2 * Digital Audio (PCM) abstract layer
3 * Copyright (c) by Jaroslav Kysela <perex@perex.cz>
4 * Abramo Bagnara <abramo@alsa-project.org>
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
23 #include <linux/slab.h>
24 #include <linux/sched/signal.h>
25 #include <linux/time.h>
26 #include <linux/math64.h>
27 #include <linux/export.h>
28 #include <sound/core.h>
29 #include <sound/control.h>
30 #include <sound/tlv.h>
31 #include <sound/info.h>
32 #include <sound/pcm.h>
33 #include <sound/pcm_params.h>
34 #include <sound/timer.h>
36 #include "pcm_local.h"
38 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
39 #define CREATE_TRACE_POINTS
40 #include "pcm_trace.h"
42 #define trace_hwptr(substream, pos, in_interrupt)
43 #define trace_xrun(substream)
44 #define trace_hw_ptr_error(substream, reason)
45 #define trace_applptr(substream, prev, curr)
48 static int fill_silence_frames(struct snd_pcm_substream
*substream
,
49 snd_pcm_uframes_t off
, snd_pcm_uframes_t frames
);
52 * fill ring buffer with silence
53 * runtime->silence_start: starting pointer to silence area
54 * runtime->silence_filled: size filled with silence
55 * runtime->silence_threshold: threshold from application
56 * runtime->silence_size: maximal size from application
58 * when runtime->silence_size >= runtime->boundary - fill processed area with silence immediately
60 void snd_pcm_playback_silence(struct snd_pcm_substream
*substream
, snd_pcm_uframes_t new_hw_ptr
)
62 struct snd_pcm_runtime
*runtime
= substream
->runtime
;
63 snd_pcm_uframes_t frames
, ofs
, transfer
;
66 if (runtime
->silence_size
< runtime
->boundary
) {
67 snd_pcm_sframes_t noise_dist
, n
;
68 snd_pcm_uframes_t appl_ptr
= READ_ONCE(runtime
->control
->appl_ptr
);
69 if (runtime
->silence_start
!= appl_ptr
) {
70 n
= appl_ptr
- runtime
->silence_start
;
72 n
+= runtime
->boundary
;
73 if ((snd_pcm_uframes_t
)n
< runtime
->silence_filled
)
74 runtime
->silence_filled
-= n
;
76 runtime
->silence_filled
= 0;
77 runtime
->silence_start
= appl_ptr
;
79 if (runtime
->silence_filled
>= runtime
->buffer_size
)
81 noise_dist
= snd_pcm_playback_hw_avail(runtime
) + runtime
->silence_filled
;
82 if (noise_dist
>= (snd_pcm_sframes_t
) runtime
->silence_threshold
)
84 frames
= runtime
->silence_threshold
- noise_dist
;
85 if (frames
> runtime
->silence_size
)
86 frames
= runtime
->silence_size
;
88 if (new_hw_ptr
== ULONG_MAX
) { /* initialization */
89 snd_pcm_sframes_t avail
= snd_pcm_playback_hw_avail(runtime
);
90 if (avail
> runtime
->buffer_size
)
91 avail
= runtime
->buffer_size
;
92 runtime
->silence_filled
= avail
> 0 ? avail
: 0;
93 runtime
->silence_start
= (runtime
->status
->hw_ptr
+
94 runtime
->silence_filled
) %
97 ofs
= runtime
->status
->hw_ptr
;
98 frames
= new_hw_ptr
- ofs
;
99 if ((snd_pcm_sframes_t
)frames
< 0)
100 frames
+= runtime
->boundary
;
101 runtime
->silence_filled
-= frames
;
102 if ((snd_pcm_sframes_t
)runtime
->silence_filled
< 0) {
103 runtime
->silence_filled
= 0;
104 runtime
->silence_start
= new_hw_ptr
;
106 runtime
->silence_start
= ofs
;
109 frames
= runtime
->buffer_size
- runtime
->silence_filled
;
111 if (snd_BUG_ON(frames
> runtime
->buffer_size
))
115 ofs
= runtime
->silence_start
% runtime
->buffer_size
;
117 transfer
= ofs
+ frames
> runtime
->buffer_size
? runtime
->buffer_size
- ofs
: frames
;
118 err
= fill_silence_frames(substream
, ofs
, transfer
);
120 runtime
->silence_filled
+= transfer
;
126 #ifdef CONFIG_SND_DEBUG
127 void snd_pcm_debug_name(struct snd_pcm_substream
*substream
,
128 char *name
, size_t len
)
130 snprintf(name
, len
, "pcmC%dD%d%c:%d",
131 substream
->pcm
->card
->number
,
132 substream
->pcm
->device
,
133 substream
->stream
? 'c' : 'p',
136 EXPORT_SYMBOL(snd_pcm_debug_name
);
139 #define XRUN_DEBUG_BASIC (1<<0)
140 #define XRUN_DEBUG_STACK (1<<1) /* dump also stack */
141 #define XRUN_DEBUG_JIFFIESCHECK (1<<2) /* do jiffies check */
143 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
145 #define xrun_debug(substream, mask) \
146 ((substream)->pstr->xrun_debug & (mask))
148 #define xrun_debug(substream, mask) 0
151 #define dump_stack_on_xrun(substream) do { \
152 if (xrun_debug(substream, XRUN_DEBUG_STACK)) \
156 static void xrun(struct snd_pcm_substream
*substream
)
158 struct snd_pcm_runtime
*runtime
= substream
->runtime
;
160 trace_xrun(substream
);
161 if (runtime
->tstamp_mode
== SNDRV_PCM_TSTAMP_ENABLE
)
162 snd_pcm_gettime(runtime
, (struct timespec
*)&runtime
->status
->tstamp
);
163 snd_pcm_stop(substream
, SNDRV_PCM_STATE_XRUN
);
164 if (xrun_debug(substream
, XRUN_DEBUG_BASIC
)) {
166 snd_pcm_debug_name(substream
, name
, sizeof(name
));
167 pcm_warn(substream
->pcm
, "XRUN: %s\n", name
);
168 dump_stack_on_xrun(substream
);
172 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
173 #define hw_ptr_error(substream, in_interrupt, reason, fmt, args...) \
175 trace_hw_ptr_error(substream, reason); \
176 if (xrun_debug(substream, XRUN_DEBUG_BASIC)) { \
177 pr_err_ratelimited("ALSA: PCM: [%c] " reason ": " fmt, \
178 (in_interrupt) ? 'Q' : 'P', ##args); \
179 dump_stack_on_xrun(substream); \
183 #else /* ! CONFIG_SND_PCM_XRUN_DEBUG */
185 #define hw_ptr_error(substream, fmt, args...) do { } while (0)
189 int snd_pcm_update_state(struct snd_pcm_substream
*substream
,
190 struct snd_pcm_runtime
*runtime
)
192 snd_pcm_uframes_t avail
;
194 if (substream
->stream
== SNDRV_PCM_STREAM_PLAYBACK
)
195 avail
= snd_pcm_playback_avail(runtime
);
197 avail
= snd_pcm_capture_avail(runtime
);
198 if (avail
> runtime
->avail_max
)
199 runtime
->avail_max
= avail
;
200 if (runtime
->status
->state
== SNDRV_PCM_STATE_DRAINING
) {
201 if (avail
>= runtime
->buffer_size
) {
202 snd_pcm_drain_done(substream
);
206 if (avail
>= runtime
->stop_threshold
) {
211 if (runtime
->twake
) {
212 if (avail
>= runtime
->twake
)
213 wake_up(&runtime
->tsleep
);
214 } else if (avail
>= runtime
->control
->avail_min
)
215 wake_up(&runtime
->sleep
);
219 static void update_audio_tstamp(struct snd_pcm_substream
*substream
,
220 struct timespec
*curr_tstamp
,
221 struct timespec
*audio_tstamp
)
223 struct snd_pcm_runtime
*runtime
= substream
->runtime
;
224 u64 audio_frames
, audio_nsecs
;
225 struct timespec driver_tstamp
;
227 if (runtime
->tstamp_mode
!= SNDRV_PCM_TSTAMP_ENABLE
)
230 if (!(substream
->ops
->get_time_info
) ||
231 (runtime
->audio_tstamp_report
.actual_type
==
232 SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT
)) {
235 * provide audio timestamp derived from pointer position
236 * add delay only if requested
239 audio_frames
= runtime
->hw_ptr_wrap
+ runtime
->status
->hw_ptr
;
241 if (runtime
->audio_tstamp_config
.report_delay
) {
242 if (substream
->stream
== SNDRV_PCM_STREAM_PLAYBACK
)
243 audio_frames
-= runtime
->delay
;
245 audio_frames
+= runtime
->delay
;
247 audio_nsecs
= div_u64(audio_frames
* 1000000000LL,
249 *audio_tstamp
= ns_to_timespec(audio_nsecs
);
251 if (!timespec_equal(&runtime
->status
->audio_tstamp
, audio_tstamp
)) {
252 runtime
->status
->audio_tstamp
= *audio_tstamp
;
253 runtime
->status
->tstamp
= *curr_tstamp
;
257 * re-take a driver timestamp to let apps detect if the reference tstamp
258 * read by low-level hardware was provided with a delay
260 snd_pcm_gettime(substream
->runtime
, (struct timespec
*)&driver_tstamp
);
261 runtime
->driver_tstamp
= driver_tstamp
;
264 static int snd_pcm_update_hw_ptr0(struct snd_pcm_substream
*substream
,
265 unsigned int in_interrupt
)
267 struct snd_pcm_runtime
*runtime
= substream
->runtime
;
268 snd_pcm_uframes_t pos
;
269 snd_pcm_uframes_t old_hw_ptr
, new_hw_ptr
, hw_base
;
270 snd_pcm_sframes_t hdelta
, delta
;
271 unsigned long jdelta
;
272 unsigned long curr_jiffies
;
273 struct timespec curr_tstamp
;
274 struct timespec audio_tstamp
;
275 int crossed_boundary
= 0;
277 old_hw_ptr
= runtime
->status
->hw_ptr
;
280 * group pointer, time and jiffies reads to allow for more
281 * accurate correlations/corrections.
282 * The values are stored at the end of this routine after
283 * corrections for hw_ptr position
285 pos
= substream
->ops
->pointer(substream
);
286 curr_jiffies
= jiffies
;
287 if (runtime
->tstamp_mode
== SNDRV_PCM_TSTAMP_ENABLE
) {
288 if ((substream
->ops
->get_time_info
) &&
289 (runtime
->audio_tstamp_config
.type_requested
!= SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT
)) {
290 substream
->ops
->get_time_info(substream
, &curr_tstamp
,
292 &runtime
->audio_tstamp_config
,
293 &runtime
->audio_tstamp_report
);
295 /* re-test in case tstamp type is not supported in hardware and was demoted to DEFAULT */
296 if (runtime
->audio_tstamp_report
.actual_type
== SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT
)
297 snd_pcm_gettime(runtime
, (struct timespec
*)&curr_tstamp
);
299 snd_pcm_gettime(runtime
, (struct timespec
*)&curr_tstamp
);
302 if (pos
== SNDRV_PCM_POS_XRUN
) {
306 if (pos
>= runtime
->buffer_size
) {
307 if (printk_ratelimit()) {
309 snd_pcm_debug_name(substream
, name
, sizeof(name
));
310 pcm_err(substream
->pcm
,
311 "invalid position: %s, pos = %ld, buffer size = %ld, period size = %ld\n",
312 name
, pos
, runtime
->buffer_size
,
313 runtime
->period_size
);
317 pos
-= pos
% runtime
->min_align
;
318 trace_hwptr(substream
, pos
, in_interrupt
);
319 hw_base
= runtime
->hw_ptr_base
;
320 new_hw_ptr
= hw_base
+ pos
;
322 /* we know that one period was processed */
323 /* delta = "expected next hw_ptr" for in_interrupt != 0 */
324 delta
= runtime
->hw_ptr_interrupt
+ runtime
->period_size
;
325 if (delta
> new_hw_ptr
) {
326 /* check for double acknowledged interrupts */
327 hdelta
= curr_jiffies
- runtime
->hw_ptr_jiffies
;
328 if (hdelta
> runtime
->hw_ptr_buffer_jiffies
/2 + 1) {
329 hw_base
+= runtime
->buffer_size
;
330 if (hw_base
>= runtime
->boundary
) {
334 new_hw_ptr
= hw_base
+ pos
;
339 /* new_hw_ptr might be lower than old_hw_ptr in case when */
340 /* pointer crosses the end of the ring buffer */
341 if (new_hw_ptr
< old_hw_ptr
) {
342 hw_base
+= runtime
->buffer_size
;
343 if (hw_base
>= runtime
->boundary
) {
347 new_hw_ptr
= hw_base
+ pos
;
350 delta
= new_hw_ptr
- old_hw_ptr
;
352 delta
+= runtime
->boundary
;
354 if (runtime
->no_period_wakeup
) {
355 snd_pcm_sframes_t xrun_threshold
;
357 * Without regular period interrupts, we have to check
358 * the elapsed time to detect xruns.
360 jdelta
= curr_jiffies
- runtime
->hw_ptr_jiffies
;
361 if (jdelta
< runtime
->hw_ptr_buffer_jiffies
/ 2)
363 hdelta
= jdelta
- delta
* HZ
/ runtime
->rate
;
364 xrun_threshold
= runtime
->hw_ptr_buffer_jiffies
/ 2 + 1;
365 while (hdelta
> xrun_threshold
) {
366 delta
+= runtime
->buffer_size
;
367 hw_base
+= runtime
->buffer_size
;
368 if (hw_base
>= runtime
->boundary
) {
372 new_hw_ptr
= hw_base
+ pos
;
373 hdelta
-= runtime
->hw_ptr_buffer_jiffies
;
378 /* something must be really wrong */
379 if (delta
>= runtime
->buffer_size
+ runtime
->period_size
) {
380 hw_ptr_error(substream
, in_interrupt
, "Unexpected hw_ptr",
381 "(stream=%i, pos=%ld, new_hw_ptr=%ld, old_hw_ptr=%ld)\n",
382 substream
->stream
, (long)pos
,
383 (long)new_hw_ptr
, (long)old_hw_ptr
);
387 /* Do jiffies check only in xrun_debug mode */
388 if (!xrun_debug(substream
, XRUN_DEBUG_JIFFIESCHECK
))
389 goto no_jiffies_check
;
391 /* Skip the jiffies check for hardwares with BATCH flag.
392 * Such hardware usually just increases the position at each IRQ,
393 * thus it can't give any strange position.
395 if (runtime
->hw
.info
& SNDRV_PCM_INFO_BATCH
)
396 goto no_jiffies_check
;
398 if (hdelta
< runtime
->delay
)
399 goto no_jiffies_check
;
400 hdelta
-= runtime
->delay
;
401 jdelta
= curr_jiffies
- runtime
->hw_ptr_jiffies
;
402 if (((hdelta
* HZ
) / runtime
->rate
) > jdelta
+ HZ
/100) {
404 (((runtime
->period_size
* HZ
) / runtime
->rate
)
406 /* move new_hw_ptr according jiffies not pos variable */
407 new_hw_ptr
= old_hw_ptr
;
409 /* use loop to avoid checks for delta overflows */
410 /* the delta value is small or zero in most cases */
412 new_hw_ptr
+= runtime
->period_size
;
413 if (new_hw_ptr
>= runtime
->boundary
) {
414 new_hw_ptr
-= runtime
->boundary
;
419 /* align hw_base to buffer_size */
420 hw_ptr_error(substream
, in_interrupt
, "hw_ptr skipping",
421 "(pos=%ld, delta=%ld, period=%ld, jdelta=%lu/%lu/%lu, hw_ptr=%ld/%ld)\n",
422 (long)pos
, (long)hdelta
,
423 (long)runtime
->period_size
, jdelta
,
424 ((hdelta
* HZ
) / runtime
->rate
), hw_base
,
425 (unsigned long)old_hw_ptr
,
426 (unsigned long)new_hw_ptr
);
427 /* reset values to proper state */
429 hw_base
= new_hw_ptr
- (new_hw_ptr
% runtime
->buffer_size
);
432 if (delta
> runtime
->period_size
+ runtime
->period_size
/ 2) {
433 hw_ptr_error(substream
, in_interrupt
,
435 "(stream=%i, delta=%ld, new_hw_ptr=%ld, old_hw_ptr=%ld)\n",
436 substream
->stream
, (long)delta
,
442 if (runtime
->status
->hw_ptr
== new_hw_ptr
) {
443 update_audio_tstamp(substream
, &curr_tstamp
, &audio_tstamp
);
447 if (substream
->stream
== SNDRV_PCM_STREAM_PLAYBACK
&&
448 runtime
->silence_size
> 0)
449 snd_pcm_playback_silence(substream
, new_hw_ptr
);
452 delta
= new_hw_ptr
- runtime
->hw_ptr_interrupt
;
454 delta
+= runtime
->boundary
;
455 delta
-= (snd_pcm_uframes_t
)delta
% runtime
->period_size
;
456 runtime
->hw_ptr_interrupt
+= delta
;
457 if (runtime
->hw_ptr_interrupt
>= runtime
->boundary
)
458 runtime
->hw_ptr_interrupt
-= runtime
->boundary
;
460 runtime
->hw_ptr_base
= hw_base
;
461 runtime
->status
->hw_ptr
= new_hw_ptr
;
462 runtime
->hw_ptr_jiffies
= curr_jiffies
;
463 if (crossed_boundary
) {
464 snd_BUG_ON(crossed_boundary
!= 1);
465 runtime
->hw_ptr_wrap
+= runtime
->boundary
;
468 update_audio_tstamp(substream
, &curr_tstamp
, &audio_tstamp
);
470 return snd_pcm_update_state(substream
, runtime
);
473 /* CAUTION: call it with irq disabled */
474 int snd_pcm_update_hw_ptr(struct snd_pcm_substream
*substream
)
476 return snd_pcm_update_hw_ptr0(substream
, 0);
480 * snd_pcm_set_ops - set the PCM operators
481 * @pcm: the pcm instance
482 * @direction: stream direction, SNDRV_PCM_STREAM_XXX
483 * @ops: the operator table
485 * Sets the given PCM operators to the pcm instance.
487 void snd_pcm_set_ops(struct snd_pcm
*pcm
, int direction
,
488 const struct snd_pcm_ops
*ops
)
490 struct snd_pcm_str
*stream
= &pcm
->streams
[direction
];
491 struct snd_pcm_substream
*substream
;
493 for (substream
= stream
->substream
; substream
!= NULL
; substream
= substream
->next
)
494 substream
->ops
= ops
;
496 EXPORT_SYMBOL(snd_pcm_set_ops
);
499 * snd_pcm_sync - set the PCM sync id
500 * @substream: the pcm substream
502 * Sets the PCM sync identifier for the card.
504 void snd_pcm_set_sync(struct snd_pcm_substream
*substream
)
506 struct snd_pcm_runtime
*runtime
= substream
->runtime
;
508 runtime
->sync
.id32
[0] = substream
->pcm
->card
->number
;
509 runtime
->sync
.id32
[1] = -1;
510 runtime
->sync
.id32
[2] = -1;
511 runtime
->sync
.id32
[3] = -1;
513 EXPORT_SYMBOL(snd_pcm_set_sync
);
516 * Standard ioctl routine
519 static inline unsigned int div32(unsigned int a
, unsigned int b
,
530 static inline unsigned int div_down(unsigned int a
, unsigned int b
)
537 static inline unsigned int div_up(unsigned int a
, unsigned int b
)
549 static inline unsigned int mul(unsigned int a
, unsigned int b
)
553 if (div_down(UINT_MAX
, a
) < b
)
558 static inline unsigned int muldiv32(unsigned int a
, unsigned int b
,
559 unsigned int c
, unsigned int *r
)
561 u_int64_t n
= (u_int64_t
) a
* b
;
567 n
= div_u64_rem(n
, c
, r
);
576 * snd_interval_refine - refine the interval value of configurator
577 * @i: the interval value to refine
578 * @v: the interval value to refer to
580 * Refines the interval value with the reference value.
581 * The interval is changed to the range satisfying both intervals.
582 * The interval status (min, max, integer, etc.) are evaluated.
584 * Return: Positive if the value is changed, zero if it's not changed, or a
585 * negative error code.
587 int snd_interval_refine(struct snd_interval
*i
, const struct snd_interval
*v
)
590 if (snd_BUG_ON(snd_interval_empty(i
)))
592 if (i
->min
< v
->min
) {
594 i
->openmin
= v
->openmin
;
596 } else if (i
->min
== v
->min
&& !i
->openmin
&& v
->openmin
) {
600 if (i
->max
> v
->max
) {
602 i
->openmax
= v
->openmax
;
604 } else if (i
->max
== v
->max
&& !i
->openmax
&& v
->openmax
) {
608 if (!i
->integer
&& v
->integer
) {
621 } else if (!i
->openmin
&& !i
->openmax
&& i
->min
== i
->max
)
623 if (snd_interval_checkempty(i
)) {
624 snd_interval_none(i
);
629 EXPORT_SYMBOL(snd_interval_refine
);
631 static int snd_interval_refine_first(struct snd_interval
*i
)
633 if (snd_BUG_ON(snd_interval_empty(i
)))
635 if (snd_interval_single(i
))
638 i
->openmax
= i
->openmin
;
644 static int snd_interval_refine_last(struct snd_interval
*i
)
646 if (snd_BUG_ON(snd_interval_empty(i
)))
648 if (snd_interval_single(i
))
651 i
->openmin
= i
->openmax
;
657 void snd_interval_mul(const struct snd_interval
*a
, const struct snd_interval
*b
, struct snd_interval
*c
)
659 if (a
->empty
|| b
->empty
) {
660 snd_interval_none(c
);
664 c
->min
= mul(a
->min
, b
->min
);
665 c
->openmin
= (a
->openmin
|| b
->openmin
);
666 c
->max
= mul(a
->max
, b
->max
);
667 c
->openmax
= (a
->openmax
|| b
->openmax
);
668 c
->integer
= (a
->integer
&& b
->integer
);
672 * snd_interval_div - refine the interval value with division
679 * Returns non-zero if the value is changed, zero if not changed.
681 void snd_interval_div(const struct snd_interval
*a
, const struct snd_interval
*b
, struct snd_interval
*c
)
684 if (a
->empty
|| b
->empty
) {
685 snd_interval_none(c
);
689 c
->min
= div32(a
->min
, b
->max
, &r
);
690 c
->openmin
= (r
|| a
->openmin
|| b
->openmax
);
692 c
->max
= div32(a
->max
, b
->min
, &r
);
697 c
->openmax
= (a
->openmax
|| b
->openmin
);
706 * snd_interval_muldivk - refine the interval value
709 * @k: divisor (as integer)
714 * Returns non-zero if the value is changed, zero if not changed.
716 void snd_interval_muldivk(const struct snd_interval
*a
, const struct snd_interval
*b
,
717 unsigned int k
, struct snd_interval
*c
)
720 if (a
->empty
|| b
->empty
) {
721 snd_interval_none(c
);
725 c
->min
= muldiv32(a
->min
, b
->min
, k
, &r
);
726 c
->openmin
= (r
|| a
->openmin
|| b
->openmin
);
727 c
->max
= muldiv32(a
->max
, b
->max
, k
, &r
);
732 c
->openmax
= (a
->openmax
|| b
->openmax
);
737 * snd_interval_mulkdiv - refine the interval value
739 * @k: dividend 2 (as integer)
745 * Returns non-zero if the value is changed, zero if not changed.
747 void snd_interval_mulkdiv(const struct snd_interval
*a
, unsigned int k
,
748 const struct snd_interval
*b
, struct snd_interval
*c
)
751 if (a
->empty
|| b
->empty
) {
752 snd_interval_none(c
);
756 c
->min
= muldiv32(a
->min
, k
, b
->max
, &r
);
757 c
->openmin
= (r
|| a
->openmin
|| b
->openmax
);
759 c
->max
= muldiv32(a
->max
, k
, b
->min
, &r
);
764 c
->openmax
= (a
->openmax
|| b
->openmin
);
776 * snd_interval_ratnum - refine the interval value
777 * @i: interval to refine
778 * @rats_count: number of ratnum_t
779 * @rats: ratnum_t array
780 * @nump: pointer to store the resultant numerator
781 * @denp: pointer to store the resultant denominator
783 * Return: Positive if the value is changed, zero if it's not changed, or a
784 * negative error code.
786 int snd_interval_ratnum(struct snd_interval
*i
,
787 unsigned int rats_count
, const struct snd_ratnum
*rats
,
788 unsigned int *nump
, unsigned int *denp
)
790 unsigned int best_num
, best_den
;
793 struct snd_interval t
;
795 unsigned int result_num
, result_den
;
798 best_num
= best_den
= best_diff
= 0;
799 for (k
= 0; k
< rats_count
; ++k
) {
800 unsigned int num
= rats
[k
].num
;
802 unsigned int q
= i
->min
;
806 den
= div_up(num
, q
);
807 if (den
< rats
[k
].den_min
)
809 if (den
> rats
[k
].den_max
)
810 den
= rats
[k
].den_max
;
813 r
= (den
- rats
[k
].den_min
) % rats
[k
].den_step
;
817 diff
= num
- q
* den
;
821 diff
* best_den
< best_diff
* den
) {
831 t
.min
= div_down(best_num
, best_den
);
832 t
.openmin
= !!(best_num
% best_den
);
834 result_num
= best_num
;
835 result_diff
= best_diff
;
836 result_den
= best_den
;
837 best_num
= best_den
= best_diff
= 0;
838 for (k
= 0; k
< rats_count
; ++k
) {
839 unsigned int num
= rats
[k
].num
;
841 unsigned int q
= i
->max
;
847 den
= div_down(num
, q
);
848 if (den
> rats
[k
].den_max
)
850 if (den
< rats
[k
].den_min
)
851 den
= rats
[k
].den_min
;
854 r
= (den
- rats
[k
].den_min
) % rats
[k
].den_step
;
856 den
+= rats
[k
].den_step
- r
;
858 diff
= q
* den
- num
;
862 diff
* best_den
< best_diff
* den
) {
872 t
.max
= div_up(best_num
, best_den
);
873 t
.openmax
= !!(best_num
% best_den
);
875 err
= snd_interval_refine(i
, &t
);
879 if (snd_interval_single(i
)) {
880 if (best_diff
* result_den
< result_diff
* best_den
) {
881 result_num
= best_num
;
882 result_den
= best_den
;
891 EXPORT_SYMBOL(snd_interval_ratnum
);
894 * snd_interval_ratden - refine the interval value
895 * @i: interval to refine
896 * @rats_count: number of struct ratden
897 * @rats: struct ratden array
898 * @nump: pointer to store the resultant numerator
899 * @denp: pointer to store the resultant denominator
901 * Return: Positive if the value is changed, zero if it's not changed, or a
902 * negative error code.
904 static int snd_interval_ratden(struct snd_interval
*i
,
905 unsigned int rats_count
,
906 const struct snd_ratden
*rats
,
907 unsigned int *nump
, unsigned int *denp
)
909 unsigned int best_num
, best_diff
, best_den
;
911 struct snd_interval t
;
914 best_num
= best_den
= best_diff
= 0;
915 for (k
= 0; k
< rats_count
; ++k
) {
917 unsigned int den
= rats
[k
].den
;
918 unsigned int q
= i
->min
;
921 if (num
> rats
[k
].num_max
)
923 if (num
< rats
[k
].num_min
)
924 num
= rats
[k
].num_max
;
927 r
= (num
- rats
[k
].num_min
) % rats
[k
].num_step
;
929 num
+= rats
[k
].num_step
- r
;
931 diff
= num
- q
* den
;
933 diff
* best_den
< best_diff
* den
) {
943 t
.min
= div_down(best_num
, best_den
);
944 t
.openmin
= !!(best_num
% best_den
);
946 best_num
= best_den
= best_diff
= 0;
947 for (k
= 0; k
< rats_count
; ++k
) {
949 unsigned int den
= rats
[k
].den
;
950 unsigned int q
= i
->max
;
953 if (num
< rats
[k
].num_min
)
955 if (num
> rats
[k
].num_max
)
956 num
= rats
[k
].num_max
;
959 r
= (num
- rats
[k
].num_min
) % rats
[k
].num_step
;
963 diff
= q
* den
- num
;
965 diff
* best_den
< best_diff
* den
) {
975 t
.max
= div_up(best_num
, best_den
);
976 t
.openmax
= !!(best_num
% best_den
);
978 err
= snd_interval_refine(i
, &t
);
982 if (snd_interval_single(i
)) {
992 * snd_interval_list - refine the interval value from the list
993 * @i: the interval value to refine
994 * @count: the number of elements in the list
995 * @list: the value list
996 * @mask: the bit-mask to evaluate
998 * Refines the interval value from the list.
999 * When mask is non-zero, only the elements corresponding to bit 1 are
1002 * Return: Positive if the value is changed, zero if it's not changed, or a
1003 * negative error code.
1005 int snd_interval_list(struct snd_interval
*i
, unsigned int count
,
1006 const unsigned int *list
, unsigned int mask
)
1009 struct snd_interval list_range
;
1015 snd_interval_any(&list_range
);
1016 list_range
.min
= UINT_MAX
;
1018 for (k
= 0; k
< count
; k
++) {
1019 if (mask
&& !(mask
& (1 << k
)))
1021 if (!snd_interval_test(i
, list
[k
]))
1023 list_range
.min
= min(list_range
.min
, list
[k
]);
1024 list_range
.max
= max(list_range
.max
, list
[k
]);
1026 return snd_interval_refine(i
, &list_range
);
1028 EXPORT_SYMBOL(snd_interval_list
);
1031 * snd_interval_ranges - refine the interval value from the list of ranges
1032 * @i: the interval value to refine
1033 * @count: the number of elements in the list of ranges
1034 * @ranges: the ranges list
1035 * @mask: the bit-mask to evaluate
1037 * Refines the interval value from the list of ranges.
1038 * When mask is non-zero, only the elements corresponding to bit 1 are
1041 * Return: Positive if the value is changed, zero if it's not changed, or a
1042 * negative error code.
1044 int snd_interval_ranges(struct snd_interval
*i
, unsigned int count
,
1045 const struct snd_interval
*ranges
, unsigned int mask
)
1048 struct snd_interval range_union
;
1049 struct snd_interval range
;
1052 snd_interval_none(i
);
1055 snd_interval_any(&range_union
);
1056 range_union
.min
= UINT_MAX
;
1057 range_union
.max
= 0;
1058 for (k
= 0; k
< count
; k
++) {
1059 if (mask
&& !(mask
& (1 << k
)))
1061 snd_interval_copy(&range
, &ranges
[k
]);
1062 if (snd_interval_refine(&range
, i
) < 0)
1064 if (snd_interval_empty(&range
))
1067 if (range
.min
< range_union
.min
) {
1068 range_union
.min
= range
.min
;
1069 range_union
.openmin
= 1;
1071 if (range
.min
== range_union
.min
&& !range
.openmin
)
1072 range_union
.openmin
= 0;
1073 if (range
.max
> range_union
.max
) {
1074 range_union
.max
= range
.max
;
1075 range_union
.openmax
= 1;
1077 if (range
.max
== range_union
.max
&& !range
.openmax
)
1078 range_union
.openmax
= 0;
1080 return snd_interval_refine(i
, &range_union
);
1082 EXPORT_SYMBOL(snd_interval_ranges
);
1084 static int snd_interval_step(struct snd_interval
*i
, unsigned int step
)
1089 if (n
!= 0 || i
->openmin
) {
1095 if (n
!= 0 || i
->openmax
) {
1100 if (snd_interval_checkempty(i
)) {
1107 /* Info constraints helpers */
1110 * snd_pcm_hw_rule_add - add the hw-constraint rule
1111 * @runtime: the pcm runtime instance
1112 * @cond: condition bits
1113 * @var: the variable to evaluate
1114 * @func: the evaluation function
1115 * @private: the private data pointer passed to function
1116 * @dep: the dependent variables
1118 * Return: Zero if successful, or a negative error code on failure.
1120 int snd_pcm_hw_rule_add(struct snd_pcm_runtime
*runtime
, unsigned int cond
,
1122 snd_pcm_hw_rule_func_t func
, void *private,
1125 struct snd_pcm_hw_constraints
*constrs
= &runtime
->hw_constraints
;
1126 struct snd_pcm_hw_rule
*c
;
1129 va_start(args
, dep
);
1130 if (constrs
->rules_num
>= constrs
->rules_all
) {
1131 struct snd_pcm_hw_rule
*new;
1132 unsigned int new_rules
= constrs
->rules_all
+ 16;
1133 new = kcalloc(new_rules
, sizeof(*c
), GFP_KERNEL
);
1138 if (constrs
->rules
) {
1139 memcpy(new, constrs
->rules
,
1140 constrs
->rules_num
* sizeof(*c
));
1141 kfree(constrs
->rules
);
1143 constrs
->rules
= new;
1144 constrs
->rules_all
= new_rules
;
1146 c
= &constrs
->rules
[constrs
->rules_num
];
1150 c
->private = private;
1153 if (snd_BUG_ON(k
>= ARRAY_SIZE(c
->deps
))) {
1160 dep
= va_arg(args
, int);
1162 constrs
->rules_num
++;
1166 EXPORT_SYMBOL(snd_pcm_hw_rule_add
);
1169 * snd_pcm_hw_constraint_mask - apply the given bitmap mask constraint
1170 * @runtime: PCM runtime instance
1171 * @var: hw_params variable to apply the mask
1172 * @mask: the bitmap mask
1174 * Apply the constraint of the given bitmap mask to a 32-bit mask parameter.
1176 * Return: Zero if successful, or a negative error code on failure.
1178 int snd_pcm_hw_constraint_mask(struct snd_pcm_runtime
*runtime
, snd_pcm_hw_param_t var
,
1181 struct snd_pcm_hw_constraints
*constrs
= &runtime
->hw_constraints
;
1182 struct snd_mask
*maskp
= constrs_mask(constrs
, var
);
1183 *maskp
->bits
&= mask
;
1184 memset(maskp
->bits
+ 1, 0, (SNDRV_MASK_MAX
-32) / 8); /* clear rest */
1185 if (*maskp
->bits
== 0)
1191 * snd_pcm_hw_constraint_mask64 - apply the given bitmap mask constraint
1192 * @runtime: PCM runtime instance
1193 * @var: hw_params variable to apply the mask
1194 * @mask: the 64bit bitmap mask
1196 * Apply the constraint of the given bitmap mask to a 64-bit mask parameter.
1198 * Return: Zero if successful, or a negative error code on failure.
1200 int snd_pcm_hw_constraint_mask64(struct snd_pcm_runtime
*runtime
, snd_pcm_hw_param_t var
,
1203 struct snd_pcm_hw_constraints
*constrs
= &runtime
->hw_constraints
;
1204 struct snd_mask
*maskp
= constrs_mask(constrs
, var
);
1205 maskp
->bits
[0] &= (u_int32_t
)mask
;
1206 maskp
->bits
[1] &= (u_int32_t
)(mask
>> 32);
1207 memset(maskp
->bits
+ 2, 0, (SNDRV_MASK_MAX
-64) / 8); /* clear rest */
1208 if (! maskp
->bits
[0] && ! maskp
->bits
[1])
1212 EXPORT_SYMBOL(snd_pcm_hw_constraint_mask64
);
1215 * snd_pcm_hw_constraint_integer - apply an integer constraint to an interval
1216 * @runtime: PCM runtime instance
1217 * @var: hw_params variable to apply the integer constraint
1219 * Apply the constraint of integer to an interval parameter.
1221 * Return: Positive if the value is changed, zero if it's not changed, or a
1222 * negative error code.
1224 int snd_pcm_hw_constraint_integer(struct snd_pcm_runtime
*runtime
, snd_pcm_hw_param_t var
)
1226 struct snd_pcm_hw_constraints
*constrs
= &runtime
->hw_constraints
;
1227 return snd_interval_setinteger(constrs_interval(constrs
, var
));
1229 EXPORT_SYMBOL(snd_pcm_hw_constraint_integer
);
1232 * snd_pcm_hw_constraint_minmax - apply a min/max range constraint to an interval
1233 * @runtime: PCM runtime instance
1234 * @var: hw_params variable to apply the range
1235 * @min: the minimal value
1236 * @max: the maximal value
1238 * Apply the min/max range constraint to an interval parameter.
1240 * Return: Positive if the value is changed, zero if it's not changed, or a
1241 * negative error code.
1243 int snd_pcm_hw_constraint_minmax(struct snd_pcm_runtime
*runtime
, snd_pcm_hw_param_t var
,
1244 unsigned int min
, unsigned int max
)
1246 struct snd_pcm_hw_constraints
*constrs
= &runtime
->hw_constraints
;
1247 struct snd_interval t
;
1250 t
.openmin
= t
.openmax
= 0;
1252 return snd_interval_refine(constrs_interval(constrs
, var
), &t
);
1254 EXPORT_SYMBOL(snd_pcm_hw_constraint_minmax
);
1256 static int snd_pcm_hw_rule_list(struct snd_pcm_hw_params
*params
,
1257 struct snd_pcm_hw_rule
*rule
)
1259 struct snd_pcm_hw_constraint_list
*list
= rule
->private;
1260 return snd_interval_list(hw_param_interval(params
, rule
->var
), list
->count
, list
->list
, list
->mask
);
1265 * snd_pcm_hw_constraint_list - apply a list of constraints to a parameter
1266 * @runtime: PCM runtime instance
1267 * @cond: condition bits
1268 * @var: hw_params variable to apply the list constraint
1271 * Apply the list of constraints to an interval parameter.
1273 * Return: Zero if successful, or a negative error code on failure.
1275 int snd_pcm_hw_constraint_list(struct snd_pcm_runtime
*runtime
,
1277 snd_pcm_hw_param_t var
,
1278 const struct snd_pcm_hw_constraint_list
*l
)
1280 return snd_pcm_hw_rule_add(runtime
, cond
, var
,
1281 snd_pcm_hw_rule_list
, (void *)l
,
1284 EXPORT_SYMBOL(snd_pcm_hw_constraint_list
);
1286 static int snd_pcm_hw_rule_ranges(struct snd_pcm_hw_params
*params
,
1287 struct snd_pcm_hw_rule
*rule
)
1289 struct snd_pcm_hw_constraint_ranges
*r
= rule
->private;
1290 return snd_interval_ranges(hw_param_interval(params
, rule
->var
),
1291 r
->count
, r
->ranges
, r
->mask
);
1296 * snd_pcm_hw_constraint_ranges - apply list of range constraints to a parameter
1297 * @runtime: PCM runtime instance
1298 * @cond: condition bits
1299 * @var: hw_params variable to apply the list of range constraints
1302 * Apply the list of range constraints to an interval parameter.
1304 * Return: Zero if successful, or a negative error code on failure.
1306 int snd_pcm_hw_constraint_ranges(struct snd_pcm_runtime
*runtime
,
1308 snd_pcm_hw_param_t var
,
1309 const struct snd_pcm_hw_constraint_ranges
*r
)
1311 return snd_pcm_hw_rule_add(runtime
, cond
, var
,
1312 snd_pcm_hw_rule_ranges
, (void *)r
,
1315 EXPORT_SYMBOL(snd_pcm_hw_constraint_ranges
);
1317 static int snd_pcm_hw_rule_ratnums(struct snd_pcm_hw_params
*params
,
1318 struct snd_pcm_hw_rule
*rule
)
1320 const struct snd_pcm_hw_constraint_ratnums
*r
= rule
->private;
1321 unsigned int num
= 0, den
= 0;
1323 err
= snd_interval_ratnum(hw_param_interval(params
, rule
->var
),
1324 r
->nrats
, r
->rats
, &num
, &den
);
1325 if (err
>= 0 && den
&& rule
->var
== SNDRV_PCM_HW_PARAM_RATE
) {
1326 params
->rate_num
= num
;
1327 params
->rate_den
= den
;
1333 * snd_pcm_hw_constraint_ratnums - apply ratnums constraint to a parameter
1334 * @runtime: PCM runtime instance
1335 * @cond: condition bits
1336 * @var: hw_params variable to apply the ratnums constraint
1337 * @r: struct snd_ratnums constriants
1339 * Return: Zero if successful, or a negative error code on failure.
1341 int snd_pcm_hw_constraint_ratnums(struct snd_pcm_runtime
*runtime
,
1343 snd_pcm_hw_param_t var
,
1344 const struct snd_pcm_hw_constraint_ratnums
*r
)
1346 return snd_pcm_hw_rule_add(runtime
, cond
, var
,
1347 snd_pcm_hw_rule_ratnums
, (void *)r
,
1350 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratnums
);
1352 static int snd_pcm_hw_rule_ratdens(struct snd_pcm_hw_params
*params
,
1353 struct snd_pcm_hw_rule
*rule
)
1355 const struct snd_pcm_hw_constraint_ratdens
*r
= rule
->private;
1356 unsigned int num
= 0, den
= 0;
1357 int err
= snd_interval_ratden(hw_param_interval(params
, rule
->var
),
1358 r
->nrats
, r
->rats
, &num
, &den
);
1359 if (err
>= 0 && den
&& rule
->var
== SNDRV_PCM_HW_PARAM_RATE
) {
1360 params
->rate_num
= num
;
1361 params
->rate_den
= den
;
1367 * snd_pcm_hw_constraint_ratdens - apply ratdens constraint to a parameter
1368 * @runtime: PCM runtime instance
1369 * @cond: condition bits
1370 * @var: hw_params variable to apply the ratdens constraint
1371 * @r: struct snd_ratdens constriants
1373 * Return: Zero if successful, or a negative error code on failure.
1375 int snd_pcm_hw_constraint_ratdens(struct snd_pcm_runtime
*runtime
,
1377 snd_pcm_hw_param_t var
,
1378 const struct snd_pcm_hw_constraint_ratdens
*r
)
1380 return snd_pcm_hw_rule_add(runtime
, cond
, var
,
1381 snd_pcm_hw_rule_ratdens
, (void *)r
,
1384 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratdens
);
1386 static int snd_pcm_hw_rule_msbits(struct snd_pcm_hw_params
*params
,
1387 struct snd_pcm_hw_rule
*rule
)
1389 unsigned int l
= (unsigned long) rule
->private;
1390 int width
= l
& 0xffff;
1391 unsigned int msbits
= l
>> 16;
1392 const struct snd_interval
*i
=
1393 hw_param_interval_c(params
, SNDRV_PCM_HW_PARAM_SAMPLE_BITS
);
1395 if (!snd_interval_single(i
))
1398 if ((snd_interval_value(i
) == width
) ||
1399 (width
== 0 && snd_interval_value(i
) > msbits
))
1400 params
->msbits
= min_not_zero(params
->msbits
, msbits
);
1406 * snd_pcm_hw_constraint_msbits - add a hw constraint msbits rule
1407 * @runtime: PCM runtime instance
1408 * @cond: condition bits
1409 * @width: sample bits width
1410 * @msbits: msbits width
1412 * This constraint will set the number of most significant bits (msbits) if a
1413 * sample format with the specified width has been select. If width is set to 0
1414 * the msbits will be set for any sample format with a width larger than the
1417 * Return: Zero if successful, or a negative error code on failure.
1419 int snd_pcm_hw_constraint_msbits(struct snd_pcm_runtime
*runtime
,
1422 unsigned int msbits
)
1424 unsigned long l
= (msbits
<< 16) | width
;
1425 return snd_pcm_hw_rule_add(runtime
, cond
, -1,
1426 snd_pcm_hw_rule_msbits
,
1428 SNDRV_PCM_HW_PARAM_SAMPLE_BITS
, -1);
1430 EXPORT_SYMBOL(snd_pcm_hw_constraint_msbits
);
1432 static int snd_pcm_hw_rule_step(struct snd_pcm_hw_params
*params
,
1433 struct snd_pcm_hw_rule
*rule
)
1435 unsigned long step
= (unsigned long) rule
->private;
1436 return snd_interval_step(hw_param_interval(params
, rule
->var
), step
);
1440 * snd_pcm_hw_constraint_step - add a hw constraint step rule
1441 * @runtime: PCM runtime instance
1442 * @cond: condition bits
1443 * @var: hw_params variable to apply the step constraint
1446 * Return: Zero if successful, or a negative error code on failure.
1448 int snd_pcm_hw_constraint_step(struct snd_pcm_runtime
*runtime
,
1450 snd_pcm_hw_param_t var
,
1453 return snd_pcm_hw_rule_add(runtime
, cond
, var
,
1454 snd_pcm_hw_rule_step
, (void *) step
,
1457 EXPORT_SYMBOL(snd_pcm_hw_constraint_step
);
1459 static int snd_pcm_hw_rule_pow2(struct snd_pcm_hw_params
*params
, struct snd_pcm_hw_rule
*rule
)
1461 static unsigned int pow2_sizes
[] = {
1462 1<<0, 1<<1, 1<<2, 1<<3, 1<<4, 1<<5, 1<<6, 1<<7,
1463 1<<8, 1<<9, 1<<10, 1<<11, 1<<12, 1<<13, 1<<14, 1<<15,
1464 1<<16, 1<<17, 1<<18, 1<<19, 1<<20, 1<<21, 1<<22, 1<<23,
1465 1<<24, 1<<25, 1<<26, 1<<27, 1<<28, 1<<29, 1<<30
1467 return snd_interval_list(hw_param_interval(params
, rule
->var
),
1468 ARRAY_SIZE(pow2_sizes
), pow2_sizes
, 0);
1472 * snd_pcm_hw_constraint_pow2 - add a hw constraint power-of-2 rule
1473 * @runtime: PCM runtime instance
1474 * @cond: condition bits
1475 * @var: hw_params variable to apply the power-of-2 constraint
1477 * Return: Zero if successful, or a negative error code on failure.
1479 int snd_pcm_hw_constraint_pow2(struct snd_pcm_runtime
*runtime
,
1481 snd_pcm_hw_param_t var
)
1483 return snd_pcm_hw_rule_add(runtime
, cond
, var
,
1484 snd_pcm_hw_rule_pow2
, NULL
,
1487 EXPORT_SYMBOL(snd_pcm_hw_constraint_pow2
);
1489 static int snd_pcm_hw_rule_noresample_func(struct snd_pcm_hw_params
*params
,
1490 struct snd_pcm_hw_rule
*rule
)
1492 unsigned int base_rate
= (unsigned int)(uintptr_t)rule
->private;
1493 struct snd_interval
*rate
;
1495 rate
= hw_param_interval(params
, SNDRV_PCM_HW_PARAM_RATE
);
1496 return snd_interval_list(rate
, 1, &base_rate
, 0);
1500 * snd_pcm_hw_rule_noresample - add a rule to allow disabling hw resampling
1501 * @runtime: PCM runtime instance
1502 * @base_rate: the rate at which the hardware does not resample
1504 * Return: Zero if successful, or a negative error code on failure.
1506 int snd_pcm_hw_rule_noresample(struct snd_pcm_runtime
*runtime
,
1507 unsigned int base_rate
)
1509 return snd_pcm_hw_rule_add(runtime
, SNDRV_PCM_HW_PARAMS_NORESAMPLE
,
1510 SNDRV_PCM_HW_PARAM_RATE
,
1511 snd_pcm_hw_rule_noresample_func
,
1512 (void *)(uintptr_t)base_rate
,
1513 SNDRV_PCM_HW_PARAM_RATE
, -1);
1515 EXPORT_SYMBOL(snd_pcm_hw_rule_noresample
);
1517 static void _snd_pcm_hw_param_any(struct snd_pcm_hw_params
*params
,
1518 snd_pcm_hw_param_t var
)
1520 if (hw_is_mask(var
)) {
1521 snd_mask_any(hw_param_mask(params
, var
));
1522 params
->cmask
|= 1 << var
;
1523 params
->rmask
|= 1 << var
;
1526 if (hw_is_interval(var
)) {
1527 snd_interval_any(hw_param_interval(params
, var
));
1528 params
->cmask
|= 1 << var
;
1529 params
->rmask
|= 1 << var
;
1535 void _snd_pcm_hw_params_any(struct snd_pcm_hw_params
*params
)
1538 memset(params
, 0, sizeof(*params
));
1539 for (k
= SNDRV_PCM_HW_PARAM_FIRST_MASK
; k
<= SNDRV_PCM_HW_PARAM_LAST_MASK
; k
++)
1540 _snd_pcm_hw_param_any(params
, k
);
1541 for (k
= SNDRV_PCM_HW_PARAM_FIRST_INTERVAL
; k
<= SNDRV_PCM_HW_PARAM_LAST_INTERVAL
; k
++)
1542 _snd_pcm_hw_param_any(params
, k
);
1545 EXPORT_SYMBOL(_snd_pcm_hw_params_any
);
1548 * snd_pcm_hw_param_value - return @params field @var value
1549 * @params: the hw_params instance
1550 * @var: parameter to retrieve
1551 * @dir: pointer to the direction (-1,0,1) or %NULL
1553 * Return: The value for field @var if it's fixed in configuration space
1554 * defined by @params. -%EINVAL otherwise.
1556 int snd_pcm_hw_param_value(const struct snd_pcm_hw_params
*params
,
1557 snd_pcm_hw_param_t var
, int *dir
)
1559 if (hw_is_mask(var
)) {
1560 const struct snd_mask
*mask
= hw_param_mask_c(params
, var
);
1561 if (!snd_mask_single(mask
))
1565 return snd_mask_value(mask
);
1567 if (hw_is_interval(var
)) {
1568 const struct snd_interval
*i
= hw_param_interval_c(params
, var
);
1569 if (!snd_interval_single(i
))
1573 return snd_interval_value(i
);
1577 EXPORT_SYMBOL(snd_pcm_hw_param_value
);
1579 void _snd_pcm_hw_param_setempty(struct snd_pcm_hw_params
*params
,
1580 snd_pcm_hw_param_t var
)
1582 if (hw_is_mask(var
)) {
1583 snd_mask_none(hw_param_mask(params
, var
));
1584 params
->cmask
|= 1 << var
;
1585 params
->rmask
|= 1 << var
;
1586 } else if (hw_is_interval(var
)) {
1587 snd_interval_none(hw_param_interval(params
, var
));
1588 params
->cmask
|= 1 << var
;
1589 params
->rmask
|= 1 << var
;
1594 EXPORT_SYMBOL(_snd_pcm_hw_param_setempty
);
1596 static int _snd_pcm_hw_param_first(struct snd_pcm_hw_params
*params
,
1597 snd_pcm_hw_param_t var
)
1600 if (hw_is_mask(var
))
1601 changed
= snd_mask_refine_first(hw_param_mask(params
, var
));
1602 else if (hw_is_interval(var
))
1603 changed
= snd_interval_refine_first(hw_param_interval(params
, var
));
1607 params
->cmask
|= 1 << var
;
1608 params
->rmask
|= 1 << var
;
1615 * snd_pcm_hw_param_first - refine config space and return minimum value
1616 * @pcm: PCM instance
1617 * @params: the hw_params instance
1618 * @var: parameter to retrieve
1619 * @dir: pointer to the direction (-1,0,1) or %NULL
1621 * Inside configuration space defined by @params remove from @var all
1622 * values > minimum. Reduce configuration space accordingly.
1624 * Return: The minimum, or a negative error code on failure.
1626 int snd_pcm_hw_param_first(struct snd_pcm_substream
*pcm
,
1627 struct snd_pcm_hw_params
*params
,
1628 snd_pcm_hw_param_t var
, int *dir
)
1630 int changed
= _snd_pcm_hw_param_first(params
, var
);
1633 if (params
->rmask
) {
1634 int err
= snd_pcm_hw_refine(pcm
, params
);
1638 return snd_pcm_hw_param_value(params
, var
, dir
);
1640 EXPORT_SYMBOL(snd_pcm_hw_param_first
);
1642 static int _snd_pcm_hw_param_last(struct snd_pcm_hw_params
*params
,
1643 snd_pcm_hw_param_t var
)
1646 if (hw_is_mask(var
))
1647 changed
= snd_mask_refine_last(hw_param_mask(params
, var
));
1648 else if (hw_is_interval(var
))
1649 changed
= snd_interval_refine_last(hw_param_interval(params
, var
));
1653 params
->cmask
|= 1 << var
;
1654 params
->rmask
|= 1 << var
;
1661 * snd_pcm_hw_param_last - refine config space and return maximum value
1662 * @pcm: PCM instance
1663 * @params: the hw_params instance
1664 * @var: parameter to retrieve
1665 * @dir: pointer to the direction (-1,0,1) or %NULL
1667 * Inside configuration space defined by @params remove from @var all
1668 * values < maximum. Reduce configuration space accordingly.
1670 * Return: The maximum, or a negative error code on failure.
1672 int snd_pcm_hw_param_last(struct snd_pcm_substream
*pcm
,
1673 struct snd_pcm_hw_params
*params
,
1674 snd_pcm_hw_param_t var
, int *dir
)
1676 int changed
= _snd_pcm_hw_param_last(params
, var
);
1679 if (params
->rmask
) {
1680 int err
= snd_pcm_hw_refine(pcm
, params
);
1684 return snd_pcm_hw_param_value(params
, var
, dir
);
1686 EXPORT_SYMBOL(snd_pcm_hw_param_last
);
1688 static int snd_pcm_lib_ioctl_reset(struct snd_pcm_substream
*substream
,
1691 struct snd_pcm_runtime
*runtime
= substream
->runtime
;
1692 unsigned long flags
;
1693 snd_pcm_stream_lock_irqsave(substream
, flags
);
1694 if (snd_pcm_running(substream
) &&
1695 snd_pcm_update_hw_ptr(substream
) >= 0)
1696 runtime
->status
->hw_ptr
%= runtime
->buffer_size
;
1698 runtime
->status
->hw_ptr
= 0;
1699 runtime
->hw_ptr_wrap
= 0;
1701 snd_pcm_stream_unlock_irqrestore(substream
, flags
);
1705 static int snd_pcm_lib_ioctl_channel_info(struct snd_pcm_substream
*substream
,
1708 struct snd_pcm_channel_info
*info
= arg
;
1709 struct snd_pcm_runtime
*runtime
= substream
->runtime
;
1711 if (!(runtime
->info
& SNDRV_PCM_INFO_MMAP
)) {
1715 width
= snd_pcm_format_physical_width(runtime
->format
);
1719 switch (runtime
->access
) {
1720 case SNDRV_PCM_ACCESS_MMAP_INTERLEAVED
:
1721 case SNDRV_PCM_ACCESS_RW_INTERLEAVED
:
1722 info
->first
= info
->channel
* width
;
1723 info
->step
= runtime
->channels
* width
;
1725 case SNDRV_PCM_ACCESS_MMAP_NONINTERLEAVED
:
1726 case SNDRV_PCM_ACCESS_RW_NONINTERLEAVED
:
1728 size_t size
= runtime
->dma_bytes
/ runtime
->channels
;
1729 info
->first
= info
->channel
* size
* 8;
1740 static int snd_pcm_lib_ioctl_fifo_size(struct snd_pcm_substream
*substream
,
1743 struct snd_pcm_hw_params
*params
= arg
;
1744 snd_pcm_format_t format
;
1748 params
->fifo_size
= substream
->runtime
->hw
.fifo_size
;
1749 if (!(substream
->runtime
->hw
.info
& SNDRV_PCM_INFO_FIFO_IN_FRAMES
)) {
1750 format
= params_format(params
);
1751 channels
= params_channels(params
);
1752 frame_size
= snd_pcm_format_size(format
, channels
);
1754 params
->fifo_size
/= (unsigned)frame_size
;
1760 * snd_pcm_lib_ioctl - a generic PCM ioctl callback
1761 * @substream: the pcm substream instance
1762 * @cmd: ioctl command
1763 * @arg: ioctl argument
1765 * Processes the generic ioctl commands for PCM.
1766 * Can be passed as the ioctl callback for PCM ops.
1768 * Return: Zero if successful, or a negative error code on failure.
1770 int snd_pcm_lib_ioctl(struct snd_pcm_substream
*substream
,
1771 unsigned int cmd
, void *arg
)
1774 case SNDRV_PCM_IOCTL1_RESET
:
1775 return snd_pcm_lib_ioctl_reset(substream
, arg
);
1776 case SNDRV_PCM_IOCTL1_CHANNEL_INFO
:
1777 return snd_pcm_lib_ioctl_channel_info(substream
, arg
);
1778 case SNDRV_PCM_IOCTL1_FIFO_SIZE
:
1779 return snd_pcm_lib_ioctl_fifo_size(substream
, arg
);
1783 EXPORT_SYMBOL(snd_pcm_lib_ioctl
);
1786 * snd_pcm_period_elapsed - update the pcm status for the next period
1787 * @substream: the pcm substream instance
1789 * This function is called from the interrupt handler when the
1790 * PCM has processed the period size. It will update the current
1791 * pointer, wake up sleepers, etc.
1793 * Even if more than one periods have elapsed since the last call, you
1794 * have to call this only once.
1796 void snd_pcm_period_elapsed(struct snd_pcm_substream
*substream
)
1798 struct snd_pcm_runtime
*runtime
;
1799 unsigned long flags
;
1801 if (PCM_RUNTIME_CHECK(substream
))
1803 runtime
= substream
->runtime
;
1805 snd_pcm_stream_lock_irqsave(substream
, flags
);
1806 if (!snd_pcm_running(substream
) ||
1807 snd_pcm_update_hw_ptr0(substream
, 1) < 0)
1810 #ifdef CONFIG_SND_PCM_TIMER
1811 if (substream
->timer_running
)
1812 snd_timer_interrupt(substream
->timer
, 1);
1815 kill_fasync(&runtime
->fasync
, SIGIO
, POLL_IN
);
1816 snd_pcm_stream_unlock_irqrestore(substream
, flags
);
1818 EXPORT_SYMBOL(snd_pcm_period_elapsed
);
1821 * Wait until avail_min data becomes available
1822 * Returns a negative error code if any error occurs during operation.
1823 * The available space is stored on availp. When err = 0 and avail = 0
1824 * on the capture stream, it indicates the stream is in DRAINING state.
1826 static int wait_for_avail(struct snd_pcm_substream
*substream
,
1827 snd_pcm_uframes_t
*availp
)
1829 struct snd_pcm_runtime
*runtime
= substream
->runtime
;
1830 int is_playback
= substream
->stream
== SNDRV_PCM_STREAM_PLAYBACK
;
1831 wait_queue_entry_t wait
;
1833 snd_pcm_uframes_t avail
= 0;
1834 long wait_time
, tout
;
1836 init_waitqueue_entry(&wait
, current
);
1837 set_current_state(TASK_INTERRUPTIBLE
);
1838 add_wait_queue(&runtime
->tsleep
, &wait
);
1840 if (runtime
->no_period_wakeup
)
1841 wait_time
= MAX_SCHEDULE_TIMEOUT
;
1844 if (runtime
->rate
) {
1845 long t
= runtime
->period_size
* 2 / runtime
->rate
;
1846 wait_time
= max(t
, wait_time
);
1848 wait_time
= msecs_to_jiffies(wait_time
* 1000);
1852 if (signal_pending(current
)) {
1858 * We need to check if space became available already
1859 * (and thus the wakeup happened already) first to close
1860 * the race of space already having become available.
1861 * This check must happen after been added to the waitqueue
1862 * and having current state be INTERRUPTIBLE.
1865 avail
= snd_pcm_playback_avail(runtime
);
1867 avail
= snd_pcm_capture_avail(runtime
);
1868 if (avail
>= runtime
->twake
)
1870 snd_pcm_stream_unlock_irq(substream
);
1872 tout
= schedule_timeout(wait_time
);
1874 snd_pcm_stream_lock_irq(substream
);
1875 set_current_state(TASK_INTERRUPTIBLE
);
1876 switch (runtime
->status
->state
) {
1877 case SNDRV_PCM_STATE_SUSPENDED
:
1880 case SNDRV_PCM_STATE_XRUN
:
1883 case SNDRV_PCM_STATE_DRAINING
:
1887 avail
= 0; /* indicate draining */
1889 case SNDRV_PCM_STATE_OPEN
:
1890 case SNDRV_PCM_STATE_SETUP
:
1891 case SNDRV_PCM_STATE_DISCONNECTED
:
1894 case SNDRV_PCM_STATE_PAUSED
:
1898 pcm_dbg(substream
->pcm
,
1899 "%s write error (DMA or IRQ trouble?)\n",
1900 is_playback
? "playback" : "capture");
1906 set_current_state(TASK_RUNNING
);
1907 remove_wait_queue(&runtime
->tsleep
, &wait
);
1912 typedef int (*pcm_transfer_f
)(struct snd_pcm_substream
*substream
,
1913 int channel
, unsigned long hwoff
,
1914 void *buf
, unsigned long bytes
);
1916 typedef int (*pcm_copy_f
)(struct snd_pcm_substream
*, snd_pcm_uframes_t
, void *,
1917 snd_pcm_uframes_t
, snd_pcm_uframes_t
, pcm_transfer_f
);
1919 /* calculate the target DMA-buffer position to be written/read */
1920 static void *get_dma_ptr(struct snd_pcm_runtime
*runtime
,
1921 int channel
, unsigned long hwoff
)
1923 return runtime
->dma_area
+ hwoff
+
1924 channel
* (runtime
->dma_bytes
/ runtime
->channels
);
1927 /* default copy_user ops for write; used for both interleaved and non- modes */
1928 static int default_write_copy(struct snd_pcm_substream
*substream
,
1929 int channel
, unsigned long hwoff
,
1930 void *buf
, unsigned long bytes
)
1932 if (copy_from_user(get_dma_ptr(substream
->runtime
, channel
, hwoff
),
1933 (void __user
*)buf
, bytes
))
1938 /* default copy_kernel ops for write */
1939 static int default_write_copy_kernel(struct snd_pcm_substream
*substream
,
1940 int channel
, unsigned long hwoff
,
1941 void *buf
, unsigned long bytes
)
1943 memcpy(get_dma_ptr(substream
->runtime
, channel
, hwoff
), buf
, bytes
);
1947 /* fill silence instead of copy data; called as a transfer helper
1948 * from __snd_pcm_lib_write() or directly from noninterleaved_copy() when
1949 * a NULL buffer is passed
1951 static int fill_silence(struct snd_pcm_substream
*substream
, int channel
,
1952 unsigned long hwoff
, void *buf
, unsigned long bytes
)
1954 struct snd_pcm_runtime
*runtime
= substream
->runtime
;
1956 if (substream
->stream
!= SNDRV_PCM_STREAM_PLAYBACK
)
1958 if (substream
->ops
->fill_silence
)
1959 return substream
->ops
->fill_silence(substream
, channel
,
1962 snd_pcm_format_set_silence(runtime
->format
,
1963 get_dma_ptr(runtime
, channel
, hwoff
),
1964 bytes_to_samples(runtime
, bytes
));
1968 /* default copy_user ops for read; used for both interleaved and non- modes */
1969 static int default_read_copy(struct snd_pcm_substream
*substream
,
1970 int channel
, unsigned long hwoff
,
1971 void *buf
, unsigned long bytes
)
1973 if (copy_to_user((void __user
*)buf
,
1974 get_dma_ptr(substream
->runtime
, channel
, hwoff
),
1980 /* default copy_kernel ops for read */
1981 static int default_read_copy_kernel(struct snd_pcm_substream
*substream
,
1982 int channel
, unsigned long hwoff
,
1983 void *buf
, unsigned long bytes
)
1985 memcpy(buf
, get_dma_ptr(substream
->runtime
, channel
, hwoff
), bytes
);
1989 /* call transfer function with the converted pointers and sizes;
1990 * for interleaved mode, it's one shot for all samples
1992 static int interleaved_copy(struct snd_pcm_substream
*substream
,
1993 snd_pcm_uframes_t hwoff
, void *data
,
1994 snd_pcm_uframes_t off
,
1995 snd_pcm_uframes_t frames
,
1996 pcm_transfer_f transfer
)
1998 struct snd_pcm_runtime
*runtime
= substream
->runtime
;
2000 /* convert to bytes */
2001 hwoff
= frames_to_bytes(runtime
, hwoff
);
2002 off
= frames_to_bytes(runtime
, off
);
2003 frames
= frames_to_bytes(runtime
, frames
);
2004 return transfer(substream
, 0, hwoff
, data
+ off
, frames
);
2007 /* call transfer function with the converted pointers and sizes for each
2008 * non-interleaved channel; when buffer is NULL, silencing instead of copying
2010 static int noninterleaved_copy(struct snd_pcm_substream
*substream
,
2011 snd_pcm_uframes_t hwoff
, void *data
,
2012 snd_pcm_uframes_t off
,
2013 snd_pcm_uframes_t frames
,
2014 pcm_transfer_f transfer
)
2016 struct snd_pcm_runtime
*runtime
= substream
->runtime
;
2017 int channels
= runtime
->channels
;
2021 /* convert to bytes; note that it's not frames_to_bytes() here.
2022 * in non-interleaved mode, we copy for each channel, thus
2023 * each copy is n_samples bytes x channels = whole frames.
2025 off
= samples_to_bytes(runtime
, off
);
2026 frames
= samples_to_bytes(runtime
, frames
);
2027 hwoff
= samples_to_bytes(runtime
, hwoff
);
2028 for (c
= 0; c
< channels
; ++c
, ++bufs
) {
2029 if (!data
|| !*bufs
)
2030 err
= fill_silence(substream
, c
, hwoff
, NULL
, frames
);
2032 err
= transfer(substream
, c
, hwoff
, *bufs
+ off
,
2040 /* fill silence on the given buffer position;
2041 * called from snd_pcm_playback_silence()
2043 static int fill_silence_frames(struct snd_pcm_substream
*substream
,
2044 snd_pcm_uframes_t off
, snd_pcm_uframes_t frames
)
2046 if (substream
->runtime
->access
== SNDRV_PCM_ACCESS_RW_INTERLEAVED
||
2047 substream
->runtime
->access
== SNDRV_PCM_ACCESS_MMAP_INTERLEAVED
)
2048 return interleaved_copy(substream
, off
, NULL
, 0, frames
,
2051 return noninterleaved_copy(substream
, off
, NULL
, 0, frames
,
2055 /* sanity-check for read/write methods */
2056 static int pcm_sanity_check(struct snd_pcm_substream
*substream
)
2058 struct snd_pcm_runtime
*runtime
;
2059 if (PCM_RUNTIME_CHECK(substream
))
2061 runtime
= substream
->runtime
;
2062 if (snd_BUG_ON(!substream
->ops
->copy_user
&& !runtime
->dma_area
))
2064 if (runtime
->status
->state
== SNDRV_PCM_STATE_OPEN
)
2069 static int pcm_accessible_state(struct snd_pcm_runtime
*runtime
)
2071 switch (runtime
->status
->state
) {
2072 case SNDRV_PCM_STATE_PREPARED
:
2073 case SNDRV_PCM_STATE_RUNNING
:
2074 case SNDRV_PCM_STATE_PAUSED
:
2076 case SNDRV_PCM_STATE_XRUN
:
2078 case SNDRV_PCM_STATE_SUSPENDED
:
2085 /* update to the given appl_ptr and call ack callback if needed;
2086 * when an error is returned, take back to the original value
2088 int pcm_lib_apply_appl_ptr(struct snd_pcm_substream
*substream
,
2089 snd_pcm_uframes_t appl_ptr
)
2091 struct snd_pcm_runtime
*runtime
= substream
->runtime
;
2092 snd_pcm_uframes_t old_appl_ptr
= runtime
->control
->appl_ptr
;
2095 if (old_appl_ptr
== appl_ptr
)
2098 runtime
->control
->appl_ptr
= appl_ptr
;
2099 if (substream
->ops
->ack
) {
2100 ret
= substream
->ops
->ack(substream
);
2102 runtime
->control
->appl_ptr
= old_appl_ptr
;
2107 trace_applptr(substream
, old_appl_ptr
, appl_ptr
);
2112 /* the common loop for read/write data */
2113 snd_pcm_sframes_t
__snd_pcm_lib_xfer(struct snd_pcm_substream
*substream
,
2114 void *data
, bool interleaved
,
2115 snd_pcm_uframes_t size
, bool in_kernel
)
2117 struct snd_pcm_runtime
*runtime
= substream
->runtime
;
2118 snd_pcm_uframes_t xfer
= 0;
2119 snd_pcm_uframes_t offset
= 0;
2120 snd_pcm_uframes_t avail
;
2122 pcm_transfer_f transfer
;
2127 err
= pcm_sanity_check(substream
);
2131 is_playback
= substream
->stream
== SNDRV_PCM_STREAM_PLAYBACK
;
2133 if (runtime
->access
!= SNDRV_PCM_ACCESS_RW_INTERLEAVED
&&
2134 runtime
->channels
> 1)
2136 writer
= interleaved_copy
;
2138 if (runtime
->access
!= SNDRV_PCM_ACCESS_RW_NONINTERLEAVED
)
2140 writer
= noninterleaved_copy
;
2145 transfer
= fill_silence
;
2148 } else if (in_kernel
) {
2149 if (substream
->ops
->copy_kernel
)
2150 transfer
= substream
->ops
->copy_kernel
;
2152 transfer
= is_playback
?
2153 default_write_copy_kernel
: default_read_copy_kernel
;
2155 if (substream
->ops
->copy_user
)
2156 transfer
= (pcm_transfer_f
)substream
->ops
->copy_user
;
2158 transfer
= is_playback
?
2159 default_write_copy
: default_read_copy
;
2165 nonblock
= !!(substream
->f_flags
& O_NONBLOCK
);
2167 snd_pcm_stream_lock_irq(substream
);
2168 err
= pcm_accessible_state(runtime
);
2173 runtime
->status
->state
== SNDRV_PCM_STATE_PREPARED
&&
2174 size
>= runtime
->start_threshold
) {
2175 err
= snd_pcm_start(substream
);
2180 runtime
->twake
= runtime
->control
->avail_min
? : 1;
2181 if (runtime
->status
->state
== SNDRV_PCM_STATE_RUNNING
)
2182 snd_pcm_update_hw_ptr(substream
);
2184 avail
= snd_pcm_playback_avail(runtime
);
2186 avail
= snd_pcm_capture_avail(runtime
);
2188 snd_pcm_uframes_t frames
, appl_ptr
, appl_ofs
;
2189 snd_pcm_uframes_t cont
;
2192 runtime
->status
->state
== SNDRV_PCM_STATE_DRAINING
) {
2193 snd_pcm_stop(substream
, SNDRV_PCM_STATE_SETUP
);
2200 runtime
->twake
= min_t(snd_pcm_uframes_t
, size
,
2201 runtime
->control
->avail_min
? : 1);
2202 err
= wait_for_avail(substream
, &avail
);
2206 continue; /* draining */
2208 frames
= size
> avail
? avail
: size
;
2209 appl_ptr
= READ_ONCE(runtime
->control
->appl_ptr
);
2210 appl_ofs
= appl_ptr
% runtime
->buffer_size
;
2211 cont
= runtime
->buffer_size
- appl_ofs
;
2214 if (snd_BUG_ON(!frames
)) {
2216 snd_pcm_stream_unlock_irq(substream
);
2219 snd_pcm_stream_unlock_irq(substream
);
2220 err
= writer(substream
, appl_ofs
, data
, offset
, frames
,
2222 snd_pcm_stream_lock_irq(substream
);
2225 err
= pcm_accessible_state(runtime
);
2229 if (appl_ptr
>= runtime
->boundary
)
2230 appl_ptr
-= runtime
->boundary
;
2231 err
= pcm_lib_apply_appl_ptr(substream
, appl_ptr
);
2240 runtime
->status
->state
== SNDRV_PCM_STATE_PREPARED
&&
2241 snd_pcm_playback_hw_avail(runtime
) >= (snd_pcm_sframes_t
)runtime
->start_threshold
) {
2242 err
= snd_pcm_start(substream
);
2249 if (xfer
> 0 && err
>= 0)
2250 snd_pcm_update_state(substream
, runtime
);
2251 snd_pcm_stream_unlock_irq(substream
);
2252 return xfer
> 0 ? (snd_pcm_sframes_t
)xfer
: err
;
2254 EXPORT_SYMBOL(__snd_pcm_lib_xfer
);
2257 * standard channel mapping helpers
2260 /* default channel maps for multi-channel playbacks, up to 8 channels */
2261 const struct snd_pcm_chmap_elem snd_pcm_std_chmaps
[] = {
2263 .map
= { SNDRV_CHMAP_MONO
} },
2265 .map
= { SNDRV_CHMAP_FL
, SNDRV_CHMAP_FR
} },
2267 .map
= { SNDRV_CHMAP_FL
, SNDRV_CHMAP_FR
,
2268 SNDRV_CHMAP_RL
, SNDRV_CHMAP_RR
} },
2270 .map
= { SNDRV_CHMAP_FL
, SNDRV_CHMAP_FR
,
2271 SNDRV_CHMAP_RL
, SNDRV_CHMAP_RR
,
2272 SNDRV_CHMAP_FC
, SNDRV_CHMAP_LFE
} },
2274 .map
= { SNDRV_CHMAP_FL
, SNDRV_CHMAP_FR
,
2275 SNDRV_CHMAP_RL
, SNDRV_CHMAP_RR
,
2276 SNDRV_CHMAP_FC
, SNDRV_CHMAP_LFE
,
2277 SNDRV_CHMAP_SL
, SNDRV_CHMAP_SR
} },
2280 EXPORT_SYMBOL_GPL(snd_pcm_std_chmaps
);
2282 /* alternative channel maps with CLFE <-> surround swapped for 6/8 channels */
2283 const struct snd_pcm_chmap_elem snd_pcm_alt_chmaps
[] = {
2285 .map
= { SNDRV_CHMAP_MONO
} },
2287 .map
= { SNDRV_CHMAP_FL
, SNDRV_CHMAP_FR
} },
2289 .map
= { SNDRV_CHMAP_FL
, SNDRV_CHMAP_FR
,
2290 SNDRV_CHMAP_RL
, SNDRV_CHMAP_RR
} },
2292 .map
= { SNDRV_CHMAP_FL
, SNDRV_CHMAP_FR
,
2293 SNDRV_CHMAP_FC
, SNDRV_CHMAP_LFE
,
2294 SNDRV_CHMAP_RL
, SNDRV_CHMAP_RR
} },
2296 .map
= { SNDRV_CHMAP_FL
, SNDRV_CHMAP_FR
,
2297 SNDRV_CHMAP_FC
, SNDRV_CHMAP_LFE
,
2298 SNDRV_CHMAP_RL
, SNDRV_CHMAP_RR
,
2299 SNDRV_CHMAP_SL
, SNDRV_CHMAP_SR
} },
2302 EXPORT_SYMBOL_GPL(snd_pcm_alt_chmaps
);
2304 static bool valid_chmap_channels(const struct snd_pcm_chmap
*info
, int ch
)
2306 if (ch
> info
->max_channels
)
2308 return !info
->channel_mask
|| (info
->channel_mask
& (1U << ch
));
2311 static int pcm_chmap_ctl_info(struct snd_kcontrol
*kcontrol
,
2312 struct snd_ctl_elem_info
*uinfo
)
2314 struct snd_pcm_chmap
*info
= snd_kcontrol_chip(kcontrol
);
2316 uinfo
->type
= SNDRV_CTL_ELEM_TYPE_INTEGER
;
2318 uinfo
->count
= info
->max_channels
;
2319 uinfo
->value
.integer
.min
= 0;
2320 uinfo
->value
.integer
.max
= SNDRV_CHMAP_LAST
;
2324 /* get callback for channel map ctl element
2325 * stores the channel position firstly matching with the current channels
2327 static int pcm_chmap_ctl_get(struct snd_kcontrol
*kcontrol
,
2328 struct snd_ctl_elem_value
*ucontrol
)
2330 struct snd_pcm_chmap
*info
= snd_kcontrol_chip(kcontrol
);
2331 unsigned int idx
= snd_ctl_get_ioffidx(kcontrol
, &ucontrol
->id
);
2332 struct snd_pcm_substream
*substream
;
2333 const struct snd_pcm_chmap_elem
*map
;
2337 substream
= snd_pcm_chmap_substream(info
, idx
);
2340 memset(ucontrol
->value
.integer
.value
, 0,
2341 sizeof(ucontrol
->value
.integer
.value
));
2342 if (!substream
->runtime
)
2343 return 0; /* no channels set */
2344 for (map
= info
->chmap
; map
->channels
; map
++) {
2346 if (map
->channels
== substream
->runtime
->channels
&&
2347 valid_chmap_channels(info
, map
->channels
)) {
2348 for (i
= 0; i
< map
->channels
; i
++)
2349 ucontrol
->value
.integer
.value
[i
] = map
->map
[i
];
2356 /* tlv callback for channel map ctl element
2357 * expands the pre-defined channel maps in a form of TLV
2359 static int pcm_chmap_ctl_tlv(struct snd_kcontrol
*kcontrol
, int op_flag
,
2360 unsigned int size
, unsigned int __user
*tlv
)
2362 struct snd_pcm_chmap
*info
= snd_kcontrol_chip(kcontrol
);
2363 const struct snd_pcm_chmap_elem
*map
;
2364 unsigned int __user
*dst
;
2371 if (put_user(SNDRV_CTL_TLVT_CONTAINER
, tlv
))
2375 for (map
= info
->chmap
; map
->channels
; map
++) {
2376 int chs_bytes
= map
->channels
* 4;
2377 if (!valid_chmap_channels(info
, map
->channels
))
2381 if (put_user(SNDRV_CTL_TLVT_CHMAP_FIXED
, dst
) ||
2382 put_user(chs_bytes
, dst
+ 1))
2387 if (size
< chs_bytes
)
2391 for (c
= 0; c
< map
->channels
; c
++) {
2392 if (put_user(map
->map
[c
], dst
))
2397 if (put_user(count
, tlv
+ 1))
2402 static void pcm_chmap_ctl_private_free(struct snd_kcontrol
*kcontrol
)
2404 struct snd_pcm_chmap
*info
= snd_kcontrol_chip(kcontrol
);
2405 info
->pcm
->streams
[info
->stream
].chmap_kctl
= NULL
;
2410 * snd_pcm_add_chmap_ctls - create channel-mapping control elements
2411 * @pcm: the assigned PCM instance
2412 * @stream: stream direction
2413 * @chmap: channel map elements (for query)
2414 * @max_channels: the max number of channels for the stream
2415 * @private_value: the value passed to each kcontrol's private_value field
2416 * @info_ret: store struct snd_pcm_chmap instance if non-NULL
2418 * Create channel-mapping control elements assigned to the given PCM stream(s).
2419 * Return: Zero if successful, or a negative error value.
2421 int snd_pcm_add_chmap_ctls(struct snd_pcm
*pcm
, int stream
,
2422 const struct snd_pcm_chmap_elem
*chmap
,
2424 unsigned long private_value
,
2425 struct snd_pcm_chmap
**info_ret
)
2427 struct snd_pcm_chmap
*info
;
2428 struct snd_kcontrol_new knew
= {
2429 .iface
= SNDRV_CTL_ELEM_IFACE_PCM
,
2430 .access
= SNDRV_CTL_ELEM_ACCESS_READ
|
2431 SNDRV_CTL_ELEM_ACCESS_TLV_READ
|
2432 SNDRV_CTL_ELEM_ACCESS_TLV_CALLBACK
,
2433 .info
= pcm_chmap_ctl_info
,
2434 .get
= pcm_chmap_ctl_get
,
2435 .tlv
.c
= pcm_chmap_ctl_tlv
,
2439 if (WARN_ON(pcm
->streams
[stream
].chmap_kctl
))
2441 info
= kzalloc(sizeof(*info
), GFP_KERNEL
);
2445 info
->stream
= stream
;
2446 info
->chmap
= chmap
;
2447 info
->max_channels
= max_channels
;
2448 if (stream
== SNDRV_PCM_STREAM_PLAYBACK
)
2449 knew
.name
= "Playback Channel Map";
2451 knew
.name
= "Capture Channel Map";
2452 knew
.device
= pcm
->device
;
2453 knew
.count
= pcm
->streams
[stream
].substream_count
;
2454 knew
.private_value
= private_value
;
2455 info
->kctl
= snd_ctl_new1(&knew
, info
);
2460 info
->kctl
->private_free
= pcm_chmap_ctl_private_free
;
2461 err
= snd_ctl_add(pcm
->card
, info
->kctl
);
2464 pcm
->streams
[stream
].chmap_kctl
= info
->kctl
;
2469 EXPORT_SYMBOL_GPL(snd_pcm_add_chmap_ctls
);