ath6kl: fix busreqs so they can be reused when sg is cleaned up
[linux-stable.git] / mm / page_io.c
blob16bd82fad38c18f985ccf7092537c2cacee31427
1 /*
2 * linux/mm/page_io.c
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 * Swap reorganised 29.12.95,
7 * Asynchronous swapping added 30.12.95. Stephen Tweedie
8 * Removed race in async swapping. 14.4.1996. Bruno Haible
9 * Add swap of shared pages through the page cache. 20.2.1998. Stephen Tweedie
10 * Always use brw_page, life becomes simpler. 12 May 1998 Eric Biederman
13 #include <linux/mm.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/gfp.h>
16 #include <linux/pagemap.h>
17 #include <linux/swap.h>
18 #include <linux/bio.h>
19 #include <linux/swapops.h>
20 #include <linux/buffer_head.h>
21 #include <linux/writeback.h>
22 #include <linux/frontswap.h>
23 #include <linux/blkdev.h>
24 #include <linux/uio.h>
25 #include <asm/pgtable.h>
27 static struct bio *get_swap_bio(gfp_t gfp_flags,
28 struct page *page, bio_end_io_t end_io)
30 struct bio *bio;
32 bio = bio_alloc(gfp_flags, 1);
33 if (bio) {
34 bio->bi_iter.bi_sector = map_swap_page(page, &bio->bi_bdev);
35 bio->bi_iter.bi_sector <<= PAGE_SHIFT - 9;
36 bio->bi_end_io = end_io;
38 bio_add_page(bio, page, PAGE_SIZE, 0);
39 BUG_ON(bio->bi_iter.bi_size != PAGE_SIZE);
41 return bio;
44 void end_swap_bio_write(struct bio *bio)
46 struct page *page = bio->bi_io_vec[0].bv_page;
48 if (bio->bi_error) {
49 SetPageError(page);
51 * We failed to write the page out to swap-space.
52 * Re-dirty the page in order to avoid it being reclaimed.
53 * Also print a dire warning that things will go BAD (tm)
54 * very quickly.
56 * Also clear PG_reclaim to avoid rotate_reclaimable_page()
58 set_page_dirty(page);
59 pr_alert("Write-error on swap-device (%u:%u:%llu)\n",
60 imajor(bio->bi_bdev->bd_inode),
61 iminor(bio->bi_bdev->bd_inode),
62 (unsigned long long)bio->bi_iter.bi_sector);
63 ClearPageReclaim(page);
65 end_page_writeback(page);
66 bio_put(bio);
69 static void swap_slot_free_notify(struct page *page)
71 struct swap_info_struct *sis;
72 struct gendisk *disk;
75 * There is no guarantee that the page is in swap cache - the software
76 * suspend code (at least) uses end_swap_bio_read() against a non-
77 * swapcache page. So we must check PG_swapcache before proceeding with
78 * this optimization.
80 if (unlikely(!PageSwapCache(page)))
81 return;
83 sis = page_swap_info(page);
84 if (!(sis->flags & SWP_BLKDEV))
85 return;
88 * The swap subsystem performs lazy swap slot freeing,
89 * expecting that the page will be swapped out again.
90 * So we can avoid an unnecessary write if the page
91 * isn't redirtied.
92 * This is good for real swap storage because we can
93 * reduce unnecessary I/O and enhance wear-leveling
94 * if an SSD is used as the as swap device.
95 * But if in-memory swap device (eg zram) is used,
96 * this causes a duplicated copy between uncompressed
97 * data in VM-owned memory and compressed data in
98 * zram-owned memory. So let's free zram-owned memory
99 * and make the VM-owned decompressed page *dirty*,
100 * so the page should be swapped out somewhere again if
101 * we again wish to reclaim it.
103 disk = sis->bdev->bd_disk;
104 if (disk->fops->swap_slot_free_notify) {
105 swp_entry_t entry;
106 unsigned long offset;
108 entry.val = page_private(page);
109 offset = swp_offset(entry);
111 SetPageDirty(page);
112 disk->fops->swap_slot_free_notify(sis->bdev,
113 offset);
117 static void end_swap_bio_read(struct bio *bio)
119 struct page *page = bio->bi_io_vec[0].bv_page;
121 if (bio->bi_error) {
122 SetPageError(page);
123 ClearPageUptodate(page);
124 pr_alert("Read-error on swap-device (%u:%u:%llu)\n",
125 imajor(bio->bi_bdev->bd_inode),
126 iminor(bio->bi_bdev->bd_inode),
127 (unsigned long long)bio->bi_iter.bi_sector);
128 goto out;
131 SetPageUptodate(page);
132 swap_slot_free_notify(page);
133 out:
134 unlock_page(page);
135 bio_put(bio);
138 int generic_swapfile_activate(struct swap_info_struct *sis,
139 struct file *swap_file,
140 sector_t *span)
142 struct address_space *mapping = swap_file->f_mapping;
143 struct inode *inode = mapping->host;
144 unsigned blocks_per_page;
145 unsigned long page_no;
146 unsigned blkbits;
147 sector_t probe_block;
148 sector_t last_block;
149 sector_t lowest_block = -1;
150 sector_t highest_block = 0;
151 int nr_extents = 0;
152 int ret;
154 blkbits = inode->i_blkbits;
155 blocks_per_page = PAGE_SIZE >> blkbits;
158 * Map all the blocks into the extent list. This code doesn't try
159 * to be very smart.
161 probe_block = 0;
162 page_no = 0;
163 last_block = i_size_read(inode) >> blkbits;
164 while ((probe_block + blocks_per_page) <= last_block &&
165 page_no < sis->max) {
166 unsigned block_in_page;
167 sector_t first_block;
169 cond_resched();
171 first_block = bmap(inode, probe_block);
172 if (first_block == 0)
173 goto bad_bmap;
176 * It must be PAGE_SIZE aligned on-disk
178 if (first_block & (blocks_per_page - 1)) {
179 probe_block++;
180 goto reprobe;
183 for (block_in_page = 1; block_in_page < blocks_per_page;
184 block_in_page++) {
185 sector_t block;
187 block = bmap(inode, probe_block + block_in_page);
188 if (block == 0)
189 goto bad_bmap;
190 if (block != first_block + block_in_page) {
191 /* Discontiguity */
192 probe_block++;
193 goto reprobe;
197 first_block >>= (PAGE_SHIFT - blkbits);
198 if (page_no) { /* exclude the header page */
199 if (first_block < lowest_block)
200 lowest_block = first_block;
201 if (first_block > highest_block)
202 highest_block = first_block;
206 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
208 ret = add_swap_extent(sis, page_no, 1, first_block);
209 if (ret < 0)
210 goto out;
211 nr_extents += ret;
212 page_no++;
213 probe_block += blocks_per_page;
214 reprobe:
215 continue;
217 ret = nr_extents;
218 *span = 1 + highest_block - lowest_block;
219 if (page_no == 0)
220 page_no = 1; /* force Empty message */
221 sis->max = page_no;
222 sis->pages = page_no - 1;
223 sis->highest_bit = page_no - 1;
224 out:
225 return ret;
226 bad_bmap:
227 pr_err("swapon: swapfile has holes\n");
228 ret = -EINVAL;
229 goto out;
233 * We may have stale swap cache pages in memory: notice
234 * them here and get rid of the unnecessary final write.
236 int swap_writepage(struct page *page, struct writeback_control *wbc)
238 int ret = 0;
240 if (try_to_free_swap(page)) {
241 unlock_page(page);
242 goto out;
244 if (frontswap_store(page) == 0) {
245 set_page_writeback(page);
246 unlock_page(page);
247 end_page_writeback(page);
248 goto out;
250 ret = __swap_writepage(page, wbc, end_swap_bio_write);
251 out:
252 return ret;
255 static sector_t swap_page_sector(struct page *page)
257 return (sector_t)__page_file_index(page) << (PAGE_SHIFT - 9);
260 int __swap_writepage(struct page *page, struct writeback_control *wbc,
261 bio_end_io_t end_write_func)
263 struct bio *bio;
264 int ret;
265 struct swap_info_struct *sis = page_swap_info(page);
267 if (sis->flags & SWP_FILE) {
268 struct kiocb kiocb;
269 struct file *swap_file = sis->swap_file;
270 struct address_space *mapping = swap_file->f_mapping;
271 struct bio_vec bv = {
272 .bv_page = page,
273 .bv_len = PAGE_SIZE,
274 .bv_offset = 0
276 struct iov_iter from;
278 iov_iter_bvec(&from, ITER_BVEC | WRITE, &bv, 1, PAGE_SIZE);
279 init_sync_kiocb(&kiocb, swap_file);
280 kiocb.ki_pos = page_file_offset(page);
282 set_page_writeback(page);
283 unlock_page(page);
284 ret = mapping->a_ops->direct_IO(&kiocb, &from);
285 if (ret == PAGE_SIZE) {
286 count_vm_event(PSWPOUT);
287 ret = 0;
288 } else {
290 * In the case of swap-over-nfs, this can be a
291 * temporary failure if the system has limited
292 * memory for allocating transmit buffers.
293 * Mark the page dirty and avoid
294 * rotate_reclaimable_page but rate-limit the
295 * messages but do not flag PageError like
296 * the normal direct-to-bio case as it could
297 * be temporary.
299 set_page_dirty(page);
300 ClearPageReclaim(page);
301 pr_err_ratelimited("Write error on dio swapfile (%llu)\n",
302 page_file_offset(page));
304 end_page_writeback(page);
305 return ret;
308 ret = bdev_write_page(sis->bdev, swap_page_sector(page), page, wbc);
309 if (!ret) {
310 count_vm_event(PSWPOUT);
311 return 0;
314 ret = 0;
315 bio = get_swap_bio(GFP_NOIO, page, end_write_func);
316 if (bio == NULL) {
317 set_page_dirty(page);
318 unlock_page(page);
319 ret = -ENOMEM;
320 goto out;
322 if (wbc->sync_mode == WB_SYNC_ALL)
323 bio_set_op_attrs(bio, REQ_OP_WRITE, REQ_SYNC);
324 else
325 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
326 count_vm_event(PSWPOUT);
327 set_page_writeback(page);
328 unlock_page(page);
329 submit_bio(bio);
330 out:
331 return ret;
334 int swap_readpage(struct page *page)
336 struct bio *bio;
337 int ret = 0;
338 struct swap_info_struct *sis = page_swap_info(page);
340 VM_BUG_ON_PAGE(!PageLocked(page), page);
341 VM_BUG_ON_PAGE(PageUptodate(page), page);
342 if (frontswap_load(page) == 0) {
343 SetPageUptodate(page);
344 unlock_page(page);
345 goto out;
348 if (sis->flags & SWP_FILE) {
349 struct file *swap_file = sis->swap_file;
350 struct address_space *mapping = swap_file->f_mapping;
352 ret = mapping->a_ops->readpage(swap_file, page);
353 if (!ret)
354 count_vm_event(PSWPIN);
355 return ret;
358 ret = bdev_read_page(sis->bdev, swap_page_sector(page), page);
359 if (!ret) {
360 if (trylock_page(page)) {
361 swap_slot_free_notify(page);
362 unlock_page(page);
365 count_vm_event(PSWPIN);
366 return 0;
369 ret = 0;
370 bio = get_swap_bio(GFP_KERNEL, page, end_swap_bio_read);
371 if (bio == NULL) {
372 unlock_page(page);
373 ret = -ENOMEM;
374 goto out;
376 bio_set_op_attrs(bio, REQ_OP_READ, 0);
377 count_vm_event(PSWPIN);
378 submit_bio(bio);
379 out:
380 return ret;
383 int swap_set_page_dirty(struct page *page)
385 struct swap_info_struct *sis = page_swap_info(page);
387 if (sis->flags & SWP_FILE) {
388 struct address_space *mapping = sis->swap_file->f_mapping;
389 return mapping->a_ops->set_page_dirty(page);
390 } else {
391 return __set_page_dirty_no_writeback(page);