1 #ifndef _LINUX_MMU_NOTIFIER_H
2 #define _LINUX_MMU_NOTIFIER_H
4 #include <linux/list.h>
5 #include <linux/spinlock.h>
6 #include <linux/mm_types.h>
7 #include <linux/srcu.h>
10 struct mmu_notifier_ops
;
12 #ifdef CONFIG_MMU_NOTIFIER
15 * The mmu notifier_mm structure is allocated and installed in
16 * mm->mmu_notifier_mm inside the mm_take_all_locks() protected
17 * critical section and it's released only when mm_count reaches zero
20 struct mmu_notifier_mm
{
21 /* all mmu notifiers registerd in this mm are queued in this list */
22 struct hlist_head list
;
23 /* to serialize the list modifications and hlist_unhashed */
27 struct mmu_notifier_ops
{
29 * Called either by mmu_notifier_unregister or when the mm is
30 * being destroyed by exit_mmap, always before all pages are
31 * freed. This can run concurrently with other mmu notifier
32 * methods (the ones invoked outside the mm context) and it
33 * should tear down all secondary mmu mappings and freeze the
34 * secondary mmu. If this method isn't implemented you've to
35 * be sure that nothing could possibly write to the pages
36 * through the secondary mmu by the time the last thread with
37 * tsk->mm == mm exits.
39 * As side note: the pages freed after ->release returns could
40 * be immediately reallocated by the gart at an alias physical
41 * address with a different cache model, so if ->release isn't
42 * implemented because all _software_ driven memory accesses
43 * through the secondary mmu are terminated by the time the
44 * last thread of this mm quits, you've also to be sure that
45 * speculative _hardware_ operations can't allocate dirty
46 * cachelines in the cpu that could not be snooped and made
47 * coherent with the other read and write operations happening
48 * through the gart alias address, so leading to memory
51 void (*release
)(struct mmu_notifier
*mn
,
52 struct mm_struct
*mm
);
55 * clear_flush_young is called after the VM is
56 * test-and-clearing the young/accessed bitflag in the
57 * pte. This way the VM will provide proper aging to the
58 * accesses to the page through the secondary MMUs and not
59 * only to the ones through the Linux pte.
60 * Start-end is necessary in case the secondary MMU is mapping the page
61 * at a smaller granularity than the primary MMU.
63 int (*clear_flush_young
)(struct mmu_notifier
*mn
,
69 * clear_young is a lightweight version of clear_flush_young. Like the
70 * latter, it is supposed to test-and-clear the young/accessed bitflag
71 * in the secondary pte, but it may omit flushing the secondary tlb.
73 int (*clear_young
)(struct mmu_notifier
*mn
,
79 * test_young is called to check the young/accessed bitflag in
80 * the secondary pte. This is used to know if the page is
81 * frequently used without actually clearing the flag or tearing
82 * down the secondary mapping on the page.
84 int (*test_young
)(struct mmu_notifier
*mn
,
86 unsigned long address
);
89 * change_pte is called in cases that pte mapping to page is changed:
90 * for example, when ksm remaps pte to point to a new shared page.
92 void (*change_pte
)(struct mmu_notifier
*mn
,
94 unsigned long address
,
98 * Before this is invoked any secondary MMU is still ok to
99 * read/write to the page previously pointed to by the Linux
100 * pte because the page hasn't been freed yet and it won't be
101 * freed until this returns. If required set_page_dirty has to
102 * be called internally to this method.
104 void (*invalidate_page
)(struct mmu_notifier
*mn
,
105 struct mm_struct
*mm
,
106 unsigned long address
);
109 * invalidate_range_start() and invalidate_range_end() must be
110 * paired and are called only when the mmap_sem and/or the
111 * locks protecting the reverse maps are held. If the subsystem
112 * can't guarantee that no additional references are taken to
113 * the pages in the range, it has to implement the
114 * invalidate_range() notifier to remove any references taken
115 * after invalidate_range_start().
117 * Invalidation of multiple concurrent ranges may be
118 * optionally permitted by the driver. Either way the
119 * establishment of sptes is forbidden in the range passed to
120 * invalidate_range_begin/end for the whole duration of the
121 * invalidate_range_begin/end critical section.
123 * invalidate_range_start() is called when all pages in the
124 * range are still mapped and have at least a refcount of one.
126 * invalidate_range_end() is called when all pages in the
127 * range have been unmapped and the pages have been freed by
130 * The VM will remove the page table entries and potentially
131 * the page between invalidate_range_start() and
132 * invalidate_range_end(). If the page must not be freed
133 * because of pending I/O or other circumstances then the
134 * invalidate_range_start() callback (or the initial mapping
135 * by the driver) must make sure that the refcount is kept
138 * If the driver increases the refcount when the pages are
139 * initially mapped into an address space then either
140 * invalidate_range_start() or invalidate_range_end() may
141 * decrease the refcount. If the refcount is decreased on
142 * invalidate_range_start() then the VM can free pages as page
143 * table entries are removed. If the refcount is only
144 * droppped on invalidate_range_end() then the driver itself
145 * will drop the last refcount but it must take care to flush
146 * any secondary tlb before doing the final free on the
147 * page. Pages will no longer be referenced by the linux
148 * address space but may still be referenced by sptes until
149 * the last refcount is dropped.
151 void (*invalidate_range_start
)(struct mmu_notifier
*mn
,
152 struct mm_struct
*mm
,
153 unsigned long start
, unsigned long end
);
154 void (*invalidate_range_end
)(struct mmu_notifier
*mn
,
155 struct mm_struct
*mm
,
156 unsigned long start
, unsigned long end
);
159 * invalidate_range() is either called between
160 * invalidate_range_start() and invalidate_range_end() when the
161 * VM has to free pages that where unmapped, but before the
162 * pages are actually freed, or outside of _start()/_end() when
163 * a (remote) TLB is necessary.
165 * If invalidate_range() is used to manage a non-CPU TLB with
166 * shared page-tables, it not necessary to implement the
167 * invalidate_range_start()/end() notifiers, as
168 * invalidate_range() alread catches the points in time when an
169 * external TLB range needs to be flushed.
171 * The invalidate_range() function is called under the ptl
172 * spin-lock and not allowed to sleep.
174 * Note that this function might be called with just a sub-range
175 * of what was passed to invalidate_range_start()/end(), if
176 * called between those functions.
178 void (*invalidate_range
)(struct mmu_notifier
*mn
, struct mm_struct
*mm
,
179 unsigned long start
, unsigned long end
);
183 * The notifier chains are protected by mmap_sem and/or the reverse map
184 * semaphores. Notifier chains are only changed when all reverse maps and
185 * the mmap_sem locks are taken.
187 * Therefore notifier chains can only be traversed when either
189 * 1. mmap_sem is held.
190 * 2. One of the reverse map locks is held (i_mmap_rwsem or anon_vma->rwsem).
191 * 3. No other concurrent thread can access the list (release)
193 struct mmu_notifier
{
194 struct hlist_node hlist
;
195 const struct mmu_notifier_ops
*ops
;
198 static inline int mm_has_notifiers(struct mm_struct
*mm
)
200 return unlikely(mm
->mmu_notifier_mm
);
203 extern int mmu_notifier_register(struct mmu_notifier
*mn
,
204 struct mm_struct
*mm
);
205 extern int __mmu_notifier_register(struct mmu_notifier
*mn
,
206 struct mm_struct
*mm
);
207 extern void mmu_notifier_unregister(struct mmu_notifier
*mn
,
208 struct mm_struct
*mm
);
209 extern void mmu_notifier_unregister_no_release(struct mmu_notifier
*mn
,
210 struct mm_struct
*mm
);
211 extern void __mmu_notifier_mm_destroy(struct mm_struct
*mm
);
212 extern void __mmu_notifier_release(struct mm_struct
*mm
);
213 extern int __mmu_notifier_clear_flush_young(struct mm_struct
*mm
,
216 extern int __mmu_notifier_clear_young(struct mm_struct
*mm
,
219 extern int __mmu_notifier_test_young(struct mm_struct
*mm
,
220 unsigned long address
);
221 extern void __mmu_notifier_change_pte(struct mm_struct
*mm
,
222 unsigned long address
, pte_t pte
);
223 extern void __mmu_notifier_invalidate_page(struct mm_struct
*mm
,
224 unsigned long address
);
225 extern void __mmu_notifier_invalidate_range_start(struct mm_struct
*mm
,
226 unsigned long start
, unsigned long end
);
227 extern void __mmu_notifier_invalidate_range_end(struct mm_struct
*mm
,
228 unsigned long start
, unsigned long end
);
229 extern void __mmu_notifier_invalidate_range(struct mm_struct
*mm
,
230 unsigned long start
, unsigned long end
);
232 static inline void mmu_notifier_release(struct mm_struct
*mm
)
234 if (mm_has_notifiers(mm
))
235 __mmu_notifier_release(mm
);
238 static inline int mmu_notifier_clear_flush_young(struct mm_struct
*mm
,
242 if (mm_has_notifiers(mm
))
243 return __mmu_notifier_clear_flush_young(mm
, start
, end
);
247 static inline int mmu_notifier_clear_young(struct mm_struct
*mm
,
251 if (mm_has_notifiers(mm
))
252 return __mmu_notifier_clear_young(mm
, start
, end
);
256 static inline int mmu_notifier_test_young(struct mm_struct
*mm
,
257 unsigned long address
)
259 if (mm_has_notifiers(mm
))
260 return __mmu_notifier_test_young(mm
, address
);
264 static inline void mmu_notifier_change_pte(struct mm_struct
*mm
,
265 unsigned long address
, pte_t pte
)
267 if (mm_has_notifiers(mm
))
268 __mmu_notifier_change_pte(mm
, address
, pte
);
271 static inline void mmu_notifier_invalidate_page(struct mm_struct
*mm
,
272 unsigned long address
)
274 if (mm_has_notifiers(mm
))
275 __mmu_notifier_invalidate_page(mm
, address
);
278 static inline void mmu_notifier_invalidate_range_start(struct mm_struct
*mm
,
279 unsigned long start
, unsigned long end
)
281 if (mm_has_notifiers(mm
))
282 __mmu_notifier_invalidate_range_start(mm
, start
, end
);
285 static inline void mmu_notifier_invalidate_range_end(struct mm_struct
*mm
,
286 unsigned long start
, unsigned long end
)
288 if (mm_has_notifiers(mm
))
289 __mmu_notifier_invalidate_range_end(mm
, start
, end
);
292 static inline void mmu_notifier_invalidate_range(struct mm_struct
*mm
,
293 unsigned long start
, unsigned long end
)
295 if (mm_has_notifiers(mm
))
296 __mmu_notifier_invalidate_range(mm
, start
, end
);
299 static inline void mmu_notifier_mm_init(struct mm_struct
*mm
)
301 mm
->mmu_notifier_mm
= NULL
;
304 static inline void mmu_notifier_mm_destroy(struct mm_struct
*mm
)
306 if (mm_has_notifiers(mm
))
307 __mmu_notifier_mm_destroy(mm
);
310 #define ptep_clear_flush_young_notify(__vma, __address, __ptep) \
313 struct vm_area_struct *___vma = __vma; \
314 unsigned long ___address = __address; \
315 __young = ptep_clear_flush_young(___vma, ___address, __ptep); \
316 __young |= mmu_notifier_clear_flush_young(___vma->vm_mm, \
323 #define pmdp_clear_flush_young_notify(__vma, __address, __pmdp) \
326 struct vm_area_struct *___vma = __vma; \
327 unsigned long ___address = __address; \
328 __young = pmdp_clear_flush_young(___vma, ___address, __pmdp); \
329 __young |= mmu_notifier_clear_flush_young(___vma->vm_mm, \
336 #define ptep_clear_young_notify(__vma, __address, __ptep) \
339 struct vm_area_struct *___vma = __vma; \
340 unsigned long ___address = __address; \
341 __young = ptep_test_and_clear_young(___vma, ___address, __ptep);\
342 __young |= mmu_notifier_clear_young(___vma->vm_mm, ___address, \
343 ___address + PAGE_SIZE); \
347 #define pmdp_clear_young_notify(__vma, __address, __pmdp) \
350 struct vm_area_struct *___vma = __vma; \
351 unsigned long ___address = __address; \
352 __young = pmdp_test_and_clear_young(___vma, ___address, __pmdp);\
353 __young |= mmu_notifier_clear_young(___vma->vm_mm, ___address, \
354 ___address + PMD_SIZE); \
358 #define ptep_clear_flush_notify(__vma, __address, __ptep) \
360 unsigned long ___addr = __address & PAGE_MASK; \
361 struct mm_struct *___mm = (__vma)->vm_mm; \
364 ___pte = ptep_clear_flush(__vma, __address, __ptep); \
365 mmu_notifier_invalidate_range(___mm, ___addr, \
366 ___addr + PAGE_SIZE); \
371 #define pmdp_huge_clear_flush_notify(__vma, __haddr, __pmd) \
373 unsigned long ___haddr = __haddr & HPAGE_PMD_MASK; \
374 struct mm_struct *___mm = (__vma)->vm_mm; \
377 ___pmd = pmdp_huge_clear_flush(__vma, __haddr, __pmd); \
378 mmu_notifier_invalidate_range(___mm, ___haddr, \
379 ___haddr + HPAGE_PMD_SIZE); \
384 #define pudp_huge_clear_flush_notify(__vma, __haddr, __pud) \
386 unsigned long ___haddr = __haddr & HPAGE_PUD_MASK; \
387 struct mm_struct *___mm = (__vma)->vm_mm; \
390 ___pud = pudp_huge_clear_flush(__vma, __haddr, __pud); \
391 mmu_notifier_invalidate_range(___mm, ___haddr, \
392 ___haddr + HPAGE_PUD_SIZE); \
398 * set_pte_at_notify() sets the pte _after_ running the notifier.
399 * This is safe to start by updating the secondary MMUs, because the primary MMU
400 * pte invalidate must have already happened with a ptep_clear_flush() before
401 * set_pte_at_notify() has been invoked. Updating the secondary MMUs first is
402 * required when we change both the protection of the mapping from read-only to
403 * read-write and the pfn (like during copy on write page faults). Otherwise the
404 * old page would remain mapped readonly in the secondary MMUs after the new
405 * page is already writable by some CPU through the primary MMU.
407 #define set_pte_at_notify(__mm, __address, __ptep, __pte) \
409 struct mm_struct *___mm = __mm; \
410 unsigned long ___address = __address; \
411 pte_t ___pte = __pte; \
413 mmu_notifier_change_pte(___mm, ___address, ___pte); \
414 set_pte_at(___mm, ___address, __ptep, ___pte); \
417 extern void mmu_notifier_call_srcu(struct rcu_head
*rcu
,
418 void (*func
)(struct rcu_head
*rcu
));
419 extern void mmu_notifier_synchronize(void);
421 #else /* CONFIG_MMU_NOTIFIER */
423 static inline void mmu_notifier_release(struct mm_struct
*mm
)
427 static inline int mmu_notifier_clear_flush_young(struct mm_struct
*mm
,
434 static inline int mmu_notifier_test_young(struct mm_struct
*mm
,
435 unsigned long address
)
440 static inline void mmu_notifier_change_pte(struct mm_struct
*mm
,
441 unsigned long address
, pte_t pte
)
445 static inline void mmu_notifier_invalidate_page(struct mm_struct
*mm
,
446 unsigned long address
)
450 static inline void mmu_notifier_invalidate_range_start(struct mm_struct
*mm
,
451 unsigned long start
, unsigned long end
)
455 static inline void mmu_notifier_invalidate_range_end(struct mm_struct
*mm
,
456 unsigned long start
, unsigned long end
)
460 static inline void mmu_notifier_invalidate_range(struct mm_struct
*mm
,
461 unsigned long start
, unsigned long end
)
465 static inline void mmu_notifier_mm_init(struct mm_struct
*mm
)
469 static inline void mmu_notifier_mm_destroy(struct mm_struct
*mm
)
473 #define ptep_clear_flush_young_notify ptep_clear_flush_young
474 #define pmdp_clear_flush_young_notify pmdp_clear_flush_young
475 #define ptep_clear_young_notify ptep_test_and_clear_young
476 #define pmdp_clear_young_notify pmdp_test_and_clear_young
477 #define ptep_clear_flush_notify ptep_clear_flush
478 #define pmdp_huge_clear_flush_notify pmdp_huge_clear_flush
479 #define pudp_huge_clear_flush_notify pudp_huge_clear_flush
480 #define set_pte_at_notify set_pte_at
482 #endif /* CONFIG_MMU_NOTIFIER */
484 #endif /* _LINUX_MMU_NOTIFIER_H */