locking/csd_lock: Use smp_cond_acquire() in csd_lock_wait()
[linux-stable.git] / mm / memory.c
blob8132787ae4d509d475ed6a77705076ddfee30630
1 /*
2 * linux/mm/memory.c
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
7 /*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/ksm.h>
49 #include <linux/rmap.h>
50 #include <linux/export.h>
51 #include <linux/delayacct.h>
52 #include <linux/init.h>
53 #include <linux/pfn_t.h>
54 #include <linux/writeback.h>
55 #include <linux/memcontrol.h>
56 #include <linux/mmu_notifier.h>
57 #include <linux/kallsyms.h>
58 #include <linux/swapops.h>
59 #include <linux/elf.h>
60 #include <linux/gfp.h>
61 #include <linux/migrate.h>
62 #include <linux/string.h>
63 #include <linux/dma-debug.h>
64 #include <linux/debugfs.h>
65 #include <linux/userfaultfd_k.h>
67 #include <asm/io.h>
68 #include <asm/pgalloc.h>
69 #include <asm/uaccess.h>
70 #include <asm/tlb.h>
71 #include <asm/tlbflush.h>
72 #include <asm/pgtable.h>
74 #include "internal.h"
76 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
77 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
78 #endif
80 #ifndef CONFIG_NEED_MULTIPLE_NODES
81 /* use the per-pgdat data instead for discontigmem - mbligh */
82 unsigned long max_mapnr;
83 struct page *mem_map;
85 EXPORT_SYMBOL(max_mapnr);
86 EXPORT_SYMBOL(mem_map);
87 #endif
90 * A number of key systems in x86 including ioremap() rely on the assumption
91 * that high_memory defines the upper bound on direct map memory, then end
92 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
93 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
94 * and ZONE_HIGHMEM.
96 void * high_memory;
98 EXPORT_SYMBOL(high_memory);
101 * Randomize the address space (stacks, mmaps, brk, etc.).
103 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
104 * as ancient (libc5 based) binaries can segfault. )
106 int randomize_va_space __read_mostly =
107 #ifdef CONFIG_COMPAT_BRK
109 #else
111 #endif
113 static int __init disable_randmaps(char *s)
115 randomize_va_space = 0;
116 return 1;
118 __setup("norandmaps", disable_randmaps);
120 unsigned long zero_pfn __read_mostly;
121 unsigned long highest_memmap_pfn __read_mostly;
123 EXPORT_SYMBOL(zero_pfn);
126 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
128 static int __init init_zero_pfn(void)
130 zero_pfn = page_to_pfn(ZERO_PAGE(0));
131 return 0;
133 core_initcall(init_zero_pfn);
136 #if defined(SPLIT_RSS_COUNTING)
138 void sync_mm_rss(struct mm_struct *mm)
140 int i;
142 for (i = 0; i < NR_MM_COUNTERS; i++) {
143 if (current->rss_stat.count[i]) {
144 add_mm_counter(mm, i, current->rss_stat.count[i]);
145 current->rss_stat.count[i] = 0;
148 current->rss_stat.events = 0;
151 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
153 struct task_struct *task = current;
155 if (likely(task->mm == mm))
156 task->rss_stat.count[member] += val;
157 else
158 add_mm_counter(mm, member, val);
160 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
161 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
163 /* sync counter once per 64 page faults */
164 #define TASK_RSS_EVENTS_THRESH (64)
165 static void check_sync_rss_stat(struct task_struct *task)
167 if (unlikely(task != current))
168 return;
169 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
170 sync_mm_rss(task->mm);
172 #else /* SPLIT_RSS_COUNTING */
174 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
175 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
177 static void check_sync_rss_stat(struct task_struct *task)
181 #endif /* SPLIT_RSS_COUNTING */
183 #ifdef HAVE_GENERIC_MMU_GATHER
185 static bool tlb_next_batch(struct mmu_gather *tlb)
187 struct mmu_gather_batch *batch;
189 batch = tlb->active;
190 if (batch->next) {
191 tlb->active = batch->next;
192 return true;
195 if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
196 return false;
198 batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
199 if (!batch)
200 return false;
202 tlb->batch_count++;
203 batch->next = NULL;
204 batch->nr = 0;
205 batch->max = MAX_GATHER_BATCH;
207 tlb->active->next = batch;
208 tlb->active = batch;
210 return true;
213 /* tlb_gather_mmu
214 * Called to initialize an (on-stack) mmu_gather structure for page-table
215 * tear-down from @mm. The @fullmm argument is used when @mm is without
216 * users and we're going to destroy the full address space (exit/execve).
218 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, unsigned long start, unsigned long end)
220 tlb->mm = mm;
222 /* Is it from 0 to ~0? */
223 tlb->fullmm = !(start | (end+1));
224 tlb->need_flush_all = 0;
225 tlb->local.next = NULL;
226 tlb->local.nr = 0;
227 tlb->local.max = ARRAY_SIZE(tlb->__pages);
228 tlb->active = &tlb->local;
229 tlb->batch_count = 0;
231 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
232 tlb->batch = NULL;
233 #endif
235 __tlb_reset_range(tlb);
238 static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
240 if (!tlb->end)
241 return;
243 tlb_flush(tlb);
244 mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end);
245 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
246 tlb_table_flush(tlb);
247 #endif
248 __tlb_reset_range(tlb);
251 static void tlb_flush_mmu_free(struct mmu_gather *tlb)
253 struct mmu_gather_batch *batch;
255 for (batch = &tlb->local; batch && batch->nr; batch = batch->next) {
256 free_pages_and_swap_cache(batch->pages, batch->nr);
257 batch->nr = 0;
259 tlb->active = &tlb->local;
262 void tlb_flush_mmu(struct mmu_gather *tlb)
264 tlb_flush_mmu_tlbonly(tlb);
265 tlb_flush_mmu_free(tlb);
268 /* tlb_finish_mmu
269 * Called at the end of the shootdown operation to free up any resources
270 * that were required.
272 void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
274 struct mmu_gather_batch *batch, *next;
276 tlb_flush_mmu(tlb);
278 /* keep the page table cache within bounds */
279 check_pgt_cache();
281 for (batch = tlb->local.next; batch; batch = next) {
282 next = batch->next;
283 free_pages((unsigned long)batch, 0);
285 tlb->local.next = NULL;
288 /* __tlb_remove_page
289 * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
290 * handling the additional races in SMP caused by other CPUs caching valid
291 * mappings in their TLBs. Returns the number of free page slots left.
292 * When out of page slots we must call tlb_flush_mmu().
294 int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
296 struct mmu_gather_batch *batch;
298 VM_BUG_ON(!tlb->end);
300 batch = tlb->active;
301 batch->pages[batch->nr++] = page;
302 if (batch->nr == batch->max) {
303 if (!tlb_next_batch(tlb))
304 return 0;
305 batch = tlb->active;
307 VM_BUG_ON_PAGE(batch->nr > batch->max, page);
309 return batch->max - batch->nr;
312 #endif /* HAVE_GENERIC_MMU_GATHER */
314 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
317 * See the comment near struct mmu_table_batch.
320 static void tlb_remove_table_smp_sync(void *arg)
322 /* Simply deliver the interrupt */
325 static void tlb_remove_table_one(void *table)
328 * This isn't an RCU grace period and hence the page-tables cannot be
329 * assumed to be actually RCU-freed.
331 * It is however sufficient for software page-table walkers that rely on
332 * IRQ disabling. See the comment near struct mmu_table_batch.
334 smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
335 __tlb_remove_table(table);
338 static void tlb_remove_table_rcu(struct rcu_head *head)
340 struct mmu_table_batch *batch;
341 int i;
343 batch = container_of(head, struct mmu_table_batch, rcu);
345 for (i = 0; i < batch->nr; i++)
346 __tlb_remove_table(batch->tables[i]);
348 free_page((unsigned long)batch);
351 void tlb_table_flush(struct mmu_gather *tlb)
353 struct mmu_table_batch **batch = &tlb->batch;
355 if (*batch) {
356 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
357 *batch = NULL;
361 void tlb_remove_table(struct mmu_gather *tlb, void *table)
363 struct mmu_table_batch **batch = &tlb->batch;
366 * When there's less then two users of this mm there cannot be a
367 * concurrent page-table walk.
369 if (atomic_read(&tlb->mm->mm_users) < 2) {
370 __tlb_remove_table(table);
371 return;
374 if (*batch == NULL) {
375 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
376 if (*batch == NULL) {
377 tlb_remove_table_one(table);
378 return;
380 (*batch)->nr = 0;
382 (*batch)->tables[(*batch)->nr++] = table;
383 if ((*batch)->nr == MAX_TABLE_BATCH)
384 tlb_table_flush(tlb);
387 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
390 * Note: this doesn't free the actual pages themselves. That
391 * has been handled earlier when unmapping all the memory regions.
393 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
394 unsigned long addr)
396 pgtable_t token = pmd_pgtable(*pmd);
397 pmd_clear(pmd);
398 pte_free_tlb(tlb, token, addr);
399 atomic_long_dec(&tlb->mm->nr_ptes);
402 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
403 unsigned long addr, unsigned long end,
404 unsigned long floor, unsigned long ceiling)
406 pmd_t *pmd;
407 unsigned long next;
408 unsigned long start;
410 start = addr;
411 pmd = pmd_offset(pud, addr);
412 do {
413 next = pmd_addr_end(addr, end);
414 if (pmd_none_or_clear_bad(pmd))
415 continue;
416 free_pte_range(tlb, pmd, addr);
417 } while (pmd++, addr = next, addr != end);
419 start &= PUD_MASK;
420 if (start < floor)
421 return;
422 if (ceiling) {
423 ceiling &= PUD_MASK;
424 if (!ceiling)
425 return;
427 if (end - 1 > ceiling - 1)
428 return;
430 pmd = pmd_offset(pud, start);
431 pud_clear(pud);
432 pmd_free_tlb(tlb, pmd, start);
433 mm_dec_nr_pmds(tlb->mm);
436 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
437 unsigned long addr, unsigned long end,
438 unsigned long floor, unsigned long ceiling)
440 pud_t *pud;
441 unsigned long next;
442 unsigned long start;
444 start = addr;
445 pud = pud_offset(pgd, addr);
446 do {
447 next = pud_addr_end(addr, end);
448 if (pud_none_or_clear_bad(pud))
449 continue;
450 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
451 } while (pud++, addr = next, addr != end);
453 start &= PGDIR_MASK;
454 if (start < floor)
455 return;
456 if (ceiling) {
457 ceiling &= PGDIR_MASK;
458 if (!ceiling)
459 return;
461 if (end - 1 > ceiling - 1)
462 return;
464 pud = pud_offset(pgd, start);
465 pgd_clear(pgd);
466 pud_free_tlb(tlb, pud, start);
470 * This function frees user-level page tables of a process.
472 void free_pgd_range(struct mmu_gather *tlb,
473 unsigned long addr, unsigned long end,
474 unsigned long floor, unsigned long ceiling)
476 pgd_t *pgd;
477 unsigned long next;
480 * The next few lines have given us lots of grief...
482 * Why are we testing PMD* at this top level? Because often
483 * there will be no work to do at all, and we'd prefer not to
484 * go all the way down to the bottom just to discover that.
486 * Why all these "- 1"s? Because 0 represents both the bottom
487 * of the address space and the top of it (using -1 for the
488 * top wouldn't help much: the masks would do the wrong thing).
489 * The rule is that addr 0 and floor 0 refer to the bottom of
490 * the address space, but end 0 and ceiling 0 refer to the top
491 * Comparisons need to use "end - 1" and "ceiling - 1" (though
492 * that end 0 case should be mythical).
494 * Wherever addr is brought up or ceiling brought down, we must
495 * be careful to reject "the opposite 0" before it confuses the
496 * subsequent tests. But what about where end is brought down
497 * by PMD_SIZE below? no, end can't go down to 0 there.
499 * Whereas we round start (addr) and ceiling down, by different
500 * masks at different levels, in order to test whether a table
501 * now has no other vmas using it, so can be freed, we don't
502 * bother to round floor or end up - the tests don't need that.
505 addr &= PMD_MASK;
506 if (addr < floor) {
507 addr += PMD_SIZE;
508 if (!addr)
509 return;
511 if (ceiling) {
512 ceiling &= PMD_MASK;
513 if (!ceiling)
514 return;
516 if (end - 1 > ceiling - 1)
517 end -= PMD_SIZE;
518 if (addr > end - 1)
519 return;
521 pgd = pgd_offset(tlb->mm, addr);
522 do {
523 next = pgd_addr_end(addr, end);
524 if (pgd_none_or_clear_bad(pgd))
525 continue;
526 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
527 } while (pgd++, addr = next, addr != end);
530 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
531 unsigned long floor, unsigned long ceiling)
533 while (vma) {
534 struct vm_area_struct *next = vma->vm_next;
535 unsigned long addr = vma->vm_start;
538 * Hide vma from rmap and truncate_pagecache before freeing
539 * pgtables
541 unlink_anon_vmas(vma);
542 unlink_file_vma(vma);
544 if (is_vm_hugetlb_page(vma)) {
545 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
546 floor, next? next->vm_start: ceiling);
547 } else {
549 * Optimization: gather nearby vmas into one call down
551 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
552 && !is_vm_hugetlb_page(next)) {
553 vma = next;
554 next = vma->vm_next;
555 unlink_anon_vmas(vma);
556 unlink_file_vma(vma);
558 free_pgd_range(tlb, addr, vma->vm_end,
559 floor, next? next->vm_start: ceiling);
561 vma = next;
565 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
566 pmd_t *pmd, unsigned long address)
568 spinlock_t *ptl;
569 pgtable_t new = pte_alloc_one(mm, address);
570 if (!new)
571 return -ENOMEM;
574 * Ensure all pte setup (eg. pte page lock and page clearing) are
575 * visible before the pte is made visible to other CPUs by being
576 * put into page tables.
578 * The other side of the story is the pointer chasing in the page
579 * table walking code (when walking the page table without locking;
580 * ie. most of the time). Fortunately, these data accesses consist
581 * of a chain of data-dependent loads, meaning most CPUs (alpha
582 * being the notable exception) will already guarantee loads are
583 * seen in-order. See the alpha page table accessors for the
584 * smp_read_barrier_depends() barriers in page table walking code.
586 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
588 ptl = pmd_lock(mm, pmd);
589 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
590 atomic_long_inc(&mm->nr_ptes);
591 pmd_populate(mm, pmd, new);
592 new = NULL;
594 spin_unlock(ptl);
595 if (new)
596 pte_free(mm, new);
597 return 0;
600 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
602 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
603 if (!new)
604 return -ENOMEM;
606 smp_wmb(); /* See comment in __pte_alloc */
608 spin_lock(&init_mm.page_table_lock);
609 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
610 pmd_populate_kernel(&init_mm, pmd, new);
611 new = NULL;
613 spin_unlock(&init_mm.page_table_lock);
614 if (new)
615 pte_free_kernel(&init_mm, new);
616 return 0;
619 static inline void init_rss_vec(int *rss)
621 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
624 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
626 int i;
628 if (current->mm == mm)
629 sync_mm_rss(mm);
630 for (i = 0; i < NR_MM_COUNTERS; i++)
631 if (rss[i])
632 add_mm_counter(mm, i, rss[i]);
636 * This function is called to print an error when a bad pte
637 * is found. For example, we might have a PFN-mapped pte in
638 * a region that doesn't allow it.
640 * The calling function must still handle the error.
642 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
643 pte_t pte, struct page *page)
645 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
646 pud_t *pud = pud_offset(pgd, addr);
647 pmd_t *pmd = pmd_offset(pud, addr);
648 struct address_space *mapping;
649 pgoff_t index;
650 static unsigned long resume;
651 static unsigned long nr_shown;
652 static unsigned long nr_unshown;
655 * Allow a burst of 60 reports, then keep quiet for that minute;
656 * or allow a steady drip of one report per second.
658 if (nr_shown == 60) {
659 if (time_before(jiffies, resume)) {
660 nr_unshown++;
661 return;
663 if (nr_unshown) {
664 printk(KERN_ALERT
665 "BUG: Bad page map: %lu messages suppressed\n",
666 nr_unshown);
667 nr_unshown = 0;
669 nr_shown = 0;
671 if (nr_shown++ == 0)
672 resume = jiffies + 60 * HZ;
674 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
675 index = linear_page_index(vma, addr);
677 printk(KERN_ALERT
678 "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
679 current->comm,
680 (long long)pte_val(pte), (long long)pmd_val(*pmd));
681 if (page)
682 dump_page(page, "bad pte");
683 printk(KERN_ALERT
684 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
685 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
687 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
689 pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n",
690 vma->vm_file,
691 vma->vm_ops ? vma->vm_ops->fault : NULL,
692 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
693 mapping ? mapping->a_ops->readpage : NULL);
694 dump_stack();
695 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
699 * vm_normal_page -- This function gets the "struct page" associated with a pte.
701 * "Special" mappings do not wish to be associated with a "struct page" (either
702 * it doesn't exist, or it exists but they don't want to touch it). In this
703 * case, NULL is returned here. "Normal" mappings do have a struct page.
705 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
706 * pte bit, in which case this function is trivial. Secondly, an architecture
707 * may not have a spare pte bit, which requires a more complicated scheme,
708 * described below.
710 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
711 * special mapping (even if there are underlying and valid "struct pages").
712 * COWed pages of a VM_PFNMAP are always normal.
714 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
715 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
716 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
717 * mapping will always honor the rule
719 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
721 * And for normal mappings this is false.
723 * This restricts such mappings to be a linear translation from virtual address
724 * to pfn. To get around this restriction, we allow arbitrary mappings so long
725 * as the vma is not a COW mapping; in that case, we know that all ptes are
726 * special (because none can have been COWed).
729 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
731 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
732 * page" backing, however the difference is that _all_ pages with a struct
733 * page (that is, those where pfn_valid is true) are refcounted and considered
734 * normal pages by the VM. The disadvantage is that pages are refcounted
735 * (which can be slower and simply not an option for some PFNMAP users). The
736 * advantage is that we don't have to follow the strict linearity rule of
737 * PFNMAP mappings in order to support COWable mappings.
740 #ifdef __HAVE_ARCH_PTE_SPECIAL
741 # define HAVE_PTE_SPECIAL 1
742 #else
743 # define HAVE_PTE_SPECIAL 0
744 #endif
745 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
746 pte_t pte)
748 unsigned long pfn = pte_pfn(pte);
750 if (HAVE_PTE_SPECIAL) {
751 if (likely(!pte_special(pte)))
752 goto check_pfn;
753 if (vma->vm_ops && vma->vm_ops->find_special_page)
754 return vma->vm_ops->find_special_page(vma, addr);
755 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
756 return NULL;
757 if (!is_zero_pfn(pfn))
758 print_bad_pte(vma, addr, pte, NULL);
759 return NULL;
762 /* !HAVE_PTE_SPECIAL case follows: */
764 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
765 if (vma->vm_flags & VM_MIXEDMAP) {
766 if (!pfn_valid(pfn))
767 return NULL;
768 goto out;
769 } else {
770 unsigned long off;
771 off = (addr - vma->vm_start) >> PAGE_SHIFT;
772 if (pfn == vma->vm_pgoff + off)
773 return NULL;
774 if (!is_cow_mapping(vma->vm_flags))
775 return NULL;
779 if (is_zero_pfn(pfn))
780 return NULL;
781 check_pfn:
782 if (unlikely(pfn > highest_memmap_pfn)) {
783 print_bad_pte(vma, addr, pte, NULL);
784 return NULL;
788 * NOTE! We still have PageReserved() pages in the page tables.
789 * eg. VDSO mappings can cause them to exist.
791 out:
792 return pfn_to_page(pfn);
796 * copy one vm_area from one task to the other. Assumes the page tables
797 * already present in the new task to be cleared in the whole range
798 * covered by this vma.
801 static inline unsigned long
802 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
803 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
804 unsigned long addr, int *rss)
806 unsigned long vm_flags = vma->vm_flags;
807 pte_t pte = *src_pte;
808 struct page *page;
810 /* pte contains position in swap or file, so copy. */
811 if (unlikely(!pte_present(pte))) {
812 swp_entry_t entry = pte_to_swp_entry(pte);
814 if (likely(!non_swap_entry(entry))) {
815 if (swap_duplicate(entry) < 0)
816 return entry.val;
818 /* make sure dst_mm is on swapoff's mmlist. */
819 if (unlikely(list_empty(&dst_mm->mmlist))) {
820 spin_lock(&mmlist_lock);
821 if (list_empty(&dst_mm->mmlist))
822 list_add(&dst_mm->mmlist,
823 &src_mm->mmlist);
824 spin_unlock(&mmlist_lock);
826 rss[MM_SWAPENTS]++;
827 } else if (is_migration_entry(entry)) {
828 page = migration_entry_to_page(entry);
830 rss[mm_counter(page)]++;
832 if (is_write_migration_entry(entry) &&
833 is_cow_mapping(vm_flags)) {
835 * COW mappings require pages in both
836 * parent and child to be set to read.
838 make_migration_entry_read(&entry);
839 pte = swp_entry_to_pte(entry);
840 if (pte_swp_soft_dirty(*src_pte))
841 pte = pte_swp_mksoft_dirty(pte);
842 set_pte_at(src_mm, addr, src_pte, pte);
845 goto out_set_pte;
849 * If it's a COW mapping, write protect it both
850 * in the parent and the child
852 if (is_cow_mapping(vm_flags)) {
853 ptep_set_wrprotect(src_mm, addr, src_pte);
854 pte = pte_wrprotect(pte);
858 * If it's a shared mapping, mark it clean in
859 * the child
861 if (vm_flags & VM_SHARED)
862 pte = pte_mkclean(pte);
863 pte = pte_mkold(pte);
865 page = vm_normal_page(vma, addr, pte);
866 if (page) {
867 get_page(page);
868 page_dup_rmap(page, false);
869 rss[mm_counter(page)]++;
872 out_set_pte:
873 set_pte_at(dst_mm, addr, dst_pte, pte);
874 return 0;
877 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
878 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
879 unsigned long addr, unsigned long end)
881 pte_t *orig_src_pte, *orig_dst_pte;
882 pte_t *src_pte, *dst_pte;
883 spinlock_t *src_ptl, *dst_ptl;
884 int progress = 0;
885 int rss[NR_MM_COUNTERS];
886 swp_entry_t entry = (swp_entry_t){0};
888 again:
889 init_rss_vec(rss);
891 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
892 if (!dst_pte)
893 return -ENOMEM;
894 src_pte = pte_offset_map(src_pmd, addr);
895 src_ptl = pte_lockptr(src_mm, src_pmd);
896 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
897 orig_src_pte = src_pte;
898 orig_dst_pte = dst_pte;
899 arch_enter_lazy_mmu_mode();
901 do {
903 * We are holding two locks at this point - either of them
904 * could generate latencies in another task on another CPU.
906 if (progress >= 32) {
907 progress = 0;
908 if (need_resched() ||
909 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
910 break;
912 if (pte_none(*src_pte)) {
913 progress++;
914 continue;
916 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
917 vma, addr, rss);
918 if (entry.val)
919 break;
920 progress += 8;
921 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
923 arch_leave_lazy_mmu_mode();
924 spin_unlock(src_ptl);
925 pte_unmap(orig_src_pte);
926 add_mm_rss_vec(dst_mm, rss);
927 pte_unmap_unlock(orig_dst_pte, dst_ptl);
928 cond_resched();
930 if (entry.val) {
931 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
932 return -ENOMEM;
933 progress = 0;
935 if (addr != end)
936 goto again;
937 return 0;
940 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
941 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
942 unsigned long addr, unsigned long end)
944 pmd_t *src_pmd, *dst_pmd;
945 unsigned long next;
947 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
948 if (!dst_pmd)
949 return -ENOMEM;
950 src_pmd = pmd_offset(src_pud, addr);
951 do {
952 next = pmd_addr_end(addr, end);
953 if (pmd_trans_huge(*src_pmd) || pmd_devmap(*src_pmd)) {
954 int err;
955 VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
956 err = copy_huge_pmd(dst_mm, src_mm,
957 dst_pmd, src_pmd, addr, vma);
958 if (err == -ENOMEM)
959 return -ENOMEM;
960 if (!err)
961 continue;
962 /* fall through */
964 if (pmd_none_or_clear_bad(src_pmd))
965 continue;
966 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
967 vma, addr, next))
968 return -ENOMEM;
969 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
970 return 0;
973 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
974 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
975 unsigned long addr, unsigned long end)
977 pud_t *src_pud, *dst_pud;
978 unsigned long next;
980 dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
981 if (!dst_pud)
982 return -ENOMEM;
983 src_pud = pud_offset(src_pgd, addr);
984 do {
985 next = pud_addr_end(addr, end);
986 if (pud_none_or_clear_bad(src_pud))
987 continue;
988 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
989 vma, addr, next))
990 return -ENOMEM;
991 } while (dst_pud++, src_pud++, addr = next, addr != end);
992 return 0;
995 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
996 struct vm_area_struct *vma)
998 pgd_t *src_pgd, *dst_pgd;
999 unsigned long next;
1000 unsigned long addr = vma->vm_start;
1001 unsigned long end = vma->vm_end;
1002 unsigned long mmun_start; /* For mmu_notifiers */
1003 unsigned long mmun_end; /* For mmu_notifiers */
1004 bool is_cow;
1005 int ret;
1008 * Don't copy ptes where a page fault will fill them correctly.
1009 * Fork becomes much lighter when there are big shared or private
1010 * readonly mappings. The tradeoff is that copy_page_range is more
1011 * efficient than faulting.
1013 if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1014 !vma->anon_vma)
1015 return 0;
1017 if (is_vm_hugetlb_page(vma))
1018 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1020 if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1022 * We do not free on error cases below as remove_vma
1023 * gets called on error from higher level routine
1025 ret = track_pfn_copy(vma);
1026 if (ret)
1027 return ret;
1031 * We need to invalidate the secondary MMU mappings only when
1032 * there could be a permission downgrade on the ptes of the
1033 * parent mm. And a permission downgrade will only happen if
1034 * is_cow_mapping() returns true.
1036 is_cow = is_cow_mapping(vma->vm_flags);
1037 mmun_start = addr;
1038 mmun_end = end;
1039 if (is_cow)
1040 mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1041 mmun_end);
1043 ret = 0;
1044 dst_pgd = pgd_offset(dst_mm, addr);
1045 src_pgd = pgd_offset(src_mm, addr);
1046 do {
1047 next = pgd_addr_end(addr, end);
1048 if (pgd_none_or_clear_bad(src_pgd))
1049 continue;
1050 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1051 vma, addr, next))) {
1052 ret = -ENOMEM;
1053 break;
1055 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1057 if (is_cow)
1058 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
1059 return ret;
1062 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1063 struct vm_area_struct *vma, pmd_t *pmd,
1064 unsigned long addr, unsigned long end,
1065 struct zap_details *details)
1067 struct mm_struct *mm = tlb->mm;
1068 int force_flush = 0;
1069 int rss[NR_MM_COUNTERS];
1070 spinlock_t *ptl;
1071 pte_t *start_pte;
1072 pte_t *pte;
1073 swp_entry_t entry;
1075 again:
1076 init_rss_vec(rss);
1077 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1078 pte = start_pte;
1079 arch_enter_lazy_mmu_mode();
1080 do {
1081 pte_t ptent = *pte;
1082 if (pte_none(ptent)) {
1083 continue;
1086 if (pte_present(ptent)) {
1087 struct page *page;
1089 page = vm_normal_page(vma, addr, ptent);
1090 if (unlikely(details) && page) {
1092 * unmap_shared_mapping_pages() wants to
1093 * invalidate cache without truncating:
1094 * unmap shared but keep private pages.
1096 if (details->check_mapping &&
1097 details->check_mapping != page->mapping)
1098 continue;
1100 ptent = ptep_get_and_clear_full(mm, addr, pte,
1101 tlb->fullmm);
1102 tlb_remove_tlb_entry(tlb, pte, addr);
1103 if (unlikely(!page))
1104 continue;
1106 if (!PageAnon(page)) {
1107 if (pte_dirty(ptent)) {
1108 force_flush = 1;
1109 set_page_dirty(page);
1111 if (pte_young(ptent) &&
1112 likely(!(vma->vm_flags & VM_SEQ_READ)))
1113 mark_page_accessed(page);
1115 rss[mm_counter(page)]--;
1116 page_remove_rmap(page, false);
1117 if (unlikely(page_mapcount(page) < 0))
1118 print_bad_pte(vma, addr, ptent, page);
1119 if (unlikely(!__tlb_remove_page(tlb, page))) {
1120 force_flush = 1;
1121 addr += PAGE_SIZE;
1122 break;
1124 continue;
1126 /* If details->check_mapping, we leave swap entries. */
1127 if (unlikely(details))
1128 continue;
1130 entry = pte_to_swp_entry(ptent);
1131 if (!non_swap_entry(entry))
1132 rss[MM_SWAPENTS]--;
1133 else if (is_migration_entry(entry)) {
1134 struct page *page;
1136 page = migration_entry_to_page(entry);
1137 rss[mm_counter(page)]--;
1139 if (unlikely(!free_swap_and_cache(entry)))
1140 print_bad_pte(vma, addr, ptent, NULL);
1141 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1142 } while (pte++, addr += PAGE_SIZE, addr != end);
1144 add_mm_rss_vec(mm, rss);
1145 arch_leave_lazy_mmu_mode();
1147 /* Do the actual TLB flush before dropping ptl */
1148 if (force_flush)
1149 tlb_flush_mmu_tlbonly(tlb);
1150 pte_unmap_unlock(start_pte, ptl);
1153 * If we forced a TLB flush (either due to running out of
1154 * batch buffers or because we needed to flush dirty TLB
1155 * entries before releasing the ptl), free the batched
1156 * memory too. Restart if we didn't do everything.
1158 if (force_flush) {
1159 force_flush = 0;
1160 tlb_flush_mmu_free(tlb);
1162 if (addr != end)
1163 goto again;
1166 return addr;
1169 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1170 struct vm_area_struct *vma, pud_t *pud,
1171 unsigned long addr, unsigned long end,
1172 struct zap_details *details)
1174 pmd_t *pmd;
1175 unsigned long next;
1177 pmd = pmd_offset(pud, addr);
1178 do {
1179 next = pmd_addr_end(addr, end);
1180 if (pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1181 if (next - addr != HPAGE_PMD_SIZE) {
1182 #ifdef CONFIG_DEBUG_VM
1183 if (!rwsem_is_locked(&tlb->mm->mmap_sem)) {
1184 pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n",
1185 __func__, addr, end,
1186 vma->vm_start,
1187 vma->vm_end);
1188 BUG();
1190 #endif
1191 split_huge_pmd(vma, pmd, addr);
1192 } else if (zap_huge_pmd(tlb, vma, pmd, addr))
1193 goto next;
1194 /* fall through */
1197 * Here there can be other concurrent MADV_DONTNEED or
1198 * trans huge page faults running, and if the pmd is
1199 * none or trans huge it can change under us. This is
1200 * because MADV_DONTNEED holds the mmap_sem in read
1201 * mode.
1203 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1204 goto next;
1205 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1206 next:
1207 cond_resched();
1208 } while (pmd++, addr = next, addr != end);
1210 return addr;
1213 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1214 struct vm_area_struct *vma, pgd_t *pgd,
1215 unsigned long addr, unsigned long end,
1216 struct zap_details *details)
1218 pud_t *pud;
1219 unsigned long next;
1221 pud = pud_offset(pgd, addr);
1222 do {
1223 next = pud_addr_end(addr, end);
1224 if (pud_none_or_clear_bad(pud))
1225 continue;
1226 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1227 } while (pud++, addr = next, addr != end);
1229 return addr;
1232 static void unmap_page_range(struct mmu_gather *tlb,
1233 struct vm_area_struct *vma,
1234 unsigned long addr, unsigned long end,
1235 struct zap_details *details)
1237 pgd_t *pgd;
1238 unsigned long next;
1240 if (details && !details->check_mapping)
1241 details = NULL;
1243 BUG_ON(addr >= end);
1244 tlb_start_vma(tlb, vma);
1245 pgd = pgd_offset(vma->vm_mm, addr);
1246 do {
1247 next = pgd_addr_end(addr, end);
1248 if (pgd_none_or_clear_bad(pgd))
1249 continue;
1250 next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1251 } while (pgd++, addr = next, addr != end);
1252 tlb_end_vma(tlb, vma);
1256 static void unmap_single_vma(struct mmu_gather *tlb,
1257 struct vm_area_struct *vma, unsigned long start_addr,
1258 unsigned long end_addr,
1259 struct zap_details *details)
1261 unsigned long start = max(vma->vm_start, start_addr);
1262 unsigned long end;
1264 if (start >= vma->vm_end)
1265 return;
1266 end = min(vma->vm_end, end_addr);
1267 if (end <= vma->vm_start)
1268 return;
1270 if (vma->vm_file)
1271 uprobe_munmap(vma, start, end);
1273 if (unlikely(vma->vm_flags & VM_PFNMAP))
1274 untrack_pfn(vma, 0, 0);
1276 if (start != end) {
1277 if (unlikely(is_vm_hugetlb_page(vma))) {
1279 * It is undesirable to test vma->vm_file as it
1280 * should be non-null for valid hugetlb area.
1281 * However, vm_file will be NULL in the error
1282 * cleanup path of mmap_region. When
1283 * hugetlbfs ->mmap method fails,
1284 * mmap_region() nullifies vma->vm_file
1285 * before calling this function to clean up.
1286 * Since no pte has actually been setup, it is
1287 * safe to do nothing in this case.
1289 if (vma->vm_file) {
1290 i_mmap_lock_write(vma->vm_file->f_mapping);
1291 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1292 i_mmap_unlock_write(vma->vm_file->f_mapping);
1294 } else
1295 unmap_page_range(tlb, vma, start, end, details);
1300 * unmap_vmas - unmap a range of memory covered by a list of vma's
1301 * @tlb: address of the caller's struct mmu_gather
1302 * @vma: the starting vma
1303 * @start_addr: virtual address at which to start unmapping
1304 * @end_addr: virtual address at which to end unmapping
1306 * Unmap all pages in the vma list.
1308 * Only addresses between `start' and `end' will be unmapped.
1310 * The VMA list must be sorted in ascending virtual address order.
1312 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1313 * range after unmap_vmas() returns. So the only responsibility here is to
1314 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1315 * drops the lock and schedules.
1317 void unmap_vmas(struct mmu_gather *tlb,
1318 struct vm_area_struct *vma, unsigned long start_addr,
1319 unsigned long end_addr)
1321 struct mm_struct *mm = vma->vm_mm;
1323 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1324 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1325 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1326 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1330 * zap_page_range - remove user pages in a given range
1331 * @vma: vm_area_struct holding the applicable pages
1332 * @start: starting address of pages to zap
1333 * @size: number of bytes to zap
1334 * @details: details of shared cache invalidation
1336 * Caller must protect the VMA list
1338 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1339 unsigned long size, struct zap_details *details)
1341 struct mm_struct *mm = vma->vm_mm;
1342 struct mmu_gather tlb;
1343 unsigned long end = start + size;
1345 lru_add_drain();
1346 tlb_gather_mmu(&tlb, mm, start, end);
1347 update_hiwater_rss(mm);
1348 mmu_notifier_invalidate_range_start(mm, start, end);
1349 for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
1350 unmap_single_vma(&tlb, vma, start, end, details);
1351 mmu_notifier_invalidate_range_end(mm, start, end);
1352 tlb_finish_mmu(&tlb, start, end);
1356 * zap_page_range_single - remove user pages in a given range
1357 * @vma: vm_area_struct holding the applicable pages
1358 * @address: starting address of pages to zap
1359 * @size: number of bytes to zap
1360 * @details: details of shared cache invalidation
1362 * The range must fit into one VMA.
1364 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1365 unsigned long size, struct zap_details *details)
1367 struct mm_struct *mm = vma->vm_mm;
1368 struct mmu_gather tlb;
1369 unsigned long end = address + size;
1371 lru_add_drain();
1372 tlb_gather_mmu(&tlb, mm, address, end);
1373 update_hiwater_rss(mm);
1374 mmu_notifier_invalidate_range_start(mm, address, end);
1375 unmap_single_vma(&tlb, vma, address, end, details);
1376 mmu_notifier_invalidate_range_end(mm, address, end);
1377 tlb_finish_mmu(&tlb, address, end);
1381 * zap_vma_ptes - remove ptes mapping the vma
1382 * @vma: vm_area_struct holding ptes to be zapped
1383 * @address: starting address of pages to zap
1384 * @size: number of bytes to zap
1386 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1388 * The entire address range must be fully contained within the vma.
1390 * Returns 0 if successful.
1392 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1393 unsigned long size)
1395 if (address < vma->vm_start || address + size > vma->vm_end ||
1396 !(vma->vm_flags & VM_PFNMAP))
1397 return -1;
1398 zap_page_range_single(vma, address, size, NULL);
1399 return 0;
1401 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1403 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1404 spinlock_t **ptl)
1406 pgd_t * pgd = pgd_offset(mm, addr);
1407 pud_t * pud = pud_alloc(mm, pgd, addr);
1408 if (pud) {
1409 pmd_t * pmd = pmd_alloc(mm, pud, addr);
1410 if (pmd) {
1411 VM_BUG_ON(pmd_trans_huge(*pmd));
1412 return pte_alloc_map_lock(mm, pmd, addr, ptl);
1415 return NULL;
1419 * This is the old fallback for page remapping.
1421 * For historical reasons, it only allows reserved pages. Only
1422 * old drivers should use this, and they needed to mark their
1423 * pages reserved for the old functions anyway.
1425 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1426 struct page *page, pgprot_t prot)
1428 struct mm_struct *mm = vma->vm_mm;
1429 int retval;
1430 pte_t *pte;
1431 spinlock_t *ptl;
1433 retval = -EINVAL;
1434 if (PageAnon(page))
1435 goto out;
1436 retval = -ENOMEM;
1437 flush_dcache_page(page);
1438 pte = get_locked_pte(mm, addr, &ptl);
1439 if (!pte)
1440 goto out;
1441 retval = -EBUSY;
1442 if (!pte_none(*pte))
1443 goto out_unlock;
1445 /* Ok, finally just insert the thing.. */
1446 get_page(page);
1447 inc_mm_counter_fast(mm, mm_counter_file(page));
1448 page_add_file_rmap(page);
1449 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1451 retval = 0;
1452 pte_unmap_unlock(pte, ptl);
1453 return retval;
1454 out_unlock:
1455 pte_unmap_unlock(pte, ptl);
1456 out:
1457 return retval;
1461 * vm_insert_page - insert single page into user vma
1462 * @vma: user vma to map to
1463 * @addr: target user address of this page
1464 * @page: source kernel page
1466 * This allows drivers to insert individual pages they've allocated
1467 * into a user vma.
1469 * The page has to be a nice clean _individual_ kernel allocation.
1470 * If you allocate a compound page, you need to have marked it as
1471 * such (__GFP_COMP), or manually just split the page up yourself
1472 * (see split_page()).
1474 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1475 * took an arbitrary page protection parameter. This doesn't allow
1476 * that. Your vma protection will have to be set up correctly, which
1477 * means that if you want a shared writable mapping, you'd better
1478 * ask for a shared writable mapping!
1480 * The page does not need to be reserved.
1482 * Usually this function is called from f_op->mmap() handler
1483 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1484 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1485 * function from other places, for example from page-fault handler.
1487 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1488 struct page *page)
1490 if (addr < vma->vm_start || addr >= vma->vm_end)
1491 return -EFAULT;
1492 if (!page_count(page))
1493 return -EINVAL;
1494 if (!(vma->vm_flags & VM_MIXEDMAP)) {
1495 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1496 BUG_ON(vma->vm_flags & VM_PFNMAP);
1497 vma->vm_flags |= VM_MIXEDMAP;
1499 return insert_page(vma, addr, page, vma->vm_page_prot);
1501 EXPORT_SYMBOL(vm_insert_page);
1503 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1504 pfn_t pfn, pgprot_t prot)
1506 struct mm_struct *mm = vma->vm_mm;
1507 int retval;
1508 pte_t *pte, entry;
1509 spinlock_t *ptl;
1511 retval = -ENOMEM;
1512 pte = get_locked_pte(mm, addr, &ptl);
1513 if (!pte)
1514 goto out;
1515 retval = -EBUSY;
1516 if (!pte_none(*pte))
1517 goto out_unlock;
1519 /* Ok, finally just insert the thing.. */
1520 if (pfn_t_devmap(pfn))
1521 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1522 else
1523 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1524 set_pte_at(mm, addr, pte, entry);
1525 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1527 retval = 0;
1528 out_unlock:
1529 pte_unmap_unlock(pte, ptl);
1530 out:
1531 return retval;
1535 * vm_insert_pfn - insert single pfn into user vma
1536 * @vma: user vma to map to
1537 * @addr: target user address of this page
1538 * @pfn: source kernel pfn
1540 * Similar to vm_insert_page, this allows drivers to insert individual pages
1541 * they've allocated into a user vma. Same comments apply.
1543 * This function should only be called from a vm_ops->fault handler, and
1544 * in that case the handler should return NULL.
1546 * vma cannot be a COW mapping.
1548 * As this is called only for pages that do not currently exist, we
1549 * do not need to flush old virtual caches or the TLB.
1551 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1552 unsigned long pfn)
1554 int ret;
1555 pgprot_t pgprot = vma->vm_page_prot;
1557 * Technically, architectures with pte_special can avoid all these
1558 * restrictions (same for remap_pfn_range). However we would like
1559 * consistency in testing and feature parity among all, so we should
1560 * try to keep these invariants in place for everybody.
1562 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1563 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1564 (VM_PFNMAP|VM_MIXEDMAP));
1565 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1566 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1568 if (addr < vma->vm_start || addr >= vma->vm_end)
1569 return -EFAULT;
1570 if (track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV)))
1571 return -EINVAL;
1573 ret = insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot);
1575 return ret;
1577 EXPORT_SYMBOL(vm_insert_pfn);
1579 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1580 pfn_t pfn)
1582 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
1584 if (addr < vma->vm_start || addr >= vma->vm_end)
1585 return -EFAULT;
1588 * If we don't have pte special, then we have to use the pfn_valid()
1589 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1590 * refcount the page if pfn_valid is true (hence insert_page rather
1591 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
1592 * without pte special, it would there be refcounted as a normal page.
1594 if (!HAVE_PTE_SPECIAL && !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
1595 struct page *page;
1598 * At this point we are committed to insert_page()
1599 * regardless of whether the caller specified flags that
1600 * result in pfn_t_has_page() == false.
1602 page = pfn_to_page(pfn_t_to_pfn(pfn));
1603 return insert_page(vma, addr, page, vma->vm_page_prot);
1605 return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
1607 EXPORT_SYMBOL(vm_insert_mixed);
1610 * maps a range of physical memory into the requested pages. the old
1611 * mappings are removed. any references to nonexistent pages results
1612 * in null mappings (currently treated as "copy-on-access")
1614 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1615 unsigned long addr, unsigned long end,
1616 unsigned long pfn, pgprot_t prot)
1618 pte_t *pte;
1619 spinlock_t *ptl;
1621 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1622 if (!pte)
1623 return -ENOMEM;
1624 arch_enter_lazy_mmu_mode();
1625 do {
1626 BUG_ON(!pte_none(*pte));
1627 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1628 pfn++;
1629 } while (pte++, addr += PAGE_SIZE, addr != end);
1630 arch_leave_lazy_mmu_mode();
1631 pte_unmap_unlock(pte - 1, ptl);
1632 return 0;
1635 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1636 unsigned long addr, unsigned long end,
1637 unsigned long pfn, pgprot_t prot)
1639 pmd_t *pmd;
1640 unsigned long next;
1642 pfn -= addr >> PAGE_SHIFT;
1643 pmd = pmd_alloc(mm, pud, addr);
1644 if (!pmd)
1645 return -ENOMEM;
1646 VM_BUG_ON(pmd_trans_huge(*pmd));
1647 do {
1648 next = pmd_addr_end(addr, end);
1649 if (remap_pte_range(mm, pmd, addr, next,
1650 pfn + (addr >> PAGE_SHIFT), prot))
1651 return -ENOMEM;
1652 } while (pmd++, addr = next, addr != end);
1653 return 0;
1656 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1657 unsigned long addr, unsigned long end,
1658 unsigned long pfn, pgprot_t prot)
1660 pud_t *pud;
1661 unsigned long next;
1663 pfn -= addr >> PAGE_SHIFT;
1664 pud = pud_alloc(mm, pgd, addr);
1665 if (!pud)
1666 return -ENOMEM;
1667 do {
1668 next = pud_addr_end(addr, end);
1669 if (remap_pmd_range(mm, pud, addr, next,
1670 pfn + (addr >> PAGE_SHIFT), prot))
1671 return -ENOMEM;
1672 } while (pud++, addr = next, addr != end);
1673 return 0;
1677 * remap_pfn_range - remap kernel memory to userspace
1678 * @vma: user vma to map to
1679 * @addr: target user address to start at
1680 * @pfn: physical address of kernel memory
1681 * @size: size of map area
1682 * @prot: page protection flags for this mapping
1684 * Note: this is only safe if the mm semaphore is held when called.
1686 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1687 unsigned long pfn, unsigned long size, pgprot_t prot)
1689 pgd_t *pgd;
1690 unsigned long next;
1691 unsigned long end = addr + PAGE_ALIGN(size);
1692 struct mm_struct *mm = vma->vm_mm;
1693 int err;
1696 * Physically remapped pages are special. Tell the
1697 * rest of the world about it:
1698 * VM_IO tells people not to look at these pages
1699 * (accesses can have side effects).
1700 * VM_PFNMAP tells the core MM that the base pages are just
1701 * raw PFN mappings, and do not have a "struct page" associated
1702 * with them.
1703 * VM_DONTEXPAND
1704 * Disable vma merging and expanding with mremap().
1705 * VM_DONTDUMP
1706 * Omit vma from core dump, even when VM_IO turned off.
1708 * There's a horrible special case to handle copy-on-write
1709 * behaviour that some programs depend on. We mark the "original"
1710 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1711 * See vm_normal_page() for details.
1713 if (is_cow_mapping(vma->vm_flags)) {
1714 if (addr != vma->vm_start || end != vma->vm_end)
1715 return -EINVAL;
1716 vma->vm_pgoff = pfn;
1719 err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
1720 if (err)
1721 return -EINVAL;
1723 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1725 BUG_ON(addr >= end);
1726 pfn -= addr >> PAGE_SHIFT;
1727 pgd = pgd_offset(mm, addr);
1728 flush_cache_range(vma, addr, end);
1729 do {
1730 next = pgd_addr_end(addr, end);
1731 err = remap_pud_range(mm, pgd, addr, next,
1732 pfn + (addr >> PAGE_SHIFT), prot);
1733 if (err)
1734 break;
1735 } while (pgd++, addr = next, addr != end);
1737 if (err)
1738 untrack_pfn(vma, pfn, PAGE_ALIGN(size));
1740 return err;
1742 EXPORT_SYMBOL(remap_pfn_range);
1745 * vm_iomap_memory - remap memory to userspace
1746 * @vma: user vma to map to
1747 * @start: start of area
1748 * @len: size of area
1750 * This is a simplified io_remap_pfn_range() for common driver use. The
1751 * driver just needs to give us the physical memory range to be mapped,
1752 * we'll figure out the rest from the vma information.
1754 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
1755 * whatever write-combining details or similar.
1757 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1759 unsigned long vm_len, pfn, pages;
1761 /* Check that the physical memory area passed in looks valid */
1762 if (start + len < start)
1763 return -EINVAL;
1765 * You *really* shouldn't map things that aren't page-aligned,
1766 * but we've historically allowed it because IO memory might
1767 * just have smaller alignment.
1769 len += start & ~PAGE_MASK;
1770 pfn = start >> PAGE_SHIFT;
1771 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
1772 if (pfn + pages < pfn)
1773 return -EINVAL;
1775 /* We start the mapping 'vm_pgoff' pages into the area */
1776 if (vma->vm_pgoff > pages)
1777 return -EINVAL;
1778 pfn += vma->vm_pgoff;
1779 pages -= vma->vm_pgoff;
1781 /* Can we fit all of the mapping? */
1782 vm_len = vma->vm_end - vma->vm_start;
1783 if (vm_len >> PAGE_SHIFT > pages)
1784 return -EINVAL;
1786 /* Ok, let it rip */
1787 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1789 EXPORT_SYMBOL(vm_iomap_memory);
1791 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1792 unsigned long addr, unsigned long end,
1793 pte_fn_t fn, void *data)
1795 pte_t *pte;
1796 int err;
1797 pgtable_t token;
1798 spinlock_t *uninitialized_var(ptl);
1800 pte = (mm == &init_mm) ?
1801 pte_alloc_kernel(pmd, addr) :
1802 pte_alloc_map_lock(mm, pmd, addr, &ptl);
1803 if (!pte)
1804 return -ENOMEM;
1806 BUG_ON(pmd_huge(*pmd));
1808 arch_enter_lazy_mmu_mode();
1810 token = pmd_pgtable(*pmd);
1812 do {
1813 err = fn(pte++, token, addr, data);
1814 if (err)
1815 break;
1816 } while (addr += PAGE_SIZE, addr != end);
1818 arch_leave_lazy_mmu_mode();
1820 if (mm != &init_mm)
1821 pte_unmap_unlock(pte-1, ptl);
1822 return err;
1825 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1826 unsigned long addr, unsigned long end,
1827 pte_fn_t fn, void *data)
1829 pmd_t *pmd;
1830 unsigned long next;
1831 int err;
1833 BUG_ON(pud_huge(*pud));
1835 pmd = pmd_alloc(mm, pud, addr);
1836 if (!pmd)
1837 return -ENOMEM;
1838 do {
1839 next = pmd_addr_end(addr, end);
1840 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1841 if (err)
1842 break;
1843 } while (pmd++, addr = next, addr != end);
1844 return err;
1847 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1848 unsigned long addr, unsigned long end,
1849 pte_fn_t fn, void *data)
1851 pud_t *pud;
1852 unsigned long next;
1853 int err;
1855 pud = pud_alloc(mm, pgd, addr);
1856 if (!pud)
1857 return -ENOMEM;
1858 do {
1859 next = pud_addr_end(addr, end);
1860 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1861 if (err)
1862 break;
1863 } while (pud++, addr = next, addr != end);
1864 return err;
1868 * Scan a region of virtual memory, filling in page tables as necessary
1869 * and calling a provided function on each leaf page table.
1871 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1872 unsigned long size, pte_fn_t fn, void *data)
1874 pgd_t *pgd;
1875 unsigned long next;
1876 unsigned long end = addr + size;
1877 int err;
1879 BUG_ON(addr >= end);
1880 pgd = pgd_offset(mm, addr);
1881 do {
1882 next = pgd_addr_end(addr, end);
1883 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
1884 if (err)
1885 break;
1886 } while (pgd++, addr = next, addr != end);
1888 return err;
1890 EXPORT_SYMBOL_GPL(apply_to_page_range);
1893 * handle_pte_fault chooses page fault handler according to an entry which was
1894 * read non-atomically. Before making any commitment, on those architectures
1895 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
1896 * parts, do_swap_page must check under lock before unmapping the pte and
1897 * proceeding (but do_wp_page is only called after already making such a check;
1898 * and do_anonymous_page can safely check later on).
1900 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
1901 pte_t *page_table, pte_t orig_pte)
1903 int same = 1;
1904 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1905 if (sizeof(pte_t) > sizeof(unsigned long)) {
1906 spinlock_t *ptl = pte_lockptr(mm, pmd);
1907 spin_lock(ptl);
1908 same = pte_same(*page_table, orig_pte);
1909 spin_unlock(ptl);
1911 #endif
1912 pte_unmap(page_table);
1913 return same;
1916 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
1918 debug_dma_assert_idle(src);
1921 * If the source page was a PFN mapping, we don't have
1922 * a "struct page" for it. We do a best-effort copy by
1923 * just copying from the original user address. If that
1924 * fails, we just zero-fill it. Live with it.
1926 if (unlikely(!src)) {
1927 void *kaddr = kmap_atomic(dst);
1928 void __user *uaddr = (void __user *)(va & PAGE_MASK);
1931 * This really shouldn't fail, because the page is there
1932 * in the page tables. But it might just be unreadable,
1933 * in which case we just give up and fill the result with
1934 * zeroes.
1936 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
1937 clear_page(kaddr);
1938 kunmap_atomic(kaddr);
1939 flush_dcache_page(dst);
1940 } else
1941 copy_user_highpage(dst, src, va, vma);
1944 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
1946 struct file *vm_file = vma->vm_file;
1948 if (vm_file)
1949 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
1952 * Special mappings (e.g. VDSO) do not have any file so fake
1953 * a default GFP_KERNEL for them.
1955 return GFP_KERNEL;
1959 * Notify the address space that the page is about to become writable so that
1960 * it can prohibit this or wait for the page to get into an appropriate state.
1962 * We do this without the lock held, so that it can sleep if it needs to.
1964 static int do_page_mkwrite(struct vm_area_struct *vma, struct page *page,
1965 unsigned long address)
1967 struct vm_fault vmf;
1968 int ret;
1970 vmf.virtual_address = (void __user *)(address & PAGE_MASK);
1971 vmf.pgoff = page->index;
1972 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
1973 vmf.gfp_mask = __get_fault_gfp_mask(vma);
1974 vmf.page = page;
1975 vmf.cow_page = NULL;
1977 ret = vma->vm_ops->page_mkwrite(vma, &vmf);
1978 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
1979 return ret;
1980 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
1981 lock_page(page);
1982 if (!page->mapping) {
1983 unlock_page(page);
1984 return 0; /* retry */
1986 ret |= VM_FAULT_LOCKED;
1987 } else
1988 VM_BUG_ON_PAGE(!PageLocked(page), page);
1989 return ret;
1993 * Handle write page faults for pages that can be reused in the current vma
1995 * This can happen either due to the mapping being with the VM_SHARED flag,
1996 * or due to us being the last reference standing to the page. In either
1997 * case, all we need to do here is to mark the page as writable and update
1998 * any related book-keeping.
2000 static inline int wp_page_reuse(struct mm_struct *mm,
2001 struct vm_area_struct *vma, unsigned long address,
2002 pte_t *page_table, spinlock_t *ptl, pte_t orig_pte,
2003 struct page *page, int page_mkwrite,
2004 int dirty_shared)
2005 __releases(ptl)
2007 pte_t entry;
2009 * Clear the pages cpupid information as the existing
2010 * information potentially belongs to a now completely
2011 * unrelated process.
2013 if (page)
2014 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2016 flush_cache_page(vma, address, pte_pfn(orig_pte));
2017 entry = pte_mkyoung(orig_pte);
2018 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2019 if (ptep_set_access_flags(vma, address, page_table, entry, 1))
2020 update_mmu_cache(vma, address, page_table);
2021 pte_unmap_unlock(page_table, ptl);
2023 if (dirty_shared) {
2024 struct address_space *mapping;
2025 int dirtied;
2027 if (!page_mkwrite)
2028 lock_page(page);
2030 dirtied = set_page_dirty(page);
2031 VM_BUG_ON_PAGE(PageAnon(page), page);
2032 mapping = page->mapping;
2033 unlock_page(page);
2034 page_cache_release(page);
2036 if ((dirtied || page_mkwrite) && mapping) {
2038 * Some device drivers do not set page.mapping
2039 * but still dirty their pages
2041 balance_dirty_pages_ratelimited(mapping);
2044 if (!page_mkwrite)
2045 file_update_time(vma->vm_file);
2048 return VM_FAULT_WRITE;
2052 * Handle the case of a page which we actually need to copy to a new page.
2054 * Called with mmap_sem locked and the old page referenced, but
2055 * without the ptl held.
2057 * High level logic flow:
2059 * - Allocate a page, copy the content of the old page to the new one.
2060 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2061 * - Take the PTL. If the pte changed, bail out and release the allocated page
2062 * - If the pte is still the way we remember it, update the page table and all
2063 * relevant references. This includes dropping the reference the page-table
2064 * held to the old page, as well as updating the rmap.
2065 * - In any case, unlock the PTL and drop the reference we took to the old page.
2067 static int wp_page_copy(struct mm_struct *mm, struct vm_area_struct *vma,
2068 unsigned long address, pte_t *page_table, pmd_t *pmd,
2069 pte_t orig_pte, struct page *old_page)
2071 struct page *new_page = NULL;
2072 spinlock_t *ptl = NULL;
2073 pte_t entry;
2074 int page_copied = 0;
2075 const unsigned long mmun_start = address & PAGE_MASK; /* For mmu_notifiers */
2076 const unsigned long mmun_end = mmun_start + PAGE_SIZE; /* For mmu_notifiers */
2077 struct mem_cgroup *memcg;
2079 if (unlikely(anon_vma_prepare(vma)))
2080 goto oom;
2082 if (is_zero_pfn(pte_pfn(orig_pte))) {
2083 new_page = alloc_zeroed_user_highpage_movable(vma, address);
2084 if (!new_page)
2085 goto oom;
2086 } else {
2087 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2088 if (!new_page)
2089 goto oom;
2090 cow_user_page(new_page, old_page, address, vma);
2093 if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg, false))
2094 goto oom_free_new;
2096 __SetPageUptodate(new_page);
2098 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2101 * Re-check the pte - we dropped the lock
2103 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2104 if (likely(pte_same(*page_table, orig_pte))) {
2105 if (old_page) {
2106 if (!PageAnon(old_page)) {
2107 dec_mm_counter_fast(mm,
2108 mm_counter_file(old_page));
2109 inc_mm_counter_fast(mm, MM_ANONPAGES);
2111 } else {
2112 inc_mm_counter_fast(mm, MM_ANONPAGES);
2114 flush_cache_page(vma, address, pte_pfn(orig_pte));
2115 entry = mk_pte(new_page, vma->vm_page_prot);
2116 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2118 * Clear the pte entry and flush it first, before updating the
2119 * pte with the new entry. This will avoid a race condition
2120 * seen in the presence of one thread doing SMC and another
2121 * thread doing COW.
2123 ptep_clear_flush_notify(vma, address, page_table);
2124 page_add_new_anon_rmap(new_page, vma, address, false);
2125 mem_cgroup_commit_charge(new_page, memcg, false, false);
2126 lru_cache_add_active_or_unevictable(new_page, vma);
2128 * We call the notify macro here because, when using secondary
2129 * mmu page tables (such as kvm shadow page tables), we want the
2130 * new page to be mapped directly into the secondary page table.
2132 set_pte_at_notify(mm, address, page_table, entry);
2133 update_mmu_cache(vma, address, page_table);
2134 if (old_page) {
2136 * Only after switching the pte to the new page may
2137 * we remove the mapcount here. Otherwise another
2138 * process may come and find the rmap count decremented
2139 * before the pte is switched to the new page, and
2140 * "reuse" the old page writing into it while our pte
2141 * here still points into it and can be read by other
2142 * threads.
2144 * The critical issue is to order this
2145 * page_remove_rmap with the ptp_clear_flush above.
2146 * Those stores are ordered by (if nothing else,)
2147 * the barrier present in the atomic_add_negative
2148 * in page_remove_rmap.
2150 * Then the TLB flush in ptep_clear_flush ensures that
2151 * no process can access the old page before the
2152 * decremented mapcount is visible. And the old page
2153 * cannot be reused until after the decremented
2154 * mapcount is visible. So transitively, TLBs to
2155 * old page will be flushed before it can be reused.
2157 page_remove_rmap(old_page, false);
2160 /* Free the old page.. */
2161 new_page = old_page;
2162 page_copied = 1;
2163 } else {
2164 mem_cgroup_cancel_charge(new_page, memcg, false);
2167 if (new_page)
2168 page_cache_release(new_page);
2170 pte_unmap_unlock(page_table, ptl);
2171 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2172 if (old_page) {
2174 * Don't let another task, with possibly unlocked vma,
2175 * keep the mlocked page.
2177 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2178 lock_page(old_page); /* LRU manipulation */
2179 if (PageMlocked(old_page))
2180 munlock_vma_page(old_page);
2181 unlock_page(old_page);
2183 page_cache_release(old_page);
2185 return page_copied ? VM_FAULT_WRITE : 0;
2186 oom_free_new:
2187 page_cache_release(new_page);
2188 oom:
2189 if (old_page)
2190 page_cache_release(old_page);
2191 return VM_FAULT_OOM;
2195 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2196 * mapping
2198 static int wp_pfn_shared(struct mm_struct *mm,
2199 struct vm_area_struct *vma, unsigned long address,
2200 pte_t *page_table, spinlock_t *ptl, pte_t orig_pte,
2201 pmd_t *pmd)
2203 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2204 struct vm_fault vmf = {
2205 .page = NULL,
2206 .pgoff = linear_page_index(vma, address),
2207 .virtual_address = (void __user *)(address & PAGE_MASK),
2208 .flags = FAULT_FLAG_WRITE | FAULT_FLAG_MKWRITE,
2210 int ret;
2212 pte_unmap_unlock(page_table, ptl);
2213 ret = vma->vm_ops->pfn_mkwrite(vma, &vmf);
2214 if (ret & VM_FAULT_ERROR)
2215 return ret;
2216 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2218 * We might have raced with another page fault while we
2219 * released the pte_offset_map_lock.
2221 if (!pte_same(*page_table, orig_pte)) {
2222 pte_unmap_unlock(page_table, ptl);
2223 return 0;
2226 return wp_page_reuse(mm, vma, address, page_table, ptl, orig_pte,
2227 NULL, 0, 0);
2230 static int wp_page_shared(struct mm_struct *mm, struct vm_area_struct *vma,
2231 unsigned long address, pte_t *page_table,
2232 pmd_t *pmd, spinlock_t *ptl, pte_t orig_pte,
2233 struct page *old_page)
2234 __releases(ptl)
2236 int page_mkwrite = 0;
2238 page_cache_get(old_page);
2240 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2241 int tmp;
2243 pte_unmap_unlock(page_table, ptl);
2244 tmp = do_page_mkwrite(vma, old_page, address);
2245 if (unlikely(!tmp || (tmp &
2246 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2247 page_cache_release(old_page);
2248 return tmp;
2251 * Since we dropped the lock we need to revalidate
2252 * the PTE as someone else may have changed it. If
2253 * they did, we just return, as we can count on the
2254 * MMU to tell us if they didn't also make it writable.
2256 page_table = pte_offset_map_lock(mm, pmd, address,
2257 &ptl);
2258 if (!pte_same(*page_table, orig_pte)) {
2259 unlock_page(old_page);
2260 pte_unmap_unlock(page_table, ptl);
2261 page_cache_release(old_page);
2262 return 0;
2264 page_mkwrite = 1;
2267 return wp_page_reuse(mm, vma, address, page_table, ptl,
2268 orig_pte, old_page, page_mkwrite, 1);
2272 * This routine handles present pages, when users try to write
2273 * to a shared page. It is done by copying the page to a new address
2274 * and decrementing the shared-page counter for the old page.
2276 * Note that this routine assumes that the protection checks have been
2277 * done by the caller (the low-level page fault routine in most cases).
2278 * Thus we can safely just mark it writable once we've done any necessary
2279 * COW.
2281 * We also mark the page dirty at this point even though the page will
2282 * change only once the write actually happens. This avoids a few races,
2283 * and potentially makes it more efficient.
2285 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2286 * but allow concurrent faults), with pte both mapped and locked.
2287 * We return with mmap_sem still held, but pte unmapped and unlocked.
2289 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2290 unsigned long address, pte_t *page_table, pmd_t *pmd,
2291 spinlock_t *ptl, pte_t orig_pte)
2292 __releases(ptl)
2294 struct page *old_page;
2296 old_page = vm_normal_page(vma, address, orig_pte);
2297 if (!old_page) {
2299 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2300 * VM_PFNMAP VMA.
2302 * We should not cow pages in a shared writeable mapping.
2303 * Just mark the pages writable and/or call ops->pfn_mkwrite.
2305 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2306 (VM_WRITE|VM_SHARED))
2307 return wp_pfn_shared(mm, vma, address, page_table, ptl,
2308 orig_pte, pmd);
2310 pte_unmap_unlock(page_table, ptl);
2311 return wp_page_copy(mm, vma, address, page_table, pmd,
2312 orig_pte, old_page);
2316 * Take out anonymous pages first, anonymous shared vmas are
2317 * not dirty accountable.
2319 if (PageAnon(old_page) && !PageKsm(old_page)) {
2320 if (!trylock_page(old_page)) {
2321 page_cache_get(old_page);
2322 pte_unmap_unlock(page_table, ptl);
2323 lock_page(old_page);
2324 page_table = pte_offset_map_lock(mm, pmd, address,
2325 &ptl);
2326 if (!pte_same(*page_table, orig_pte)) {
2327 unlock_page(old_page);
2328 pte_unmap_unlock(page_table, ptl);
2329 page_cache_release(old_page);
2330 return 0;
2332 page_cache_release(old_page);
2334 if (reuse_swap_page(old_page)) {
2336 * The page is all ours. Move it to our anon_vma so
2337 * the rmap code will not search our parent or siblings.
2338 * Protected against the rmap code by the page lock.
2340 page_move_anon_rmap(old_page, vma, address);
2341 unlock_page(old_page);
2342 return wp_page_reuse(mm, vma, address, page_table, ptl,
2343 orig_pte, old_page, 0, 0);
2345 unlock_page(old_page);
2346 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2347 (VM_WRITE|VM_SHARED))) {
2348 return wp_page_shared(mm, vma, address, page_table, pmd,
2349 ptl, orig_pte, old_page);
2353 * Ok, we need to copy. Oh, well..
2355 page_cache_get(old_page);
2357 pte_unmap_unlock(page_table, ptl);
2358 return wp_page_copy(mm, vma, address, page_table, pmd,
2359 orig_pte, old_page);
2362 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2363 unsigned long start_addr, unsigned long end_addr,
2364 struct zap_details *details)
2366 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2369 static inline void unmap_mapping_range_tree(struct rb_root *root,
2370 struct zap_details *details)
2372 struct vm_area_struct *vma;
2373 pgoff_t vba, vea, zba, zea;
2375 vma_interval_tree_foreach(vma, root,
2376 details->first_index, details->last_index) {
2378 vba = vma->vm_pgoff;
2379 vea = vba + vma_pages(vma) - 1;
2380 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2381 zba = details->first_index;
2382 if (zba < vba)
2383 zba = vba;
2384 zea = details->last_index;
2385 if (zea > vea)
2386 zea = vea;
2388 unmap_mapping_range_vma(vma,
2389 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2390 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2391 details);
2396 * unmap_mapping_range - unmap the portion of all mmaps in the specified
2397 * address_space corresponding to the specified page range in the underlying
2398 * file.
2400 * @mapping: the address space containing mmaps to be unmapped.
2401 * @holebegin: byte in first page to unmap, relative to the start of
2402 * the underlying file. This will be rounded down to a PAGE_SIZE
2403 * boundary. Note that this is different from truncate_pagecache(), which
2404 * must keep the partial page. In contrast, we must get rid of
2405 * partial pages.
2406 * @holelen: size of prospective hole in bytes. This will be rounded
2407 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2408 * end of the file.
2409 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2410 * but 0 when invalidating pagecache, don't throw away private data.
2412 void unmap_mapping_range(struct address_space *mapping,
2413 loff_t const holebegin, loff_t const holelen, int even_cows)
2415 struct zap_details details;
2416 pgoff_t hba = holebegin >> PAGE_SHIFT;
2417 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2419 /* Check for overflow. */
2420 if (sizeof(holelen) > sizeof(hlen)) {
2421 long long holeend =
2422 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2423 if (holeend & ~(long long)ULONG_MAX)
2424 hlen = ULONG_MAX - hba + 1;
2427 details.check_mapping = even_cows? NULL: mapping;
2428 details.first_index = hba;
2429 details.last_index = hba + hlen - 1;
2430 if (details.last_index < details.first_index)
2431 details.last_index = ULONG_MAX;
2434 /* DAX uses i_mmap_lock to serialise file truncate vs page fault */
2435 i_mmap_lock_write(mapping);
2436 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
2437 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2438 i_mmap_unlock_write(mapping);
2440 EXPORT_SYMBOL(unmap_mapping_range);
2443 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2444 * but allow concurrent faults), and pte mapped but not yet locked.
2445 * We return with pte unmapped and unlocked.
2447 * We return with the mmap_sem locked or unlocked in the same cases
2448 * as does filemap_fault().
2450 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2451 unsigned long address, pte_t *page_table, pmd_t *pmd,
2452 unsigned int flags, pte_t orig_pte)
2454 spinlock_t *ptl;
2455 struct page *page, *swapcache;
2456 struct mem_cgroup *memcg;
2457 swp_entry_t entry;
2458 pte_t pte;
2459 int locked;
2460 int exclusive = 0;
2461 int ret = 0;
2463 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2464 goto out;
2466 entry = pte_to_swp_entry(orig_pte);
2467 if (unlikely(non_swap_entry(entry))) {
2468 if (is_migration_entry(entry)) {
2469 migration_entry_wait(mm, pmd, address);
2470 } else if (is_hwpoison_entry(entry)) {
2471 ret = VM_FAULT_HWPOISON;
2472 } else {
2473 print_bad_pte(vma, address, orig_pte, NULL);
2474 ret = VM_FAULT_SIGBUS;
2476 goto out;
2478 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2479 page = lookup_swap_cache(entry);
2480 if (!page) {
2481 page = swapin_readahead(entry,
2482 GFP_HIGHUSER_MOVABLE, vma, address);
2483 if (!page) {
2485 * Back out if somebody else faulted in this pte
2486 * while we released the pte lock.
2488 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2489 if (likely(pte_same(*page_table, orig_pte)))
2490 ret = VM_FAULT_OOM;
2491 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2492 goto unlock;
2495 /* Had to read the page from swap area: Major fault */
2496 ret = VM_FAULT_MAJOR;
2497 count_vm_event(PGMAJFAULT);
2498 mem_cgroup_count_vm_event(mm, PGMAJFAULT);
2499 } else if (PageHWPoison(page)) {
2501 * hwpoisoned dirty swapcache pages are kept for killing
2502 * owner processes (which may be unknown at hwpoison time)
2504 ret = VM_FAULT_HWPOISON;
2505 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2506 swapcache = page;
2507 goto out_release;
2510 swapcache = page;
2511 locked = lock_page_or_retry(page, mm, flags);
2513 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2514 if (!locked) {
2515 ret |= VM_FAULT_RETRY;
2516 goto out_release;
2520 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2521 * release the swapcache from under us. The page pin, and pte_same
2522 * test below, are not enough to exclude that. Even if it is still
2523 * swapcache, we need to check that the page's swap has not changed.
2525 if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
2526 goto out_page;
2528 page = ksm_might_need_to_copy(page, vma, address);
2529 if (unlikely(!page)) {
2530 ret = VM_FAULT_OOM;
2531 page = swapcache;
2532 goto out_page;
2535 if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg, false)) {
2536 ret = VM_FAULT_OOM;
2537 goto out_page;
2541 * Back out if somebody else already faulted in this pte.
2543 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2544 if (unlikely(!pte_same(*page_table, orig_pte)))
2545 goto out_nomap;
2547 if (unlikely(!PageUptodate(page))) {
2548 ret = VM_FAULT_SIGBUS;
2549 goto out_nomap;
2553 * The page isn't present yet, go ahead with the fault.
2555 * Be careful about the sequence of operations here.
2556 * To get its accounting right, reuse_swap_page() must be called
2557 * while the page is counted on swap but not yet in mapcount i.e.
2558 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2559 * must be called after the swap_free(), or it will never succeed.
2562 inc_mm_counter_fast(mm, MM_ANONPAGES);
2563 dec_mm_counter_fast(mm, MM_SWAPENTS);
2564 pte = mk_pte(page, vma->vm_page_prot);
2565 if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
2566 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2567 flags &= ~FAULT_FLAG_WRITE;
2568 ret |= VM_FAULT_WRITE;
2569 exclusive = RMAP_EXCLUSIVE;
2571 flush_icache_page(vma, page);
2572 if (pte_swp_soft_dirty(orig_pte))
2573 pte = pte_mksoft_dirty(pte);
2574 set_pte_at(mm, address, page_table, pte);
2575 if (page == swapcache) {
2576 do_page_add_anon_rmap(page, vma, address, exclusive);
2577 mem_cgroup_commit_charge(page, memcg, true, false);
2578 } else { /* ksm created a completely new copy */
2579 page_add_new_anon_rmap(page, vma, address, false);
2580 mem_cgroup_commit_charge(page, memcg, false, false);
2581 lru_cache_add_active_or_unevictable(page, vma);
2584 swap_free(entry);
2585 if (mem_cgroup_swap_full(page) ||
2586 (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2587 try_to_free_swap(page);
2588 unlock_page(page);
2589 if (page != swapcache) {
2591 * Hold the lock to avoid the swap entry to be reused
2592 * until we take the PT lock for the pte_same() check
2593 * (to avoid false positives from pte_same). For
2594 * further safety release the lock after the swap_free
2595 * so that the swap count won't change under a
2596 * parallel locked swapcache.
2598 unlock_page(swapcache);
2599 page_cache_release(swapcache);
2602 if (flags & FAULT_FLAG_WRITE) {
2603 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
2604 if (ret & VM_FAULT_ERROR)
2605 ret &= VM_FAULT_ERROR;
2606 goto out;
2609 /* No need to invalidate - it was non-present before */
2610 update_mmu_cache(vma, address, page_table);
2611 unlock:
2612 pte_unmap_unlock(page_table, ptl);
2613 out:
2614 return ret;
2615 out_nomap:
2616 mem_cgroup_cancel_charge(page, memcg, false);
2617 pte_unmap_unlock(page_table, ptl);
2618 out_page:
2619 unlock_page(page);
2620 out_release:
2621 page_cache_release(page);
2622 if (page != swapcache) {
2623 unlock_page(swapcache);
2624 page_cache_release(swapcache);
2626 return ret;
2630 * This is like a special single-page "expand_{down|up}wards()",
2631 * except we must first make sure that 'address{-|+}PAGE_SIZE'
2632 * doesn't hit another vma.
2634 static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
2636 address &= PAGE_MASK;
2637 if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
2638 struct vm_area_struct *prev = vma->vm_prev;
2641 * Is there a mapping abutting this one below?
2643 * That's only ok if it's the same stack mapping
2644 * that has gotten split..
2646 if (prev && prev->vm_end == address)
2647 return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
2649 return expand_downwards(vma, address - PAGE_SIZE);
2651 if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
2652 struct vm_area_struct *next = vma->vm_next;
2654 /* As VM_GROWSDOWN but s/below/above/ */
2655 if (next && next->vm_start == address + PAGE_SIZE)
2656 return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
2658 return expand_upwards(vma, address + PAGE_SIZE);
2660 return 0;
2664 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2665 * but allow concurrent faults), and pte mapped but not yet locked.
2666 * We return with mmap_sem still held, but pte unmapped and unlocked.
2668 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2669 unsigned long address, pte_t *page_table, pmd_t *pmd,
2670 unsigned int flags)
2672 struct mem_cgroup *memcg;
2673 struct page *page;
2674 spinlock_t *ptl;
2675 pte_t entry;
2677 pte_unmap(page_table);
2679 /* File mapping without ->vm_ops ? */
2680 if (vma->vm_flags & VM_SHARED)
2681 return VM_FAULT_SIGBUS;
2683 /* Check if we need to add a guard page to the stack */
2684 if (check_stack_guard_page(vma, address) < 0)
2685 return VM_FAULT_SIGSEGV;
2687 /* Use the zero-page for reads */
2688 if (!(flags & FAULT_FLAG_WRITE) && !mm_forbids_zeropage(mm)) {
2689 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
2690 vma->vm_page_prot));
2691 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2692 if (!pte_none(*page_table))
2693 goto unlock;
2694 /* Deliver the page fault to userland, check inside PT lock */
2695 if (userfaultfd_missing(vma)) {
2696 pte_unmap_unlock(page_table, ptl);
2697 return handle_userfault(vma, address, flags,
2698 VM_UFFD_MISSING);
2700 goto setpte;
2703 /* Allocate our own private page. */
2704 if (unlikely(anon_vma_prepare(vma)))
2705 goto oom;
2706 page = alloc_zeroed_user_highpage_movable(vma, address);
2707 if (!page)
2708 goto oom;
2710 if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg, false))
2711 goto oom_free_page;
2714 * The memory barrier inside __SetPageUptodate makes sure that
2715 * preceeding stores to the page contents become visible before
2716 * the set_pte_at() write.
2718 __SetPageUptodate(page);
2720 entry = mk_pte(page, vma->vm_page_prot);
2721 if (vma->vm_flags & VM_WRITE)
2722 entry = pte_mkwrite(pte_mkdirty(entry));
2724 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2725 if (!pte_none(*page_table))
2726 goto release;
2728 /* Deliver the page fault to userland, check inside PT lock */
2729 if (userfaultfd_missing(vma)) {
2730 pte_unmap_unlock(page_table, ptl);
2731 mem_cgroup_cancel_charge(page, memcg, false);
2732 page_cache_release(page);
2733 return handle_userfault(vma, address, flags,
2734 VM_UFFD_MISSING);
2737 inc_mm_counter_fast(mm, MM_ANONPAGES);
2738 page_add_new_anon_rmap(page, vma, address, false);
2739 mem_cgroup_commit_charge(page, memcg, false, false);
2740 lru_cache_add_active_or_unevictable(page, vma);
2741 setpte:
2742 set_pte_at(mm, address, page_table, entry);
2744 /* No need to invalidate - it was non-present before */
2745 update_mmu_cache(vma, address, page_table);
2746 unlock:
2747 pte_unmap_unlock(page_table, ptl);
2748 return 0;
2749 release:
2750 mem_cgroup_cancel_charge(page, memcg, false);
2751 page_cache_release(page);
2752 goto unlock;
2753 oom_free_page:
2754 page_cache_release(page);
2755 oom:
2756 return VM_FAULT_OOM;
2760 * The mmap_sem must have been held on entry, and may have been
2761 * released depending on flags and vma->vm_ops->fault() return value.
2762 * See filemap_fault() and __lock_page_retry().
2764 static int __do_fault(struct vm_area_struct *vma, unsigned long address,
2765 pgoff_t pgoff, unsigned int flags,
2766 struct page *cow_page, struct page **page)
2768 struct vm_fault vmf;
2769 int ret;
2771 vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2772 vmf.pgoff = pgoff;
2773 vmf.flags = flags;
2774 vmf.page = NULL;
2775 vmf.gfp_mask = __get_fault_gfp_mask(vma);
2776 vmf.cow_page = cow_page;
2778 ret = vma->vm_ops->fault(vma, &vmf);
2779 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2780 return ret;
2781 if (!vmf.page)
2782 goto out;
2784 if (unlikely(PageHWPoison(vmf.page))) {
2785 if (ret & VM_FAULT_LOCKED)
2786 unlock_page(vmf.page);
2787 page_cache_release(vmf.page);
2788 return VM_FAULT_HWPOISON;
2791 if (unlikely(!(ret & VM_FAULT_LOCKED)))
2792 lock_page(vmf.page);
2793 else
2794 VM_BUG_ON_PAGE(!PageLocked(vmf.page), vmf.page);
2796 out:
2797 *page = vmf.page;
2798 return ret;
2802 * do_set_pte - setup new PTE entry for given page and add reverse page mapping.
2804 * @vma: virtual memory area
2805 * @address: user virtual address
2806 * @page: page to map
2807 * @pte: pointer to target page table entry
2808 * @write: true, if new entry is writable
2809 * @anon: true, if it's anonymous page
2811 * Caller must hold page table lock relevant for @pte.
2813 * Target users are page handler itself and implementations of
2814 * vm_ops->map_pages.
2816 void do_set_pte(struct vm_area_struct *vma, unsigned long address,
2817 struct page *page, pte_t *pte, bool write, bool anon)
2819 pte_t entry;
2821 flush_icache_page(vma, page);
2822 entry = mk_pte(page, vma->vm_page_prot);
2823 if (write)
2824 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2825 if (anon) {
2826 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2827 page_add_new_anon_rmap(page, vma, address, false);
2828 } else {
2829 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
2830 page_add_file_rmap(page);
2832 set_pte_at(vma->vm_mm, address, pte, entry);
2834 /* no need to invalidate: a not-present page won't be cached */
2835 update_mmu_cache(vma, address, pte);
2838 static unsigned long fault_around_bytes __read_mostly =
2839 rounddown_pow_of_two(65536);
2841 #ifdef CONFIG_DEBUG_FS
2842 static int fault_around_bytes_get(void *data, u64 *val)
2844 *val = fault_around_bytes;
2845 return 0;
2849 * fault_around_pages() and fault_around_mask() expects fault_around_bytes
2850 * rounded down to nearest page order. It's what do_fault_around() expects to
2851 * see.
2853 static int fault_around_bytes_set(void *data, u64 val)
2855 if (val / PAGE_SIZE > PTRS_PER_PTE)
2856 return -EINVAL;
2857 if (val > PAGE_SIZE)
2858 fault_around_bytes = rounddown_pow_of_two(val);
2859 else
2860 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
2861 return 0;
2863 DEFINE_SIMPLE_ATTRIBUTE(fault_around_bytes_fops,
2864 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
2866 static int __init fault_around_debugfs(void)
2868 void *ret;
2870 ret = debugfs_create_file("fault_around_bytes", 0644, NULL, NULL,
2871 &fault_around_bytes_fops);
2872 if (!ret)
2873 pr_warn("Failed to create fault_around_bytes in debugfs");
2874 return 0;
2876 late_initcall(fault_around_debugfs);
2877 #endif
2880 * do_fault_around() tries to map few pages around the fault address. The hope
2881 * is that the pages will be needed soon and this will lower the number of
2882 * faults to handle.
2884 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
2885 * not ready to be mapped: not up-to-date, locked, etc.
2887 * This function is called with the page table lock taken. In the split ptlock
2888 * case the page table lock only protects only those entries which belong to
2889 * the page table corresponding to the fault address.
2891 * This function doesn't cross the VMA boundaries, in order to call map_pages()
2892 * only once.
2894 * fault_around_pages() defines how many pages we'll try to map.
2895 * do_fault_around() expects it to return a power of two less than or equal to
2896 * PTRS_PER_PTE.
2898 * The virtual address of the area that we map is naturally aligned to the
2899 * fault_around_pages() value (and therefore to page order). This way it's
2900 * easier to guarantee that we don't cross page table boundaries.
2902 static void do_fault_around(struct vm_area_struct *vma, unsigned long address,
2903 pte_t *pte, pgoff_t pgoff, unsigned int flags)
2905 unsigned long start_addr, nr_pages, mask;
2906 pgoff_t max_pgoff;
2907 struct vm_fault vmf;
2908 int off;
2910 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
2911 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
2913 start_addr = max(address & mask, vma->vm_start);
2914 off = ((address - start_addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
2915 pte -= off;
2916 pgoff -= off;
2919 * max_pgoff is either end of page table or end of vma
2920 * or fault_around_pages() from pgoff, depending what is nearest.
2922 max_pgoff = pgoff - ((start_addr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
2923 PTRS_PER_PTE - 1;
2924 max_pgoff = min3(max_pgoff, vma_pages(vma) + vma->vm_pgoff - 1,
2925 pgoff + nr_pages - 1);
2927 /* Check if it makes any sense to call ->map_pages */
2928 while (!pte_none(*pte)) {
2929 if (++pgoff > max_pgoff)
2930 return;
2931 start_addr += PAGE_SIZE;
2932 if (start_addr >= vma->vm_end)
2933 return;
2934 pte++;
2937 vmf.virtual_address = (void __user *) start_addr;
2938 vmf.pte = pte;
2939 vmf.pgoff = pgoff;
2940 vmf.max_pgoff = max_pgoff;
2941 vmf.flags = flags;
2942 vmf.gfp_mask = __get_fault_gfp_mask(vma);
2943 vma->vm_ops->map_pages(vma, &vmf);
2946 static int do_read_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2947 unsigned long address, pmd_t *pmd,
2948 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2950 struct page *fault_page;
2951 spinlock_t *ptl;
2952 pte_t *pte;
2953 int ret = 0;
2956 * Let's call ->map_pages() first and use ->fault() as fallback
2957 * if page by the offset is not ready to be mapped (cold cache or
2958 * something).
2960 if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
2961 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2962 do_fault_around(vma, address, pte, pgoff, flags);
2963 if (!pte_same(*pte, orig_pte))
2964 goto unlock_out;
2965 pte_unmap_unlock(pte, ptl);
2968 ret = __do_fault(vma, address, pgoff, flags, NULL, &fault_page);
2969 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2970 return ret;
2972 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2973 if (unlikely(!pte_same(*pte, orig_pte))) {
2974 pte_unmap_unlock(pte, ptl);
2975 unlock_page(fault_page);
2976 page_cache_release(fault_page);
2977 return ret;
2979 do_set_pte(vma, address, fault_page, pte, false, false);
2980 unlock_page(fault_page);
2981 unlock_out:
2982 pte_unmap_unlock(pte, ptl);
2983 return ret;
2986 static int do_cow_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2987 unsigned long address, pmd_t *pmd,
2988 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2990 struct page *fault_page, *new_page;
2991 struct mem_cgroup *memcg;
2992 spinlock_t *ptl;
2993 pte_t *pte;
2994 int ret;
2996 if (unlikely(anon_vma_prepare(vma)))
2997 return VM_FAULT_OOM;
2999 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
3000 if (!new_page)
3001 return VM_FAULT_OOM;
3003 if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg, false)) {
3004 page_cache_release(new_page);
3005 return VM_FAULT_OOM;
3008 ret = __do_fault(vma, address, pgoff, flags, new_page, &fault_page);
3009 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3010 goto uncharge_out;
3012 if (fault_page)
3013 copy_user_highpage(new_page, fault_page, address, vma);
3014 __SetPageUptodate(new_page);
3016 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
3017 if (unlikely(!pte_same(*pte, orig_pte))) {
3018 pte_unmap_unlock(pte, ptl);
3019 if (fault_page) {
3020 unlock_page(fault_page);
3021 page_cache_release(fault_page);
3022 } else {
3024 * The fault handler has no page to lock, so it holds
3025 * i_mmap_lock for read to protect against truncate.
3027 i_mmap_unlock_read(vma->vm_file->f_mapping);
3029 goto uncharge_out;
3031 do_set_pte(vma, address, new_page, pte, true, true);
3032 mem_cgroup_commit_charge(new_page, memcg, false, false);
3033 lru_cache_add_active_or_unevictable(new_page, vma);
3034 pte_unmap_unlock(pte, ptl);
3035 if (fault_page) {
3036 unlock_page(fault_page);
3037 page_cache_release(fault_page);
3038 } else {
3040 * The fault handler has no page to lock, so it holds
3041 * i_mmap_lock for read to protect against truncate.
3043 i_mmap_unlock_read(vma->vm_file->f_mapping);
3045 return ret;
3046 uncharge_out:
3047 mem_cgroup_cancel_charge(new_page, memcg, false);
3048 page_cache_release(new_page);
3049 return ret;
3052 static int do_shared_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3053 unsigned long address, pmd_t *pmd,
3054 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3056 struct page *fault_page;
3057 struct address_space *mapping;
3058 spinlock_t *ptl;
3059 pte_t *pte;
3060 int dirtied = 0;
3061 int ret, tmp;
3063 ret = __do_fault(vma, address, pgoff, flags, NULL, &fault_page);
3064 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3065 return ret;
3068 * Check if the backing address space wants to know that the page is
3069 * about to become writable
3071 if (vma->vm_ops->page_mkwrite) {
3072 unlock_page(fault_page);
3073 tmp = do_page_mkwrite(vma, fault_page, address);
3074 if (unlikely(!tmp ||
3075 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3076 page_cache_release(fault_page);
3077 return tmp;
3081 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
3082 if (unlikely(!pte_same(*pte, orig_pte))) {
3083 pte_unmap_unlock(pte, ptl);
3084 unlock_page(fault_page);
3085 page_cache_release(fault_page);
3086 return ret;
3088 do_set_pte(vma, address, fault_page, pte, true, false);
3089 pte_unmap_unlock(pte, ptl);
3091 if (set_page_dirty(fault_page))
3092 dirtied = 1;
3094 * Take a local copy of the address_space - page.mapping may be zeroed
3095 * by truncate after unlock_page(). The address_space itself remains
3096 * pinned by vma->vm_file's reference. We rely on unlock_page()'s
3097 * release semantics to prevent the compiler from undoing this copying.
3099 mapping = page_rmapping(fault_page);
3100 unlock_page(fault_page);
3101 if ((dirtied || vma->vm_ops->page_mkwrite) && mapping) {
3103 * Some device drivers do not set page.mapping but still
3104 * dirty their pages
3106 balance_dirty_pages_ratelimited(mapping);
3109 if (!vma->vm_ops->page_mkwrite)
3110 file_update_time(vma->vm_file);
3112 return ret;
3116 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3117 * but allow concurrent faults).
3118 * The mmap_sem may have been released depending on flags and our
3119 * return value. See filemap_fault() and __lock_page_or_retry().
3121 static int do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3122 unsigned long address, pte_t *page_table, pmd_t *pmd,
3123 unsigned int flags, pte_t orig_pte)
3125 pgoff_t pgoff = (((address & PAGE_MASK)
3126 - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
3128 pte_unmap(page_table);
3129 /* The VMA was not fully populated on mmap() or missing VM_DONTEXPAND */
3130 if (!vma->vm_ops->fault)
3131 return VM_FAULT_SIGBUS;
3132 if (!(flags & FAULT_FLAG_WRITE))
3133 return do_read_fault(mm, vma, address, pmd, pgoff, flags,
3134 orig_pte);
3135 if (!(vma->vm_flags & VM_SHARED))
3136 return do_cow_fault(mm, vma, address, pmd, pgoff, flags,
3137 orig_pte);
3138 return do_shared_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3141 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3142 unsigned long addr, int page_nid,
3143 int *flags)
3145 get_page(page);
3147 count_vm_numa_event(NUMA_HINT_FAULTS);
3148 if (page_nid == numa_node_id()) {
3149 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3150 *flags |= TNF_FAULT_LOCAL;
3153 return mpol_misplaced(page, vma, addr);
3156 static int do_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3157 unsigned long addr, pte_t pte, pte_t *ptep, pmd_t *pmd)
3159 struct page *page = NULL;
3160 spinlock_t *ptl;
3161 int page_nid = -1;
3162 int last_cpupid;
3163 int target_nid;
3164 bool migrated = false;
3165 bool was_writable = pte_write(pte);
3166 int flags = 0;
3168 /* A PROT_NONE fault should not end up here */
3169 BUG_ON(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)));
3172 * The "pte" at this point cannot be used safely without
3173 * validation through pte_unmap_same(). It's of NUMA type but
3174 * the pfn may be screwed if the read is non atomic.
3176 * We can safely just do a "set_pte_at()", because the old
3177 * page table entry is not accessible, so there would be no
3178 * concurrent hardware modifications to the PTE.
3180 ptl = pte_lockptr(mm, pmd);
3181 spin_lock(ptl);
3182 if (unlikely(!pte_same(*ptep, pte))) {
3183 pte_unmap_unlock(ptep, ptl);
3184 goto out;
3187 /* Make it present again */
3188 pte = pte_modify(pte, vma->vm_page_prot);
3189 pte = pte_mkyoung(pte);
3190 if (was_writable)
3191 pte = pte_mkwrite(pte);
3192 set_pte_at(mm, addr, ptep, pte);
3193 update_mmu_cache(vma, addr, ptep);
3195 page = vm_normal_page(vma, addr, pte);
3196 if (!page) {
3197 pte_unmap_unlock(ptep, ptl);
3198 return 0;
3201 /* TODO: handle PTE-mapped THP */
3202 if (PageCompound(page)) {
3203 pte_unmap_unlock(ptep, ptl);
3204 return 0;
3208 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3209 * much anyway since they can be in shared cache state. This misses
3210 * the case where a mapping is writable but the process never writes
3211 * to it but pte_write gets cleared during protection updates and
3212 * pte_dirty has unpredictable behaviour between PTE scan updates,
3213 * background writeback, dirty balancing and application behaviour.
3215 if (!(vma->vm_flags & VM_WRITE))
3216 flags |= TNF_NO_GROUP;
3219 * Flag if the page is shared between multiple address spaces. This
3220 * is later used when determining whether to group tasks together
3222 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3223 flags |= TNF_SHARED;
3225 last_cpupid = page_cpupid_last(page);
3226 page_nid = page_to_nid(page);
3227 target_nid = numa_migrate_prep(page, vma, addr, page_nid, &flags);
3228 pte_unmap_unlock(ptep, ptl);
3229 if (target_nid == -1) {
3230 put_page(page);
3231 goto out;
3234 /* Migrate to the requested node */
3235 migrated = migrate_misplaced_page(page, vma, target_nid);
3236 if (migrated) {
3237 page_nid = target_nid;
3238 flags |= TNF_MIGRATED;
3239 } else
3240 flags |= TNF_MIGRATE_FAIL;
3242 out:
3243 if (page_nid != -1)
3244 task_numa_fault(last_cpupid, page_nid, 1, flags);
3245 return 0;
3248 static int create_huge_pmd(struct mm_struct *mm, struct vm_area_struct *vma,
3249 unsigned long address, pmd_t *pmd, unsigned int flags)
3251 if (vma_is_anonymous(vma))
3252 return do_huge_pmd_anonymous_page(mm, vma, address, pmd, flags);
3253 if (vma->vm_ops->pmd_fault)
3254 return vma->vm_ops->pmd_fault(vma, address, pmd, flags);
3255 return VM_FAULT_FALLBACK;
3258 static int wp_huge_pmd(struct mm_struct *mm, struct vm_area_struct *vma,
3259 unsigned long address, pmd_t *pmd, pmd_t orig_pmd,
3260 unsigned int flags)
3262 if (vma_is_anonymous(vma))
3263 return do_huge_pmd_wp_page(mm, vma, address, pmd, orig_pmd);
3264 if (vma->vm_ops->pmd_fault)
3265 return vma->vm_ops->pmd_fault(vma, address, pmd, flags);
3266 return VM_FAULT_FALLBACK;
3270 * These routines also need to handle stuff like marking pages dirty
3271 * and/or accessed for architectures that don't do it in hardware (most
3272 * RISC architectures). The early dirtying is also good on the i386.
3274 * There is also a hook called "update_mmu_cache()" that architectures
3275 * with external mmu caches can use to update those (ie the Sparc or
3276 * PowerPC hashed page tables that act as extended TLBs).
3278 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3279 * but allow concurrent faults), and pte mapped but not yet locked.
3280 * We return with pte unmapped and unlocked.
3282 * The mmap_sem may have been released depending on flags and our
3283 * return value. See filemap_fault() and __lock_page_or_retry().
3285 static int handle_pte_fault(struct mm_struct *mm,
3286 struct vm_area_struct *vma, unsigned long address,
3287 pte_t *pte, pmd_t *pmd, unsigned int flags)
3289 pte_t entry;
3290 spinlock_t *ptl;
3293 * some architectures can have larger ptes than wordsize,
3294 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and CONFIG_32BIT=y,
3295 * so READ_ONCE or ACCESS_ONCE cannot guarantee atomic accesses.
3296 * The code below just needs a consistent view for the ifs and
3297 * we later double check anyway with the ptl lock held. So here
3298 * a barrier will do.
3300 entry = *pte;
3301 barrier();
3302 if (!pte_present(entry)) {
3303 if (pte_none(entry)) {
3304 if (vma_is_anonymous(vma))
3305 return do_anonymous_page(mm, vma, address,
3306 pte, pmd, flags);
3307 else
3308 return do_fault(mm, vma, address, pte, pmd,
3309 flags, entry);
3311 return do_swap_page(mm, vma, address,
3312 pte, pmd, flags, entry);
3315 if (pte_protnone(entry))
3316 return do_numa_page(mm, vma, address, entry, pte, pmd);
3318 ptl = pte_lockptr(mm, pmd);
3319 spin_lock(ptl);
3320 if (unlikely(!pte_same(*pte, entry)))
3321 goto unlock;
3322 if (flags & FAULT_FLAG_WRITE) {
3323 if (!pte_write(entry))
3324 return do_wp_page(mm, vma, address,
3325 pte, pmd, ptl, entry);
3326 entry = pte_mkdirty(entry);
3328 entry = pte_mkyoung(entry);
3329 if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
3330 update_mmu_cache(vma, address, pte);
3331 } else {
3333 * This is needed only for protection faults but the arch code
3334 * is not yet telling us if this is a protection fault or not.
3335 * This still avoids useless tlb flushes for .text page faults
3336 * with threads.
3338 if (flags & FAULT_FLAG_WRITE)
3339 flush_tlb_fix_spurious_fault(vma, address);
3341 unlock:
3342 pte_unmap_unlock(pte, ptl);
3343 return 0;
3347 * By the time we get here, we already hold the mm semaphore
3349 * The mmap_sem may have been released depending on flags and our
3350 * return value. See filemap_fault() and __lock_page_or_retry().
3352 static int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3353 unsigned long address, unsigned int flags)
3355 pgd_t *pgd;
3356 pud_t *pud;
3357 pmd_t *pmd;
3358 pte_t *pte;
3360 if (unlikely(is_vm_hugetlb_page(vma)))
3361 return hugetlb_fault(mm, vma, address, flags);
3363 pgd = pgd_offset(mm, address);
3364 pud = pud_alloc(mm, pgd, address);
3365 if (!pud)
3366 return VM_FAULT_OOM;
3367 pmd = pmd_alloc(mm, pud, address);
3368 if (!pmd)
3369 return VM_FAULT_OOM;
3370 if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
3371 int ret = create_huge_pmd(mm, vma, address, pmd, flags);
3372 if (!(ret & VM_FAULT_FALLBACK))
3373 return ret;
3374 } else {
3375 pmd_t orig_pmd = *pmd;
3376 int ret;
3378 barrier();
3379 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
3380 unsigned int dirty = flags & FAULT_FLAG_WRITE;
3382 if (pmd_protnone(orig_pmd))
3383 return do_huge_pmd_numa_page(mm, vma, address,
3384 orig_pmd, pmd);
3386 if (dirty && !pmd_write(orig_pmd)) {
3387 ret = wp_huge_pmd(mm, vma, address, pmd,
3388 orig_pmd, flags);
3389 if (!(ret & VM_FAULT_FALLBACK))
3390 return ret;
3391 } else {
3392 huge_pmd_set_accessed(mm, vma, address, pmd,
3393 orig_pmd, dirty);
3394 return 0;
3400 * Use __pte_alloc instead of pte_alloc_map, because we can't
3401 * run pte_offset_map on the pmd, if an huge pmd could
3402 * materialize from under us from a different thread.
3404 if (unlikely(pmd_none(*pmd)) &&
3405 unlikely(__pte_alloc(mm, vma, pmd, address)))
3406 return VM_FAULT_OOM;
3408 * If a huge pmd materialized under us just retry later. Use
3409 * pmd_trans_unstable() instead of pmd_trans_huge() to ensure the pmd
3410 * didn't become pmd_trans_huge under us and then back to pmd_none, as
3411 * a result of MADV_DONTNEED running immediately after a huge pmd fault
3412 * in a different thread of this mm, in turn leading to a misleading
3413 * pmd_trans_huge() retval. All we have to ensure is that it is a
3414 * regular pmd that we can walk with pte_offset_map() and we can do that
3415 * through an atomic read in C, which is what pmd_trans_unstable()
3416 * provides.
3418 if (unlikely(pmd_trans_unstable(pmd) || pmd_devmap(*pmd)))
3419 return 0;
3421 * A regular pmd is established and it can't morph into a huge pmd
3422 * from under us anymore at this point because we hold the mmap_sem
3423 * read mode and khugepaged takes it in write mode. So now it's
3424 * safe to run pte_offset_map().
3426 pte = pte_offset_map(pmd, address);
3428 return handle_pte_fault(mm, vma, address, pte, pmd, flags);
3432 * By the time we get here, we already hold the mm semaphore
3434 * The mmap_sem may have been released depending on flags and our
3435 * return value. See filemap_fault() and __lock_page_or_retry().
3437 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3438 unsigned long address, unsigned int flags)
3440 int ret;
3442 __set_current_state(TASK_RUNNING);
3444 count_vm_event(PGFAULT);
3445 mem_cgroup_count_vm_event(mm, PGFAULT);
3447 /* do counter updates before entering really critical section. */
3448 check_sync_rss_stat(current);
3451 * Enable the memcg OOM handling for faults triggered in user
3452 * space. Kernel faults are handled more gracefully.
3454 if (flags & FAULT_FLAG_USER)
3455 mem_cgroup_oom_enable();
3457 ret = __handle_mm_fault(mm, vma, address, flags);
3459 if (flags & FAULT_FLAG_USER) {
3460 mem_cgroup_oom_disable();
3462 * The task may have entered a memcg OOM situation but
3463 * if the allocation error was handled gracefully (no
3464 * VM_FAULT_OOM), there is no need to kill anything.
3465 * Just clean up the OOM state peacefully.
3467 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
3468 mem_cgroup_oom_synchronize(false);
3471 return ret;
3473 EXPORT_SYMBOL_GPL(handle_mm_fault);
3475 #ifndef __PAGETABLE_PUD_FOLDED
3477 * Allocate page upper directory.
3478 * We've already handled the fast-path in-line.
3480 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3482 pud_t *new = pud_alloc_one(mm, address);
3483 if (!new)
3484 return -ENOMEM;
3486 smp_wmb(); /* See comment in __pte_alloc */
3488 spin_lock(&mm->page_table_lock);
3489 if (pgd_present(*pgd)) /* Another has populated it */
3490 pud_free(mm, new);
3491 else
3492 pgd_populate(mm, pgd, new);
3493 spin_unlock(&mm->page_table_lock);
3494 return 0;
3496 #endif /* __PAGETABLE_PUD_FOLDED */
3498 #ifndef __PAGETABLE_PMD_FOLDED
3500 * Allocate page middle directory.
3501 * We've already handled the fast-path in-line.
3503 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3505 pmd_t *new = pmd_alloc_one(mm, address);
3506 if (!new)
3507 return -ENOMEM;
3509 smp_wmb(); /* See comment in __pte_alloc */
3511 spin_lock(&mm->page_table_lock);
3512 #ifndef __ARCH_HAS_4LEVEL_HACK
3513 if (!pud_present(*pud)) {
3514 mm_inc_nr_pmds(mm);
3515 pud_populate(mm, pud, new);
3516 } else /* Another has populated it */
3517 pmd_free(mm, new);
3518 #else
3519 if (!pgd_present(*pud)) {
3520 mm_inc_nr_pmds(mm);
3521 pgd_populate(mm, pud, new);
3522 } else /* Another has populated it */
3523 pmd_free(mm, new);
3524 #endif /* __ARCH_HAS_4LEVEL_HACK */
3525 spin_unlock(&mm->page_table_lock);
3526 return 0;
3528 #endif /* __PAGETABLE_PMD_FOLDED */
3530 static int __follow_pte(struct mm_struct *mm, unsigned long address,
3531 pte_t **ptepp, spinlock_t **ptlp)
3533 pgd_t *pgd;
3534 pud_t *pud;
3535 pmd_t *pmd;
3536 pte_t *ptep;
3538 pgd = pgd_offset(mm, address);
3539 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3540 goto out;
3542 pud = pud_offset(pgd, address);
3543 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3544 goto out;
3546 pmd = pmd_offset(pud, address);
3547 VM_BUG_ON(pmd_trans_huge(*pmd));
3548 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3549 goto out;
3551 /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3552 if (pmd_huge(*pmd))
3553 goto out;
3555 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3556 if (!ptep)
3557 goto out;
3558 if (!pte_present(*ptep))
3559 goto unlock;
3560 *ptepp = ptep;
3561 return 0;
3562 unlock:
3563 pte_unmap_unlock(ptep, *ptlp);
3564 out:
3565 return -EINVAL;
3568 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3569 pte_t **ptepp, spinlock_t **ptlp)
3571 int res;
3573 /* (void) is needed to make gcc happy */
3574 (void) __cond_lock(*ptlp,
3575 !(res = __follow_pte(mm, address, ptepp, ptlp)));
3576 return res;
3580 * follow_pfn - look up PFN at a user virtual address
3581 * @vma: memory mapping
3582 * @address: user virtual address
3583 * @pfn: location to store found PFN
3585 * Only IO mappings and raw PFN mappings are allowed.
3587 * Returns zero and the pfn at @pfn on success, -ve otherwise.
3589 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3590 unsigned long *pfn)
3592 int ret = -EINVAL;
3593 spinlock_t *ptl;
3594 pte_t *ptep;
3596 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3597 return ret;
3599 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3600 if (ret)
3601 return ret;
3602 *pfn = pte_pfn(*ptep);
3603 pte_unmap_unlock(ptep, ptl);
3604 return 0;
3606 EXPORT_SYMBOL(follow_pfn);
3608 #ifdef CONFIG_HAVE_IOREMAP_PROT
3609 int follow_phys(struct vm_area_struct *vma,
3610 unsigned long address, unsigned int flags,
3611 unsigned long *prot, resource_size_t *phys)
3613 int ret = -EINVAL;
3614 pte_t *ptep, pte;
3615 spinlock_t *ptl;
3617 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3618 goto out;
3620 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
3621 goto out;
3622 pte = *ptep;
3624 if ((flags & FOLL_WRITE) && !pte_write(pte))
3625 goto unlock;
3627 *prot = pgprot_val(pte_pgprot(pte));
3628 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
3630 ret = 0;
3631 unlock:
3632 pte_unmap_unlock(ptep, ptl);
3633 out:
3634 return ret;
3637 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3638 void *buf, int len, int write)
3640 resource_size_t phys_addr;
3641 unsigned long prot = 0;
3642 void __iomem *maddr;
3643 int offset = addr & (PAGE_SIZE-1);
3645 if (follow_phys(vma, addr, write, &prot, &phys_addr))
3646 return -EINVAL;
3648 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
3649 if (write)
3650 memcpy_toio(maddr + offset, buf, len);
3651 else
3652 memcpy_fromio(buf, maddr + offset, len);
3653 iounmap(maddr);
3655 return len;
3657 EXPORT_SYMBOL_GPL(generic_access_phys);
3658 #endif
3661 * Access another process' address space as given in mm. If non-NULL, use the
3662 * given task for page fault accounting.
3664 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
3665 unsigned long addr, void *buf, int len, int write)
3667 struct vm_area_struct *vma;
3668 void *old_buf = buf;
3670 down_read(&mm->mmap_sem);
3671 /* ignore errors, just check how much was successfully transferred */
3672 while (len) {
3673 int bytes, ret, offset;
3674 void *maddr;
3675 struct page *page = NULL;
3677 ret = get_user_pages(tsk, mm, addr, 1,
3678 write, 1, &page, &vma);
3679 if (ret <= 0) {
3680 #ifndef CONFIG_HAVE_IOREMAP_PROT
3681 break;
3682 #else
3684 * Check if this is a VM_IO | VM_PFNMAP VMA, which
3685 * we can access using slightly different code.
3687 vma = find_vma(mm, addr);
3688 if (!vma || vma->vm_start > addr)
3689 break;
3690 if (vma->vm_ops && vma->vm_ops->access)
3691 ret = vma->vm_ops->access(vma, addr, buf,
3692 len, write);
3693 if (ret <= 0)
3694 break;
3695 bytes = ret;
3696 #endif
3697 } else {
3698 bytes = len;
3699 offset = addr & (PAGE_SIZE-1);
3700 if (bytes > PAGE_SIZE-offset)
3701 bytes = PAGE_SIZE-offset;
3703 maddr = kmap(page);
3704 if (write) {
3705 copy_to_user_page(vma, page, addr,
3706 maddr + offset, buf, bytes);
3707 set_page_dirty_lock(page);
3708 } else {
3709 copy_from_user_page(vma, page, addr,
3710 buf, maddr + offset, bytes);
3712 kunmap(page);
3713 page_cache_release(page);
3715 len -= bytes;
3716 buf += bytes;
3717 addr += bytes;
3719 up_read(&mm->mmap_sem);
3721 return buf - old_buf;
3725 * access_remote_vm - access another process' address space
3726 * @mm: the mm_struct of the target address space
3727 * @addr: start address to access
3728 * @buf: source or destination buffer
3729 * @len: number of bytes to transfer
3730 * @write: whether the access is a write
3732 * The caller must hold a reference on @mm.
3734 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
3735 void *buf, int len, int write)
3737 return __access_remote_vm(NULL, mm, addr, buf, len, write);
3741 * Access another process' address space.
3742 * Source/target buffer must be kernel space,
3743 * Do not walk the page table directly, use get_user_pages
3745 int access_process_vm(struct task_struct *tsk, unsigned long addr,
3746 void *buf, int len, int write)
3748 struct mm_struct *mm;
3749 int ret;
3751 mm = get_task_mm(tsk);
3752 if (!mm)
3753 return 0;
3755 ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
3756 mmput(mm);
3758 return ret;
3762 * Print the name of a VMA.
3764 void print_vma_addr(char *prefix, unsigned long ip)
3766 struct mm_struct *mm = current->mm;
3767 struct vm_area_struct *vma;
3770 * Do not print if we are in atomic
3771 * contexts (in exception stacks, etc.):
3773 if (preempt_count())
3774 return;
3776 down_read(&mm->mmap_sem);
3777 vma = find_vma(mm, ip);
3778 if (vma && vma->vm_file) {
3779 struct file *f = vma->vm_file;
3780 char *buf = (char *)__get_free_page(GFP_KERNEL);
3781 if (buf) {
3782 char *p;
3784 p = file_path(f, buf, PAGE_SIZE);
3785 if (IS_ERR(p))
3786 p = "?";
3787 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
3788 vma->vm_start,
3789 vma->vm_end - vma->vm_start);
3790 free_page((unsigned long)buf);
3793 up_read(&mm->mmap_sem);
3796 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
3797 void __might_fault(const char *file, int line)
3800 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3801 * holding the mmap_sem, this is safe because kernel memory doesn't
3802 * get paged out, therefore we'll never actually fault, and the
3803 * below annotations will generate false positives.
3805 if (segment_eq(get_fs(), KERNEL_DS))
3806 return;
3807 if (pagefault_disabled())
3808 return;
3809 __might_sleep(file, line, 0);
3810 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
3811 if (current->mm)
3812 might_lock_read(&current->mm->mmap_sem);
3813 #endif
3815 EXPORT_SYMBOL(__might_fault);
3816 #endif
3818 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3819 static void clear_gigantic_page(struct page *page,
3820 unsigned long addr,
3821 unsigned int pages_per_huge_page)
3823 int i;
3824 struct page *p = page;
3826 might_sleep();
3827 for (i = 0; i < pages_per_huge_page;
3828 i++, p = mem_map_next(p, page, i)) {
3829 cond_resched();
3830 clear_user_highpage(p, addr + i * PAGE_SIZE);
3833 void clear_huge_page(struct page *page,
3834 unsigned long addr, unsigned int pages_per_huge_page)
3836 int i;
3838 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3839 clear_gigantic_page(page, addr, pages_per_huge_page);
3840 return;
3843 might_sleep();
3844 for (i = 0; i < pages_per_huge_page; i++) {
3845 cond_resched();
3846 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
3850 static void copy_user_gigantic_page(struct page *dst, struct page *src,
3851 unsigned long addr,
3852 struct vm_area_struct *vma,
3853 unsigned int pages_per_huge_page)
3855 int i;
3856 struct page *dst_base = dst;
3857 struct page *src_base = src;
3859 for (i = 0; i < pages_per_huge_page; ) {
3860 cond_resched();
3861 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
3863 i++;
3864 dst = mem_map_next(dst, dst_base, i);
3865 src = mem_map_next(src, src_base, i);
3869 void copy_user_huge_page(struct page *dst, struct page *src,
3870 unsigned long addr, struct vm_area_struct *vma,
3871 unsigned int pages_per_huge_page)
3873 int i;
3875 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3876 copy_user_gigantic_page(dst, src, addr, vma,
3877 pages_per_huge_page);
3878 return;
3881 might_sleep();
3882 for (i = 0; i < pages_per_huge_page; i++) {
3883 cond_resched();
3884 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
3887 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
3889 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
3891 static struct kmem_cache *page_ptl_cachep;
3893 void __init ptlock_cache_init(void)
3895 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
3896 SLAB_PANIC, NULL);
3899 bool ptlock_alloc(struct page *page)
3901 spinlock_t *ptl;
3903 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
3904 if (!ptl)
3905 return false;
3906 page->ptl = ptl;
3907 return true;
3910 void ptlock_free(struct page *page)
3912 kmem_cache_free(page_ptl_cachep, page->ptl);
3914 #endif