1 /****************************************************************************
2 * Driver for Solarflare network controllers and boards
3 * Copyright 2012-2013 Solarflare Communications Inc.
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 as published
7 * by the Free Software Foundation, incorporated herein by reference.
10 #include "net_driver.h"
11 #include "ef10_regs.h"
14 #include "mcdi_pcol.h"
16 #include "workarounds.h"
18 #include "ef10_sriov.h"
20 #include <linux/jhash.h>
21 #include <linux/wait.h>
22 #include <linux/workqueue.h>
24 /* Hardware control for EF10 architecture including 'Huntington'. */
26 #define EFX_EF10_DRVGEN_EV 7
31 /* The maximum size of a shared RSS context */
32 /* TODO: this should really be from the mcdi protocol export */
33 #define EFX_EF10_MAX_SHARED_RSS_CONTEXT_SIZE 64UL
35 /* The filter table(s) are managed by firmware and we have write-only
36 * access. When removing filters we must identify them to the
37 * firmware by a 64-bit handle, but this is too wide for Linux kernel
38 * interfaces (32-bit for RX NFC, 16-bit for RFS). Also, we need to
39 * be able to tell in advance whether a requested insertion will
40 * replace an existing filter. Therefore we maintain a software hash
41 * table, which should be at least as large as the hardware hash
44 * Huntington has a single 8K filter table shared between all filter
45 * types and both ports.
47 #define HUNT_FILTER_TBL_ROWS 8192
49 #define EFX_EF10_FILTER_ID_INVALID 0xffff
51 #define EFX_EF10_FILTER_DEV_UC_MAX 32
52 #define EFX_EF10_FILTER_DEV_MC_MAX 256
55 struct efx_ef10_vlan
{
56 struct list_head list
;
60 enum efx_ef10_default_filters
{
64 EFX_EF10_VXLAN4_UCDEF
,
65 EFX_EF10_VXLAN4_MCDEF
,
66 EFX_EF10_VXLAN6_UCDEF
,
67 EFX_EF10_VXLAN6_MCDEF
,
68 EFX_EF10_NVGRE4_UCDEF
,
69 EFX_EF10_NVGRE4_MCDEF
,
70 EFX_EF10_NVGRE6_UCDEF
,
71 EFX_EF10_NVGRE6_MCDEF
,
72 EFX_EF10_GENEVE4_UCDEF
,
73 EFX_EF10_GENEVE4_MCDEF
,
74 EFX_EF10_GENEVE6_UCDEF
,
75 EFX_EF10_GENEVE6_MCDEF
,
77 EFX_EF10_NUM_DEFAULT_FILTERS
80 /* Per-VLAN filters information */
81 struct efx_ef10_filter_vlan
{
82 struct list_head list
;
84 u16 uc
[EFX_EF10_FILTER_DEV_UC_MAX
];
85 u16 mc
[EFX_EF10_FILTER_DEV_MC_MAX
];
86 u16 default_filters
[EFX_EF10_NUM_DEFAULT_FILTERS
];
89 struct efx_ef10_dev_addr
{
93 struct efx_ef10_filter_table
{
94 /* The MCDI match masks supported by this fw & hw, in order of priority */
95 u32 rx_match_mcdi_flags
[
96 MC_CMD_GET_PARSER_DISP_INFO_OUT_SUPPORTED_MATCHES_MAXNUM
* 2];
97 unsigned int rx_match_count
;
99 struct rw_semaphore lock
; /* Protects entries */
101 unsigned long spec
; /* pointer to spec plus flag bits */
102 /* AUTO_OLD is used to mark and sweep MAC filters for the device address lists. */
103 /* unused flag 1UL */
104 #define EFX_EF10_FILTER_FLAG_AUTO_OLD 2UL
105 #define EFX_EF10_FILTER_FLAGS 3UL
106 u64 handle
; /* firmware handle */
108 /* Shadow of net_device address lists, guarded by mac_lock */
109 struct efx_ef10_dev_addr dev_uc_list
[EFX_EF10_FILTER_DEV_UC_MAX
];
110 struct efx_ef10_dev_addr dev_mc_list
[EFX_EF10_FILTER_DEV_MC_MAX
];
115 /* Whether in multicast promiscuous mode when last changed */
116 bool mc_promisc_last
;
117 bool mc_overflow
; /* Too many MC addrs; should always imply mc_promisc */
119 struct list_head vlan_list
;
122 /* An arbitrary search limit for the software hash table */
123 #define EFX_EF10_FILTER_SEARCH_LIMIT 200
125 static void efx_ef10_rx_free_indir_table(struct efx_nic
*efx
);
126 static void efx_ef10_filter_table_remove(struct efx_nic
*efx
);
127 static int efx_ef10_filter_add_vlan(struct efx_nic
*efx
, u16 vid
);
128 static void efx_ef10_filter_del_vlan_internal(struct efx_nic
*efx
,
129 struct efx_ef10_filter_vlan
*vlan
);
130 static void efx_ef10_filter_del_vlan(struct efx_nic
*efx
, u16 vid
);
131 static int efx_ef10_set_udp_tnl_ports(struct efx_nic
*efx
, bool unloading
);
133 static u32
efx_ef10_filter_get_unsafe_id(u32 filter_id
)
135 WARN_ON_ONCE(filter_id
== EFX_EF10_FILTER_ID_INVALID
);
136 return filter_id
& (HUNT_FILTER_TBL_ROWS
- 1);
139 static unsigned int efx_ef10_filter_get_unsafe_pri(u32 filter_id
)
141 return filter_id
/ (HUNT_FILTER_TBL_ROWS
* 2);
144 static u32
efx_ef10_make_filter_id(unsigned int pri
, u16 idx
)
146 return pri
* HUNT_FILTER_TBL_ROWS
* 2 + idx
;
149 static int efx_ef10_get_warm_boot_count(struct efx_nic
*efx
)
153 efx_readd(efx
, ®
, ER_DZ_BIU_MC_SFT_STATUS
);
154 return EFX_DWORD_FIELD(reg
, EFX_WORD_1
) == 0xb007 ?
155 EFX_DWORD_FIELD(reg
, EFX_WORD_0
) : -EIO
;
158 /* On all EF10s up to and including SFC9220 (Medford1), all PFs use BAR 0 for
159 * I/O space and BAR 2(&3) for memory. On SFC9250 (Medford2), there is no I/O
160 * bar; PFs use BAR 0/1 for memory.
162 static unsigned int efx_ef10_pf_mem_bar(struct efx_nic
*efx
)
164 switch (efx
->pci_dev
->device
) {
165 case 0x0b03: /* SFC9250 PF */
172 /* All VFs use BAR 0/1 for memory */
173 static unsigned int efx_ef10_vf_mem_bar(struct efx_nic
*efx
)
178 static unsigned int efx_ef10_mem_map_size(struct efx_nic
*efx
)
182 bar
= efx
->type
->mem_bar(efx
);
183 return resource_size(&efx
->pci_dev
->resource
[bar
]);
186 static bool efx_ef10_is_vf(struct efx_nic
*efx
)
188 return efx
->type
->is_vf
;
191 static int efx_ef10_get_pf_index(struct efx_nic
*efx
)
193 MCDI_DECLARE_BUF(outbuf
, MC_CMD_GET_FUNCTION_INFO_OUT_LEN
);
194 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
198 rc
= efx_mcdi_rpc(efx
, MC_CMD_GET_FUNCTION_INFO
, NULL
, 0, outbuf
,
199 sizeof(outbuf
), &outlen
);
202 if (outlen
< sizeof(outbuf
))
205 nic_data
->pf_index
= MCDI_DWORD(outbuf
, GET_FUNCTION_INFO_OUT_PF
);
209 #ifdef CONFIG_SFC_SRIOV
210 static int efx_ef10_get_vf_index(struct efx_nic
*efx
)
212 MCDI_DECLARE_BUF(outbuf
, MC_CMD_GET_FUNCTION_INFO_OUT_LEN
);
213 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
217 rc
= efx_mcdi_rpc(efx
, MC_CMD_GET_FUNCTION_INFO
, NULL
, 0, outbuf
,
218 sizeof(outbuf
), &outlen
);
221 if (outlen
< sizeof(outbuf
))
224 nic_data
->vf_index
= MCDI_DWORD(outbuf
, GET_FUNCTION_INFO_OUT_VF
);
229 static int efx_ef10_init_datapath_caps(struct efx_nic
*efx
)
231 MCDI_DECLARE_BUF(outbuf
, MC_CMD_GET_CAPABILITIES_V4_OUT_LEN
);
232 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
236 BUILD_BUG_ON(MC_CMD_GET_CAPABILITIES_IN_LEN
!= 0);
238 rc
= efx_mcdi_rpc(efx
, MC_CMD_GET_CAPABILITIES
, NULL
, 0,
239 outbuf
, sizeof(outbuf
), &outlen
);
242 if (outlen
< MC_CMD_GET_CAPABILITIES_OUT_LEN
) {
243 netif_err(efx
, drv
, efx
->net_dev
,
244 "unable to read datapath firmware capabilities\n");
248 nic_data
->datapath_caps
=
249 MCDI_DWORD(outbuf
, GET_CAPABILITIES_OUT_FLAGS1
);
251 if (outlen
>= MC_CMD_GET_CAPABILITIES_V2_OUT_LEN
) {
252 nic_data
->datapath_caps2
= MCDI_DWORD(outbuf
,
253 GET_CAPABILITIES_V2_OUT_FLAGS2
);
254 nic_data
->piobuf_size
= MCDI_WORD(outbuf
,
255 GET_CAPABILITIES_V2_OUT_SIZE_PIO_BUFF
);
257 nic_data
->datapath_caps2
= 0;
258 nic_data
->piobuf_size
= ER_DZ_TX_PIOBUF_SIZE
;
261 /* record the DPCPU firmware IDs to determine VEB vswitching support.
263 nic_data
->rx_dpcpu_fw_id
=
264 MCDI_WORD(outbuf
, GET_CAPABILITIES_OUT_RX_DPCPU_FW_ID
);
265 nic_data
->tx_dpcpu_fw_id
=
266 MCDI_WORD(outbuf
, GET_CAPABILITIES_OUT_TX_DPCPU_FW_ID
);
268 if (!(nic_data
->datapath_caps
&
269 (1 << MC_CMD_GET_CAPABILITIES_OUT_RX_PREFIX_LEN_14_LBN
))) {
270 netif_err(efx
, probe
, efx
->net_dev
,
271 "current firmware does not support an RX prefix\n");
275 if (outlen
>= MC_CMD_GET_CAPABILITIES_V3_OUT_LEN
) {
276 u8 vi_window_mode
= MCDI_BYTE(outbuf
,
277 GET_CAPABILITIES_V3_OUT_VI_WINDOW_MODE
);
279 switch (vi_window_mode
) {
280 case MC_CMD_GET_CAPABILITIES_V3_OUT_VI_WINDOW_MODE_8K
:
281 efx
->vi_stride
= 8192;
283 case MC_CMD_GET_CAPABILITIES_V3_OUT_VI_WINDOW_MODE_16K
:
284 efx
->vi_stride
= 16384;
286 case MC_CMD_GET_CAPABILITIES_V3_OUT_VI_WINDOW_MODE_64K
:
287 efx
->vi_stride
= 65536;
290 netif_err(efx
, probe
, efx
->net_dev
,
291 "Unrecognised VI window mode %d\n",
295 netif_dbg(efx
, probe
, efx
->net_dev
, "vi_stride = %u\n",
298 /* keep default VI stride */
299 netif_dbg(efx
, probe
, efx
->net_dev
,
300 "firmware did not report VI window mode, assuming vi_stride = %u\n",
304 if (outlen
>= MC_CMD_GET_CAPABILITIES_V4_OUT_LEN
) {
305 efx
->num_mac_stats
= MCDI_WORD(outbuf
,
306 GET_CAPABILITIES_V4_OUT_MAC_STATS_NUM_STATS
);
307 netif_dbg(efx
, probe
, efx
->net_dev
,
308 "firmware reports num_mac_stats = %u\n",
311 /* leave num_mac_stats as the default value, MC_CMD_MAC_NSTATS */
312 netif_dbg(efx
, probe
, efx
->net_dev
,
313 "firmware did not report num_mac_stats, assuming %u\n",
320 static void efx_ef10_read_licensed_features(struct efx_nic
*efx
)
322 MCDI_DECLARE_BUF(inbuf
, MC_CMD_LICENSING_V3_IN_LEN
);
323 MCDI_DECLARE_BUF(outbuf
, MC_CMD_LICENSING_V3_OUT_LEN
);
324 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
328 MCDI_SET_DWORD(inbuf
, LICENSING_V3_IN_OP
,
329 MC_CMD_LICENSING_V3_IN_OP_REPORT_LICENSE
);
330 rc
= efx_mcdi_rpc_quiet(efx
, MC_CMD_LICENSING_V3
, inbuf
, sizeof(inbuf
),
331 outbuf
, sizeof(outbuf
), &outlen
);
332 if (rc
|| (outlen
< MC_CMD_LICENSING_V3_OUT_LEN
))
335 nic_data
->licensed_features
= MCDI_QWORD(outbuf
,
336 LICENSING_V3_OUT_LICENSED_FEATURES
);
339 static int efx_ef10_get_sysclk_freq(struct efx_nic
*efx
)
341 MCDI_DECLARE_BUF(outbuf
, MC_CMD_GET_CLOCK_OUT_LEN
);
344 rc
= efx_mcdi_rpc(efx
, MC_CMD_GET_CLOCK
, NULL
, 0,
345 outbuf
, sizeof(outbuf
), NULL
);
348 rc
= MCDI_DWORD(outbuf
, GET_CLOCK_OUT_SYS_FREQ
);
349 return rc
> 0 ? rc
: -ERANGE
;
352 static int efx_ef10_get_timer_workarounds(struct efx_nic
*efx
)
354 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
355 unsigned int implemented
;
356 unsigned int enabled
;
359 nic_data
->workaround_35388
= false;
360 nic_data
->workaround_61265
= false;
362 rc
= efx_mcdi_get_workarounds(efx
, &implemented
, &enabled
);
365 /* Firmware without GET_WORKAROUNDS - not a problem. */
367 } else if (rc
== 0) {
368 /* Bug61265 workaround is always enabled if implemented. */
369 if (enabled
& MC_CMD_GET_WORKAROUNDS_OUT_BUG61265
)
370 nic_data
->workaround_61265
= true;
372 if (enabled
& MC_CMD_GET_WORKAROUNDS_OUT_BUG35388
) {
373 nic_data
->workaround_35388
= true;
374 } else if (implemented
& MC_CMD_GET_WORKAROUNDS_OUT_BUG35388
) {
375 /* Workaround is implemented but not enabled.
378 rc
= efx_mcdi_set_workaround(efx
,
379 MC_CMD_WORKAROUND_BUG35388
,
382 nic_data
->workaround_35388
= true;
383 /* If we failed to set the workaround just carry on. */
388 netif_dbg(efx
, probe
, efx
->net_dev
,
389 "workaround for bug 35388 is %sabled\n",
390 nic_data
->workaround_35388
? "en" : "dis");
391 netif_dbg(efx
, probe
, efx
->net_dev
,
392 "workaround for bug 61265 is %sabled\n",
393 nic_data
->workaround_61265
? "en" : "dis");
398 static void efx_ef10_process_timer_config(struct efx_nic
*efx
,
399 const efx_dword_t
*data
)
401 unsigned int max_count
;
403 if (EFX_EF10_WORKAROUND_61265(efx
)) {
404 efx
->timer_quantum_ns
= MCDI_DWORD(data
,
405 GET_EVQ_TMR_PROPERTIES_OUT_MCDI_TMR_STEP_NS
);
406 efx
->timer_max_ns
= MCDI_DWORD(data
,
407 GET_EVQ_TMR_PROPERTIES_OUT_MCDI_TMR_MAX_NS
);
408 } else if (EFX_EF10_WORKAROUND_35388(efx
)) {
409 efx
->timer_quantum_ns
= MCDI_DWORD(data
,
410 GET_EVQ_TMR_PROPERTIES_OUT_BUG35388_TMR_NS_PER_COUNT
);
411 max_count
= MCDI_DWORD(data
,
412 GET_EVQ_TMR_PROPERTIES_OUT_BUG35388_TMR_MAX_COUNT
);
413 efx
->timer_max_ns
= max_count
* efx
->timer_quantum_ns
;
415 efx
->timer_quantum_ns
= MCDI_DWORD(data
,
416 GET_EVQ_TMR_PROPERTIES_OUT_TMR_REG_NS_PER_COUNT
);
417 max_count
= MCDI_DWORD(data
,
418 GET_EVQ_TMR_PROPERTIES_OUT_TMR_REG_MAX_COUNT
);
419 efx
->timer_max_ns
= max_count
* efx
->timer_quantum_ns
;
422 netif_dbg(efx
, probe
, efx
->net_dev
,
423 "got timer properties from MC: quantum %u ns; max %u ns\n",
424 efx
->timer_quantum_ns
, efx
->timer_max_ns
);
427 static int efx_ef10_get_timer_config(struct efx_nic
*efx
)
429 MCDI_DECLARE_BUF(outbuf
, MC_CMD_GET_EVQ_TMR_PROPERTIES_OUT_LEN
);
432 rc
= efx_ef10_get_timer_workarounds(efx
);
436 rc
= efx_mcdi_rpc_quiet(efx
, MC_CMD_GET_EVQ_TMR_PROPERTIES
, NULL
, 0,
437 outbuf
, sizeof(outbuf
), NULL
);
440 efx_ef10_process_timer_config(efx
, outbuf
);
441 } else if (rc
== -ENOSYS
|| rc
== -EPERM
) {
442 /* Not available - fall back to Huntington defaults. */
443 unsigned int quantum
;
445 rc
= efx_ef10_get_sysclk_freq(efx
);
449 quantum
= 1536000 / rc
; /* 1536 cycles */
450 efx
->timer_quantum_ns
= quantum
;
451 efx
->timer_max_ns
= efx
->type
->timer_period_max
* quantum
;
454 efx_mcdi_display_error(efx
, MC_CMD_GET_EVQ_TMR_PROPERTIES
,
455 MC_CMD_GET_EVQ_TMR_PROPERTIES_OUT_LEN
,
462 static int efx_ef10_get_mac_address_pf(struct efx_nic
*efx
, u8
*mac_address
)
464 MCDI_DECLARE_BUF(outbuf
, MC_CMD_GET_MAC_ADDRESSES_OUT_LEN
);
468 BUILD_BUG_ON(MC_CMD_GET_MAC_ADDRESSES_IN_LEN
!= 0);
470 rc
= efx_mcdi_rpc(efx
, MC_CMD_GET_MAC_ADDRESSES
, NULL
, 0,
471 outbuf
, sizeof(outbuf
), &outlen
);
474 if (outlen
< MC_CMD_GET_MAC_ADDRESSES_OUT_LEN
)
477 ether_addr_copy(mac_address
,
478 MCDI_PTR(outbuf
, GET_MAC_ADDRESSES_OUT_MAC_ADDR_BASE
));
482 static int efx_ef10_get_mac_address_vf(struct efx_nic
*efx
, u8
*mac_address
)
484 MCDI_DECLARE_BUF(inbuf
, MC_CMD_VPORT_GET_MAC_ADDRESSES_IN_LEN
);
485 MCDI_DECLARE_BUF(outbuf
, MC_CMD_VPORT_GET_MAC_ADDRESSES_OUT_LENMAX
);
489 MCDI_SET_DWORD(inbuf
, VPORT_GET_MAC_ADDRESSES_IN_VPORT_ID
,
490 EVB_PORT_ID_ASSIGNED
);
491 rc
= efx_mcdi_rpc(efx
, MC_CMD_VPORT_GET_MAC_ADDRESSES
, inbuf
,
492 sizeof(inbuf
), outbuf
, sizeof(outbuf
), &outlen
);
496 if (outlen
< MC_CMD_VPORT_GET_MAC_ADDRESSES_OUT_LENMIN
)
499 num_addrs
= MCDI_DWORD(outbuf
,
500 VPORT_GET_MAC_ADDRESSES_OUT_MACADDR_COUNT
);
502 WARN_ON(num_addrs
!= 1);
504 ether_addr_copy(mac_address
,
505 MCDI_PTR(outbuf
, VPORT_GET_MAC_ADDRESSES_OUT_MACADDR
));
510 static ssize_t
efx_ef10_show_link_control_flag(struct device
*dev
,
511 struct device_attribute
*attr
,
514 struct efx_nic
*efx
= pci_get_drvdata(to_pci_dev(dev
));
516 return sprintf(buf
, "%d\n",
517 ((efx
->mcdi
->fn_flags
) &
518 (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL
))
522 static ssize_t
efx_ef10_show_primary_flag(struct device
*dev
,
523 struct device_attribute
*attr
,
526 struct efx_nic
*efx
= pci_get_drvdata(to_pci_dev(dev
));
528 return sprintf(buf
, "%d\n",
529 ((efx
->mcdi
->fn_flags
) &
530 (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY
))
534 static struct efx_ef10_vlan
*efx_ef10_find_vlan(struct efx_nic
*efx
, u16 vid
)
536 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
537 struct efx_ef10_vlan
*vlan
;
539 WARN_ON(!mutex_is_locked(&nic_data
->vlan_lock
));
541 list_for_each_entry(vlan
, &nic_data
->vlan_list
, list
) {
542 if (vlan
->vid
== vid
)
549 static int efx_ef10_add_vlan(struct efx_nic
*efx
, u16 vid
)
551 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
552 struct efx_ef10_vlan
*vlan
;
555 mutex_lock(&nic_data
->vlan_lock
);
557 vlan
= efx_ef10_find_vlan(efx
, vid
);
559 /* We add VID 0 on init. 8021q adds it on module init
560 * for all interfaces with VLAN filtring feature.
564 netif_warn(efx
, drv
, efx
->net_dev
,
565 "VLAN %u already added\n", vid
);
571 vlan
= kzalloc(sizeof(*vlan
), GFP_KERNEL
);
577 list_add_tail(&vlan
->list
, &nic_data
->vlan_list
);
579 if (efx
->filter_state
) {
580 mutex_lock(&efx
->mac_lock
);
581 down_write(&efx
->filter_sem
);
582 rc
= efx_ef10_filter_add_vlan(efx
, vlan
->vid
);
583 up_write(&efx
->filter_sem
);
584 mutex_unlock(&efx
->mac_lock
);
586 goto fail_filter_add_vlan
;
590 mutex_unlock(&nic_data
->vlan_lock
);
593 fail_filter_add_vlan
:
594 list_del(&vlan
->list
);
598 mutex_unlock(&nic_data
->vlan_lock
);
602 static void efx_ef10_del_vlan_internal(struct efx_nic
*efx
,
603 struct efx_ef10_vlan
*vlan
)
605 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
607 WARN_ON(!mutex_is_locked(&nic_data
->vlan_lock
));
609 if (efx
->filter_state
) {
610 down_write(&efx
->filter_sem
);
611 efx_ef10_filter_del_vlan(efx
, vlan
->vid
);
612 up_write(&efx
->filter_sem
);
615 list_del(&vlan
->list
);
619 static int efx_ef10_del_vlan(struct efx_nic
*efx
, u16 vid
)
621 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
622 struct efx_ef10_vlan
*vlan
;
625 /* 8021q removes VID 0 on module unload for all interfaces
626 * with VLAN filtering feature. We need to keep it to receive
632 mutex_lock(&nic_data
->vlan_lock
);
634 vlan
= efx_ef10_find_vlan(efx
, vid
);
636 netif_err(efx
, drv
, efx
->net_dev
,
637 "VLAN %u to be deleted not found\n", vid
);
640 efx_ef10_del_vlan_internal(efx
, vlan
);
643 mutex_unlock(&nic_data
->vlan_lock
);
648 static void efx_ef10_cleanup_vlans(struct efx_nic
*efx
)
650 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
651 struct efx_ef10_vlan
*vlan
, *next_vlan
;
653 mutex_lock(&nic_data
->vlan_lock
);
654 list_for_each_entry_safe(vlan
, next_vlan
, &nic_data
->vlan_list
, list
)
655 efx_ef10_del_vlan_internal(efx
, vlan
);
656 mutex_unlock(&nic_data
->vlan_lock
);
659 static DEVICE_ATTR(link_control_flag
, 0444, efx_ef10_show_link_control_flag
,
661 static DEVICE_ATTR(primary_flag
, 0444, efx_ef10_show_primary_flag
, NULL
);
663 static int efx_ef10_probe(struct efx_nic
*efx
)
665 struct efx_ef10_nic_data
*nic_data
;
668 nic_data
= kzalloc(sizeof(*nic_data
), GFP_KERNEL
);
671 efx
->nic_data
= nic_data
;
673 /* we assume later that we can copy from this buffer in dwords */
674 BUILD_BUG_ON(MCDI_CTL_SDU_LEN_MAX_V2
% 4);
676 rc
= efx_nic_alloc_buffer(efx
, &nic_data
->mcdi_buf
,
677 8 + MCDI_CTL_SDU_LEN_MAX_V2
, GFP_KERNEL
);
681 /* Get the MC's warm boot count. In case it's rebooting right
682 * now, be prepared to retry.
686 rc
= efx_ef10_get_warm_boot_count(efx
);
693 nic_data
->warm_boot_count
= rc
;
695 efx
->rss_context
.context_id
= EFX_EF10_RSS_CONTEXT_INVALID
;
697 nic_data
->vport_id
= EVB_PORT_ID_ASSIGNED
;
699 /* In case we're recovering from a crash (kexec), we want to
700 * cancel any outstanding request by the previous user of this
701 * function. We send a special message using the least
702 * significant bits of the 'high' (doorbell) register.
704 _efx_writed(efx
, cpu_to_le32(1), ER_DZ_MC_DB_HWRD
);
706 rc
= efx_mcdi_init(efx
);
710 mutex_init(&nic_data
->udp_tunnels_lock
);
712 /* Reset (most) configuration for this function */
713 rc
= efx_mcdi_reset(efx
, RESET_TYPE_ALL
);
717 /* Enable event logging */
718 rc
= efx_mcdi_log_ctrl(efx
, true, false, 0);
722 rc
= device_create_file(&efx
->pci_dev
->dev
,
723 &dev_attr_link_control_flag
);
727 rc
= device_create_file(&efx
->pci_dev
->dev
, &dev_attr_primary_flag
);
731 rc
= efx_ef10_get_pf_index(efx
);
735 rc
= efx_ef10_init_datapath_caps(efx
);
739 efx_ef10_read_licensed_features(efx
);
741 /* We can have one VI for each vi_stride-byte region.
742 * However, until we use TX option descriptors we need two TX queues
745 efx
->max_channels
= min_t(unsigned int,
747 efx_ef10_mem_map_size(efx
) /
748 (efx
->vi_stride
* EFX_TXQ_TYPES
));
749 efx
->max_tx_channels
= efx
->max_channels
;
750 if (WARN_ON(efx
->max_channels
== 0)) {
755 efx
->rx_packet_len_offset
=
756 ES_DZ_RX_PREFIX_PKTLEN_OFST
- ES_DZ_RX_PREFIX_SIZE
;
758 if (nic_data
->datapath_caps
&
759 (1 << MC_CMD_GET_CAPABILITIES_OUT_RX_INCLUDE_FCS_LBN
))
760 efx
->net_dev
->hw_features
|= NETIF_F_RXFCS
;
762 rc
= efx_mcdi_port_get_number(efx
);
767 rc
= efx
->type
->get_mac_address(efx
, efx
->net_dev
->perm_addr
);
771 rc
= efx_ef10_get_timer_config(efx
);
775 rc
= efx_mcdi_mon_probe(efx
);
776 if (rc
&& rc
!= -EPERM
)
779 efx_ptp_defer_probe_with_channel(efx
);
781 #ifdef CONFIG_SFC_SRIOV
782 if ((efx
->pci_dev
->physfn
) && (!efx
->pci_dev
->is_physfn
)) {
783 struct pci_dev
*pci_dev_pf
= efx
->pci_dev
->physfn
;
784 struct efx_nic
*efx_pf
= pci_get_drvdata(pci_dev_pf
);
786 efx_pf
->type
->get_mac_address(efx_pf
, nic_data
->port_id
);
789 ether_addr_copy(nic_data
->port_id
, efx
->net_dev
->perm_addr
);
791 INIT_LIST_HEAD(&nic_data
->vlan_list
);
792 mutex_init(&nic_data
->vlan_lock
);
794 /* Add unspecified VID to support VLAN filtering being disabled */
795 rc
= efx_ef10_add_vlan(efx
, EFX_FILTER_VID_UNSPEC
);
797 goto fail_add_vid_unspec
;
799 /* If VLAN filtering is enabled, we need VID 0 to get untagged
800 * traffic. It is added automatically if 8021q module is loaded,
801 * but we can't rely on it since module may be not loaded.
803 rc
= efx_ef10_add_vlan(efx
, 0);
810 efx_ef10_cleanup_vlans(efx
);
812 mutex_destroy(&nic_data
->vlan_lock
);
814 efx_mcdi_mon_remove(efx
);
816 device_remove_file(&efx
->pci_dev
->dev
, &dev_attr_primary_flag
);
818 device_remove_file(&efx
->pci_dev
->dev
, &dev_attr_link_control_flag
);
820 efx_mcdi_detach(efx
);
822 mutex_lock(&nic_data
->udp_tunnels_lock
);
823 memset(nic_data
->udp_tunnels
, 0, sizeof(nic_data
->udp_tunnels
));
824 (void)efx_ef10_set_udp_tnl_ports(efx
, true);
825 mutex_unlock(&nic_data
->udp_tunnels_lock
);
826 mutex_destroy(&nic_data
->udp_tunnels_lock
);
830 efx_nic_free_buffer(efx
, &nic_data
->mcdi_buf
);
833 efx
->nic_data
= NULL
;
837 static int efx_ef10_free_vis(struct efx_nic
*efx
)
839 MCDI_DECLARE_BUF_ERR(outbuf
);
841 int rc
= efx_mcdi_rpc_quiet(efx
, MC_CMD_FREE_VIS
, NULL
, 0,
842 outbuf
, sizeof(outbuf
), &outlen
);
844 /* -EALREADY means nothing to free, so ignore */
848 efx_mcdi_display_error(efx
, MC_CMD_FREE_VIS
, 0, outbuf
, outlen
,
855 static void efx_ef10_free_piobufs(struct efx_nic
*efx
)
857 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
858 MCDI_DECLARE_BUF(inbuf
, MC_CMD_FREE_PIOBUF_IN_LEN
);
862 BUILD_BUG_ON(MC_CMD_FREE_PIOBUF_OUT_LEN
!= 0);
864 for (i
= 0; i
< nic_data
->n_piobufs
; i
++) {
865 MCDI_SET_DWORD(inbuf
, FREE_PIOBUF_IN_PIOBUF_HANDLE
,
866 nic_data
->piobuf_handle
[i
]);
867 rc
= efx_mcdi_rpc(efx
, MC_CMD_FREE_PIOBUF
, inbuf
, sizeof(inbuf
),
872 nic_data
->n_piobufs
= 0;
875 static int efx_ef10_alloc_piobufs(struct efx_nic
*efx
, unsigned int n
)
877 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
878 MCDI_DECLARE_BUF(outbuf
, MC_CMD_ALLOC_PIOBUF_OUT_LEN
);
883 BUILD_BUG_ON(MC_CMD_ALLOC_PIOBUF_IN_LEN
!= 0);
885 for (i
= 0; i
< n
; i
++) {
886 rc
= efx_mcdi_rpc_quiet(efx
, MC_CMD_ALLOC_PIOBUF
, NULL
, 0,
887 outbuf
, sizeof(outbuf
), &outlen
);
889 /* Don't display the MC error if we didn't have space
892 if (!(efx_ef10_is_vf(efx
) && rc
== -ENOSPC
))
893 efx_mcdi_display_error(efx
, MC_CMD_ALLOC_PIOBUF
,
894 0, outbuf
, outlen
, rc
);
897 if (outlen
< MC_CMD_ALLOC_PIOBUF_OUT_LEN
) {
901 nic_data
->piobuf_handle
[i
] =
902 MCDI_DWORD(outbuf
, ALLOC_PIOBUF_OUT_PIOBUF_HANDLE
);
903 netif_dbg(efx
, probe
, efx
->net_dev
,
904 "allocated PIO buffer %u handle %x\n", i
,
905 nic_data
->piobuf_handle
[i
]);
908 nic_data
->n_piobufs
= i
;
910 efx_ef10_free_piobufs(efx
);
914 static int efx_ef10_link_piobufs(struct efx_nic
*efx
)
916 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
917 MCDI_DECLARE_BUF(inbuf
, MC_CMD_LINK_PIOBUF_IN_LEN
);
918 struct efx_channel
*channel
;
919 struct efx_tx_queue
*tx_queue
;
920 unsigned int offset
, index
;
923 BUILD_BUG_ON(MC_CMD_LINK_PIOBUF_OUT_LEN
!= 0);
924 BUILD_BUG_ON(MC_CMD_UNLINK_PIOBUF_OUT_LEN
!= 0);
926 /* Link a buffer to each VI in the write-combining mapping */
927 for (index
= 0; index
< nic_data
->n_piobufs
; ++index
) {
928 MCDI_SET_DWORD(inbuf
, LINK_PIOBUF_IN_PIOBUF_HANDLE
,
929 nic_data
->piobuf_handle
[index
]);
930 MCDI_SET_DWORD(inbuf
, LINK_PIOBUF_IN_TXQ_INSTANCE
,
931 nic_data
->pio_write_vi_base
+ index
);
932 rc
= efx_mcdi_rpc(efx
, MC_CMD_LINK_PIOBUF
,
933 inbuf
, MC_CMD_LINK_PIOBUF_IN_LEN
,
936 netif_err(efx
, drv
, efx
->net_dev
,
937 "failed to link VI %u to PIO buffer %u (%d)\n",
938 nic_data
->pio_write_vi_base
+ index
, index
,
942 netif_dbg(efx
, probe
, efx
->net_dev
,
943 "linked VI %u to PIO buffer %u\n",
944 nic_data
->pio_write_vi_base
+ index
, index
);
947 /* Link a buffer to each TX queue */
948 efx_for_each_channel(channel
, efx
) {
949 /* Extra channels, even those with TXQs (PTP), do not require
952 if (!channel
->type
->want_pio
)
954 efx_for_each_channel_tx_queue(tx_queue
, channel
) {
955 /* We assign the PIO buffers to queues in
956 * reverse order to allow for the following
959 offset
= ((efx
->tx_channel_offset
+ efx
->n_tx_channels
-
960 tx_queue
->channel
->channel
- 1) *
962 index
= offset
/ nic_data
->piobuf_size
;
963 offset
= offset
% nic_data
->piobuf_size
;
965 /* When the host page size is 4K, the first
966 * host page in the WC mapping may be within
967 * the same VI page as the last TX queue. We
968 * can only link one buffer to each VI.
970 if (tx_queue
->queue
== nic_data
->pio_write_vi_base
) {
974 MCDI_SET_DWORD(inbuf
,
975 LINK_PIOBUF_IN_PIOBUF_HANDLE
,
976 nic_data
->piobuf_handle
[index
]);
977 MCDI_SET_DWORD(inbuf
,
978 LINK_PIOBUF_IN_TXQ_INSTANCE
,
980 rc
= efx_mcdi_rpc(efx
, MC_CMD_LINK_PIOBUF
,
981 inbuf
, MC_CMD_LINK_PIOBUF_IN_LEN
,
986 /* This is non-fatal; the TX path just
987 * won't use PIO for this queue
989 netif_err(efx
, drv
, efx
->net_dev
,
990 "failed to link VI %u to PIO buffer %u (%d)\n",
991 tx_queue
->queue
, index
, rc
);
992 tx_queue
->piobuf
= NULL
;
995 nic_data
->pio_write_base
+
996 index
* efx
->vi_stride
+ offset
;
997 tx_queue
->piobuf_offset
= offset
;
998 netif_dbg(efx
, probe
, efx
->net_dev
,
999 "linked VI %u to PIO buffer %u offset %x addr %p\n",
1000 tx_queue
->queue
, index
,
1001 tx_queue
->piobuf_offset
,
1010 /* inbuf was defined for MC_CMD_LINK_PIOBUF. We can use the same
1011 * buffer for MC_CMD_UNLINK_PIOBUF because it's shorter.
1013 BUILD_BUG_ON(MC_CMD_LINK_PIOBUF_IN_LEN
< MC_CMD_UNLINK_PIOBUF_IN_LEN
);
1015 MCDI_SET_DWORD(inbuf
, UNLINK_PIOBUF_IN_TXQ_INSTANCE
,
1016 nic_data
->pio_write_vi_base
+ index
);
1017 efx_mcdi_rpc(efx
, MC_CMD_UNLINK_PIOBUF
,
1018 inbuf
, MC_CMD_UNLINK_PIOBUF_IN_LEN
,
1024 static void efx_ef10_forget_old_piobufs(struct efx_nic
*efx
)
1026 struct efx_channel
*channel
;
1027 struct efx_tx_queue
*tx_queue
;
1029 /* All our existing PIO buffers went away */
1030 efx_for_each_channel(channel
, efx
)
1031 efx_for_each_channel_tx_queue(tx_queue
, channel
)
1032 tx_queue
->piobuf
= NULL
;
1035 #else /* !EFX_USE_PIO */
1037 static int efx_ef10_alloc_piobufs(struct efx_nic
*efx
, unsigned int n
)
1039 return n
== 0 ? 0 : -ENOBUFS
;
1042 static int efx_ef10_link_piobufs(struct efx_nic
*efx
)
1047 static void efx_ef10_free_piobufs(struct efx_nic
*efx
)
1051 static void efx_ef10_forget_old_piobufs(struct efx_nic
*efx
)
1055 #endif /* EFX_USE_PIO */
1057 static void efx_ef10_remove(struct efx_nic
*efx
)
1059 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
1062 #ifdef CONFIG_SFC_SRIOV
1063 struct efx_ef10_nic_data
*nic_data_pf
;
1064 struct pci_dev
*pci_dev_pf
;
1065 struct efx_nic
*efx_pf
;
1068 if (efx
->pci_dev
->is_virtfn
) {
1069 pci_dev_pf
= efx
->pci_dev
->physfn
;
1071 efx_pf
= pci_get_drvdata(pci_dev_pf
);
1072 nic_data_pf
= efx_pf
->nic_data
;
1073 vf
= nic_data_pf
->vf
+ nic_data
->vf_index
;
1076 netif_info(efx
, drv
, efx
->net_dev
,
1077 "Could not get the PF id from VF\n");
1081 efx_ef10_cleanup_vlans(efx
);
1082 mutex_destroy(&nic_data
->vlan_lock
);
1084 efx_ptp_remove(efx
);
1086 efx_mcdi_mon_remove(efx
);
1088 efx_ef10_rx_free_indir_table(efx
);
1090 if (nic_data
->wc_membase
)
1091 iounmap(nic_data
->wc_membase
);
1093 rc
= efx_ef10_free_vis(efx
);
1096 if (!nic_data
->must_restore_piobufs
)
1097 efx_ef10_free_piobufs(efx
);
1099 device_remove_file(&efx
->pci_dev
->dev
, &dev_attr_primary_flag
);
1100 device_remove_file(&efx
->pci_dev
->dev
, &dev_attr_link_control_flag
);
1102 efx_mcdi_detach(efx
);
1104 memset(nic_data
->udp_tunnels
, 0, sizeof(nic_data
->udp_tunnels
));
1105 mutex_lock(&nic_data
->udp_tunnels_lock
);
1106 (void)efx_ef10_set_udp_tnl_ports(efx
, true);
1107 mutex_unlock(&nic_data
->udp_tunnels_lock
);
1109 mutex_destroy(&nic_data
->udp_tunnels_lock
);
1112 efx_nic_free_buffer(efx
, &nic_data
->mcdi_buf
);
1116 static int efx_ef10_probe_pf(struct efx_nic
*efx
)
1118 return efx_ef10_probe(efx
);
1121 int efx_ef10_vadaptor_query(struct efx_nic
*efx
, unsigned int port_id
,
1122 u32
*port_flags
, u32
*vadaptor_flags
,
1123 unsigned int *vlan_tags
)
1125 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
1126 MCDI_DECLARE_BUF(inbuf
, MC_CMD_VADAPTOR_QUERY_IN_LEN
);
1127 MCDI_DECLARE_BUF(outbuf
, MC_CMD_VADAPTOR_QUERY_OUT_LEN
);
1131 if (nic_data
->datapath_caps
&
1132 (1 << MC_CMD_GET_CAPABILITIES_OUT_VADAPTOR_QUERY_LBN
)) {
1133 MCDI_SET_DWORD(inbuf
, VADAPTOR_QUERY_IN_UPSTREAM_PORT_ID
,
1136 rc
= efx_mcdi_rpc(efx
, MC_CMD_VADAPTOR_QUERY
, inbuf
, sizeof(inbuf
),
1137 outbuf
, sizeof(outbuf
), &outlen
);
1141 if (outlen
< sizeof(outbuf
)) {
1148 *port_flags
= MCDI_DWORD(outbuf
, VADAPTOR_QUERY_OUT_PORT_FLAGS
);
1151 MCDI_DWORD(outbuf
, VADAPTOR_QUERY_OUT_VADAPTOR_FLAGS
);
1155 VADAPTOR_QUERY_OUT_NUM_AVAILABLE_VLAN_TAGS
);
1160 int efx_ef10_vadaptor_alloc(struct efx_nic
*efx
, unsigned int port_id
)
1162 MCDI_DECLARE_BUF(inbuf
, MC_CMD_VADAPTOR_ALLOC_IN_LEN
);
1164 MCDI_SET_DWORD(inbuf
, VADAPTOR_ALLOC_IN_UPSTREAM_PORT_ID
, port_id
);
1165 return efx_mcdi_rpc(efx
, MC_CMD_VADAPTOR_ALLOC
, inbuf
, sizeof(inbuf
),
1169 int efx_ef10_vadaptor_free(struct efx_nic
*efx
, unsigned int port_id
)
1171 MCDI_DECLARE_BUF(inbuf
, MC_CMD_VADAPTOR_FREE_IN_LEN
);
1173 MCDI_SET_DWORD(inbuf
, VADAPTOR_FREE_IN_UPSTREAM_PORT_ID
, port_id
);
1174 return efx_mcdi_rpc(efx
, MC_CMD_VADAPTOR_FREE
, inbuf
, sizeof(inbuf
),
1178 int efx_ef10_vport_add_mac(struct efx_nic
*efx
,
1179 unsigned int port_id
, u8
*mac
)
1181 MCDI_DECLARE_BUF(inbuf
, MC_CMD_VPORT_ADD_MAC_ADDRESS_IN_LEN
);
1183 MCDI_SET_DWORD(inbuf
, VPORT_ADD_MAC_ADDRESS_IN_VPORT_ID
, port_id
);
1184 ether_addr_copy(MCDI_PTR(inbuf
, VPORT_ADD_MAC_ADDRESS_IN_MACADDR
), mac
);
1186 return efx_mcdi_rpc(efx
, MC_CMD_VPORT_ADD_MAC_ADDRESS
, inbuf
,
1187 sizeof(inbuf
), NULL
, 0, NULL
);
1190 int efx_ef10_vport_del_mac(struct efx_nic
*efx
,
1191 unsigned int port_id
, u8
*mac
)
1193 MCDI_DECLARE_BUF(inbuf
, MC_CMD_VPORT_DEL_MAC_ADDRESS_IN_LEN
);
1195 MCDI_SET_DWORD(inbuf
, VPORT_DEL_MAC_ADDRESS_IN_VPORT_ID
, port_id
);
1196 ether_addr_copy(MCDI_PTR(inbuf
, VPORT_DEL_MAC_ADDRESS_IN_MACADDR
), mac
);
1198 return efx_mcdi_rpc(efx
, MC_CMD_VPORT_DEL_MAC_ADDRESS
, inbuf
,
1199 sizeof(inbuf
), NULL
, 0, NULL
);
1202 #ifdef CONFIG_SFC_SRIOV
1203 static int efx_ef10_probe_vf(struct efx_nic
*efx
)
1206 struct pci_dev
*pci_dev_pf
;
1208 /* If the parent PF has no VF data structure, it doesn't know about this
1209 * VF so fail probe. The VF needs to be re-created. This can happen
1210 * if the PF driver is unloaded while the VF is assigned to a guest.
1212 pci_dev_pf
= efx
->pci_dev
->physfn
;
1214 struct efx_nic
*efx_pf
= pci_get_drvdata(pci_dev_pf
);
1215 struct efx_ef10_nic_data
*nic_data_pf
= efx_pf
->nic_data
;
1217 if (!nic_data_pf
->vf
) {
1218 netif_info(efx
, drv
, efx
->net_dev
,
1219 "The VF cannot link to its parent PF; "
1220 "please destroy and re-create the VF\n");
1225 rc
= efx_ef10_probe(efx
);
1229 rc
= efx_ef10_get_vf_index(efx
);
1233 if (efx
->pci_dev
->is_virtfn
) {
1234 if (efx
->pci_dev
->physfn
) {
1235 struct efx_nic
*efx_pf
=
1236 pci_get_drvdata(efx
->pci_dev
->physfn
);
1237 struct efx_ef10_nic_data
*nic_data_p
= efx_pf
->nic_data
;
1238 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
1240 nic_data_p
->vf
[nic_data
->vf_index
].efx
= efx
;
1241 nic_data_p
->vf
[nic_data
->vf_index
].pci_dev
=
1244 netif_info(efx
, drv
, efx
->net_dev
,
1245 "Could not get the PF id from VF\n");
1251 efx_ef10_remove(efx
);
1255 static int efx_ef10_probe_vf(struct efx_nic
*efx
__attribute__ ((unused
)))
1261 static int efx_ef10_alloc_vis(struct efx_nic
*efx
,
1262 unsigned int min_vis
, unsigned int max_vis
)
1264 MCDI_DECLARE_BUF(inbuf
, MC_CMD_ALLOC_VIS_IN_LEN
);
1265 MCDI_DECLARE_BUF(outbuf
, MC_CMD_ALLOC_VIS_OUT_LEN
);
1266 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
1270 MCDI_SET_DWORD(inbuf
, ALLOC_VIS_IN_MIN_VI_COUNT
, min_vis
);
1271 MCDI_SET_DWORD(inbuf
, ALLOC_VIS_IN_MAX_VI_COUNT
, max_vis
);
1272 rc
= efx_mcdi_rpc(efx
, MC_CMD_ALLOC_VIS
, inbuf
, sizeof(inbuf
),
1273 outbuf
, sizeof(outbuf
), &outlen
);
1277 if (outlen
< MC_CMD_ALLOC_VIS_OUT_LEN
)
1280 netif_dbg(efx
, drv
, efx
->net_dev
, "base VI is A0x%03x\n",
1281 MCDI_DWORD(outbuf
, ALLOC_VIS_OUT_VI_BASE
));
1283 nic_data
->vi_base
= MCDI_DWORD(outbuf
, ALLOC_VIS_OUT_VI_BASE
);
1284 nic_data
->n_allocated_vis
= MCDI_DWORD(outbuf
, ALLOC_VIS_OUT_VI_COUNT
);
1288 /* Note that the failure path of this function does not free
1289 * resources, as this will be done by efx_ef10_remove().
1291 static int efx_ef10_dimension_resources(struct efx_nic
*efx
)
1293 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
1294 unsigned int uc_mem_map_size
, wc_mem_map_size
;
1295 unsigned int min_vis
= max(EFX_TXQ_TYPES
,
1296 efx_separate_tx_channels
? 2 : 1);
1297 unsigned int channel_vis
, pio_write_vi_base
, max_vis
;
1298 void __iomem
*membase
;
1301 channel_vis
= max(efx
->n_channels
,
1302 (efx
->n_tx_channels
+ efx
->n_extra_tx_channels
) *
1306 /* Try to allocate PIO buffers if wanted and if the full
1307 * number of PIO buffers would be sufficient to allocate one
1308 * copy-buffer per TX channel. Failure is non-fatal, as there
1309 * are only a small number of PIO buffers shared between all
1310 * functions of the controller.
1312 if (efx_piobuf_size
!= 0 &&
1313 nic_data
->piobuf_size
/ efx_piobuf_size
* EF10_TX_PIOBUF_COUNT
>=
1314 efx
->n_tx_channels
) {
1315 unsigned int n_piobufs
=
1316 DIV_ROUND_UP(efx
->n_tx_channels
,
1317 nic_data
->piobuf_size
/ efx_piobuf_size
);
1319 rc
= efx_ef10_alloc_piobufs(efx
, n_piobufs
);
1321 netif_dbg(efx
, probe
, efx
->net_dev
,
1322 "out of PIO buffers; cannot allocate more\n");
1323 else if (rc
== -EPERM
)
1324 netif_dbg(efx
, probe
, efx
->net_dev
,
1325 "not permitted to allocate PIO buffers\n");
1327 netif_err(efx
, probe
, efx
->net_dev
,
1328 "failed to allocate PIO buffers (%d)\n", rc
);
1330 netif_dbg(efx
, probe
, efx
->net_dev
,
1331 "allocated %u PIO buffers\n", n_piobufs
);
1334 nic_data
->n_piobufs
= 0;
1337 /* PIO buffers should be mapped with write-combining enabled,
1338 * and we want to make single UC and WC mappings rather than
1339 * several of each (in fact that's the only option if host
1340 * page size is >4K). So we may allocate some extra VIs just
1341 * for writing PIO buffers through.
1343 * The UC mapping contains (channel_vis - 1) complete VIs and the
1344 * first 4K of the next VI. Then the WC mapping begins with
1345 * the remainder of this last VI.
1347 uc_mem_map_size
= PAGE_ALIGN((channel_vis
- 1) * efx
->vi_stride
+
1349 if (nic_data
->n_piobufs
) {
1350 /* pio_write_vi_base rounds down to give the number of complete
1351 * VIs inside the UC mapping.
1353 pio_write_vi_base
= uc_mem_map_size
/ efx
->vi_stride
;
1354 wc_mem_map_size
= (PAGE_ALIGN((pio_write_vi_base
+
1355 nic_data
->n_piobufs
) *
1358 max_vis
= pio_write_vi_base
+ nic_data
->n_piobufs
;
1360 pio_write_vi_base
= 0;
1361 wc_mem_map_size
= 0;
1362 max_vis
= channel_vis
;
1365 /* In case the last attached driver failed to free VIs, do it now */
1366 rc
= efx_ef10_free_vis(efx
);
1370 rc
= efx_ef10_alloc_vis(efx
, min_vis
, max_vis
);
1374 if (nic_data
->n_allocated_vis
< channel_vis
) {
1375 netif_info(efx
, drv
, efx
->net_dev
,
1376 "Could not allocate enough VIs to satisfy RSS"
1377 " requirements. Performance may not be optimal.\n");
1378 /* We didn't get the VIs to populate our channels.
1379 * We could keep what we got but then we'd have more
1380 * interrupts than we need.
1381 * Instead calculate new max_channels and restart
1383 efx
->max_channels
= nic_data
->n_allocated_vis
;
1384 efx
->max_tx_channels
=
1385 nic_data
->n_allocated_vis
/ EFX_TXQ_TYPES
;
1387 efx_ef10_free_vis(efx
);
1391 /* If we didn't get enough VIs to map all the PIO buffers, free the
1394 if (nic_data
->n_piobufs
&&
1395 nic_data
->n_allocated_vis
<
1396 pio_write_vi_base
+ nic_data
->n_piobufs
) {
1397 netif_dbg(efx
, probe
, efx
->net_dev
,
1398 "%u VIs are not sufficient to map %u PIO buffers\n",
1399 nic_data
->n_allocated_vis
, nic_data
->n_piobufs
);
1400 efx_ef10_free_piobufs(efx
);
1403 /* Shrink the original UC mapping of the memory BAR */
1404 membase
= ioremap_nocache(efx
->membase_phys
, uc_mem_map_size
);
1406 netif_err(efx
, probe
, efx
->net_dev
,
1407 "could not shrink memory BAR to %x\n",
1411 iounmap(efx
->membase
);
1412 efx
->membase
= membase
;
1414 /* Set up the WC mapping if needed */
1415 if (wc_mem_map_size
) {
1416 nic_data
->wc_membase
= ioremap_wc(efx
->membase_phys
+
1419 if (!nic_data
->wc_membase
) {
1420 netif_err(efx
, probe
, efx
->net_dev
,
1421 "could not allocate WC mapping of size %x\n",
1425 nic_data
->pio_write_vi_base
= pio_write_vi_base
;
1426 nic_data
->pio_write_base
=
1427 nic_data
->wc_membase
+
1428 (pio_write_vi_base
* efx
->vi_stride
+ ER_DZ_TX_PIOBUF
-
1431 rc
= efx_ef10_link_piobufs(efx
);
1433 efx_ef10_free_piobufs(efx
);
1436 netif_dbg(efx
, probe
, efx
->net_dev
,
1437 "memory BAR at %pa (virtual %p+%x UC, %p+%x WC)\n",
1438 &efx
->membase_phys
, efx
->membase
, uc_mem_map_size
,
1439 nic_data
->wc_membase
, wc_mem_map_size
);
1444 static int efx_ef10_init_nic(struct efx_nic
*efx
)
1446 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
1449 if (nic_data
->must_check_datapath_caps
) {
1450 rc
= efx_ef10_init_datapath_caps(efx
);
1453 nic_data
->must_check_datapath_caps
= false;
1456 if (nic_data
->must_realloc_vis
) {
1457 /* We cannot let the number of VIs change now */
1458 rc
= efx_ef10_alloc_vis(efx
, nic_data
->n_allocated_vis
,
1459 nic_data
->n_allocated_vis
);
1462 nic_data
->must_realloc_vis
= false;
1465 if (nic_data
->must_restore_piobufs
&& nic_data
->n_piobufs
) {
1466 rc
= efx_ef10_alloc_piobufs(efx
, nic_data
->n_piobufs
);
1468 rc
= efx_ef10_link_piobufs(efx
);
1470 efx_ef10_free_piobufs(efx
);
1473 /* Log an error on failure, but this is non-fatal.
1474 * Permission errors are less important - we've presumably
1475 * had the PIO buffer licence removed.
1478 netif_dbg(efx
, drv
, efx
->net_dev
,
1479 "not permitted to restore PIO buffers\n");
1481 netif_err(efx
, drv
, efx
->net_dev
,
1482 "failed to restore PIO buffers (%d)\n", rc
);
1483 nic_data
->must_restore_piobufs
= false;
1486 /* don't fail init if RSS setup doesn't work */
1487 rc
= efx
->type
->rx_push_rss_config(efx
, false,
1488 efx
->rss_context
.rx_indir_table
, NULL
);
1493 static void efx_ef10_reset_mc_allocations(struct efx_nic
*efx
)
1495 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
1496 #ifdef CONFIG_SFC_SRIOV
1500 /* All our allocations have been reset */
1501 nic_data
->must_realloc_vis
= true;
1502 nic_data
->must_restore_rss_contexts
= true;
1503 nic_data
->must_restore_filters
= true;
1504 nic_data
->must_restore_piobufs
= true;
1505 efx_ef10_forget_old_piobufs(efx
);
1506 efx
->rss_context
.context_id
= EFX_EF10_RSS_CONTEXT_INVALID
;
1508 /* Driver-created vswitches and vports must be re-created */
1509 nic_data
->must_probe_vswitching
= true;
1510 nic_data
->vport_id
= EVB_PORT_ID_ASSIGNED
;
1511 #ifdef CONFIG_SFC_SRIOV
1513 for (i
= 0; i
< efx
->vf_count
; i
++)
1514 nic_data
->vf
[i
].vport_id
= 0;
1518 static enum reset_type
efx_ef10_map_reset_reason(enum reset_type reason
)
1520 if (reason
== RESET_TYPE_MC_FAILURE
)
1521 return RESET_TYPE_DATAPATH
;
1523 return efx_mcdi_map_reset_reason(reason
);
1526 static int efx_ef10_map_reset_flags(u32
*flags
)
1529 EF10_RESET_PORT
= ((ETH_RESET_MAC
| ETH_RESET_PHY
) <<
1530 ETH_RESET_SHARED_SHIFT
),
1531 EF10_RESET_MC
= ((ETH_RESET_DMA
| ETH_RESET_FILTER
|
1532 ETH_RESET_OFFLOAD
| ETH_RESET_MAC
|
1533 ETH_RESET_PHY
| ETH_RESET_MGMT
) <<
1534 ETH_RESET_SHARED_SHIFT
)
1537 /* We assume for now that our PCI function is permitted to
1541 if ((*flags
& EF10_RESET_MC
) == EF10_RESET_MC
) {
1542 *flags
&= ~EF10_RESET_MC
;
1543 return RESET_TYPE_WORLD
;
1546 if ((*flags
& EF10_RESET_PORT
) == EF10_RESET_PORT
) {
1547 *flags
&= ~EF10_RESET_PORT
;
1548 return RESET_TYPE_ALL
;
1551 /* no invisible reset implemented */
1556 static int efx_ef10_reset(struct efx_nic
*efx
, enum reset_type reset_type
)
1558 int rc
= efx_mcdi_reset(efx
, reset_type
);
1560 /* Unprivileged functions return -EPERM, but need to return success
1561 * here so that the datapath is brought back up.
1563 if (reset_type
== RESET_TYPE_WORLD
&& rc
== -EPERM
)
1566 /* If it was a port reset, trigger reallocation of MC resources.
1567 * Note that on an MC reset nothing needs to be done now because we'll
1568 * detect the MC reset later and handle it then.
1569 * For an FLR, we never get an MC reset event, but the MC has reset all
1570 * resources assigned to us, so we have to trigger reallocation now.
1572 if ((reset_type
== RESET_TYPE_ALL
||
1573 reset_type
== RESET_TYPE_MCDI_TIMEOUT
) && !rc
)
1574 efx_ef10_reset_mc_allocations(efx
);
1578 #define EF10_DMA_STAT(ext_name, mcdi_name) \
1579 [EF10_STAT_ ## ext_name] = \
1580 { #ext_name, 64, 8 * MC_CMD_MAC_ ## mcdi_name }
1581 #define EF10_DMA_INVIS_STAT(int_name, mcdi_name) \
1582 [EF10_STAT_ ## int_name] = \
1583 { NULL, 64, 8 * MC_CMD_MAC_ ## mcdi_name }
1584 #define EF10_OTHER_STAT(ext_name) \
1585 [EF10_STAT_ ## ext_name] = { #ext_name, 0, 0 }
1586 #define GENERIC_SW_STAT(ext_name) \
1587 [GENERIC_STAT_ ## ext_name] = { #ext_name, 0, 0 }
1589 static const struct efx_hw_stat_desc efx_ef10_stat_desc
[EF10_STAT_COUNT
] = {
1590 EF10_DMA_STAT(port_tx_bytes
, TX_BYTES
),
1591 EF10_DMA_STAT(port_tx_packets
, TX_PKTS
),
1592 EF10_DMA_STAT(port_tx_pause
, TX_PAUSE_PKTS
),
1593 EF10_DMA_STAT(port_tx_control
, TX_CONTROL_PKTS
),
1594 EF10_DMA_STAT(port_tx_unicast
, TX_UNICAST_PKTS
),
1595 EF10_DMA_STAT(port_tx_multicast
, TX_MULTICAST_PKTS
),
1596 EF10_DMA_STAT(port_tx_broadcast
, TX_BROADCAST_PKTS
),
1597 EF10_DMA_STAT(port_tx_lt64
, TX_LT64_PKTS
),
1598 EF10_DMA_STAT(port_tx_64
, TX_64_PKTS
),
1599 EF10_DMA_STAT(port_tx_65_to_127
, TX_65_TO_127_PKTS
),
1600 EF10_DMA_STAT(port_tx_128_to_255
, TX_128_TO_255_PKTS
),
1601 EF10_DMA_STAT(port_tx_256_to_511
, TX_256_TO_511_PKTS
),
1602 EF10_DMA_STAT(port_tx_512_to_1023
, TX_512_TO_1023_PKTS
),
1603 EF10_DMA_STAT(port_tx_1024_to_15xx
, TX_1024_TO_15XX_PKTS
),
1604 EF10_DMA_STAT(port_tx_15xx_to_jumbo
, TX_15XX_TO_JUMBO_PKTS
),
1605 EF10_DMA_STAT(port_rx_bytes
, RX_BYTES
),
1606 EF10_DMA_INVIS_STAT(port_rx_bytes_minus_good_bytes
, RX_BAD_BYTES
),
1607 EF10_OTHER_STAT(port_rx_good_bytes
),
1608 EF10_OTHER_STAT(port_rx_bad_bytes
),
1609 EF10_DMA_STAT(port_rx_packets
, RX_PKTS
),
1610 EF10_DMA_STAT(port_rx_good
, RX_GOOD_PKTS
),
1611 EF10_DMA_STAT(port_rx_bad
, RX_BAD_FCS_PKTS
),
1612 EF10_DMA_STAT(port_rx_pause
, RX_PAUSE_PKTS
),
1613 EF10_DMA_STAT(port_rx_control
, RX_CONTROL_PKTS
),
1614 EF10_DMA_STAT(port_rx_unicast
, RX_UNICAST_PKTS
),
1615 EF10_DMA_STAT(port_rx_multicast
, RX_MULTICAST_PKTS
),
1616 EF10_DMA_STAT(port_rx_broadcast
, RX_BROADCAST_PKTS
),
1617 EF10_DMA_STAT(port_rx_lt64
, RX_UNDERSIZE_PKTS
),
1618 EF10_DMA_STAT(port_rx_64
, RX_64_PKTS
),
1619 EF10_DMA_STAT(port_rx_65_to_127
, RX_65_TO_127_PKTS
),
1620 EF10_DMA_STAT(port_rx_128_to_255
, RX_128_TO_255_PKTS
),
1621 EF10_DMA_STAT(port_rx_256_to_511
, RX_256_TO_511_PKTS
),
1622 EF10_DMA_STAT(port_rx_512_to_1023
, RX_512_TO_1023_PKTS
),
1623 EF10_DMA_STAT(port_rx_1024_to_15xx
, RX_1024_TO_15XX_PKTS
),
1624 EF10_DMA_STAT(port_rx_15xx_to_jumbo
, RX_15XX_TO_JUMBO_PKTS
),
1625 EF10_DMA_STAT(port_rx_gtjumbo
, RX_GTJUMBO_PKTS
),
1626 EF10_DMA_STAT(port_rx_bad_gtjumbo
, RX_JABBER_PKTS
),
1627 EF10_DMA_STAT(port_rx_overflow
, RX_OVERFLOW_PKTS
),
1628 EF10_DMA_STAT(port_rx_align_error
, RX_ALIGN_ERROR_PKTS
),
1629 EF10_DMA_STAT(port_rx_length_error
, RX_LENGTH_ERROR_PKTS
),
1630 EF10_DMA_STAT(port_rx_nodesc_drops
, RX_NODESC_DROPS
),
1631 GENERIC_SW_STAT(rx_nodesc_trunc
),
1632 GENERIC_SW_STAT(rx_noskb_drops
),
1633 EF10_DMA_STAT(port_rx_pm_trunc_bb_overflow
, PM_TRUNC_BB_OVERFLOW
),
1634 EF10_DMA_STAT(port_rx_pm_discard_bb_overflow
, PM_DISCARD_BB_OVERFLOW
),
1635 EF10_DMA_STAT(port_rx_pm_trunc_vfifo_full
, PM_TRUNC_VFIFO_FULL
),
1636 EF10_DMA_STAT(port_rx_pm_discard_vfifo_full
, PM_DISCARD_VFIFO_FULL
),
1637 EF10_DMA_STAT(port_rx_pm_trunc_qbb
, PM_TRUNC_QBB
),
1638 EF10_DMA_STAT(port_rx_pm_discard_qbb
, PM_DISCARD_QBB
),
1639 EF10_DMA_STAT(port_rx_pm_discard_mapping
, PM_DISCARD_MAPPING
),
1640 EF10_DMA_STAT(port_rx_dp_q_disabled_packets
, RXDP_Q_DISABLED_PKTS
),
1641 EF10_DMA_STAT(port_rx_dp_di_dropped_packets
, RXDP_DI_DROPPED_PKTS
),
1642 EF10_DMA_STAT(port_rx_dp_streaming_packets
, RXDP_STREAMING_PKTS
),
1643 EF10_DMA_STAT(port_rx_dp_hlb_fetch
, RXDP_HLB_FETCH_CONDITIONS
),
1644 EF10_DMA_STAT(port_rx_dp_hlb_wait
, RXDP_HLB_WAIT_CONDITIONS
),
1645 EF10_DMA_STAT(rx_unicast
, VADAPTER_RX_UNICAST_PACKETS
),
1646 EF10_DMA_STAT(rx_unicast_bytes
, VADAPTER_RX_UNICAST_BYTES
),
1647 EF10_DMA_STAT(rx_multicast
, VADAPTER_RX_MULTICAST_PACKETS
),
1648 EF10_DMA_STAT(rx_multicast_bytes
, VADAPTER_RX_MULTICAST_BYTES
),
1649 EF10_DMA_STAT(rx_broadcast
, VADAPTER_RX_BROADCAST_PACKETS
),
1650 EF10_DMA_STAT(rx_broadcast_bytes
, VADAPTER_RX_BROADCAST_BYTES
),
1651 EF10_DMA_STAT(rx_bad
, VADAPTER_RX_BAD_PACKETS
),
1652 EF10_DMA_STAT(rx_bad_bytes
, VADAPTER_RX_BAD_BYTES
),
1653 EF10_DMA_STAT(rx_overflow
, VADAPTER_RX_OVERFLOW
),
1654 EF10_DMA_STAT(tx_unicast
, VADAPTER_TX_UNICAST_PACKETS
),
1655 EF10_DMA_STAT(tx_unicast_bytes
, VADAPTER_TX_UNICAST_BYTES
),
1656 EF10_DMA_STAT(tx_multicast
, VADAPTER_TX_MULTICAST_PACKETS
),
1657 EF10_DMA_STAT(tx_multicast_bytes
, VADAPTER_TX_MULTICAST_BYTES
),
1658 EF10_DMA_STAT(tx_broadcast
, VADAPTER_TX_BROADCAST_PACKETS
),
1659 EF10_DMA_STAT(tx_broadcast_bytes
, VADAPTER_TX_BROADCAST_BYTES
),
1660 EF10_DMA_STAT(tx_bad
, VADAPTER_TX_BAD_PACKETS
),
1661 EF10_DMA_STAT(tx_bad_bytes
, VADAPTER_TX_BAD_BYTES
),
1662 EF10_DMA_STAT(tx_overflow
, VADAPTER_TX_OVERFLOW
),
1663 EF10_DMA_STAT(fec_uncorrected_errors
, FEC_UNCORRECTED_ERRORS
),
1664 EF10_DMA_STAT(fec_corrected_errors
, FEC_CORRECTED_ERRORS
),
1665 EF10_DMA_STAT(fec_corrected_symbols_lane0
, FEC_CORRECTED_SYMBOLS_LANE0
),
1666 EF10_DMA_STAT(fec_corrected_symbols_lane1
, FEC_CORRECTED_SYMBOLS_LANE1
),
1667 EF10_DMA_STAT(fec_corrected_symbols_lane2
, FEC_CORRECTED_SYMBOLS_LANE2
),
1668 EF10_DMA_STAT(fec_corrected_symbols_lane3
, FEC_CORRECTED_SYMBOLS_LANE3
),
1669 EF10_DMA_STAT(ctpio_vi_busy_fallback
, CTPIO_VI_BUSY_FALLBACK
),
1670 EF10_DMA_STAT(ctpio_long_write_success
, CTPIO_LONG_WRITE_SUCCESS
),
1671 EF10_DMA_STAT(ctpio_missing_dbell_fail
, CTPIO_MISSING_DBELL_FAIL
),
1672 EF10_DMA_STAT(ctpio_overflow_fail
, CTPIO_OVERFLOW_FAIL
),
1673 EF10_DMA_STAT(ctpio_underflow_fail
, CTPIO_UNDERFLOW_FAIL
),
1674 EF10_DMA_STAT(ctpio_timeout_fail
, CTPIO_TIMEOUT_FAIL
),
1675 EF10_DMA_STAT(ctpio_noncontig_wr_fail
, CTPIO_NONCONTIG_WR_FAIL
),
1676 EF10_DMA_STAT(ctpio_frm_clobber_fail
, CTPIO_FRM_CLOBBER_FAIL
),
1677 EF10_DMA_STAT(ctpio_invalid_wr_fail
, CTPIO_INVALID_WR_FAIL
),
1678 EF10_DMA_STAT(ctpio_vi_clobber_fallback
, CTPIO_VI_CLOBBER_FALLBACK
),
1679 EF10_DMA_STAT(ctpio_unqualified_fallback
, CTPIO_UNQUALIFIED_FALLBACK
),
1680 EF10_DMA_STAT(ctpio_runt_fallback
, CTPIO_RUNT_FALLBACK
),
1681 EF10_DMA_STAT(ctpio_success
, CTPIO_SUCCESS
),
1682 EF10_DMA_STAT(ctpio_fallback
, CTPIO_FALLBACK
),
1683 EF10_DMA_STAT(ctpio_poison
, CTPIO_POISON
),
1684 EF10_DMA_STAT(ctpio_erase
, CTPIO_ERASE
),
1687 #define HUNT_COMMON_STAT_MASK ((1ULL << EF10_STAT_port_tx_bytes) | \
1688 (1ULL << EF10_STAT_port_tx_packets) | \
1689 (1ULL << EF10_STAT_port_tx_pause) | \
1690 (1ULL << EF10_STAT_port_tx_unicast) | \
1691 (1ULL << EF10_STAT_port_tx_multicast) | \
1692 (1ULL << EF10_STAT_port_tx_broadcast) | \
1693 (1ULL << EF10_STAT_port_rx_bytes) | \
1695 EF10_STAT_port_rx_bytes_minus_good_bytes) | \
1696 (1ULL << EF10_STAT_port_rx_good_bytes) | \
1697 (1ULL << EF10_STAT_port_rx_bad_bytes) | \
1698 (1ULL << EF10_STAT_port_rx_packets) | \
1699 (1ULL << EF10_STAT_port_rx_good) | \
1700 (1ULL << EF10_STAT_port_rx_bad) | \
1701 (1ULL << EF10_STAT_port_rx_pause) | \
1702 (1ULL << EF10_STAT_port_rx_control) | \
1703 (1ULL << EF10_STAT_port_rx_unicast) | \
1704 (1ULL << EF10_STAT_port_rx_multicast) | \
1705 (1ULL << EF10_STAT_port_rx_broadcast) | \
1706 (1ULL << EF10_STAT_port_rx_lt64) | \
1707 (1ULL << EF10_STAT_port_rx_64) | \
1708 (1ULL << EF10_STAT_port_rx_65_to_127) | \
1709 (1ULL << EF10_STAT_port_rx_128_to_255) | \
1710 (1ULL << EF10_STAT_port_rx_256_to_511) | \
1711 (1ULL << EF10_STAT_port_rx_512_to_1023) |\
1712 (1ULL << EF10_STAT_port_rx_1024_to_15xx) |\
1713 (1ULL << EF10_STAT_port_rx_15xx_to_jumbo) |\
1714 (1ULL << EF10_STAT_port_rx_gtjumbo) | \
1715 (1ULL << EF10_STAT_port_rx_bad_gtjumbo) |\
1716 (1ULL << EF10_STAT_port_rx_overflow) | \
1717 (1ULL << EF10_STAT_port_rx_nodesc_drops) |\
1718 (1ULL << GENERIC_STAT_rx_nodesc_trunc) | \
1719 (1ULL << GENERIC_STAT_rx_noskb_drops))
1721 /* On 7000 series NICs, these statistics are only provided by the 10G MAC.
1722 * For a 10G/40G switchable port we do not expose these because they might
1723 * not include all the packets they should.
1724 * On 8000 series NICs these statistics are always provided.
1726 #define HUNT_10G_ONLY_STAT_MASK ((1ULL << EF10_STAT_port_tx_control) | \
1727 (1ULL << EF10_STAT_port_tx_lt64) | \
1728 (1ULL << EF10_STAT_port_tx_64) | \
1729 (1ULL << EF10_STAT_port_tx_65_to_127) |\
1730 (1ULL << EF10_STAT_port_tx_128_to_255) |\
1731 (1ULL << EF10_STAT_port_tx_256_to_511) |\
1732 (1ULL << EF10_STAT_port_tx_512_to_1023) |\
1733 (1ULL << EF10_STAT_port_tx_1024_to_15xx) |\
1734 (1ULL << EF10_STAT_port_tx_15xx_to_jumbo))
1736 /* These statistics are only provided by the 40G MAC. For a 10G/40G
1737 * switchable port we do expose these because the errors will otherwise
1740 #define HUNT_40G_EXTRA_STAT_MASK ((1ULL << EF10_STAT_port_rx_align_error) |\
1741 (1ULL << EF10_STAT_port_rx_length_error))
1743 /* These statistics are only provided if the firmware supports the
1744 * capability PM_AND_RXDP_COUNTERS.
1746 #define HUNT_PM_AND_RXDP_STAT_MASK ( \
1747 (1ULL << EF10_STAT_port_rx_pm_trunc_bb_overflow) | \
1748 (1ULL << EF10_STAT_port_rx_pm_discard_bb_overflow) | \
1749 (1ULL << EF10_STAT_port_rx_pm_trunc_vfifo_full) | \
1750 (1ULL << EF10_STAT_port_rx_pm_discard_vfifo_full) | \
1751 (1ULL << EF10_STAT_port_rx_pm_trunc_qbb) | \
1752 (1ULL << EF10_STAT_port_rx_pm_discard_qbb) | \
1753 (1ULL << EF10_STAT_port_rx_pm_discard_mapping) | \
1754 (1ULL << EF10_STAT_port_rx_dp_q_disabled_packets) | \
1755 (1ULL << EF10_STAT_port_rx_dp_di_dropped_packets) | \
1756 (1ULL << EF10_STAT_port_rx_dp_streaming_packets) | \
1757 (1ULL << EF10_STAT_port_rx_dp_hlb_fetch) | \
1758 (1ULL << EF10_STAT_port_rx_dp_hlb_wait))
1760 /* These statistics are only provided if the NIC supports MC_CMD_MAC_STATS_V2,
1761 * indicated by returning a value >= MC_CMD_MAC_NSTATS_V2 in
1762 * MC_CMD_GET_CAPABILITIES_V4_OUT_MAC_STATS_NUM_STATS.
1763 * These bits are in the second u64 of the raw mask.
1765 #define EF10_FEC_STAT_MASK ( \
1766 (1ULL << (EF10_STAT_fec_uncorrected_errors - 64)) | \
1767 (1ULL << (EF10_STAT_fec_corrected_errors - 64)) | \
1768 (1ULL << (EF10_STAT_fec_corrected_symbols_lane0 - 64)) | \
1769 (1ULL << (EF10_STAT_fec_corrected_symbols_lane1 - 64)) | \
1770 (1ULL << (EF10_STAT_fec_corrected_symbols_lane2 - 64)) | \
1771 (1ULL << (EF10_STAT_fec_corrected_symbols_lane3 - 64)))
1773 /* These statistics are only provided if the NIC supports MC_CMD_MAC_STATS_V3,
1774 * indicated by returning a value >= MC_CMD_MAC_NSTATS_V3 in
1775 * MC_CMD_GET_CAPABILITIES_V4_OUT_MAC_STATS_NUM_STATS.
1776 * These bits are in the second u64 of the raw mask.
1778 #define EF10_CTPIO_STAT_MASK ( \
1779 (1ULL << (EF10_STAT_ctpio_vi_busy_fallback - 64)) | \
1780 (1ULL << (EF10_STAT_ctpio_long_write_success - 64)) | \
1781 (1ULL << (EF10_STAT_ctpio_missing_dbell_fail - 64)) | \
1782 (1ULL << (EF10_STAT_ctpio_overflow_fail - 64)) | \
1783 (1ULL << (EF10_STAT_ctpio_underflow_fail - 64)) | \
1784 (1ULL << (EF10_STAT_ctpio_timeout_fail - 64)) | \
1785 (1ULL << (EF10_STAT_ctpio_noncontig_wr_fail - 64)) | \
1786 (1ULL << (EF10_STAT_ctpio_frm_clobber_fail - 64)) | \
1787 (1ULL << (EF10_STAT_ctpio_invalid_wr_fail - 64)) | \
1788 (1ULL << (EF10_STAT_ctpio_vi_clobber_fallback - 64)) | \
1789 (1ULL << (EF10_STAT_ctpio_unqualified_fallback - 64)) | \
1790 (1ULL << (EF10_STAT_ctpio_runt_fallback - 64)) | \
1791 (1ULL << (EF10_STAT_ctpio_success - 64)) | \
1792 (1ULL << (EF10_STAT_ctpio_fallback - 64)) | \
1793 (1ULL << (EF10_STAT_ctpio_poison - 64)) | \
1794 (1ULL << (EF10_STAT_ctpio_erase - 64)))
1796 static u64
efx_ef10_raw_stat_mask(struct efx_nic
*efx
)
1798 u64 raw_mask
= HUNT_COMMON_STAT_MASK
;
1799 u32 port_caps
= efx_mcdi_phy_get_caps(efx
);
1800 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
1802 if (!(efx
->mcdi
->fn_flags
&
1803 1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL
))
1806 if (port_caps
& (1 << MC_CMD_PHY_CAP_40000FDX_LBN
)) {
1807 raw_mask
|= HUNT_40G_EXTRA_STAT_MASK
;
1808 /* 8000 series have everything even at 40G */
1809 if (nic_data
->datapath_caps2
&
1810 (1 << MC_CMD_GET_CAPABILITIES_V2_OUT_MAC_STATS_40G_TX_SIZE_BINS_LBN
))
1811 raw_mask
|= HUNT_10G_ONLY_STAT_MASK
;
1813 raw_mask
|= HUNT_10G_ONLY_STAT_MASK
;
1816 if (nic_data
->datapath_caps
&
1817 (1 << MC_CMD_GET_CAPABILITIES_OUT_PM_AND_RXDP_COUNTERS_LBN
))
1818 raw_mask
|= HUNT_PM_AND_RXDP_STAT_MASK
;
1823 static void efx_ef10_get_stat_mask(struct efx_nic
*efx
, unsigned long *mask
)
1825 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
1828 raw_mask
[0] = efx_ef10_raw_stat_mask(efx
);
1830 /* Only show vadaptor stats when EVB capability is present */
1831 if (nic_data
->datapath_caps
&
1832 (1 << MC_CMD_GET_CAPABILITIES_OUT_EVB_LBN
)) {
1833 raw_mask
[0] |= ~((1ULL << EF10_STAT_rx_unicast
) - 1);
1834 raw_mask
[1] = (1ULL << (EF10_STAT_V1_COUNT
- 64)) - 1;
1838 /* Only show FEC stats when NIC supports MC_CMD_MAC_STATS_V2 */
1839 if (efx
->num_mac_stats
>= MC_CMD_MAC_NSTATS_V2
)
1840 raw_mask
[1] |= EF10_FEC_STAT_MASK
;
1842 /* CTPIO stats appear in V3. Only show them on devices that actually
1843 * support CTPIO. Although this driver doesn't use CTPIO others might,
1844 * and we may be reporting the stats for the underlying port.
1846 if (efx
->num_mac_stats
>= MC_CMD_MAC_NSTATS_V3
&&
1847 (nic_data
->datapath_caps2
&
1848 (1 << MC_CMD_GET_CAPABILITIES_V4_OUT_CTPIO_LBN
)))
1849 raw_mask
[1] |= EF10_CTPIO_STAT_MASK
;
1851 #if BITS_PER_LONG == 64
1852 BUILD_BUG_ON(BITS_TO_LONGS(EF10_STAT_COUNT
) != 2);
1853 mask
[0] = raw_mask
[0];
1854 mask
[1] = raw_mask
[1];
1856 BUILD_BUG_ON(BITS_TO_LONGS(EF10_STAT_COUNT
) != 3);
1857 mask
[0] = raw_mask
[0] & 0xffffffff;
1858 mask
[1] = raw_mask
[0] >> 32;
1859 mask
[2] = raw_mask
[1] & 0xffffffff;
1863 static size_t efx_ef10_describe_stats(struct efx_nic
*efx
, u8
*names
)
1865 DECLARE_BITMAP(mask
, EF10_STAT_COUNT
);
1867 efx_ef10_get_stat_mask(efx
, mask
);
1868 return efx_nic_describe_stats(efx_ef10_stat_desc
, EF10_STAT_COUNT
,
1872 static size_t efx_ef10_update_stats_common(struct efx_nic
*efx
, u64
*full_stats
,
1873 struct rtnl_link_stats64
*core_stats
)
1875 DECLARE_BITMAP(mask
, EF10_STAT_COUNT
);
1876 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
1877 u64
*stats
= nic_data
->stats
;
1878 size_t stats_count
= 0, index
;
1880 efx_ef10_get_stat_mask(efx
, mask
);
1883 for_each_set_bit(index
, mask
, EF10_STAT_COUNT
) {
1884 if (efx_ef10_stat_desc
[index
].name
) {
1885 *full_stats
++ = stats
[index
];
1894 if (nic_data
->datapath_caps
&
1895 1 << MC_CMD_GET_CAPABILITIES_OUT_EVB_LBN
) {
1896 /* Use vadaptor stats. */
1897 core_stats
->rx_packets
= stats
[EF10_STAT_rx_unicast
] +
1898 stats
[EF10_STAT_rx_multicast
] +
1899 stats
[EF10_STAT_rx_broadcast
];
1900 core_stats
->tx_packets
= stats
[EF10_STAT_tx_unicast
] +
1901 stats
[EF10_STAT_tx_multicast
] +
1902 stats
[EF10_STAT_tx_broadcast
];
1903 core_stats
->rx_bytes
= stats
[EF10_STAT_rx_unicast_bytes
] +
1904 stats
[EF10_STAT_rx_multicast_bytes
] +
1905 stats
[EF10_STAT_rx_broadcast_bytes
];
1906 core_stats
->tx_bytes
= stats
[EF10_STAT_tx_unicast_bytes
] +
1907 stats
[EF10_STAT_tx_multicast_bytes
] +
1908 stats
[EF10_STAT_tx_broadcast_bytes
];
1909 core_stats
->rx_dropped
= stats
[GENERIC_STAT_rx_nodesc_trunc
] +
1910 stats
[GENERIC_STAT_rx_noskb_drops
];
1911 core_stats
->multicast
= stats
[EF10_STAT_rx_multicast
];
1912 core_stats
->rx_crc_errors
= stats
[EF10_STAT_rx_bad
];
1913 core_stats
->rx_fifo_errors
= stats
[EF10_STAT_rx_overflow
];
1914 core_stats
->rx_errors
= core_stats
->rx_crc_errors
;
1915 core_stats
->tx_errors
= stats
[EF10_STAT_tx_bad
];
1917 /* Use port stats. */
1918 core_stats
->rx_packets
= stats
[EF10_STAT_port_rx_packets
];
1919 core_stats
->tx_packets
= stats
[EF10_STAT_port_tx_packets
];
1920 core_stats
->rx_bytes
= stats
[EF10_STAT_port_rx_bytes
];
1921 core_stats
->tx_bytes
= stats
[EF10_STAT_port_tx_bytes
];
1922 core_stats
->rx_dropped
= stats
[EF10_STAT_port_rx_nodesc_drops
] +
1923 stats
[GENERIC_STAT_rx_nodesc_trunc
] +
1924 stats
[GENERIC_STAT_rx_noskb_drops
];
1925 core_stats
->multicast
= stats
[EF10_STAT_port_rx_multicast
];
1926 core_stats
->rx_length_errors
=
1927 stats
[EF10_STAT_port_rx_gtjumbo
] +
1928 stats
[EF10_STAT_port_rx_length_error
];
1929 core_stats
->rx_crc_errors
= stats
[EF10_STAT_port_rx_bad
];
1930 core_stats
->rx_frame_errors
=
1931 stats
[EF10_STAT_port_rx_align_error
];
1932 core_stats
->rx_fifo_errors
= stats
[EF10_STAT_port_rx_overflow
];
1933 core_stats
->rx_errors
= (core_stats
->rx_length_errors
+
1934 core_stats
->rx_crc_errors
+
1935 core_stats
->rx_frame_errors
);
1941 static int efx_ef10_try_update_nic_stats_pf(struct efx_nic
*efx
)
1943 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
1944 DECLARE_BITMAP(mask
, EF10_STAT_COUNT
);
1945 __le64 generation_start
, generation_end
;
1946 u64
*stats
= nic_data
->stats
;
1949 efx_ef10_get_stat_mask(efx
, mask
);
1951 dma_stats
= efx
->stats_buffer
.addr
;
1953 generation_end
= dma_stats
[efx
->num_mac_stats
- 1];
1954 if (generation_end
== EFX_MC_STATS_GENERATION_INVALID
)
1957 efx_nic_update_stats(efx_ef10_stat_desc
, EF10_STAT_COUNT
, mask
,
1958 stats
, efx
->stats_buffer
.addr
, false);
1960 generation_start
= dma_stats
[MC_CMD_MAC_GENERATION_START
];
1961 if (generation_end
!= generation_start
)
1964 /* Update derived statistics */
1965 efx_nic_fix_nodesc_drop_stat(efx
,
1966 &stats
[EF10_STAT_port_rx_nodesc_drops
]);
1967 stats
[EF10_STAT_port_rx_good_bytes
] =
1968 stats
[EF10_STAT_port_rx_bytes
] -
1969 stats
[EF10_STAT_port_rx_bytes_minus_good_bytes
];
1970 efx_update_diff_stat(&stats
[EF10_STAT_port_rx_bad_bytes
],
1971 stats
[EF10_STAT_port_rx_bytes_minus_good_bytes
]);
1972 efx_update_sw_stats(efx
, stats
);
1977 static size_t efx_ef10_update_stats_pf(struct efx_nic
*efx
, u64
*full_stats
,
1978 struct rtnl_link_stats64
*core_stats
)
1982 /* If we're unlucky enough to read statistics during the DMA, wait
1983 * up to 10ms for it to finish (typically takes <500us)
1985 for (retry
= 0; retry
< 100; ++retry
) {
1986 if (efx_ef10_try_update_nic_stats_pf(efx
) == 0)
1991 return efx_ef10_update_stats_common(efx
, full_stats
, core_stats
);
1994 static int efx_ef10_try_update_nic_stats_vf(struct efx_nic
*efx
)
1996 MCDI_DECLARE_BUF(inbuf
, MC_CMD_MAC_STATS_IN_LEN
);
1997 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
1998 DECLARE_BITMAP(mask
, EF10_STAT_COUNT
);
1999 __le64 generation_start
, generation_end
;
2000 u64
*stats
= nic_data
->stats
;
2001 u32 dma_len
= efx
->num_mac_stats
* sizeof(u64
);
2002 struct efx_buffer stats_buf
;
2006 spin_unlock_bh(&efx
->stats_lock
);
2008 if (in_interrupt()) {
2009 /* If in atomic context, cannot update stats. Just update the
2010 * software stats and return so the caller can continue.
2012 spin_lock_bh(&efx
->stats_lock
);
2013 efx_update_sw_stats(efx
, stats
);
2017 efx_ef10_get_stat_mask(efx
, mask
);
2019 rc
= efx_nic_alloc_buffer(efx
, &stats_buf
, dma_len
, GFP_ATOMIC
);
2021 spin_lock_bh(&efx
->stats_lock
);
2025 dma_stats
= stats_buf
.addr
;
2026 dma_stats
[efx
->num_mac_stats
- 1] = EFX_MC_STATS_GENERATION_INVALID
;
2028 MCDI_SET_QWORD(inbuf
, MAC_STATS_IN_DMA_ADDR
, stats_buf
.dma_addr
);
2029 MCDI_POPULATE_DWORD_1(inbuf
, MAC_STATS_IN_CMD
,
2030 MAC_STATS_IN_DMA
, 1);
2031 MCDI_SET_DWORD(inbuf
, MAC_STATS_IN_DMA_LEN
, dma_len
);
2032 MCDI_SET_DWORD(inbuf
, MAC_STATS_IN_PORT_ID
, EVB_PORT_ID_ASSIGNED
);
2034 rc
= efx_mcdi_rpc_quiet(efx
, MC_CMD_MAC_STATS
, inbuf
, sizeof(inbuf
),
2036 spin_lock_bh(&efx
->stats_lock
);
2038 /* Expect ENOENT if DMA queues have not been set up */
2039 if (rc
!= -ENOENT
|| atomic_read(&efx
->active_queues
))
2040 efx_mcdi_display_error(efx
, MC_CMD_MAC_STATS
,
2041 sizeof(inbuf
), NULL
, 0, rc
);
2045 generation_end
= dma_stats
[efx
->num_mac_stats
- 1];
2046 if (generation_end
== EFX_MC_STATS_GENERATION_INVALID
) {
2051 efx_nic_update_stats(efx_ef10_stat_desc
, EF10_STAT_COUNT
, mask
,
2052 stats
, stats_buf
.addr
, false);
2054 generation_start
= dma_stats
[MC_CMD_MAC_GENERATION_START
];
2055 if (generation_end
!= generation_start
) {
2060 efx_update_sw_stats(efx
, stats
);
2062 efx_nic_free_buffer(efx
, &stats_buf
);
2066 static size_t efx_ef10_update_stats_vf(struct efx_nic
*efx
, u64
*full_stats
,
2067 struct rtnl_link_stats64
*core_stats
)
2069 if (efx_ef10_try_update_nic_stats_vf(efx
))
2072 return efx_ef10_update_stats_common(efx
, full_stats
, core_stats
);
2075 static void efx_ef10_push_irq_moderation(struct efx_channel
*channel
)
2077 struct efx_nic
*efx
= channel
->efx
;
2078 unsigned int mode
, usecs
;
2079 efx_dword_t timer_cmd
;
2081 if (channel
->irq_moderation_us
) {
2083 usecs
= channel
->irq_moderation_us
;
2089 if (EFX_EF10_WORKAROUND_61265(efx
)) {
2090 MCDI_DECLARE_BUF(inbuf
, MC_CMD_SET_EVQ_TMR_IN_LEN
);
2091 unsigned int ns
= usecs
* 1000;
2093 MCDI_SET_DWORD(inbuf
, SET_EVQ_TMR_IN_INSTANCE
,
2095 MCDI_SET_DWORD(inbuf
, SET_EVQ_TMR_IN_TMR_LOAD_REQ_NS
, ns
);
2096 MCDI_SET_DWORD(inbuf
, SET_EVQ_TMR_IN_TMR_RELOAD_REQ_NS
, ns
);
2097 MCDI_SET_DWORD(inbuf
, SET_EVQ_TMR_IN_TMR_MODE
, mode
);
2099 efx_mcdi_rpc_async(efx
, MC_CMD_SET_EVQ_TMR
,
2100 inbuf
, sizeof(inbuf
), 0, NULL
, 0);
2101 } else if (EFX_EF10_WORKAROUND_35388(efx
)) {
2102 unsigned int ticks
= efx_usecs_to_ticks(efx
, usecs
);
2104 EFX_POPULATE_DWORD_3(timer_cmd
, ERF_DD_EVQ_IND_TIMER_FLAGS
,
2105 EFE_DD_EVQ_IND_TIMER_FLAGS
,
2106 ERF_DD_EVQ_IND_TIMER_MODE
, mode
,
2107 ERF_DD_EVQ_IND_TIMER_VAL
, ticks
);
2108 efx_writed_page(efx
, &timer_cmd
, ER_DD_EVQ_INDIRECT
,
2111 unsigned int ticks
= efx_usecs_to_ticks(efx
, usecs
);
2113 EFX_POPULATE_DWORD_3(timer_cmd
, ERF_DZ_TC_TIMER_MODE
, mode
,
2114 ERF_DZ_TC_TIMER_VAL
, ticks
,
2115 ERF_FZ_TC_TMR_REL_VAL
, ticks
);
2116 efx_writed_page(efx
, &timer_cmd
, ER_DZ_EVQ_TMR
,
2121 static void efx_ef10_get_wol_vf(struct efx_nic
*efx
,
2122 struct ethtool_wolinfo
*wol
) {}
2124 static int efx_ef10_set_wol_vf(struct efx_nic
*efx
, u32 type
)
2129 static void efx_ef10_get_wol(struct efx_nic
*efx
, struct ethtool_wolinfo
*wol
)
2133 memset(&wol
->sopass
, 0, sizeof(wol
->sopass
));
2136 static int efx_ef10_set_wol(struct efx_nic
*efx
, u32 type
)
2143 static void efx_ef10_mcdi_request(struct efx_nic
*efx
,
2144 const efx_dword_t
*hdr
, size_t hdr_len
,
2145 const efx_dword_t
*sdu
, size_t sdu_len
)
2147 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
2148 u8
*pdu
= nic_data
->mcdi_buf
.addr
;
2150 memcpy(pdu
, hdr
, hdr_len
);
2151 memcpy(pdu
+ hdr_len
, sdu
, sdu_len
);
2154 /* The hardware provides 'low' and 'high' (doorbell) registers
2155 * for passing the 64-bit address of an MCDI request to
2156 * firmware. However the dwords are swapped by firmware. The
2157 * least significant bits of the doorbell are then 0 for all
2158 * MCDI requests due to alignment.
2160 _efx_writed(efx
, cpu_to_le32((u64
)nic_data
->mcdi_buf
.dma_addr
>> 32),
2162 _efx_writed(efx
, cpu_to_le32((u32
)nic_data
->mcdi_buf
.dma_addr
),
2166 static bool efx_ef10_mcdi_poll_response(struct efx_nic
*efx
)
2168 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
2169 const efx_dword_t hdr
= *(const efx_dword_t
*)nic_data
->mcdi_buf
.addr
;
2172 return EFX_DWORD_FIELD(hdr
, MCDI_HEADER_RESPONSE
);
2176 efx_ef10_mcdi_read_response(struct efx_nic
*efx
, efx_dword_t
*outbuf
,
2177 size_t offset
, size_t outlen
)
2179 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
2180 const u8
*pdu
= nic_data
->mcdi_buf
.addr
;
2182 memcpy(outbuf
, pdu
+ offset
, outlen
);
2185 static void efx_ef10_mcdi_reboot_detected(struct efx_nic
*efx
)
2187 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
2189 /* All our allocations have been reset */
2190 efx_ef10_reset_mc_allocations(efx
);
2192 /* The datapath firmware might have been changed */
2193 nic_data
->must_check_datapath_caps
= true;
2195 /* MAC statistics have been cleared on the NIC; clear the local
2196 * statistic that we update with efx_update_diff_stat().
2198 nic_data
->stats
[EF10_STAT_port_rx_bad_bytes
] = 0;
2201 static int efx_ef10_mcdi_poll_reboot(struct efx_nic
*efx
)
2203 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
2206 rc
= efx_ef10_get_warm_boot_count(efx
);
2208 /* The firmware is presumably in the process of
2209 * rebooting. However, we are supposed to report each
2210 * reboot just once, so we must only do that once we
2211 * can read and store the updated warm boot count.
2216 if (rc
== nic_data
->warm_boot_count
)
2219 nic_data
->warm_boot_count
= rc
;
2220 efx_ef10_mcdi_reboot_detected(efx
);
2225 /* Handle an MSI interrupt
2227 * Handle an MSI hardware interrupt. This routine schedules event
2228 * queue processing. No interrupt acknowledgement cycle is necessary.
2229 * Also, we never need to check that the interrupt is for us, since
2230 * MSI interrupts cannot be shared.
2232 static irqreturn_t
efx_ef10_msi_interrupt(int irq
, void *dev_id
)
2234 struct efx_msi_context
*context
= dev_id
;
2235 struct efx_nic
*efx
= context
->efx
;
2237 netif_vdbg(efx
, intr
, efx
->net_dev
,
2238 "IRQ %d on CPU %d\n", irq
, raw_smp_processor_id());
2240 if (likely(READ_ONCE(efx
->irq_soft_enabled
))) {
2241 /* Note test interrupts */
2242 if (context
->index
== efx
->irq_level
)
2243 efx
->last_irq_cpu
= raw_smp_processor_id();
2245 /* Schedule processing of the channel */
2246 efx_schedule_channel_irq(efx
->channel
[context
->index
]);
2252 static irqreturn_t
efx_ef10_legacy_interrupt(int irq
, void *dev_id
)
2254 struct efx_nic
*efx
= dev_id
;
2255 bool soft_enabled
= READ_ONCE(efx
->irq_soft_enabled
);
2256 struct efx_channel
*channel
;
2260 /* Read the ISR which also ACKs the interrupts */
2261 efx_readd(efx
, ®
, ER_DZ_BIU_INT_ISR
);
2262 queues
= EFX_DWORD_FIELD(reg
, ERF_DZ_ISR_REG
);
2267 if (likely(soft_enabled
)) {
2268 /* Note test interrupts */
2269 if (queues
& (1U << efx
->irq_level
))
2270 efx
->last_irq_cpu
= raw_smp_processor_id();
2272 efx_for_each_channel(channel
, efx
) {
2274 efx_schedule_channel_irq(channel
);
2279 netif_vdbg(efx
, intr
, efx
->net_dev
,
2280 "IRQ %d on CPU %d status " EFX_DWORD_FMT
"\n",
2281 irq
, raw_smp_processor_id(), EFX_DWORD_VAL(reg
));
2286 static int efx_ef10_irq_test_generate(struct efx_nic
*efx
)
2288 MCDI_DECLARE_BUF(inbuf
, MC_CMD_TRIGGER_INTERRUPT_IN_LEN
);
2290 if (efx_mcdi_set_workaround(efx
, MC_CMD_WORKAROUND_BUG41750
, true,
2294 BUILD_BUG_ON(MC_CMD_TRIGGER_INTERRUPT_OUT_LEN
!= 0);
2296 MCDI_SET_DWORD(inbuf
, TRIGGER_INTERRUPT_IN_INTR_LEVEL
, efx
->irq_level
);
2297 return efx_mcdi_rpc(efx
, MC_CMD_TRIGGER_INTERRUPT
,
2298 inbuf
, sizeof(inbuf
), NULL
, 0, NULL
);
2301 static int efx_ef10_tx_probe(struct efx_tx_queue
*tx_queue
)
2303 return efx_nic_alloc_buffer(tx_queue
->efx
, &tx_queue
->txd
.buf
,
2304 (tx_queue
->ptr_mask
+ 1) *
2305 sizeof(efx_qword_t
),
2309 /* This writes to the TX_DESC_WPTR and also pushes data */
2310 static inline void efx_ef10_push_tx_desc(struct efx_tx_queue
*tx_queue
,
2311 const efx_qword_t
*txd
)
2313 unsigned int write_ptr
;
2316 write_ptr
= tx_queue
->write_count
& tx_queue
->ptr_mask
;
2317 EFX_POPULATE_OWORD_1(reg
, ERF_DZ_TX_DESC_WPTR
, write_ptr
);
2318 reg
.qword
[0] = *txd
;
2319 efx_writeo_page(tx_queue
->efx
, ®
,
2320 ER_DZ_TX_DESC_UPD
, tx_queue
->queue
);
2323 /* Add Firmware-Assisted TSO v2 option descriptors to a queue.
2325 static int efx_ef10_tx_tso_desc(struct efx_tx_queue
*tx_queue
,
2326 struct sk_buff
*skb
,
2329 struct efx_tx_buffer
*buffer
;
2337 EFX_WARN_ON_ONCE_PARANOID(tx_queue
->tso_version
!= 2);
2339 mss
= skb_shinfo(skb
)->gso_size
;
2341 if (unlikely(mss
< 4)) {
2342 WARN_ONCE(1, "MSS of %u is too small for TSO v2\n", mss
);
2347 if (ip
->version
== 4) {
2348 /* Modify IPv4 header if needed. */
2351 ipv4_id
= ntohs(ip
->id
);
2353 /* Modify IPv6 header if needed. */
2354 struct ipv6hdr
*ipv6
= ipv6_hdr(skb
);
2356 ipv6
->payload_len
= 0;
2361 seqnum
= ntohl(tcp
->seq
);
2363 buffer
= efx_tx_queue_get_insert_buffer(tx_queue
);
2365 buffer
->flags
= EFX_TX_BUF_OPTION
;
2367 buffer
->unmap_len
= 0;
2368 EFX_POPULATE_QWORD_5(buffer
->option
,
2369 ESF_DZ_TX_DESC_IS_OPT
, 1,
2370 ESF_DZ_TX_OPTION_TYPE
, ESE_DZ_TX_OPTION_DESC_TSO
,
2371 ESF_DZ_TX_TSO_OPTION_TYPE
,
2372 ESE_DZ_TX_TSO_OPTION_DESC_FATSO2A
,
2373 ESF_DZ_TX_TSO_IP_ID
, ipv4_id
,
2374 ESF_DZ_TX_TSO_TCP_SEQNO
, seqnum
2376 ++tx_queue
->insert_count
;
2378 buffer
= efx_tx_queue_get_insert_buffer(tx_queue
);
2380 buffer
->flags
= EFX_TX_BUF_OPTION
;
2382 buffer
->unmap_len
= 0;
2383 EFX_POPULATE_QWORD_4(buffer
->option
,
2384 ESF_DZ_TX_DESC_IS_OPT
, 1,
2385 ESF_DZ_TX_OPTION_TYPE
, ESE_DZ_TX_OPTION_DESC_TSO
,
2386 ESF_DZ_TX_TSO_OPTION_TYPE
,
2387 ESE_DZ_TX_TSO_OPTION_DESC_FATSO2B
,
2388 ESF_DZ_TX_TSO_TCP_MSS
, mss
2390 ++tx_queue
->insert_count
;
2395 static u32
efx_ef10_tso_versions(struct efx_nic
*efx
)
2397 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
2398 u32 tso_versions
= 0;
2400 if (nic_data
->datapath_caps
&
2401 (1 << MC_CMD_GET_CAPABILITIES_OUT_TX_TSO_LBN
))
2402 tso_versions
|= BIT(1);
2403 if (nic_data
->datapath_caps2
&
2404 (1 << MC_CMD_GET_CAPABILITIES_V2_OUT_TX_TSO_V2_LBN
))
2405 tso_versions
|= BIT(2);
2406 return tso_versions
;
2409 static void efx_ef10_tx_init(struct efx_tx_queue
*tx_queue
)
2411 MCDI_DECLARE_BUF(inbuf
, MC_CMD_INIT_TXQ_IN_LEN(EFX_MAX_DMAQ_SIZE
* 8 /
2413 bool csum_offload
= tx_queue
->queue
& EFX_TXQ_TYPE_OFFLOAD
;
2414 size_t entries
= tx_queue
->txd
.buf
.len
/ EFX_BUF_SIZE
;
2415 struct efx_channel
*channel
= tx_queue
->channel
;
2416 struct efx_nic
*efx
= tx_queue
->efx
;
2417 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
2418 bool tso_v2
= false;
2420 dma_addr_t dma_addr
;
2424 BUILD_BUG_ON(MC_CMD_INIT_TXQ_OUT_LEN
!= 0);
2426 /* Only attempt to enable TX timestamping if we have the license for it,
2427 * otherwise TXQ init will fail
2429 if (!(nic_data
->licensed_features
&
2430 (1 << LICENSED_V3_FEATURES_TX_TIMESTAMPS_LBN
))) {
2431 tx_queue
->timestamping
= false;
2432 /* Disable sync events on this channel. */
2433 if (efx
->type
->ptp_set_ts_sync_events
)
2434 efx
->type
->ptp_set_ts_sync_events(efx
, false, false);
2437 /* TSOv2 is a limited resource that can only be configured on a limited
2438 * number of queues. TSO without checksum offload is not really a thing,
2439 * so we only enable it for those queues.
2440 * TSOv2 cannot be used with Hardware timestamping.
2442 if (csum_offload
&& (nic_data
->datapath_caps2
&
2443 (1 << MC_CMD_GET_CAPABILITIES_V2_OUT_TX_TSO_V2_LBN
)) &&
2444 !tx_queue
->timestamping
) {
2446 netif_dbg(efx
, hw
, efx
->net_dev
, "Using TSOv2 for channel %u\n",
2450 MCDI_SET_DWORD(inbuf
, INIT_TXQ_IN_SIZE
, tx_queue
->ptr_mask
+ 1);
2451 MCDI_SET_DWORD(inbuf
, INIT_TXQ_IN_TARGET_EVQ
, channel
->channel
);
2452 MCDI_SET_DWORD(inbuf
, INIT_TXQ_IN_LABEL
, tx_queue
->queue
);
2453 MCDI_SET_DWORD(inbuf
, INIT_TXQ_IN_INSTANCE
, tx_queue
->queue
);
2454 MCDI_SET_DWORD(inbuf
, INIT_TXQ_IN_OWNER_ID
, 0);
2455 MCDI_SET_DWORD(inbuf
, INIT_TXQ_IN_PORT_ID
, nic_data
->vport_id
);
2457 dma_addr
= tx_queue
->txd
.buf
.dma_addr
;
2459 netif_dbg(efx
, hw
, efx
->net_dev
, "pushing TXQ %d. %zu entries (%llx)\n",
2460 tx_queue
->queue
, entries
, (u64
)dma_addr
);
2462 for (i
= 0; i
< entries
; ++i
) {
2463 MCDI_SET_ARRAY_QWORD(inbuf
, INIT_TXQ_IN_DMA_ADDR
, i
, dma_addr
);
2464 dma_addr
+= EFX_BUF_SIZE
;
2467 inlen
= MC_CMD_INIT_TXQ_IN_LEN(entries
);
2470 MCDI_POPULATE_DWORD_4(inbuf
, INIT_TXQ_IN_FLAGS
,
2471 /* This flag was removed from mcdi_pcol.h for
2472 * the non-_EXT version of INIT_TXQ. However,
2473 * firmware still honours it.
2475 INIT_TXQ_EXT_IN_FLAG_TSOV2_EN
, tso_v2
,
2476 INIT_TXQ_IN_FLAG_IP_CSUM_DIS
, !csum_offload
,
2477 INIT_TXQ_IN_FLAG_TCP_CSUM_DIS
, !csum_offload
,
2478 INIT_TXQ_EXT_IN_FLAG_TIMESTAMP
,
2479 tx_queue
->timestamping
);
2481 rc
= efx_mcdi_rpc_quiet(efx
, MC_CMD_INIT_TXQ
, inbuf
, inlen
,
2483 if (rc
== -ENOSPC
&& tso_v2
) {
2484 /* Retry without TSOv2 if we're short on contexts. */
2486 netif_warn(efx
, probe
, efx
->net_dev
,
2487 "TSOv2 context not available to segment in hardware. TCP performance may be reduced.\n");
2489 efx_mcdi_display_error(efx
, MC_CMD_INIT_TXQ
,
2490 MC_CMD_INIT_TXQ_EXT_IN_LEN
,
2496 /* A previous user of this TX queue might have set us up the
2497 * bomb by writing a descriptor to the TX push collector but
2498 * not the doorbell. (Each collector belongs to a port, not a
2499 * queue or function, so cannot easily be reset.) We must
2500 * attempt to push a no-op descriptor in its place.
2502 tx_queue
->buffer
[0].flags
= EFX_TX_BUF_OPTION
;
2503 tx_queue
->insert_count
= 1;
2504 txd
= efx_tx_desc(tx_queue
, 0);
2505 EFX_POPULATE_QWORD_5(*txd
,
2506 ESF_DZ_TX_DESC_IS_OPT
, true,
2507 ESF_DZ_TX_OPTION_TYPE
,
2508 ESE_DZ_TX_OPTION_DESC_CRC_CSUM
,
2509 ESF_DZ_TX_OPTION_UDP_TCP_CSUM
, csum_offload
,
2510 ESF_DZ_TX_OPTION_IP_CSUM
, csum_offload
,
2511 ESF_DZ_TX_TIMESTAMP
, tx_queue
->timestamping
);
2512 tx_queue
->write_count
= 1;
2515 tx_queue
->handle_tso
= efx_ef10_tx_tso_desc
;
2516 tx_queue
->tso_version
= 2;
2517 } else if (nic_data
->datapath_caps
&
2518 (1 << MC_CMD_GET_CAPABILITIES_OUT_TX_TSO_LBN
)) {
2519 tx_queue
->tso_version
= 1;
2523 efx_ef10_push_tx_desc(tx_queue
, txd
);
2528 netdev_WARN(efx
->net_dev
, "failed to initialise TXQ %d\n",
2532 static void efx_ef10_tx_fini(struct efx_tx_queue
*tx_queue
)
2534 MCDI_DECLARE_BUF(inbuf
, MC_CMD_FINI_TXQ_IN_LEN
);
2535 MCDI_DECLARE_BUF_ERR(outbuf
);
2536 struct efx_nic
*efx
= tx_queue
->efx
;
2540 MCDI_SET_DWORD(inbuf
, FINI_TXQ_IN_INSTANCE
,
2543 rc
= efx_mcdi_rpc_quiet(efx
, MC_CMD_FINI_TXQ
, inbuf
, sizeof(inbuf
),
2544 outbuf
, sizeof(outbuf
), &outlen
);
2546 if (rc
&& rc
!= -EALREADY
)
2552 efx_mcdi_display_error(efx
, MC_CMD_FINI_TXQ
, MC_CMD_FINI_TXQ_IN_LEN
,
2553 outbuf
, outlen
, rc
);
2556 static void efx_ef10_tx_remove(struct efx_tx_queue
*tx_queue
)
2558 efx_nic_free_buffer(tx_queue
->efx
, &tx_queue
->txd
.buf
);
2561 /* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
2562 static inline void efx_ef10_notify_tx_desc(struct efx_tx_queue
*tx_queue
)
2564 unsigned int write_ptr
;
2567 write_ptr
= tx_queue
->write_count
& tx_queue
->ptr_mask
;
2568 EFX_POPULATE_DWORD_1(reg
, ERF_DZ_TX_DESC_WPTR_DWORD
, write_ptr
);
2569 efx_writed_page(tx_queue
->efx
, ®
,
2570 ER_DZ_TX_DESC_UPD_DWORD
, tx_queue
->queue
);
2573 #define EFX_EF10_MAX_TX_DESCRIPTOR_LEN 0x3fff
2575 static unsigned int efx_ef10_tx_limit_len(struct efx_tx_queue
*tx_queue
,
2576 dma_addr_t dma_addr
, unsigned int len
)
2578 if (len
> EFX_EF10_MAX_TX_DESCRIPTOR_LEN
) {
2579 /* If we need to break across multiple descriptors we should
2580 * stop at a page boundary. This assumes the length limit is
2581 * greater than the page size.
2583 dma_addr_t end
= dma_addr
+ EFX_EF10_MAX_TX_DESCRIPTOR_LEN
;
2585 BUILD_BUG_ON(EFX_EF10_MAX_TX_DESCRIPTOR_LEN
< EFX_PAGE_SIZE
);
2586 len
= (end
& (~(EFX_PAGE_SIZE
- 1))) - dma_addr
;
2592 static void efx_ef10_tx_write(struct efx_tx_queue
*tx_queue
)
2594 unsigned int old_write_count
= tx_queue
->write_count
;
2595 struct efx_tx_buffer
*buffer
;
2596 unsigned int write_ptr
;
2599 tx_queue
->xmit_more_available
= false;
2600 if (unlikely(tx_queue
->write_count
== tx_queue
->insert_count
))
2604 write_ptr
= tx_queue
->write_count
& tx_queue
->ptr_mask
;
2605 buffer
= &tx_queue
->buffer
[write_ptr
];
2606 txd
= efx_tx_desc(tx_queue
, write_ptr
);
2607 ++tx_queue
->write_count
;
2609 /* Create TX descriptor ring entry */
2610 if (buffer
->flags
& EFX_TX_BUF_OPTION
) {
2611 *txd
= buffer
->option
;
2612 if (EFX_QWORD_FIELD(*txd
, ESF_DZ_TX_OPTION_TYPE
) == 1)
2613 /* PIO descriptor */
2614 tx_queue
->packet_write_count
= tx_queue
->write_count
;
2616 tx_queue
->packet_write_count
= tx_queue
->write_count
;
2617 BUILD_BUG_ON(EFX_TX_BUF_CONT
!= 1);
2618 EFX_POPULATE_QWORD_3(
2621 buffer
->flags
& EFX_TX_BUF_CONT
,
2622 ESF_DZ_TX_KER_BYTE_CNT
, buffer
->len
,
2623 ESF_DZ_TX_KER_BUF_ADDR
, buffer
->dma_addr
);
2625 } while (tx_queue
->write_count
!= tx_queue
->insert_count
);
2627 wmb(); /* Ensure descriptors are written before they are fetched */
2629 if (efx_nic_may_push_tx_desc(tx_queue
, old_write_count
)) {
2630 txd
= efx_tx_desc(tx_queue
,
2631 old_write_count
& tx_queue
->ptr_mask
);
2632 efx_ef10_push_tx_desc(tx_queue
, txd
);
2635 efx_ef10_notify_tx_desc(tx_queue
);
2639 #define RSS_MODE_HASH_ADDRS (1 << RSS_MODE_HASH_SRC_ADDR_LBN |\
2640 1 << RSS_MODE_HASH_DST_ADDR_LBN)
2641 #define RSS_MODE_HASH_PORTS (1 << RSS_MODE_HASH_SRC_PORT_LBN |\
2642 1 << RSS_MODE_HASH_DST_PORT_LBN)
2643 #define RSS_CONTEXT_FLAGS_DEFAULT (1 << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_TOEPLITZ_IPV4_EN_LBN |\
2644 1 << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_TOEPLITZ_TCPV4_EN_LBN |\
2645 1 << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_TOEPLITZ_IPV6_EN_LBN |\
2646 1 << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_TOEPLITZ_TCPV6_EN_LBN |\
2647 (RSS_MODE_HASH_ADDRS | RSS_MODE_HASH_PORTS) << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_TCP_IPV4_RSS_MODE_LBN |\
2648 RSS_MODE_HASH_ADDRS << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_UDP_IPV4_RSS_MODE_LBN |\
2649 RSS_MODE_HASH_ADDRS << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_OTHER_IPV4_RSS_MODE_LBN |\
2650 (RSS_MODE_HASH_ADDRS | RSS_MODE_HASH_PORTS) << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_TCP_IPV6_RSS_MODE_LBN |\
2651 RSS_MODE_HASH_ADDRS << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_UDP_IPV6_RSS_MODE_LBN |\
2652 RSS_MODE_HASH_ADDRS << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_OTHER_IPV6_RSS_MODE_LBN)
2654 static int efx_ef10_get_rss_flags(struct efx_nic
*efx
, u32 context
, u32
*flags
)
2656 /* Firmware had a bug (sfc bug 61952) where it would not actually
2657 * fill in the flags field in the response to MC_CMD_RSS_CONTEXT_GET_FLAGS.
2658 * This meant that it would always contain whatever was previously
2659 * in the MCDI buffer. Fortunately, all firmware versions with
2660 * this bug have the same default flags value for a newly-allocated
2661 * RSS context, and the only time we want to get the flags is just
2662 * after allocating. Moreover, the response has a 32-bit hole
2663 * where the context ID would be in the request, so we can use an
2664 * overlength buffer in the request and pre-fill the flags field
2665 * with what we believe the default to be. Thus if the firmware
2666 * has the bug, it will leave our pre-filled value in the flags
2667 * field of the response, and we will get the right answer.
2669 * However, this does mean that this function should NOT be used if
2670 * the RSS context flags might not be their defaults - it is ONLY
2671 * reliably correct for a newly-allocated RSS context.
2673 MCDI_DECLARE_BUF(inbuf
, MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_LEN
);
2674 MCDI_DECLARE_BUF(outbuf
, MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_LEN
);
2678 /* Check we have a hole for the context ID */
2679 BUILD_BUG_ON(MC_CMD_RSS_CONTEXT_GET_FLAGS_IN_LEN
!= MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_FLAGS_OFST
);
2680 MCDI_SET_DWORD(inbuf
, RSS_CONTEXT_GET_FLAGS_IN_RSS_CONTEXT_ID
, context
);
2681 MCDI_SET_DWORD(inbuf
, RSS_CONTEXT_GET_FLAGS_OUT_FLAGS
,
2682 RSS_CONTEXT_FLAGS_DEFAULT
);
2683 rc
= efx_mcdi_rpc(efx
, MC_CMD_RSS_CONTEXT_GET_FLAGS
, inbuf
,
2684 sizeof(inbuf
), outbuf
, sizeof(outbuf
), &outlen
);
2686 if (outlen
< MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_LEN
)
2689 *flags
= MCDI_DWORD(outbuf
, RSS_CONTEXT_GET_FLAGS_OUT_FLAGS
);
2694 /* Attempt to enable 4-tuple UDP hashing on the specified RSS context.
2695 * If we fail, we just leave the RSS context at its default hash settings,
2696 * which is safe but may slightly reduce performance.
2697 * Defaults are 4-tuple for TCP and 2-tuple for UDP and other-IP, so we
2698 * just need to set the UDP ports flags (for both IP versions).
2700 static void efx_ef10_set_rss_flags(struct efx_nic
*efx
,
2701 struct efx_rss_context
*ctx
)
2703 MCDI_DECLARE_BUF(inbuf
, MC_CMD_RSS_CONTEXT_SET_FLAGS_IN_LEN
);
2706 BUILD_BUG_ON(MC_CMD_RSS_CONTEXT_SET_FLAGS_OUT_LEN
!= 0);
2708 if (efx_ef10_get_rss_flags(efx
, ctx
->context_id
, &flags
) != 0)
2710 MCDI_SET_DWORD(inbuf
, RSS_CONTEXT_SET_FLAGS_IN_RSS_CONTEXT_ID
,
2712 flags
|= RSS_MODE_HASH_PORTS
<< MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_UDP_IPV4_RSS_MODE_LBN
;
2713 flags
|= RSS_MODE_HASH_PORTS
<< MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_UDP_IPV6_RSS_MODE_LBN
;
2714 MCDI_SET_DWORD(inbuf
, RSS_CONTEXT_SET_FLAGS_IN_FLAGS
, flags
);
2715 if (!efx_mcdi_rpc(efx
, MC_CMD_RSS_CONTEXT_SET_FLAGS
, inbuf
, sizeof(inbuf
),
2717 /* Succeeded, so UDP 4-tuple is now enabled */
2718 ctx
->rx_hash_udp_4tuple
= true;
2721 static int efx_ef10_alloc_rss_context(struct efx_nic
*efx
, bool exclusive
,
2722 struct efx_rss_context
*ctx
,
2723 unsigned *context_size
)
2725 MCDI_DECLARE_BUF(inbuf
, MC_CMD_RSS_CONTEXT_ALLOC_IN_LEN
);
2726 MCDI_DECLARE_BUF(outbuf
, MC_CMD_RSS_CONTEXT_ALLOC_OUT_LEN
);
2727 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
2730 u32 alloc_type
= exclusive
?
2731 MC_CMD_RSS_CONTEXT_ALLOC_IN_TYPE_EXCLUSIVE
:
2732 MC_CMD_RSS_CONTEXT_ALLOC_IN_TYPE_SHARED
;
2733 unsigned rss_spread
= exclusive
?
2735 min(rounddown_pow_of_two(efx
->rss_spread
),
2736 EFX_EF10_MAX_SHARED_RSS_CONTEXT_SIZE
);
2738 if (!exclusive
&& rss_spread
== 1) {
2739 ctx
->context_id
= EFX_EF10_RSS_CONTEXT_INVALID
;
2745 if (nic_data
->datapath_caps
&
2746 1 << MC_CMD_GET_CAPABILITIES_OUT_RX_RSS_LIMITED_LBN
)
2749 MCDI_SET_DWORD(inbuf
, RSS_CONTEXT_ALLOC_IN_UPSTREAM_PORT_ID
,
2750 nic_data
->vport_id
);
2751 MCDI_SET_DWORD(inbuf
, RSS_CONTEXT_ALLOC_IN_TYPE
, alloc_type
);
2752 MCDI_SET_DWORD(inbuf
, RSS_CONTEXT_ALLOC_IN_NUM_QUEUES
, rss_spread
);
2754 rc
= efx_mcdi_rpc(efx
, MC_CMD_RSS_CONTEXT_ALLOC
, inbuf
, sizeof(inbuf
),
2755 outbuf
, sizeof(outbuf
), &outlen
);
2759 if (outlen
< MC_CMD_RSS_CONTEXT_ALLOC_OUT_LEN
)
2762 ctx
->context_id
= MCDI_DWORD(outbuf
, RSS_CONTEXT_ALLOC_OUT_RSS_CONTEXT_ID
);
2765 *context_size
= rss_spread
;
2767 if (nic_data
->datapath_caps
&
2768 1 << MC_CMD_GET_CAPABILITIES_OUT_ADDITIONAL_RSS_MODES_LBN
)
2769 efx_ef10_set_rss_flags(efx
, ctx
);
2774 static int efx_ef10_free_rss_context(struct efx_nic
*efx
, u32 context
)
2776 MCDI_DECLARE_BUF(inbuf
, MC_CMD_RSS_CONTEXT_FREE_IN_LEN
);
2778 MCDI_SET_DWORD(inbuf
, RSS_CONTEXT_FREE_IN_RSS_CONTEXT_ID
,
2780 return efx_mcdi_rpc(efx
, MC_CMD_RSS_CONTEXT_FREE
, inbuf
, sizeof(inbuf
),
2784 static int efx_ef10_populate_rss_table(struct efx_nic
*efx
, u32 context
,
2785 const u32
*rx_indir_table
, const u8
*key
)
2787 MCDI_DECLARE_BUF(tablebuf
, MC_CMD_RSS_CONTEXT_SET_TABLE_IN_LEN
);
2788 MCDI_DECLARE_BUF(keybuf
, MC_CMD_RSS_CONTEXT_SET_KEY_IN_LEN
);
2791 MCDI_SET_DWORD(tablebuf
, RSS_CONTEXT_SET_TABLE_IN_RSS_CONTEXT_ID
,
2793 BUILD_BUG_ON(ARRAY_SIZE(efx
->rss_context
.rx_indir_table
) !=
2794 MC_CMD_RSS_CONTEXT_SET_TABLE_IN_INDIRECTION_TABLE_LEN
);
2796 /* This iterates over the length of efx->rss_context.rx_indir_table, but
2797 * copies bytes from rx_indir_table. That's because the latter is a
2798 * pointer rather than an array, but should have the same length.
2799 * The efx->rss_context.rx_hash_key loop below is similar.
2801 for (i
= 0; i
< ARRAY_SIZE(efx
->rss_context
.rx_indir_table
); ++i
)
2803 RSS_CONTEXT_SET_TABLE_IN_INDIRECTION_TABLE
)[i
] =
2804 (u8
) rx_indir_table
[i
];
2806 rc
= efx_mcdi_rpc(efx
, MC_CMD_RSS_CONTEXT_SET_TABLE
, tablebuf
,
2807 sizeof(tablebuf
), NULL
, 0, NULL
);
2811 MCDI_SET_DWORD(keybuf
, RSS_CONTEXT_SET_KEY_IN_RSS_CONTEXT_ID
,
2813 BUILD_BUG_ON(ARRAY_SIZE(efx
->rss_context
.rx_hash_key
) !=
2814 MC_CMD_RSS_CONTEXT_SET_KEY_IN_TOEPLITZ_KEY_LEN
);
2815 for (i
= 0; i
< ARRAY_SIZE(efx
->rss_context
.rx_hash_key
); ++i
)
2816 MCDI_PTR(keybuf
, RSS_CONTEXT_SET_KEY_IN_TOEPLITZ_KEY
)[i
] = key
[i
];
2818 return efx_mcdi_rpc(efx
, MC_CMD_RSS_CONTEXT_SET_KEY
, keybuf
,
2819 sizeof(keybuf
), NULL
, 0, NULL
);
2822 static void efx_ef10_rx_free_indir_table(struct efx_nic
*efx
)
2826 if (efx
->rss_context
.context_id
!= EFX_EF10_RSS_CONTEXT_INVALID
) {
2827 rc
= efx_ef10_free_rss_context(efx
, efx
->rss_context
.context_id
);
2830 efx
->rss_context
.context_id
= EFX_EF10_RSS_CONTEXT_INVALID
;
2833 static int efx_ef10_rx_push_shared_rss_config(struct efx_nic
*efx
,
2834 unsigned *context_size
)
2836 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
2837 int rc
= efx_ef10_alloc_rss_context(efx
, false, &efx
->rss_context
,
2843 nic_data
->rx_rss_context_exclusive
= false;
2844 efx_set_default_rx_indir_table(efx
, &efx
->rss_context
);
2848 static int efx_ef10_rx_push_exclusive_rss_config(struct efx_nic
*efx
,
2849 const u32
*rx_indir_table
,
2852 u32 old_rx_rss_context
= efx
->rss_context
.context_id
;
2853 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
2856 if (efx
->rss_context
.context_id
== EFX_EF10_RSS_CONTEXT_INVALID
||
2857 !nic_data
->rx_rss_context_exclusive
) {
2858 rc
= efx_ef10_alloc_rss_context(efx
, true, &efx
->rss_context
,
2860 if (rc
== -EOPNOTSUPP
)
2866 rc
= efx_ef10_populate_rss_table(efx
, efx
->rss_context
.context_id
,
2867 rx_indir_table
, key
);
2871 if (efx
->rss_context
.context_id
!= old_rx_rss_context
&&
2872 old_rx_rss_context
!= EFX_EF10_RSS_CONTEXT_INVALID
)
2873 WARN_ON(efx_ef10_free_rss_context(efx
, old_rx_rss_context
) != 0);
2874 nic_data
->rx_rss_context_exclusive
= true;
2875 if (rx_indir_table
!= efx
->rss_context
.rx_indir_table
)
2876 memcpy(efx
->rss_context
.rx_indir_table
, rx_indir_table
,
2877 sizeof(efx
->rss_context
.rx_indir_table
));
2878 if (key
!= efx
->rss_context
.rx_hash_key
)
2879 memcpy(efx
->rss_context
.rx_hash_key
, key
,
2880 efx
->type
->rx_hash_key_size
);
2885 if (old_rx_rss_context
!= efx
->rss_context
.context_id
) {
2886 WARN_ON(efx_ef10_free_rss_context(efx
, efx
->rss_context
.context_id
) != 0);
2887 efx
->rss_context
.context_id
= old_rx_rss_context
;
2890 netif_err(efx
, hw
, efx
->net_dev
, "%s: failed rc=%d\n", __func__
, rc
);
2894 static int efx_ef10_rx_push_rss_context_config(struct efx_nic
*efx
,
2895 struct efx_rss_context
*ctx
,
2896 const u32
*rx_indir_table
,
2901 WARN_ON(!mutex_is_locked(&efx
->rss_lock
));
2903 if (ctx
->context_id
== EFX_EF10_RSS_CONTEXT_INVALID
) {
2904 rc
= efx_ef10_alloc_rss_context(efx
, true, ctx
, NULL
);
2909 if (!rx_indir_table
) /* Delete this context */
2910 return efx_ef10_free_rss_context(efx
, ctx
->context_id
);
2912 rc
= efx_ef10_populate_rss_table(efx
, ctx
->context_id
,
2913 rx_indir_table
, key
);
2917 memcpy(ctx
->rx_indir_table
, rx_indir_table
,
2918 sizeof(efx
->rss_context
.rx_indir_table
));
2919 memcpy(ctx
->rx_hash_key
, key
, efx
->type
->rx_hash_key_size
);
2924 static int efx_ef10_rx_pull_rss_context_config(struct efx_nic
*efx
,
2925 struct efx_rss_context
*ctx
)
2927 MCDI_DECLARE_BUF(inbuf
, MC_CMD_RSS_CONTEXT_GET_TABLE_IN_LEN
);
2928 MCDI_DECLARE_BUF(tablebuf
, MC_CMD_RSS_CONTEXT_GET_TABLE_OUT_LEN
);
2929 MCDI_DECLARE_BUF(keybuf
, MC_CMD_RSS_CONTEXT_GET_KEY_OUT_LEN
);
2933 WARN_ON(!mutex_is_locked(&efx
->rss_lock
));
2935 BUILD_BUG_ON(MC_CMD_RSS_CONTEXT_GET_TABLE_IN_LEN
!=
2936 MC_CMD_RSS_CONTEXT_GET_KEY_IN_LEN
);
2938 if (ctx
->context_id
== EFX_EF10_RSS_CONTEXT_INVALID
)
2941 MCDI_SET_DWORD(inbuf
, RSS_CONTEXT_GET_TABLE_IN_RSS_CONTEXT_ID
,
2943 BUILD_BUG_ON(ARRAY_SIZE(ctx
->rx_indir_table
) !=
2944 MC_CMD_RSS_CONTEXT_GET_TABLE_OUT_INDIRECTION_TABLE_LEN
);
2945 rc
= efx_mcdi_rpc(efx
, MC_CMD_RSS_CONTEXT_GET_TABLE
, inbuf
, sizeof(inbuf
),
2946 tablebuf
, sizeof(tablebuf
), &outlen
);
2950 if (WARN_ON(outlen
!= MC_CMD_RSS_CONTEXT_GET_TABLE_OUT_LEN
))
2953 for (i
= 0; i
< ARRAY_SIZE(ctx
->rx_indir_table
); i
++)
2954 ctx
->rx_indir_table
[i
] = MCDI_PTR(tablebuf
,
2955 RSS_CONTEXT_GET_TABLE_OUT_INDIRECTION_TABLE
)[i
];
2957 MCDI_SET_DWORD(inbuf
, RSS_CONTEXT_GET_KEY_IN_RSS_CONTEXT_ID
,
2959 BUILD_BUG_ON(ARRAY_SIZE(ctx
->rx_hash_key
) !=
2960 MC_CMD_RSS_CONTEXT_SET_KEY_IN_TOEPLITZ_KEY_LEN
);
2961 rc
= efx_mcdi_rpc(efx
, MC_CMD_RSS_CONTEXT_GET_KEY
, inbuf
, sizeof(inbuf
),
2962 keybuf
, sizeof(keybuf
), &outlen
);
2966 if (WARN_ON(outlen
!= MC_CMD_RSS_CONTEXT_GET_KEY_OUT_LEN
))
2969 for (i
= 0; i
< ARRAY_SIZE(ctx
->rx_hash_key
); ++i
)
2970 ctx
->rx_hash_key
[i
] = MCDI_PTR(
2971 keybuf
, RSS_CONTEXT_GET_KEY_OUT_TOEPLITZ_KEY
)[i
];
2976 static int efx_ef10_rx_pull_rss_config(struct efx_nic
*efx
)
2980 mutex_lock(&efx
->rss_lock
);
2981 rc
= efx_ef10_rx_pull_rss_context_config(efx
, &efx
->rss_context
);
2982 mutex_unlock(&efx
->rss_lock
);
2986 static void efx_ef10_rx_restore_rss_contexts(struct efx_nic
*efx
)
2988 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
2989 struct efx_rss_context
*ctx
;
2992 WARN_ON(!mutex_is_locked(&efx
->rss_lock
));
2994 if (!nic_data
->must_restore_rss_contexts
)
2997 list_for_each_entry(ctx
, &efx
->rss_context
.list
, list
) {
2998 /* previous NIC RSS context is gone */
2999 ctx
->context_id
= EFX_EF10_RSS_CONTEXT_INVALID
;
3000 /* so try to allocate a new one */
3001 rc
= efx_ef10_rx_push_rss_context_config(efx
, ctx
,
3002 ctx
->rx_indir_table
,
3005 netif_warn(efx
, probe
, efx
->net_dev
,
3006 "failed to restore RSS context %u, rc=%d"
3007 "; RSS filters may fail to be applied\n",
3010 nic_data
->must_restore_rss_contexts
= false;
3013 static int efx_ef10_pf_rx_push_rss_config(struct efx_nic
*efx
, bool user
,
3014 const u32
*rx_indir_table
,
3019 if (efx
->rss_spread
== 1)
3023 key
= efx
->rss_context
.rx_hash_key
;
3025 rc
= efx_ef10_rx_push_exclusive_rss_config(efx
, rx_indir_table
, key
);
3027 if (rc
== -ENOBUFS
&& !user
) {
3028 unsigned context_size
;
3029 bool mismatch
= false;
3033 i
< ARRAY_SIZE(efx
->rss_context
.rx_indir_table
) && !mismatch
;
3035 mismatch
= rx_indir_table
[i
] !=
3036 ethtool_rxfh_indir_default(i
, efx
->rss_spread
);
3038 rc
= efx_ef10_rx_push_shared_rss_config(efx
, &context_size
);
3040 if (context_size
!= efx
->rss_spread
)
3041 netif_warn(efx
, probe
, efx
->net_dev
,
3042 "Could not allocate an exclusive RSS"
3043 " context; allocated a shared one of"
3045 " Wanted %u, got %u.\n",
3046 efx
->rss_spread
, context_size
);
3048 netif_warn(efx
, probe
, efx
->net_dev
,
3049 "Could not allocate an exclusive RSS"
3050 " context; allocated a shared one but"
3051 " could not apply custom"
3054 netif_info(efx
, probe
, efx
->net_dev
,
3055 "Could not allocate an exclusive RSS"
3056 " context; allocated a shared one.\n");
3062 static int efx_ef10_vf_rx_push_rss_config(struct efx_nic
*efx
, bool user
,
3063 const u32
*rx_indir_table
3064 __attribute__ ((unused
)),
3066 __attribute__ ((unused
)))
3070 if (efx
->rss_context
.context_id
!= EFX_EF10_RSS_CONTEXT_INVALID
)
3072 return efx_ef10_rx_push_shared_rss_config(efx
, NULL
);
3075 static int efx_ef10_rx_probe(struct efx_rx_queue
*rx_queue
)
3077 return efx_nic_alloc_buffer(rx_queue
->efx
, &rx_queue
->rxd
.buf
,
3078 (rx_queue
->ptr_mask
+ 1) *
3079 sizeof(efx_qword_t
),
3083 static void efx_ef10_rx_init(struct efx_rx_queue
*rx_queue
)
3085 MCDI_DECLARE_BUF(inbuf
,
3086 MC_CMD_INIT_RXQ_IN_LEN(EFX_MAX_DMAQ_SIZE
* 8 /
3088 struct efx_channel
*channel
= efx_rx_queue_channel(rx_queue
);
3089 size_t entries
= rx_queue
->rxd
.buf
.len
/ EFX_BUF_SIZE
;
3090 struct efx_nic
*efx
= rx_queue
->efx
;
3091 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
3093 dma_addr_t dma_addr
;
3096 BUILD_BUG_ON(MC_CMD_INIT_RXQ_OUT_LEN
!= 0);
3098 rx_queue
->scatter_n
= 0;
3099 rx_queue
->scatter_len
= 0;
3101 MCDI_SET_DWORD(inbuf
, INIT_RXQ_IN_SIZE
, rx_queue
->ptr_mask
+ 1);
3102 MCDI_SET_DWORD(inbuf
, INIT_RXQ_IN_TARGET_EVQ
, channel
->channel
);
3103 MCDI_SET_DWORD(inbuf
, INIT_RXQ_IN_LABEL
, efx_rx_queue_index(rx_queue
));
3104 MCDI_SET_DWORD(inbuf
, INIT_RXQ_IN_INSTANCE
,
3105 efx_rx_queue_index(rx_queue
));
3106 MCDI_POPULATE_DWORD_2(inbuf
, INIT_RXQ_IN_FLAGS
,
3107 INIT_RXQ_IN_FLAG_PREFIX
, 1,
3108 INIT_RXQ_IN_FLAG_TIMESTAMP
, 1);
3109 MCDI_SET_DWORD(inbuf
, INIT_RXQ_IN_OWNER_ID
, 0);
3110 MCDI_SET_DWORD(inbuf
, INIT_RXQ_IN_PORT_ID
, nic_data
->vport_id
);
3112 dma_addr
= rx_queue
->rxd
.buf
.dma_addr
;
3114 netif_dbg(efx
, hw
, efx
->net_dev
, "pushing RXQ %d. %zu entries (%llx)\n",
3115 efx_rx_queue_index(rx_queue
), entries
, (u64
)dma_addr
);
3117 for (i
= 0; i
< entries
; ++i
) {
3118 MCDI_SET_ARRAY_QWORD(inbuf
, INIT_RXQ_IN_DMA_ADDR
, i
, dma_addr
);
3119 dma_addr
+= EFX_BUF_SIZE
;
3122 inlen
= MC_CMD_INIT_RXQ_IN_LEN(entries
);
3124 rc
= efx_mcdi_rpc(efx
, MC_CMD_INIT_RXQ
, inbuf
, inlen
,
3127 netdev_WARN(efx
->net_dev
, "failed to initialise RXQ %d\n",
3128 efx_rx_queue_index(rx_queue
));
3131 static void efx_ef10_rx_fini(struct efx_rx_queue
*rx_queue
)
3133 MCDI_DECLARE_BUF(inbuf
, MC_CMD_FINI_RXQ_IN_LEN
);
3134 MCDI_DECLARE_BUF_ERR(outbuf
);
3135 struct efx_nic
*efx
= rx_queue
->efx
;
3139 MCDI_SET_DWORD(inbuf
, FINI_RXQ_IN_INSTANCE
,
3140 efx_rx_queue_index(rx_queue
));
3142 rc
= efx_mcdi_rpc_quiet(efx
, MC_CMD_FINI_RXQ
, inbuf
, sizeof(inbuf
),
3143 outbuf
, sizeof(outbuf
), &outlen
);
3145 if (rc
&& rc
!= -EALREADY
)
3151 efx_mcdi_display_error(efx
, MC_CMD_FINI_RXQ
, MC_CMD_FINI_RXQ_IN_LEN
,
3152 outbuf
, outlen
, rc
);
3155 static void efx_ef10_rx_remove(struct efx_rx_queue
*rx_queue
)
3157 efx_nic_free_buffer(rx_queue
->efx
, &rx_queue
->rxd
.buf
);
3160 /* This creates an entry in the RX descriptor queue */
3162 efx_ef10_build_rx_desc(struct efx_rx_queue
*rx_queue
, unsigned int index
)
3164 struct efx_rx_buffer
*rx_buf
;
3167 rxd
= efx_rx_desc(rx_queue
, index
);
3168 rx_buf
= efx_rx_buffer(rx_queue
, index
);
3169 EFX_POPULATE_QWORD_2(*rxd
,
3170 ESF_DZ_RX_KER_BYTE_CNT
, rx_buf
->len
,
3171 ESF_DZ_RX_KER_BUF_ADDR
, rx_buf
->dma_addr
);
3174 static void efx_ef10_rx_write(struct efx_rx_queue
*rx_queue
)
3176 struct efx_nic
*efx
= rx_queue
->efx
;
3177 unsigned int write_count
;
3180 /* Firmware requires that RX_DESC_WPTR be a multiple of 8 */
3181 write_count
= rx_queue
->added_count
& ~7;
3182 if (rx_queue
->notified_count
== write_count
)
3186 efx_ef10_build_rx_desc(
3188 rx_queue
->notified_count
& rx_queue
->ptr_mask
);
3189 while (++rx_queue
->notified_count
!= write_count
);
3192 EFX_POPULATE_DWORD_1(reg
, ERF_DZ_RX_DESC_WPTR
,
3193 write_count
& rx_queue
->ptr_mask
);
3194 efx_writed_page(efx
, ®
, ER_DZ_RX_DESC_UPD
,
3195 efx_rx_queue_index(rx_queue
));
3198 static efx_mcdi_async_completer efx_ef10_rx_defer_refill_complete
;
3200 static void efx_ef10_rx_defer_refill(struct efx_rx_queue
*rx_queue
)
3202 struct efx_channel
*channel
= efx_rx_queue_channel(rx_queue
);
3203 MCDI_DECLARE_BUF(inbuf
, MC_CMD_DRIVER_EVENT_IN_LEN
);
3206 EFX_POPULATE_QWORD_2(event
,
3207 ESF_DZ_EV_CODE
, EFX_EF10_DRVGEN_EV
,
3208 ESF_DZ_EV_DATA
, EFX_EF10_REFILL
);
3210 MCDI_SET_DWORD(inbuf
, DRIVER_EVENT_IN_EVQ
, channel
->channel
);
3212 /* MCDI_SET_QWORD is not appropriate here since EFX_POPULATE_* has
3213 * already swapped the data to little-endian order.
3215 memcpy(MCDI_PTR(inbuf
, DRIVER_EVENT_IN_DATA
), &event
.u64
[0],
3216 sizeof(efx_qword_t
));
3218 efx_mcdi_rpc_async(channel
->efx
, MC_CMD_DRIVER_EVENT
,
3219 inbuf
, sizeof(inbuf
), 0,
3220 efx_ef10_rx_defer_refill_complete
, 0);
3224 efx_ef10_rx_defer_refill_complete(struct efx_nic
*efx
, unsigned long cookie
,
3225 int rc
, efx_dword_t
*outbuf
,
3226 size_t outlen_actual
)
3231 static int efx_ef10_ev_probe(struct efx_channel
*channel
)
3233 return efx_nic_alloc_buffer(channel
->efx
, &channel
->eventq
.buf
,
3234 (channel
->eventq_mask
+ 1) *
3235 sizeof(efx_qword_t
),
3239 static void efx_ef10_ev_fini(struct efx_channel
*channel
)
3241 MCDI_DECLARE_BUF(inbuf
, MC_CMD_FINI_EVQ_IN_LEN
);
3242 MCDI_DECLARE_BUF_ERR(outbuf
);
3243 struct efx_nic
*efx
= channel
->efx
;
3247 MCDI_SET_DWORD(inbuf
, FINI_EVQ_IN_INSTANCE
, channel
->channel
);
3249 rc
= efx_mcdi_rpc_quiet(efx
, MC_CMD_FINI_EVQ
, inbuf
, sizeof(inbuf
),
3250 outbuf
, sizeof(outbuf
), &outlen
);
3252 if (rc
&& rc
!= -EALREADY
)
3258 efx_mcdi_display_error(efx
, MC_CMD_FINI_EVQ
, MC_CMD_FINI_EVQ_IN_LEN
,
3259 outbuf
, outlen
, rc
);
3262 static int efx_ef10_ev_init(struct efx_channel
*channel
)
3264 MCDI_DECLARE_BUF(inbuf
,
3265 MC_CMD_INIT_EVQ_V2_IN_LEN(EFX_MAX_EVQ_SIZE
* 8 /
3267 MCDI_DECLARE_BUF(outbuf
, MC_CMD_INIT_EVQ_V2_OUT_LEN
);
3268 size_t entries
= channel
->eventq
.buf
.len
/ EFX_BUF_SIZE
;
3269 struct efx_nic
*efx
= channel
->efx
;
3270 struct efx_ef10_nic_data
*nic_data
;
3271 size_t inlen
, outlen
;
3272 unsigned int enabled
, implemented
;
3273 dma_addr_t dma_addr
;
3277 nic_data
= efx
->nic_data
;
3279 /* Fill event queue with all ones (i.e. empty events) */
3280 memset(channel
->eventq
.buf
.addr
, 0xff, channel
->eventq
.buf
.len
);
3282 MCDI_SET_DWORD(inbuf
, INIT_EVQ_IN_SIZE
, channel
->eventq_mask
+ 1);
3283 MCDI_SET_DWORD(inbuf
, INIT_EVQ_IN_INSTANCE
, channel
->channel
);
3284 /* INIT_EVQ expects index in vector table, not absolute */
3285 MCDI_SET_DWORD(inbuf
, INIT_EVQ_IN_IRQ_NUM
, channel
->channel
);
3286 MCDI_SET_DWORD(inbuf
, INIT_EVQ_IN_TMR_MODE
,
3287 MC_CMD_INIT_EVQ_IN_TMR_MODE_DIS
);
3288 MCDI_SET_DWORD(inbuf
, INIT_EVQ_IN_TMR_LOAD
, 0);
3289 MCDI_SET_DWORD(inbuf
, INIT_EVQ_IN_TMR_RELOAD
, 0);
3290 MCDI_SET_DWORD(inbuf
, INIT_EVQ_IN_COUNT_MODE
,
3291 MC_CMD_INIT_EVQ_IN_COUNT_MODE_DIS
);
3292 MCDI_SET_DWORD(inbuf
, INIT_EVQ_IN_COUNT_THRSHLD
, 0);
3294 if (nic_data
->datapath_caps2
&
3295 1 << MC_CMD_GET_CAPABILITIES_V2_OUT_INIT_EVQ_V2_LBN
) {
3296 /* Use the new generic approach to specifying event queue
3297 * configuration, requesting lower latency or higher throughput.
3298 * The options that actually get used appear in the output.
3300 MCDI_POPULATE_DWORD_2(inbuf
, INIT_EVQ_V2_IN_FLAGS
,
3301 INIT_EVQ_V2_IN_FLAG_INTERRUPTING
, 1,
3302 INIT_EVQ_V2_IN_FLAG_TYPE
,
3303 MC_CMD_INIT_EVQ_V2_IN_FLAG_TYPE_AUTO
);
3305 bool cut_thru
= !(nic_data
->datapath_caps
&
3306 1 << MC_CMD_GET_CAPABILITIES_OUT_RX_BATCHING_LBN
);
3308 MCDI_POPULATE_DWORD_4(inbuf
, INIT_EVQ_IN_FLAGS
,
3309 INIT_EVQ_IN_FLAG_INTERRUPTING
, 1,
3310 INIT_EVQ_IN_FLAG_RX_MERGE
, 1,
3311 INIT_EVQ_IN_FLAG_TX_MERGE
, 1,
3312 INIT_EVQ_IN_FLAG_CUT_THRU
, cut_thru
);
3315 dma_addr
= channel
->eventq
.buf
.dma_addr
;
3316 for (i
= 0; i
< entries
; ++i
) {
3317 MCDI_SET_ARRAY_QWORD(inbuf
, INIT_EVQ_IN_DMA_ADDR
, i
, dma_addr
);
3318 dma_addr
+= EFX_BUF_SIZE
;
3321 inlen
= MC_CMD_INIT_EVQ_IN_LEN(entries
);
3323 rc
= efx_mcdi_rpc(efx
, MC_CMD_INIT_EVQ
, inbuf
, inlen
,
3324 outbuf
, sizeof(outbuf
), &outlen
);
3326 if (outlen
>= MC_CMD_INIT_EVQ_V2_OUT_LEN
)
3327 netif_dbg(efx
, drv
, efx
->net_dev
,
3328 "Channel %d using event queue flags %08x\n",
3330 MCDI_DWORD(outbuf
, INIT_EVQ_V2_OUT_FLAGS
));
3332 /* IRQ return is ignored */
3333 if (channel
->channel
|| rc
)
3336 /* Successfully created event queue on channel 0 */
3337 rc
= efx_mcdi_get_workarounds(efx
, &implemented
, &enabled
);
3338 if (rc
== -ENOSYS
) {
3339 /* GET_WORKAROUNDS was implemented before this workaround,
3340 * thus it must be unavailable in this firmware.
3342 nic_data
->workaround_26807
= false;
3347 nic_data
->workaround_26807
=
3348 !!(enabled
& MC_CMD_GET_WORKAROUNDS_OUT_BUG26807
);
3350 if (implemented
& MC_CMD_GET_WORKAROUNDS_OUT_BUG26807
&&
3351 !nic_data
->workaround_26807
) {
3354 rc
= efx_mcdi_set_workaround(efx
,
3355 MC_CMD_WORKAROUND_BUG26807
,
3360 1 << MC_CMD_WORKAROUND_EXT_OUT_FLR_DONE_LBN
) {
3361 netif_info(efx
, drv
, efx
->net_dev
,
3362 "other functions on NIC have been reset\n");
3364 /* With MCFW v4.6.x and earlier, the
3365 * boot count will have incremented,
3366 * so re-read the warm_boot_count
3367 * value now to ensure this function
3368 * doesn't think it has changed next
3371 rc
= efx_ef10_get_warm_boot_count(efx
);
3373 nic_data
->warm_boot_count
= rc
;
3377 nic_data
->workaround_26807
= true;
3378 } else if (rc
== -EPERM
) {
3388 efx_ef10_ev_fini(channel
);
3392 static void efx_ef10_ev_remove(struct efx_channel
*channel
)
3394 efx_nic_free_buffer(channel
->efx
, &channel
->eventq
.buf
);
3397 static void efx_ef10_handle_rx_wrong_queue(struct efx_rx_queue
*rx_queue
,
3398 unsigned int rx_queue_label
)
3400 struct efx_nic
*efx
= rx_queue
->efx
;
3402 netif_info(efx
, hw
, efx
->net_dev
,
3403 "rx event arrived on queue %d labeled as queue %u\n",
3404 efx_rx_queue_index(rx_queue
), rx_queue_label
);
3406 efx_schedule_reset(efx
, RESET_TYPE_DISABLE
);
3410 efx_ef10_handle_rx_bad_lbits(struct efx_rx_queue
*rx_queue
,
3411 unsigned int actual
, unsigned int expected
)
3413 unsigned int dropped
= (actual
- expected
) & rx_queue
->ptr_mask
;
3414 struct efx_nic
*efx
= rx_queue
->efx
;
3416 netif_info(efx
, hw
, efx
->net_dev
,
3417 "dropped %d events (index=%d expected=%d)\n",
3418 dropped
, actual
, expected
);
3420 efx_schedule_reset(efx
, RESET_TYPE_DISABLE
);
3423 /* partially received RX was aborted. clean up. */
3424 static void efx_ef10_handle_rx_abort(struct efx_rx_queue
*rx_queue
)
3426 unsigned int rx_desc_ptr
;
3428 netif_dbg(rx_queue
->efx
, hw
, rx_queue
->efx
->net_dev
,
3429 "scattered RX aborted (dropping %u buffers)\n",
3430 rx_queue
->scatter_n
);
3432 rx_desc_ptr
= rx_queue
->removed_count
& rx_queue
->ptr_mask
;
3434 efx_rx_packet(rx_queue
, rx_desc_ptr
, rx_queue
->scatter_n
,
3435 0, EFX_RX_PKT_DISCARD
);
3437 rx_queue
->removed_count
+= rx_queue
->scatter_n
;
3438 rx_queue
->scatter_n
= 0;
3439 rx_queue
->scatter_len
= 0;
3440 ++efx_rx_queue_channel(rx_queue
)->n_rx_nodesc_trunc
;
3443 static u16
efx_ef10_handle_rx_event_errors(struct efx_channel
*channel
,
3444 unsigned int n_packets
,
3445 unsigned int rx_encap_hdr
,
3446 unsigned int rx_l3_class
,
3447 unsigned int rx_l4_class
,
3448 const efx_qword_t
*event
)
3450 struct efx_nic
*efx
= channel
->efx
;
3451 bool handled
= false;
3453 if (EFX_QWORD_FIELD(*event
, ESF_DZ_RX_ECRC_ERR
)) {
3454 if (!(efx
->net_dev
->features
& NETIF_F_RXALL
)) {
3455 if (!efx
->loopback_selftest
)
3456 channel
->n_rx_eth_crc_err
+= n_packets
;
3457 return EFX_RX_PKT_DISCARD
;
3461 if (EFX_QWORD_FIELD(*event
, ESF_DZ_RX_IPCKSUM_ERR
)) {
3462 if (unlikely(rx_encap_hdr
!= ESE_EZ_ENCAP_HDR_VXLAN
&&
3463 rx_l3_class
!= ESE_DZ_L3_CLASS_IP4
&&
3464 rx_l3_class
!= ESE_DZ_L3_CLASS_IP4_FRAG
&&
3465 rx_l3_class
!= ESE_DZ_L3_CLASS_IP6
&&
3466 rx_l3_class
!= ESE_DZ_L3_CLASS_IP6_FRAG
))
3467 netdev_WARN(efx
->net_dev
,
3468 "invalid class for RX_IPCKSUM_ERR: event="
3470 EFX_QWORD_VAL(*event
));
3471 if (!efx
->loopback_selftest
)
3473 &channel
->n_rx_outer_ip_hdr_chksum_err
:
3474 &channel
->n_rx_ip_hdr_chksum_err
) += n_packets
;
3477 if (EFX_QWORD_FIELD(*event
, ESF_DZ_RX_TCPUDP_CKSUM_ERR
)) {
3478 if (unlikely(rx_encap_hdr
!= ESE_EZ_ENCAP_HDR_VXLAN
&&
3479 ((rx_l3_class
!= ESE_DZ_L3_CLASS_IP4
&&
3480 rx_l3_class
!= ESE_DZ_L3_CLASS_IP6
) ||
3481 (rx_l4_class
!= ESE_FZ_L4_CLASS_TCP
&&
3482 rx_l4_class
!= ESE_FZ_L4_CLASS_UDP
))))
3483 netdev_WARN(efx
->net_dev
,
3484 "invalid class for RX_TCPUDP_CKSUM_ERR: event="
3486 EFX_QWORD_VAL(*event
));
3487 if (!efx
->loopback_selftest
)
3489 &channel
->n_rx_outer_tcp_udp_chksum_err
:
3490 &channel
->n_rx_tcp_udp_chksum_err
) += n_packets
;
3493 if (EFX_QWORD_FIELD(*event
, ESF_EZ_RX_IP_INNER_CHKSUM_ERR
)) {
3494 if (unlikely(!rx_encap_hdr
))
3495 netdev_WARN(efx
->net_dev
,
3496 "invalid encapsulation type for RX_IP_INNER_CHKSUM_ERR: event="
3498 EFX_QWORD_VAL(*event
));
3499 else if (unlikely(rx_l3_class
!= ESE_DZ_L3_CLASS_IP4
&&
3500 rx_l3_class
!= ESE_DZ_L3_CLASS_IP4_FRAG
&&
3501 rx_l3_class
!= ESE_DZ_L3_CLASS_IP6
&&
3502 rx_l3_class
!= ESE_DZ_L3_CLASS_IP6_FRAG
))
3503 netdev_WARN(efx
->net_dev
,
3504 "invalid class for RX_IP_INNER_CHKSUM_ERR: event="
3506 EFX_QWORD_VAL(*event
));
3507 if (!efx
->loopback_selftest
)
3508 channel
->n_rx_inner_ip_hdr_chksum_err
+= n_packets
;
3511 if (EFX_QWORD_FIELD(*event
, ESF_EZ_RX_TCP_UDP_INNER_CHKSUM_ERR
)) {
3512 if (unlikely(!rx_encap_hdr
))
3513 netdev_WARN(efx
->net_dev
,
3514 "invalid encapsulation type for RX_TCP_UDP_INNER_CHKSUM_ERR: event="
3516 EFX_QWORD_VAL(*event
));
3517 else if (unlikely((rx_l3_class
!= ESE_DZ_L3_CLASS_IP4
&&
3518 rx_l3_class
!= ESE_DZ_L3_CLASS_IP6
) ||
3519 (rx_l4_class
!= ESE_FZ_L4_CLASS_TCP
&&
3520 rx_l4_class
!= ESE_FZ_L4_CLASS_UDP
)))
3521 netdev_WARN(efx
->net_dev
,
3522 "invalid class for RX_TCP_UDP_INNER_CHKSUM_ERR: event="
3524 EFX_QWORD_VAL(*event
));
3525 if (!efx
->loopback_selftest
)
3526 channel
->n_rx_inner_tcp_udp_chksum_err
+= n_packets
;
3530 WARN_ON(!handled
); /* No error bits were recognised */
3534 static int efx_ef10_handle_rx_event(struct efx_channel
*channel
,
3535 const efx_qword_t
*event
)
3537 unsigned int rx_bytes
, next_ptr_lbits
, rx_queue_label
;
3538 unsigned int rx_l3_class
, rx_l4_class
, rx_encap_hdr
;
3539 unsigned int n_descs
, n_packets
, i
;
3540 struct efx_nic
*efx
= channel
->efx
;
3541 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
3542 struct efx_rx_queue
*rx_queue
;
3547 if (unlikely(READ_ONCE(efx
->reset_pending
)))
3550 /* Basic packet information */
3551 rx_bytes
= EFX_QWORD_FIELD(*event
, ESF_DZ_RX_BYTES
);
3552 next_ptr_lbits
= EFX_QWORD_FIELD(*event
, ESF_DZ_RX_DSC_PTR_LBITS
);
3553 rx_queue_label
= EFX_QWORD_FIELD(*event
, ESF_DZ_RX_QLABEL
);
3554 rx_l3_class
= EFX_QWORD_FIELD(*event
, ESF_DZ_RX_L3_CLASS
);
3555 rx_l4_class
= EFX_QWORD_FIELD(*event
, ESF_FZ_RX_L4_CLASS
);
3556 rx_cont
= EFX_QWORD_FIELD(*event
, ESF_DZ_RX_CONT
);
3558 nic_data
->datapath_caps
&
3559 (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN
) ?
3560 EFX_QWORD_FIELD(*event
, ESF_EZ_RX_ENCAP_HDR
) :
3561 ESE_EZ_ENCAP_HDR_NONE
;
3563 if (EFX_QWORD_FIELD(*event
, ESF_DZ_RX_DROP_EVENT
))
3564 netdev_WARN(efx
->net_dev
, "saw RX_DROP_EVENT: event="
3566 EFX_QWORD_VAL(*event
));
3568 rx_queue
= efx_channel_get_rx_queue(channel
);
3570 if (unlikely(rx_queue_label
!= efx_rx_queue_index(rx_queue
)))
3571 efx_ef10_handle_rx_wrong_queue(rx_queue
, rx_queue_label
);
3573 n_descs
= ((next_ptr_lbits
- rx_queue
->removed_count
) &
3574 ((1 << ESF_DZ_RX_DSC_PTR_LBITS_WIDTH
) - 1));
3576 if (n_descs
!= rx_queue
->scatter_n
+ 1) {
3577 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
3579 /* detect rx abort */
3580 if (unlikely(n_descs
== rx_queue
->scatter_n
)) {
3581 if (rx_queue
->scatter_n
== 0 || rx_bytes
!= 0)
3582 netdev_WARN(efx
->net_dev
,
3583 "invalid RX abort: scatter_n=%u event="
3585 rx_queue
->scatter_n
,
3586 EFX_QWORD_VAL(*event
));
3587 efx_ef10_handle_rx_abort(rx_queue
);
3591 /* Check that RX completion merging is valid, i.e.
3592 * the current firmware supports it and this is a
3593 * non-scattered packet.
3595 if (!(nic_data
->datapath_caps
&
3596 (1 << MC_CMD_GET_CAPABILITIES_OUT_RX_BATCHING_LBN
)) ||
3597 rx_queue
->scatter_n
!= 0 || rx_cont
) {
3598 efx_ef10_handle_rx_bad_lbits(
3599 rx_queue
, next_ptr_lbits
,
3600 (rx_queue
->removed_count
+
3601 rx_queue
->scatter_n
+ 1) &
3602 ((1 << ESF_DZ_RX_DSC_PTR_LBITS_WIDTH
) - 1));
3606 /* Merged completion for multiple non-scattered packets */
3607 rx_queue
->scatter_n
= 1;
3608 rx_queue
->scatter_len
= 0;
3609 n_packets
= n_descs
;
3610 ++channel
->n_rx_merge_events
;
3611 channel
->n_rx_merge_packets
+= n_packets
;
3612 flags
|= EFX_RX_PKT_PREFIX_LEN
;
3614 ++rx_queue
->scatter_n
;
3615 rx_queue
->scatter_len
+= rx_bytes
;
3621 EFX_POPULATE_QWORD_5(errors
, ESF_DZ_RX_ECRC_ERR
, 1,
3622 ESF_DZ_RX_IPCKSUM_ERR
, 1,
3623 ESF_DZ_RX_TCPUDP_CKSUM_ERR
, 1,
3624 ESF_EZ_RX_IP_INNER_CHKSUM_ERR
, 1,
3625 ESF_EZ_RX_TCP_UDP_INNER_CHKSUM_ERR
, 1);
3626 EFX_AND_QWORD(errors
, *event
, errors
);
3627 if (unlikely(!EFX_QWORD_IS_ZERO(errors
))) {
3628 flags
|= efx_ef10_handle_rx_event_errors(channel
, n_packets
,
3630 rx_l3_class
, rx_l4_class
,
3633 bool tcpudp
= rx_l4_class
== ESE_FZ_L4_CLASS_TCP
||
3634 rx_l4_class
== ESE_FZ_L4_CLASS_UDP
;
3636 switch (rx_encap_hdr
) {
3637 case ESE_EZ_ENCAP_HDR_VXLAN
: /* VxLAN or GENEVE */
3638 flags
|= EFX_RX_PKT_CSUMMED
; /* outer UDP csum */
3640 flags
|= EFX_RX_PKT_CSUM_LEVEL
; /* inner L4 */
3642 case ESE_EZ_ENCAP_HDR_GRE
:
3643 case ESE_EZ_ENCAP_HDR_NONE
:
3645 flags
|= EFX_RX_PKT_CSUMMED
;
3648 netdev_WARN(efx
->net_dev
,
3649 "unknown encapsulation type: event="
3651 EFX_QWORD_VAL(*event
));
3655 if (rx_l4_class
== ESE_FZ_L4_CLASS_TCP
)
3656 flags
|= EFX_RX_PKT_TCP
;
3658 channel
->irq_mod_score
+= 2 * n_packets
;
3660 /* Handle received packet(s) */
3661 for (i
= 0; i
< n_packets
; i
++) {
3662 efx_rx_packet(rx_queue
,
3663 rx_queue
->removed_count
& rx_queue
->ptr_mask
,
3664 rx_queue
->scatter_n
, rx_queue
->scatter_len
,
3666 rx_queue
->removed_count
+= rx_queue
->scatter_n
;
3669 rx_queue
->scatter_n
= 0;
3670 rx_queue
->scatter_len
= 0;
3675 static u32
efx_ef10_extract_event_ts(efx_qword_t
*event
)
3679 tstamp
= EFX_QWORD_FIELD(*event
, TX_TIMESTAMP_EVENT_TSTAMP_DATA_HI
);
3681 tstamp
|= EFX_QWORD_FIELD(*event
, TX_TIMESTAMP_EVENT_TSTAMP_DATA_LO
);
3687 efx_ef10_handle_tx_event(struct efx_channel
*channel
, efx_qword_t
*event
)
3689 struct efx_nic
*efx
= channel
->efx
;
3690 struct efx_tx_queue
*tx_queue
;
3691 unsigned int tx_ev_desc_ptr
;
3692 unsigned int tx_ev_q_label
;
3693 unsigned int tx_ev_type
;
3696 if (unlikely(READ_ONCE(efx
->reset_pending
)))
3699 if (unlikely(EFX_QWORD_FIELD(*event
, ESF_DZ_TX_DROP_EVENT
)))
3702 /* Get the transmit queue */
3703 tx_ev_q_label
= EFX_QWORD_FIELD(*event
, ESF_DZ_TX_QLABEL
);
3704 tx_queue
= efx_channel_get_tx_queue(channel
,
3705 tx_ev_q_label
% EFX_TXQ_TYPES
);
3707 if (!tx_queue
->timestamping
) {
3708 /* Transmit completion */
3709 tx_ev_desc_ptr
= EFX_QWORD_FIELD(*event
, ESF_DZ_TX_DESCR_INDX
);
3710 efx_xmit_done(tx_queue
, tx_ev_desc_ptr
& tx_queue
->ptr_mask
);
3714 /* Transmit timestamps are only available for 8XXX series. They result
3715 * in three events per packet. These occur in order, and are:
3716 * - the normal completion event
3717 * - the low part of the timestamp
3718 * - the high part of the timestamp
3720 * Each part of the timestamp is itself split across two 16 bit
3721 * fields in the event.
3723 tx_ev_type
= EFX_QWORD_FIELD(*event
, ESF_EZ_TX_SOFT1
);
3725 switch (tx_ev_type
) {
3726 case TX_TIMESTAMP_EVENT_TX_EV_COMPLETION
:
3727 /* In case of Queue flush or FLR, we might have received
3728 * the previous TX completion event but not the Timestamp
3731 if (tx_queue
->completed_desc_ptr
!= tx_queue
->ptr_mask
)
3732 efx_xmit_done(tx_queue
, tx_queue
->completed_desc_ptr
);
3734 tx_ev_desc_ptr
= EFX_QWORD_FIELD(*event
,
3735 ESF_DZ_TX_DESCR_INDX
);
3736 tx_queue
->completed_desc_ptr
=
3737 tx_ev_desc_ptr
& tx_queue
->ptr_mask
;
3740 case TX_TIMESTAMP_EVENT_TX_EV_TSTAMP_LO
:
3741 ts_part
= efx_ef10_extract_event_ts(event
);
3742 tx_queue
->completed_timestamp_minor
= ts_part
;
3745 case TX_TIMESTAMP_EVENT_TX_EV_TSTAMP_HI
:
3746 ts_part
= efx_ef10_extract_event_ts(event
);
3747 tx_queue
->completed_timestamp_major
= ts_part
;
3749 efx_xmit_done(tx_queue
, tx_queue
->completed_desc_ptr
);
3750 tx_queue
->completed_desc_ptr
= tx_queue
->ptr_mask
;
3754 netif_err(efx
, hw
, efx
->net_dev
,
3755 "channel %d unknown tx event type %d (data "
3756 EFX_QWORD_FMT
")\n",
3757 channel
->channel
, tx_ev_type
,
3758 EFX_QWORD_VAL(*event
));
3764 efx_ef10_handle_driver_event(struct efx_channel
*channel
, efx_qword_t
*event
)
3766 struct efx_nic
*efx
= channel
->efx
;
3769 subcode
= EFX_QWORD_FIELD(*event
, ESF_DZ_DRV_SUB_CODE
);
3772 case ESE_DZ_DRV_TIMER_EV
:
3773 case ESE_DZ_DRV_WAKE_UP_EV
:
3775 case ESE_DZ_DRV_START_UP_EV
:
3776 /* event queue init complete. ok. */
3779 netif_err(efx
, hw
, efx
->net_dev
,
3780 "channel %d unknown driver event type %d"
3781 " (data " EFX_QWORD_FMT
")\n",
3782 channel
->channel
, subcode
,
3783 EFX_QWORD_VAL(*event
));
3788 static void efx_ef10_handle_driver_generated_event(struct efx_channel
*channel
,
3791 struct efx_nic
*efx
= channel
->efx
;
3794 subcode
= EFX_QWORD_FIELD(*event
, EFX_DWORD_0
);
3798 channel
->event_test_cpu
= raw_smp_processor_id();
3800 case EFX_EF10_REFILL
:
3801 /* The queue must be empty, so we won't receive any rx
3802 * events, so efx_process_channel() won't refill the
3803 * queue. Refill it here
3805 efx_fast_push_rx_descriptors(&channel
->rx_queue
, true);
3808 netif_err(efx
, hw
, efx
->net_dev
,
3809 "channel %d unknown driver event type %u"
3810 " (data " EFX_QWORD_FMT
")\n",
3811 channel
->channel
, (unsigned) subcode
,
3812 EFX_QWORD_VAL(*event
));
3816 static int efx_ef10_ev_process(struct efx_channel
*channel
, int quota
)
3818 struct efx_nic
*efx
= channel
->efx
;
3819 efx_qword_t event
, *p_event
;
3820 unsigned int read_ptr
;
3827 read_ptr
= channel
->eventq_read_ptr
;
3830 p_event
= efx_event(channel
, read_ptr
);
3833 if (!efx_event_present(&event
))
3836 EFX_SET_QWORD(*p_event
);
3840 ev_code
= EFX_QWORD_FIELD(event
, ESF_DZ_EV_CODE
);
3842 netif_vdbg(efx
, drv
, efx
->net_dev
,
3843 "processing event on %d " EFX_QWORD_FMT
"\n",
3844 channel
->channel
, EFX_QWORD_VAL(event
));
3847 case ESE_DZ_EV_CODE_MCDI_EV
:
3848 efx_mcdi_process_event(channel
, &event
);
3850 case ESE_DZ_EV_CODE_RX_EV
:
3851 spent
+= efx_ef10_handle_rx_event(channel
, &event
);
3852 if (spent
>= quota
) {
3853 /* XXX can we split a merged event to
3854 * avoid going over-quota?
3860 case ESE_DZ_EV_CODE_TX_EV
:
3861 efx_ef10_handle_tx_event(channel
, &event
);
3863 case ESE_DZ_EV_CODE_DRIVER_EV
:
3864 efx_ef10_handle_driver_event(channel
, &event
);
3865 if (++spent
== quota
)
3868 case EFX_EF10_DRVGEN_EV
:
3869 efx_ef10_handle_driver_generated_event(channel
, &event
);
3872 netif_err(efx
, hw
, efx
->net_dev
,
3873 "channel %d unknown event type %d"
3874 " (data " EFX_QWORD_FMT
")\n",
3875 channel
->channel
, ev_code
,
3876 EFX_QWORD_VAL(event
));
3881 channel
->eventq_read_ptr
= read_ptr
;
3885 static void efx_ef10_ev_read_ack(struct efx_channel
*channel
)
3887 struct efx_nic
*efx
= channel
->efx
;
3890 if (EFX_EF10_WORKAROUND_35388(efx
)) {
3891 BUILD_BUG_ON(EFX_MIN_EVQ_SIZE
<
3892 (1 << ERF_DD_EVQ_IND_RPTR_WIDTH
));
3893 BUILD_BUG_ON(EFX_MAX_EVQ_SIZE
>
3894 (1 << 2 * ERF_DD_EVQ_IND_RPTR_WIDTH
));
3896 EFX_POPULATE_DWORD_2(rptr
, ERF_DD_EVQ_IND_RPTR_FLAGS
,
3897 EFE_DD_EVQ_IND_RPTR_FLAGS_HIGH
,
3898 ERF_DD_EVQ_IND_RPTR
,
3899 (channel
->eventq_read_ptr
&
3900 channel
->eventq_mask
) >>
3901 ERF_DD_EVQ_IND_RPTR_WIDTH
);
3902 efx_writed_page(efx
, &rptr
, ER_DD_EVQ_INDIRECT
,
3904 EFX_POPULATE_DWORD_2(rptr
, ERF_DD_EVQ_IND_RPTR_FLAGS
,
3905 EFE_DD_EVQ_IND_RPTR_FLAGS_LOW
,
3906 ERF_DD_EVQ_IND_RPTR
,
3907 channel
->eventq_read_ptr
&
3908 ((1 << ERF_DD_EVQ_IND_RPTR_WIDTH
) - 1));
3909 efx_writed_page(efx
, &rptr
, ER_DD_EVQ_INDIRECT
,
3912 EFX_POPULATE_DWORD_1(rptr
, ERF_DZ_EVQ_RPTR
,
3913 channel
->eventq_read_ptr
&
3914 channel
->eventq_mask
);
3915 efx_writed_page(efx
, &rptr
, ER_DZ_EVQ_RPTR
, channel
->channel
);
3919 static void efx_ef10_ev_test_generate(struct efx_channel
*channel
)
3921 MCDI_DECLARE_BUF(inbuf
, MC_CMD_DRIVER_EVENT_IN_LEN
);
3922 struct efx_nic
*efx
= channel
->efx
;
3926 EFX_POPULATE_QWORD_2(event
,
3927 ESF_DZ_EV_CODE
, EFX_EF10_DRVGEN_EV
,
3928 ESF_DZ_EV_DATA
, EFX_EF10_TEST
);
3930 MCDI_SET_DWORD(inbuf
, DRIVER_EVENT_IN_EVQ
, channel
->channel
);
3932 /* MCDI_SET_QWORD is not appropriate here since EFX_POPULATE_* has
3933 * already swapped the data to little-endian order.
3935 memcpy(MCDI_PTR(inbuf
, DRIVER_EVENT_IN_DATA
), &event
.u64
[0],
3936 sizeof(efx_qword_t
));
3938 rc
= efx_mcdi_rpc(efx
, MC_CMD_DRIVER_EVENT
, inbuf
, sizeof(inbuf
),
3947 netif_err(efx
, hw
, efx
->net_dev
, "%s: failed rc=%d\n", __func__
, rc
);
3950 void efx_ef10_handle_drain_event(struct efx_nic
*efx
)
3952 if (atomic_dec_and_test(&efx
->active_queues
))
3953 wake_up(&efx
->flush_wq
);
3955 WARN_ON(atomic_read(&efx
->active_queues
) < 0);
3958 static int efx_ef10_fini_dmaq(struct efx_nic
*efx
)
3960 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
3961 struct efx_channel
*channel
;
3962 struct efx_tx_queue
*tx_queue
;
3963 struct efx_rx_queue
*rx_queue
;
3966 /* If the MC has just rebooted, the TX/RX queues will have already been
3967 * torn down, but efx->active_queues needs to be set to zero.
3969 if (nic_data
->must_realloc_vis
) {
3970 atomic_set(&efx
->active_queues
, 0);
3974 /* Do not attempt to write to the NIC during EEH recovery */
3975 if (efx
->state
!= STATE_RECOVERY
) {
3976 efx_for_each_channel(channel
, efx
) {
3977 efx_for_each_channel_rx_queue(rx_queue
, channel
)
3978 efx_ef10_rx_fini(rx_queue
);
3979 efx_for_each_channel_tx_queue(tx_queue
, channel
)
3980 efx_ef10_tx_fini(tx_queue
);
3983 wait_event_timeout(efx
->flush_wq
,
3984 atomic_read(&efx
->active_queues
) == 0,
3985 msecs_to_jiffies(EFX_MAX_FLUSH_TIME
));
3986 pending
= atomic_read(&efx
->active_queues
);
3988 netif_err(efx
, hw
, efx
->net_dev
, "failed to flush %d queues\n",
3997 static void efx_ef10_prepare_flr(struct efx_nic
*efx
)
3999 atomic_set(&efx
->active_queues
, 0);
4002 /* Decide whether a filter should be exclusive or else should allow
4003 * delivery to additional recipients. Currently we decide that
4004 * filters for specific local unicast MAC and IP addresses are
4007 static bool efx_ef10_filter_is_exclusive(const struct efx_filter_spec
*spec
)
4009 if (spec
->match_flags
& EFX_FILTER_MATCH_LOC_MAC
&&
4010 !is_multicast_ether_addr(spec
->loc_mac
))
4013 if ((spec
->match_flags
&
4014 (EFX_FILTER_MATCH_ETHER_TYPE
| EFX_FILTER_MATCH_LOC_HOST
)) ==
4015 (EFX_FILTER_MATCH_ETHER_TYPE
| EFX_FILTER_MATCH_LOC_HOST
)) {
4016 if (spec
->ether_type
== htons(ETH_P_IP
) &&
4017 !ipv4_is_multicast(spec
->loc_host
[0]))
4019 if (spec
->ether_type
== htons(ETH_P_IPV6
) &&
4020 ((const u8
*)spec
->loc_host
)[0] != 0xff)
4027 static struct efx_filter_spec
*
4028 efx_ef10_filter_entry_spec(const struct efx_ef10_filter_table
*table
,
4029 unsigned int filter_idx
)
4031 return (struct efx_filter_spec
*)(table
->entry
[filter_idx
].spec
&
4032 ~EFX_EF10_FILTER_FLAGS
);
4036 efx_ef10_filter_entry_flags(const struct efx_ef10_filter_table
*table
,
4037 unsigned int filter_idx
)
4039 return table
->entry
[filter_idx
].spec
& EFX_EF10_FILTER_FLAGS
;
4043 efx_ef10_filter_set_entry(struct efx_ef10_filter_table
*table
,
4044 unsigned int filter_idx
,
4045 const struct efx_filter_spec
*spec
,
4048 table
->entry
[filter_idx
].spec
= (unsigned long)spec
| flags
;
4052 efx_ef10_filter_push_prep_set_match_fields(struct efx_nic
*efx
,
4053 const struct efx_filter_spec
*spec
,
4056 enum efx_encap_type encap_type
= efx_filter_get_encap_type(spec
);
4057 u32 match_fields
= 0, uc_match
, mc_match
;
4059 MCDI_SET_DWORD(inbuf
, FILTER_OP_IN_OP
,
4060 efx_ef10_filter_is_exclusive(spec
) ?
4061 MC_CMD_FILTER_OP_IN_OP_INSERT
:
4062 MC_CMD_FILTER_OP_IN_OP_SUBSCRIBE
);
4064 /* Convert match flags and values. Unlike almost
4065 * everything else in MCDI, these fields are in
4066 * network byte order.
4068 #define COPY_VALUE(value, mcdi_field) \
4071 1 << MC_CMD_FILTER_OP_IN_MATCH_ ## \
4072 mcdi_field ## _LBN; \
4074 MC_CMD_FILTER_OP_IN_ ## mcdi_field ## _LEN < \
4076 memcpy(MCDI_PTR(inbuf, FILTER_OP_IN_ ## mcdi_field), \
4077 &value, sizeof(value)); \
4079 #define COPY_FIELD(gen_flag, gen_field, mcdi_field) \
4080 if (spec->match_flags & EFX_FILTER_MATCH_ ## gen_flag) { \
4081 COPY_VALUE(spec->gen_field, mcdi_field); \
4083 /* Handle encap filters first. They will always be mismatch
4084 * (unknown UC or MC) filters
4087 /* ether_type and outer_ip_proto need to be variables
4088 * because COPY_VALUE wants to memcpy them
4091 htons(encap_type
& EFX_ENCAP_FLAG_IPV6
?
4092 ETH_P_IPV6
: ETH_P_IP
);
4093 u8 vni_type
= MC_CMD_FILTER_OP_EXT_IN_VNI_TYPE_GENEVE
;
4096 switch (encap_type
& EFX_ENCAP_TYPES_MASK
) {
4097 case EFX_ENCAP_TYPE_VXLAN
:
4098 vni_type
= MC_CMD_FILTER_OP_EXT_IN_VNI_TYPE_VXLAN
;
4100 case EFX_ENCAP_TYPE_GENEVE
:
4101 COPY_VALUE(ether_type
, ETHER_TYPE
);
4102 outer_ip_proto
= IPPROTO_UDP
;
4103 COPY_VALUE(outer_ip_proto
, IP_PROTO
);
4104 /* We always need to set the type field, even
4105 * though we're not matching on the TNI.
4107 MCDI_POPULATE_DWORD_1(inbuf
,
4108 FILTER_OP_EXT_IN_VNI_OR_VSID
,
4109 FILTER_OP_EXT_IN_VNI_TYPE
,
4112 case EFX_ENCAP_TYPE_NVGRE
:
4113 COPY_VALUE(ether_type
, ETHER_TYPE
);
4114 outer_ip_proto
= IPPROTO_GRE
;
4115 COPY_VALUE(outer_ip_proto
, IP_PROTO
);
4121 uc_match
= MC_CMD_FILTER_OP_EXT_IN_MATCH_IFRM_UNKNOWN_UCAST_DST_LBN
;
4122 mc_match
= MC_CMD_FILTER_OP_EXT_IN_MATCH_IFRM_UNKNOWN_MCAST_DST_LBN
;
4124 uc_match
= MC_CMD_FILTER_OP_EXT_IN_MATCH_UNKNOWN_UCAST_DST_LBN
;
4125 mc_match
= MC_CMD_FILTER_OP_EXT_IN_MATCH_UNKNOWN_MCAST_DST_LBN
;
4128 if (spec
->match_flags
& EFX_FILTER_MATCH_LOC_MAC_IG
)
4130 is_multicast_ether_addr(spec
->loc_mac
) ?
4133 COPY_FIELD(REM_HOST
, rem_host
, SRC_IP
);
4134 COPY_FIELD(LOC_HOST
, loc_host
, DST_IP
);
4135 COPY_FIELD(REM_MAC
, rem_mac
, SRC_MAC
);
4136 COPY_FIELD(REM_PORT
, rem_port
, SRC_PORT
);
4137 COPY_FIELD(LOC_MAC
, loc_mac
, DST_MAC
);
4138 COPY_FIELD(LOC_PORT
, loc_port
, DST_PORT
);
4139 COPY_FIELD(ETHER_TYPE
, ether_type
, ETHER_TYPE
);
4140 COPY_FIELD(INNER_VID
, inner_vid
, INNER_VLAN
);
4141 COPY_FIELD(OUTER_VID
, outer_vid
, OUTER_VLAN
);
4142 COPY_FIELD(IP_PROTO
, ip_proto
, IP_PROTO
);
4145 MCDI_SET_DWORD(inbuf
, FILTER_OP_IN_MATCH_FIELDS
,
4149 static void efx_ef10_filter_push_prep(struct efx_nic
*efx
,
4150 const struct efx_filter_spec
*spec
,
4151 efx_dword_t
*inbuf
, u64 handle
,
4152 struct efx_rss_context
*ctx
,
4155 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
4156 u32 flags
= spec
->flags
;
4158 memset(inbuf
, 0, MC_CMD_FILTER_OP_EXT_IN_LEN
);
4160 /* If RSS filter, caller better have given us an RSS context */
4161 if (flags
& EFX_FILTER_FLAG_RX_RSS
) {
4162 /* We don't have the ability to return an error, so we'll just
4163 * log a warning and disable RSS for the filter.
4165 if (WARN_ON_ONCE(!ctx
))
4166 flags
&= ~EFX_FILTER_FLAG_RX_RSS
;
4167 else if (WARN_ON_ONCE(ctx
->context_id
== EFX_EF10_RSS_CONTEXT_INVALID
))
4168 flags
&= ~EFX_FILTER_FLAG_RX_RSS
;
4172 MCDI_SET_DWORD(inbuf
, FILTER_OP_IN_OP
,
4173 MC_CMD_FILTER_OP_IN_OP_REPLACE
);
4174 MCDI_SET_QWORD(inbuf
, FILTER_OP_IN_HANDLE
, handle
);
4176 efx_ef10_filter_push_prep_set_match_fields(efx
, spec
, inbuf
);
4179 MCDI_SET_DWORD(inbuf
, FILTER_OP_IN_PORT_ID
, nic_data
->vport_id
);
4180 MCDI_SET_DWORD(inbuf
, FILTER_OP_IN_RX_DEST
,
4181 spec
->dmaq_id
== EFX_FILTER_RX_DMAQ_ID_DROP
?
4182 MC_CMD_FILTER_OP_IN_RX_DEST_DROP
:
4183 MC_CMD_FILTER_OP_IN_RX_DEST_HOST
);
4184 MCDI_SET_DWORD(inbuf
, FILTER_OP_IN_TX_DOMAIN
, 0);
4185 MCDI_SET_DWORD(inbuf
, FILTER_OP_IN_TX_DEST
,
4186 MC_CMD_FILTER_OP_IN_TX_DEST_DEFAULT
);
4187 MCDI_SET_DWORD(inbuf
, FILTER_OP_IN_RX_QUEUE
,
4188 spec
->dmaq_id
== EFX_FILTER_RX_DMAQ_ID_DROP
?
4190 MCDI_SET_DWORD(inbuf
, FILTER_OP_IN_RX_MODE
,
4191 (flags
& EFX_FILTER_FLAG_RX_RSS
) ?
4192 MC_CMD_FILTER_OP_IN_RX_MODE_RSS
:
4193 MC_CMD_FILTER_OP_IN_RX_MODE_SIMPLE
);
4194 if (flags
& EFX_FILTER_FLAG_RX_RSS
)
4195 MCDI_SET_DWORD(inbuf
, FILTER_OP_IN_RX_CONTEXT
, ctx
->context_id
);
4198 static int efx_ef10_filter_push(struct efx_nic
*efx
,
4199 const struct efx_filter_spec
*spec
, u64
*handle
,
4200 struct efx_rss_context
*ctx
, bool replacing
)
4202 MCDI_DECLARE_BUF(inbuf
, MC_CMD_FILTER_OP_EXT_IN_LEN
);
4203 MCDI_DECLARE_BUF(outbuf
, MC_CMD_FILTER_OP_EXT_OUT_LEN
);
4206 efx_ef10_filter_push_prep(efx
, spec
, inbuf
, *handle
, ctx
, replacing
);
4207 rc
= efx_mcdi_rpc(efx
, MC_CMD_FILTER_OP
, inbuf
, sizeof(inbuf
),
4208 outbuf
, sizeof(outbuf
), NULL
);
4210 *handle
= MCDI_QWORD(outbuf
, FILTER_OP_OUT_HANDLE
);
4212 rc
= -EBUSY
; /* to match efx_farch_filter_insert() */
4216 static u32
efx_ef10_filter_mcdi_flags_from_spec(const struct efx_filter_spec
*spec
)
4218 enum efx_encap_type encap_type
= efx_filter_get_encap_type(spec
);
4219 unsigned int match_flags
= spec
->match_flags
;
4220 unsigned int uc_match
, mc_match
;
4223 #define MAP_FILTER_TO_MCDI_FLAG(gen_flag, mcdi_field, encap) { \
4224 unsigned int old_match_flags = match_flags; \
4225 match_flags &= ~EFX_FILTER_MATCH_ ## gen_flag; \
4226 if (match_flags != old_match_flags) \
4229 MC_CMD_FILTER_OP_EXT_IN_MATCH_IFRM_ ## \
4230 mcdi_field ## _LBN : \
4231 MC_CMD_FILTER_OP_EXT_IN_MATCH_ ##\
4232 mcdi_field ## _LBN)); \
4234 /* inner or outer based on encap type */
4235 MAP_FILTER_TO_MCDI_FLAG(REM_HOST
, SRC_IP
, encap_type
);
4236 MAP_FILTER_TO_MCDI_FLAG(LOC_HOST
, DST_IP
, encap_type
);
4237 MAP_FILTER_TO_MCDI_FLAG(REM_MAC
, SRC_MAC
, encap_type
);
4238 MAP_FILTER_TO_MCDI_FLAG(REM_PORT
, SRC_PORT
, encap_type
);
4239 MAP_FILTER_TO_MCDI_FLAG(LOC_MAC
, DST_MAC
, encap_type
);
4240 MAP_FILTER_TO_MCDI_FLAG(LOC_PORT
, DST_PORT
, encap_type
);
4241 MAP_FILTER_TO_MCDI_FLAG(ETHER_TYPE
, ETHER_TYPE
, encap_type
);
4242 MAP_FILTER_TO_MCDI_FLAG(IP_PROTO
, IP_PROTO
, encap_type
);
4244 MAP_FILTER_TO_MCDI_FLAG(INNER_VID
, INNER_VLAN
, false);
4245 MAP_FILTER_TO_MCDI_FLAG(OUTER_VID
, OUTER_VLAN
, false);
4246 #undef MAP_FILTER_TO_MCDI_FLAG
4248 /* special handling for encap type, and mismatch */
4250 match_flags
&= ~EFX_FILTER_MATCH_ENCAP_TYPE
;
4252 (1 << MC_CMD_FILTER_OP_EXT_IN_MATCH_ETHER_TYPE_LBN
);
4253 mcdi_flags
|= (1 << MC_CMD_FILTER_OP_EXT_IN_MATCH_IP_PROTO_LBN
);
4255 uc_match
= MC_CMD_FILTER_OP_EXT_IN_MATCH_IFRM_UNKNOWN_UCAST_DST_LBN
;
4256 mc_match
= MC_CMD_FILTER_OP_EXT_IN_MATCH_IFRM_UNKNOWN_MCAST_DST_LBN
;
4258 uc_match
= MC_CMD_FILTER_OP_EXT_IN_MATCH_UNKNOWN_UCAST_DST_LBN
;
4259 mc_match
= MC_CMD_FILTER_OP_EXT_IN_MATCH_UNKNOWN_MCAST_DST_LBN
;
4262 if (match_flags
& EFX_FILTER_MATCH_LOC_MAC_IG
) {
4263 match_flags
&= ~EFX_FILTER_MATCH_LOC_MAC_IG
;
4265 is_multicast_ether_addr(spec
->loc_mac
) ?
4270 /* Did we map them all? */
4271 WARN_ON_ONCE(match_flags
);
4276 static int efx_ef10_filter_pri(struct efx_ef10_filter_table
*table
,
4277 const struct efx_filter_spec
*spec
)
4279 u32 mcdi_flags
= efx_ef10_filter_mcdi_flags_from_spec(spec
);
4280 unsigned int match_pri
;
4283 match_pri
< table
->rx_match_count
;
4285 if (table
->rx_match_mcdi_flags
[match_pri
] == mcdi_flags
)
4288 return -EPROTONOSUPPORT
;
4291 static s32
efx_ef10_filter_insert_locked(struct efx_nic
*efx
,
4292 struct efx_filter_spec
*spec
,
4295 DECLARE_BITMAP(mc_rem_map
, EFX_EF10_FILTER_SEARCH_LIMIT
);
4296 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
4297 struct efx_ef10_filter_table
*table
;
4298 struct efx_filter_spec
*saved_spec
;
4299 struct efx_rss_context
*ctx
= NULL
;
4300 unsigned int match_pri
, hash
;
4301 unsigned int priv_flags
;
4302 bool rss_locked
= false;
4303 bool replacing
= false;
4304 unsigned int depth
, i
;
4310 WARN_ON(!rwsem_is_locked(&efx
->filter_sem
));
4311 table
= efx
->filter_state
;
4312 down_write(&table
->lock
);
4314 /* For now, only support RX filters */
4315 if ((spec
->flags
& (EFX_FILTER_FLAG_RX
| EFX_FILTER_FLAG_TX
)) !=
4316 EFX_FILTER_FLAG_RX
) {
4321 rc
= efx_ef10_filter_pri(table
, spec
);
4326 hash
= efx_filter_spec_hash(spec
);
4327 is_mc_recip
= efx_filter_is_mc_recipient(spec
);
4329 bitmap_zero(mc_rem_map
, EFX_EF10_FILTER_SEARCH_LIMIT
);
4331 if (spec
->flags
& EFX_FILTER_FLAG_RX_RSS
) {
4332 mutex_lock(&efx
->rss_lock
);
4334 if (spec
->rss_context
)
4335 ctx
= efx_find_rss_context_entry(efx
, spec
->rss_context
);
4337 ctx
= &efx
->rss_context
;
4342 if (ctx
->context_id
== EFX_EF10_RSS_CONTEXT_INVALID
) {
4348 /* Find any existing filters with the same match tuple or
4349 * else a free slot to insert at.
4351 for (depth
= 1; depth
< EFX_EF10_FILTER_SEARCH_LIMIT
; depth
++) {
4352 i
= (hash
+ depth
) & (HUNT_FILTER_TBL_ROWS
- 1);
4353 saved_spec
= efx_ef10_filter_entry_spec(table
, i
);
4358 } else if (efx_filter_spec_equal(spec
, saved_spec
)) {
4359 if (spec
->priority
< saved_spec
->priority
&&
4360 spec
->priority
!= EFX_FILTER_PRI_AUTO
) {
4365 /* This is the only one */
4366 if (spec
->priority
==
4367 saved_spec
->priority
&&
4374 } else if (spec
->priority
>
4375 saved_spec
->priority
||
4377 saved_spec
->priority
&&
4382 __set_bit(depth
, mc_rem_map
);
4387 /* Once we reach the maximum search depth, use the first suitable
4388 * slot, or return -EBUSY if there was none
4390 if (ins_index
< 0) {
4395 /* Create a software table entry if necessary. */
4396 saved_spec
= efx_ef10_filter_entry_spec(table
, ins_index
);
4398 if (spec
->priority
== EFX_FILTER_PRI_AUTO
&&
4399 saved_spec
->priority
>= EFX_FILTER_PRI_AUTO
) {
4400 /* Just make sure it won't be removed */
4401 if (saved_spec
->priority
> EFX_FILTER_PRI_AUTO
)
4402 saved_spec
->flags
|= EFX_FILTER_FLAG_RX_OVER_AUTO
;
4403 table
->entry
[ins_index
].spec
&=
4404 ~EFX_EF10_FILTER_FLAG_AUTO_OLD
;
4409 priv_flags
= efx_ef10_filter_entry_flags(table
, ins_index
);
4411 saved_spec
= kmalloc(sizeof(*spec
), GFP_ATOMIC
);
4416 *saved_spec
= *spec
;
4419 efx_ef10_filter_set_entry(table
, ins_index
, saved_spec
, priv_flags
);
4421 /* Actually insert the filter on the HW */
4422 rc
= efx_ef10_filter_push(efx
, spec
, &table
->entry
[ins_index
].handle
,
4425 if (rc
== -EINVAL
&& nic_data
->must_realloc_vis
)
4426 /* The MC rebooted under us, causing it to reject our filter
4427 * insertion as pointing to an invalid VI (spec->dmaq_id).
4431 /* Finalise the software table entry */
4434 /* Update the fields that may differ */
4435 if (saved_spec
->priority
== EFX_FILTER_PRI_AUTO
)
4436 saved_spec
->flags
|=
4437 EFX_FILTER_FLAG_RX_OVER_AUTO
;
4438 saved_spec
->priority
= spec
->priority
;
4439 saved_spec
->flags
&= EFX_FILTER_FLAG_RX_OVER_AUTO
;
4440 saved_spec
->flags
|= spec
->flags
;
4441 saved_spec
->rss_context
= spec
->rss_context
;
4442 saved_spec
->dmaq_id
= spec
->dmaq_id
;
4444 } else if (!replacing
) {
4448 /* We failed to replace, so the old filter is still present.
4449 * Roll back the software table to reflect this. In fact the
4450 * efx_ef10_filter_set_entry() call below will do the right
4451 * thing, so nothing extra is needed here.
4454 efx_ef10_filter_set_entry(table
, ins_index
, saved_spec
, priv_flags
);
4456 /* Remove and finalise entries for lower-priority multicast
4460 MCDI_DECLARE_BUF(inbuf
, MC_CMD_FILTER_OP_EXT_IN_LEN
);
4461 unsigned int depth
, i
;
4463 memset(inbuf
, 0, sizeof(inbuf
));
4465 for (depth
= 0; depth
< EFX_EF10_FILTER_SEARCH_LIMIT
; depth
++) {
4466 if (!test_bit(depth
, mc_rem_map
))
4469 i
= (hash
+ depth
) & (HUNT_FILTER_TBL_ROWS
- 1);
4470 saved_spec
= efx_ef10_filter_entry_spec(table
, i
);
4471 priv_flags
= efx_ef10_filter_entry_flags(table
, i
);
4474 MCDI_SET_DWORD(inbuf
, FILTER_OP_IN_OP
,
4475 MC_CMD_FILTER_OP_IN_OP_UNSUBSCRIBE
);
4476 MCDI_SET_QWORD(inbuf
, FILTER_OP_IN_HANDLE
,
4477 table
->entry
[i
].handle
);
4478 rc
= efx_mcdi_rpc(efx
, MC_CMD_FILTER_OP
,
4479 inbuf
, sizeof(inbuf
),
4488 efx_ef10_filter_set_entry(table
, i
, saved_spec
,
4493 /* If successful, return the inserted filter ID */
4495 rc
= efx_ef10_make_filter_id(match_pri
, ins_index
);
4499 mutex_unlock(&efx
->rss_lock
);
4500 up_write(&table
->lock
);
4504 static s32
efx_ef10_filter_insert(struct efx_nic
*efx
,
4505 struct efx_filter_spec
*spec
,
4510 down_read(&efx
->filter_sem
);
4511 ret
= efx_ef10_filter_insert_locked(efx
, spec
, replace_equal
);
4512 up_read(&efx
->filter_sem
);
4517 static void efx_ef10_filter_update_rx_scatter(struct efx_nic
*efx
)
4519 /* no need to do anything here on EF10 */
4523 * If !by_index, remove by ID
4524 * If by_index, remove by index
4525 * Filter ID may come from userland and must be range-checked.
4526 * Caller must hold efx->filter_sem for read, and efx->filter_state->lock
4529 static int efx_ef10_filter_remove_internal(struct efx_nic
*efx
,
4530 unsigned int priority_mask
,
4531 u32 filter_id
, bool by_index
)
4533 unsigned int filter_idx
= efx_ef10_filter_get_unsafe_id(filter_id
);
4534 struct efx_ef10_filter_table
*table
= efx
->filter_state
;
4535 MCDI_DECLARE_BUF(inbuf
,
4536 MC_CMD_FILTER_OP_IN_HANDLE_OFST
+
4537 MC_CMD_FILTER_OP_IN_HANDLE_LEN
);
4538 struct efx_filter_spec
*spec
;
4542 spec
= efx_ef10_filter_entry_spec(table
, filter_idx
);
4545 efx_ef10_filter_pri(table
, spec
) !=
4546 efx_ef10_filter_get_unsafe_pri(filter_id
)))
4549 if (spec
->flags
& EFX_FILTER_FLAG_RX_OVER_AUTO
&&
4550 priority_mask
== (1U << EFX_FILTER_PRI_AUTO
)) {
4551 /* Just remove flags */
4552 spec
->flags
&= ~EFX_FILTER_FLAG_RX_OVER_AUTO
;
4553 table
->entry
[filter_idx
].spec
&= ~EFX_EF10_FILTER_FLAG_AUTO_OLD
;
4557 if (!(priority_mask
& (1U << spec
->priority
)))
4560 if (spec
->flags
& EFX_FILTER_FLAG_RX_OVER_AUTO
) {
4561 /* Reset to an automatic filter */
4563 struct efx_filter_spec new_spec
= *spec
;
4565 new_spec
.priority
= EFX_FILTER_PRI_AUTO
;
4566 new_spec
.flags
= (EFX_FILTER_FLAG_RX
|
4567 (efx_rss_active(&efx
->rss_context
) ?
4568 EFX_FILTER_FLAG_RX_RSS
: 0));
4569 new_spec
.dmaq_id
= 0;
4570 new_spec
.rss_context
= 0;
4571 rc
= efx_ef10_filter_push(efx
, &new_spec
,
4572 &table
->entry
[filter_idx
].handle
,
4579 /* Really remove the filter */
4581 MCDI_SET_DWORD(inbuf
, FILTER_OP_IN_OP
,
4582 efx_ef10_filter_is_exclusive(spec
) ?
4583 MC_CMD_FILTER_OP_IN_OP_REMOVE
:
4584 MC_CMD_FILTER_OP_IN_OP_UNSUBSCRIBE
);
4585 MCDI_SET_QWORD(inbuf
, FILTER_OP_IN_HANDLE
,
4586 table
->entry
[filter_idx
].handle
);
4587 rc
= efx_mcdi_rpc_quiet(efx
, MC_CMD_FILTER_OP
,
4588 inbuf
, sizeof(inbuf
), NULL
, 0, NULL
);
4590 if ((rc
== 0) || (rc
== -ENOENT
)) {
4591 /* Filter removed OK or didn't actually exist */
4593 efx_ef10_filter_set_entry(table
, filter_idx
, NULL
, 0);
4595 efx_mcdi_display_error(efx
, MC_CMD_FILTER_OP
,
4596 MC_CMD_FILTER_OP_EXT_IN_LEN
,
4604 static int efx_ef10_filter_remove_safe(struct efx_nic
*efx
,
4605 enum efx_filter_priority priority
,
4608 struct efx_ef10_filter_table
*table
;
4611 down_read(&efx
->filter_sem
);
4612 table
= efx
->filter_state
;
4613 down_write(&table
->lock
);
4614 rc
= efx_ef10_filter_remove_internal(efx
, 1U << priority
, filter_id
,
4616 up_write(&table
->lock
);
4617 up_read(&efx
->filter_sem
);
4621 /* Caller must hold efx->filter_sem for read */
4622 static void efx_ef10_filter_remove_unsafe(struct efx_nic
*efx
,
4623 enum efx_filter_priority priority
,
4626 struct efx_ef10_filter_table
*table
= efx
->filter_state
;
4628 if (filter_id
== EFX_EF10_FILTER_ID_INVALID
)
4631 down_write(&table
->lock
);
4632 efx_ef10_filter_remove_internal(efx
, 1U << priority
, filter_id
,
4634 up_write(&table
->lock
);
4637 static int efx_ef10_filter_get_safe(struct efx_nic
*efx
,
4638 enum efx_filter_priority priority
,
4639 u32 filter_id
, struct efx_filter_spec
*spec
)
4641 unsigned int filter_idx
= efx_ef10_filter_get_unsafe_id(filter_id
);
4642 const struct efx_filter_spec
*saved_spec
;
4643 struct efx_ef10_filter_table
*table
;
4646 down_read(&efx
->filter_sem
);
4647 table
= efx
->filter_state
;
4648 down_read(&table
->lock
);
4649 saved_spec
= efx_ef10_filter_entry_spec(table
, filter_idx
);
4650 if (saved_spec
&& saved_spec
->priority
== priority
&&
4651 efx_ef10_filter_pri(table
, saved_spec
) ==
4652 efx_ef10_filter_get_unsafe_pri(filter_id
)) {
4653 *spec
= *saved_spec
;
4658 up_read(&table
->lock
);
4659 up_read(&efx
->filter_sem
);
4663 static int efx_ef10_filter_clear_rx(struct efx_nic
*efx
,
4664 enum efx_filter_priority priority
)
4666 struct efx_ef10_filter_table
*table
;
4667 unsigned int priority_mask
;
4671 priority_mask
= (((1U << (priority
+ 1)) - 1) &
4672 ~(1U << EFX_FILTER_PRI_AUTO
));
4674 down_read(&efx
->filter_sem
);
4675 table
= efx
->filter_state
;
4676 down_write(&table
->lock
);
4677 for (i
= 0; i
< HUNT_FILTER_TBL_ROWS
; i
++) {
4678 rc
= efx_ef10_filter_remove_internal(efx
, priority_mask
,
4680 if (rc
&& rc
!= -ENOENT
)
4685 up_write(&table
->lock
);
4686 up_read(&efx
->filter_sem
);
4690 static u32
efx_ef10_filter_count_rx_used(struct efx_nic
*efx
,
4691 enum efx_filter_priority priority
)
4693 struct efx_ef10_filter_table
*table
;
4694 unsigned int filter_idx
;
4697 down_read(&efx
->filter_sem
);
4698 table
= efx
->filter_state
;
4699 down_read(&table
->lock
);
4700 for (filter_idx
= 0; filter_idx
< HUNT_FILTER_TBL_ROWS
; filter_idx
++) {
4701 if (table
->entry
[filter_idx
].spec
&&
4702 efx_ef10_filter_entry_spec(table
, filter_idx
)->priority
==
4706 up_read(&table
->lock
);
4707 up_read(&efx
->filter_sem
);
4711 static u32
efx_ef10_filter_get_rx_id_limit(struct efx_nic
*efx
)
4713 struct efx_ef10_filter_table
*table
= efx
->filter_state
;
4715 return table
->rx_match_count
* HUNT_FILTER_TBL_ROWS
* 2;
4718 static s32
efx_ef10_filter_get_rx_ids(struct efx_nic
*efx
,
4719 enum efx_filter_priority priority
,
4722 struct efx_ef10_filter_table
*table
;
4723 struct efx_filter_spec
*spec
;
4724 unsigned int filter_idx
;
4727 down_read(&efx
->filter_sem
);
4728 table
= efx
->filter_state
;
4729 down_read(&table
->lock
);
4731 for (filter_idx
= 0; filter_idx
< HUNT_FILTER_TBL_ROWS
; filter_idx
++) {
4732 spec
= efx_ef10_filter_entry_spec(table
, filter_idx
);
4733 if (spec
&& spec
->priority
== priority
) {
4734 if (count
== size
) {
4739 efx_ef10_make_filter_id(
4740 efx_ef10_filter_pri(table
, spec
),
4744 up_read(&table
->lock
);
4745 up_read(&efx
->filter_sem
);
4749 #ifdef CONFIG_RFS_ACCEL
4751 static bool efx_ef10_filter_rfs_expire_one(struct efx_nic
*efx
, u32 flow_id
,
4752 unsigned int filter_idx
)
4754 struct efx_filter_spec
*spec
, saved_spec
;
4755 struct efx_ef10_filter_table
*table
;
4756 struct efx_arfs_rule
*rule
= NULL
;
4757 bool ret
= true, force
= false;
4760 down_read(&efx
->filter_sem
);
4761 table
= efx
->filter_state
;
4762 down_write(&table
->lock
);
4763 spec
= efx_ef10_filter_entry_spec(table
, filter_idx
);
4765 if (!spec
|| spec
->priority
!= EFX_FILTER_PRI_HINT
)
4768 spin_lock_bh(&efx
->rps_hash_lock
);
4769 if (!efx
->rps_hash_table
) {
4770 /* In the absence of the table, we always return 0 to ARFS. */
4773 rule
= efx_rps_hash_find(efx
, spec
);
4775 /* ARFS table doesn't know of this filter, so remove it */
4777 arfs_id
= rule
->arfs_id
;
4778 ret
= efx_rps_check_rule(rule
, filter_idx
, &force
);
4782 spin_unlock_bh(&efx
->rps_hash_lock
);
4786 if (!rps_may_expire_flow(efx
->net_dev
, spec
->dmaq_id
, flow_id
, arfs_id
))
4789 rule
->filter_id
= EFX_ARFS_FILTER_ID_REMOVING
;
4791 saved_spec
= *spec
; /* remove operation will kfree spec */
4792 spin_unlock_bh(&efx
->rps_hash_lock
);
4793 /* At this point (since we dropped the lock), another thread might queue
4794 * up a fresh insertion request (but the actual insertion will be held
4795 * up by our possession of the filter table lock). In that case, it
4796 * will set rule->filter_id to EFX_ARFS_FILTER_ID_PENDING, meaning that
4797 * the rule is not removed by efx_rps_hash_del() below.
4800 ret
= efx_ef10_filter_remove_internal(efx
, 1U << spec
->priority
,
4801 filter_idx
, true) == 0;
4802 /* While we can't safely dereference rule (we dropped the lock), we can
4803 * still test it for NULL.
4806 /* Expiring, so remove entry from ARFS table */
4807 spin_lock_bh(&efx
->rps_hash_lock
);
4808 efx_rps_hash_del(efx
, &saved_spec
);
4809 spin_unlock_bh(&efx
->rps_hash_lock
);
4812 up_write(&table
->lock
);
4813 up_read(&efx
->filter_sem
);
4817 #endif /* CONFIG_RFS_ACCEL */
4819 static int efx_ef10_filter_match_flags_from_mcdi(bool encap
, u32 mcdi_flags
)
4821 int match_flags
= 0;
4823 #define MAP_FLAG(gen_flag, mcdi_field) do { \
4824 u32 old_mcdi_flags = mcdi_flags; \
4825 mcdi_flags &= ~(1 << MC_CMD_FILTER_OP_EXT_IN_MATCH_ ## \
4826 mcdi_field ## _LBN); \
4827 if (mcdi_flags != old_mcdi_flags) \
4828 match_flags |= EFX_FILTER_MATCH_ ## gen_flag; \
4832 /* encap filters must specify encap type */
4833 match_flags
|= EFX_FILTER_MATCH_ENCAP_TYPE
;
4834 /* and imply ethertype and ip proto */
4836 ~(1 << MC_CMD_FILTER_OP_EXT_IN_MATCH_IP_PROTO_LBN
);
4838 ~(1 << MC_CMD_FILTER_OP_EXT_IN_MATCH_ETHER_TYPE_LBN
);
4839 /* VLAN tags refer to the outer packet */
4840 MAP_FLAG(INNER_VID
, INNER_VLAN
);
4841 MAP_FLAG(OUTER_VID
, OUTER_VLAN
);
4842 /* everything else refers to the inner packet */
4843 MAP_FLAG(LOC_MAC_IG
, IFRM_UNKNOWN_UCAST_DST
);
4844 MAP_FLAG(LOC_MAC_IG
, IFRM_UNKNOWN_MCAST_DST
);
4845 MAP_FLAG(REM_HOST
, IFRM_SRC_IP
);
4846 MAP_FLAG(LOC_HOST
, IFRM_DST_IP
);
4847 MAP_FLAG(REM_MAC
, IFRM_SRC_MAC
);
4848 MAP_FLAG(REM_PORT
, IFRM_SRC_PORT
);
4849 MAP_FLAG(LOC_MAC
, IFRM_DST_MAC
);
4850 MAP_FLAG(LOC_PORT
, IFRM_DST_PORT
);
4851 MAP_FLAG(ETHER_TYPE
, IFRM_ETHER_TYPE
);
4852 MAP_FLAG(IP_PROTO
, IFRM_IP_PROTO
);
4854 MAP_FLAG(LOC_MAC_IG
, UNKNOWN_UCAST_DST
);
4855 MAP_FLAG(LOC_MAC_IG
, UNKNOWN_MCAST_DST
);
4856 MAP_FLAG(REM_HOST
, SRC_IP
);
4857 MAP_FLAG(LOC_HOST
, DST_IP
);
4858 MAP_FLAG(REM_MAC
, SRC_MAC
);
4859 MAP_FLAG(REM_PORT
, SRC_PORT
);
4860 MAP_FLAG(LOC_MAC
, DST_MAC
);
4861 MAP_FLAG(LOC_PORT
, DST_PORT
);
4862 MAP_FLAG(ETHER_TYPE
, ETHER_TYPE
);
4863 MAP_FLAG(INNER_VID
, INNER_VLAN
);
4864 MAP_FLAG(OUTER_VID
, OUTER_VLAN
);
4865 MAP_FLAG(IP_PROTO
, IP_PROTO
);
4869 /* Did we map them all? */
4876 static void efx_ef10_filter_cleanup_vlans(struct efx_nic
*efx
)
4878 struct efx_ef10_filter_table
*table
= efx
->filter_state
;
4879 struct efx_ef10_filter_vlan
*vlan
, *next_vlan
;
4881 /* See comment in efx_ef10_filter_table_remove() */
4882 if (!efx_rwsem_assert_write_locked(&efx
->filter_sem
))
4888 list_for_each_entry_safe(vlan
, next_vlan
, &table
->vlan_list
, list
)
4889 efx_ef10_filter_del_vlan_internal(efx
, vlan
);
4892 static bool efx_ef10_filter_match_supported(struct efx_ef10_filter_table
*table
,
4894 enum efx_filter_match_flags match_flags
)
4896 unsigned int match_pri
;
4900 match_pri
< table
->rx_match_count
;
4902 mf
= efx_ef10_filter_match_flags_from_mcdi(encap
,
4903 table
->rx_match_mcdi_flags
[match_pri
]);
4904 if (mf
== match_flags
)
4912 efx_ef10_filter_table_probe_matches(struct efx_nic
*efx
,
4913 struct efx_ef10_filter_table
*table
,
4916 MCDI_DECLARE_BUF(inbuf
, MC_CMD_GET_PARSER_DISP_INFO_IN_LEN
);
4917 MCDI_DECLARE_BUF(outbuf
, MC_CMD_GET_PARSER_DISP_INFO_OUT_LENMAX
);
4918 unsigned int pd_match_pri
, pd_match_count
;
4922 /* Find out which RX filter types are supported, and their priorities */
4923 MCDI_SET_DWORD(inbuf
, GET_PARSER_DISP_INFO_IN_OP
,
4925 MC_CMD_GET_PARSER_DISP_INFO_IN_OP_GET_SUPPORTED_ENCAP_RX_MATCHES
:
4926 MC_CMD_GET_PARSER_DISP_INFO_IN_OP_GET_SUPPORTED_RX_MATCHES
);
4927 rc
= efx_mcdi_rpc(efx
, MC_CMD_GET_PARSER_DISP_INFO
,
4928 inbuf
, sizeof(inbuf
), outbuf
, sizeof(outbuf
),
4933 pd_match_count
= MCDI_VAR_ARRAY_LEN(
4934 outlen
, GET_PARSER_DISP_INFO_OUT_SUPPORTED_MATCHES
);
4936 for (pd_match_pri
= 0; pd_match_pri
< pd_match_count
; pd_match_pri
++) {
4940 GET_PARSER_DISP_INFO_OUT_SUPPORTED_MATCHES
,
4942 rc
= efx_ef10_filter_match_flags_from_mcdi(encap
, mcdi_flags
);
4944 netif_dbg(efx
, probe
, efx
->net_dev
,
4945 "%s: fw flags %#x pri %u not supported in driver\n",
4946 __func__
, mcdi_flags
, pd_match_pri
);
4948 netif_dbg(efx
, probe
, efx
->net_dev
,
4949 "%s: fw flags %#x pri %u supported as driver flags %#x pri %u\n",
4950 __func__
, mcdi_flags
, pd_match_pri
,
4951 rc
, table
->rx_match_count
);
4952 table
->rx_match_mcdi_flags
[table
->rx_match_count
] = mcdi_flags
;
4953 table
->rx_match_count
++;
4960 static int efx_ef10_filter_table_probe(struct efx_nic
*efx
)
4962 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
4963 struct net_device
*net_dev
= efx
->net_dev
;
4964 struct efx_ef10_filter_table
*table
;
4965 struct efx_ef10_vlan
*vlan
;
4968 if (!efx_rwsem_assert_write_locked(&efx
->filter_sem
))
4971 if (efx
->filter_state
) /* already probed */
4974 table
= kzalloc(sizeof(*table
), GFP_KERNEL
);
4978 table
->rx_match_count
= 0;
4979 rc
= efx_ef10_filter_table_probe_matches(efx
, table
, false);
4982 if (nic_data
->datapath_caps
&
4983 (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN
))
4984 rc
= efx_ef10_filter_table_probe_matches(efx
, table
, true);
4987 if ((efx_supported_features(efx
) & NETIF_F_HW_VLAN_CTAG_FILTER
) &&
4988 !(efx_ef10_filter_match_supported(table
, false,
4989 (EFX_FILTER_MATCH_OUTER_VID
| EFX_FILTER_MATCH_LOC_MAC
)) &&
4990 efx_ef10_filter_match_supported(table
, false,
4991 (EFX_FILTER_MATCH_OUTER_VID
| EFX_FILTER_MATCH_LOC_MAC_IG
)))) {
4992 netif_info(efx
, probe
, net_dev
,
4993 "VLAN filters are not supported in this firmware variant\n");
4994 net_dev
->features
&= ~NETIF_F_HW_VLAN_CTAG_FILTER
;
4995 efx
->fixed_features
&= ~NETIF_F_HW_VLAN_CTAG_FILTER
;
4996 net_dev
->hw_features
&= ~NETIF_F_HW_VLAN_CTAG_FILTER
;
4999 table
->entry
= vzalloc(array_size(HUNT_FILTER_TBL_ROWS
,
5000 sizeof(*table
->entry
)));
5001 if (!table
->entry
) {
5006 table
->mc_promisc_last
= false;
5007 table
->vlan_filter
=
5008 !!(efx
->net_dev
->features
& NETIF_F_HW_VLAN_CTAG_FILTER
);
5009 INIT_LIST_HEAD(&table
->vlan_list
);
5010 init_rwsem(&table
->lock
);
5012 efx
->filter_state
= table
;
5014 list_for_each_entry(vlan
, &nic_data
->vlan_list
, list
) {
5015 rc
= efx_ef10_filter_add_vlan(efx
, vlan
->vid
);
5023 efx_ef10_filter_cleanup_vlans(efx
);
5024 efx
->filter_state
= NULL
;
5030 /* Caller must hold efx->filter_sem for read if race against
5031 * efx_ef10_filter_table_remove() is possible
5033 static void efx_ef10_filter_table_restore(struct efx_nic
*efx
)
5035 struct efx_ef10_filter_table
*table
= efx
->filter_state
;
5036 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
5037 unsigned int invalid_filters
= 0, failed
= 0;
5038 struct efx_ef10_filter_vlan
*vlan
;
5039 struct efx_filter_spec
*spec
;
5040 struct efx_rss_context
*ctx
;
5041 unsigned int filter_idx
;
5046 WARN_ON(!rwsem_is_locked(&efx
->filter_sem
));
5048 if (!nic_data
->must_restore_filters
)
5054 down_write(&table
->lock
);
5055 mutex_lock(&efx
->rss_lock
);
5057 for (filter_idx
= 0; filter_idx
< HUNT_FILTER_TBL_ROWS
; filter_idx
++) {
5058 spec
= efx_ef10_filter_entry_spec(table
, filter_idx
);
5062 mcdi_flags
= efx_ef10_filter_mcdi_flags_from_spec(spec
);
5064 while (match_pri
< table
->rx_match_count
&&
5065 table
->rx_match_mcdi_flags
[match_pri
] != mcdi_flags
)
5067 if (match_pri
>= table
->rx_match_count
) {
5071 if (spec
->rss_context
)
5072 ctx
= efx_find_rss_context_entry(efx
, spec
->rss_context
);
5074 ctx
= &efx
->rss_context
;
5075 if (spec
->flags
& EFX_FILTER_FLAG_RX_RSS
) {
5077 netif_warn(efx
, drv
, efx
->net_dev
,
5078 "Warning: unable to restore a filter with nonexistent RSS context %u.\n",
5083 if (ctx
->context_id
== EFX_EF10_RSS_CONTEXT_INVALID
) {
5084 netif_warn(efx
, drv
, efx
->net_dev
,
5085 "Warning: unable to restore a filter with RSS context %u as it was not created.\n",
5092 rc
= efx_ef10_filter_push(efx
, spec
,
5093 &table
->entry
[filter_idx
].handle
,
5100 list_for_each_entry(vlan
, &table
->vlan_list
, list
)
5101 for (i
= 0; i
< EFX_EF10_NUM_DEFAULT_FILTERS
; ++i
)
5102 if (vlan
->default_filters
[i
] == filter_idx
)
5103 vlan
->default_filters
[i
] =
5104 EFX_EF10_FILTER_ID_INVALID
;
5107 efx_ef10_filter_set_entry(table
, filter_idx
, NULL
, 0);
5111 mutex_unlock(&efx
->rss_lock
);
5112 up_write(&table
->lock
);
5114 /* This can happen validly if the MC's capabilities have changed, so
5117 if (invalid_filters
)
5118 netif_dbg(efx
, drv
, efx
->net_dev
,
5119 "Did not restore %u filters that are now unsupported.\n",
5123 netif_err(efx
, hw
, efx
->net_dev
,
5124 "unable to restore %u filters\n", failed
);
5126 nic_data
->must_restore_filters
= false;
5129 static void efx_ef10_filter_table_remove(struct efx_nic
*efx
)
5131 struct efx_ef10_filter_table
*table
= efx
->filter_state
;
5132 MCDI_DECLARE_BUF(inbuf
, MC_CMD_FILTER_OP_EXT_IN_LEN
);
5133 struct efx_filter_spec
*spec
;
5134 unsigned int filter_idx
;
5137 efx_ef10_filter_cleanup_vlans(efx
);
5138 efx
->filter_state
= NULL
;
5139 /* If we were called without locking, then it's not safe to free
5140 * the table as others might be using it. So we just WARN, leak
5141 * the memory, and potentially get an inconsistent filter table
5143 * This should never actually happen.
5145 if (!efx_rwsem_assert_write_locked(&efx
->filter_sem
))
5151 for (filter_idx
= 0; filter_idx
< HUNT_FILTER_TBL_ROWS
; filter_idx
++) {
5152 spec
= efx_ef10_filter_entry_spec(table
, filter_idx
);
5156 MCDI_SET_DWORD(inbuf
, FILTER_OP_IN_OP
,
5157 efx_ef10_filter_is_exclusive(spec
) ?
5158 MC_CMD_FILTER_OP_IN_OP_REMOVE
:
5159 MC_CMD_FILTER_OP_IN_OP_UNSUBSCRIBE
);
5160 MCDI_SET_QWORD(inbuf
, FILTER_OP_IN_HANDLE
,
5161 table
->entry
[filter_idx
].handle
);
5162 rc
= efx_mcdi_rpc_quiet(efx
, MC_CMD_FILTER_OP
, inbuf
,
5163 sizeof(inbuf
), NULL
, 0, NULL
);
5165 netif_info(efx
, drv
, efx
->net_dev
,
5166 "%s: filter %04x remove failed\n",
5167 __func__
, filter_idx
);
5171 vfree(table
->entry
);
5175 static void efx_ef10_filter_mark_one_old(struct efx_nic
*efx
, uint16_t *id
)
5177 struct efx_ef10_filter_table
*table
= efx
->filter_state
;
5178 unsigned int filter_idx
;
5180 efx_rwsem_assert_write_locked(&table
->lock
);
5182 if (*id
!= EFX_EF10_FILTER_ID_INVALID
) {
5183 filter_idx
= efx_ef10_filter_get_unsafe_id(*id
);
5184 if (!table
->entry
[filter_idx
].spec
)
5185 netif_dbg(efx
, drv
, efx
->net_dev
,
5186 "marked null spec old %04x:%04x\n", *id
,
5188 table
->entry
[filter_idx
].spec
|= EFX_EF10_FILTER_FLAG_AUTO_OLD
;
5189 *id
= EFX_EF10_FILTER_ID_INVALID
;
5193 /* Mark old per-VLAN filters that may need to be removed */
5194 static void _efx_ef10_filter_vlan_mark_old(struct efx_nic
*efx
,
5195 struct efx_ef10_filter_vlan
*vlan
)
5197 struct efx_ef10_filter_table
*table
= efx
->filter_state
;
5200 for (i
= 0; i
< table
->dev_uc_count
; i
++)
5201 efx_ef10_filter_mark_one_old(efx
, &vlan
->uc
[i
]);
5202 for (i
= 0; i
< table
->dev_mc_count
; i
++)
5203 efx_ef10_filter_mark_one_old(efx
, &vlan
->mc
[i
]);
5204 for (i
= 0; i
< EFX_EF10_NUM_DEFAULT_FILTERS
; i
++)
5205 efx_ef10_filter_mark_one_old(efx
, &vlan
->default_filters
[i
]);
5208 /* Mark old filters that may need to be removed.
5209 * Caller must hold efx->filter_sem for read if race against
5210 * efx_ef10_filter_table_remove() is possible
5212 static void efx_ef10_filter_mark_old(struct efx_nic
*efx
)
5214 struct efx_ef10_filter_table
*table
= efx
->filter_state
;
5215 struct efx_ef10_filter_vlan
*vlan
;
5217 down_write(&table
->lock
);
5218 list_for_each_entry(vlan
, &table
->vlan_list
, list
)
5219 _efx_ef10_filter_vlan_mark_old(efx
, vlan
);
5220 up_write(&table
->lock
);
5223 static void efx_ef10_filter_uc_addr_list(struct efx_nic
*efx
)
5225 struct efx_ef10_filter_table
*table
= efx
->filter_state
;
5226 struct net_device
*net_dev
= efx
->net_dev
;
5227 struct netdev_hw_addr
*uc
;
5230 table
->uc_promisc
= !!(net_dev
->flags
& IFF_PROMISC
);
5231 ether_addr_copy(table
->dev_uc_list
[0].addr
, net_dev
->dev_addr
);
5233 netdev_for_each_uc_addr(uc
, net_dev
) {
5234 if (i
>= EFX_EF10_FILTER_DEV_UC_MAX
) {
5235 table
->uc_promisc
= true;
5238 ether_addr_copy(table
->dev_uc_list
[i
].addr
, uc
->addr
);
5242 table
->dev_uc_count
= i
;
5245 static void efx_ef10_filter_mc_addr_list(struct efx_nic
*efx
)
5247 struct efx_ef10_filter_table
*table
= efx
->filter_state
;
5248 struct net_device
*net_dev
= efx
->net_dev
;
5249 struct netdev_hw_addr
*mc
;
5252 table
->mc_overflow
= false;
5253 table
->mc_promisc
= !!(net_dev
->flags
& (IFF_PROMISC
| IFF_ALLMULTI
));
5256 netdev_for_each_mc_addr(mc
, net_dev
) {
5257 if (i
>= EFX_EF10_FILTER_DEV_MC_MAX
) {
5258 table
->mc_promisc
= true;
5259 table
->mc_overflow
= true;
5262 ether_addr_copy(table
->dev_mc_list
[i
].addr
, mc
->addr
);
5266 table
->dev_mc_count
= i
;
5269 static int efx_ef10_filter_insert_addr_list(struct efx_nic
*efx
,
5270 struct efx_ef10_filter_vlan
*vlan
,
5271 bool multicast
, bool rollback
)
5273 struct efx_ef10_filter_table
*table
= efx
->filter_state
;
5274 struct efx_ef10_dev_addr
*addr_list
;
5275 enum efx_filter_flags filter_flags
;
5276 struct efx_filter_spec spec
;
5284 addr_list
= table
->dev_mc_list
;
5285 addr_count
= table
->dev_mc_count
;
5288 addr_list
= table
->dev_uc_list
;
5289 addr_count
= table
->dev_uc_count
;
5293 filter_flags
= efx_rss_active(&efx
->rss_context
) ? EFX_FILTER_FLAG_RX_RSS
: 0;
5295 /* Insert/renew filters */
5296 for (i
= 0; i
< addr_count
; i
++) {
5297 EFX_WARN_ON_PARANOID(ids
[i
] != EFX_EF10_FILTER_ID_INVALID
);
5298 efx_filter_init_rx(&spec
, EFX_FILTER_PRI_AUTO
, filter_flags
, 0);
5299 efx_filter_set_eth_local(&spec
, vlan
->vid
, addr_list
[i
].addr
);
5300 rc
= efx_ef10_filter_insert_locked(efx
, &spec
, true);
5303 netif_info(efx
, drv
, efx
->net_dev
,
5304 "efx_ef10_filter_insert failed rc=%d\n",
5306 /* Fall back to promiscuous */
5307 for (j
= 0; j
< i
; j
++) {
5308 efx_ef10_filter_remove_unsafe(
5309 efx
, EFX_FILTER_PRI_AUTO
,
5311 ids
[j
] = EFX_EF10_FILTER_ID_INVALID
;
5315 /* keep invalid ID, and carry on */
5318 ids
[i
] = efx_ef10_filter_get_unsafe_id(rc
);
5322 if (multicast
&& rollback
) {
5323 /* Also need an Ethernet broadcast filter */
5324 EFX_WARN_ON_PARANOID(vlan
->default_filters
[EFX_EF10_BCAST
] !=
5325 EFX_EF10_FILTER_ID_INVALID
);
5326 efx_filter_init_rx(&spec
, EFX_FILTER_PRI_AUTO
, filter_flags
, 0);
5327 eth_broadcast_addr(baddr
);
5328 efx_filter_set_eth_local(&spec
, vlan
->vid
, baddr
);
5329 rc
= efx_ef10_filter_insert_locked(efx
, &spec
, true);
5331 netif_warn(efx
, drv
, efx
->net_dev
,
5332 "Broadcast filter insert failed rc=%d\n", rc
);
5333 /* Fall back to promiscuous */
5334 for (j
= 0; j
< i
; j
++) {
5335 efx_ef10_filter_remove_unsafe(
5336 efx
, EFX_FILTER_PRI_AUTO
,
5338 ids
[j
] = EFX_EF10_FILTER_ID_INVALID
;
5342 vlan
->default_filters
[EFX_EF10_BCAST
] =
5343 efx_ef10_filter_get_unsafe_id(rc
);
5350 static int efx_ef10_filter_insert_def(struct efx_nic
*efx
,
5351 struct efx_ef10_filter_vlan
*vlan
,
5352 enum efx_encap_type encap_type
,
5353 bool multicast
, bool rollback
)
5355 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
5356 enum efx_filter_flags filter_flags
;
5357 struct efx_filter_spec spec
;
5362 filter_flags
= efx_rss_active(&efx
->rss_context
) ? EFX_FILTER_FLAG_RX_RSS
: 0;
5364 efx_filter_init_rx(&spec
, EFX_FILTER_PRI_AUTO
, filter_flags
, 0);
5367 efx_filter_set_mc_def(&spec
);
5369 efx_filter_set_uc_def(&spec
);
5372 if (nic_data
->datapath_caps
&
5373 (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN
))
5374 efx_filter_set_encap_type(&spec
, encap_type
);
5376 /* don't insert encap filters on non-supporting
5377 * platforms. ID will be left as INVALID.
5382 if (vlan
->vid
!= EFX_FILTER_VID_UNSPEC
)
5383 efx_filter_set_eth_local(&spec
, vlan
->vid
, NULL
);
5385 rc
= efx_ef10_filter_insert_locked(efx
, &spec
, true);
5387 const char *um
= multicast
? "Multicast" : "Unicast";
5388 const char *encap_name
= "";
5389 const char *encap_ipv
= "";
5391 if ((encap_type
& EFX_ENCAP_TYPES_MASK
) ==
5392 EFX_ENCAP_TYPE_VXLAN
)
5393 encap_name
= "VXLAN ";
5394 else if ((encap_type
& EFX_ENCAP_TYPES_MASK
) ==
5395 EFX_ENCAP_TYPE_NVGRE
)
5396 encap_name
= "NVGRE ";
5397 else if ((encap_type
& EFX_ENCAP_TYPES_MASK
) ==
5398 EFX_ENCAP_TYPE_GENEVE
)
5399 encap_name
= "GENEVE ";
5400 if (encap_type
& EFX_ENCAP_FLAG_IPV6
)
5401 encap_ipv
= "IPv6 ";
5402 else if (encap_type
)
5403 encap_ipv
= "IPv4 ";
5405 /* unprivileged functions can't insert mismatch filters
5406 * for encapsulated or unicast traffic, so downgrade
5407 * those warnings to debug.
5409 netif_cond_dbg(efx
, drv
, efx
->net_dev
,
5410 rc
== -EPERM
&& (encap_type
|| !multicast
), warn
,
5411 "%s%s%s mismatch filter insert failed rc=%d\n",
5412 encap_name
, encap_ipv
, um
, rc
);
5413 } else if (multicast
) {
5414 /* mapping from encap types to default filter IDs (multicast) */
5415 static enum efx_ef10_default_filters map
[] = {
5416 [EFX_ENCAP_TYPE_NONE
] = EFX_EF10_MCDEF
,
5417 [EFX_ENCAP_TYPE_VXLAN
] = EFX_EF10_VXLAN4_MCDEF
,
5418 [EFX_ENCAP_TYPE_NVGRE
] = EFX_EF10_NVGRE4_MCDEF
,
5419 [EFX_ENCAP_TYPE_GENEVE
] = EFX_EF10_GENEVE4_MCDEF
,
5420 [EFX_ENCAP_TYPE_VXLAN
| EFX_ENCAP_FLAG_IPV6
] =
5421 EFX_EF10_VXLAN6_MCDEF
,
5422 [EFX_ENCAP_TYPE_NVGRE
| EFX_ENCAP_FLAG_IPV6
] =
5423 EFX_EF10_NVGRE6_MCDEF
,
5424 [EFX_ENCAP_TYPE_GENEVE
| EFX_ENCAP_FLAG_IPV6
] =
5425 EFX_EF10_GENEVE6_MCDEF
,
5428 /* quick bounds check (BCAST result impossible) */
5429 BUILD_BUG_ON(EFX_EF10_BCAST
!= 0);
5430 if (encap_type
>= ARRAY_SIZE(map
) || map
[encap_type
] == 0) {
5434 /* then follow map */
5435 id
= &vlan
->default_filters
[map
[encap_type
]];
5437 EFX_WARN_ON_PARANOID(*id
!= EFX_EF10_FILTER_ID_INVALID
);
5438 *id
= efx_ef10_filter_get_unsafe_id(rc
);
5439 if (!nic_data
->workaround_26807
&& !encap_type
) {
5440 /* Also need an Ethernet broadcast filter */
5441 efx_filter_init_rx(&spec
, EFX_FILTER_PRI_AUTO
,
5443 eth_broadcast_addr(baddr
);
5444 efx_filter_set_eth_local(&spec
, vlan
->vid
, baddr
);
5445 rc
= efx_ef10_filter_insert_locked(efx
, &spec
, true);
5447 netif_warn(efx
, drv
, efx
->net_dev
,
5448 "Broadcast filter insert failed rc=%d\n",
5451 /* Roll back the mc_def filter */
5452 efx_ef10_filter_remove_unsafe(
5453 efx
, EFX_FILTER_PRI_AUTO
,
5455 *id
= EFX_EF10_FILTER_ID_INVALID
;
5459 EFX_WARN_ON_PARANOID(
5460 vlan
->default_filters
[EFX_EF10_BCAST
] !=
5461 EFX_EF10_FILTER_ID_INVALID
);
5462 vlan
->default_filters
[EFX_EF10_BCAST
] =
5463 efx_ef10_filter_get_unsafe_id(rc
);
5468 /* mapping from encap types to default filter IDs (unicast) */
5469 static enum efx_ef10_default_filters map
[] = {
5470 [EFX_ENCAP_TYPE_NONE
] = EFX_EF10_UCDEF
,
5471 [EFX_ENCAP_TYPE_VXLAN
] = EFX_EF10_VXLAN4_UCDEF
,
5472 [EFX_ENCAP_TYPE_NVGRE
] = EFX_EF10_NVGRE4_UCDEF
,
5473 [EFX_ENCAP_TYPE_GENEVE
] = EFX_EF10_GENEVE4_UCDEF
,
5474 [EFX_ENCAP_TYPE_VXLAN
| EFX_ENCAP_FLAG_IPV6
] =
5475 EFX_EF10_VXLAN6_UCDEF
,
5476 [EFX_ENCAP_TYPE_NVGRE
| EFX_ENCAP_FLAG_IPV6
] =
5477 EFX_EF10_NVGRE6_UCDEF
,
5478 [EFX_ENCAP_TYPE_GENEVE
| EFX_ENCAP_FLAG_IPV6
] =
5479 EFX_EF10_GENEVE6_UCDEF
,
5482 /* quick bounds check (BCAST result impossible) */
5483 BUILD_BUG_ON(EFX_EF10_BCAST
!= 0);
5484 if (encap_type
>= ARRAY_SIZE(map
) || map
[encap_type
] == 0) {
5488 /* then follow map */
5489 id
= &vlan
->default_filters
[map
[encap_type
]];
5490 EFX_WARN_ON_PARANOID(*id
!= EFX_EF10_FILTER_ID_INVALID
);
5497 /* Remove filters that weren't renewed. */
5498 static void efx_ef10_filter_remove_old(struct efx_nic
*efx
)
5500 struct efx_ef10_filter_table
*table
= efx
->filter_state
;
5501 int remove_failed
= 0;
5502 int remove_noent
= 0;
5506 down_write(&table
->lock
);
5507 for (i
= 0; i
< HUNT_FILTER_TBL_ROWS
; i
++) {
5508 if (READ_ONCE(table
->entry
[i
].spec
) &
5509 EFX_EF10_FILTER_FLAG_AUTO_OLD
) {
5510 rc
= efx_ef10_filter_remove_internal(efx
,
5511 1U << EFX_FILTER_PRI_AUTO
, i
, true);
5518 up_write(&table
->lock
);
5521 netif_info(efx
, drv
, efx
->net_dev
,
5522 "%s: failed to remove %d filters\n",
5523 __func__
, remove_failed
);
5525 netif_info(efx
, drv
, efx
->net_dev
,
5526 "%s: failed to remove %d non-existent filters\n",
5527 __func__
, remove_noent
);
5530 static int efx_ef10_vport_set_mac_address(struct efx_nic
*efx
)
5532 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
5533 u8 mac_old
[ETH_ALEN
];
5536 /* Only reconfigure a PF-created vport */
5537 if (is_zero_ether_addr(nic_data
->vport_mac
))
5540 efx_device_detach_sync(efx
);
5541 efx_net_stop(efx
->net_dev
);
5542 down_write(&efx
->filter_sem
);
5543 efx_ef10_filter_table_remove(efx
);
5544 up_write(&efx
->filter_sem
);
5546 rc
= efx_ef10_vadaptor_free(efx
, nic_data
->vport_id
);
5548 goto restore_filters
;
5550 ether_addr_copy(mac_old
, nic_data
->vport_mac
);
5551 rc
= efx_ef10_vport_del_mac(efx
, nic_data
->vport_id
,
5552 nic_data
->vport_mac
);
5554 goto restore_vadaptor
;
5556 rc
= efx_ef10_vport_add_mac(efx
, nic_data
->vport_id
,
5557 efx
->net_dev
->dev_addr
);
5559 ether_addr_copy(nic_data
->vport_mac
, efx
->net_dev
->dev_addr
);
5561 rc2
= efx_ef10_vport_add_mac(efx
, nic_data
->vport_id
, mac_old
);
5563 /* Failed to add original MAC, so clear vport_mac */
5564 eth_zero_addr(nic_data
->vport_mac
);
5570 rc2
= efx_ef10_vadaptor_alloc(efx
, nic_data
->vport_id
);
5574 down_write(&efx
->filter_sem
);
5575 rc2
= efx_ef10_filter_table_probe(efx
);
5576 up_write(&efx
->filter_sem
);
5580 rc2
= efx_net_open(efx
->net_dev
);
5584 efx_device_attach_if_not_resetting(efx
);
5589 netif_err(efx
, drv
, efx
->net_dev
,
5590 "Failed to restore when changing MAC address - scheduling reset\n");
5591 efx_schedule_reset(efx
, RESET_TYPE_DATAPATH
);
5593 return rc
? rc
: rc2
;
5596 /* Caller must hold efx->filter_sem for read if race against
5597 * efx_ef10_filter_table_remove() is possible
5599 static void efx_ef10_filter_vlan_sync_rx_mode(struct efx_nic
*efx
,
5600 struct efx_ef10_filter_vlan
*vlan
)
5602 struct efx_ef10_filter_table
*table
= efx
->filter_state
;
5603 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
5605 /* Do not install unspecified VID if VLAN filtering is enabled.
5606 * Do not install all specified VIDs if VLAN filtering is disabled.
5608 if ((vlan
->vid
== EFX_FILTER_VID_UNSPEC
) == table
->vlan_filter
)
5611 /* Insert/renew unicast filters */
5612 if (table
->uc_promisc
) {
5613 efx_ef10_filter_insert_def(efx
, vlan
, EFX_ENCAP_TYPE_NONE
,
5615 efx_ef10_filter_insert_addr_list(efx
, vlan
, false, false);
5617 /* If any of the filters failed to insert, fall back to
5618 * promiscuous mode - add in the uc_def filter. But keep
5619 * our individual unicast filters.
5621 if (efx_ef10_filter_insert_addr_list(efx
, vlan
, false, false))
5622 efx_ef10_filter_insert_def(efx
, vlan
,
5623 EFX_ENCAP_TYPE_NONE
,
5626 efx_ef10_filter_insert_def(efx
, vlan
, EFX_ENCAP_TYPE_VXLAN
,
5628 efx_ef10_filter_insert_def(efx
, vlan
, EFX_ENCAP_TYPE_VXLAN
|
5629 EFX_ENCAP_FLAG_IPV6
,
5631 efx_ef10_filter_insert_def(efx
, vlan
, EFX_ENCAP_TYPE_NVGRE
,
5633 efx_ef10_filter_insert_def(efx
, vlan
, EFX_ENCAP_TYPE_NVGRE
|
5634 EFX_ENCAP_FLAG_IPV6
,
5636 efx_ef10_filter_insert_def(efx
, vlan
, EFX_ENCAP_TYPE_GENEVE
,
5638 efx_ef10_filter_insert_def(efx
, vlan
, EFX_ENCAP_TYPE_GENEVE
|
5639 EFX_ENCAP_FLAG_IPV6
,
5642 /* Insert/renew multicast filters */
5643 /* If changing promiscuous state with cascaded multicast filters, remove
5644 * old filters first, so that packets are dropped rather than duplicated
5646 if (nic_data
->workaround_26807
&&
5647 table
->mc_promisc_last
!= table
->mc_promisc
)
5648 efx_ef10_filter_remove_old(efx
);
5649 if (table
->mc_promisc
) {
5650 if (nic_data
->workaround_26807
) {
5651 /* If we failed to insert promiscuous filters, rollback
5652 * and fall back to individual multicast filters
5654 if (efx_ef10_filter_insert_def(efx
, vlan
,
5655 EFX_ENCAP_TYPE_NONE
,
5657 /* Changing promisc state, so remove old filters */
5658 efx_ef10_filter_remove_old(efx
);
5659 efx_ef10_filter_insert_addr_list(efx
, vlan
,
5663 /* If we failed to insert promiscuous filters, don't
5664 * rollback. Regardless, also insert the mc_list,
5665 * unless it's incomplete due to overflow
5667 efx_ef10_filter_insert_def(efx
, vlan
,
5668 EFX_ENCAP_TYPE_NONE
,
5670 if (!table
->mc_overflow
)
5671 efx_ef10_filter_insert_addr_list(efx
, vlan
,
5675 /* If any filters failed to insert, rollback and fall back to
5676 * promiscuous mode - mc_def filter and maybe broadcast. If
5677 * that fails, roll back again and insert as many of our
5678 * individual multicast filters as we can.
5680 if (efx_ef10_filter_insert_addr_list(efx
, vlan
, true, true)) {
5681 /* Changing promisc state, so remove old filters */
5682 if (nic_data
->workaround_26807
)
5683 efx_ef10_filter_remove_old(efx
);
5684 if (efx_ef10_filter_insert_def(efx
, vlan
,
5685 EFX_ENCAP_TYPE_NONE
,
5687 efx_ef10_filter_insert_addr_list(efx
, vlan
,
5691 efx_ef10_filter_insert_def(efx
, vlan
, EFX_ENCAP_TYPE_VXLAN
,
5693 efx_ef10_filter_insert_def(efx
, vlan
, EFX_ENCAP_TYPE_VXLAN
|
5694 EFX_ENCAP_FLAG_IPV6
,
5696 efx_ef10_filter_insert_def(efx
, vlan
, EFX_ENCAP_TYPE_NVGRE
,
5698 efx_ef10_filter_insert_def(efx
, vlan
, EFX_ENCAP_TYPE_NVGRE
|
5699 EFX_ENCAP_FLAG_IPV6
,
5701 efx_ef10_filter_insert_def(efx
, vlan
, EFX_ENCAP_TYPE_GENEVE
,
5703 efx_ef10_filter_insert_def(efx
, vlan
, EFX_ENCAP_TYPE_GENEVE
|
5704 EFX_ENCAP_FLAG_IPV6
,
5708 /* Caller must hold efx->filter_sem for read if race against
5709 * efx_ef10_filter_table_remove() is possible
5711 static void efx_ef10_filter_sync_rx_mode(struct efx_nic
*efx
)
5713 struct efx_ef10_filter_table
*table
= efx
->filter_state
;
5714 struct net_device
*net_dev
= efx
->net_dev
;
5715 struct efx_ef10_filter_vlan
*vlan
;
5718 if (!efx_dev_registered(efx
))
5724 efx_ef10_filter_mark_old(efx
);
5726 /* Copy/convert the address lists; add the primary station
5727 * address and broadcast address
5729 netif_addr_lock_bh(net_dev
);
5730 efx_ef10_filter_uc_addr_list(efx
);
5731 efx_ef10_filter_mc_addr_list(efx
);
5732 netif_addr_unlock_bh(net_dev
);
5734 /* If VLAN filtering changes, all old filters are finally removed.
5735 * Do it in advance to avoid conflicts for unicast untagged and
5736 * VLAN 0 tagged filters.
5738 vlan_filter
= !!(net_dev
->features
& NETIF_F_HW_VLAN_CTAG_FILTER
);
5739 if (table
->vlan_filter
!= vlan_filter
) {
5740 table
->vlan_filter
= vlan_filter
;
5741 efx_ef10_filter_remove_old(efx
);
5744 list_for_each_entry(vlan
, &table
->vlan_list
, list
)
5745 efx_ef10_filter_vlan_sync_rx_mode(efx
, vlan
);
5747 efx_ef10_filter_remove_old(efx
);
5748 table
->mc_promisc_last
= table
->mc_promisc
;
5751 static struct efx_ef10_filter_vlan
*efx_ef10_filter_find_vlan(struct efx_nic
*efx
, u16 vid
)
5753 struct efx_ef10_filter_table
*table
= efx
->filter_state
;
5754 struct efx_ef10_filter_vlan
*vlan
;
5756 WARN_ON(!rwsem_is_locked(&efx
->filter_sem
));
5758 list_for_each_entry(vlan
, &table
->vlan_list
, list
) {
5759 if (vlan
->vid
== vid
)
5766 static int efx_ef10_filter_add_vlan(struct efx_nic
*efx
, u16 vid
)
5768 struct efx_ef10_filter_table
*table
= efx
->filter_state
;
5769 struct efx_ef10_filter_vlan
*vlan
;
5772 if (!efx_rwsem_assert_write_locked(&efx
->filter_sem
))
5775 vlan
= efx_ef10_filter_find_vlan(efx
, vid
);
5776 if (WARN_ON(vlan
)) {
5777 netif_err(efx
, drv
, efx
->net_dev
,
5778 "VLAN %u already added\n", vid
);
5782 vlan
= kzalloc(sizeof(*vlan
), GFP_KERNEL
);
5788 for (i
= 0; i
< ARRAY_SIZE(vlan
->uc
); i
++)
5789 vlan
->uc
[i
] = EFX_EF10_FILTER_ID_INVALID
;
5790 for (i
= 0; i
< ARRAY_SIZE(vlan
->mc
); i
++)
5791 vlan
->mc
[i
] = EFX_EF10_FILTER_ID_INVALID
;
5792 for (i
= 0; i
< EFX_EF10_NUM_DEFAULT_FILTERS
; i
++)
5793 vlan
->default_filters
[i
] = EFX_EF10_FILTER_ID_INVALID
;
5795 list_add_tail(&vlan
->list
, &table
->vlan_list
);
5797 if (efx_dev_registered(efx
))
5798 efx_ef10_filter_vlan_sync_rx_mode(efx
, vlan
);
5803 static void efx_ef10_filter_del_vlan_internal(struct efx_nic
*efx
,
5804 struct efx_ef10_filter_vlan
*vlan
)
5808 /* See comment in efx_ef10_filter_table_remove() */
5809 if (!efx_rwsem_assert_write_locked(&efx
->filter_sem
))
5812 list_del(&vlan
->list
);
5814 for (i
= 0; i
< ARRAY_SIZE(vlan
->uc
); i
++)
5815 efx_ef10_filter_remove_unsafe(efx
, EFX_FILTER_PRI_AUTO
,
5817 for (i
= 0; i
< ARRAY_SIZE(vlan
->mc
); i
++)
5818 efx_ef10_filter_remove_unsafe(efx
, EFX_FILTER_PRI_AUTO
,
5820 for (i
= 0; i
< EFX_EF10_NUM_DEFAULT_FILTERS
; i
++)
5821 if (vlan
->default_filters
[i
] != EFX_EF10_FILTER_ID_INVALID
)
5822 efx_ef10_filter_remove_unsafe(efx
, EFX_FILTER_PRI_AUTO
,
5823 vlan
->default_filters
[i
]);
5828 static void efx_ef10_filter_del_vlan(struct efx_nic
*efx
, u16 vid
)
5830 struct efx_ef10_filter_vlan
*vlan
;
5832 /* See comment in efx_ef10_filter_table_remove() */
5833 if (!efx_rwsem_assert_write_locked(&efx
->filter_sem
))
5836 vlan
= efx_ef10_filter_find_vlan(efx
, vid
);
5838 netif_err(efx
, drv
, efx
->net_dev
,
5839 "VLAN %u not found in filter state\n", vid
);
5843 efx_ef10_filter_del_vlan_internal(efx
, vlan
);
5846 static int efx_ef10_set_mac_address(struct efx_nic
*efx
)
5848 MCDI_DECLARE_BUF(inbuf
, MC_CMD_VADAPTOR_SET_MAC_IN_LEN
);
5849 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
5850 bool was_enabled
= efx
->port_enabled
;
5853 efx_device_detach_sync(efx
);
5854 efx_net_stop(efx
->net_dev
);
5856 mutex_lock(&efx
->mac_lock
);
5857 down_write(&efx
->filter_sem
);
5858 efx_ef10_filter_table_remove(efx
);
5860 ether_addr_copy(MCDI_PTR(inbuf
, VADAPTOR_SET_MAC_IN_MACADDR
),
5861 efx
->net_dev
->dev_addr
);
5862 MCDI_SET_DWORD(inbuf
, VADAPTOR_SET_MAC_IN_UPSTREAM_PORT_ID
,
5863 nic_data
->vport_id
);
5864 rc
= efx_mcdi_rpc_quiet(efx
, MC_CMD_VADAPTOR_SET_MAC
, inbuf
,
5865 sizeof(inbuf
), NULL
, 0, NULL
);
5867 efx_ef10_filter_table_probe(efx
);
5868 up_write(&efx
->filter_sem
);
5869 mutex_unlock(&efx
->mac_lock
);
5872 efx_net_open(efx
->net_dev
);
5873 efx_device_attach_if_not_resetting(efx
);
5875 #ifdef CONFIG_SFC_SRIOV
5876 if (efx
->pci_dev
->is_virtfn
&& efx
->pci_dev
->physfn
) {
5877 struct pci_dev
*pci_dev_pf
= efx
->pci_dev
->physfn
;
5880 struct efx_nic
*efx_pf
;
5882 /* Switch to PF and change MAC address on vport */
5883 efx_pf
= pci_get_drvdata(pci_dev_pf
);
5885 rc
= efx_ef10_sriov_set_vf_mac(efx_pf
,
5887 efx
->net_dev
->dev_addr
);
5889 struct efx_nic
*efx_pf
= pci_get_drvdata(pci_dev_pf
);
5890 struct efx_ef10_nic_data
*nic_data
= efx_pf
->nic_data
;
5893 /* MAC address successfully changed by VF (with MAC
5894 * spoofing) so update the parent PF if possible.
5896 for (i
= 0; i
< efx_pf
->vf_count
; ++i
) {
5897 struct ef10_vf
*vf
= nic_data
->vf
+ i
;
5899 if (vf
->efx
== efx
) {
5900 ether_addr_copy(vf
->mac
,
5901 efx
->net_dev
->dev_addr
);
5909 netif_err(efx
, drv
, efx
->net_dev
,
5910 "Cannot change MAC address; use sfboot to enable"
5911 " mac-spoofing on this interface\n");
5912 } else if (rc
== -ENOSYS
&& !efx_ef10_is_vf(efx
)) {
5913 /* If the active MCFW does not support MC_CMD_VADAPTOR_SET_MAC
5914 * fall-back to the method of changing the MAC address on the
5915 * vport. This only applies to PFs because such versions of
5916 * MCFW do not support VFs.
5918 rc
= efx_ef10_vport_set_mac_address(efx
);
5920 efx_mcdi_display_error(efx
, MC_CMD_VADAPTOR_SET_MAC
,
5921 sizeof(inbuf
), NULL
, 0, rc
);
5927 static int efx_ef10_mac_reconfigure(struct efx_nic
*efx
)
5929 efx_ef10_filter_sync_rx_mode(efx
);
5931 return efx_mcdi_set_mac(efx
);
5934 static int efx_ef10_mac_reconfigure_vf(struct efx_nic
*efx
)
5936 efx_ef10_filter_sync_rx_mode(efx
);
5941 static int efx_ef10_start_bist(struct efx_nic
*efx
, u32 bist_type
)
5943 MCDI_DECLARE_BUF(inbuf
, MC_CMD_START_BIST_IN_LEN
);
5945 MCDI_SET_DWORD(inbuf
, START_BIST_IN_TYPE
, bist_type
);
5946 return efx_mcdi_rpc(efx
, MC_CMD_START_BIST
, inbuf
, sizeof(inbuf
),
5950 /* MC BISTs follow a different poll mechanism to phy BISTs.
5951 * The BIST is done in the poll handler on the MC, and the MCDI command
5952 * will block until the BIST is done.
5954 static int efx_ef10_poll_bist(struct efx_nic
*efx
)
5957 MCDI_DECLARE_BUF(outbuf
, MC_CMD_POLL_BIST_OUT_LEN
);
5961 rc
= efx_mcdi_rpc(efx
, MC_CMD_POLL_BIST
, NULL
, 0,
5962 outbuf
, sizeof(outbuf
), &outlen
);
5966 if (outlen
< MC_CMD_POLL_BIST_OUT_LEN
)
5969 result
= MCDI_DWORD(outbuf
, POLL_BIST_OUT_RESULT
);
5971 case MC_CMD_POLL_BIST_PASSED
:
5972 netif_dbg(efx
, hw
, efx
->net_dev
, "BIST passed.\n");
5974 case MC_CMD_POLL_BIST_TIMEOUT
:
5975 netif_err(efx
, hw
, efx
->net_dev
, "BIST timed out\n");
5977 case MC_CMD_POLL_BIST_FAILED
:
5978 netif_err(efx
, hw
, efx
->net_dev
, "BIST failed.\n");
5981 netif_err(efx
, hw
, efx
->net_dev
,
5982 "BIST returned unknown result %u", result
);
5987 static int efx_ef10_run_bist(struct efx_nic
*efx
, u32 bist_type
)
5991 netif_dbg(efx
, drv
, efx
->net_dev
, "starting BIST type %u\n", bist_type
);
5993 rc
= efx_ef10_start_bist(efx
, bist_type
);
5997 return efx_ef10_poll_bist(efx
);
6001 efx_ef10_test_chip(struct efx_nic
*efx
, struct efx_self_tests
*tests
)
6005 efx_reset_down(efx
, RESET_TYPE_WORLD
);
6007 rc
= efx_mcdi_rpc(efx
, MC_CMD_ENABLE_OFFLINE_BIST
,
6008 NULL
, 0, NULL
, 0, NULL
);
6012 tests
->memory
= efx_ef10_run_bist(efx
, MC_CMD_MC_MEM_BIST
) ? -1 : 1;
6013 tests
->registers
= efx_ef10_run_bist(efx
, MC_CMD_REG_BIST
) ? -1 : 1;
6015 rc
= efx_mcdi_reset(efx
, RESET_TYPE_WORLD
);
6020 rc2
= efx_reset_up(efx
, RESET_TYPE_WORLD
, rc
== 0);
6021 return rc
? rc
: rc2
;
6024 #ifdef CONFIG_SFC_MTD
6026 struct efx_ef10_nvram_type_info
{
6027 u16 type
, type_mask
;
6032 static const struct efx_ef10_nvram_type_info efx_ef10_nvram_types
[] = {
6033 { NVRAM_PARTITION_TYPE_MC_FIRMWARE
, 0, 0, "sfc_mcfw" },
6034 { NVRAM_PARTITION_TYPE_MC_FIRMWARE_BACKUP
, 0, 0, "sfc_mcfw_backup" },
6035 { NVRAM_PARTITION_TYPE_EXPANSION_ROM
, 0, 0, "sfc_exp_rom" },
6036 { NVRAM_PARTITION_TYPE_STATIC_CONFIG
, 0, 0, "sfc_static_cfg" },
6037 { NVRAM_PARTITION_TYPE_DYNAMIC_CONFIG
, 0, 0, "sfc_dynamic_cfg" },
6038 { NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT0
, 0, 0, "sfc_exp_rom_cfg" },
6039 { NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT1
, 0, 1, "sfc_exp_rom_cfg" },
6040 { NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT2
, 0, 2, "sfc_exp_rom_cfg" },
6041 { NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT3
, 0, 3, "sfc_exp_rom_cfg" },
6042 { NVRAM_PARTITION_TYPE_LICENSE
, 0, 0, "sfc_license" },
6043 { NVRAM_PARTITION_TYPE_PHY_MIN
, 0xff, 0, "sfc_phy_fw" },
6044 /* MUM and SUC firmware share the same partition type */
6045 { NVRAM_PARTITION_TYPE_MUM_FIRMWARE
, 0, 0, "sfc_mumfw" },
6046 { NVRAM_PARTITION_TYPE_EXPANSION_UEFI
, 0, 0, "sfc_uefi" },
6047 { NVRAM_PARTITION_TYPE_STATUS
, 0, 0, "sfc_status" }
6049 #define EF10_NVRAM_PARTITION_COUNT ARRAY_SIZE(efx_ef10_nvram_types)
6051 static int efx_ef10_mtd_probe_partition(struct efx_nic
*efx
,
6052 struct efx_mcdi_mtd_partition
*part
,
6054 unsigned long *found
)
6056 MCDI_DECLARE_BUF(inbuf
, MC_CMD_NVRAM_METADATA_IN_LEN
);
6057 MCDI_DECLARE_BUF(outbuf
, MC_CMD_NVRAM_METADATA_OUT_LENMAX
);
6058 const struct efx_ef10_nvram_type_info
*info
;
6059 size_t size
, erase_size
, outlen
;
6064 for (type_idx
= 0; ; type_idx
++) {
6065 if (type_idx
== EF10_NVRAM_PARTITION_COUNT
)
6067 info
= efx_ef10_nvram_types
+ type_idx
;
6068 if ((type
& ~info
->type_mask
) == info
->type
)
6071 if (info
->port
!= efx_port_num(efx
))
6074 rc
= efx_mcdi_nvram_info(efx
, type
, &size
, &erase_size
, &protected);
6078 return -ENODEV
; /* hide it */
6080 /* If we've already exposed a partition of this type, hide this
6081 * duplicate. All operations on MTDs are keyed by the type anyway,
6082 * so we can't act on the duplicate.
6084 if (__test_and_set_bit(type_idx
, found
))
6087 part
->nvram_type
= type
;
6089 MCDI_SET_DWORD(inbuf
, NVRAM_METADATA_IN_TYPE
, type
);
6090 rc
= efx_mcdi_rpc(efx
, MC_CMD_NVRAM_METADATA
, inbuf
, sizeof(inbuf
),
6091 outbuf
, sizeof(outbuf
), &outlen
);
6094 if (outlen
< MC_CMD_NVRAM_METADATA_OUT_LENMIN
)
6096 if (MCDI_DWORD(outbuf
, NVRAM_METADATA_OUT_FLAGS
) &
6097 (1 << MC_CMD_NVRAM_METADATA_OUT_SUBTYPE_VALID_LBN
))
6098 part
->fw_subtype
= MCDI_DWORD(outbuf
,
6099 NVRAM_METADATA_OUT_SUBTYPE
);
6101 part
->common
.dev_type_name
= "EF10 NVRAM manager";
6102 part
->common
.type_name
= info
->name
;
6104 part
->common
.mtd
.type
= MTD_NORFLASH
;
6105 part
->common
.mtd
.flags
= MTD_CAP_NORFLASH
;
6106 part
->common
.mtd
.size
= size
;
6107 part
->common
.mtd
.erasesize
= erase_size
;
6108 /* sfc_status is read-only */
6110 part
->common
.mtd
.flags
|= MTD_NO_ERASE
;
6115 static int efx_ef10_mtd_probe(struct efx_nic
*efx
)
6117 MCDI_DECLARE_BUF(outbuf
, MC_CMD_NVRAM_PARTITIONS_OUT_LENMAX
);
6118 DECLARE_BITMAP(found
, EF10_NVRAM_PARTITION_COUNT
);
6119 struct efx_mcdi_mtd_partition
*parts
;
6120 size_t outlen
, n_parts_total
, i
, n_parts
;
6126 BUILD_BUG_ON(MC_CMD_NVRAM_PARTITIONS_IN_LEN
!= 0);
6127 rc
= efx_mcdi_rpc(efx
, MC_CMD_NVRAM_PARTITIONS
, NULL
, 0,
6128 outbuf
, sizeof(outbuf
), &outlen
);
6131 if (outlen
< MC_CMD_NVRAM_PARTITIONS_OUT_LENMIN
)
6134 n_parts_total
= MCDI_DWORD(outbuf
, NVRAM_PARTITIONS_OUT_NUM_PARTITIONS
);
6136 MCDI_VAR_ARRAY_LEN(outlen
, NVRAM_PARTITIONS_OUT_TYPE_ID
))
6139 parts
= kcalloc(n_parts_total
, sizeof(*parts
), GFP_KERNEL
);
6144 for (i
= 0; i
< n_parts_total
; i
++) {
6145 type
= MCDI_ARRAY_DWORD(outbuf
, NVRAM_PARTITIONS_OUT_TYPE_ID
,
6147 rc
= efx_ef10_mtd_probe_partition(efx
, &parts
[n_parts
], type
,
6149 if (rc
== -EEXIST
|| rc
== -ENODEV
)
6156 rc
= efx_mtd_add(efx
, &parts
[0].common
, n_parts
, sizeof(*parts
));
6163 #endif /* CONFIG_SFC_MTD */
6165 static void efx_ef10_ptp_write_host_time(struct efx_nic
*efx
, u32 host_time
)
6167 _efx_writed(efx
, cpu_to_le32(host_time
), ER_DZ_MC_DB_LWRD
);
6170 static void efx_ef10_ptp_write_host_time_vf(struct efx_nic
*efx
,
6173 static int efx_ef10_rx_enable_timestamping(struct efx_channel
*channel
,
6176 MCDI_DECLARE_BUF(inbuf
, MC_CMD_PTP_IN_TIME_EVENT_SUBSCRIBE_LEN
);
6179 if (channel
->sync_events_state
== SYNC_EVENTS_REQUESTED
||
6180 channel
->sync_events_state
== SYNC_EVENTS_VALID
||
6181 (temp
&& channel
->sync_events_state
== SYNC_EVENTS_DISABLED
))
6183 channel
->sync_events_state
= SYNC_EVENTS_REQUESTED
;
6185 MCDI_SET_DWORD(inbuf
, PTP_IN_OP
, MC_CMD_PTP_OP_TIME_EVENT_SUBSCRIBE
);
6186 MCDI_SET_DWORD(inbuf
, PTP_IN_PERIPH_ID
, 0);
6187 MCDI_SET_DWORD(inbuf
, PTP_IN_TIME_EVENT_SUBSCRIBE_QUEUE
,
6190 rc
= efx_mcdi_rpc(channel
->efx
, MC_CMD_PTP
,
6191 inbuf
, sizeof(inbuf
), NULL
, 0, NULL
);
6194 channel
->sync_events_state
= temp
? SYNC_EVENTS_QUIESCENT
:
6195 SYNC_EVENTS_DISABLED
;
6200 static int efx_ef10_rx_disable_timestamping(struct efx_channel
*channel
,
6203 MCDI_DECLARE_BUF(inbuf
, MC_CMD_PTP_IN_TIME_EVENT_UNSUBSCRIBE_LEN
);
6206 if (channel
->sync_events_state
== SYNC_EVENTS_DISABLED
||
6207 (temp
&& channel
->sync_events_state
== SYNC_EVENTS_QUIESCENT
))
6209 if (channel
->sync_events_state
== SYNC_EVENTS_QUIESCENT
) {
6210 channel
->sync_events_state
= SYNC_EVENTS_DISABLED
;
6213 channel
->sync_events_state
= temp
? SYNC_EVENTS_QUIESCENT
:
6214 SYNC_EVENTS_DISABLED
;
6216 MCDI_SET_DWORD(inbuf
, PTP_IN_OP
, MC_CMD_PTP_OP_TIME_EVENT_UNSUBSCRIBE
);
6217 MCDI_SET_DWORD(inbuf
, PTP_IN_PERIPH_ID
, 0);
6218 MCDI_SET_DWORD(inbuf
, PTP_IN_TIME_EVENT_UNSUBSCRIBE_CONTROL
,
6219 MC_CMD_PTP_IN_TIME_EVENT_UNSUBSCRIBE_SINGLE
);
6220 MCDI_SET_DWORD(inbuf
, PTP_IN_TIME_EVENT_UNSUBSCRIBE_QUEUE
,
6223 rc
= efx_mcdi_rpc(channel
->efx
, MC_CMD_PTP
,
6224 inbuf
, sizeof(inbuf
), NULL
, 0, NULL
);
6229 static int efx_ef10_ptp_set_ts_sync_events(struct efx_nic
*efx
, bool en
,
6232 int (*set
)(struct efx_channel
*channel
, bool temp
);
6233 struct efx_channel
*channel
;
6236 efx_ef10_rx_enable_timestamping
:
6237 efx_ef10_rx_disable_timestamping
;
6239 channel
= efx_ptp_channel(efx
);
6241 int rc
= set(channel
, temp
);
6242 if (en
&& rc
!= 0) {
6243 efx_ef10_ptp_set_ts_sync_events(efx
, false, temp
);
6251 static int efx_ef10_ptp_set_ts_config_vf(struct efx_nic
*efx
,
6252 struct hwtstamp_config
*init
)
6257 static int efx_ef10_ptp_set_ts_config(struct efx_nic
*efx
,
6258 struct hwtstamp_config
*init
)
6262 switch (init
->rx_filter
) {
6263 case HWTSTAMP_FILTER_NONE
:
6264 efx_ef10_ptp_set_ts_sync_events(efx
, false, false);
6265 /* if TX timestamping is still requested then leave PTP on */
6266 return efx_ptp_change_mode(efx
,
6267 init
->tx_type
!= HWTSTAMP_TX_OFF
, 0);
6268 case HWTSTAMP_FILTER_ALL
:
6269 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT
:
6270 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC
:
6271 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ
:
6272 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT
:
6273 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC
:
6274 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ
:
6275 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT
:
6276 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC
:
6277 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ
:
6278 case HWTSTAMP_FILTER_PTP_V2_EVENT
:
6279 case HWTSTAMP_FILTER_PTP_V2_SYNC
:
6280 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ
:
6281 case HWTSTAMP_FILTER_NTP_ALL
:
6282 init
->rx_filter
= HWTSTAMP_FILTER_ALL
;
6283 rc
= efx_ptp_change_mode(efx
, true, 0);
6285 rc
= efx_ef10_ptp_set_ts_sync_events(efx
, true, false);
6287 efx_ptp_change_mode(efx
, false, 0);
6294 static int efx_ef10_get_phys_port_id(struct efx_nic
*efx
,
6295 struct netdev_phys_item_id
*ppid
)
6297 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
6299 if (!is_valid_ether_addr(nic_data
->port_id
))
6302 ppid
->id_len
= ETH_ALEN
;
6303 memcpy(ppid
->id
, nic_data
->port_id
, ppid
->id_len
);
6308 static int efx_ef10_vlan_rx_add_vid(struct efx_nic
*efx
, __be16 proto
, u16 vid
)
6310 if (proto
!= htons(ETH_P_8021Q
))
6313 return efx_ef10_add_vlan(efx
, vid
);
6316 static int efx_ef10_vlan_rx_kill_vid(struct efx_nic
*efx
, __be16 proto
, u16 vid
)
6318 if (proto
!= htons(ETH_P_8021Q
))
6321 return efx_ef10_del_vlan(efx
, vid
);
6324 /* We rely on the MCDI wiping out our TX rings if it made any changes to the
6325 * ports table, ensuring that any TSO descriptors that were made on a now-
6326 * removed tunnel port will be blown away and won't break things when we try
6327 * to transmit them using the new ports table.
6329 static int efx_ef10_set_udp_tnl_ports(struct efx_nic
*efx
, bool unloading
)
6331 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
6332 MCDI_DECLARE_BUF(inbuf
, MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_LENMAX
);
6333 MCDI_DECLARE_BUF(outbuf
, MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_OUT_LEN
);
6334 bool will_reset
= false;
6335 size_t num_entries
= 0;
6336 size_t inlen
, outlen
;
6339 efx_dword_t flags_and_num_entries
;
6341 WARN_ON(!mutex_is_locked(&nic_data
->udp_tunnels_lock
));
6343 nic_data
->udp_tunnels_dirty
= false;
6345 if (!(nic_data
->datapath_caps
&
6346 (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN
))) {
6347 efx_device_attach_if_not_resetting(efx
);
6351 BUILD_BUG_ON(ARRAY_SIZE(nic_data
->udp_tunnels
) >
6352 MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_ENTRIES_MAXNUM
);
6354 for (i
= 0; i
< ARRAY_SIZE(nic_data
->udp_tunnels
); ++i
) {
6355 if (nic_data
->udp_tunnels
[i
].count
&&
6356 nic_data
->udp_tunnels
[i
].port
) {
6359 EFX_POPULATE_DWORD_2(entry
,
6360 TUNNEL_ENCAP_UDP_PORT_ENTRY_UDP_PORT
,
6361 ntohs(nic_data
->udp_tunnels
[i
].port
),
6362 TUNNEL_ENCAP_UDP_PORT_ENTRY_PROTOCOL
,
6363 nic_data
->udp_tunnels
[i
].type
);
6364 *_MCDI_ARRAY_DWORD(inbuf
,
6365 SET_TUNNEL_ENCAP_UDP_PORTS_IN_ENTRIES
,
6366 num_entries
++) = entry
;
6370 BUILD_BUG_ON((MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_NUM_ENTRIES_OFST
-
6371 MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_FLAGS_OFST
) * 8 !=
6373 BUILD_BUG_ON(MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_NUM_ENTRIES_LEN
* 8 !=
6375 EFX_POPULATE_DWORD_2(flags_and_num_entries
,
6376 MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_UNLOADING
,
6378 EFX_WORD_1
, num_entries
);
6379 *_MCDI_DWORD(inbuf
, SET_TUNNEL_ENCAP_UDP_PORTS_IN_FLAGS
) =
6380 flags_and_num_entries
;
6382 inlen
= MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_LEN(num_entries
);
6384 rc
= efx_mcdi_rpc_quiet(efx
, MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS
,
6385 inbuf
, inlen
, outbuf
, sizeof(outbuf
), &outlen
);
6387 /* Most likely the MC rebooted due to another function also
6388 * setting its tunnel port list. Mark the tunnel port list as
6389 * dirty, so it will be pushed upon coming up from the reboot.
6391 nic_data
->udp_tunnels_dirty
= true;
6396 /* expected not available on unprivileged functions */
6398 netif_warn(efx
, drv
, efx
->net_dev
,
6399 "Unable to set UDP tunnel ports; rc=%d.\n", rc
);
6400 } else if (MCDI_DWORD(outbuf
, SET_TUNNEL_ENCAP_UDP_PORTS_OUT_FLAGS
) &
6401 (1 << MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_OUT_RESETTING_LBN
)) {
6402 netif_info(efx
, drv
, efx
->net_dev
,
6403 "Rebooting MC due to UDP tunnel port list change\n");
6406 /* Delay for the MC reset to complete. This will make
6407 * unloading other functions a bit smoother. This is a
6408 * race, but the other unload will work whichever way
6409 * it goes, this just avoids an unnecessary error
6414 if (!will_reset
&& !unloading
) {
6415 /* The caller will have detached, relying on the MC reset to
6416 * trigger a re-attach. Since there won't be an MC reset, we
6417 * have to do the attach ourselves.
6419 efx_device_attach_if_not_resetting(efx
);
6425 static int efx_ef10_udp_tnl_push_ports(struct efx_nic
*efx
)
6427 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
6430 mutex_lock(&nic_data
->udp_tunnels_lock
);
6431 if (nic_data
->udp_tunnels_dirty
) {
6432 /* Make sure all TX are stopped while we modify the table, else
6433 * we might race against an efx_features_check().
6435 efx_device_detach_sync(efx
);
6436 rc
= efx_ef10_set_udp_tnl_ports(efx
, false);
6438 mutex_unlock(&nic_data
->udp_tunnels_lock
);
6442 static struct efx_udp_tunnel
*__efx_ef10_udp_tnl_lookup_port(struct efx_nic
*efx
,
6445 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
6448 for (i
= 0; i
< ARRAY_SIZE(nic_data
->udp_tunnels
); ++i
) {
6449 if (!nic_data
->udp_tunnels
[i
].count
)
6451 if (nic_data
->udp_tunnels
[i
].port
== port
)
6452 return &nic_data
->udp_tunnels
[i
];
6457 static int efx_ef10_udp_tnl_add_port(struct efx_nic
*efx
,
6458 struct efx_udp_tunnel tnl
)
6460 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
6461 struct efx_udp_tunnel
*match
;
6466 if (!(nic_data
->datapath_caps
&
6467 (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN
)))
6470 efx_get_udp_tunnel_type_name(tnl
.type
, typebuf
, sizeof(typebuf
));
6471 netif_dbg(efx
, drv
, efx
->net_dev
, "Adding UDP tunnel (%s) port %d\n",
6472 typebuf
, ntohs(tnl
.port
));
6474 mutex_lock(&nic_data
->udp_tunnels_lock
);
6475 /* Make sure all TX are stopped while we add to the table, else we
6476 * might race against an efx_features_check().
6478 efx_device_detach_sync(efx
);
6480 match
= __efx_ef10_udp_tnl_lookup_port(efx
, tnl
.port
);
6481 if (match
!= NULL
) {
6482 if (match
->type
== tnl
.type
) {
6483 netif_dbg(efx
, drv
, efx
->net_dev
,
6484 "Referencing existing tunnel entry\n");
6486 /* No need to cause an MCDI update */
6490 efx_get_udp_tunnel_type_name(match
->type
,
6491 typebuf
, sizeof(typebuf
));
6492 netif_dbg(efx
, drv
, efx
->net_dev
,
6493 "UDP port %d is already in use by %s\n",
6494 ntohs(tnl
.port
), typebuf
);
6499 for (i
= 0; i
< ARRAY_SIZE(nic_data
->udp_tunnels
); ++i
)
6500 if (!nic_data
->udp_tunnels
[i
].count
) {
6501 nic_data
->udp_tunnels
[i
] = tnl
;
6502 nic_data
->udp_tunnels
[i
].count
= 1;
6503 rc
= efx_ef10_set_udp_tnl_ports(efx
, false);
6507 netif_dbg(efx
, drv
, efx
->net_dev
,
6508 "Unable to add UDP tunnel (%s) port %d; insufficient resources.\n",
6509 typebuf
, ntohs(tnl
.port
));
6514 mutex_unlock(&nic_data
->udp_tunnels_lock
);
6518 /* Called under the TX lock with the TX queue running, hence no-one can be
6519 * in the middle of updating the UDP tunnels table. However, they could
6520 * have tried and failed the MCDI, in which case they'll have set the dirty
6521 * flag before dropping their locks.
6523 static bool efx_ef10_udp_tnl_has_port(struct efx_nic
*efx
, __be16 port
)
6525 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
6527 if (!(nic_data
->datapath_caps
&
6528 (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN
)))
6531 if (nic_data
->udp_tunnels_dirty
)
6532 /* SW table may not match HW state, so just assume we can't
6533 * use any UDP tunnel offloads.
6537 return __efx_ef10_udp_tnl_lookup_port(efx
, port
) != NULL
;
6540 static int efx_ef10_udp_tnl_del_port(struct efx_nic
*efx
,
6541 struct efx_udp_tunnel tnl
)
6543 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
6544 struct efx_udp_tunnel
*match
;
6548 if (!(nic_data
->datapath_caps
&
6549 (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN
)))
6552 efx_get_udp_tunnel_type_name(tnl
.type
, typebuf
, sizeof(typebuf
));
6553 netif_dbg(efx
, drv
, efx
->net_dev
, "Removing UDP tunnel (%s) port %d\n",
6554 typebuf
, ntohs(tnl
.port
));
6556 mutex_lock(&nic_data
->udp_tunnels_lock
);
6557 /* Make sure all TX are stopped while we remove from the table, else we
6558 * might race against an efx_features_check().
6560 efx_device_detach_sync(efx
);
6562 match
= __efx_ef10_udp_tnl_lookup_port(efx
, tnl
.port
);
6563 if (match
!= NULL
) {
6564 if (match
->type
== tnl
.type
) {
6565 if (--match
->count
) {
6566 /* Port is still in use, so nothing to do */
6567 netif_dbg(efx
, drv
, efx
->net_dev
,
6568 "UDP tunnel port %d remains active\n",
6573 rc
= efx_ef10_set_udp_tnl_ports(efx
, false);
6576 efx_get_udp_tunnel_type_name(match
->type
,
6577 typebuf
, sizeof(typebuf
));
6578 netif_warn(efx
, drv
, efx
->net_dev
,
6579 "UDP port %d is actually in use by %s, not removing\n",
6580 ntohs(tnl
.port
), typebuf
);
6585 mutex_unlock(&nic_data
->udp_tunnels_lock
);
6589 #define EF10_OFFLOAD_FEATURES \
6590 (NETIF_F_IP_CSUM | \
6591 NETIF_F_HW_VLAN_CTAG_FILTER | \
6592 NETIF_F_IPV6_CSUM | \
6596 const struct efx_nic_type efx_hunt_a0_vf_nic_type
= {
6598 .mem_bar
= efx_ef10_vf_mem_bar
,
6599 .mem_map_size
= efx_ef10_mem_map_size
,
6600 .probe
= efx_ef10_probe_vf
,
6601 .remove
= efx_ef10_remove
,
6602 .dimension_resources
= efx_ef10_dimension_resources
,
6603 .init
= efx_ef10_init_nic
,
6604 .fini
= efx_port_dummy_op_void
,
6605 .map_reset_reason
= efx_ef10_map_reset_reason
,
6606 .map_reset_flags
= efx_ef10_map_reset_flags
,
6607 .reset
= efx_ef10_reset
,
6608 .probe_port
= efx_mcdi_port_probe
,
6609 .remove_port
= efx_mcdi_port_remove
,
6610 .fini_dmaq
= efx_ef10_fini_dmaq
,
6611 .prepare_flr
= efx_ef10_prepare_flr
,
6612 .finish_flr
= efx_port_dummy_op_void
,
6613 .describe_stats
= efx_ef10_describe_stats
,
6614 .update_stats
= efx_ef10_update_stats_vf
,
6615 .start_stats
= efx_port_dummy_op_void
,
6616 .pull_stats
= efx_port_dummy_op_void
,
6617 .stop_stats
= efx_port_dummy_op_void
,
6618 .set_id_led
= efx_mcdi_set_id_led
,
6619 .push_irq_moderation
= efx_ef10_push_irq_moderation
,
6620 .reconfigure_mac
= efx_ef10_mac_reconfigure_vf
,
6621 .check_mac_fault
= efx_mcdi_mac_check_fault
,
6622 .reconfigure_port
= efx_mcdi_port_reconfigure
,
6623 .get_wol
= efx_ef10_get_wol_vf
,
6624 .set_wol
= efx_ef10_set_wol_vf
,
6625 .resume_wol
= efx_port_dummy_op_void
,
6626 .mcdi_request
= efx_ef10_mcdi_request
,
6627 .mcdi_poll_response
= efx_ef10_mcdi_poll_response
,
6628 .mcdi_read_response
= efx_ef10_mcdi_read_response
,
6629 .mcdi_poll_reboot
= efx_ef10_mcdi_poll_reboot
,
6630 .mcdi_reboot_detected
= efx_ef10_mcdi_reboot_detected
,
6631 .irq_enable_master
= efx_port_dummy_op_void
,
6632 .irq_test_generate
= efx_ef10_irq_test_generate
,
6633 .irq_disable_non_ev
= efx_port_dummy_op_void
,
6634 .irq_handle_msi
= efx_ef10_msi_interrupt
,
6635 .irq_handle_legacy
= efx_ef10_legacy_interrupt
,
6636 .tx_probe
= efx_ef10_tx_probe
,
6637 .tx_init
= efx_ef10_tx_init
,
6638 .tx_remove
= efx_ef10_tx_remove
,
6639 .tx_write
= efx_ef10_tx_write
,
6640 .tx_limit_len
= efx_ef10_tx_limit_len
,
6641 .rx_push_rss_config
= efx_ef10_vf_rx_push_rss_config
,
6642 .rx_pull_rss_config
= efx_ef10_rx_pull_rss_config
,
6643 .rx_probe
= efx_ef10_rx_probe
,
6644 .rx_init
= efx_ef10_rx_init
,
6645 .rx_remove
= efx_ef10_rx_remove
,
6646 .rx_write
= efx_ef10_rx_write
,
6647 .rx_defer_refill
= efx_ef10_rx_defer_refill
,
6648 .ev_probe
= efx_ef10_ev_probe
,
6649 .ev_init
= efx_ef10_ev_init
,
6650 .ev_fini
= efx_ef10_ev_fini
,
6651 .ev_remove
= efx_ef10_ev_remove
,
6652 .ev_process
= efx_ef10_ev_process
,
6653 .ev_read_ack
= efx_ef10_ev_read_ack
,
6654 .ev_test_generate
= efx_ef10_ev_test_generate
,
6655 .filter_table_probe
= efx_ef10_filter_table_probe
,
6656 .filter_table_restore
= efx_ef10_filter_table_restore
,
6657 .filter_table_remove
= efx_ef10_filter_table_remove
,
6658 .filter_update_rx_scatter
= efx_ef10_filter_update_rx_scatter
,
6659 .filter_insert
= efx_ef10_filter_insert
,
6660 .filter_remove_safe
= efx_ef10_filter_remove_safe
,
6661 .filter_get_safe
= efx_ef10_filter_get_safe
,
6662 .filter_clear_rx
= efx_ef10_filter_clear_rx
,
6663 .filter_count_rx_used
= efx_ef10_filter_count_rx_used
,
6664 .filter_get_rx_id_limit
= efx_ef10_filter_get_rx_id_limit
,
6665 .filter_get_rx_ids
= efx_ef10_filter_get_rx_ids
,
6666 #ifdef CONFIG_RFS_ACCEL
6667 .filter_rfs_expire_one
= efx_ef10_filter_rfs_expire_one
,
6669 #ifdef CONFIG_SFC_MTD
6670 .mtd_probe
= efx_port_dummy_op_int
,
6672 .ptp_write_host_time
= efx_ef10_ptp_write_host_time_vf
,
6673 .ptp_set_ts_config
= efx_ef10_ptp_set_ts_config_vf
,
6674 .vlan_rx_add_vid
= efx_ef10_vlan_rx_add_vid
,
6675 .vlan_rx_kill_vid
= efx_ef10_vlan_rx_kill_vid
,
6676 #ifdef CONFIG_SFC_SRIOV
6677 .vswitching_probe
= efx_ef10_vswitching_probe_vf
,
6678 .vswitching_restore
= efx_ef10_vswitching_restore_vf
,
6679 .vswitching_remove
= efx_ef10_vswitching_remove_vf
,
6681 .get_mac_address
= efx_ef10_get_mac_address_vf
,
6682 .set_mac_address
= efx_ef10_set_mac_address
,
6684 .get_phys_port_id
= efx_ef10_get_phys_port_id
,
6685 .revision
= EFX_REV_HUNT_A0
,
6686 .max_dma_mask
= DMA_BIT_MASK(ESF_DZ_TX_KER_BUF_ADDR_WIDTH
),
6687 .rx_prefix_size
= ES_DZ_RX_PREFIX_SIZE
,
6688 .rx_hash_offset
= ES_DZ_RX_PREFIX_HASH_OFST
,
6689 .rx_ts_offset
= ES_DZ_RX_PREFIX_TSTAMP_OFST
,
6690 .can_rx_scatter
= true,
6691 .always_rx_scatter
= true,
6692 .min_interrupt_mode
= EFX_INT_MODE_MSIX
,
6693 .max_interrupt_mode
= EFX_INT_MODE_MSIX
,
6694 .timer_period_max
= 1 << ERF_DD_EVQ_IND_TIMER_VAL_WIDTH
,
6695 .offload_features
= EF10_OFFLOAD_FEATURES
,
6697 .max_rx_ip_filters
= HUNT_FILTER_TBL_ROWS
,
6698 .hwtstamp_filters
= 1 << HWTSTAMP_FILTER_NONE
|
6699 1 << HWTSTAMP_FILTER_ALL
,
6700 .rx_hash_key_size
= 40,
6703 const struct efx_nic_type efx_hunt_a0_nic_type
= {
6705 .mem_bar
= efx_ef10_pf_mem_bar
,
6706 .mem_map_size
= efx_ef10_mem_map_size
,
6707 .probe
= efx_ef10_probe_pf
,
6708 .remove
= efx_ef10_remove
,
6709 .dimension_resources
= efx_ef10_dimension_resources
,
6710 .init
= efx_ef10_init_nic
,
6711 .fini
= efx_port_dummy_op_void
,
6712 .map_reset_reason
= efx_ef10_map_reset_reason
,
6713 .map_reset_flags
= efx_ef10_map_reset_flags
,
6714 .reset
= efx_ef10_reset
,
6715 .probe_port
= efx_mcdi_port_probe
,
6716 .remove_port
= efx_mcdi_port_remove
,
6717 .fini_dmaq
= efx_ef10_fini_dmaq
,
6718 .prepare_flr
= efx_ef10_prepare_flr
,
6719 .finish_flr
= efx_port_dummy_op_void
,
6720 .describe_stats
= efx_ef10_describe_stats
,
6721 .update_stats
= efx_ef10_update_stats_pf
,
6722 .start_stats
= efx_mcdi_mac_start_stats
,
6723 .pull_stats
= efx_mcdi_mac_pull_stats
,
6724 .stop_stats
= efx_mcdi_mac_stop_stats
,
6725 .set_id_led
= efx_mcdi_set_id_led
,
6726 .push_irq_moderation
= efx_ef10_push_irq_moderation
,
6727 .reconfigure_mac
= efx_ef10_mac_reconfigure
,
6728 .check_mac_fault
= efx_mcdi_mac_check_fault
,
6729 .reconfigure_port
= efx_mcdi_port_reconfigure
,
6730 .get_wol
= efx_ef10_get_wol
,
6731 .set_wol
= efx_ef10_set_wol
,
6732 .resume_wol
= efx_port_dummy_op_void
,
6733 .test_chip
= efx_ef10_test_chip
,
6734 .test_nvram
= efx_mcdi_nvram_test_all
,
6735 .mcdi_request
= efx_ef10_mcdi_request
,
6736 .mcdi_poll_response
= efx_ef10_mcdi_poll_response
,
6737 .mcdi_read_response
= efx_ef10_mcdi_read_response
,
6738 .mcdi_poll_reboot
= efx_ef10_mcdi_poll_reboot
,
6739 .mcdi_reboot_detected
= efx_ef10_mcdi_reboot_detected
,
6740 .irq_enable_master
= efx_port_dummy_op_void
,
6741 .irq_test_generate
= efx_ef10_irq_test_generate
,
6742 .irq_disable_non_ev
= efx_port_dummy_op_void
,
6743 .irq_handle_msi
= efx_ef10_msi_interrupt
,
6744 .irq_handle_legacy
= efx_ef10_legacy_interrupt
,
6745 .tx_probe
= efx_ef10_tx_probe
,
6746 .tx_init
= efx_ef10_tx_init
,
6747 .tx_remove
= efx_ef10_tx_remove
,
6748 .tx_write
= efx_ef10_tx_write
,
6749 .tx_limit_len
= efx_ef10_tx_limit_len
,
6750 .rx_push_rss_config
= efx_ef10_pf_rx_push_rss_config
,
6751 .rx_pull_rss_config
= efx_ef10_rx_pull_rss_config
,
6752 .rx_push_rss_context_config
= efx_ef10_rx_push_rss_context_config
,
6753 .rx_pull_rss_context_config
= efx_ef10_rx_pull_rss_context_config
,
6754 .rx_restore_rss_contexts
= efx_ef10_rx_restore_rss_contexts
,
6755 .rx_probe
= efx_ef10_rx_probe
,
6756 .rx_init
= efx_ef10_rx_init
,
6757 .rx_remove
= efx_ef10_rx_remove
,
6758 .rx_write
= efx_ef10_rx_write
,
6759 .rx_defer_refill
= efx_ef10_rx_defer_refill
,
6760 .ev_probe
= efx_ef10_ev_probe
,
6761 .ev_init
= efx_ef10_ev_init
,
6762 .ev_fini
= efx_ef10_ev_fini
,
6763 .ev_remove
= efx_ef10_ev_remove
,
6764 .ev_process
= efx_ef10_ev_process
,
6765 .ev_read_ack
= efx_ef10_ev_read_ack
,
6766 .ev_test_generate
= efx_ef10_ev_test_generate
,
6767 .filter_table_probe
= efx_ef10_filter_table_probe
,
6768 .filter_table_restore
= efx_ef10_filter_table_restore
,
6769 .filter_table_remove
= efx_ef10_filter_table_remove
,
6770 .filter_update_rx_scatter
= efx_ef10_filter_update_rx_scatter
,
6771 .filter_insert
= efx_ef10_filter_insert
,
6772 .filter_remove_safe
= efx_ef10_filter_remove_safe
,
6773 .filter_get_safe
= efx_ef10_filter_get_safe
,
6774 .filter_clear_rx
= efx_ef10_filter_clear_rx
,
6775 .filter_count_rx_used
= efx_ef10_filter_count_rx_used
,
6776 .filter_get_rx_id_limit
= efx_ef10_filter_get_rx_id_limit
,
6777 .filter_get_rx_ids
= efx_ef10_filter_get_rx_ids
,
6778 #ifdef CONFIG_RFS_ACCEL
6779 .filter_rfs_expire_one
= efx_ef10_filter_rfs_expire_one
,
6781 #ifdef CONFIG_SFC_MTD
6782 .mtd_probe
= efx_ef10_mtd_probe
,
6783 .mtd_rename
= efx_mcdi_mtd_rename
,
6784 .mtd_read
= efx_mcdi_mtd_read
,
6785 .mtd_erase
= efx_mcdi_mtd_erase
,
6786 .mtd_write
= efx_mcdi_mtd_write
,
6787 .mtd_sync
= efx_mcdi_mtd_sync
,
6789 .ptp_write_host_time
= efx_ef10_ptp_write_host_time
,
6790 .ptp_set_ts_sync_events
= efx_ef10_ptp_set_ts_sync_events
,
6791 .ptp_set_ts_config
= efx_ef10_ptp_set_ts_config
,
6792 .vlan_rx_add_vid
= efx_ef10_vlan_rx_add_vid
,
6793 .vlan_rx_kill_vid
= efx_ef10_vlan_rx_kill_vid
,
6794 .udp_tnl_push_ports
= efx_ef10_udp_tnl_push_ports
,
6795 .udp_tnl_add_port
= efx_ef10_udp_tnl_add_port
,
6796 .udp_tnl_has_port
= efx_ef10_udp_tnl_has_port
,
6797 .udp_tnl_del_port
= efx_ef10_udp_tnl_del_port
,
6798 #ifdef CONFIG_SFC_SRIOV
6799 .sriov_configure
= efx_ef10_sriov_configure
,
6800 .sriov_init
= efx_ef10_sriov_init
,
6801 .sriov_fini
= efx_ef10_sriov_fini
,
6802 .sriov_wanted
= efx_ef10_sriov_wanted
,
6803 .sriov_reset
= efx_ef10_sriov_reset
,
6804 .sriov_flr
= efx_ef10_sriov_flr
,
6805 .sriov_set_vf_mac
= efx_ef10_sriov_set_vf_mac
,
6806 .sriov_set_vf_vlan
= efx_ef10_sriov_set_vf_vlan
,
6807 .sriov_set_vf_spoofchk
= efx_ef10_sriov_set_vf_spoofchk
,
6808 .sriov_get_vf_config
= efx_ef10_sriov_get_vf_config
,
6809 .sriov_set_vf_link_state
= efx_ef10_sriov_set_vf_link_state
,
6810 .vswitching_probe
= efx_ef10_vswitching_probe_pf
,
6811 .vswitching_restore
= efx_ef10_vswitching_restore_pf
,
6812 .vswitching_remove
= efx_ef10_vswitching_remove_pf
,
6814 .get_mac_address
= efx_ef10_get_mac_address_pf
,
6815 .set_mac_address
= efx_ef10_set_mac_address
,
6816 .tso_versions
= efx_ef10_tso_versions
,
6818 .get_phys_port_id
= efx_ef10_get_phys_port_id
,
6819 .revision
= EFX_REV_HUNT_A0
,
6820 .max_dma_mask
= DMA_BIT_MASK(ESF_DZ_TX_KER_BUF_ADDR_WIDTH
),
6821 .rx_prefix_size
= ES_DZ_RX_PREFIX_SIZE
,
6822 .rx_hash_offset
= ES_DZ_RX_PREFIX_HASH_OFST
,
6823 .rx_ts_offset
= ES_DZ_RX_PREFIX_TSTAMP_OFST
,
6824 .can_rx_scatter
= true,
6825 .always_rx_scatter
= true,
6826 .option_descriptors
= true,
6827 .min_interrupt_mode
= EFX_INT_MODE_LEGACY
,
6828 .max_interrupt_mode
= EFX_INT_MODE_MSIX
,
6829 .timer_period_max
= 1 << ERF_DD_EVQ_IND_TIMER_VAL_WIDTH
,
6830 .offload_features
= EF10_OFFLOAD_FEATURES
,
6832 .max_rx_ip_filters
= HUNT_FILTER_TBL_ROWS
,
6833 .hwtstamp_filters
= 1 << HWTSTAMP_FILTER_NONE
|
6834 1 << HWTSTAMP_FILTER_ALL
,
6835 .rx_hash_key_size
= 40,