4 * Processor and Memory placement constraints for sets of tasks.
6 * Copyright (C) 2003 BULL SA.
7 * Copyright (C) 2004-2007 Silicon Graphics, Inc.
8 * Copyright (C) 2006 Google, Inc
10 * Portions derived from Patrick Mochel's sysfs code.
11 * sysfs is Copyright (c) 2001-3 Patrick Mochel
13 * 2003-10-10 Written by Simon Derr.
14 * 2003-10-22 Updates by Stephen Hemminger.
15 * 2004 May-July Rework by Paul Jackson.
16 * 2006 Rework by Paul Menage to use generic cgroups
17 * 2008 Rework of the scheduler domains and CPU hotplug handling
20 * This file is subject to the terms and conditions of the GNU General Public
21 * License. See the file COPYING in the main directory of the Linux
22 * distribution for more details.
25 #include <linux/cpu.h>
26 #include <linux/cpumask.h>
27 #include <linux/cpuset.h>
28 #include <linux/err.h>
29 #include <linux/errno.h>
30 #include <linux/file.h>
32 #include <linux/init.h>
33 #include <linux/interrupt.h>
34 #include <linux/kernel.h>
35 #include <linux/kmod.h>
36 #include <linux/list.h>
37 #include <linux/mempolicy.h>
39 #include <linux/memory.h>
40 #include <linux/export.h>
41 #include <linux/mount.h>
42 #include <linux/namei.h>
43 #include <linux/pagemap.h>
44 #include <linux/proc_fs.h>
45 #include <linux/rcupdate.h>
46 #include <linux/sched.h>
47 #include <linux/seq_file.h>
48 #include <linux/security.h>
49 #include <linux/slab.h>
50 #include <linux/spinlock.h>
51 #include <linux/stat.h>
52 #include <linux/string.h>
53 #include <linux/time.h>
54 #include <linux/backing-dev.h>
55 #include <linux/sort.h>
57 #include <asm/uaccess.h>
58 #include <linux/atomic.h>
59 #include <linux/mutex.h>
60 #include <linux/workqueue.h>
61 #include <linux/cgroup.h>
62 #include <linux/wait.h>
64 struct static_key cpusets_enabled_key __read_mostly
= STATIC_KEY_INIT_FALSE
;
66 /* See "Frequency meter" comments, below. */
69 int cnt
; /* unprocessed events count */
70 int val
; /* most recent output value */
71 time_t time
; /* clock (secs) when val computed */
72 spinlock_t lock
; /* guards read or write of above */
76 struct cgroup_subsys_state css
;
78 unsigned long flags
; /* "unsigned long" so bitops work */
79 cpumask_var_t cpus_allowed
; /* CPUs allowed to tasks in cpuset */
80 nodemask_t mems_allowed
; /* Memory Nodes allowed to tasks */
83 * This is old Memory Nodes tasks took on.
85 * - top_cpuset.old_mems_allowed is initialized to mems_allowed.
86 * - A new cpuset's old_mems_allowed is initialized when some
87 * task is moved into it.
88 * - old_mems_allowed is used in cpuset_migrate_mm() when we change
89 * cpuset.mems_allowed and have tasks' nodemask updated, and
90 * then old_mems_allowed is updated to mems_allowed.
92 nodemask_t old_mems_allowed
;
94 struct fmeter fmeter
; /* memory_pressure filter */
97 * Tasks are being attached to this cpuset. Used to prevent
98 * zeroing cpus/mems_allowed between ->can_attach() and ->attach().
100 int attach_in_progress
;
102 /* partition number for rebuild_sched_domains() */
105 /* for custom sched domain */
106 int relax_domain_level
;
109 static inline struct cpuset
*css_cs(struct cgroup_subsys_state
*css
)
111 return css
? container_of(css
, struct cpuset
, css
) : NULL
;
114 /* Retrieve the cpuset for a task */
115 static inline struct cpuset
*task_cs(struct task_struct
*task
)
117 return css_cs(task_css(task
, cpuset_cgrp_id
));
120 static inline struct cpuset
*parent_cs(struct cpuset
*cs
)
122 return css_cs(cs
->css
.parent
);
126 static inline bool task_has_mempolicy(struct task_struct
*task
)
128 return task
->mempolicy
;
131 static inline bool task_has_mempolicy(struct task_struct
*task
)
138 /* bits in struct cpuset flags field */
145 CS_SCHED_LOAD_BALANCE
,
150 /* convenient tests for these bits */
151 static inline bool is_cpuset_online(const struct cpuset
*cs
)
153 return test_bit(CS_ONLINE
, &cs
->flags
);
156 static inline int is_cpu_exclusive(const struct cpuset
*cs
)
158 return test_bit(CS_CPU_EXCLUSIVE
, &cs
->flags
);
161 static inline int is_mem_exclusive(const struct cpuset
*cs
)
163 return test_bit(CS_MEM_EXCLUSIVE
, &cs
->flags
);
166 static inline int is_mem_hardwall(const struct cpuset
*cs
)
168 return test_bit(CS_MEM_HARDWALL
, &cs
->flags
);
171 static inline int is_sched_load_balance(const struct cpuset
*cs
)
173 return test_bit(CS_SCHED_LOAD_BALANCE
, &cs
->flags
);
176 static inline int is_memory_migrate(const struct cpuset
*cs
)
178 return test_bit(CS_MEMORY_MIGRATE
, &cs
->flags
);
181 static inline int is_spread_page(const struct cpuset
*cs
)
183 return test_bit(CS_SPREAD_PAGE
, &cs
->flags
);
186 static inline int is_spread_slab(const struct cpuset
*cs
)
188 return test_bit(CS_SPREAD_SLAB
, &cs
->flags
);
191 static struct cpuset top_cpuset
= {
192 .flags
= ((1 << CS_ONLINE
) | (1 << CS_CPU_EXCLUSIVE
) |
193 (1 << CS_MEM_EXCLUSIVE
)),
197 * cpuset_for_each_child - traverse online children of a cpuset
198 * @child_cs: loop cursor pointing to the current child
199 * @pos_css: used for iteration
200 * @parent_cs: target cpuset to walk children of
202 * Walk @child_cs through the online children of @parent_cs. Must be used
203 * with RCU read locked.
205 #define cpuset_for_each_child(child_cs, pos_css, parent_cs) \
206 css_for_each_child((pos_css), &(parent_cs)->css) \
207 if (is_cpuset_online(((child_cs) = css_cs((pos_css)))))
210 * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants
211 * @des_cs: loop cursor pointing to the current descendant
212 * @pos_css: used for iteration
213 * @root_cs: target cpuset to walk ancestor of
215 * Walk @des_cs through the online descendants of @root_cs. Must be used
216 * with RCU read locked. The caller may modify @pos_css by calling
217 * css_rightmost_descendant() to skip subtree. @root_cs is included in the
218 * iteration and the first node to be visited.
220 #define cpuset_for_each_descendant_pre(des_cs, pos_css, root_cs) \
221 css_for_each_descendant_pre((pos_css), &(root_cs)->css) \
222 if (is_cpuset_online(((des_cs) = css_cs((pos_css)))))
225 * There are two global mutexes guarding cpuset structures - cpuset_mutex
226 * and callback_mutex. The latter may nest inside the former. We also
227 * require taking task_lock() when dereferencing a task's cpuset pointer.
228 * See "The task_lock() exception", at the end of this comment.
230 * A task must hold both mutexes to modify cpusets. If a task holds
231 * cpuset_mutex, then it blocks others wanting that mutex, ensuring that it
232 * is the only task able to also acquire callback_mutex and be able to
233 * modify cpusets. It can perform various checks on the cpuset structure
234 * first, knowing nothing will change. It can also allocate memory while
235 * just holding cpuset_mutex. While it is performing these checks, various
236 * callback routines can briefly acquire callback_mutex to query cpusets.
237 * Once it is ready to make the changes, it takes callback_mutex, blocking
240 * Calls to the kernel memory allocator can not be made while holding
241 * callback_mutex, as that would risk double tripping on callback_mutex
242 * from one of the callbacks into the cpuset code from within
245 * If a task is only holding callback_mutex, then it has read-only
248 * Now, the task_struct fields mems_allowed and mempolicy may be changed
249 * by other task, we use alloc_lock in the task_struct fields to protect
252 * The cpuset_common_file_read() handlers only hold callback_mutex across
253 * small pieces of code, such as when reading out possibly multi-word
254 * cpumasks and nodemasks.
256 * Accessing a task's cpuset should be done in accordance with the
257 * guidelines for accessing subsystem state in kernel/cgroup.c
260 static DEFINE_MUTEX(cpuset_mutex
);
261 static DEFINE_MUTEX(callback_mutex
);
264 * CPU / memory hotplug is handled asynchronously.
266 static void cpuset_hotplug_workfn(struct work_struct
*work
);
267 static DECLARE_WORK(cpuset_hotplug_work
, cpuset_hotplug_workfn
);
269 static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq
);
272 * This is ugly, but preserves the userspace API for existing cpuset
273 * users. If someone tries to mount the "cpuset" filesystem, we
274 * silently switch it to mount "cgroup" instead
276 static struct dentry
*cpuset_mount(struct file_system_type
*fs_type
,
277 int flags
, const char *unused_dev_name
, void *data
)
279 struct file_system_type
*cgroup_fs
= get_fs_type("cgroup");
280 struct dentry
*ret
= ERR_PTR(-ENODEV
);
284 "release_agent=/sbin/cpuset_release_agent";
285 ret
= cgroup_fs
->mount(cgroup_fs
, flags
,
286 unused_dev_name
, mountopts
);
287 put_filesystem(cgroup_fs
);
292 static struct file_system_type cpuset_fs_type
= {
294 .mount
= cpuset_mount
,
298 * Return in pmask the portion of a cpusets's cpus_allowed that
299 * are online. If none are online, walk up the cpuset hierarchy
300 * until we find one that does have some online cpus. The top
301 * cpuset always has some cpus online.
303 * One way or another, we guarantee to return some non-empty subset
304 * of cpu_online_mask.
306 * Call with callback_mutex held.
308 static void guarantee_online_cpus(struct cpuset
*cs
, struct cpumask
*pmask
)
310 while (!cpumask_intersects(cs
->cpus_allowed
, cpu_online_mask
))
312 cpumask_and(pmask
, cs
->cpus_allowed
, cpu_online_mask
);
316 * Return in *pmask the portion of a cpusets's mems_allowed that
317 * are online, with memory. If none are online with memory, walk
318 * up the cpuset hierarchy until we find one that does have some
319 * online mems. The top cpuset always has some mems online.
321 * One way or another, we guarantee to return some non-empty subset
322 * of node_states[N_MEMORY].
324 * Call with callback_mutex held.
326 static void guarantee_online_mems(struct cpuset
*cs
, nodemask_t
*pmask
)
328 while (!nodes_intersects(cs
->mems_allowed
, node_states
[N_MEMORY
]))
330 nodes_and(*pmask
, cs
->mems_allowed
, node_states
[N_MEMORY
]);
334 * update task's spread flag if cpuset's page/slab spread flag is set
336 * Called with callback_mutex/cpuset_mutex held
338 static void cpuset_update_task_spread_flag(struct cpuset
*cs
,
339 struct task_struct
*tsk
)
341 if (is_spread_page(cs
))
342 tsk
->flags
|= PF_SPREAD_PAGE
;
344 tsk
->flags
&= ~PF_SPREAD_PAGE
;
345 if (is_spread_slab(cs
))
346 tsk
->flags
|= PF_SPREAD_SLAB
;
348 tsk
->flags
&= ~PF_SPREAD_SLAB
;
352 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
354 * One cpuset is a subset of another if all its allowed CPUs and
355 * Memory Nodes are a subset of the other, and its exclusive flags
356 * are only set if the other's are set. Call holding cpuset_mutex.
359 static int is_cpuset_subset(const struct cpuset
*p
, const struct cpuset
*q
)
361 return cpumask_subset(p
->cpus_allowed
, q
->cpus_allowed
) &&
362 nodes_subset(p
->mems_allowed
, q
->mems_allowed
) &&
363 is_cpu_exclusive(p
) <= is_cpu_exclusive(q
) &&
364 is_mem_exclusive(p
) <= is_mem_exclusive(q
);
368 * alloc_trial_cpuset - allocate a trial cpuset
369 * @cs: the cpuset that the trial cpuset duplicates
371 static struct cpuset
*alloc_trial_cpuset(struct cpuset
*cs
)
373 struct cpuset
*trial
;
375 trial
= kmemdup(cs
, sizeof(*cs
), GFP_KERNEL
);
379 if (!alloc_cpumask_var(&trial
->cpus_allowed
, GFP_KERNEL
)) {
383 cpumask_copy(trial
->cpus_allowed
, cs
->cpus_allowed
);
389 * free_trial_cpuset - free the trial cpuset
390 * @trial: the trial cpuset to be freed
392 static void free_trial_cpuset(struct cpuset
*trial
)
394 free_cpumask_var(trial
->cpus_allowed
);
399 * validate_change() - Used to validate that any proposed cpuset change
400 * follows the structural rules for cpusets.
402 * If we replaced the flag and mask values of the current cpuset
403 * (cur) with those values in the trial cpuset (trial), would
404 * our various subset and exclusive rules still be valid? Presumes
407 * 'cur' is the address of an actual, in-use cpuset. Operations
408 * such as list traversal that depend on the actual address of the
409 * cpuset in the list must use cur below, not trial.
411 * 'trial' is the address of bulk structure copy of cur, with
412 * perhaps one or more of the fields cpus_allowed, mems_allowed,
413 * or flags changed to new, trial values.
415 * Return 0 if valid, -errno if not.
418 static int validate_change(struct cpuset
*cur
, struct cpuset
*trial
)
420 struct cgroup_subsys_state
*css
;
421 struct cpuset
*c
, *par
;
426 /* Each of our child cpusets must be a subset of us */
428 cpuset_for_each_child(c
, css
, cur
)
429 if (!is_cpuset_subset(c
, trial
))
432 /* Remaining checks don't apply to root cpuset */
434 if (cur
== &top_cpuset
)
437 par
= parent_cs(cur
);
439 /* We must be a subset of our parent cpuset */
441 if (!is_cpuset_subset(trial
, par
))
445 * If either I or some sibling (!= me) is exclusive, we can't
449 cpuset_for_each_child(c
, css
, par
) {
450 if ((is_cpu_exclusive(trial
) || is_cpu_exclusive(c
)) &&
452 cpumask_intersects(trial
->cpus_allowed
, c
->cpus_allowed
))
454 if ((is_mem_exclusive(trial
) || is_mem_exclusive(c
)) &&
456 nodes_intersects(trial
->mems_allowed
, c
->mems_allowed
))
461 * Cpusets with tasks - existing or newly being attached - can't
462 * be changed to have empty cpus_allowed or mems_allowed.
465 if ((cgroup_has_tasks(cur
->css
.cgroup
) || cur
->attach_in_progress
)) {
466 if (!cpumask_empty(cur
->cpus_allowed
) &&
467 cpumask_empty(trial
->cpus_allowed
))
469 if (!nodes_empty(cur
->mems_allowed
) &&
470 nodes_empty(trial
->mems_allowed
))
482 * Helper routine for generate_sched_domains().
483 * Do cpusets a, b have overlapping cpus_allowed masks?
485 static int cpusets_overlap(struct cpuset
*a
, struct cpuset
*b
)
487 return cpumask_intersects(a
->cpus_allowed
, b
->cpus_allowed
);
491 update_domain_attr(struct sched_domain_attr
*dattr
, struct cpuset
*c
)
493 if (dattr
->relax_domain_level
< c
->relax_domain_level
)
494 dattr
->relax_domain_level
= c
->relax_domain_level
;
498 static void update_domain_attr_tree(struct sched_domain_attr
*dattr
,
499 struct cpuset
*root_cs
)
502 struct cgroup_subsys_state
*pos_css
;
505 cpuset_for_each_descendant_pre(cp
, pos_css
, root_cs
) {
509 /* skip the whole subtree if @cp doesn't have any CPU */
510 if (cpumask_empty(cp
->cpus_allowed
)) {
511 pos_css
= css_rightmost_descendant(pos_css
);
515 if (is_sched_load_balance(cp
))
516 update_domain_attr(dattr
, cp
);
522 * generate_sched_domains()
524 * This function builds a partial partition of the systems CPUs
525 * A 'partial partition' is a set of non-overlapping subsets whose
526 * union is a subset of that set.
527 * The output of this function needs to be passed to kernel/sched/core.c
528 * partition_sched_domains() routine, which will rebuild the scheduler's
529 * load balancing domains (sched domains) as specified by that partial
532 * See "What is sched_load_balance" in Documentation/cgroups/cpusets.txt
533 * for a background explanation of this.
535 * Does not return errors, on the theory that the callers of this
536 * routine would rather not worry about failures to rebuild sched
537 * domains when operating in the severe memory shortage situations
538 * that could cause allocation failures below.
540 * Must be called with cpuset_mutex held.
542 * The three key local variables below are:
543 * q - a linked-list queue of cpuset pointers, used to implement a
544 * top-down scan of all cpusets. This scan loads a pointer
545 * to each cpuset marked is_sched_load_balance into the
546 * array 'csa'. For our purposes, rebuilding the schedulers
547 * sched domains, we can ignore !is_sched_load_balance cpusets.
548 * csa - (for CpuSet Array) Array of pointers to all the cpusets
549 * that need to be load balanced, for convenient iterative
550 * access by the subsequent code that finds the best partition,
551 * i.e the set of domains (subsets) of CPUs such that the
552 * cpus_allowed of every cpuset marked is_sched_load_balance
553 * is a subset of one of these domains, while there are as
554 * many such domains as possible, each as small as possible.
555 * doms - Conversion of 'csa' to an array of cpumasks, for passing to
556 * the kernel/sched/core.c routine partition_sched_domains() in a
557 * convenient format, that can be easily compared to the prior
558 * value to determine what partition elements (sched domains)
559 * were changed (added or removed.)
561 * Finding the best partition (set of domains):
562 * The triple nested loops below over i, j, k scan over the
563 * load balanced cpusets (using the array of cpuset pointers in
564 * csa[]) looking for pairs of cpusets that have overlapping
565 * cpus_allowed, but which don't have the same 'pn' partition
566 * number and gives them in the same partition number. It keeps
567 * looping on the 'restart' label until it can no longer find
570 * The union of the cpus_allowed masks from the set of
571 * all cpusets having the same 'pn' value then form the one
572 * element of the partition (one sched domain) to be passed to
573 * partition_sched_domains().
575 static int generate_sched_domains(cpumask_var_t
**domains
,
576 struct sched_domain_attr
**attributes
)
578 struct cpuset
*cp
; /* scans q */
579 struct cpuset
**csa
; /* array of all cpuset ptrs */
580 int csn
; /* how many cpuset ptrs in csa so far */
581 int i
, j
, k
; /* indices for partition finding loops */
582 cpumask_var_t
*doms
; /* resulting partition; i.e. sched domains */
583 struct sched_domain_attr
*dattr
; /* attributes for custom domains */
584 int ndoms
= 0; /* number of sched domains in result */
585 int nslot
; /* next empty doms[] struct cpumask slot */
586 struct cgroup_subsys_state
*pos_css
;
592 /* Special case for the 99% of systems with one, full, sched domain */
593 if (is_sched_load_balance(&top_cpuset
)) {
595 doms
= alloc_sched_domains(ndoms
);
599 dattr
= kmalloc(sizeof(struct sched_domain_attr
), GFP_KERNEL
);
601 *dattr
= SD_ATTR_INIT
;
602 update_domain_attr_tree(dattr
, &top_cpuset
);
604 cpumask_copy(doms
[0], top_cpuset
.cpus_allowed
);
609 csa
= kmalloc(nr_cpusets() * sizeof(cp
), GFP_KERNEL
);
615 cpuset_for_each_descendant_pre(cp
, pos_css
, &top_cpuset
) {
616 if (cp
== &top_cpuset
)
619 * Continue traversing beyond @cp iff @cp has some CPUs and
620 * isn't load balancing. The former is obvious. The
621 * latter: All child cpusets contain a subset of the
622 * parent's cpus, so just skip them, and then we call
623 * update_domain_attr_tree() to calc relax_domain_level of
624 * the corresponding sched domain.
626 if (!cpumask_empty(cp
->cpus_allowed
) &&
627 !is_sched_load_balance(cp
))
630 if (is_sched_load_balance(cp
))
633 /* skip @cp's subtree */
634 pos_css
= css_rightmost_descendant(pos_css
);
638 for (i
= 0; i
< csn
; i
++)
643 /* Find the best partition (set of sched domains) */
644 for (i
= 0; i
< csn
; i
++) {
645 struct cpuset
*a
= csa
[i
];
648 for (j
= 0; j
< csn
; j
++) {
649 struct cpuset
*b
= csa
[j
];
652 if (apn
!= bpn
&& cpusets_overlap(a
, b
)) {
653 for (k
= 0; k
< csn
; k
++) {
654 struct cpuset
*c
= csa
[k
];
659 ndoms
--; /* one less element */
666 * Now we know how many domains to create.
667 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
669 doms
= alloc_sched_domains(ndoms
);
674 * The rest of the code, including the scheduler, can deal with
675 * dattr==NULL case. No need to abort if alloc fails.
677 dattr
= kmalloc(ndoms
* sizeof(struct sched_domain_attr
), GFP_KERNEL
);
679 for (nslot
= 0, i
= 0; i
< csn
; i
++) {
680 struct cpuset
*a
= csa
[i
];
685 /* Skip completed partitions */
691 if (nslot
== ndoms
) {
692 static int warnings
= 10;
694 pr_warn("rebuild_sched_domains confused: nslot %d, ndoms %d, csn %d, i %d, apn %d\n",
695 nslot
, ndoms
, csn
, i
, apn
);
703 *(dattr
+ nslot
) = SD_ATTR_INIT
;
704 for (j
= i
; j
< csn
; j
++) {
705 struct cpuset
*b
= csa
[j
];
708 cpumask_or(dp
, dp
, b
->cpus_allowed
);
710 update_domain_attr_tree(dattr
+ nslot
, b
);
712 /* Done with this partition */
718 BUG_ON(nslot
!= ndoms
);
724 * Fallback to the default domain if kmalloc() failed.
725 * See comments in partition_sched_domains().
736 * Rebuild scheduler domains.
738 * If the flag 'sched_load_balance' of any cpuset with non-empty
739 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
740 * which has that flag enabled, or if any cpuset with a non-empty
741 * 'cpus' is removed, then call this routine to rebuild the
742 * scheduler's dynamic sched domains.
744 * Call with cpuset_mutex held. Takes get_online_cpus().
746 static void rebuild_sched_domains_locked(void)
748 struct sched_domain_attr
*attr
;
752 lockdep_assert_held(&cpuset_mutex
);
756 * We have raced with CPU hotplug. Don't do anything to avoid
757 * passing doms with offlined cpu to partition_sched_domains().
758 * Anyways, hotplug work item will rebuild sched domains.
760 if (!cpumask_equal(top_cpuset
.cpus_allowed
, cpu_active_mask
))
763 /* Generate domain masks and attrs */
764 ndoms
= generate_sched_domains(&doms
, &attr
);
766 /* Have scheduler rebuild the domains */
767 partition_sched_domains(ndoms
, doms
, attr
);
771 #else /* !CONFIG_SMP */
772 static void rebuild_sched_domains_locked(void)
775 #endif /* CONFIG_SMP */
777 void rebuild_sched_domains(void)
779 mutex_lock(&cpuset_mutex
);
780 rebuild_sched_domains_locked();
781 mutex_unlock(&cpuset_mutex
);
785 * effective_cpumask_cpuset - return nearest ancestor with non-empty cpus
786 * @cs: the cpuset in interest
788 * A cpuset's effective cpumask is the cpumask of the nearest ancestor
789 * with non-empty cpus. We use effective cpumask whenever:
790 * - we update tasks' cpus_allowed. (they take on the ancestor's cpumask
791 * if the cpuset they reside in has no cpus)
792 * - we want to retrieve task_cs(tsk)'s cpus_allowed.
794 * Called with cpuset_mutex held. cpuset_cpus_allowed_fallback() is an
795 * exception. See comments there.
797 static struct cpuset
*effective_cpumask_cpuset(struct cpuset
*cs
)
799 while (cpumask_empty(cs
->cpus_allowed
))
805 * effective_nodemask_cpuset - return nearest ancestor with non-empty mems
806 * @cs: the cpuset in interest
808 * A cpuset's effective nodemask is the nodemask of the nearest ancestor
809 * with non-empty memss. We use effective nodemask whenever:
810 * - we update tasks' mems_allowed. (they take on the ancestor's nodemask
811 * if the cpuset they reside in has no mems)
812 * - we want to retrieve task_cs(tsk)'s mems_allowed.
814 * Called with cpuset_mutex held.
816 static struct cpuset
*effective_nodemask_cpuset(struct cpuset
*cs
)
818 while (nodes_empty(cs
->mems_allowed
))
824 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
825 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
827 * Iterate through each task of @cs updating its cpus_allowed to the
828 * effective cpuset's. As this function is called with cpuset_mutex held,
829 * cpuset membership stays stable.
831 static void update_tasks_cpumask(struct cpuset
*cs
)
833 struct cpuset
*cpus_cs
= effective_cpumask_cpuset(cs
);
834 struct css_task_iter it
;
835 struct task_struct
*task
;
837 css_task_iter_start(&cs
->css
, &it
);
838 while ((task
= css_task_iter_next(&it
)))
839 set_cpus_allowed_ptr(task
, cpus_cs
->cpus_allowed
);
840 css_task_iter_end(&it
);
844 * update_tasks_cpumask_hier - Update the cpumasks of tasks in the hierarchy.
845 * @root_cs: the root cpuset of the hierarchy
846 * @update_root: update root cpuset or not?
848 * This will update cpumasks of tasks in @root_cs and all other empty cpusets
849 * which take on cpumask of @root_cs.
851 * Called with cpuset_mutex held
853 static void update_tasks_cpumask_hier(struct cpuset
*root_cs
, bool update_root
)
856 struct cgroup_subsys_state
*pos_css
;
859 cpuset_for_each_descendant_pre(cp
, pos_css
, root_cs
) {
864 /* skip the whole subtree if @cp have some CPU */
865 if (!cpumask_empty(cp
->cpus_allowed
)) {
866 pos_css
= css_rightmost_descendant(pos_css
);
870 if (!css_tryget_online(&cp
->css
))
874 update_tasks_cpumask(cp
);
883 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
884 * @cs: the cpuset to consider
885 * @trialcs: trial cpuset
886 * @buf: buffer of cpu numbers written to this cpuset
888 static int update_cpumask(struct cpuset
*cs
, struct cpuset
*trialcs
,
892 int is_load_balanced
;
894 /* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */
895 if (cs
== &top_cpuset
)
899 * An empty cpus_allowed is ok only if the cpuset has no tasks.
900 * Since cpulist_parse() fails on an empty mask, we special case
901 * that parsing. The validate_change() call ensures that cpusets
902 * with tasks have cpus.
905 cpumask_clear(trialcs
->cpus_allowed
);
907 retval
= cpulist_parse(buf
, trialcs
->cpus_allowed
);
911 if (!cpumask_subset(trialcs
->cpus_allowed
, cpu_active_mask
))
915 /* Nothing to do if the cpus didn't change */
916 if (cpumask_equal(cs
->cpus_allowed
, trialcs
->cpus_allowed
))
919 retval
= validate_change(cs
, trialcs
);
923 is_load_balanced
= is_sched_load_balance(trialcs
);
925 mutex_lock(&callback_mutex
);
926 cpumask_copy(cs
->cpus_allowed
, trialcs
->cpus_allowed
);
927 mutex_unlock(&callback_mutex
);
929 update_tasks_cpumask_hier(cs
, true);
931 if (is_load_balanced
)
932 rebuild_sched_domains_locked();
939 * Migrate memory region from one set of nodes to another.
941 * Temporarilly set tasks mems_allowed to target nodes of migration,
942 * so that the migration code can allocate pages on these nodes.
944 * While the mm_struct we are migrating is typically from some
945 * other task, the task_struct mems_allowed that we are hacking
946 * is for our current task, which must allocate new pages for that
947 * migrating memory region.
950 static void cpuset_migrate_mm(struct mm_struct
*mm
, const nodemask_t
*from
,
951 const nodemask_t
*to
)
953 struct task_struct
*tsk
= current
;
954 struct cpuset
*mems_cs
;
956 tsk
->mems_allowed
= *to
;
958 do_migrate_pages(mm
, from
, to
, MPOL_MF_MOVE_ALL
);
961 mems_cs
= effective_nodemask_cpuset(task_cs(tsk
));
962 guarantee_online_mems(mems_cs
, &tsk
->mems_allowed
);
967 * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
968 * @tsk: the task to change
969 * @newmems: new nodes that the task will be set
971 * In order to avoid seeing no nodes if the old and new nodes are disjoint,
972 * we structure updates as setting all new allowed nodes, then clearing newly
975 static void cpuset_change_task_nodemask(struct task_struct
*tsk
,
981 * Allow tasks that have access to memory reserves because they have
982 * been OOM killed to get memory anywhere.
984 if (unlikely(test_thread_flag(TIF_MEMDIE
)))
986 if (current
->flags
& PF_EXITING
) /* Let dying task have memory */
991 * Determine if a loop is necessary if another thread is doing
992 * read_mems_allowed_begin(). If at least one node remains unchanged and
993 * tsk does not have a mempolicy, then an empty nodemask will not be
994 * possible when mems_allowed is larger than a word.
996 need_loop
= task_has_mempolicy(tsk
) ||
997 !nodes_intersects(*newmems
, tsk
->mems_allowed
);
1000 local_irq_disable();
1001 write_seqcount_begin(&tsk
->mems_allowed_seq
);
1004 nodes_or(tsk
->mems_allowed
, tsk
->mems_allowed
, *newmems
);
1005 mpol_rebind_task(tsk
, newmems
, MPOL_REBIND_STEP1
);
1007 mpol_rebind_task(tsk
, newmems
, MPOL_REBIND_STEP2
);
1008 tsk
->mems_allowed
= *newmems
;
1011 write_seqcount_end(&tsk
->mems_allowed_seq
);
1018 static void *cpuset_being_rebound
;
1021 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
1022 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
1024 * Iterate through each task of @cs updating its mems_allowed to the
1025 * effective cpuset's. As this function is called with cpuset_mutex held,
1026 * cpuset membership stays stable.
1028 static void update_tasks_nodemask(struct cpuset
*cs
)
1030 static nodemask_t newmems
; /* protected by cpuset_mutex */
1031 struct cpuset
*mems_cs
= effective_nodemask_cpuset(cs
);
1032 struct css_task_iter it
;
1033 struct task_struct
*task
;
1035 cpuset_being_rebound
= cs
; /* causes mpol_dup() rebind */
1037 guarantee_online_mems(mems_cs
, &newmems
);
1040 * The mpol_rebind_mm() call takes mmap_sem, which we couldn't
1041 * take while holding tasklist_lock. Forks can happen - the
1042 * mpol_dup() cpuset_being_rebound check will catch such forks,
1043 * and rebind their vma mempolicies too. Because we still hold
1044 * the global cpuset_mutex, we know that no other rebind effort
1045 * will be contending for the global variable cpuset_being_rebound.
1046 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
1047 * is idempotent. Also migrate pages in each mm to new nodes.
1049 css_task_iter_start(&cs
->css
, &it
);
1050 while ((task
= css_task_iter_next(&it
))) {
1051 struct mm_struct
*mm
;
1054 cpuset_change_task_nodemask(task
, &newmems
);
1056 mm
= get_task_mm(task
);
1060 migrate
= is_memory_migrate(cs
);
1062 mpol_rebind_mm(mm
, &cs
->mems_allowed
);
1064 cpuset_migrate_mm(mm
, &cs
->old_mems_allowed
, &newmems
);
1067 css_task_iter_end(&it
);
1070 * All the tasks' nodemasks have been updated, update
1071 * cs->old_mems_allowed.
1073 cs
->old_mems_allowed
= newmems
;
1075 /* We're done rebinding vmas to this cpuset's new mems_allowed. */
1076 cpuset_being_rebound
= NULL
;
1080 * update_tasks_nodemask_hier - Update the nodemasks of tasks in the hierarchy.
1081 * @cs: the root cpuset of the hierarchy
1082 * @update_root: update the root cpuset or not?
1084 * This will update nodemasks of tasks in @root_cs and all other empty cpusets
1085 * which take on nodemask of @root_cs.
1087 * Called with cpuset_mutex held
1089 static void update_tasks_nodemask_hier(struct cpuset
*root_cs
, bool update_root
)
1092 struct cgroup_subsys_state
*pos_css
;
1095 cpuset_for_each_descendant_pre(cp
, pos_css
, root_cs
) {
1096 if (cp
== root_cs
) {
1100 /* skip the whole subtree if @cp have some CPU */
1101 if (!nodes_empty(cp
->mems_allowed
)) {
1102 pos_css
= css_rightmost_descendant(pos_css
);
1106 if (!css_tryget_online(&cp
->css
))
1110 update_tasks_nodemask(cp
);
1119 * Handle user request to change the 'mems' memory placement
1120 * of a cpuset. Needs to validate the request, update the
1121 * cpusets mems_allowed, and for each task in the cpuset,
1122 * update mems_allowed and rebind task's mempolicy and any vma
1123 * mempolicies and if the cpuset is marked 'memory_migrate',
1124 * migrate the tasks pages to the new memory.
1126 * Call with cpuset_mutex held. May take callback_mutex during call.
1127 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
1128 * lock each such tasks mm->mmap_sem, scan its vma's and rebind
1129 * their mempolicies to the cpusets new mems_allowed.
1131 static int update_nodemask(struct cpuset
*cs
, struct cpuset
*trialcs
,
1137 * top_cpuset.mems_allowed tracks node_stats[N_MEMORY];
1140 if (cs
== &top_cpuset
) {
1146 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
1147 * Since nodelist_parse() fails on an empty mask, we special case
1148 * that parsing. The validate_change() call ensures that cpusets
1149 * with tasks have memory.
1152 nodes_clear(trialcs
->mems_allowed
);
1154 retval
= nodelist_parse(buf
, trialcs
->mems_allowed
);
1158 if (!nodes_subset(trialcs
->mems_allowed
,
1159 node_states
[N_MEMORY
])) {
1165 if (nodes_equal(cs
->mems_allowed
, trialcs
->mems_allowed
)) {
1166 retval
= 0; /* Too easy - nothing to do */
1169 retval
= validate_change(cs
, trialcs
);
1173 mutex_lock(&callback_mutex
);
1174 cs
->mems_allowed
= trialcs
->mems_allowed
;
1175 mutex_unlock(&callback_mutex
);
1177 update_tasks_nodemask_hier(cs
, true);
1182 int current_cpuset_is_being_rebound(void)
1184 return task_cs(current
) == cpuset_being_rebound
;
1187 static int update_relax_domain_level(struct cpuset
*cs
, s64 val
)
1190 if (val
< -1 || val
>= sched_domain_level_max
)
1194 if (val
!= cs
->relax_domain_level
) {
1195 cs
->relax_domain_level
= val
;
1196 if (!cpumask_empty(cs
->cpus_allowed
) &&
1197 is_sched_load_balance(cs
))
1198 rebuild_sched_domains_locked();
1205 * update_tasks_flags - update the spread flags of tasks in the cpuset.
1206 * @cs: the cpuset in which each task's spread flags needs to be changed
1208 * Iterate through each task of @cs updating its spread flags. As this
1209 * function is called with cpuset_mutex held, cpuset membership stays
1212 static void update_tasks_flags(struct cpuset
*cs
)
1214 struct css_task_iter it
;
1215 struct task_struct
*task
;
1217 css_task_iter_start(&cs
->css
, &it
);
1218 while ((task
= css_task_iter_next(&it
)))
1219 cpuset_update_task_spread_flag(cs
, task
);
1220 css_task_iter_end(&it
);
1224 * update_flag - read a 0 or a 1 in a file and update associated flag
1225 * bit: the bit to update (see cpuset_flagbits_t)
1226 * cs: the cpuset to update
1227 * turning_on: whether the flag is being set or cleared
1229 * Call with cpuset_mutex held.
1232 static int update_flag(cpuset_flagbits_t bit
, struct cpuset
*cs
,
1235 struct cpuset
*trialcs
;
1236 int balance_flag_changed
;
1237 int spread_flag_changed
;
1240 trialcs
= alloc_trial_cpuset(cs
);
1245 set_bit(bit
, &trialcs
->flags
);
1247 clear_bit(bit
, &trialcs
->flags
);
1249 err
= validate_change(cs
, trialcs
);
1253 balance_flag_changed
= (is_sched_load_balance(cs
) !=
1254 is_sched_load_balance(trialcs
));
1256 spread_flag_changed
= ((is_spread_slab(cs
) != is_spread_slab(trialcs
))
1257 || (is_spread_page(cs
) != is_spread_page(trialcs
)));
1259 mutex_lock(&callback_mutex
);
1260 cs
->flags
= trialcs
->flags
;
1261 mutex_unlock(&callback_mutex
);
1263 if (!cpumask_empty(trialcs
->cpus_allowed
) && balance_flag_changed
)
1264 rebuild_sched_domains_locked();
1266 if (spread_flag_changed
)
1267 update_tasks_flags(cs
);
1269 free_trial_cpuset(trialcs
);
1274 * Frequency meter - How fast is some event occurring?
1276 * These routines manage a digitally filtered, constant time based,
1277 * event frequency meter. There are four routines:
1278 * fmeter_init() - initialize a frequency meter.
1279 * fmeter_markevent() - called each time the event happens.
1280 * fmeter_getrate() - returns the recent rate of such events.
1281 * fmeter_update() - internal routine used to update fmeter.
1283 * A common data structure is passed to each of these routines,
1284 * which is used to keep track of the state required to manage the
1285 * frequency meter and its digital filter.
1287 * The filter works on the number of events marked per unit time.
1288 * The filter is single-pole low-pass recursive (IIR). The time unit
1289 * is 1 second. Arithmetic is done using 32-bit integers scaled to
1290 * simulate 3 decimal digits of precision (multiplied by 1000).
1292 * With an FM_COEF of 933, and a time base of 1 second, the filter
1293 * has a half-life of 10 seconds, meaning that if the events quit
1294 * happening, then the rate returned from the fmeter_getrate()
1295 * will be cut in half each 10 seconds, until it converges to zero.
1297 * It is not worth doing a real infinitely recursive filter. If more
1298 * than FM_MAXTICKS ticks have elapsed since the last filter event,
1299 * just compute FM_MAXTICKS ticks worth, by which point the level
1302 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
1303 * arithmetic overflow in the fmeter_update() routine.
1305 * Given the simple 32 bit integer arithmetic used, this meter works
1306 * best for reporting rates between one per millisecond (msec) and
1307 * one per 32 (approx) seconds. At constant rates faster than one
1308 * per msec it maxes out at values just under 1,000,000. At constant
1309 * rates between one per msec, and one per second it will stabilize
1310 * to a value N*1000, where N is the rate of events per second.
1311 * At constant rates between one per second and one per 32 seconds,
1312 * it will be choppy, moving up on the seconds that have an event,
1313 * and then decaying until the next event. At rates slower than
1314 * about one in 32 seconds, it decays all the way back to zero between
1318 #define FM_COEF 933 /* coefficient for half-life of 10 secs */
1319 #define FM_MAXTICKS ((time_t)99) /* useless computing more ticks than this */
1320 #define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */
1321 #define FM_SCALE 1000 /* faux fixed point scale */
1323 /* Initialize a frequency meter */
1324 static void fmeter_init(struct fmeter
*fmp
)
1329 spin_lock_init(&fmp
->lock
);
1332 /* Internal meter update - process cnt events and update value */
1333 static void fmeter_update(struct fmeter
*fmp
)
1335 time_t now
= get_seconds();
1336 time_t ticks
= now
- fmp
->time
;
1341 ticks
= min(FM_MAXTICKS
, ticks
);
1343 fmp
->val
= (FM_COEF
* fmp
->val
) / FM_SCALE
;
1346 fmp
->val
+= ((FM_SCALE
- FM_COEF
) * fmp
->cnt
) / FM_SCALE
;
1350 /* Process any previous ticks, then bump cnt by one (times scale). */
1351 static void fmeter_markevent(struct fmeter
*fmp
)
1353 spin_lock(&fmp
->lock
);
1355 fmp
->cnt
= min(FM_MAXCNT
, fmp
->cnt
+ FM_SCALE
);
1356 spin_unlock(&fmp
->lock
);
1359 /* Process any previous ticks, then return current value. */
1360 static int fmeter_getrate(struct fmeter
*fmp
)
1364 spin_lock(&fmp
->lock
);
1367 spin_unlock(&fmp
->lock
);
1371 static struct cpuset
*cpuset_attach_old_cs
;
1373 /* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */
1374 static int cpuset_can_attach(struct cgroup_subsys_state
*css
,
1375 struct cgroup_taskset
*tset
)
1377 struct cpuset
*cs
= css_cs(css
);
1378 struct task_struct
*task
;
1381 /* used later by cpuset_attach() */
1382 cpuset_attach_old_cs
= task_cs(cgroup_taskset_first(tset
));
1384 mutex_lock(&cpuset_mutex
);
1387 * We allow to move tasks into an empty cpuset if sane_behavior
1391 if (!cgroup_sane_behavior(css
->cgroup
) &&
1392 (cpumask_empty(cs
->cpus_allowed
) || nodes_empty(cs
->mems_allowed
)))
1395 cgroup_taskset_for_each(task
, tset
) {
1397 * Kthreads which disallow setaffinity shouldn't be moved
1398 * to a new cpuset; we don't want to change their cpu
1399 * affinity and isolating such threads by their set of
1400 * allowed nodes is unnecessary. Thus, cpusets are not
1401 * applicable for such threads. This prevents checking for
1402 * success of set_cpus_allowed_ptr() on all attached tasks
1403 * before cpus_allowed may be changed.
1406 if (task
->flags
& PF_NO_SETAFFINITY
)
1408 ret
= security_task_setscheduler(task
);
1414 * Mark attach is in progress. This makes validate_change() fail
1415 * changes which zero cpus/mems_allowed.
1417 cs
->attach_in_progress
++;
1420 mutex_unlock(&cpuset_mutex
);
1424 static void cpuset_cancel_attach(struct cgroup_subsys_state
*css
,
1425 struct cgroup_taskset
*tset
)
1427 mutex_lock(&cpuset_mutex
);
1428 css_cs(css
)->attach_in_progress
--;
1429 mutex_unlock(&cpuset_mutex
);
1433 * Protected by cpuset_mutex. cpus_attach is used only by cpuset_attach()
1434 * but we can't allocate it dynamically there. Define it global and
1435 * allocate from cpuset_init().
1437 static cpumask_var_t cpus_attach
;
1439 static void cpuset_attach(struct cgroup_subsys_state
*css
,
1440 struct cgroup_taskset
*tset
)
1442 /* static buf protected by cpuset_mutex */
1443 static nodemask_t cpuset_attach_nodemask_to
;
1444 struct mm_struct
*mm
;
1445 struct task_struct
*task
;
1446 struct task_struct
*leader
= cgroup_taskset_first(tset
);
1447 struct cpuset
*cs
= css_cs(css
);
1448 struct cpuset
*oldcs
= cpuset_attach_old_cs
;
1449 struct cpuset
*cpus_cs
= effective_cpumask_cpuset(cs
);
1450 struct cpuset
*mems_cs
= effective_nodemask_cpuset(cs
);
1452 mutex_lock(&cpuset_mutex
);
1454 /* prepare for attach */
1455 if (cs
== &top_cpuset
)
1456 cpumask_copy(cpus_attach
, cpu_possible_mask
);
1458 guarantee_online_cpus(cpus_cs
, cpus_attach
);
1460 guarantee_online_mems(mems_cs
, &cpuset_attach_nodemask_to
);
1462 cgroup_taskset_for_each(task
, tset
) {
1464 * can_attach beforehand should guarantee that this doesn't
1465 * fail. TODO: have a better way to handle failure here
1467 WARN_ON_ONCE(set_cpus_allowed_ptr(task
, cpus_attach
));
1469 cpuset_change_task_nodemask(task
, &cpuset_attach_nodemask_to
);
1470 cpuset_update_task_spread_flag(cs
, task
);
1474 * Change mm, possibly for multiple threads in a threadgroup. This is
1475 * expensive and may sleep.
1477 cpuset_attach_nodemask_to
= cs
->mems_allowed
;
1478 mm
= get_task_mm(leader
);
1480 struct cpuset
*mems_oldcs
= effective_nodemask_cpuset(oldcs
);
1482 mpol_rebind_mm(mm
, &cpuset_attach_nodemask_to
);
1485 * old_mems_allowed is the same with mems_allowed here, except
1486 * if this task is being moved automatically due to hotplug.
1487 * In that case @mems_allowed has been updated and is empty,
1488 * so @old_mems_allowed is the right nodesets that we migrate
1491 if (is_memory_migrate(cs
)) {
1492 cpuset_migrate_mm(mm
, &mems_oldcs
->old_mems_allowed
,
1493 &cpuset_attach_nodemask_to
);
1498 cs
->old_mems_allowed
= cpuset_attach_nodemask_to
;
1500 cs
->attach_in_progress
--;
1501 if (!cs
->attach_in_progress
)
1502 wake_up(&cpuset_attach_wq
);
1504 mutex_unlock(&cpuset_mutex
);
1507 /* The various types of files and directories in a cpuset file system */
1510 FILE_MEMORY_MIGRATE
,
1516 FILE_SCHED_LOAD_BALANCE
,
1517 FILE_SCHED_RELAX_DOMAIN_LEVEL
,
1518 FILE_MEMORY_PRESSURE_ENABLED
,
1519 FILE_MEMORY_PRESSURE
,
1522 } cpuset_filetype_t
;
1524 static int cpuset_write_u64(struct cgroup_subsys_state
*css
, struct cftype
*cft
,
1527 struct cpuset
*cs
= css_cs(css
);
1528 cpuset_filetype_t type
= cft
->private;
1531 mutex_lock(&cpuset_mutex
);
1532 if (!is_cpuset_online(cs
)) {
1538 case FILE_CPU_EXCLUSIVE
:
1539 retval
= update_flag(CS_CPU_EXCLUSIVE
, cs
, val
);
1541 case FILE_MEM_EXCLUSIVE
:
1542 retval
= update_flag(CS_MEM_EXCLUSIVE
, cs
, val
);
1544 case FILE_MEM_HARDWALL
:
1545 retval
= update_flag(CS_MEM_HARDWALL
, cs
, val
);
1547 case FILE_SCHED_LOAD_BALANCE
:
1548 retval
= update_flag(CS_SCHED_LOAD_BALANCE
, cs
, val
);
1550 case FILE_MEMORY_MIGRATE
:
1551 retval
= update_flag(CS_MEMORY_MIGRATE
, cs
, val
);
1553 case FILE_MEMORY_PRESSURE_ENABLED
:
1554 cpuset_memory_pressure_enabled
= !!val
;
1556 case FILE_MEMORY_PRESSURE
:
1559 case FILE_SPREAD_PAGE
:
1560 retval
= update_flag(CS_SPREAD_PAGE
, cs
, val
);
1562 case FILE_SPREAD_SLAB
:
1563 retval
= update_flag(CS_SPREAD_SLAB
, cs
, val
);
1570 mutex_unlock(&cpuset_mutex
);
1574 static int cpuset_write_s64(struct cgroup_subsys_state
*css
, struct cftype
*cft
,
1577 struct cpuset
*cs
= css_cs(css
);
1578 cpuset_filetype_t type
= cft
->private;
1579 int retval
= -ENODEV
;
1581 mutex_lock(&cpuset_mutex
);
1582 if (!is_cpuset_online(cs
))
1586 case FILE_SCHED_RELAX_DOMAIN_LEVEL
:
1587 retval
= update_relax_domain_level(cs
, val
);
1594 mutex_unlock(&cpuset_mutex
);
1599 * Common handling for a write to a "cpus" or "mems" file.
1601 static ssize_t
cpuset_write_resmask(struct kernfs_open_file
*of
,
1602 char *buf
, size_t nbytes
, loff_t off
)
1604 struct cpuset
*cs
= css_cs(of_css(of
));
1605 struct cpuset
*trialcs
;
1606 int retval
= -ENODEV
;
1608 buf
= strstrip(buf
);
1611 * CPU or memory hotunplug may leave @cs w/o any execution
1612 * resources, in which case the hotplug code asynchronously updates
1613 * configuration and transfers all tasks to the nearest ancestor
1614 * which can execute.
1616 * As writes to "cpus" or "mems" may restore @cs's execution
1617 * resources, wait for the previously scheduled operations before
1618 * proceeding, so that we don't end up keep removing tasks added
1619 * after execution capability is restored.
1621 flush_work(&cpuset_hotplug_work
);
1623 mutex_lock(&cpuset_mutex
);
1624 if (!is_cpuset_online(cs
))
1627 trialcs
= alloc_trial_cpuset(cs
);
1633 switch (of_cft(of
)->private) {
1635 retval
= update_cpumask(cs
, trialcs
, buf
);
1638 retval
= update_nodemask(cs
, trialcs
, buf
);
1645 free_trial_cpuset(trialcs
);
1647 mutex_unlock(&cpuset_mutex
);
1648 return retval
?: nbytes
;
1652 * These ascii lists should be read in a single call, by using a user
1653 * buffer large enough to hold the entire map. If read in smaller
1654 * chunks, there is no guarantee of atomicity. Since the display format
1655 * used, list of ranges of sequential numbers, is variable length,
1656 * and since these maps can change value dynamically, one could read
1657 * gibberish by doing partial reads while a list was changing.
1659 static int cpuset_common_seq_show(struct seq_file
*sf
, void *v
)
1661 struct cpuset
*cs
= css_cs(seq_css(sf
));
1662 cpuset_filetype_t type
= seq_cft(sf
)->private;
1667 count
= seq_get_buf(sf
, &buf
);
1670 mutex_lock(&callback_mutex
);
1674 s
+= cpulist_scnprintf(s
, count
, cs
->cpus_allowed
);
1677 s
+= nodelist_scnprintf(s
, count
, cs
->mems_allowed
);
1684 if (s
< buf
+ count
- 1) {
1686 seq_commit(sf
, s
- buf
);
1691 mutex_unlock(&callback_mutex
);
1695 static u64
cpuset_read_u64(struct cgroup_subsys_state
*css
, struct cftype
*cft
)
1697 struct cpuset
*cs
= css_cs(css
);
1698 cpuset_filetype_t type
= cft
->private;
1700 case FILE_CPU_EXCLUSIVE
:
1701 return is_cpu_exclusive(cs
);
1702 case FILE_MEM_EXCLUSIVE
:
1703 return is_mem_exclusive(cs
);
1704 case FILE_MEM_HARDWALL
:
1705 return is_mem_hardwall(cs
);
1706 case FILE_SCHED_LOAD_BALANCE
:
1707 return is_sched_load_balance(cs
);
1708 case FILE_MEMORY_MIGRATE
:
1709 return is_memory_migrate(cs
);
1710 case FILE_MEMORY_PRESSURE_ENABLED
:
1711 return cpuset_memory_pressure_enabled
;
1712 case FILE_MEMORY_PRESSURE
:
1713 return fmeter_getrate(&cs
->fmeter
);
1714 case FILE_SPREAD_PAGE
:
1715 return is_spread_page(cs
);
1716 case FILE_SPREAD_SLAB
:
1717 return is_spread_slab(cs
);
1722 /* Unreachable but makes gcc happy */
1726 static s64
cpuset_read_s64(struct cgroup_subsys_state
*css
, struct cftype
*cft
)
1728 struct cpuset
*cs
= css_cs(css
);
1729 cpuset_filetype_t type
= cft
->private;
1731 case FILE_SCHED_RELAX_DOMAIN_LEVEL
:
1732 return cs
->relax_domain_level
;
1737 /* Unrechable but makes gcc happy */
1743 * for the common functions, 'private' gives the type of file
1746 static struct cftype files
[] = {
1749 .seq_show
= cpuset_common_seq_show
,
1750 .write
= cpuset_write_resmask
,
1751 .max_write_len
= (100U + 6 * NR_CPUS
),
1752 .private = FILE_CPULIST
,
1757 .seq_show
= cpuset_common_seq_show
,
1758 .write
= cpuset_write_resmask
,
1759 .max_write_len
= (100U + 6 * MAX_NUMNODES
),
1760 .private = FILE_MEMLIST
,
1764 .name
= "cpu_exclusive",
1765 .read_u64
= cpuset_read_u64
,
1766 .write_u64
= cpuset_write_u64
,
1767 .private = FILE_CPU_EXCLUSIVE
,
1771 .name
= "mem_exclusive",
1772 .read_u64
= cpuset_read_u64
,
1773 .write_u64
= cpuset_write_u64
,
1774 .private = FILE_MEM_EXCLUSIVE
,
1778 .name
= "mem_hardwall",
1779 .read_u64
= cpuset_read_u64
,
1780 .write_u64
= cpuset_write_u64
,
1781 .private = FILE_MEM_HARDWALL
,
1785 .name
= "sched_load_balance",
1786 .read_u64
= cpuset_read_u64
,
1787 .write_u64
= cpuset_write_u64
,
1788 .private = FILE_SCHED_LOAD_BALANCE
,
1792 .name
= "sched_relax_domain_level",
1793 .read_s64
= cpuset_read_s64
,
1794 .write_s64
= cpuset_write_s64
,
1795 .private = FILE_SCHED_RELAX_DOMAIN_LEVEL
,
1799 .name
= "memory_migrate",
1800 .read_u64
= cpuset_read_u64
,
1801 .write_u64
= cpuset_write_u64
,
1802 .private = FILE_MEMORY_MIGRATE
,
1806 .name
= "memory_pressure",
1807 .read_u64
= cpuset_read_u64
,
1808 .write_u64
= cpuset_write_u64
,
1809 .private = FILE_MEMORY_PRESSURE
,
1814 .name
= "memory_spread_page",
1815 .read_u64
= cpuset_read_u64
,
1816 .write_u64
= cpuset_write_u64
,
1817 .private = FILE_SPREAD_PAGE
,
1821 .name
= "memory_spread_slab",
1822 .read_u64
= cpuset_read_u64
,
1823 .write_u64
= cpuset_write_u64
,
1824 .private = FILE_SPREAD_SLAB
,
1828 .name
= "memory_pressure_enabled",
1829 .flags
= CFTYPE_ONLY_ON_ROOT
,
1830 .read_u64
= cpuset_read_u64
,
1831 .write_u64
= cpuset_write_u64
,
1832 .private = FILE_MEMORY_PRESSURE_ENABLED
,
1839 * cpuset_css_alloc - allocate a cpuset css
1840 * cgrp: control group that the new cpuset will be part of
1843 static struct cgroup_subsys_state
*
1844 cpuset_css_alloc(struct cgroup_subsys_state
*parent_css
)
1849 return &top_cpuset
.css
;
1851 cs
= kzalloc(sizeof(*cs
), GFP_KERNEL
);
1853 return ERR_PTR(-ENOMEM
);
1854 if (!alloc_cpumask_var(&cs
->cpus_allowed
, GFP_KERNEL
)) {
1856 return ERR_PTR(-ENOMEM
);
1859 set_bit(CS_SCHED_LOAD_BALANCE
, &cs
->flags
);
1860 cpumask_clear(cs
->cpus_allowed
);
1861 nodes_clear(cs
->mems_allowed
);
1862 fmeter_init(&cs
->fmeter
);
1863 cs
->relax_domain_level
= -1;
1868 static int cpuset_css_online(struct cgroup_subsys_state
*css
)
1870 struct cpuset
*cs
= css_cs(css
);
1871 struct cpuset
*parent
= parent_cs(cs
);
1872 struct cpuset
*tmp_cs
;
1873 struct cgroup_subsys_state
*pos_css
;
1878 mutex_lock(&cpuset_mutex
);
1880 set_bit(CS_ONLINE
, &cs
->flags
);
1881 if (is_spread_page(parent
))
1882 set_bit(CS_SPREAD_PAGE
, &cs
->flags
);
1883 if (is_spread_slab(parent
))
1884 set_bit(CS_SPREAD_SLAB
, &cs
->flags
);
1888 if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN
, &css
->cgroup
->flags
))
1892 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
1893 * set. This flag handling is implemented in cgroup core for
1894 * histrical reasons - the flag may be specified during mount.
1896 * Currently, if any sibling cpusets have exclusive cpus or mem, we
1897 * refuse to clone the configuration - thereby refusing the task to
1898 * be entered, and as a result refusing the sys_unshare() or
1899 * clone() which initiated it. If this becomes a problem for some
1900 * users who wish to allow that scenario, then this could be
1901 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
1902 * (and likewise for mems) to the new cgroup.
1905 cpuset_for_each_child(tmp_cs
, pos_css
, parent
) {
1906 if (is_mem_exclusive(tmp_cs
) || is_cpu_exclusive(tmp_cs
)) {
1913 mutex_lock(&callback_mutex
);
1914 cs
->mems_allowed
= parent
->mems_allowed
;
1915 cpumask_copy(cs
->cpus_allowed
, parent
->cpus_allowed
);
1916 mutex_unlock(&callback_mutex
);
1918 mutex_unlock(&cpuset_mutex
);
1923 * If the cpuset being removed has its flag 'sched_load_balance'
1924 * enabled, then simulate turning sched_load_balance off, which
1925 * will call rebuild_sched_domains_locked().
1928 static void cpuset_css_offline(struct cgroup_subsys_state
*css
)
1930 struct cpuset
*cs
= css_cs(css
);
1932 mutex_lock(&cpuset_mutex
);
1934 if (is_sched_load_balance(cs
))
1935 update_flag(CS_SCHED_LOAD_BALANCE
, cs
, 0);
1938 clear_bit(CS_ONLINE
, &cs
->flags
);
1940 mutex_unlock(&cpuset_mutex
);
1943 static void cpuset_css_free(struct cgroup_subsys_state
*css
)
1945 struct cpuset
*cs
= css_cs(css
);
1947 free_cpumask_var(cs
->cpus_allowed
);
1951 struct cgroup_subsys cpuset_cgrp_subsys
= {
1952 .css_alloc
= cpuset_css_alloc
,
1953 .css_online
= cpuset_css_online
,
1954 .css_offline
= cpuset_css_offline
,
1955 .css_free
= cpuset_css_free
,
1956 .can_attach
= cpuset_can_attach
,
1957 .cancel_attach
= cpuset_cancel_attach
,
1958 .attach
= cpuset_attach
,
1959 .base_cftypes
= files
,
1964 * cpuset_init - initialize cpusets at system boot
1966 * Description: Initialize top_cpuset and the cpuset internal file system,
1969 int __init
cpuset_init(void)
1973 if (!alloc_cpumask_var(&top_cpuset
.cpus_allowed
, GFP_KERNEL
))
1976 cpumask_setall(top_cpuset
.cpus_allowed
);
1977 nodes_setall(top_cpuset
.mems_allowed
);
1979 fmeter_init(&top_cpuset
.fmeter
);
1980 set_bit(CS_SCHED_LOAD_BALANCE
, &top_cpuset
.flags
);
1981 top_cpuset
.relax_domain_level
= -1;
1983 err
= register_filesystem(&cpuset_fs_type
);
1987 if (!alloc_cpumask_var(&cpus_attach
, GFP_KERNEL
))
1994 * If CPU and/or memory hotplug handlers, below, unplug any CPUs
1995 * or memory nodes, we need to walk over the cpuset hierarchy,
1996 * removing that CPU or node from all cpusets. If this removes the
1997 * last CPU or node from a cpuset, then move the tasks in the empty
1998 * cpuset to its next-highest non-empty parent.
2000 static void remove_tasks_in_empty_cpuset(struct cpuset
*cs
)
2002 struct cpuset
*parent
;
2005 * Find its next-highest non-empty parent, (top cpuset
2006 * has online cpus, so can't be empty).
2008 parent
= parent_cs(cs
);
2009 while (cpumask_empty(parent
->cpus_allowed
) ||
2010 nodes_empty(parent
->mems_allowed
))
2011 parent
= parent_cs(parent
);
2013 if (cgroup_transfer_tasks(parent
->css
.cgroup
, cs
->css
.cgroup
)) {
2014 pr_err("cpuset: failed to transfer tasks out of empty cpuset ");
2015 pr_cont_cgroup_name(cs
->css
.cgroup
);
2021 * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug
2022 * @cs: cpuset in interest
2024 * Compare @cs's cpu and mem masks against top_cpuset and if some have gone
2025 * offline, update @cs accordingly. If @cs ends up with no CPU or memory,
2026 * all its tasks are moved to the nearest ancestor with both resources.
2028 static void cpuset_hotplug_update_tasks(struct cpuset
*cs
)
2030 static cpumask_t off_cpus
;
2031 static nodemask_t off_mems
;
2033 bool sane
= cgroup_sane_behavior(cs
->css
.cgroup
);
2036 wait_event(cpuset_attach_wq
, cs
->attach_in_progress
== 0);
2038 mutex_lock(&cpuset_mutex
);
2041 * We have raced with task attaching. We wait until attaching
2042 * is finished, so we won't attach a task to an empty cpuset.
2044 if (cs
->attach_in_progress
) {
2045 mutex_unlock(&cpuset_mutex
);
2049 cpumask_andnot(&off_cpus
, cs
->cpus_allowed
, top_cpuset
.cpus_allowed
);
2050 nodes_andnot(off_mems
, cs
->mems_allowed
, top_cpuset
.mems_allowed
);
2052 mutex_lock(&callback_mutex
);
2053 cpumask_andnot(cs
->cpus_allowed
, cs
->cpus_allowed
, &off_cpus
);
2054 mutex_unlock(&callback_mutex
);
2057 * If sane_behavior flag is set, we need to update tasks' cpumask
2058 * for empty cpuset to take on ancestor's cpumask. Otherwise, don't
2059 * call update_tasks_cpumask() if the cpuset becomes empty, as
2060 * the tasks in it will be migrated to an ancestor.
2062 if ((sane
&& cpumask_empty(cs
->cpus_allowed
)) ||
2063 (!cpumask_empty(&off_cpus
) && !cpumask_empty(cs
->cpus_allowed
)))
2064 update_tasks_cpumask(cs
);
2066 mutex_lock(&callback_mutex
);
2067 nodes_andnot(cs
->mems_allowed
, cs
->mems_allowed
, off_mems
);
2068 mutex_unlock(&callback_mutex
);
2071 * If sane_behavior flag is set, we need to update tasks' nodemask
2072 * for empty cpuset to take on ancestor's nodemask. Otherwise, don't
2073 * call update_tasks_nodemask() if the cpuset becomes empty, as
2074 * the tasks in it will be migratd to an ancestor.
2076 if ((sane
&& nodes_empty(cs
->mems_allowed
)) ||
2077 (!nodes_empty(off_mems
) && !nodes_empty(cs
->mems_allowed
)))
2078 update_tasks_nodemask(cs
);
2080 is_empty
= cpumask_empty(cs
->cpus_allowed
) ||
2081 nodes_empty(cs
->mems_allowed
);
2083 mutex_unlock(&cpuset_mutex
);
2086 * If sane_behavior flag is set, we'll keep tasks in empty cpusets.
2088 * Otherwise move tasks to the nearest ancestor with execution
2089 * resources. This is full cgroup operation which will
2090 * also call back into cpuset. Should be done outside any lock.
2092 if (!sane
&& is_empty
)
2093 remove_tasks_in_empty_cpuset(cs
);
2097 * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset
2099 * This function is called after either CPU or memory configuration has
2100 * changed and updates cpuset accordingly. The top_cpuset is always
2101 * synchronized to cpu_active_mask and N_MEMORY, which is necessary in
2102 * order to make cpusets transparent (of no affect) on systems that are
2103 * actively using CPU hotplug but making no active use of cpusets.
2105 * Non-root cpusets are only affected by offlining. If any CPUs or memory
2106 * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on
2109 * Note that CPU offlining during suspend is ignored. We don't modify
2110 * cpusets across suspend/resume cycles at all.
2112 static void cpuset_hotplug_workfn(struct work_struct
*work
)
2114 static cpumask_t new_cpus
;
2115 static nodemask_t new_mems
;
2116 bool cpus_updated
, mems_updated
;
2118 mutex_lock(&cpuset_mutex
);
2120 /* fetch the available cpus/mems and find out which changed how */
2121 cpumask_copy(&new_cpus
, cpu_active_mask
);
2122 new_mems
= node_states
[N_MEMORY
];
2124 cpus_updated
= !cpumask_equal(top_cpuset
.cpus_allowed
, &new_cpus
);
2125 mems_updated
= !nodes_equal(top_cpuset
.mems_allowed
, new_mems
);
2127 /* synchronize cpus_allowed to cpu_active_mask */
2129 mutex_lock(&callback_mutex
);
2130 cpumask_copy(top_cpuset
.cpus_allowed
, &new_cpus
);
2131 mutex_unlock(&callback_mutex
);
2132 /* we don't mess with cpumasks of tasks in top_cpuset */
2135 /* synchronize mems_allowed to N_MEMORY */
2137 mutex_lock(&callback_mutex
);
2138 top_cpuset
.mems_allowed
= new_mems
;
2139 mutex_unlock(&callback_mutex
);
2140 update_tasks_nodemask(&top_cpuset
);
2143 mutex_unlock(&cpuset_mutex
);
2145 /* if cpus or mems changed, we need to propagate to descendants */
2146 if (cpus_updated
|| mems_updated
) {
2148 struct cgroup_subsys_state
*pos_css
;
2151 cpuset_for_each_descendant_pre(cs
, pos_css
, &top_cpuset
) {
2152 if (cs
== &top_cpuset
|| !css_tryget_online(&cs
->css
))
2156 cpuset_hotplug_update_tasks(cs
);
2164 /* rebuild sched domains if cpus_allowed has changed */
2166 rebuild_sched_domains();
2169 void cpuset_update_active_cpus(bool cpu_online
)
2172 * We're inside cpu hotplug critical region which usually nests
2173 * inside cgroup synchronization. Bounce actual hotplug processing
2174 * to a work item to avoid reverse locking order.
2176 * We still need to do partition_sched_domains() synchronously;
2177 * otherwise, the scheduler will get confused and put tasks to the
2178 * dead CPU. Fall back to the default single domain.
2179 * cpuset_hotplug_workfn() will rebuild it as necessary.
2181 partition_sched_domains(1, NULL
, NULL
);
2182 schedule_work(&cpuset_hotplug_work
);
2186 * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY].
2187 * Call this routine anytime after node_states[N_MEMORY] changes.
2188 * See cpuset_update_active_cpus() for CPU hotplug handling.
2190 static int cpuset_track_online_nodes(struct notifier_block
*self
,
2191 unsigned long action
, void *arg
)
2193 schedule_work(&cpuset_hotplug_work
);
2197 static struct notifier_block cpuset_track_online_nodes_nb
= {
2198 .notifier_call
= cpuset_track_online_nodes
,
2199 .priority
= 10, /* ??! */
2203 * cpuset_init_smp - initialize cpus_allowed
2205 * Description: Finish top cpuset after cpu, node maps are initialized
2207 void __init
cpuset_init_smp(void)
2209 cpumask_copy(top_cpuset
.cpus_allowed
, cpu_active_mask
);
2210 top_cpuset
.mems_allowed
= node_states
[N_MEMORY
];
2211 top_cpuset
.old_mems_allowed
= top_cpuset
.mems_allowed
;
2213 register_hotmemory_notifier(&cpuset_track_online_nodes_nb
);
2217 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
2218 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
2219 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
2221 * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
2222 * attached to the specified @tsk. Guaranteed to return some non-empty
2223 * subset of cpu_online_mask, even if this means going outside the
2227 void cpuset_cpus_allowed(struct task_struct
*tsk
, struct cpumask
*pmask
)
2229 struct cpuset
*cpus_cs
;
2231 mutex_lock(&callback_mutex
);
2233 cpus_cs
= effective_cpumask_cpuset(task_cs(tsk
));
2234 guarantee_online_cpus(cpus_cs
, pmask
);
2236 mutex_unlock(&callback_mutex
);
2239 void cpuset_cpus_allowed_fallback(struct task_struct
*tsk
)
2241 struct cpuset
*cpus_cs
;
2244 cpus_cs
= effective_cpumask_cpuset(task_cs(tsk
));
2245 do_set_cpus_allowed(tsk
, cpus_cs
->cpus_allowed
);
2249 * We own tsk->cpus_allowed, nobody can change it under us.
2251 * But we used cs && cs->cpus_allowed lockless and thus can
2252 * race with cgroup_attach_task() or update_cpumask() and get
2253 * the wrong tsk->cpus_allowed. However, both cases imply the
2254 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
2255 * which takes task_rq_lock().
2257 * If we are called after it dropped the lock we must see all
2258 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
2259 * set any mask even if it is not right from task_cs() pov,
2260 * the pending set_cpus_allowed_ptr() will fix things.
2262 * select_fallback_rq() will fix things ups and set cpu_possible_mask
2267 void cpuset_init_current_mems_allowed(void)
2269 nodes_setall(current
->mems_allowed
);
2273 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
2274 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
2276 * Description: Returns the nodemask_t mems_allowed of the cpuset
2277 * attached to the specified @tsk. Guaranteed to return some non-empty
2278 * subset of node_states[N_MEMORY], even if this means going outside the
2282 nodemask_t
cpuset_mems_allowed(struct task_struct
*tsk
)
2284 struct cpuset
*mems_cs
;
2287 mutex_lock(&callback_mutex
);
2289 mems_cs
= effective_nodemask_cpuset(task_cs(tsk
));
2290 guarantee_online_mems(mems_cs
, &mask
);
2292 mutex_unlock(&callback_mutex
);
2298 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
2299 * @nodemask: the nodemask to be checked
2301 * Are any of the nodes in the nodemask allowed in current->mems_allowed?
2303 int cpuset_nodemask_valid_mems_allowed(nodemask_t
*nodemask
)
2305 return nodes_intersects(*nodemask
, current
->mems_allowed
);
2309 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
2310 * mem_hardwall ancestor to the specified cpuset. Call holding
2311 * callback_mutex. If no ancestor is mem_exclusive or mem_hardwall
2312 * (an unusual configuration), then returns the root cpuset.
2314 static struct cpuset
*nearest_hardwall_ancestor(struct cpuset
*cs
)
2316 while (!(is_mem_exclusive(cs
) || is_mem_hardwall(cs
)) && parent_cs(cs
))
2322 * cpuset_node_allowed_softwall - Can we allocate on a memory node?
2323 * @node: is this an allowed node?
2324 * @gfp_mask: memory allocation flags
2326 * If we're in interrupt, yes, we can always allocate. If __GFP_THISNODE is
2327 * set, yes, we can always allocate. If node is in our task's mems_allowed,
2328 * yes. If it's not a __GFP_HARDWALL request and this node is in the nearest
2329 * hardwalled cpuset ancestor to this task's cpuset, yes. If the task has been
2330 * OOM killed and has access to memory reserves as specified by the TIF_MEMDIE
2334 * If __GFP_HARDWALL is set, cpuset_node_allowed_softwall() reduces to
2335 * cpuset_node_allowed_hardwall(). Otherwise, cpuset_node_allowed_softwall()
2336 * might sleep, and might allow a node from an enclosing cpuset.
2338 * cpuset_node_allowed_hardwall() only handles the simpler case of hardwall
2339 * cpusets, and never sleeps.
2341 * The __GFP_THISNODE placement logic is really handled elsewhere,
2342 * by forcibly using a zonelist starting at a specified node, and by
2343 * (in get_page_from_freelist()) refusing to consider the zones for
2344 * any node on the zonelist except the first. By the time any such
2345 * calls get to this routine, we should just shut up and say 'yes'.
2347 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
2348 * and do not allow allocations outside the current tasks cpuset
2349 * unless the task has been OOM killed as is marked TIF_MEMDIE.
2350 * GFP_KERNEL allocations are not so marked, so can escape to the
2351 * nearest enclosing hardwalled ancestor cpuset.
2353 * Scanning up parent cpusets requires callback_mutex. The
2354 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
2355 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
2356 * current tasks mems_allowed came up empty on the first pass over
2357 * the zonelist. So only GFP_KERNEL allocations, if all nodes in the
2358 * cpuset are short of memory, might require taking the callback_mutex
2361 * The first call here from mm/page_alloc:get_page_from_freelist()
2362 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
2363 * so no allocation on a node outside the cpuset is allowed (unless
2364 * in interrupt, of course).
2366 * The second pass through get_page_from_freelist() doesn't even call
2367 * here for GFP_ATOMIC calls. For those calls, the __alloc_pages()
2368 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
2369 * in alloc_flags. That logic and the checks below have the combined
2371 * in_interrupt - any node ok (current task context irrelevant)
2372 * GFP_ATOMIC - any node ok
2373 * TIF_MEMDIE - any node ok
2374 * GFP_KERNEL - any node in enclosing hardwalled cpuset ok
2375 * GFP_USER - only nodes in current tasks mems allowed ok.
2378 * Don't call cpuset_node_allowed_softwall if you can't sleep, unless you
2379 * pass in the __GFP_HARDWALL flag set in gfp_flag, which disables
2380 * the code that might scan up ancestor cpusets and sleep.
2382 int __cpuset_node_allowed_softwall(int node
, gfp_t gfp_mask
)
2384 struct cpuset
*cs
; /* current cpuset ancestors */
2385 int allowed
; /* is allocation in zone z allowed? */
2387 if (in_interrupt() || (gfp_mask
& __GFP_THISNODE
))
2389 might_sleep_if(!(gfp_mask
& __GFP_HARDWALL
));
2390 if (node_isset(node
, current
->mems_allowed
))
2393 * Allow tasks that have access to memory reserves because they have
2394 * been OOM killed to get memory anywhere.
2396 if (unlikely(test_thread_flag(TIF_MEMDIE
)))
2398 if (gfp_mask
& __GFP_HARDWALL
) /* If hardwall request, stop here */
2401 if (current
->flags
& PF_EXITING
) /* Let dying task have memory */
2404 /* Not hardwall and node outside mems_allowed: scan up cpusets */
2405 mutex_lock(&callback_mutex
);
2408 cs
= nearest_hardwall_ancestor(task_cs(current
));
2409 allowed
= node_isset(node
, cs
->mems_allowed
);
2412 mutex_unlock(&callback_mutex
);
2417 * cpuset_node_allowed_hardwall - Can we allocate on a memory node?
2418 * @node: is this an allowed node?
2419 * @gfp_mask: memory allocation flags
2421 * If we're in interrupt, yes, we can always allocate. If __GFP_THISNODE is
2422 * set, yes, we can always allocate. If node is in our task's mems_allowed,
2423 * yes. If the task has been OOM killed and has access to memory reserves as
2424 * specified by the TIF_MEMDIE flag, yes.
2427 * The __GFP_THISNODE placement logic is really handled elsewhere,
2428 * by forcibly using a zonelist starting at a specified node, and by
2429 * (in get_page_from_freelist()) refusing to consider the zones for
2430 * any node on the zonelist except the first. By the time any such
2431 * calls get to this routine, we should just shut up and say 'yes'.
2433 * Unlike the cpuset_node_allowed_softwall() variant, above,
2434 * this variant requires that the node be in the current task's
2435 * mems_allowed or that we're in interrupt. It does not scan up the
2436 * cpuset hierarchy for the nearest enclosing mem_exclusive cpuset.
2439 int __cpuset_node_allowed_hardwall(int node
, gfp_t gfp_mask
)
2441 if (in_interrupt() || (gfp_mask
& __GFP_THISNODE
))
2443 if (node_isset(node
, current
->mems_allowed
))
2446 * Allow tasks that have access to memory reserves because they have
2447 * been OOM killed to get memory anywhere.
2449 if (unlikely(test_thread_flag(TIF_MEMDIE
)))
2455 * cpuset_mem_spread_node() - On which node to begin search for a file page
2456 * cpuset_slab_spread_node() - On which node to begin search for a slab page
2458 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
2459 * tasks in a cpuset with is_spread_page or is_spread_slab set),
2460 * and if the memory allocation used cpuset_mem_spread_node()
2461 * to determine on which node to start looking, as it will for
2462 * certain page cache or slab cache pages such as used for file
2463 * system buffers and inode caches, then instead of starting on the
2464 * local node to look for a free page, rather spread the starting
2465 * node around the tasks mems_allowed nodes.
2467 * We don't have to worry about the returned node being offline
2468 * because "it can't happen", and even if it did, it would be ok.
2470 * The routines calling guarantee_online_mems() are careful to
2471 * only set nodes in task->mems_allowed that are online. So it
2472 * should not be possible for the following code to return an
2473 * offline node. But if it did, that would be ok, as this routine
2474 * is not returning the node where the allocation must be, only
2475 * the node where the search should start. The zonelist passed to
2476 * __alloc_pages() will include all nodes. If the slab allocator
2477 * is passed an offline node, it will fall back to the local node.
2478 * See kmem_cache_alloc_node().
2481 static int cpuset_spread_node(int *rotor
)
2485 node
= next_node(*rotor
, current
->mems_allowed
);
2486 if (node
== MAX_NUMNODES
)
2487 node
= first_node(current
->mems_allowed
);
2492 int cpuset_mem_spread_node(void)
2494 if (current
->cpuset_mem_spread_rotor
== NUMA_NO_NODE
)
2495 current
->cpuset_mem_spread_rotor
=
2496 node_random(¤t
->mems_allowed
);
2498 return cpuset_spread_node(¤t
->cpuset_mem_spread_rotor
);
2501 int cpuset_slab_spread_node(void)
2503 if (current
->cpuset_slab_spread_rotor
== NUMA_NO_NODE
)
2504 current
->cpuset_slab_spread_rotor
=
2505 node_random(¤t
->mems_allowed
);
2507 return cpuset_spread_node(¤t
->cpuset_slab_spread_rotor
);
2510 EXPORT_SYMBOL_GPL(cpuset_mem_spread_node
);
2513 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
2514 * @tsk1: pointer to task_struct of some task.
2515 * @tsk2: pointer to task_struct of some other task.
2517 * Description: Return true if @tsk1's mems_allowed intersects the
2518 * mems_allowed of @tsk2. Used by the OOM killer to determine if
2519 * one of the task's memory usage might impact the memory available
2523 int cpuset_mems_allowed_intersects(const struct task_struct
*tsk1
,
2524 const struct task_struct
*tsk2
)
2526 return nodes_intersects(tsk1
->mems_allowed
, tsk2
->mems_allowed
);
2529 #define CPUSET_NODELIST_LEN (256)
2532 * cpuset_print_task_mems_allowed - prints task's cpuset and mems_allowed
2533 * @tsk: pointer to task_struct of some task.
2535 * Description: Prints @task's name, cpuset name, and cached copy of its
2536 * mems_allowed to the kernel log.
2538 void cpuset_print_task_mems_allowed(struct task_struct
*tsk
)
2540 /* Statically allocated to prevent using excess stack. */
2541 static char cpuset_nodelist
[CPUSET_NODELIST_LEN
];
2542 static DEFINE_SPINLOCK(cpuset_buffer_lock
);
2543 struct cgroup
*cgrp
;
2545 spin_lock(&cpuset_buffer_lock
);
2548 cgrp
= task_cs(tsk
)->css
.cgroup
;
2549 nodelist_scnprintf(cpuset_nodelist
, CPUSET_NODELIST_LEN
,
2551 pr_info("%s cpuset=", tsk
->comm
);
2552 pr_cont_cgroup_name(cgrp
);
2553 pr_cont(" mems_allowed=%s\n", cpuset_nodelist
);
2556 spin_unlock(&cpuset_buffer_lock
);
2560 * Collection of memory_pressure is suppressed unless
2561 * this flag is enabled by writing "1" to the special
2562 * cpuset file 'memory_pressure_enabled' in the root cpuset.
2565 int cpuset_memory_pressure_enabled __read_mostly
;
2568 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
2570 * Keep a running average of the rate of synchronous (direct)
2571 * page reclaim efforts initiated by tasks in each cpuset.
2573 * This represents the rate at which some task in the cpuset
2574 * ran low on memory on all nodes it was allowed to use, and
2575 * had to enter the kernels page reclaim code in an effort to
2576 * create more free memory by tossing clean pages or swapping
2577 * or writing dirty pages.
2579 * Display to user space in the per-cpuset read-only file
2580 * "memory_pressure". Value displayed is an integer
2581 * representing the recent rate of entry into the synchronous
2582 * (direct) page reclaim by any task attached to the cpuset.
2585 void __cpuset_memory_pressure_bump(void)
2588 fmeter_markevent(&task_cs(current
)->fmeter
);
2592 #ifdef CONFIG_PROC_PID_CPUSET
2594 * proc_cpuset_show()
2595 * - Print tasks cpuset path into seq_file.
2596 * - Used for /proc/<pid>/cpuset.
2597 * - No need to task_lock(tsk) on this tsk->cpuset reference, as it
2598 * doesn't really matter if tsk->cpuset changes after we read it,
2599 * and we take cpuset_mutex, keeping cpuset_attach() from changing it
2602 int proc_cpuset_show(struct seq_file
*m
, void *unused_v
)
2605 struct task_struct
*tsk
;
2607 struct cgroup_subsys_state
*css
;
2611 buf
= kmalloc(PATH_MAX
, GFP_KERNEL
);
2617 tsk
= get_pid_task(pid
, PIDTYPE_PID
);
2621 retval
= -ENAMETOOLONG
;
2623 css
= task_css(tsk
, cpuset_cgrp_id
);
2624 p
= cgroup_path(css
->cgroup
, buf
, PATH_MAX
);
2632 put_task_struct(tsk
);
2638 #endif /* CONFIG_PROC_PID_CPUSET */
2640 /* Display task mems_allowed in /proc/<pid>/status file. */
2641 void cpuset_task_status_allowed(struct seq_file
*m
, struct task_struct
*task
)
2643 seq_puts(m
, "Mems_allowed:\t");
2644 seq_nodemask(m
, &task
->mems_allowed
);
2646 seq_puts(m
, "Mems_allowed_list:\t");
2647 seq_nodemask_list(m
, &task
->mems_allowed
);