crypto: atmel-sha - remove unnecessary static in atmel_sha_remove()
[linux-stable.git] / block / partition-generic.c
blobc5ec8246e25e1ed3eb6aef683c99e4aacd32ce2c
1 /*
2 * Code extracted from drivers/block/genhd.c
3 * Copyright (C) 1991-1998 Linus Torvalds
4 * Re-organised Feb 1998 Russell King
6 * We now have independent partition support from the
7 * block drivers, which allows all the partition code to
8 * be grouped in one location, and it to be mostly self
9 * contained.
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/fs.h>
15 #include <linux/slab.h>
16 #include <linux/kmod.h>
17 #include <linux/ctype.h>
18 #include <linux/genhd.h>
19 #include <linux/blktrace_api.h>
21 #include "partitions/check.h"
23 #ifdef CONFIG_BLK_DEV_MD
24 extern void md_autodetect_dev(dev_t dev);
25 #endif
28 * disk_name() is used by partition check code and the genhd driver.
29 * It formats the devicename of the indicated disk into
30 * the supplied buffer (of size at least 32), and returns
31 * a pointer to that same buffer (for convenience).
34 char *disk_name(struct gendisk *hd, int partno, char *buf)
36 if (!partno)
37 snprintf(buf, BDEVNAME_SIZE, "%s", hd->disk_name);
38 else if (isdigit(hd->disk_name[strlen(hd->disk_name)-1]))
39 snprintf(buf, BDEVNAME_SIZE, "%sp%d", hd->disk_name, partno);
40 else
41 snprintf(buf, BDEVNAME_SIZE, "%s%d", hd->disk_name, partno);
43 return buf;
46 const char *bdevname(struct block_device *bdev, char *buf)
48 return disk_name(bdev->bd_disk, bdev->bd_part->partno, buf);
51 EXPORT_SYMBOL(bdevname);
54 * There's very little reason to use this, you should really
55 * have a struct block_device just about everywhere and use
56 * bdevname() instead.
58 const char *__bdevname(dev_t dev, char *buffer)
60 scnprintf(buffer, BDEVNAME_SIZE, "unknown-block(%u,%u)",
61 MAJOR(dev), MINOR(dev));
62 return buffer;
65 EXPORT_SYMBOL(__bdevname);
67 static ssize_t part_partition_show(struct device *dev,
68 struct device_attribute *attr, char *buf)
70 struct hd_struct *p = dev_to_part(dev);
72 return sprintf(buf, "%d\n", p->partno);
75 static ssize_t part_start_show(struct device *dev,
76 struct device_attribute *attr, char *buf)
78 struct hd_struct *p = dev_to_part(dev);
80 return sprintf(buf, "%llu\n",(unsigned long long)p->start_sect);
83 ssize_t part_size_show(struct device *dev,
84 struct device_attribute *attr, char *buf)
86 struct hd_struct *p = dev_to_part(dev);
87 return sprintf(buf, "%llu\n",(unsigned long long)part_nr_sects_read(p));
90 static ssize_t part_ro_show(struct device *dev,
91 struct device_attribute *attr, char *buf)
93 struct hd_struct *p = dev_to_part(dev);
94 return sprintf(buf, "%d\n", p->policy ? 1 : 0);
97 static ssize_t part_alignment_offset_show(struct device *dev,
98 struct device_attribute *attr, char *buf)
100 struct hd_struct *p = dev_to_part(dev);
101 return sprintf(buf, "%llu\n", (unsigned long long)p->alignment_offset);
104 static ssize_t part_discard_alignment_show(struct device *dev,
105 struct device_attribute *attr, char *buf)
107 struct hd_struct *p = dev_to_part(dev);
108 return sprintf(buf, "%u\n", p->discard_alignment);
111 ssize_t part_stat_show(struct device *dev,
112 struct device_attribute *attr, char *buf)
114 struct hd_struct *p = dev_to_part(dev);
115 int cpu;
117 cpu = part_stat_lock();
118 part_round_stats(cpu, p);
119 part_stat_unlock();
120 return sprintf(buf,
121 "%8lu %8lu %8llu %8u "
122 "%8lu %8lu %8llu %8u "
123 "%8u %8u %8u"
124 "\n",
125 part_stat_read(p, ios[READ]),
126 part_stat_read(p, merges[READ]),
127 (unsigned long long)part_stat_read(p, sectors[READ]),
128 jiffies_to_msecs(part_stat_read(p, ticks[READ])),
129 part_stat_read(p, ios[WRITE]),
130 part_stat_read(p, merges[WRITE]),
131 (unsigned long long)part_stat_read(p, sectors[WRITE]),
132 jiffies_to_msecs(part_stat_read(p, ticks[WRITE])),
133 part_in_flight(p),
134 jiffies_to_msecs(part_stat_read(p, io_ticks)),
135 jiffies_to_msecs(part_stat_read(p, time_in_queue)));
138 ssize_t part_inflight_show(struct device *dev,
139 struct device_attribute *attr, char *buf)
141 struct hd_struct *p = dev_to_part(dev);
143 return sprintf(buf, "%8u %8u\n", atomic_read(&p->in_flight[0]),
144 atomic_read(&p->in_flight[1]));
147 #ifdef CONFIG_FAIL_MAKE_REQUEST
148 ssize_t part_fail_show(struct device *dev,
149 struct device_attribute *attr, char *buf)
151 struct hd_struct *p = dev_to_part(dev);
153 return sprintf(buf, "%d\n", p->make_it_fail);
156 ssize_t part_fail_store(struct device *dev,
157 struct device_attribute *attr,
158 const char *buf, size_t count)
160 struct hd_struct *p = dev_to_part(dev);
161 int i;
163 if (count > 0 && sscanf(buf, "%d", &i) > 0)
164 p->make_it_fail = (i == 0) ? 0 : 1;
166 return count;
168 #endif
170 static DEVICE_ATTR(partition, S_IRUGO, part_partition_show, NULL);
171 static DEVICE_ATTR(start, S_IRUGO, part_start_show, NULL);
172 static DEVICE_ATTR(size, S_IRUGO, part_size_show, NULL);
173 static DEVICE_ATTR(ro, S_IRUGO, part_ro_show, NULL);
174 static DEVICE_ATTR(alignment_offset, S_IRUGO, part_alignment_offset_show, NULL);
175 static DEVICE_ATTR(discard_alignment, S_IRUGO, part_discard_alignment_show,
176 NULL);
177 static DEVICE_ATTR(stat, S_IRUGO, part_stat_show, NULL);
178 static DEVICE_ATTR(inflight, S_IRUGO, part_inflight_show, NULL);
179 #ifdef CONFIG_FAIL_MAKE_REQUEST
180 static struct device_attribute dev_attr_fail =
181 __ATTR(make-it-fail, S_IRUGO|S_IWUSR, part_fail_show, part_fail_store);
182 #endif
184 static struct attribute *part_attrs[] = {
185 &dev_attr_partition.attr,
186 &dev_attr_start.attr,
187 &dev_attr_size.attr,
188 &dev_attr_ro.attr,
189 &dev_attr_alignment_offset.attr,
190 &dev_attr_discard_alignment.attr,
191 &dev_attr_stat.attr,
192 &dev_attr_inflight.attr,
193 #ifdef CONFIG_FAIL_MAKE_REQUEST
194 &dev_attr_fail.attr,
195 #endif
196 NULL
199 static struct attribute_group part_attr_group = {
200 .attrs = part_attrs,
203 static const struct attribute_group *part_attr_groups[] = {
204 &part_attr_group,
205 #ifdef CONFIG_BLK_DEV_IO_TRACE
206 &blk_trace_attr_group,
207 #endif
208 NULL
211 static void part_release(struct device *dev)
213 struct hd_struct *p = dev_to_part(dev);
214 blk_free_devt(dev->devt);
215 hd_free_part(p);
216 kfree(p);
219 static int part_uevent(struct device *dev, struct kobj_uevent_env *env)
221 struct hd_struct *part = dev_to_part(dev);
223 add_uevent_var(env, "PARTN=%u", part->partno);
224 if (part->info && part->info->volname[0])
225 add_uevent_var(env, "PARTNAME=%s", part->info->volname);
226 return 0;
229 struct device_type part_type = {
230 .name = "partition",
231 .groups = part_attr_groups,
232 .release = part_release,
233 .uevent = part_uevent,
236 static void delete_partition_rcu_cb(struct rcu_head *head)
238 struct hd_struct *part = container_of(head, struct hd_struct, rcu_head);
240 part->start_sect = 0;
241 part->nr_sects = 0;
242 part_stat_set_all(part, 0);
243 put_device(part_to_dev(part));
246 void __delete_partition(struct percpu_ref *ref)
248 struct hd_struct *part = container_of(ref, struct hd_struct, ref);
249 call_rcu(&part->rcu_head, delete_partition_rcu_cb);
252 void delete_partition(struct gendisk *disk, int partno)
254 struct disk_part_tbl *ptbl = disk->part_tbl;
255 struct hd_struct *part;
257 if (partno >= ptbl->len)
258 return;
260 part = ptbl->part[partno];
261 if (!part)
262 return;
264 rcu_assign_pointer(ptbl->part[partno], NULL);
265 rcu_assign_pointer(ptbl->last_lookup, NULL);
266 kobject_put(part->holder_dir);
267 device_del(part_to_dev(part));
269 hd_struct_kill(part);
272 static ssize_t whole_disk_show(struct device *dev,
273 struct device_attribute *attr, char *buf)
275 return 0;
277 static DEVICE_ATTR(whole_disk, S_IRUSR | S_IRGRP | S_IROTH,
278 whole_disk_show, NULL);
280 struct hd_struct *add_partition(struct gendisk *disk, int partno,
281 sector_t start, sector_t len, int flags,
282 struct partition_meta_info *info)
284 struct hd_struct *p;
285 dev_t devt = MKDEV(0, 0);
286 struct device *ddev = disk_to_dev(disk);
287 struct device *pdev;
288 struct disk_part_tbl *ptbl;
289 const char *dname;
290 int err;
292 err = disk_expand_part_tbl(disk, partno);
293 if (err)
294 return ERR_PTR(err);
295 ptbl = disk->part_tbl;
297 if (ptbl->part[partno])
298 return ERR_PTR(-EBUSY);
300 p = kzalloc(sizeof(*p), GFP_KERNEL);
301 if (!p)
302 return ERR_PTR(-EBUSY);
304 if (!init_part_stats(p)) {
305 err = -ENOMEM;
306 goto out_free;
309 seqcount_init(&p->nr_sects_seq);
310 pdev = part_to_dev(p);
312 p->start_sect = start;
313 p->alignment_offset =
314 queue_limit_alignment_offset(&disk->queue->limits, start);
315 p->discard_alignment =
316 queue_limit_discard_alignment(&disk->queue->limits, start);
317 p->nr_sects = len;
318 p->partno = partno;
319 p->policy = get_disk_ro(disk);
321 if (info) {
322 struct partition_meta_info *pinfo = alloc_part_info(disk);
323 if (!pinfo) {
324 err = -ENOMEM;
325 goto out_free_stats;
327 memcpy(pinfo, info, sizeof(*info));
328 p->info = pinfo;
331 dname = dev_name(ddev);
332 if (isdigit(dname[strlen(dname) - 1]))
333 dev_set_name(pdev, "%sp%d", dname, partno);
334 else
335 dev_set_name(pdev, "%s%d", dname, partno);
337 device_initialize(pdev);
338 pdev->class = &block_class;
339 pdev->type = &part_type;
340 pdev->parent = ddev;
342 err = blk_alloc_devt(p, &devt);
343 if (err)
344 goto out_free_info;
345 pdev->devt = devt;
347 /* delay uevent until 'holders' subdir is created */
348 dev_set_uevent_suppress(pdev, 1);
349 err = device_add(pdev);
350 if (err)
351 goto out_put;
353 err = -ENOMEM;
354 p->holder_dir = kobject_create_and_add("holders", &pdev->kobj);
355 if (!p->holder_dir)
356 goto out_del;
358 dev_set_uevent_suppress(pdev, 0);
359 if (flags & ADDPART_FLAG_WHOLEDISK) {
360 err = device_create_file(pdev, &dev_attr_whole_disk);
361 if (err)
362 goto out_del;
365 err = hd_ref_init(p);
366 if (err) {
367 if (flags & ADDPART_FLAG_WHOLEDISK)
368 goto out_remove_file;
369 goto out_del;
372 /* everything is up and running, commence */
373 rcu_assign_pointer(ptbl->part[partno], p);
375 /* suppress uevent if the disk suppresses it */
376 if (!dev_get_uevent_suppress(ddev))
377 kobject_uevent(&pdev->kobj, KOBJ_ADD);
378 return p;
380 out_free_info:
381 free_part_info(p);
382 out_free_stats:
383 free_part_stats(p);
384 out_free:
385 kfree(p);
386 return ERR_PTR(err);
387 out_remove_file:
388 device_remove_file(pdev, &dev_attr_whole_disk);
389 out_del:
390 kobject_put(p->holder_dir);
391 device_del(pdev);
392 out_put:
393 put_device(pdev);
394 blk_free_devt(devt);
395 return ERR_PTR(err);
398 static bool disk_unlock_native_capacity(struct gendisk *disk)
400 const struct block_device_operations *bdops = disk->fops;
402 if (bdops->unlock_native_capacity &&
403 !(disk->flags & GENHD_FL_NATIVE_CAPACITY)) {
404 printk(KERN_CONT "enabling native capacity\n");
405 bdops->unlock_native_capacity(disk);
406 disk->flags |= GENHD_FL_NATIVE_CAPACITY;
407 return true;
408 } else {
409 printk(KERN_CONT "truncated\n");
410 return false;
414 static int drop_partitions(struct gendisk *disk, struct block_device *bdev)
416 struct disk_part_iter piter;
417 struct hd_struct *part;
418 int res;
420 if (bdev->bd_part_count || bdev->bd_super)
421 return -EBUSY;
422 res = invalidate_partition(disk, 0);
423 if (res)
424 return res;
426 disk_part_iter_init(&piter, disk, DISK_PITER_INCL_EMPTY);
427 while ((part = disk_part_iter_next(&piter)))
428 delete_partition(disk, part->partno);
429 disk_part_iter_exit(&piter);
431 return 0;
434 static bool part_zone_aligned(struct gendisk *disk,
435 struct block_device *bdev,
436 sector_t from, sector_t size)
438 unsigned int zone_sectors = bdev_zone_sectors(bdev);
441 * If this function is called, then the disk is a zoned block device
442 * (host-aware or host-managed). This can be detected even if the
443 * zoned block device support is disabled (CONFIG_BLK_DEV_ZONED not
444 * set). In this case, however, only host-aware devices will be seen
445 * as a block device is not created for host-managed devices. Without
446 * zoned block device support, host-aware drives can still be used as
447 * regular block devices (no zone operation) and their zone size will
448 * be reported as 0. Allow this case.
450 if (!zone_sectors)
451 return true;
454 * Check partition start and size alignement. If the drive has a
455 * smaller last runt zone, ignore it and allow the partition to
456 * use it. Check the zone size too: it should be a power of 2 number
457 * of sectors.
459 if (WARN_ON_ONCE(!is_power_of_2(zone_sectors))) {
460 u32 rem;
462 div_u64_rem(from, zone_sectors, &rem);
463 if (rem)
464 return false;
465 if ((from + size) < get_capacity(disk)) {
466 div_u64_rem(size, zone_sectors, &rem);
467 if (rem)
468 return false;
471 } else {
473 if (from & (zone_sectors - 1))
474 return false;
475 if ((from + size) < get_capacity(disk) &&
476 (size & (zone_sectors - 1)))
477 return false;
481 return true;
484 int rescan_partitions(struct gendisk *disk, struct block_device *bdev)
486 struct parsed_partitions *state = NULL;
487 struct hd_struct *part;
488 int p, highest, res;
489 rescan:
490 if (state && !IS_ERR(state)) {
491 free_partitions(state);
492 state = NULL;
495 res = drop_partitions(disk, bdev);
496 if (res)
497 return res;
499 if (disk->fops->revalidate_disk)
500 disk->fops->revalidate_disk(disk);
501 check_disk_size_change(disk, bdev);
502 bdev->bd_invalidated = 0;
503 if (!get_capacity(disk) || !(state = check_partition(disk, bdev)))
504 return 0;
505 if (IS_ERR(state)) {
507 * I/O error reading the partition table. If any
508 * partition code tried to read beyond EOD, retry
509 * after unlocking native capacity.
511 if (PTR_ERR(state) == -ENOSPC) {
512 printk(KERN_WARNING "%s: partition table beyond EOD, ",
513 disk->disk_name);
514 if (disk_unlock_native_capacity(disk))
515 goto rescan;
517 return -EIO;
520 * If any partition code tried to read beyond EOD, try
521 * unlocking native capacity even if partition table is
522 * successfully read as we could be missing some partitions.
524 if (state->access_beyond_eod) {
525 printk(KERN_WARNING
526 "%s: partition table partially beyond EOD, ",
527 disk->disk_name);
528 if (disk_unlock_native_capacity(disk))
529 goto rescan;
532 /* tell userspace that the media / partition table may have changed */
533 kobject_uevent(&disk_to_dev(disk)->kobj, KOBJ_CHANGE);
535 /* Detect the highest partition number and preallocate
536 * disk->part_tbl. This is an optimization and not strictly
537 * necessary.
539 for (p = 1, highest = 0; p < state->limit; p++)
540 if (state->parts[p].size)
541 highest = p;
543 disk_expand_part_tbl(disk, highest);
545 /* add partitions */
546 for (p = 1; p < state->limit; p++) {
547 sector_t size, from;
549 size = state->parts[p].size;
550 if (!size)
551 continue;
553 from = state->parts[p].from;
554 if (from >= get_capacity(disk)) {
555 printk(KERN_WARNING
556 "%s: p%d start %llu is beyond EOD, ",
557 disk->disk_name, p, (unsigned long long) from);
558 if (disk_unlock_native_capacity(disk))
559 goto rescan;
560 continue;
563 if (from + size > get_capacity(disk)) {
564 printk(KERN_WARNING
565 "%s: p%d size %llu extends beyond EOD, ",
566 disk->disk_name, p, (unsigned long long) size);
568 if (disk_unlock_native_capacity(disk)) {
569 /* free state and restart */
570 goto rescan;
571 } else {
573 * we can not ignore partitions of broken tables
574 * created by for example camera firmware, but
575 * we limit them to the end of the disk to avoid
576 * creating invalid block devices
578 size = get_capacity(disk) - from;
583 * On a zoned block device, partitions should be aligned on the
584 * device zone size (i.e. zone boundary crossing not allowed).
585 * Otherwise, resetting the write pointer of the last zone of
586 * one partition may impact the following partition.
588 if (bdev_is_zoned(bdev) &&
589 !part_zone_aligned(disk, bdev, from, size)) {
590 printk(KERN_WARNING
591 "%s: p%d start %llu+%llu is not zone aligned\n",
592 disk->disk_name, p, (unsigned long long) from,
593 (unsigned long long) size);
594 continue;
597 part = add_partition(disk, p, from, size,
598 state->parts[p].flags,
599 &state->parts[p].info);
600 if (IS_ERR(part)) {
601 printk(KERN_ERR " %s: p%d could not be added: %ld\n",
602 disk->disk_name, p, -PTR_ERR(part));
603 continue;
605 #ifdef CONFIG_BLK_DEV_MD
606 if (state->parts[p].flags & ADDPART_FLAG_RAID)
607 md_autodetect_dev(part_to_dev(part)->devt);
608 #endif
610 free_partitions(state);
611 return 0;
614 int invalidate_partitions(struct gendisk *disk, struct block_device *bdev)
616 int res;
618 if (!bdev->bd_invalidated)
619 return 0;
621 res = drop_partitions(disk, bdev);
622 if (res)
623 return res;
625 set_capacity(disk, 0);
626 check_disk_size_change(disk, bdev);
627 bdev->bd_invalidated = 0;
628 /* tell userspace that the media / partition table may have changed */
629 kobject_uevent(&disk_to_dev(disk)->kobj, KOBJ_CHANGE);
631 return 0;
634 unsigned char *read_dev_sector(struct block_device *bdev, sector_t n, Sector *p)
636 struct address_space *mapping = bdev->bd_inode->i_mapping;
637 struct page *page;
639 page = read_mapping_page(mapping, (pgoff_t)(n >> (PAGE_SHIFT-9)), NULL);
640 if (!IS_ERR(page)) {
641 if (PageError(page))
642 goto fail;
643 p->v = page;
644 return (unsigned char *)page_address(page) + ((n & ((1 << (PAGE_SHIFT - 9)) - 1)) << 9);
645 fail:
646 put_page(page);
648 p->v = NULL;
649 return NULL;
652 EXPORT_SYMBOL(read_dev_sector);