2 * (C) 1997 Linus Torvalds
3 * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
5 #include <linux/export.h>
8 #include <linux/backing-dev.h>
9 #include <linux/hash.h>
10 #include <linux/swap.h>
11 #include <linux/security.h>
12 #include <linux/cdev.h>
13 #include <linux/memblock.h>
14 #include <linux/fsnotify.h>
15 #include <linux/mount.h>
16 #include <linux/posix_acl.h>
17 #include <linux/prefetch.h>
18 #include <linux/buffer_head.h> /* for inode_has_buffers */
19 #include <linux/ratelimit.h>
20 #include <linux/list_lru.h>
21 #include <linux/iversion.h>
22 #include <trace/events/writeback.h>
26 * Inode locking rules:
28 * inode->i_lock protects:
29 * inode->i_state, inode->i_hash, __iget()
30 * Inode LRU list locks protect:
31 * inode->i_sb->s_inode_lru, inode->i_lru
32 * inode->i_sb->s_inode_list_lock protects:
33 * inode->i_sb->s_inodes, inode->i_sb_list
34 * bdi->wb.list_lock protects:
35 * bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_io_list
36 * inode_hash_lock protects:
37 * inode_hashtable, inode->i_hash
41 * inode->i_sb->s_inode_list_lock
43 * Inode LRU list locks
49 * inode->i_sb->s_inode_list_lock
56 static unsigned int i_hash_mask __read_mostly
;
57 static unsigned int i_hash_shift __read_mostly
;
58 static struct hlist_head
*inode_hashtable __read_mostly
;
59 static __cacheline_aligned_in_smp
DEFINE_SPINLOCK(inode_hash_lock
);
62 * Empty aops. Can be used for the cases where the user does not
63 * define any of the address_space operations.
65 const struct address_space_operations empty_aops
= {
67 EXPORT_SYMBOL(empty_aops
);
70 * Statistics gathering..
72 struct inodes_stat_t inodes_stat
;
74 static DEFINE_PER_CPU(unsigned long, nr_inodes
);
75 static DEFINE_PER_CPU(unsigned long, nr_unused
);
77 static struct kmem_cache
*inode_cachep __read_mostly
;
79 static long get_nr_inodes(void)
83 for_each_possible_cpu(i
)
84 sum
+= per_cpu(nr_inodes
, i
);
85 return sum
< 0 ? 0 : sum
;
88 static inline long get_nr_inodes_unused(void)
92 for_each_possible_cpu(i
)
93 sum
+= per_cpu(nr_unused
, i
);
94 return sum
< 0 ? 0 : sum
;
97 long get_nr_dirty_inodes(void)
99 /* not actually dirty inodes, but a wild approximation */
100 long nr_dirty
= get_nr_inodes() - get_nr_inodes_unused();
101 return nr_dirty
> 0 ? nr_dirty
: 0;
105 * Handle nr_inode sysctl
108 int proc_nr_inodes(struct ctl_table
*table
, int write
,
109 void __user
*buffer
, size_t *lenp
, loff_t
*ppos
)
111 inodes_stat
.nr_inodes
= get_nr_inodes();
112 inodes_stat
.nr_unused
= get_nr_inodes_unused();
113 return proc_doulongvec_minmax(table
, write
, buffer
, lenp
, ppos
);
117 static int no_open(struct inode
*inode
, struct file
*file
)
123 * inode_init_always - perform inode structure initialisation
124 * @sb: superblock inode belongs to
125 * @inode: inode to initialise
127 * These are initializations that need to be done on every inode
128 * allocation as the fields are not initialised by slab allocation.
130 int inode_init_always(struct super_block
*sb
, struct inode
*inode
)
132 static const struct inode_operations empty_iops
;
133 static const struct file_operations no_open_fops
= {.open
= no_open
};
134 struct address_space
*const mapping
= &inode
->i_data
;
137 inode
->i_blkbits
= sb
->s_blocksize_bits
;
139 atomic_set(&inode
->i_count
, 1);
140 inode
->i_op
= &empty_iops
;
141 inode
->i_fop
= &no_open_fops
;
142 inode
->__i_nlink
= 1;
143 inode
->i_opflags
= 0;
145 inode
->i_opflags
|= IOP_XATTR
;
146 i_uid_write(inode
, 0);
147 i_gid_write(inode
, 0);
148 atomic_set(&inode
->i_writecount
, 0);
150 inode
->i_write_hint
= WRITE_LIFE_NOT_SET
;
153 inode
->i_generation
= 0;
154 inode
->i_pipe
= NULL
;
155 inode
->i_bdev
= NULL
;
156 inode
->i_cdev
= NULL
;
157 inode
->i_link
= NULL
;
158 inode
->i_dir_seq
= 0;
160 inode
->dirtied_when
= 0;
162 #ifdef CONFIG_CGROUP_WRITEBACK
163 inode
->i_wb_frn_winner
= 0;
164 inode
->i_wb_frn_avg_time
= 0;
165 inode
->i_wb_frn_history
= 0;
168 if (security_inode_alloc(inode
))
170 spin_lock_init(&inode
->i_lock
);
171 lockdep_set_class(&inode
->i_lock
, &sb
->s_type
->i_lock_key
);
173 init_rwsem(&inode
->i_rwsem
);
174 lockdep_set_class(&inode
->i_rwsem
, &sb
->s_type
->i_mutex_key
);
176 atomic_set(&inode
->i_dio_count
, 0);
178 mapping
->a_ops
= &empty_aops
;
179 mapping
->host
= inode
;
182 atomic_set(&mapping
->i_mmap_writable
, 0);
183 mapping_set_gfp_mask(mapping
, GFP_HIGHUSER_MOVABLE
);
184 mapping
->private_data
= NULL
;
185 mapping
->writeback_index
= 0;
186 inode
->i_private
= NULL
;
187 inode
->i_mapping
= mapping
;
188 INIT_HLIST_HEAD(&inode
->i_dentry
); /* buggered by rcu freeing */
189 #ifdef CONFIG_FS_POSIX_ACL
190 inode
->i_acl
= inode
->i_default_acl
= ACL_NOT_CACHED
;
193 #ifdef CONFIG_FSNOTIFY
194 inode
->i_fsnotify_mask
= 0;
196 inode
->i_flctx
= NULL
;
197 this_cpu_inc(nr_inodes
);
203 EXPORT_SYMBOL(inode_init_always
);
205 static struct inode
*alloc_inode(struct super_block
*sb
)
209 if (sb
->s_op
->alloc_inode
)
210 inode
= sb
->s_op
->alloc_inode(sb
);
212 inode
= kmem_cache_alloc(inode_cachep
, GFP_KERNEL
);
217 if (unlikely(inode_init_always(sb
, inode
))) {
218 if (inode
->i_sb
->s_op
->destroy_inode
)
219 inode
->i_sb
->s_op
->destroy_inode(inode
);
221 kmem_cache_free(inode_cachep
, inode
);
228 void free_inode_nonrcu(struct inode
*inode
)
230 kmem_cache_free(inode_cachep
, inode
);
232 EXPORT_SYMBOL(free_inode_nonrcu
);
234 void __destroy_inode(struct inode
*inode
)
236 BUG_ON(inode_has_buffers(inode
));
237 inode_detach_wb(inode
);
238 security_inode_free(inode
);
239 fsnotify_inode_delete(inode
);
240 locks_free_lock_context(inode
);
241 if (!inode
->i_nlink
) {
242 WARN_ON(atomic_long_read(&inode
->i_sb
->s_remove_count
) == 0);
243 atomic_long_dec(&inode
->i_sb
->s_remove_count
);
246 #ifdef CONFIG_FS_POSIX_ACL
247 if (inode
->i_acl
&& !is_uncached_acl(inode
->i_acl
))
248 posix_acl_release(inode
->i_acl
);
249 if (inode
->i_default_acl
&& !is_uncached_acl(inode
->i_default_acl
))
250 posix_acl_release(inode
->i_default_acl
);
252 this_cpu_dec(nr_inodes
);
254 EXPORT_SYMBOL(__destroy_inode
);
256 static void i_callback(struct rcu_head
*head
)
258 struct inode
*inode
= container_of(head
, struct inode
, i_rcu
);
259 kmem_cache_free(inode_cachep
, inode
);
262 static void destroy_inode(struct inode
*inode
)
264 BUG_ON(!list_empty(&inode
->i_lru
));
265 __destroy_inode(inode
);
266 if (inode
->i_sb
->s_op
->destroy_inode
)
267 inode
->i_sb
->s_op
->destroy_inode(inode
);
269 call_rcu(&inode
->i_rcu
, i_callback
);
273 * drop_nlink - directly drop an inode's link count
276 * This is a low-level filesystem helper to replace any
277 * direct filesystem manipulation of i_nlink. In cases
278 * where we are attempting to track writes to the
279 * filesystem, a decrement to zero means an imminent
280 * write when the file is truncated and actually unlinked
283 void drop_nlink(struct inode
*inode
)
285 WARN_ON(inode
->i_nlink
== 0);
288 atomic_long_inc(&inode
->i_sb
->s_remove_count
);
290 EXPORT_SYMBOL(drop_nlink
);
293 * clear_nlink - directly zero an inode's link count
296 * This is a low-level filesystem helper to replace any
297 * direct filesystem manipulation of i_nlink. See
298 * drop_nlink() for why we care about i_nlink hitting zero.
300 void clear_nlink(struct inode
*inode
)
302 if (inode
->i_nlink
) {
303 inode
->__i_nlink
= 0;
304 atomic_long_inc(&inode
->i_sb
->s_remove_count
);
307 EXPORT_SYMBOL(clear_nlink
);
310 * set_nlink - directly set an inode's link count
312 * @nlink: new nlink (should be non-zero)
314 * This is a low-level filesystem helper to replace any
315 * direct filesystem manipulation of i_nlink.
317 void set_nlink(struct inode
*inode
, unsigned int nlink
)
322 /* Yes, some filesystems do change nlink from zero to one */
323 if (inode
->i_nlink
== 0)
324 atomic_long_dec(&inode
->i_sb
->s_remove_count
);
326 inode
->__i_nlink
= nlink
;
329 EXPORT_SYMBOL(set_nlink
);
332 * inc_nlink - directly increment an inode's link count
335 * This is a low-level filesystem helper to replace any
336 * direct filesystem manipulation of i_nlink. Currently,
337 * it is only here for parity with dec_nlink().
339 void inc_nlink(struct inode
*inode
)
341 if (unlikely(inode
->i_nlink
== 0)) {
342 WARN_ON(!(inode
->i_state
& I_LINKABLE
));
343 atomic_long_dec(&inode
->i_sb
->s_remove_count
);
348 EXPORT_SYMBOL(inc_nlink
);
350 static void __address_space_init_once(struct address_space
*mapping
)
352 xa_init_flags(&mapping
->i_pages
, XA_FLAGS_LOCK_IRQ
);
353 init_rwsem(&mapping
->i_mmap_rwsem
);
354 INIT_LIST_HEAD(&mapping
->private_list
);
355 spin_lock_init(&mapping
->private_lock
);
356 mapping
->i_mmap
= RB_ROOT_CACHED
;
359 void address_space_init_once(struct address_space
*mapping
)
361 memset(mapping
, 0, sizeof(*mapping
));
362 __address_space_init_once(mapping
);
364 EXPORT_SYMBOL(address_space_init_once
);
367 * These are initializations that only need to be done
368 * once, because the fields are idempotent across use
369 * of the inode, so let the slab aware of that.
371 void inode_init_once(struct inode
*inode
)
373 memset(inode
, 0, sizeof(*inode
));
374 INIT_HLIST_NODE(&inode
->i_hash
);
375 INIT_LIST_HEAD(&inode
->i_devices
);
376 INIT_LIST_HEAD(&inode
->i_io_list
);
377 INIT_LIST_HEAD(&inode
->i_wb_list
);
378 INIT_LIST_HEAD(&inode
->i_lru
);
379 __address_space_init_once(&inode
->i_data
);
380 i_size_ordered_init(inode
);
382 EXPORT_SYMBOL(inode_init_once
);
384 static void init_once(void *foo
)
386 struct inode
*inode
= (struct inode
*) foo
;
388 inode_init_once(inode
);
392 * inode->i_lock must be held
394 void __iget(struct inode
*inode
)
396 atomic_inc(&inode
->i_count
);
400 * get additional reference to inode; caller must already hold one.
402 void ihold(struct inode
*inode
)
404 WARN_ON(atomic_inc_return(&inode
->i_count
) < 2);
406 EXPORT_SYMBOL(ihold
);
408 static void inode_lru_list_add(struct inode
*inode
)
410 if (list_lru_add(&inode
->i_sb
->s_inode_lru
, &inode
->i_lru
))
411 this_cpu_inc(nr_unused
);
413 inode
->i_state
|= I_REFERENCED
;
417 * Add inode to LRU if needed (inode is unused and clean).
419 * Needs inode->i_lock held.
421 void inode_add_lru(struct inode
*inode
)
423 if (!(inode
->i_state
& (I_DIRTY_ALL
| I_SYNC
|
424 I_FREEING
| I_WILL_FREE
)) &&
425 !atomic_read(&inode
->i_count
) && inode
->i_sb
->s_flags
& SB_ACTIVE
)
426 inode_lru_list_add(inode
);
430 static void inode_lru_list_del(struct inode
*inode
)
433 if (list_lru_del(&inode
->i_sb
->s_inode_lru
, &inode
->i_lru
))
434 this_cpu_dec(nr_unused
);
438 * inode_sb_list_add - add inode to the superblock list of inodes
439 * @inode: inode to add
441 void inode_sb_list_add(struct inode
*inode
)
443 spin_lock(&inode
->i_sb
->s_inode_list_lock
);
444 list_add(&inode
->i_sb_list
, &inode
->i_sb
->s_inodes
);
445 spin_unlock(&inode
->i_sb
->s_inode_list_lock
);
447 EXPORT_SYMBOL_GPL(inode_sb_list_add
);
449 static inline void inode_sb_list_del(struct inode
*inode
)
451 if (!list_empty(&inode
->i_sb_list
)) {
452 spin_lock(&inode
->i_sb
->s_inode_list_lock
);
453 list_del_init(&inode
->i_sb_list
);
454 spin_unlock(&inode
->i_sb
->s_inode_list_lock
);
458 static unsigned long hash(struct super_block
*sb
, unsigned long hashval
)
462 tmp
= (hashval
* (unsigned long)sb
) ^ (GOLDEN_RATIO_PRIME
+ hashval
) /
464 tmp
= tmp
^ ((tmp
^ GOLDEN_RATIO_PRIME
) >> i_hash_shift
);
465 return tmp
& i_hash_mask
;
469 * __insert_inode_hash - hash an inode
470 * @inode: unhashed inode
471 * @hashval: unsigned long value used to locate this object in the
474 * Add an inode to the inode hash for this superblock.
476 void __insert_inode_hash(struct inode
*inode
, unsigned long hashval
)
478 struct hlist_head
*b
= inode_hashtable
+ hash(inode
->i_sb
, hashval
);
480 spin_lock(&inode_hash_lock
);
481 spin_lock(&inode
->i_lock
);
482 hlist_add_head(&inode
->i_hash
, b
);
483 spin_unlock(&inode
->i_lock
);
484 spin_unlock(&inode_hash_lock
);
486 EXPORT_SYMBOL(__insert_inode_hash
);
489 * __remove_inode_hash - remove an inode from the hash
490 * @inode: inode to unhash
492 * Remove an inode from the superblock.
494 void __remove_inode_hash(struct inode
*inode
)
496 spin_lock(&inode_hash_lock
);
497 spin_lock(&inode
->i_lock
);
498 hlist_del_init(&inode
->i_hash
);
499 spin_unlock(&inode
->i_lock
);
500 spin_unlock(&inode_hash_lock
);
502 EXPORT_SYMBOL(__remove_inode_hash
);
504 void clear_inode(struct inode
*inode
)
507 * We have to cycle the i_pages lock here because reclaim can be in the
508 * process of removing the last page (in __delete_from_page_cache())
509 * and we must not free the mapping under it.
511 xa_lock_irq(&inode
->i_data
.i_pages
);
512 BUG_ON(inode
->i_data
.nrpages
);
513 BUG_ON(inode
->i_data
.nrexceptional
);
514 xa_unlock_irq(&inode
->i_data
.i_pages
);
515 BUG_ON(!list_empty(&inode
->i_data
.private_list
));
516 BUG_ON(!(inode
->i_state
& I_FREEING
));
517 BUG_ON(inode
->i_state
& I_CLEAR
);
518 BUG_ON(!list_empty(&inode
->i_wb_list
));
519 /* don't need i_lock here, no concurrent mods to i_state */
520 inode
->i_state
= I_FREEING
| I_CLEAR
;
522 EXPORT_SYMBOL(clear_inode
);
525 * Free the inode passed in, removing it from the lists it is still connected
526 * to. We remove any pages still attached to the inode and wait for any IO that
527 * is still in progress before finally destroying the inode.
529 * An inode must already be marked I_FREEING so that we avoid the inode being
530 * moved back onto lists if we race with other code that manipulates the lists
531 * (e.g. writeback_single_inode). The caller is responsible for setting this.
533 * An inode must already be removed from the LRU list before being evicted from
534 * the cache. This should occur atomically with setting the I_FREEING state
535 * flag, so no inodes here should ever be on the LRU when being evicted.
537 static void evict(struct inode
*inode
)
539 const struct super_operations
*op
= inode
->i_sb
->s_op
;
541 BUG_ON(!(inode
->i_state
& I_FREEING
));
542 BUG_ON(!list_empty(&inode
->i_lru
));
544 if (!list_empty(&inode
->i_io_list
))
545 inode_io_list_del(inode
);
547 inode_sb_list_del(inode
);
550 * Wait for flusher thread to be done with the inode so that filesystem
551 * does not start destroying it while writeback is still running. Since
552 * the inode has I_FREEING set, flusher thread won't start new work on
553 * the inode. We just have to wait for running writeback to finish.
555 inode_wait_for_writeback(inode
);
557 if (op
->evict_inode
) {
558 op
->evict_inode(inode
);
560 truncate_inode_pages_final(&inode
->i_data
);
563 if (S_ISBLK(inode
->i_mode
) && inode
->i_bdev
)
565 if (S_ISCHR(inode
->i_mode
) && inode
->i_cdev
)
568 remove_inode_hash(inode
);
570 spin_lock(&inode
->i_lock
);
571 wake_up_bit(&inode
->i_state
, __I_NEW
);
572 BUG_ON(inode
->i_state
!= (I_FREEING
| I_CLEAR
));
573 spin_unlock(&inode
->i_lock
);
575 destroy_inode(inode
);
579 * dispose_list - dispose of the contents of a local list
580 * @head: the head of the list to free
582 * Dispose-list gets a local list with local inodes in it, so it doesn't
583 * need to worry about list corruption and SMP locks.
585 static void dispose_list(struct list_head
*head
)
587 while (!list_empty(head
)) {
590 inode
= list_first_entry(head
, struct inode
, i_lru
);
591 list_del_init(&inode
->i_lru
);
599 * evict_inodes - evict all evictable inodes for a superblock
600 * @sb: superblock to operate on
602 * Make sure that no inodes with zero refcount are retained. This is
603 * called by superblock shutdown after having SB_ACTIVE flag removed,
604 * so any inode reaching zero refcount during or after that call will
605 * be immediately evicted.
607 void evict_inodes(struct super_block
*sb
)
609 struct inode
*inode
, *next
;
613 spin_lock(&sb
->s_inode_list_lock
);
614 list_for_each_entry_safe(inode
, next
, &sb
->s_inodes
, i_sb_list
) {
615 if (atomic_read(&inode
->i_count
))
618 spin_lock(&inode
->i_lock
);
619 if (inode
->i_state
& (I_NEW
| I_FREEING
| I_WILL_FREE
)) {
620 spin_unlock(&inode
->i_lock
);
624 inode
->i_state
|= I_FREEING
;
625 inode_lru_list_del(inode
);
626 spin_unlock(&inode
->i_lock
);
627 list_add(&inode
->i_lru
, &dispose
);
630 * We can have a ton of inodes to evict at unmount time given
631 * enough memory, check to see if we need to go to sleep for a
632 * bit so we don't livelock.
634 if (need_resched()) {
635 spin_unlock(&sb
->s_inode_list_lock
);
637 dispose_list(&dispose
);
641 spin_unlock(&sb
->s_inode_list_lock
);
643 dispose_list(&dispose
);
645 EXPORT_SYMBOL_GPL(evict_inodes
);
648 * invalidate_inodes - attempt to free all inodes on a superblock
649 * @sb: superblock to operate on
650 * @kill_dirty: flag to guide handling of dirty inodes
652 * Attempts to free all inodes for a given superblock. If there were any
653 * busy inodes return a non-zero value, else zero.
654 * If @kill_dirty is set, discard dirty inodes too, otherwise treat
657 int invalidate_inodes(struct super_block
*sb
, bool kill_dirty
)
660 struct inode
*inode
, *next
;
663 spin_lock(&sb
->s_inode_list_lock
);
664 list_for_each_entry_safe(inode
, next
, &sb
->s_inodes
, i_sb_list
) {
665 spin_lock(&inode
->i_lock
);
666 if (inode
->i_state
& (I_NEW
| I_FREEING
| I_WILL_FREE
)) {
667 spin_unlock(&inode
->i_lock
);
670 if (inode
->i_state
& I_DIRTY_ALL
&& !kill_dirty
) {
671 spin_unlock(&inode
->i_lock
);
675 if (atomic_read(&inode
->i_count
)) {
676 spin_unlock(&inode
->i_lock
);
681 inode
->i_state
|= I_FREEING
;
682 inode_lru_list_del(inode
);
683 spin_unlock(&inode
->i_lock
);
684 list_add(&inode
->i_lru
, &dispose
);
686 spin_unlock(&sb
->s_inode_list_lock
);
688 dispose_list(&dispose
);
694 * Isolate the inode from the LRU in preparation for freeing it.
696 * Any inodes which are pinned purely because of attached pagecache have their
697 * pagecache removed. If the inode has metadata buffers attached to
698 * mapping->private_list then try to remove them.
700 * If the inode has the I_REFERENCED flag set, then it means that it has been
701 * used recently - the flag is set in iput_final(). When we encounter such an
702 * inode, clear the flag and move it to the back of the LRU so it gets another
703 * pass through the LRU before it gets reclaimed. This is necessary because of
704 * the fact we are doing lazy LRU updates to minimise lock contention so the
705 * LRU does not have strict ordering. Hence we don't want to reclaim inodes
706 * with this flag set because they are the inodes that are out of order.
708 static enum lru_status
inode_lru_isolate(struct list_head
*item
,
709 struct list_lru_one
*lru
, spinlock_t
*lru_lock
, void *arg
)
711 struct list_head
*freeable
= arg
;
712 struct inode
*inode
= container_of(item
, struct inode
, i_lru
);
715 * we are inverting the lru lock/inode->i_lock here, so use a trylock.
716 * If we fail to get the lock, just skip it.
718 if (!spin_trylock(&inode
->i_lock
))
722 * Referenced or dirty inodes are still in use. Give them another pass
723 * through the LRU as we canot reclaim them now.
725 if (atomic_read(&inode
->i_count
) ||
726 (inode
->i_state
& ~I_REFERENCED
)) {
727 list_lru_isolate(lru
, &inode
->i_lru
);
728 spin_unlock(&inode
->i_lock
);
729 this_cpu_dec(nr_unused
);
734 * Recently referenced inodes and inodes with many attached pages
737 if (inode
->i_state
& I_REFERENCED
|| inode
->i_data
.nrpages
> 1) {
738 inode
->i_state
&= ~I_REFERENCED
;
739 spin_unlock(&inode
->i_lock
);
743 if (inode_has_buffers(inode
) || inode
->i_data
.nrpages
) {
745 spin_unlock(&inode
->i_lock
);
746 spin_unlock(lru_lock
);
747 if (remove_inode_buffers(inode
)) {
749 reap
= invalidate_mapping_pages(&inode
->i_data
, 0, -1);
750 if (current_is_kswapd())
751 __count_vm_events(KSWAPD_INODESTEAL
, reap
);
753 __count_vm_events(PGINODESTEAL
, reap
);
754 if (current
->reclaim_state
)
755 current
->reclaim_state
->reclaimed_slab
+= reap
;
762 WARN_ON(inode
->i_state
& I_NEW
);
763 inode
->i_state
|= I_FREEING
;
764 list_lru_isolate_move(lru
, &inode
->i_lru
, freeable
);
765 spin_unlock(&inode
->i_lock
);
767 this_cpu_dec(nr_unused
);
772 * Walk the superblock inode LRU for freeable inodes and attempt to free them.
773 * This is called from the superblock shrinker function with a number of inodes
774 * to trim from the LRU. Inodes to be freed are moved to a temporary list and
775 * then are freed outside inode_lock by dispose_list().
777 long prune_icache_sb(struct super_block
*sb
, struct shrink_control
*sc
)
782 freed
= list_lru_shrink_walk(&sb
->s_inode_lru
, sc
,
783 inode_lru_isolate
, &freeable
);
784 dispose_list(&freeable
);
788 static void __wait_on_freeing_inode(struct inode
*inode
);
790 * Called with the inode lock held.
792 static struct inode
*find_inode(struct super_block
*sb
,
793 struct hlist_head
*head
,
794 int (*test
)(struct inode
*, void *),
797 struct inode
*inode
= NULL
;
800 hlist_for_each_entry(inode
, head
, i_hash
) {
801 if (inode
->i_sb
!= sb
)
803 if (!test(inode
, data
))
805 spin_lock(&inode
->i_lock
);
806 if (inode
->i_state
& (I_FREEING
|I_WILL_FREE
)) {
807 __wait_on_freeing_inode(inode
);
810 if (unlikely(inode
->i_state
& I_CREATING
)) {
811 spin_unlock(&inode
->i_lock
);
812 return ERR_PTR(-ESTALE
);
815 spin_unlock(&inode
->i_lock
);
822 * find_inode_fast is the fast path version of find_inode, see the comment at
823 * iget_locked for details.
825 static struct inode
*find_inode_fast(struct super_block
*sb
,
826 struct hlist_head
*head
, unsigned long ino
)
828 struct inode
*inode
= NULL
;
831 hlist_for_each_entry(inode
, head
, i_hash
) {
832 if (inode
->i_ino
!= ino
)
834 if (inode
->i_sb
!= sb
)
836 spin_lock(&inode
->i_lock
);
837 if (inode
->i_state
& (I_FREEING
|I_WILL_FREE
)) {
838 __wait_on_freeing_inode(inode
);
841 if (unlikely(inode
->i_state
& I_CREATING
)) {
842 spin_unlock(&inode
->i_lock
);
843 return ERR_PTR(-ESTALE
);
846 spin_unlock(&inode
->i_lock
);
853 * Each cpu owns a range of LAST_INO_BATCH numbers.
854 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
855 * to renew the exhausted range.
857 * This does not significantly increase overflow rate because every CPU can
858 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
859 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
860 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
861 * overflow rate by 2x, which does not seem too significant.
863 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
864 * error if st_ino won't fit in target struct field. Use 32bit counter
865 * here to attempt to avoid that.
867 #define LAST_INO_BATCH 1024
868 static DEFINE_PER_CPU(unsigned int, last_ino
);
870 unsigned int get_next_ino(void)
872 unsigned int *p
= &get_cpu_var(last_ino
);
873 unsigned int res
= *p
;
876 if (unlikely((res
& (LAST_INO_BATCH
-1)) == 0)) {
877 static atomic_t shared_last_ino
;
878 int next
= atomic_add_return(LAST_INO_BATCH
, &shared_last_ino
);
880 res
= next
- LAST_INO_BATCH
;
885 /* get_next_ino should not provide a 0 inode number */
889 put_cpu_var(last_ino
);
892 EXPORT_SYMBOL(get_next_ino
);
895 * new_inode_pseudo - obtain an inode
898 * Allocates a new inode for given superblock.
899 * Inode wont be chained in superblock s_inodes list
901 * - fs can't be unmount
902 * - quotas, fsnotify, writeback can't work
904 struct inode
*new_inode_pseudo(struct super_block
*sb
)
906 struct inode
*inode
= alloc_inode(sb
);
909 spin_lock(&inode
->i_lock
);
911 spin_unlock(&inode
->i_lock
);
912 INIT_LIST_HEAD(&inode
->i_sb_list
);
918 * new_inode - obtain an inode
921 * Allocates a new inode for given superblock. The default gfp_mask
922 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
923 * If HIGHMEM pages are unsuitable or it is known that pages allocated
924 * for the page cache are not reclaimable or migratable,
925 * mapping_set_gfp_mask() must be called with suitable flags on the
926 * newly created inode's mapping
929 struct inode
*new_inode(struct super_block
*sb
)
933 spin_lock_prefetch(&sb
->s_inode_list_lock
);
935 inode
= new_inode_pseudo(sb
);
937 inode_sb_list_add(inode
);
940 EXPORT_SYMBOL(new_inode
);
942 #ifdef CONFIG_DEBUG_LOCK_ALLOC
943 void lockdep_annotate_inode_mutex_key(struct inode
*inode
)
945 if (S_ISDIR(inode
->i_mode
)) {
946 struct file_system_type
*type
= inode
->i_sb
->s_type
;
948 /* Set new key only if filesystem hasn't already changed it */
949 if (lockdep_match_class(&inode
->i_rwsem
, &type
->i_mutex_key
)) {
951 * ensure nobody is actually holding i_mutex
953 // mutex_destroy(&inode->i_mutex);
954 init_rwsem(&inode
->i_rwsem
);
955 lockdep_set_class(&inode
->i_rwsem
,
956 &type
->i_mutex_dir_key
);
960 EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key
);
964 * unlock_new_inode - clear the I_NEW state and wake up any waiters
965 * @inode: new inode to unlock
967 * Called when the inode is fully initialised to clear the new state of the
968 * inode and wake up anyone waiting for the inode to finish initialisation.
970 void unlock_new_inode(struct inode
*inode
)
972 lockdep_annotate_inode_mutex_key(inode
);
973 spin_lock(&inode
->i_lock
);
974 WARN_ON(!(inode
->i_state
& I_NEW
));
975 inode
->i_state
&= ~I_NEW
& ~I_CREATING
;
977 wake_up_bit(&inode
->i_state
, __I_NEW
);
978 spin_unlock(&inode
->i_lock
);
980 EXPORT_SYMBOL(unlock_new_inode
);
982 void discard_new_inode(struct inode
*inode
)
984 lockdep_annotate_inode_mutex_key(inode
);
985 spin_lock(&inode
->i_lock
);
986 WARN_ON(!(inode
->i_state
& I_NEW
));
987 inode
->i_state
&= ~I_NEW
;
989 wake_up_bit(&inode
->i_state
, __I_NEW
);
990 spin_unlock(&inode
->i_lock
);
993 EXPORT_SYMBOL(discard_new_inode
);
996 * lock_two_nondirectories - take two i_mutexes on non-directory objects
998 * Lock any non-NULL argument that is not a directory.
999 * Zero, one or two objects may be locked by this function.
1001 * @inode1: first inode to lock
1002 * @inode2: second inode to lock
1004 void lock_two_nondirectories(struct inode
*inode1
, struct inode
*inode2
)
1006 if (inode1
> inode2
)
1007 swap(inode1
, inode2
);
1009 if (inode1
&& !S_ISDIR(inode1
->i_mode
))
1011 if (inode2
&& !S_ISDIR(inode2
->i_mode
) && inode2
!= inode1
)
1012 inode_lock_nested(inode2
, I_MUTEX_NONDIR2
);
1014 EXPORT_SYMBOL(lock_two_nondirectories
);
1017 * unlock_two_nondirectories - release locks from lock_two_nondirectories()
1018 * @inode1: first inode to unlock
1019 * @inode2: second inode to unlock
1021 void unlock_two_nondirectories(struct inode
*inode1
, struct inode
*inode2
)
1023 if (inode1
&& !S_ISDIR(inode1
->i_mode
))
1024 inode_unlock(inode1
);
1025 if (inode2
&& !S_ISDIR(inode2
->i_mode
) && inode2
!= inode1
)
1026 inode_unlock(inode2
);
1028 EXPORT_SYMBOL(unlock_two_nondirectories
);
1031 * inode_insert5 - obtain an inode from a mounted file system
1032 * @inode: pre-allocated inode to use for insert to cache
1033 * @hashval: hash value (usually inode number) to get
1034 * @test: callback used for comparisons between inodes
1035 * @set: callback used to initialize a new struct inode
1036 * @data: opaque data pointer to pass to @test and @set
1038 * Search for the inode specified by @hashval and @data in the inode cache,
1039 * and if present it is return it with an increased reference count. This is
1040 * a variant of iget5_locked() for callers that don't want to fail on memory
1041 * allocation of inode.
1043 * If the inode is not in cache, insert the pre-allocated inode to cache and
1044 * return it locked, hashed, and with the I_NEW flag set. The file system gets
1045 * to fill it in before unlocking it via unlock_new_inode().
1047 * Note both @test and @set are called with the inode_hash_lock held, so can't
1050 struct inode
*inode_insert5(struct inode
*inode
, unsigned long hashval
,
1051 int (*test
)(struct inode
*, void *),
1052 int (*set
)(struct inode
*, void *), void *data
)
1054 struct hlist_head
*head
= inode_hashtable
+ hash(inode
->i_sb
, hashval
);
1056 bool creating
= inode
->i_state
& I_CREATING
;
1059 spin_lock(&inode_hash_lock
);
1060 old
= find_inode(inode
->i_sb
, head
, test
, data
);
1061 if (unlikely(old
)) {
1063 * Uhhuh, somebody else created the same inode under us.
1064 * Use the old inode instead of the preallocated one.
1066 spin_unlock(&inode_hash_lock
);
1070 if (unlikely(inode_unhashed(old
))) {
1077 if (set
&& unlikely(set(inode
, data
))) {
1083 * Return the locked inode with I_NEW set, the
1084 * caller is responsible for filling in the contents
1086 spin_lock(&inode
->i_lock
);
1087 inode
->i_state
|= I_NEW
;
1088 hlist_add_head(&inode
->i_hash
, head
);
1089 spin_unlock(&inode
->i_lock
);
1091 inode_sb_list_add(inode
);
1093 spin_unlock(&inode_hash_lock
);
1097 EXPORT_SYMBOL(inode_insert5
);
1100 * iget5_locked - obtain an inode from a mounted file system
1101 * @sb: super block of file system
1102 * @hashval: hash value (usually inode number) to get
1103 * @test: callback used for comparisons between inodes
1104 * @set: callback used to initialize a new struct inode
1105 * @data: opaque data pointer to pass to @test and @set
1107 * Search for the inode specified by @hashval and @data in the inode cache,
1108 * and if present it is return it with an increased reference count. This is
1109 * a generalized version of iget_locked() for file systems where the inode
1110 * number is not sufficient for unique identification of an inode.
1112 * If the inode is not in cache, allocate a new inode and return it locked,
1113 * hashed, and with the I_NEW flag set. The file system gets to fill it in
1114 * before unlocking it via unlock_new_inode().
1116 * Note both @test and @set are called with the inode_hash_lock held, so can't
1119 struct inode
*iget5_locked(struct super_block
*sb
, unsigned long hashval
,
1120 int (*test
)(struct inode
*, void *),
1121 int (*set
)(struct inode
*, void *), void *data
)
1123 struct inode
*inode
= ilookup5(sb
, hashval
, test
, data
);
1126 struct inode
*new = alloc_inode(sb
);
1130 inode
= inode_insert5(new, hashval
, test
, set
, data
);
1131 if (unlikely(inode
!= new))
1137 EXPORT_SYMBOL(iget5_locked
);
1140 * iget_locked - obtain an inode from a mounted file system
1141 * @sb: super block of file system
1142 * @ino: inode number to get
1144 * Search for the inode specified by @ino in the inode cache and if present
1145 * return it with an increased reference count. This is for file systems
1146 * where the inode number is sufficient for unique identification of an inode.
1148 * If the inode is not in cache, allocate a new inode and return it locked,
1149 * hashed, and with the I_NEW flag set. The file system gets to fill it in
1150 * before unlocking it via unlock_new_inode().
1152 struct inode
*iget_locked(struct super_block
*sb
, unsigned long ino
)
1154 struct hlist_head
*head
= inode_hashtable
+ hash(sb
, ino
);
1155 struct inode
*inode
;
1157 spin_lock(&inode_hash_lock
);
1158 inode
= find_inode_fast(sb
, head
, ino
);
1159 spin_unlock(&inode_hash_lock
);
1163 wait_on_inode(inode
);
1164 if (unlikely(inode_unhashed(inode
))) {
1171 inode
= alloc_inode(sb
);
1175 spin_lock(&inode_hash_lock
);
1176 /* We released the lock, so.. */
1177 old
= find_inode_fast(sb
, head
, ino
);
1180 spin_lock(&inode
->i_lock
);
1181 inode
->i_state
= I_NEW
;
1182 hlist_add_head(&inode
->i_hash
, head
);
1183 spin_unlock(&inode
->i_lock
);
1184 inode_sb_list_add(inode
);
1185 spin_unlock(&inode_hash_lock
);
1187 /* Return the locked inode with I_NEW set, the
1188 * caller is responsible for filling in the contents
1194 * Uhhuh, somebody else created the same inode under
1195 * us. Use the old inode instead of the one we just
1198 spin_unlock(&inode_hash_lock
);
1199 destroy_inode(inode
);
1203 wait_on_inode(inode
);
1204 if (unlikely(inode_unhashed(inode
))) {
1211 EXPORT_SYMBOL(iget_locked
);
1214 * search the inode cache for a matching inode number.
1215 * If we find one, then the inode number we are trying to
1216 * allocate is not unique and so we should not use it.
1218 * Returns 1 if the inode number is unique, 0 if it is not.
1220 static int test_inode_iunique(struct super_block
*sb
, unsigned long ino
)
1222 struct hlist_head
*b
= inode_hashtable
+ hash(sb
, ino
);
1223 struct inode
*inode
;
1225 spin_lock(&inode_hash_lock
);
1226 hlist_for_each_entry(inode
, b
, i_hash
) {
1227 if (inode
->i_ino
== ino
&& inode
->i_sb
== sb
) {
1228 spin_unlock(&inode_hash_lock
);
1232 spin_unlock(&inode_hash_lock
);
1238 * iunique - get a unique inode number
1240 * @max_reserved: highest reserved inode number
1242 * Obtain an inode number that is unique on the system for a given
1243 * superblock. This is used by file systems that have no natural
1244 * permanent inode numbering system. An inode number is returned that
1245 * is higher than the reserved limit but unique.
1248 * With a large number of inodes live on the file system this function
1249 * currently becomes quite slow.
1251 ino_t
iunique(struct super_block
*sb
, ino_t max_reserved
)
1254 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1255 * error if st_ino won't fit in target struct field. Use 32bit counter
1256 * here to attempt to avoid that.
1258 static DEFINE_SPINLOCK(iunique_lock
);
1259 static unsigned int counter
;
1262 spin_lock(&iunique_lock
);
1264 if (counter
<= max_reserved
)
1265 counter
= max_reserved
+ 1;
1267 } while (!test_inode_iunique(sb
, res
));
1268 spin_unlock(&iunique_lock
);
1272 EXPORT_SYMBOL(iunique
);
1274 struct inode
*igrab(struct inode
*inode
)
1276 spin_lock(&inode
->i_lock
);
1277 if (!(inode
->i_state
& (I_FREEING
|I_WILL_FREE
))) {
1279 spin_unlock(&inode
->i_lock
);
1281 spin_unlock(&inode
->i_lock
);
1283 * Handle the case where s_op->clear_inode is not been
1284 * called yet, and somebody is calling igrab
1285 * while the inode is getting freed.
1291 EXPORT_SYMBOL(igrab
);
1294 * ilookup5_nowait - search for an inode in the inode cache
1295 * @sb: super block of file system to search
1296 * @hashval: hash value (usually inode number) to search for
1297 * @test: callback used for comparisons between inodes
1298 * @data: opaque data pointer to pass to @test
1300 * Search for the inode specified by @hashval and @data in the inode cache.
1301 * If the inode is in the cache, the inode is returned with an incremented
1304 * Note: I_NEW is not waited upon so you have to be very careful what you do
1305 * with the returned inode. You probably should be using ilookup5() instead.
1307 * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1309 struct inode
*ilookup5_nowait(struct super_block
*sb
, unsigned long hashval
,
1310 int (*test
)(struct inode
*, void *), void *data
)
1312 struct hlist_head
*head
= inode_hashtable
+ hash(sb
, hashval
);
1313 struct inode
*inode
;
1315 spin_lock(&inode_hash_lock
);
1316 inode
= find_inode(sb
, head
, test
, data
);
1317 spin_unlock(&inode_hash_lock
);
1319 return IS_ERR(inode
) ? NULL
: inode
;
1321 EXPORT_SYMBOL(ilookup5_nowait
);
1324 * ilookup5 - search for an inode in the inode cache
1325 * @sb: super block of file system to search
1326 * @hashval: hash value (usually inode number) to search for
1327 * @test: callback used for comparisons between inodes
1328 * @data: opaque data pointer to pass to @test
1330 * Search for the inode specified by @hashval and @data in the inode cache,
1331 * and if the inode is in the cache, return the inode with an incremented
1332 * reference count. Waits on I_NEW before returning the inode.
1333 * returned with an incremented reference count.
1335 * This is a generalized version of ilookup() for file systems where the
1336 * inode number is not sufficient for unique identification of an inode.
1338 * Note: @test is called with the inode_hash_lock held, so can't sleep.
1340 struct inode
*ilookup5(struct super_block
*sb
, unsigned long hashval
,
1341 int (*test
)(struct inode
*, void *), void *data
)
1343 struct inode
*inode
;
1345 inode
= ilookup5_nowait(sb
, hashval
, test
, data
);
1347 wait_on_inode(inode
);
1348 if (unlikely(inode_unhashed(inode
))) {
1355 EXPORT_SYMBOL(ilookup5
);
1358 * ilookup - search for an inode in the inode cache
1359 * @sb: super block of file system to search
1360 * @ino: inode number to search for
1362 * Search for the inode @ino in the inode cache, and if the inode is in the
1363 * cache, the inode is returned with an incremented reference count.
1365 struct inode
*ilookup(struct super_block
*sb
, unsigned long ino
)
1367 struct hlist_head
*head
= inode_hashtable
+ hash(sb
, ino
);
1368 struct inode
*inode
;
1370 spin_lock(&inode_hash_lock
);
1371 inode
= find_inode_fast(sb
, head
, ino
);
1372 spin_unlock(&inode_hash_lock
);
1377 wait_on_inode(inode
);
1378 if (unlikely(inode_unhashed(inode
))) {
1385 EXPORT_SYMBOL(ilookup
);
1388 * find_inode_nowait - find an inode in the inode cache
1389 * @sb: super block of file system to search
1390 * @hashval: hash value (usually inode number) to search for
1391 * @match: callback used for comparisons between inodes
1392 * @data: opaque data pointer to pass to @match
1394 * Search for the inode specified by @hashval and @data in the inode
1395 * cache, where the helper function @match will return 0 if the inode
1396 * does not match, 1 if the inode does match, and -1 if the search
1397 * should be stopped. The @match function must be responsible for
1398 * taking the i_lock spin_lock and checking i_state for an inode being
1399 * freed or being initialized, and incrementing the reference count
1400 * before returning 1. It also must not sleep, since it is called with
1401 * the inode_hash_lock spinlock held.
1403 * This is a even more generalized version of ilookup5() when the
1404 * function must never block --- find_inode() can block in
1405 * __wait_on_freeing_inode() --- or when the caller can not increment
1406 * the reference count because the resulting iput() might cause an
1407 * inode eviction. The tradeoff is that the @match funtion must be
1408 * very carefully implemented.
1410 struct inode
*find_inode_nowait(struct super_block
*sb
,
1411 unsigned long hashval
,
1412 int (*match
)(struct inode
*, unsigned long,
1416 struct hlist_head
*head
= inode_hashtable
+ hash(sb
, hashval
);
1417 struct inode
*inode
, *ret_inode
= NULL
;
1420 spin_lock(&inode_hash_lock
);
1421 hlist_for_each_entry(inode
, head
, i_hash
) {
1422 if (inode
->i_sb
!= sb
)
1424 mval
= match(inode
, hashval
, data
);
1432 spin_unlock(&inode_hash_lock
);
1435 EXPORT_SYMBOL(find_inode_nowait
);
1437 int insert_inode_locked(struct inode
*inode
)
1439 struct super_block
*sb
= inode
->i_sb
;
1440 ino_t ino
= inode
->i_ino
;
1441 struct hlist_head
*head
= inode_hashtable
+ hash(sb
, ino
);
1444 struct inode
*old
= NULL
;
1445 spin_lock(&inode_hash_lock
);
1446 hlist_for_each_entry(old
, head
, i_hash
) {
1447 if (old
->i_ino
!= ino
)
1449 if (old
->i_sb
!= sb
)
1451 spin_lock(&old
->i_lock
);
1452 if (old
->i_state
& (I_FREEING
|I_WILL_FREE
)) {
1453 spin_unlock(&old
->i_lock
);
1459 spin_lock(&inode
->i_lock
);
1460 inode
->i_state
|= I_NEW
| I_CREATING
;
1461 hlist_add_head(&inode
->i_hash
, head
);
1462 spin_unlock(&inode
->i_lock
);
1463 spin_unlock(&inode_hash_lock
);
1466 if (unlikely(old
->i_state
& I_CREATING
)) {
1467 spin_unlock(&old
->i_lock
);
1468 spin_unlock(&inode_hash_lock
);
1472 spin_unlock(&old
->i_lock
);
1473 spin_unlock(&inode_hash_lock
);
1475 if (unlikely(!inode_unhashed(old
))) {
1482 EXPORT_SYMBOL(insert_inode_locked
);
1484 int insert_inode_locked4(struct inode
*inode
, unsigned long hashval
,
1485 int (*test
)(struct inode
*, void *), void *data
)
1489 inode
->i_state
|= I_CREATING
;
1490 old
= inode_insert5(inode
, hashval
, test
, NULL
, data
);
1498 EXPORT_SYMBOL(insert_inode_locked4
);
1501 int generic_delete_inode(struct inode
*inode
)
1505 EXPORT_SYMBOL(generic_delete_inode
);
1508 * Called when we're dropping the last reference
1511 * Call the FS "drop_inode()" function, defaulting to
1512 * the legacy UNIX filesystem behaviour. If it tells
1513 * us to evict inode, do so. Otherwise, retain inode
1514 * in cache if fs is alive, sync and evict if fs is
1517 static void iput_final(struct inode
*inode
)
1519 struct super_block
*sb
= inode
->i_sb
;
1520 const struct super_operations
*op
= inode
->i_sb
->s_op
;
1523 WARN_ON(inode
->i_state
& I_NEW
);
1526 drop
= op
->drop_inode(inode
);
1528 drop
= generic_drop_inode(inode
);
1530 if (!drop
&& (sb
->s_flags
& SB_ACTIVE
)) {
1531 inode_add_lru(inode
);
1532 spin_unlock(&inode
->i_lock
);
1537 inode
->i_state
|= I_WILL_FREE
;
1538 spin_unlock(&inode
->i_lock
);
1539 write_inode_now(inode
, 1);
1540 spin_lock(&inode
->i_lock
);
1541 WARN_ON(inode
->i_state
& I_NEW
);
1542 inode
->i_state
&= ~I_WILL_FREE
;
1545 inode
->i_state
|= I_FREEING
;
1546 if (!list_empty(&inode
->i_lru
))
1547 inode_lru_list_del(inode
);
1548 spin_unlock(&inode
->i_lock
);
1554 * iput - put an inode
1555 * @inode: inode to put
1557 * Puts an inode, dropping its usage count. If the inode use count hits
1558 * zero, the inode is then freed and may also be destroyed.
1560 * Consequently, iput() can sleep.
1562 void iput(struct inode
*inode
)
1566 BUG_ON(inode
->i_state
& I_CLEAR
);
1568 if (atomic_dec_and_lock(&inode
->i_count
, &inode
->i_lock
)) {
1569 if (inode
->i_nlink
&& (inode
->i_state
& I_DIRTY_TIME
)) {
1570 atomic_inc(&inode
->i_count
);
1571 spin_unlock(&inode
->i_lock
);
1572 trace_writeback_lazytime_iput(inode
);
1573 mark_inode_dirty_sync(inode
);
1579 EXPORT_SYMBOL(iput
);
1582 * bmap - find a block number in a file
1583 * @inode: inode of file
1584 * @block: block to find
1586 * Returns the block number on the device holding the inode that
1587 * is the disk block number for the block of the file requested.
1588 * That is, asked for block 4 of inode 1 the function will return the
1589 * disk block relative to the disk start that holds that block of the
1592 sector_t
bmap(struct inode
*inode
, sector_t block
)
1595 if (inode
->i_mapping
->a_ops
->bmap
)
1596 res
= inode
->i_mapping
->a_ops
->bmap(inode
->i_mapping
, block
);
1599 EXPORT_SYMBOL(bmap
);
1602 * With relative atime, only update atime if the previous atime is
1603 * earlier than either the ctime or mtime or if at least a day has
1604 * passed since the last atime update.
1606 static int relatime_need_update(struct vfsmount
*mnt
, struct inode
*inode
,
1607 struct timespec now
)
1610 if (!(mnt
->mnt_flags
& MNT_RELATIME
))
1613 * Is mtime younger than atime? If yes, update atime:
1615 if (timespec64_compare(&inode
->i_mtime
, &inode
->i_atime
) >= 0)
1618 * Is ctime younger than atime? If yes, update atime:
1620 if (timespec64_compare(&inode
->i_ctime
, &inode
->i_atime
) >= 0)
1624 * Is the previous atime value older than a day? If yes,
1627 if ((long)(now
.tv_sec
- inode
->i_atime
.tv_sec
) >= 24*60*60)
1630 * Good, we can skip the atime update:
1635 int generic_update_time(struct inode
*inode
, struct timespec64
*time
, int flags
)
1637 int iflags
= I_DIRTY_TIME
;
1640 if (flags
& S_ATIME
)
1641 inode
->i_atime
= *time
;
1642 if (flags
& S_VERSION
)
1643 dirty
= inode_maybe_inc_iversion(inode
, false);
1644 if (flags
& S_CTIME
)
1645 inode
->i_ctime
= *time
;
1646 if (flags
& S_MTIME
)
1647 inode
->i_mtime
= *time
;
1648 if ((flags
& (S_ATIME
| S_CTIME
| S_MTIME
)) &&
1649 !(inode
->i_sb
->s_flags
& SB_LAZYTIME
))
1653 iflags
|= I_DIRTY_SYNC
;
1654 __mark_inode_dirty(inode
, iflags
);
1657 EXPORT_SYMBOL(generic_update_time
);
1660 * This does the actual work of updating an inodes time or version. Must have
1661 * had called mnt_want_write() before calling this.
1663 static int update_time(struct inode
*inode
, struct timespec64
*time
, int flags
)
1665 int (*update_time
)(struct inode
*, struct timespec64
*, int);
1667 update_time
= inode
->i_op
->update_time
? inode
->i_op
->update_time
:
1668 generic_update_time
;
1670 return update_time(inode
, time
, flags
);
1674 * touch_atime - update the access time
1675 * @path: the &struct path to update
1676 * @inode: inode to update
1678 * Update the accessed time on an inode and mark it for writeback.
1679 * This function automatically handles read only file systems and media,
1680 * as well as the "noatime" flag and inode specific "noatime" markers.
1682 bool atime_needs_update(const struct path
*path
, struct inode
*inode
)
1684 struct vfsmount
*mnt
= path
->mnt
;
1685 struct timespec64 now
;
1687 if (inode
->i_flags
& S_NOATIME
)
1690 /* Atime updates will likely cause i_uid and i_gid to be written
1691 * back improprely if their true value is unknown to the vfs.
1693 if (HAS_UNMAPPED_ID(inode
))
1696 if (IS_NOATIME(inode
))
1698 if ((inode
->i_sb
->s_flags
& SB_NODIRATIME
) && S_ISDIR(inode
->i_mode
))
1701 if (mnt
->mnt_flags
& MNT_NOATIME
)
1703 if ((mnt
->mnt_flags
& MNT_NODIRATIME
) && S_ISDIR(inode
->i_mode
))
1706 now
= current_time(inode
);
1708 if (!relatime_need_update(mnt
, inode
, timespec64_to_timespec(now
)))
1711 if (timespec64_equal(&inode
->i_atime
, &now
))
1717 void touch_atime(const struct path
*path
)
1719 struct vfsmount
*mnt
= path
->mnt
;
1720 struct inode
*inode
= d_inode(path
->dentry
);
1721 struct timespec64 now
;
1723 if (!atime_needs_update(path
, inode
))
1726 if (!sb_start_write_trylock(inode
->i_sb
))
1729 if (__mnt_want_write(mnt
) != 0)
1732 * File systems can error out when updating inodes if they need to
1733 * allocate new space to modify an inode (such is the case for
1734 * Btrfs), but since we touch atime while walking down the path we
1735 * really don't care if we failed to update the atime of the file,
1736 * so just ignore the return value.
1737 * We may also fail on filesystems that have the ability to make parts
1738 * of the fs read only, e.g. subvolumes in Btrfs.
1740 now
= current_time(inode
);
1741 update_time(inode
, &now
, S_ATIME
);
1742 __mnt_drop_write(mnt
);
1744 sb_end_write(inode
->i_sb
);
1746 EXPORT_SYMBOL(touch_atime
);
1749 * The logic we want is
1751 * if suid or (sgid and xgrp)
1754 int should_remove_suid(struct dentry
*dentry
)
1756 umode_t mode
= d_inode(dentry
)->i_mode
;
1759 /* suid always must be killed */
1760 if (unlikely(mode
& S_ISUID
))
1761 kill
= ATTR_KILL_SUID
;
1764 * sgid without any exec bits is just a mandatory locking mark; leave
1765 * it alone. If some exec bits are set, it's a real sgid; kill it.
1767 if (unlikely((mode
& S_ISGID
) && (mode
& S_IXGRP
)))
1768 kill
|= ATTR_KILL_SGID
;
1770 if (unlikely(kill
&& !capable(CAP_FSETID
) && S_ISREG(mode
)))
1775 EXPORT_SYMBOL(should_remove_suid
);
1778 * Return mask of changes for notify_change() that need to be done as a
1779 * response to write or truncate. Return 0 if nothing has to be changed.
1780 * Negative value on error (change should be denied).
1782 int dentry_needs_remove_privs(struct dentry
*dentry
)
1784 struct inode
*inode
= d_inode(dentry
);
1788 if (IS_NOSEC(inode
))
1791 mask
= should_remove_suid(dentry
);
1792 ret
= security_inode_need_killpriv(dentry
);
1796 mask
|= ATTR_KILL_PRIV
;
1800 static int __remove_privs(struct dentry
*dentry
, int kill
)
1802 struct iattr newattrs
;
1804 newattrs
.ia_valid
= ATTR_FORCE
| kill
;
1806 * Note we call this on write, so notify_change will not
1807 * encounter any conflicting delegations:
1809 return notify_change(dentry
, &newattrs
, NULL
);
1813 * Remove special file priviledges (suid, capabilities) when file is written
1816 int file_remove_privs(struct file
*file
)
1818 struct dentry
*dentry
= file_dentry(file
);
1819 struct inode
*inode
= file_inode(file
);
1823 /* Fast path for nothing security related */
1824 if (IS_NOSEC(inode
))
1827 kill
= dentry_needs_remove_privs(dentry
);
1831 error
= __remove_privs(dentry
, kill
);
1833 inode_has_no_xattr(inode
);
1837 EXPORT_SYMBOL(file_remove_privs
);
1840 * file_update_time - update mtime and ctime time
1841 * @file: file accessed
1843 * Update the mtime and ctime members of an inode and mark the inode
1844 * for writeback. Note that this function is meant exclusively for
1845 * usage in the file write path of filesystems, and filesystems may
1846 * choose to explicitly ignore update via this function with the
1847 * S_NOCMTIME inode flag, e.g. for network filesystem where these
1848 * timestamps are handled by the server. This can return an error for
1849 * file systems who need to allocate space in order to update an inode.
1852 int file_update_time(struct file
*file
)
1854 struct inode
*inode
= file_inode(file
);
1855 struct timespec64 now
;
1859 /* First try to exhaust all avenues to not sync */
1860 if (IS_NOCMTIME(inode
))
1863 now
= current_time(inode
);
1864 if (!timespec64_equal(&inode
->i_mtime
, &now
))
1867 if (!timespec64_equal(&inode
->i_ctime
, &now
))
1870 if (IS_I_VERSION(inode
) && inode_iversion_need_inc(inode
))
1871 sync_it
|= S_VERSION
;
1876 /* Finally allowed to write? Takes lock. */
1877 if (__mnt_want_write_file(file
))
1880 ret
= update_time(inode
, &now
, sync_it
);
1881 __mnt_drop_write_file(file
);
1885 EXPORT_SYMBOL(file_update_time
);
1887 int inode_needs_sync(struct inode
*inode
)
1891 if (S_ISDIR(inode
->i_mode
) && IS_DIRSYNC(inode
))
1895 EXPORT_SYMBOL(inode_needs_sync
);
1898 * If we try to find an inode in the inode hash while it is being
1899 * deleted, we have to wait until the filesystem completes its
1900 * deletion before reporting that it isn't found. This function waits
1901 * until the deletion _might_ have completed. Callers are responsible
1902 * to recheck inode state.
1904 * It doesn't matter if I_NEW is not set initially, a call to
1905 * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
1908 static void __wait_on_freeing_inode(struct inode
*inode
)
1910 wait_queue_head_t
*wq
;
1911 DEFINE_WAIT_BIT(wait
, &inode
->i_state
, __I_NEW
);
1912 wq
= bit_waitqueue(&inode
->i_state
, __I_NEW
);
1913 prepare_to_wait(wq
, &wait
.wq_entry
, TASK_UNINTERRUPTIBLE
);
1914 spin_unlock(&inode
->i_lock
);
1915 spin_unlock(&inode_hash_lock
);
1917 finish_wait(wq
, &wait
.wq_entry
);
1918 spin_lock(&inode_hash_lock
);
1921 static __initdata
unsigned long ihash_entries
;
1922 static int __init
set_ihash_entries(char *str
)
1926 ihash_entries
= simple_strtoul(str
, &str
, 0);
1929 __setup("ihash_entries=", set_ihash_entries
);
1932 * Initialize the waitqueues and inode hash table.
1934 void __init
inode_init_early(void)
1936 /* If hashes are distributed across NUMA nodes, defer
1937 * hash allocation until vmalloc space is available.
1943 alloc_large_system_hash("Inode-cache",
1944 sizeof(struct hlist_head
),
1947 HASH_EARLY
| HASH_ZERO
,
1954 void __init
inode_init(void)
1956 /* inode slab cache */
1957 inode_cachep
= kmem_cache_create("inode_cache",
1958 sizeof(struct inode
),
1960 (SLAB_RECLAIM_ACCOUNT
|SLAB_PANIC
|
1961 SLAB_MEM_SPREAD
|SLAB_ACCOUNT
),
1964 /* Hash may have been set up in inode_init_early */
1969 alloc_large_system_hash("Inode-cache",
1970 sizeof(struct hlist_head
),
1980 void init_special_inode(struct inode
*inode
, umode_t mode
, dev_t rdev
)
1982 inode
->i_mode
= mode
;
1983 if (S_ISCHR(mode
)) {
1984 inode
->i_fop
= &def_chr_fops
;
1985 inode
->i_rdev
= rdev
;
1986 } else if (S_ISBLK(mode
)) {
1987 inode
->i_fop
= &def_blk_fops
;
1988 inode
->i_rdev
= rdev
;
1989 } else if (S_ISFIFO(mode
))
1990 inode
->i_fop
= &pipefifo_fops
;
1991 else if (S_ISSOCK(mode
))
1992 ; /* leave it no_open_fops */
1994 printk(KERN_DEBUG
"init_special_inode: bogus i_mode (%o) for"
1995 " inode %s:%lu\n", mode
, inode
->i_sb
->s_id
,
1998 EXPORT_SYMBOL(init_special_inode
);
2001 * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
2003 * @dir: Directory inode
2004 * @mode: mode of the new inode
2006 void inode_init_owner(struct inode
*inode
, const struct inode
*dir
,
2009 inode
->i_uid
= current_fsuid();
2010 if (dir
&& dir
->i_mode
& S_ISGID
) {
2011 inode
->i_gid
= dir
->i_gid
;
2013 /* Directories are special, and always inherit S_ISGID */
2016 else if ((mode
& (S_ISGID
| S_IXGRP
)) == (S_ISGID
| S_IXGRP
) &&
2017 !in_group_p(inode
->i_gid
) &&
2018 !capable_wrt_inode_uidgid(dir
, CAP_FSETID
))
2021 inode
->i_gid
= current_fsgid();
2022 inode
->i_mode
= mode
;
2024 EXPORT_SYMBOL(inode_init_owner
);
2027 * inode_owner_or_capable - check current task permissions to inode
2028 * @inode: inode being checked
2030 * Return true if current either has CAP_FOWNER in a namespace with the
2031 * inode owner uid mapped, or owns the file.
2033 bool inode_owner_or_capable(const struct inode
*inode
)
2035 struct user_namespace
*ns
;
2037 if (uid_eq(current_fsuid(), inode
->i_uid
))
2040 ns
= current_user_ns();
2041 if (kuid_has_mapping(ns
, inode
->i_uid
) && ns_capable(ns
, CAP_FOWNER
))
2045 EXPORT_SYMBOL(inode_owner_or_capable
);
2048 * Direct i/o helper functions
2050 static void __inode_dio_wait(struct inode
*inode
)
2052 wait_queue_head_t
*wq
= bit_waitqueue(&inode
->i_state
, __I_DIO_WAKEUP
);
2053 DEFINE_WAIT_BIT(q
, &inode
->i_state
, __I_DIO_WAKEUP
);
2056 prepare_to_wait(wq
, &q
.wq_entry
, TASK_UNINTERRUPTIBLE
);
2057 if (atomic_read(&inode
->i_dio_count
))
2059 } while (atomic_read(&inode
->i_dio_count
));
2060 finish_wait(wq
, &q
.wq_entry
);
2064 * inode_dio_wait - wait for outstanding DIO requests to finish
2065 * @inode: inode to wait for
2067 * Waits for all pending direct I/O requests to finish so that we can
2068 * proceed with a truncate or equivalent operation.
2070 * Must be called under a lock that serializes taking new references
2071 * to i_dio_count, usually by inode->i_mutex.
2073 void inode_dio_wait(struct inode
*inode
)
2075 if (atomic_read(&inode
->i_dio_count
))
2076 __inode_dio_wait(inode
);
2078 EXPORT_SYMBOL(inode_dio_wait
);
2081 * inode_set_flags - atomically set some inode flags
2083 * Note: the caller should be holding i_mutex, or else be sure that
2084 * they have exclusive access to the inode structure (i.e., while the
2085 * inode is being instantiated). The reason for the cmpxchg() loop
2086 * --- which wouldn't be necessary if all code paths which modify
2087 * i_flags actually followed this rule, is that there is at least one
2088 * code path which doesn't today so we use cmpxchg() out of an abundance
2091 * In the long run, i_mutex is overkill, and we should probably look
2092 * at using the i_lock spinlock to protect i_flags, and then make sure
2093 * it is so documented in include/linux/fs.h and that all code follows
2094 * the locking convention!!
2096 void inode_set_flags(struct inode
*inode
, unsigned int flags
,
2099 unsigned int old_flags
, new_flags
;
2101 WARN_ON_ONCE(flags
& ~mask
);
2103 old_flags
= READ_ONCE(inode
->i_flags
);
2104 new_flags
= (old_flags
& ~mask
) | flags
;
2105 } while (unlikely(cmpxchg(&inode
->i_flags
, old_flags
,
2106 new_flags
) != old_flags
));
2108 EXPORT_SYMBOL(inode_set_flags
);
2110 void inode_nohighmem(struct inode
*inode
)
2112 mapping_set_gfp_mask(inode
->i_mapping
, GFP_USER
);
2114 EXPORT_SYMBOL(inode_nohighmem
);
2117 * timespec64_trunc - Truncate timespec64 to a granularity
2119 * @gran: Granularity in ns.
2121 * Truncate a timespec64 to a granularity. Always rounds down. gran must
2122 * not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns).
2124 struct timespec64
timespec64_trunc(struct timespec64 t
, unsigned gran
)
2126 /* Avoid division in the common cases 1 ns and 1 s. */
2129 } else if (gran
== NSEC_PER_SEC
) {
2131 } else if (gran
> 1 && gran
< NSEC_PER_SEC
) {
2132 t
.tv_nsec
-= t
.tv_nsec
% gran
;
2134 WARN(1, "illegal file time granularity: %u", gran
);
2138 EXPORT_SYMBOL(timespec64_trunc
);
2141 * current_time - Return FS time
2144 * Return the current time truncated to the time granularity supported by
2147 * Note that inode and inode->sb cannot be NULL.
2148 * Otherwise, the function warns and returns time without truncation.
2150 struct timespec64
current_time(struct inode
*inode
)
2152 struct timespec64 now
;
2154 ktime_get_coarse_real_ts64(&now
);
2156 if (unlikely(!inode
->i_sb
)) {
2157 WARN(1, "current_time() called with uninitialized super_block in the inode");
2161 return timespec64_trunc(now
, inode
->i_sb
->s_time_gran
);
2163 EXPORT_SYMBOL(current_time
);