FS
2550 static void *s_start(struct seq_file *m, loff_t *pos)
2551 __acquires(&vmap_area_lock)
2553 loff_t n = *pos;
2554 struct vmap_area *va;
2556 spin_lock(&vmap_area_lock);
2557 va = list_first_entry(&vmap_area_list, typeof(*va), list);
2558 while (n > 0 && &va->list != &vmap_area_list) {
2559 n--;
2560 va = list_next_entry(va, list);
2562 if (!n && &va->list != &vmap_area_list)
2563 return va;
2565 return NULL;
2569 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
2571 struct vmap_area *va = p, *next;
2573 ++*pos;
2574 next = list_next_entry(va, list);
2575 if (&next->list != &vmap_area_list)
2576 return next;
2578 return NULL;
2581 static void s_stop(struct seq_file *m, void *p)
2582 __releases(&vmap_area_lock)
2584 spin_unlock(&vmap_area_lock);
2587 static void show_numa_info(struct seq_file *m, struct vm_struct *v)
2589 if (IS_ENABLED(CONFIG_NUMA)) {
2590 unsigned int nr, *counters = m->private;
2592 if (!counters)
2593 return;
2595 if (v->flags & VM_UNINITIALIZED)
2596 return;
2597 /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
2598 smp_rmb();
2600 memset(counters, 0, nr_node_ids * sizeof(unsigned int));
2602 for (nr = 0; nr < v->nr_pages; nr++)
2603 counters[page_to_nid(v->pages[nr])]++;
2605 for_each_node_state(nr, N_HIGH_MEMORY)
2606 if (counters[nr])
2607 seq_printf(m, " N%u=%u", nr, counters[nr]);
2611 static int s_show(struct seq_file *m, void *p)
2613 struct vmap_area *va = p;
2614 struct vm_struct *v;
2617 * s_show can encounter race with remove_vm_area, !VM_VM_AREA on
2618 * behalf of vmap area is being tear down or vm_map_ram allocation.
2620 if (!(va->flags & VM_VM_AREA))
2621 return 0;
2623 v = va->vm;
2625 seq_printf(m, "0x%pK-0x%pK %7ld",
2626 v->addr, v->addr + v->size, v->size);
2628 if (v->caller)
2629 seq_printf(m, " %pS", v->caller);
2631 if (v->nr_pages)
2632 seq_printf(m, " pages=%d", v->nr_pages);
2634 if (v->phys_addr)
2635 seq_printf(m, " phys=%llx", (unsigned long long)v->phys_addr);
2637 if (v->flags & VM_IOREMAP)
2638 seq_puts(m, " ioremap");
2640 if (v->flags & VM_ALLOC)
2641 seq_puts(m, " vmalloc");
2643 if (v->flags & VM_MAP)
2644 seq_puts(m, " vmap");
2646 if (v->flags & VM_USERMAP)
2647 seq_puts(m, " user");
2649 if (is_vmalloc_addr(v->pages))
2650 seq_puts(m, " vpages");
2652 show_numa_info(m, v);
2653 seq_putc(m, '\n');
2654 return 0;
2657 static const struct seq_operations vmalloc_op = {
2658 .start = s_start,
2659 .next = s_next,
2660 .stop = s_stop,
2661 .show = s_show,
2664 static int vmalloc_open(struct inode *inode, struct file *file)
2666 if (IS_ENABLED(CONFIG_NUMA))
2667 return seq_open_private(file, &vmalloc_op,
2668 nr_node_ids * sizeof(unsigned int));
2669 else
2670 return seq_open(file, &vmalloc_op);
2673 static const struct file_operations proc_vmalloc_operations = {
2674 .open = vmalloc_open,
2675 .read = seq_read,
2676 .llseek = seq_lseek,
2677 .release = seq_release_private,
2680 static int __init proc_vmalloc_init(void)
2682 proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations);
2683 return 0;
2685 module_init(proc_vmalloc_init);
2687 #endif