1 // SPDX-License-Identifier: GPL-2.0
3 * Kernel timekeeping code and accessor functions. Based on code from
4 * timer.c, moved in commit 8524070b7982.
6 #include <linux/timekeeper_internal.h>
7 #include <linux/module.h>
8 #include <linux/interrupt.h>
9 #include <linux/percpu.h>
10 #include <linux/init.h>
12 #include <linux/nmi.h>
13 #include <linux/sched.h>
14 #include <linux/sched/loadavg.h>
15 #include <linux/sched/clock.h>
16 #include <linux/syscore_ops.h>
17 #include <linux/clocksource.h>
18 #include <linux/jiffies.h>
19 #include <linux/time.h>
20 #include <linux/tick.h>
21 #include <linux/stop_machine.h>
22 #include <linux/pvclock_gtod.h>
23 #include <linux/compiler.h>
25 #include "tick-internal.h"
26 #include "ntp_internal.h"
27 #include "timekeeping_internal.h"
29 #define TK_CLEAR_NTP (1 << 0)
30 #define TK_MIRROR (1 << 1)
31 #define TK_CLOCK_WAS_SET (1 << 2)
33 enum timekeeping_adv_mode
{
34 /* Update timekeeper when a tick has passed */
37 /* Update timekeeper on a direct frequency change */
42 * The most important data for readout fits into a single 64 byte
47 struct timekeeper timekeeper
;
48 } tk_core ____cacheline_aligned
= {
49 .seq
= SEQCNT_ZERO(tk_core
.seq
),
52 static DEFINE_RAW_SPINLOCK(timekeeper_lock
);
53 static struct timekeeper shadow_timekeeper
;
56 * struct tk_fast - NMI safe timekeeper
57 * @seq: Sequence counter for protecting updates. The lowest bit
58 * is the index for the tk_read_base array
59 * @base: tk_read_base array. Access is indexed by the lowest bit of
62 * See @update_fast_timekeeper() below.
66 struct tk_read_base base
[2];
69 /* Suspend-time cycles value for halted fast timekeeper. */
70 static u64 cycles_at_suspend
;
72 static u64
dummy_clock_read(struct clocksource
*cs
)
74 return cycles_at_suspend
;
77 static struct clocksource dummy_clock
= {
78 .read
= dummy_clock_read
,
81 static struct tk_fast tk_fast_mono ____cacheline_aligned
= {
82 .base
[0] = { .clock
= &dummy_clock
, },
83 .base
[1] = { .clock
= &dummy_clock
, },
86 static struct tk_fast tk_fast_raw ____cacheline_aligned
= {
87 .base
[0] = { .clock
= &dummy_clock
, },
88 .base
[1] = { .clock
= &dummy_clock
, },
91 /* flag for if timekeeping is suspended */
92 int __read_mostly timekeeping_suspended
;
94 static inline void tk_normalize_xtime(struct timekeeper
*tk
)
96 while (tk
->tkr_mono
.xtime_nsec
>= ((u64
)NSEC_PER_SEC
<< tk
->tkr_mono
.shift
)) {
97 tk
->tkr_mono
.xtime_nsec
-= (u64
)NSEC_PER_SEC
<< tk
->tkr_mono
.shift
;
100 while (tk
->tkr_raw
.xtime_nsec
>= ((u64
)NSEC_PER_SEC
<< tk
->tkr_raw
.shift
)) {
101 tk
->tkr_raw
.xtime_nsec
-= (u64
)NSEC_PER_SEC
<< tk
->tkr_raw
.shift
;
106 static inline struct timespec64
tk_xtime(const struct timekeeper
*tk
)
108 struct timespec64 ts
;
110 ts
.tv_sec
= tk
->xtime_sec
;
111 ts
.tv_nsec
= (long)(tk
->tkr_mono
.xtime_nsec
>> tk
->tkr_mono
.shift
);
115 static void tk_set_xtime(struct timekeeper
*tk
, const struct timespec64
*ts
)
117 tk
->xtime_sec
= ts
->tv_sec
;
118 tk
->tkr_mono
.xtime_nsec
= (u64
)ts
->tv_nsec
<< tk
->tkr_mono
.shift
;
121 static void tk_xtime_add(struct timekeeper
*tk
, const struct timespec64
*ts
)
123 tk
->xtime_sec
+= ts
->tv_sec
;
124 tk
->tkr_mono
.xtime_nsec
+= (u64
)ts
->tv_nsec
<< tk
->tkr_mono
.shift
;
125 tk_normalize_xtime(tk
);
128 static void tk_set_wall_to_mono(struct timekeeper
*tk
, struct timespec64 wtm
)
130 struct timespec64 tmp
;
133 * Verify consistency of: offset_real = -wall_to_monotonic
134 * before modifying anything
136 set_normalized_timespec64(&tmp
, -tk
->wall_to_monotonic
.tv_sec
,
137 -tk
->wall_to_monotonic
.tv_nsec
);
138 WARN_ON_ONCE(tk
->offs_real
!= timespec64_to_ktime(tmp
));
139 tk
->wall_to_monotonic
= wtm
;
140 set_normalized_timespec64(&tmp
, -wtm
.tv_sec
, -wtm
.tv_nsec
);
141 tk
->offs_real
= timespec64_to_ktime(tmp
);
142 tk
->offs_tai
= ktime_add(tk
->offs_real
, ktime_set(tk
->tai_offset
, 0));
145 static inline void tk_update_sleep_time(struct timekeeper
*tk
, ktime_t delta
)
147 tk
->offs_boot
= ktime_add(tk
->offs_boot
, delta
);
151 * tk_clock_read - atomic clocksource read() helper
153 * This helper is necessary to use in the read paths because, while the
154 * seqlock ensures we don't return a bad value while structures are updated,
155 * it doesn't protect from potential crashes. There is the possibility that
156 * the tkr's clocksource may change between the read reference, and the
157 * clock reference passed to the read function. This can cause crashes if
158 * the wrong clocksource is passed to the wrong read function.
159 * This isn't necessary to use when holding the timekeeper_lock or doing
160 * a read of the fast-timekeeper tkrs (which is protected by its own locking
163 static inline u64
tk_clock_read(const struct tk_read_base
*tkr
)
165 struct clocksource
*clock
= READ_ONCE(tkr
->clock
);
167 return clock
->read(clock
);
170 #ifdef CONFIG_DEBUG_TIMEKEEPING
171 #define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */
173 static void timekeeping_check_update(struct timekeeper
*tk
, u64 offset
)
176 u64 max_cycles
= tk
->tkr_mono
.clock
->max_cycles
;
177 const char *name
= tk
->tkr_mono
.clock
->name
;
179 if (offset
> max_cycles
) {
180 printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n",
181 offset
, name
, max_cycles
);
182 printk_deferred(" timekeeping: Your kernel is sick, but tries to cope by capping time updates\n");
184 if (offset
> (max_cycles
>> 1)) {
185 printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the '%s' clock's 50%% safety margin (%lld)\n",
186 offset
, name
, max_cycles
>> 1);
187 printk_deferred(" timekeeping: Your kernel is still fine, but is feeling a bit nervous\n");
191 if (tk
->underflow_seen
) {
192 if (jiffies
- tk
->last_warning
> WARNING_FREQ
) {
193 printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name
);
194 printk_deferred(" Please report this, consider using a different clocksource, if possible.\n");
195 printk_deferred(" Your kernel is probably still fine.\n");
196 tk
->last_warning
= jiffies
;
198 tk
->underflow_seen
= 0;
201 if (tk
->overflow_seen
) {
202 if (jiffies
- tk
->last_warning
> WARNING_FREQ
) {
203 printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name
);
204 printk_deferred(" Please report this, consider using a different clocksource, if possible.\n");
205 printk_deferred(" Your kernel is probably still fine.\n");
206 tk
->last_warning
= jiffies
;
208 tk
->overflow_seen
= 0;
212 static inline u64
timekeeping_get_delta(const struct tk_read_base
*tkr
)
214 struct timekeeper
*tk
= &tk_core
.timekeeper
;
215 u64 now
, last
, mask
, max
, delta
;
219 * Since we're called holding a seqlock, the data may shift
220 * under us while we're doing the calculation. This can cause
221 * false positives, since we'd note a problem but throw the
222 * results away. So nest another seqlock here to atomically
223 * grab the points we are checking with.
226 seq
= read_seqcount_begin(&tk_core
.seq
);
227 now
= tk_clock_read(tkr
);
228 last
= tkr
->cycle_last
;
230 max
= tkr
->clock
->max_cycles
;
231 } while (read_seqcount_retry(&tk_core
.seq
, seq
));
233 delta
= clocksource_delta(now
, last
, mask
);
236 * Try to catch underflows by checking if we are seeing small
237 * mask-relative negative values.
239 if (unlikely((~delta
& mask
) < (mask
>> 3))) {
240 tk
->underflow_seen
= 1;
244 /* Cap delta value to the max_cycles values to avoid mult overflows */
245 if (unlikely(delta
> max
)) {
246 tk
->overflow_seen
= 1;
247 delta
= tkr
->clock
->max_cycles
;
253 static inline void timekeeping_check_update(struct timekeeper
*tk
, u64 offset
)
256 static inline u64
timekeeping_get_delta(const struct tk_read_base
*tkr
)
258 u64 cycle_now
, delta
;
260 /* read clocksource */
261 cycle_now
= tk_clock_read(tkr
);
263 /* calculate the delta since the last update_wall_time */
264 delta
= clocksource_delta(cycle_now
, tkr
->cycle_last
, tkr
->mask
);
271 * tk_setup_internals - Set up internals to use clocksource clock.
273 * @tk: The target timekeeper to setup.
274 * @clock: Pointer to clocksource.
276 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
277 * pair and interval request.
279 * Unless you're the timekeeping code, you should not be using this!
281 static void tk_setup_internals(struct timekeeper
*tk
, struct clocksource
*clock
)
284 u64 tmp
, ntpinterval
;
285 struct clocksource
*old_clock
;
287 ++tk
->cs_was_changed_seq
;
288 old_clock
= tk
->tkr_mono
.clock
;
289 tk
->tkr_mono
.clock
= clock
;
290 tk
->tkr_mono
.mask
= clock
->mask
;
291 tk
->tkr_mono
.cycle_last
= tk_clock_read(&tk
->tkr_mono
);
293 tk
->tkr_raw
.clock
= clock
;
294 tk
->tkr_raw
.mask
= clock
->mask
;
295 tk
->tkr_raw
.cycle_last
= tk
->tkr_mono
.cycle_last
;
297 /* Do the ns -> cycle conversion first, using original mult */
298 tmp
= NTP_INTERVAL_LENGTH
;
299 tmp
<<= clock
->shift
;
301 tmp
+= clock
->mult
/2;
302 do_div(tmp
, clock
->mult
);
306 interval
= (u64
) tmp
;
307 tk
->cycle_interval
= interval
;
309 /* Go back from cycles -> shifted ns */
310 tk
->xtime_interval
= interval
* clock
->mult
;
311 tk
->xtime_remainder
= ntpinterval
- tk
->xtime_interval
;
312 tk
->raw_interval
= interval
* clock
->mult
;
314 /* if changing clocks, convert xtime_nsec shift units */
316 int shift_change
= clock
->shift
- old_clock
->shift
;
317 if (shift_change
< 0) {
318 tk
->tkr_mono
.xtime_nsec
>>= -shift_change
;
319 tk
->tkr_raw
.xtime_nsec
>>= -shift_change
;
321 tk
->tkr_mono
.xtime_nsec
<<= shift_change
;
322 tk
->tkr_raw
.xtime_nsec
<<= shift_change
;
326 tk
->tkr_mono
.shift
= clock
->shift
;
327 tk
->tkr_raw
.shift
= clock
->shift
;
330 tk
->ntp_error_shift
= NTP_SCALE_SHIFT
- clock
->shift
;
331 tk
->ntp_tick
= ntpinterval
<< tk
->ntp_error_shift
;
334 * The timekeeper keeps its own mult values for the currently
335 * active clocksource. These value will be adjusted via NTP
336 * to counteract clock drifting.
338 tk
->tkr_mono
.mult
= clock
->mult
;
339 tk
->tkr_raw
.mult
= clock
->mult
;
340 tk
->ntp_err_mult
= 0;
341 tk
->skip_second_overflow
= 0;
344 /* Timekeeper helper functions. */
346 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
347 static u32
default_arch_gettimeoffset(void) { return 0; }
348 u32 (*arch_gettimeoffset
)(void) = default_arch_gettimeoffset
;
350 static inline u32
arch_gettimeoffset(void) { return 0; }
353 static inline u64
timekeeping_delta_to_ns(const struct tk_read_base
*tkr
, u64 delta
)
357 nsec
= delta
* tkr
->mult
+ tkr
->xtime_nsec
;
360 /* If arch requires, add in get_arch_timeoffset() */
361 return nsec
+ arch_gettimeoffset();
364 static inline u64
timekeeping_get_ns(const struct tk_read_base
*tkr
)
368 delta
= timekeeping_get_delta(tkr
);
369 return timekeeping_delta_to_ns(tkr
, delta
);
372 static inline u64
timekeeping_cycles_to_ns(const struct tk_read_base
*tkr
, u64 cycles
)
376 /* calculate the delta since the last update_wall_time */
377 delta
= clocksource_delta(cycles
, tkr
->cycle_last
, tkr
->mask
);
378 return timekeeping_delta_to_ns(tkr
, delta
);
382 * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
383 * @tkr: Timekeeping readout base from which we take the update
385 * We want to use this from any context including NMI and tracing /
386 * instrumenting the timekeeping code itself.
388 * Employ the latch technique; see @raw_write_seqcount_latch.
390 * So if a NMI hits the update of base[0] then it will use base[1]
391 * which is still consistent. In the worst case this can result is a
392 * slightly wrong timestamp (a few nanoseconds). See
393 * @ktime_get_mono_fast_ns.
395 static void update_fast_timekeeper(const struct tk_read_base
*tkr
,
398 struct tk_read_base
*base
= tkf
->base
;
400 /* Force readers off to base[1] */
401 raw_write_seqcount_latch(&tkf
->seq
);
404 memcpy(base
, tkr
, sizeof(*base
));
406 /* Force readers back to base[0] */
407 raw_write_seqcount_latch(&tkf
->seq
);
410 memcpy(base
+ 1, base
, sizeof(*base
));
414 * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
416 * This timestamp is not guaranteed to be monotonic across an update.
417 * The timestamp is calculated by:
419 * now = base_mono + clock_delta * slope
421 * So if the update lowers the slope, readers who are forced to the
422 * not yet updated second array are still using the old steeper slope.
431 * |12345678---> reader order
437 * So reader 6 will observe time going backwards versus reader 5.
439 * While other CPUs are likely to be able observe that, the only way
440 * for a CPU local observation is when an NMI hits in the middle of
441 * the update. Timestamps taken from that NMI context might be ahead
442 * of the following timestamps. Callers need to be aware of that and
445 static __always_inline u64
__ktime_get_fast_ns(struct tk_fast
*tkf
)
447 struct tk_read_base
*tkr
;
452 seq
= raw_read_seqcount_latch(&tkf
->seq
);
453 tkr
= tkf
->base
+ (seq
& 0x01);
454 now
= ktime_to_ns(tkr
->base
);
456 now
+= timekeeping_delta_to_ns(tkr
,
461 } while (read_seqcount_retry(&tkf
->seq
, seq
));
466 u64
ktime_get_mono_fast_ns(void)
468 return __ktime_get_fast_ns(&tk_fast_mono
);
470 EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns
);
472 u64
ktime_get_raw_fast_ns(void)
474 return __ktime_get_fast_ns(&tk_fast_raw
);
476 EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns
);
479 * ktime_get_boot_fast_ns - NMI safe and fast access to boot clock.
481 * To keep it NMI safe since we're accessing from tracing, we're not using a
482 * separate timekeeper with updates to monotonic clock and boot offset
483 * protected with seqlocks. This has the following minor side effects:
485 * (1) Its possible that a timestamp be taken after the boot offset is updated
486 * but before the timekeeper is updated. If this happens, the new boot offset
487 * is added to the old timekeeping making the clock appear to update slightly
490 * timekeeping_inject_sleeptime64()
491 * __timekeeping_inject_sleeptime(tk, delta);
493 * timekeeping_update(tk, TK_CLEAR_NTP...);
495 * (2) On 32-bit systems, the 64-bit boot offset (tk->offs_boot) may be
496 * partially updated. Since the tk->offs_boot update is a rare event, this
497 * should be a rare occurrence which postprocessing should be able to handle.
499 u64 notrace
ktime_get_boot_fast_ns(void)
501 struct timekeeper
*tk
= &tk_core
.timekeeper
;
503 return (ktime_get_mono_fast_ns() + ktime_to_ns(tk
->offs_boot
));
505 EXPORT_SYMBOL_GPL(ktime_get_boot_fast_ns
);
509 * See comment for __ktime_get_fast_ns() vs. timestamp ordering
511 static __always_inline u64
__ktime_get_real_fast_ns(struct tk_fast
*tkf
)
513 struct tk_read_base
*tkr
;
518 seq
= raw_read_seqcount_latch(&tkf
->seq
);
519 tkr
= tkf
->base
+ (seq
& 0x01);
520 now
= ktime_to_ns(tkr
->base_real
);
522 now
+= timekeeping_delta_to_ns(tkr
,
527 } while (read_seqcount_retry(&tkf
->seq
, seq
));
533 * ktime_get_real_fast_ns: - NMI safe and fast access to clock realtime.
535 u64
ktime_get_real_fast_ns(void)
537 return __ktime_get_real_fast_ns(&tk_fast_mono
);
539 EXPORT_SYMBOL_GPL(ktime_get_real_fast_ns
);
542 * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource.
543 * @tk: Timekeeper to snapshot.
545 * It generally is unsafe to access the clocksource after timekeeping has been
546 * suspended, so take a snapshot of the readout base of @tk and use it as the
547 * fast timekeeper's readout base while suspended. It will return the same
548 * number of cycles every time until timekeeping is resumed at which time the
549 * proper readout base for the fast timekeeper will be restored automatically.
551 static void halt_fast_timekeeper(const struct timekeeper
*tk
)
553 static struct tk_read_base tkr_dummy
;
554 const struct tk_read_base
*tkr
= &tk
->tkr_mono
;
556 memcpy(&tkr_dummy
, tkr
, sizeof(tkr_dummy
));
557 cycles_at_suspend
= tk_clock_read(tkr
);
558 tkr_dummy
.clock
= &dummy_clock
;
559 tkr_dummy
.base_real
= tkr
->base
+ tk
->offs_real
;
560 update_fast_timekeeper(&tkr_dummy
, &tk_fast_mono
);
563 memcpy(&tkr_dummy
, tkr
, sizeof(tkr_dummy
));
564 tkr_dummy
.clock
= &dummy_clock
;
565 update_fast_timekeeper(&tkr_dummy
, &tk_fast_raw
);
568 static RAW_NOTIFIER_HEAD(pvclock_gtod_chain
);
570 static void update_pvclock_gtod(struct timekeeper
*tk
, bool was_set
)
572 raw_notifier_call_chain(&pvclock_gtod_chain
, was_set
, tk
);
576 * pvclock_gtod_register_notifier - register a pvclock timedata update listener
578 int pvclock_gtod_register_notifier(struct notifier_block
*nb
)
580 struct timekeeper
*tk
= &tk_core
.timekeeper
;
584 raw_spin_lock_irqsave(&timekeeper_lock
, flags
);
585 ret
= raw_notifier_chain_register(&pvclock_gtod_chain
, nb
);
586 update_pvclock_gtod(tk
, true);
587 raw_spin_unlock_irqrestore(&timekeeper_lock
, flags
);
591 EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier
);
594 * pvclock_gtod_unregister_notifier - unregister a pvclock
595 * timedata update listener
597 int pvclock_gtod_unregister_notifier(struct notifier_block
*nb
)
602 raw_spin_lock_irqsave(&timekeeper_lock
, flags
);
603 ret
= raw_notifier_chain_unregister(&pvclock_gtod_chain
, nb
);
604 raw_spin_unlock_irqrestore(&timekeeper_lock
, flags
);
608 EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier
);
611 * tk_update_leap_state - helper to update the next_leap_ktime
613 static inline void tk_update_leap_state(struct timekeeper
*tk
)
615 tk
->next_leap_ktime
= ntp_get_next_leap();
616 if (tk
->next_leap_ktime
!= KTIME_MAX
)
617 /* Convert to monotonic time */
618 tk
->next_leap_ktime
= ktime_sub(tk
->next_leap_ktime
, tk
->offs_real
);
622 * Update the ktime_t based scalar nsec members of the timekeeper
624 static inline void tk_update_ktime_data(struct timekeeper
*tk
)
630 * The xtime based monotonic readout is:
631 * nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
632 * The ktime based monotonic readout is:
633 * nsec = base_mono + now();
634 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
636 seconds
= (u64
)(tk
->xtime_sec
+ tk
->wall_to_monotonic
.tv_sec
);
637 nsec
= (u32
) tk
->wall_to_monotonic
.tv_nsec
;
638 tk
->tkr_mono
.base
= ns_to_ktime(seconds
* NSEC_PER_SEC
+ nsec
);
641 * The sum of the nanoseconds portions of xtime and
642 * wall_to_monotonic can be greater/equal one second. Take
643 * this into account before updating tk->ktime_sec.
645 nsec
+= (u32
)(tk
->tkr_mono
.xtime_nsec
>> tk
->tkr_mono
.shift
);
646 if (nsec
>= NSEC_PER_SEC
)
648 tk
->ktime_sec
= seconds
;
650 /* Update the monotonic raw base */
651 tk
->tkr_raw
.base
= ns_to_ktime(tk
->raw_sec
* NSEC_PER_SEC
);
654 /* must hold timekeeper_lock */
655 static void timekeeping_update(struct timekeeper
*tk
, unsigned int action
)
657 if (action
& TK_CLEAR_NTP
) {
662 tk_update_leap_state(tk
);
663 tk_update_ktime_data(tk
);
666 update_pvclock_gtod(tk
, action
& TK_CLOCK_WAS_SET
);
668 tk
->tkr_mono
.base_real
= tk
->tkr_mono
.base
+ tk
->offs_real
;
669 update_fast_timekeeper(&tk
->tkr_mono
, &tk_fast_mono
);
670 update_fast_timekeeper(&tk
->tkr_raw
, &tk_fast_raw
);
672 if (action
& TK_CLOCK_WAS_SET
)
673 tk
->clock_was_set_seq
++;
675 * The mirroring of the data to the shadow-timekeeper needs
676 * to happen last here to ensure we don't over-write the
677 * timekeeper structure on the next update with stale data
679 if (action
& TK_MIRROR
)
680 memcpy(&shadow_timekeeper
, &tk_core
.timekeeper
,
681 sizeof(tk_core
.timekeeper
));
685 * timekeeping_forward_now - update clock to the current time
687 * Forward the current clock to update its state since the last call to
688 * update_wall_time(). This is useful before significant clock changes,
689 * as it avoids having to deal with this time offset explicitly.
691 static void timekeeping_forward_now(struct timekeeper
*tk
)
693 u64 cycle_now
, delta
;
695 cycle_now
= tk_clock_read(&tk
->tkr_mono
);
696 delta
= clocksource_delta(cycle_now
, tk
->tkr_mono
.cycle_last
, tk
->tkr_mono
.mask
);
697 tk
->tkr_mono
.cycle_last
= cycle_now
;
698 tk
->tkr_raw
.cycle_last
= cycle_now
;
700 tk
->tkr_mono
.xtime_nsec
+= delta
* tk
->tkr_mono
.mult
;
702 /* If arch requires, add in get_arch_timeoffset() */
703 tk
->tkr_mono
.xtime_nsec
+= (u64
)arch_gettimeoffset() << tk
->tkr_mono
.shift
;
706 tk
->tkr_raw
.xtime_nsec
+= delta
* tk
->tkr_raw
.mult
;
708 /* If arch requires, add in get_arch_timeoffset() */
709 tk
->tkr_raw
.xtime_nsec
+= (u64
)arch_gettimeoffset() << tk
->tkr_raw
.shift
;
711 tk_normalize_xtime(tk
);
715 * ktime_get_real_ts64 - Returns the time of day in a timespec64.
716 * @ts: pointer to the timespec to be set
718 * Returns the time of day in a timespec64 (WARN if suspended).
720 void ktime_get_real_ts64(struct timespec64
*ts
)
722 struct timekeeper
*tk
= &tk_core
.timekeeper
;
726 WARN_ON(timekeeping_suspended
);
729 seq
= read_seqcount_begin(&tk_core
.seq
);
731 ts
->tv_sec
= tk
->xtime_sec
;
732 nsecs
= timekeeping_get_ns(&tk
->tkr_mono
);
734 } while (read_seqcount_retry(&tk_core
.seq
, seq
));
737 timespec64_add_ns(ts
, nsecs
);
739 EXPORT_SYMBOL(ktime_get_real_ts64
);
741 ktime_t
ktime_get(void)
743 struct timekeeper
*tk
= &tk_core
.timekeeper
;
748 WARN_ON(timekeeping_suspended
);
751 seq
= read_seqcount_begin(&tk_core
.seq
);
752 base
= tk
->tkr_mono
.base
;
753 nsecs
= timekeeping_get_ns(&tk
->tkr_mono
);
755 } while (read_seqcount_retry(&tk_core
.seq
, seq
));
757 return ktime_add_ns(base
, nsecs
);
759 EXPORT_SYMBOL_GPL(ktime_get
);
761 u32
ktime_get_resolution_ns(void)
763 struct timekeeper
*tk
= &tk_core
.timekeeper
;
767 WARN_ON(timekeeping_suspended
);
770 seq
= read_seqcount_begin(&tk_core
.seq
);
771 nsecs
= tk
->tkr_mono
.mult
>> tk
->tkr_mono
.shift
;
772 } while (read_seqcount_retry(&tk_core
.seq
, seq
));
776 EXPORT_SYMBOL_GPL(ktime_get_resolution_ns
);
778 static ktime_t
*offsets
[TK_OFFS_MAX
] = {
779 [TK_OFFS_REAL
] = &tk_core
.timekeeper
.offs_real
,
780 [TK_OFFS_BOOT
] = &tk_core
.timekeeper
.offs_boot
,
781 [TK_OFFS_TAI
] = &tk_core
.timekeeper
.offs_tai
,
784 ktime_t
ktime_get_with_offset(enum tk_offsets offs
)
786 struct timekeeper
*tk
= &tk_core
.timekeeper
;
788 ktime_t base
, *offset
= offsets
[offs
];
791 WARN_ON(timekeeping_suspended
);
794 seq
= read_seqcount_begin(&tk_core
.seq
);
795 base
= ktime_add(tk
->tkr_mono
.base
, *offset
);
796 nsecs
= timekeeping_get_ns(&tk
->tkr_mono
);
798 } while (read_seqcount_retry(&tk_core
.seq
, seq
));
800 return ktime_add_ns(base
, nsecs
);
803 EXPORT_SYMBOL_GPL(ktime_get_with_offset
);
805 ktime_t
ktime_get_coarse_with_offset(enum tk_offsets offs
)
807 struct timekeeper
*tk
= &tk_core
.timekeeper
;
809 ktime_t base
, *offset
= offsets
[offs
];
811 WARN_ON(timekeeping_suspended
);
814 seq
= read_seqcount_begin(&tk_core
.seq
);
815 base
= ktime_add(tk
->tkr_mono
.base
, *offset
);
817 } while (read_seqcount_retry(&tk_core
.seq
, seq
));
822 EXPORT_SYMBOL_GPL(ktime_get_coarse_with_offset
);
825 * ktime_mono_to_any() - convert mononotic time to any other time
826 * @tmono: time to convert.
827 * @offs: which offset to use
829 ktime_t
ktime_mono_to_any(ktime_t tmono
, enum tk_offsets offs
)
831 ktime_t
*offset
= offsets
[offs
];
836 seq
= read_seqcount_begin(&tk_core
.seq
);
837 tconv
= ktime_add(tmono
, *offset
);
838 } while (read_seqcount_retry(&tk_core
.seq
, seq
));
842 EXPORT_SYMBOL_GPL(ktime_mono_to_any
);
845 * ktime_get_raw - Returns the raw monotonic time in ktime_t format
847 ktime_t
ktime_get_raw(void)
849 struct timekeeper
*tk
= &tk_core
.timekeeper
;
855 seq
= read_seqcount_begin(&tk_core
.seq
);
856 base
= tk
->tkr_raw
.base
;
857 nsecs
= timekeeping_get_ns(&tk
->tkr_raw
);
859 } while (read_seqcount_retry(&tk_core
.seq
, seq
));
861 return ktime_add_ns(base
, nsecs
);
863 EXPORT_SYMBOL_GPL(ktime_get_raw
);
866 * ktime_get_ts64 - get the monotonic clock in timespec64 format
867 * @ts: pointer to timespec variable
869 * The function calculates the monotonic clock from the realtime
870 * clock and the wall_to_monotonic offset and stores the result
871 * in normalized timespec64 format in the variable pointed to by @ts.
873 void ktime_get_ts64(struct timespec64
*ts
)
875 struct timekeeper
*tk
= &tk_core
.timekeeper
;
876 struct timespec64 tomono
;
880 WARN_ON(timekeeping_suspended
);
883 seq
= read_seqcount_begin(&tk_core
.seq
);
884 ts
->tv_sec
= tk
->xtime_sec
;
885 nsec
= timekeeping_get_ns(&tk
->tkr_mono
);
886 tomono
= tk
->wall_to_monotonic
;
888 } while (read_seqcount_retry(&tk_core
.seq
, seq
));
890 ts
->tv_sec
+= tomono
.tv_sec
;
892 timespec64_add_ns(ts
, nsec
+ tomono
.tv_nsec
);
894 EXPORT_SYMBOL_GPL(ktime_get_ts64
);
897 * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
899 * Returns the seconds portion of CLOCK_MONOTONIC with a single non
900 * serialized read. tk->ktime_sec is of type 'unsigned long' so this
901 * works on both 32 and 64 bit systems. On 32 bit systems the readout
902 * covers ~136 years of uptime which should be enough to prevent
903 * premature wrap arounds.
905 time64_t
ktime_get_seconds(void)
907 struct timekeeper
*tk
= &tk_core
.timekeeper
;
909 WARN_ON(timekeeping_suspended
);
910 return tk
->ktime_sec
;
912 EXPORT_SYMBOL_GPL(ktime_get_seconds
);
915 * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME
917 * Returns the wall clock seconds since 1970. This replaces the
918 * get_seconds() interface which is not y2038 safe on 32bit systems.
920 * For 64bit systems the fast access to tk->xtime_sec is preserved. On
921 * 32bit systems the access must be protected with the sequence
922 * counter to provide "atomic" access to the 64bit tk->xtime_sec
925 time64_t
ktime_get_real_seconds(void)
927 struct timekeeper
*tk
= &tk_core
.timekeeper
;
931 if (IS_ENABLED(CONFIG_64BIT
))
932 return tk
->xtime_sec
;
935 seq
= read_seqcount_begin(&tk_core
.seq
);
936 seconds
= tk
->xtime_sec
;
938 } while (read_seqcount_retry(&tk_core
.seq
, seq
));
942 EXPORT_SYMBOL_GPL(ktime_get_real_seconds
);
945 * __ktime_get_real_seconds - The same as ktime_get_real_seconds
946 * but without the sequence counter protect. This internal function
947 * is called just when timekeeping lock is already held.
949 time64_t
__ktime_get_real_seconds(void)
951 struct timekeeper
*tk
= &tk_core
.timekeeper
;
953 return tk
->xtime_sec
;
957 * ktime_get_snapshot - snapshots the realtime/monotonic raw clocks with counter
958 * @systime_snapshot: pointer to struct receiving the system time snapshot
960 void ktime_get_snapshot(struct system_time_snapshot
*systime_snapshot
)
962 struct timekeeper
*tk
= &tk_core
.timekeeper
;
970 WARN_ON_ONCE(timekeeping_suspended
);
973 seq
= read_seqcount_begin(&tk_core
.seq
);
974 now
= tk_clock_read(&tk
->tkr_mono
);
975 systime_snapshot
->cs_was_changed_seq
= tk
->cs_was_changed_seq
;
976 systime_snapshot
->clock_was_set_seq
= tk
->clock_was_set_seq
;
977 base_real
= ktime_add(tk
->tkr_mono
.base
,
978 tk_core
.timekeeper
.offs_real
);
979 base_raw
= tk
->tkr_raw
.base
;
980 nsec_real
= timekeeping_cycles_to_ns(&tk
->tkr_mono
, now
);
981 nsec_raw
= timekeeping_cycles_to_ns(&tk
->tkr_raw
, now
);
982 } while (read_seqcount_retry(&tk_core
.seq
, seq
));
984 systime_snapshot
->cycles
= now
;
985 systime_snapshot
->real
= ktime_add_ns(base_real
, nsec_real
);
986 systime_snapshot
->raw
= ktime_add_ns(base_raw
, nsec_raw
);
988 EXPORT_SYMBOL_GPL(ktime_get_snapshot
);
990 /* Scale base by mult/div checking for overflow */
991 static int scale64_check_overflow(u64 mult
, u64 div
, u64
*base
)
995 tmp
= div64_u64_rem(*base
, div
, &rem
);
997 if (((int)sizeof(u64
)*8 - fls64(mult
) < fls64(tmp
)) ||
998 ((int)sizeof(u64
)*8 - fls64(mult
) < fls64(rem
)))
1009 * adjust_historical_crosststamp - adjust crosstimestamp previous to current interval
1010 * @history: Snapshot representing start of history
1011 * @partial_history_cycles: Cycle offset into history (fractional part)
1012 * @total_history_cycles: Total history length in cycles
1013 * @discontinuity: True indicates clock was set on history period
1014 * @ts: Cross timestamp that should be adjusted using
1015 * partial/total ratio
1017 * Helper function used by get_device_system_crosststamp() to correct the
1018 * crosstimestamp corresponding to the start of the current interval to the
1019 * system counter value (timestamp point) provided by the driver. The
1020 * total_history_* quantities are the total history starting at the provided
1021 * reference point and ending at the start of the current interval. The cycle
1022 * count between the driver timestamp point and the start of the current
1023 * interval is partial_history_cycles.
1025 static int adjust_historical_crosststamp(struct system_time_snapshot
*history
,
1026 u64 partial_history_cycles
,
1027 u64 total_history_cycles
,
1029 struct system_device_crosststamp
*ts
)
1031 struct timekeeper
*tk
= &tk_core
.timekeeper
;
1032 u64 corr_raw
, corr_real
;
1033 bool interp_forward
;
1036 if (total_history_cycles
== 0 || partial_history_cycles
== 0)
1039 /* Interpolate shortest distance from beginning or end of history */
1040 interp_forward
= partial_history_cycles
> total_history_cycles
/ 2;
1041 partial_history_cycles
= interp_forward
?
1042 total_history_cycles
- partial_history_cycles
:
1043 partial_history_cycles
;
1046 * Scale the monotonic raw time delta by:
1047 * partial_history_cycles / total_history_cycles
1049 corr_raw
= (u64
)ktime_to_ns(
1050 ktime_sub(ts
->sys_monoraw
, history
->raw
));
1051 ret
= scale64_check_overflow(partial_history_cycles
,
1052 total_history_cycles
, &corr_raw
);
1057 * If there is a discontinuity in the history, scale monotonic raw
1059 * mult(real)/mult(raw) yielding the realtime correction
1060 * Otherwise, calculate the realtime correction similar to monotonic
1063 if (discontinuity
) {
1064 corr_real
= mul_u64_u32_div
1065 (corr_raw
, tk
->tkr_mono
.mult
, tk
->tkr_raw
.mult
);
1067 corr_real
= (u64
)ktime_to_ns(
1068 ktime_sub(ts
->sys_realtime
, history
->real
));
1069 ret
= scale64_check_overflow(partial_history_cycles
,
1070 total_history_cycles
, &corr_real
);
1075 /* Fixup monotonic raw and real time time values */
1076 if (interp_forward
) {
1077 ts
->sys_monoraw
= ktime_add_ns(history
->raw
, corr_raw
);
1078 ts
->sys_realtime
= ktime_add_ns(history
->real
, corr_real
);
1080 ts
->sys_monoraw
= ktime_sub_ns(ts
->sys_monoraw
, corr_raw
);
1081 ts
->sys_realtime
= ktime_sub_ns(ts
->sys_realtime
, corr_real
);
1088 * cycle_between - true if test occurs chronologically between before and after
1090 static bool cycle_between(u64 before
, u64 test
, u64 after
)
1092 if (test
> before
&& test
< after
)
1094 if (test
< before
&& before
> after
)
1100 * get_device_system_crosststamp - Synchronously capture system/device timestamp
1101 * @get_time_fn: Callback to get simultaneous device time and
1102 * system counter from the device driver
1103 * @ctx: Context passed to get_time_fn()
1104 * @history_begin: Historical reference point used to interpolate system
1105 * time when counter provided by the driver is before the current interval
1106 * @xtstamp: Receives simultaneously captured system and device time
1108 * Reads a timestamp from a device and correlates it to system time
1110 int get_device_system_crosststamp(int (*get_time_fn
)
1111 (ktime_t
*device_time
,
1112 struct system_counterval_t
*sys_counterval
,
1115 struct system_time_snapshot
*history_begin
,
1116 struct system_device_crosststamp
*xtstamp
)
1118 struct system_counterval_t system_counterval
;
1119 struct timekeeper
*tk
= &tk_core
.timekeeper
;
1120 u64 cycles
, now
, interval_start
;
1121 unsigned int clock_was_set_seq
= 0;
1122 ktime_t base_real
, base_raw
;
1123 u64 nsec_real
, nsec_raw
;
1124 u8 cs_was_changed_seq
;
1130 seq
= read_seqcount_begin(&tk_core
.seq
);
1132 * Try to synchronously capture device time and a system
1133 * counter value calling back into the device driver
1135 ret
= get_time_fn(&xtstamp
->device
, &system_counterval
, ctx
);
1140 * Verify that the clocksource associated with the captured
1141 * system counter value is the same as the currently installed
1142 * timekeeper clocksource
1144 if (tk
->tkr_mono
.clock
!= system_counterval
.cs
)
1146 cycles
= system_counterval
.cycles
;
1149 * Check whether the system counter value provided by the
1150 * device driver is on the current timekeeping interval.
1152 now
= tk_clock_read(&tk
->tkr_mono
);
1153 interval_start
= tk
->tkr_mono
.cycle_last
;
1154 if (!cycle_between(interval_start
, cycles
, now
)) {
1155 clock_was_set_seq
= tk
->clock_was_set_seq
;
1156 cs_was_changed_seq
= tk
->cs_was_changed_seq
;
1157 cycles
= interval_start
;
1163 base_real
= ktime_add(tk
->tkr_mono
.base
,
1164 tk_core
.timekeeper
.offs_real
);
1165 base_raw
= tk
->tkr_raw
.base
;
1167 nsec_real
= timekeeping_cycles_to_ns(&tk
->tkr_mono
,
1168 system_counterval
.cycles
);
1169 nsec_raw
= timekeeping_cycles_to_ns(&tk
->tkr_raw
,
1170 system_counterval
.cycles
);
1171 } while (read_seqcount_retry(&tk_core
.seq
, seq
));
1173 xtstamp
->sys_realtime
= ktime_add_ns(base_real
, nsec_real
);
1174 xtstamp
->sys_monoraw
= ktime_add_ns(base_raw
, nsec_raw
);
1177 * Interpolate if necessary, adjusting back from the start of the
1181 u64 partial_history_cycles
, total_history_cycles
;
1185 * Check that the counter value occurs after the provided
1186 * history reference and that the history doesn't cross a
1187 * clocksource change
1189 if (!history_begin
||
1190 !cycle_between(history_begin
->cycles
,
1191 system_counterval
.cycles
, cycles
) ||
1192 history_begin
->cs_was_changed_seq
!= cs_was_changed_seq
)
1194 partial_history_cycles
= cycles
- system_counterval
.cycles
;
1195 total_history_cycles
= cycles
- history_begin
->cycles
;
1197 history_begin
->clock_was_set_seq
!= clock_was_set_seq
;
1199 ret
= adjust_historical_crosststamp(history_begin
,
1200 partial_history_cycles
,
1201 total_history_cycles
,
1202 discontinuity
, xtstamp
);
1209 EXPORT_SYMBOL_GPL(get_device_system_crosststamp
);
1212 * do_settimeofday64 - Sets the time of day.
1213 * @ts: pointer to the timespec64 variable containing the new time
1215 * Sets the time of day to the new time and update NTP and notify hrtimers
1217 int do_settimeofday64(const struct timespec64
*ts
)
1219 struct timekeeper
*tk
= &tk_core
.timekeeper
;
1220 struct timespec64 ts_delta
, xt
;
1221 unsigned long flags
;
1224 if (!timespec64_valid_strict(ts
))
1227 raw_spin_lock_irqsave(&timekeeper_lock
, flags
);
1228 write_seqcount_begin(&tk_core
.seq
);
1230 timekeeping_forward_now(tk
);
1233 ts_delta
.tv_sec
= ts
->tv_sec
- xt
.tv_sec
;
1234 ts_delta
.tv_nsec
= ts
->tv_nsec
- xt
.tv_nsec
;
1236 if (timespec64_compare(&tk
->wall_to_monotonic
, &ts_delta
) > 0) {
1241 tk_set_wall_to_mono(tk
, timespec64_sub(tk
->wall_to_monotonic
, ts_delta
));
1243 tk_set_xtime(tk
, ts
);
1245 timekeeping_update(tk
, TK_CLEAR_NTP
| TK_MIRROR
| TK_CLOCK_WAS_SET
);
1247 write_seqcount_end(&tk_core
.seq
);
1248 raw_spin_unlock_irqrestore(&timekeeper_lock
, flags
);
1250 /* signal hrtimers about time change */
1255 EXPORT_SYMBOL(do_settimeofday64
);
1258 * timekeeping_inject_offset - Adds or subtracts from the current time.
1259 * @tv: pointer to the timespec variable containing the offset
1261 * Adds or subtracts an offset value from the current time.
1263 static int timekeeping_inject_offset(const struct timespec64
*ts
)
1265 struct timekeeper
*tk
= &tk_core
.timekeeper
;
1266 unsigned long flags
;
1267 struct timespec64 tmp
;
1270 if (ts
->tv_nsec
< 0 || ts
->tv_nsec
>= NSEC_PER_SEC
)
1273 raw_spin_lock_irqsave(&timekeeper_lock
, flags
);
1274 write_seqcount_begin(&tk_core
.seq
);
1276 timekeeping_forward_now(tk
);
1278 /* Make sure the proposed value is valid */
1279 tmp
= timespec64_add(tk_xtime(tk
), *ts
);
1280 if (timespec64_compare(&tk
->wall_to_monotonic
, ts
) > 0 ||
1281 !timespec64_valid_strict(&tmp
)) {
1286 tk_xtime_add(tk
, ts
);
1287 tk_set_wall_to_mono(tk
, timespec64_sub(tk
->wall_to_monotonic
, *ts
));
1289 error
: /* even if we error out, we forwarded the time, so call update */
1290 timekeeping_update(tk
, TK_CLEAR_NTP
| TK_MIRROR
| TK_CLOCK_WAS_SET
);
1292 write_seqcount_end(&tk_core
.seq
);
1293 raw_spin_unlock_irqrestore(&timekeeper_lock
, flags
);
1295 /* signal hrtimers about time change */
1302 * Indicates if there is an offset between the system clock and the hardware
1303 * clock/persistent clock/rtc.
1305 int persistent_clock_is_local
;
1308 * Adjust the time obtained from the CMOS to be UTC time instead of
1311 * This is ugly, but preferable to the alternatives. Otherwise we
1312 * would either need to write a program to do it in /etc/rc (and risk
1313 * confusion if the program gets run more than once; it would also be
1314 * hard to make the program warp the clock precisely n hours) or
1315 * compile in the timezone information into the kernel. Bad, bad....
1319 * The best thing to do is to keep the CMOS clock in universal time (UTC)
1320 * as real UNIX machines always do it. This avoids all headaches about
1321 * daylight saving times and warping kernel clocks.
1323 void timekeeping_warp_clock(void)
1325 if (sys_tz
.tz_minuteswest
!= 0) {
1326 struct timespec64 adjust
;
1328 persistent_clock_is_local
= 1;
1329 adjust
.tv_sec
= sys_tz
.tz_minuteswest
* 60;
1331 timekeeping_inject_offset(&adjust
);
1336 * __timekeeping_set_tai_offset - Sets the TAI offset from UTC and monotonic
1339 static void __timekeeping_set_tai_offset(struct timekeeper
*tk
, s32 tai_offset
)
1341 tk
->tai_offset
= tai_offset
;
1342 tk
->offs_tai
= ktime_add(tk
->offs_real
, ktime_set(tai_offset
, 0));
1346 * change_clocksource - Swaps clocksources if a new one is available
1348 * Accumulates current time interval and initializes new clocksource
1350 static int change_clocksource(void *data
)
1352 struct timekeeper
*tk
= &tk_core
.timekeeper
;
1353 struct clocksource
*new, *old
;
1354 unsigned long flags
;
1356 new = (struct clocksource
*) data
;
1358 raw_spin_lock_irqsave(&timekeeper_lock
, flags
);
1359 write_seqcount_begin(&tk_core
.seq
);
1361 timekeeping_forward_now(tk
);
1363 * If the cs is in module, get a module reference. Succeeds
1364 * for built-in code (owner == NULL) as well.
1366 if (try_module_get(new->owner
)) {
1367 if (!new->enable
|| new->enable(new) == 0) {
1368 old
= tk
->tkr_mono
.clock
;
1369 tk_setup_internals(tk
, new);
1372 module_put(old
->owner
);
1374 module_put(new->owner
);
1377 timekeeping_update(tk
, TK_CLEAR_NTP
| TK_MIRROR
| TK_CLOCK_WAS_SET
);
1379 write_seqcount_end(&tk_core
.seq
);
1380 raw_spin_unlock_irqrestore(&timekeeper_lock
, flags
);
1386 * timekeeping_notify - Install a new clock source
1387 * @clock: pointer to the clock source
1389 * This function is called from clocksource.c after a new, better clock
1390 * source has been registered. The caller holds the clocksource_mutex.
1392 int timekeeping_notify(struct clocksource
*clock
)
1394 struct timekeeper
*tk
= &tk_core
.timekeeper
;
1396 if (tk
->tkr_mono
.clock
== clock
)
1398 stop_machine(change_clocksource
, clock
, NULL
);
1399 tick_clock_notify();
1400 return tk
->tkr_mono
.clock
== clock
? 0 : -1;
1404 * ktime_get_raw_ts64 - Returns the raw monotonic time in a timespec
1405 * @ts: pointer to the timespec64 to be set
1407 * Returns the raw monotonic time (completely un-modified by ntp)
1409 void ktime_get_raw_ts64(struct timespec64
*ts
)
1411 struct timekeeper
*tk
= &tk_core
.timekeeper
;
1416 seq
= read_seqcount_begin(&tk_core
.seq
);
1417 ts
->tv_sec
= tk
->raw_sec
;
1418 nsecs
= timekeeping_get_ns(&tk
->tkr_raw
);
1420 } while (read_seqcount_retry(&tk_core
.seq
, seq
));
1423 timespec64_add_ns(ts
, nsecs
);
1425 EXPORT_SYMBOL(ktime_get_raw_ts64
);
1429 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
1431 int timekeeping_valid_for_hres(void)
1433 struct timekeeper
*tk
= &tk_core
.timekeeper
;
1438 seq
= read_seqcount_begin(&tk_core
.seq
);
1440 ret
= tk
->tkr_mono
.clock
->flags
& CLOCK_SOURCE_VALID_FOR_HRES
;
1442 } while (read_seqcount_retry(&tk_core
.seq
, seq
));
1448 * timekeeping_max_deferment - Returns max time the clocksource can be deferred
1450 u64
timekeeping_max_deferment(void)
1452 struct timekeeper
*tk
= &tk_core
.timekeeper
;
1457 seq
= read_seqcount_begin(&tk_core
.seq
);
1459 ret
= tk
->tkr_mono
.clock
->max_idle_ns
;
1461 } while (read_seqcount_retry(&tk_core
.seq
, seq
));
1467 * read_persistent_clock64 - Return time from the persistent clock.
1469 * Weak dummy function for arches that do not yet support it.
1470 * Reads the time from the battery backed persistent clock.
1471 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
1473 * XXX - Do be sure to remove it once all arches implement it.
1475 void __weak
read_persistent_clock64(struct timespec64
*ts
)
1482 * read_persistent_wall_and_boot_offset - Read persistent clock, and also offset
1485 * Weak dummy function for arches that do not yet support it.
1486 * wall_time - current time as returned by persistent clock
1487 * boot_offset - offset that is defined as wall_time - boot_time
1488 * The default function calculates offset based on the current value of
1489 * local_clock(). This way architectures that support sched_clock() but don't
1490 * support dedicated boot time clock will provide the best estimate of the
1494 read_persistent_wall_and_boot_offset(struct timespec64
*wall_time
,
1495 struct timespec64
*boot_offset
)
1497 read_persistent_clock64(wall_time
);
1498 *boot_offset
= ns_to_timespec64(local_clock());
1502 * Flag reflecting whether timekeeping_resume() has injected sleeptime.
1504 * The flag starts of false and is only set when a suspend reaches
1505 * timekeeping_suspend(), timekeeping_resume() sets it to false when the
1506 * timekeeper clocksource is not stopping across suspend and has been
1507 * used to update sleep time. If the timekeeper clocksource has stopped
1508 * then the flag stays true and is used by the RTC resume code to decide
1509 * whether sleeptime must be injected and if so the flag gets false then.
1511 * If a suspend fails before reaching timekeeping_resume() then the flag
1512 * stays false and prevents erroneous sleeptime injection.
1514 static bool suspend_timing_needed
;
1516 /* Flag for if there is a persistent clock on this platform */
1517 static bool persistent_clock_exists
;
1520 * timekeeping_init - Initializes the clocksource and common timekeeping values
1522 void __init
timekeeping_init(void)
1524 struct timespec64 wall_time
, boot_offset
, wall_to_mono
;
1525 struct timekeeper
*tk
= &tk_core
.timekeeper
;
1526 struct clocksource
*clock
;
1527 unsigned long flags
;
1529 read_persistent_wall_and_boot_offset(&wall_time
, &boot_offset
);
1530 if (timespec64_valid_strict(&wall_time
) &&
1531 timespec64_to_ns(&wall_time
) > 0) {
1532 persistent_clock_exists
= true;
1533 } else if (timespec64_to_ns(&wall_time
) != 0) {
1534 pr_warn("Persistent clock returned invalid value");
1535 wall_time
= (struct timespec64
){0};
1538 if (timespec64_compare(&wall_time
, &boot_offset
) < 0)
1539 boot_offset
= (struct timespec64
){0};
1542 * We want set wall_to_mono, so the following is true:
1543 * wall time + wall_to_mono = boot time
1545 wall_to_mono
= timespec64_sub(boot_offset
, wall_time
);
1547 raw_spin_lock_irqsave(&timekeeper_lock
, flags
);
1548 write_seqcount_begin(&tk_core
.seq
);
1551 clock
= clocksource_default_clock();
1553 clock
->enable(clock
);
1554 tk_setup_internals(tk
, clock
);
1556 tk_set_xtime(tk
, &wall_time
);
1559 tk_set_wall_to_mono(tk
, wall_to_mono
);
1561 timekeeping_update(tk
, TK_MIRROR
| TK_CLOCK_WAS_SET
);
1563 write_seqcount_end(&tk_core
.seq
);
1564 raw_spin_unlock_irqrestore(&timekeeper_lock
, flags
);
1567 /* time in seconds when suspend began for persistent clock */
1568 static struct timespec64 timekeeping_suspend_time
;
1571 * __timekeeping_inject_sleeptime - Internal function to add sleep interval
1572 * @delta: pointer to a timespec delta value
1574 * Takes a timespec offset measuring a suspend interval and properly
1575 * adds the sleep offset to the timekeeping variables.
1577 static void __timekeeping_inject_sleeptime(struct timekeeper
*tk
,
1578 const struct timespec64
*delta
)
1580 if (!timespec64_valid_strict(delta
)) {
1581 printk_deferred(KERN_WARNING
1582 "__timekeeping_inject_sleeptime: Invalid "
1583 "sleep delta value!\n");
1586 tk_xtime_add(tk
, delta
);
1587 tk_set_wall_to_mono(tk
, timespec64_sub(tk
->wall_to_monotonic
, *delta
));
1588 tk_update_sleep_time(tk
, timespec64_to_ktime(*delta
));
1589 tk_debug_account_sleep_time(delta
);
1592 #if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
1594 * We have three kinds of time sources to use for sleep time
1595 * injection, the preference order is:
1596 * 1) non-stop clocksource
1597 * 2) persistent clock (ie: RTC accessible when irqs are off)
1600 * 1) and 2) are used by timekeeping, 3) by RTC subsystem.
1601 * If system has neither 1) nor 2), 3) will be used finally.
1604 * If timekeeping has injected sleeptime via either 1) or 2),
1605 * 3) becomes needless, so in this case we don't need to call
1606 * rtc_resume(), and this is what timekeeping_rtc_skipresume()
1609 bool timekeeping_rtc_skipresume(void)
1611 return !suspend_timing_needed
;
1615 * 1) can be determined whether to use or not only when doing
1616 * timekeeping_resume() which is invoked after rtc_suspend(),
1617 * so we can't skip rtc_suspend() surely if system has 1).
1619 * But if system has 2), 2) will definitely be used, so in this
1620 * case we don't need to call rtc_suspend(), and this is what
1621 * timekeeping_rtc_skipsuspend() means.
1623 bool timekeeping_rtc_skipsuspend(void)
1625 return persistent_clock_exists
;
1629 * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
1630 * @delta: pointer to a timespec64 delta value
1632 * This hook is for architectures that cannot support read_persistent_clock64
1633 * because their RTC/persistent clock is only accessible when irqs are enabled.
1634 * and also don't have an effective nonstop clocksource.
1636 * This function should only be called by rtc_resume(), and allows
1637 * a suspend offset to be injected into the timekeeping values.
1639 void timekeeping_inject_sleeptime64(const struct timespec64
*delta
)
1641 struct timekeeper
*tk
= &tk_core
.timekeeper
;
1642 unsigned long flags
;
1644 raw_spin_lock_irqsave(&timekeeper_lock
, flags
);
1645 write_seqcount_begin(&tk_core
.seq
);
1647 suspend_timing_needed
= false;
1649 timekeeping_forward_now(tk
);
1651 __timekeeping_inject_sleeptime(tk
, delta
);
1653 timekeeping_update(tk
, TK_CLEAR_NTP
| TK_MIRROR
| TK_CLOCK_WAS_SET
);
1655 write_seqcount_end(&tk_core
.seq
);
1656 raw_spin_unlock_irqrestore(&timekeeper_lock
, flags
);
1658 /* signal hrtimers about time change */
1664 * timekeeping_resume - Resumes the generic timekeeping subsystem.
1666 void timekeeping_resume(void)
1668 struct timekeeper
*tk
= &tk_core
.timekeeper
;
1669 struct clocksource
*clock
= tk
->tkr_mono
.clock
;
1670 unsigned long flags
;
1671 struct timespec64 ts_new
, ts_delta
;
1672 u64 cycle_now
, nsec
;
1673 bool inject_sleeptime
= false;
1675 read_persistent_clock64(&ts_new
);
1677 clockevents_resume();
1678 clocksource_resume();
1680 raw_spin_lock_irqsave(&timekeeper_lock
, flags
);
1681 write_seqcount_begin(&tk_core
.seq
);
1684 * After system resumes, we need to calculate the suspended time and
1685 * compensate it for the OS time. There are 3 sources that could be
1686 * used: Nonstop clocksource during suspend, persistent clock and rtc
1689 * One specific platform may have 1 or 2 or all of them, and the
1690 * preference will be:
1691 * suspend-nonstop clocksource -> persistent clock -> rtc
1692 * The less preferred source will only be tried if there is no better
1693 * usable source. The rtc part is handled separately in rtc core code.
1695 cycle_now
= tk_clock_read(&tk
->tkr_mono
);
1696 nsec
= clocksource_stop_suspend_timing(clock
, cycle_now
);
1698 ts_delta
= ns_to_timespec64(nsec
);
1699 inject_sleeptime
= true;
1700 } else if (timespec64_compare(&ts_new
, &timekeeping_suspend_time
) > 0) {
1701 ts_delta
= timespec64_sub(ts_new
, timekeeping_suspend_time
);
1702 inject_sleeptime
= true;
1705 if (inject_sleeptime
) {
1706 suspend_timing_needed
= false;
1707 __timekeeping_inject_sleeptime(tk
, &ts_delta
);
1710 /* Re-base the last cycle value */
1711 tk
->tkr_mono
.cycle_last
= cycle_now
;
1712 tk
->tkr_raw
.cycle_last
= cycle_now
;
1715 timekeeping_suspended
= 0;
1716 timekeeping_update(tk
, TK_MIRROR
| TK_CLOCK_WAS_SET
);
1717 write_seqcount_end(&tk_core
.seq
);
1718 raw_spin_unlock_irqrestore(&timekeeper_lock
, flags
);
1720 touch_softlockup_watchdog();
1726 int timekeeping_suspend(void)
1728 struct timekeeper
*tk
= &tk_core
.timekeeper
;
1729 unsigned long flags
;
1730 struct timespec64 delta
, delta_delta
;
1731 static struct timespec64 old_delta
;
1732 struct clocksource
*curr_clock
;
1735 read_persistent_clock64(&timekeeping_suspend_time
);
1738 * On some systems the persistent_clock can not be detected at
1739 * timekeeping_init by its return value, so if we see a valid
1740 * value returned, update the persistent_clock_exists flag.
1742 if (timekeeping_suspend_time
.tv_sec
|| timekeeping_suspend_time
.tv_nsec
)
1743 persistent_clock_exists
= true;
1745 suspend_timing_needed
= true;
1747 raw_spin_lock_irqsave(&timekeeper_lock
, flags
);
1748 write_seqcount_begin(&tk_core
.seq
);
1749 timekeeping_forward_now(tk
);
1750 timekeeping_suspended
= 1;
1753 * Since we've called forward_now, cycle_last stores the value
1754 * just read from the current clocksource. Save this to potentially
1755 * use in suspend timing.
1757 curr_clock
= tk
->tkr_mono
.clock
;
1758 cycle_now
= tk
->tkr_mono
.cycle_last
;
1759 clocksource_start_suspend_timing(curr_clock
, cycle_now
);
1761 if (persistent_clock_exists
) {
1763 * To avoid drift caused by repeated suspend/resumes,
1764 * which each can add ~1 second drift error,
1765 * try to compensate so the difference in system time
1766 * and persistent_clock time stays close to constant.
1768 delta
= timespec64_sub(tk_xtime(tk
), timekeeping_suspend_time
);
1769 delta_delta
= timespec64_sub(delta
, old_delta
);
1770 if (abs(delta_delta
.tv_sec
) >= 2) {
1772 * if delta_delta is too large, assume time correction
1773 * has occurred and set old_delta to the current delta.
1777 /* Otherwise try to adjust old_system to compensate */
1778 timekeeping_suspend_time
=
1779 timespec64_add(timekeeping_suspend_time
, delta_delta
);
1783 timekeeping_update(tk
, TK_MIRROR
);
1784 halt_fast_timekeeper(tk
);
1785 write_seqcount_end(&tk_core
.seq
);
1786 raw_spin_unlock_irqrestore(&timekeeper_lock
, flags
);
1789 clocksource_suspend();
1790 clockevents_suspend();
1795 /* sysfs resume/suspend bits for timekeeping */
1796 static struct syscore_ops timekeeping_syscore_ops
= {
1797 .resume
= timekeeping_resume
,
1798 .suspend
= timekeeping_suspend
,
1801 static int __init
timekeeping_init_ops(void)
1803 register_syscore_ops(&timekeeping_syscore_ops
);
1806 device_initcall(timekeeping_init_ops
);
1809 * Apply a multiplier adjustment to the timekeeper
1811 static __always_inline
void timekeeping_apply_adjustment(struct timekeeper
*tk
,
1815 s64 interval
= tk
->cycle_interval
;
1817 if (mult_adj
== 0) {
1819 } else if (mult_adj
== -1) {
1820 interval
= -interval
;
1822 } else if (mult_adj
!= 1) {
1823 interval
*= mult_adj
;
1828 * So the following can be confusing.
1830 * To keep things simple, lets assume mult_adj == 1 for now.
1832 * When mult_adj != 1, remember that the interval and offset values
1833 * have been appropriately scaled so the math is the same.
1835 * The basic idea here is that we're increasing the multiplier
1836 * by one, this causes the xtime_interval to be incremented by
1837 * one cycle_interval. This is because:
1838 * xtime_interval = cycle_interval * mult
1839 * So if mult is being incremented by one:
1840 * xtime_interval = cycle_interval * (mult + 1)
1842 * xtime_interval = (cycle_interval * mult) + cycle_interval
1843 * Which can be shortened to:
1844 * xtime_interval += cycle_interval
1846 * So offset stores the non-accumulated cycles. Thus the current
1847 * time (in shifted nanoseconds) is:
1848 * now = (offset * adj) + xtime_nsec
1849 * Now, even though we're adjusting the clock frequency, we have
1850 * to keep time consistent. In other words, we can't jump back
1851 * in time, and we also want to avoid jumping forward in time.
1853 * So given the same offset value, we need the time to be the same
1854 * both before and after the freq adjustment.
1855 * now = (offset * adj_1) + xtime_nsec_1
1856 * now = (offset * adj_2) + xtime_nsec_2
1858 * (offset * adj_1) + xtime_nsec_1 =
1859 * (offset * adj_2) + xtime_nsec_2
1863 * (offset * adj_1) + xtime_nsec_1 =
1864 * (offset * (adj_1+1)) + xtime_nsec_2
1865 * (offset * adj_1) + xtime_nsec_1 =
1866 * (offset * adj_1) + offset + xtime_nsec_2
1867 * Canceling the sides:
1868 * xtime_nsec_1 = offset + xtime_nsec_2
1870 * xtime_nsec_2 = xtime_nsec_1 - offset
1871 * Which simplfies to:
1872 * xtime_nsec -= offset
1874 if ((mult_adj
> 0) && (tk
->tkr_mono
.mult
+ mult_adj
< mult_adj
)) {
1875 /* NTP adjustment caused clocksource mult overflow */
1880 tk
->tkr_mono
.mult
+= mult_adj
;
1881 tk
->xtime_interval
+= interval
;
1882 tk
->tkr_mono
.xtime_nsec
-= offset
;
1886 * Adjust the timekeeper's multiplier to the correct frequency
1887 * and also to reduce the accumulated error value.
1889 static void timekeeping_adjust(struct timekeeper
*tk
, s64 offset
)
1894 * Determine the multiplier from the current NTP tick length.
1895 * Avoid expensive division when the tick length doesn't change.
1897 if (likely(tk
->ntp_tick
== ntp_tick_length())) {
1898 mult
= tk
->tkr_mono
.mult
- tk
->ntp_err_mult
;
1900 tk
->ntp_tick
= ntp_tick_length();
1901 mult
= div64_u64((tk
->ntp_tick
>> tk
->ntp_error_shift
) -
1902 tk
->xtime_remainder
, tk
->cycle_interval
);
1906 * If the clock is behind the NTP time, increase the multiplier by 1
1907 * to catch up with it. If it's ahead and there was a remainder in the
1908 * tick division, the clock will slow down. Otherwise it will stay
1909 * ahead until the tick length changes to a non-divisible value.
1911 tk
->ntp_err_mult
= tk
->ntp_error
> 0 ? 1 : 0;
1912 mult
+= tk
->ntp_err_mult
;
1914 timekeeping_apply_adjustment(tk
, offset
, mult
- tk
->tkr_mono
.mult
);
1916 if (unlikely(tk
->tkr_mono
.clock
->maxadj
&&
1917 (abs(tk
->tkr_mono
.mult
- tk
->tkr_mono
.clock
->mult
)
1918 > tk
->tkr_mono
.clock
->maxadj
))) {
1919 printk_once(KERN_WARNING
1920 "Adjusting %s more than 11%% (%ld vs %ld)\n",
1921 tk
->tkr_mono
.clock
->name
, (long)tk
->tkr_mono
.mult
,
1922 (long)tk
->tkr_mono
.clock
->mult
+ tk
->tkr_mono
.clock
->maxadj
);
1926 * It may be possible that when we entered this function, xtime_nsec
1927 * was very small. Further, if we're slightly speeding the clocksource
1928 * in the code above, its possible the required corrective factor to
1929 * xtime_nsec could cause it to underflow.
1931 * Now, since we have already accumulated the second and the NTP
1932 * subsystem has been notified via second_overflow(), we need to skip
1935 if (unlikely((s64
)tk
->tkr_mono
.xtime_nsec
< 0)) {
1936 tk
->tkr_mono
.xtime_nsec
+= (u64
)NSEC_PER_SEC
<<
1939 tk
->skip_second_overflow
= 1;
1944 * accumulate_nsecs_to_secs - Accumulates nsecs into secs
1946 * Helper function that accumulates the nsecs greater than a second
1947 * from the xtime_nsec field to the xtime_secs field.
1948 * It also calls into the NTP code to handle leapsecond processing.
1951 static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper
*tk
)
1953 u64 nsecps
= (u64
)NSEC_PER_SEC
<< tk
->tkr_mono
.shift
;
1954 unsigned int clock_set
= 0;
1956 while (tk
->tkr_mono
.xtime_nsec
>= nsecps
) {
1959 tk
->tkr_mono
.xtime_nsec
-= nsecps
;
1963 * Skip NTP update if this second was accumulated before,
1964 * i.e. xtime_nsec underflowed in timekeeping_adjust()
1966 if (unlikely(tk
->skip_second_overflow
)) {
1967 tk
->skip_second_overflow
= 0;
1971 /* Figure out if its a leap sec and apply if needed */
1972 leap
= second_overflow(tk
->xtime_sec
);
1973 if (unlikely(leap
)) {
1974 struct timespec64 ts
;
1976 tk
->xtime_sec
+= leap
;
1980 tk_set_wall_to_mono(tk
,
1981 timespec64_sub(tk
->wall_to_monotonic
, ts
));
1983 __timekeeping_set_tai_offset(tk
, tk
->tai_offset
- leap
);
1985 clock_set
= TK_CLOCK_WAS_SET
;
1992 * logarithmic_accumulation - shifted accumulation of cycles
1994 * This functions accumulates a shifted interval of cycles into
1995 * into a shifted interval nanoseconds. Allows for O(log) accumulation
1998 * Returns the unconsumed cycles.
2000 static u64
logarithmic_accumulation(struct timekeeper
*tk
, u64 offset
,
2001 u32 shift
, unsigned int *clock_set
)
2003 u64 interval
= tk
->cycle_interval
<< shift
;
2006 /* If the offset is smaller than a shifted interval, do nothing */
2007 if (offset
< interval
)
2010 /* Accumulate one shifted interval */
2012 tk
->tkr_mono
.cycle_last
+= interval
;
2013 tk
->tkr_raw
.cycle_last
+= interval
;
2015 tk
->tkr_mono
.xtime_nsec
+= tk
->xtime_interval
<< shift
;
2016 *clock_set
|= accumulate_nsecs_to_secs(tk
);
2018 /* Accumulate raw time */
2019 tk
->tkr_raw
.xtime_nsec
+= tk
->raw_interval
<< shift
;
2020 snsec_per_sec
= (u64
)NSEC_PER_SEC
<< tk
->tkr_raw
.shift
;
2021 while (tk
->tkr_raw
.xtime_nsec
>= snsec_per_sec
) {
2022 tk
->tkr_raw
.xtime_nsec
-= snsec_per_sec
;
2026 /* Accumulate error between NTP and clock interval */
2027 tk
->ntp_error
+= tk
->ntp_tick
<< shift
;
2028 tk
->ntp_error
-= (tk
->xtime_interval
+ tk
->xtime_remainder
) <<
2029 (tk
->ntp_error_shift
+ shift
);
2035 * timekeeping_advance - Updates the timekeeper to the current time and
2036 * current NTP tick length
2038 static void timekeeping_advance(enum timekeeping_adv_mode mode
)
2040 struct timekeeper
*real_tk
= &tk_core
.timekeeper
;
2041 struct timekeeper
*tk
= &shadow_timekeeper
;
2043 int shift
= 0, maxshift
;
2044 unsigned int clock_set
= 0;
2045 unsigned long flags
;
2047 raw_spin_lock_irqsave(&timekeeper_lock
, flags
);
2049 /* Make sure we're fully resumed: */
2050 if (unlikely(timekeeping_suspended
))
2053 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
2054 offset
= real_tk
->cycle_interval
;
2056 if (mode
!= TK_ADV_TICK
)
2059 offset
= clocksource_delta(tk_clock_read(&tk
->tkr_mono
),
2060 tk
->tkr_mono
.cycle_last
, tk
->tkr_mono
.mask
);
2062 /* Check if there's really nothing to do */
2063 if (offset
< real_tk
->cycle_interval
&& mode
== TK_ADV_TICK
)
2067 /* Do some additional sanity checking */
2068 timekeeping_check_update(tk
, offset
);
2071 * With NO_HZ we may have to accumulate many cycle_intervals
2072 * (think "ticks") worth of time at once. To do this efficiently,
2073 * we calculate the largest doubling multiple of cycle_intervals
2074 * that is smaller than the offset. We then accumulate that
2075 * chunk in one go, and then try to consume the next smaller
2078 shift
= ilog2(offset
) - ilog2(tk
->cycle_interval
);
2079 shift
= max(0, shift
);
2080 /* Bound shift to one less than what overflows tick_length */
2081 maxshift
= (64 - (ilog2(ntp_tick_length())+1)) - 1;
2082 shift
= min(shift
, maxshift
);
2083 while (offset
>= tk
->cycle_interval
) {
2084 offset
= logarithmic_accumulation(tk
, offset
, shift
,
2086 if (offset
< tk
->cycle_interval
<<shift
)
2090 /* Adjust the multiplier to correct NTP error */
2091 timekeeping_adjust(tk
, offset
);
2094 * Finally, make sure that after the rounding
2095 * xtime_nsec isn't larger than NSEC_PER_SEC
2097 clock_set
|= accumulate_nsecs_to_secs(tk
);
2099 write_seqcount_begin(&tk_core
.seq
);
2101 * Update the real timekeeper.
2103 * We could avoid this memcpy by switching pointers, but that
2104 * requires changes to all other timekeeper usage sites as
2105 * well, i.e. move the timekeeper pointer getter into the
2106 * spinlocked/seqcount protected sections. And we trade this
2107 * memcpy under the tk_core.seq against one before we start
2110 timekeeping_update(tk
, clock_set
);
2111 memcpy(real_tk
, tk
, sizeof(*tk
));
2112 /* The memcpy must come last. Do not put anything here! */
2113 write_seqcount_end(&tk_core
.seq
);
2115 raw_spin_unlock_irqrestore(&timekeeper_lock
, flags
);
2117 /* Have to call _delayed version, since in irq context*/
2118 clock_was_set_delayed();
2122 * update_wall_time - Uses the current clocksource to increment the wall time
2125 void update_wall_time(void)
2127 timekeeping_advance(TK_ADV_TICK
);
2131 * getboottime64 - Return the real time of system boot.
2132 * @ts: pointer to the timespec64 to be set
2134 * Returns the wall-time of boot in a timespec64.
2136 * This is based on the wall_to_monotonic offset and the total suspend
2137 * time. Calls to settimeofday will affect the value returned (which
2138 * basically means that however wrong your real time clock is at boot time,
2139 * you get the right time here).
2141 void getboottime64(struct timespec64
*ts
)
2143 struct timekeeper
*tk
= &tk_core
.timekeeper
;
2144 ktime_t t
= ktime_sub(tk
->offs_real
, tk
->offs_boot
);
2146 *ts
= ktime_to_timespec64(t
);
2148 EXPORT_SYMBOL_GPL(getboottime64
);
2150 void ktime_get_coarse_real_ts64(struct timespec64
*ts
)
2152 struct timekeeper
*tk
= &tk_core
.timekeeper
;
2156 seq
= read_seqcount_begin(&tk_core
.seq
);
2159 } while (read_seqcount_retry(&tk_core
.seq
, seq
));
2161 EXPORT_SYMBOL(ktime_get_coarse_real_ts64
);
2163 void ktime_get_coarse_ts64(struct timespec64
*ts
)
2165 struct timekeeper
*tk
= &tk_core
.timekeeper
;
2166 struct timespec64 now
, mono
;
2170 seq
= read_seqcount_begin(&tk_core
.seq
);
2173 mono
= tk
->wall_to_monotonic
;
2174 } while (read_seqcount_retry(&tk_core
.seq
, seq
));
2176 set_normalized_timespec64(ts
, now
.tv_sec
+ mono
.tv_sec
,
2177 now
.tv_nsec
+ mono
.tv_nsec
);
2179 EXPORT_SYMBOL(ktime_get_coarse_ts64
);
2182 * Must hold jiffies_lock
2184 void do_timer(unsigned long ticks
)
2186 jiffies_64
+= ticks
;
2187 calc_global_load(ticks
);
2191 * ktime_get_update_offsets_now - hrtimer helper
2192 * @cwsseq: pointer to check and store the clock was set sequence number
2193 * @offs_real: pointer to storage for monotonic -> realtime offset
2194 * @offs_boot: pointer to storage for monotonic -> boottime offset
2195 * @offs_tai: pointer to storage for monotonic -> clock tai offset
2197 * Returns current monotonic time and updates the offsets if the
2198 * sequence number in @cwsseq and timekeeper.clock_was_set_seq are
2201 * Called from hrtimer_interrupt() or retrigger_next_event()
2203 ktime_t
ktime_get_update_offsets_now(unsigned int *cwsseq
, ktime_t
*offs_real
,
2204 ktime_t
*offs_boot
, ktime_t
*offs_tai
)
2206 struct timekeeper
*tk
= &tk_core
.timekeeper
;
2212 seq
= read_seqcount_begin(&tk_core
.seq
);
2214 base
= tk
->tkr_mono
.base
;
2215 nsecs
= timekeeping_get_ns(&tk
->tkr_mono
);
2216 base
= ktime_add_ns(base
, nsecs
);
2218 if (*cwsseq
!= tk
->clock_was_set_seq
) {
2219 *cwsseq
= tk
->clock_was_set_seq
;
2220 *offs_real
= tk
->offs_real
;
2221 *offs_boot
= tk
->offs_boot
;
2222 *offs_tai
= tk
->offs_tai
;
2225 /* Handle leapsecond insertion adjustments */
2226 if (unlikely(base
>= tk
->next_leap_ktime
))
2227 *offs_real
= ktime_sub(tk
->offs_real
, ktime_set(1, 0));
2229 } while (read_seqcount_retry(&tk_core
.seq
, seq
));
2235 * timekeeping_validate_timex - Ensures the timex is ok for use in do_adjtimex
2237 static int timekeeping_validate_timex(const struct timex
*txc
)
2239 if (txc
->modes
& ADJ_ADJTIME
) {
2240 /* singleshot must not be used with any other mode bits */
2241 if (!(txc
->modes
& ADJ_OFFSET_SINGLESHOT
))
2243 if (!(txc
->modes
& ADJ_OFFSET_READONLY
) &&
2244 !capable(CAP_SYS_TIME
))
2247 /* In order to modify anything, you gotta be super-user! */
2248 if (txc
->modes
&& !capable(CAP_SYS_TIME
))
2251 * if the quartz is off by more than 10% then
2252 * something is VERY wrong!
2254 if (txc
->modes
& ADJ_TICK
&&
2255 (txc
->tick
< 900000/USER_HZ
||
2256 txc
->tick
> 1100000/USER_HZ
))
2260 if (txc
->modes
& ADJ_SETOFFSET
) {
2261 /* In order to inject time, you gotta be super-user! */
2262 if (!capable(CAP_SYS_TIME
))
2266 * Validate if a timespec/timeval used to inject a time
2267 * offset is valid. Offsets can be postive or negative, so
2268 * we don't check tv_sec. The value of the timeval/timespec
2269 * is the sum of its fields,but *NOTE*:
2270 * The field tv_usec/tv_nsec must always be non-negative and
2271 * we can't have more nanoseconds/microseconds than a second.
2273 if (txc
->time
.tv_usec
< 0)
2276 if (txc
->modes
& ADJ_NANO
) {
2277 if (txc
->time
.tv_usec
>= NSEC_PER_SEC
)
2280 if (txc
->time
.tv_usec
>= USEC_PER_SEC
)
2286 * Check for potential multiplication overflows that can
2287 * only happen on 64-bit systems:
2289 if ((txc
->modes
& ADJ_FREQUENCY
) && (BITS_PER_LONG
== 64)) {
2290 if (LLONG_MIN
/ PPM_SCALE
> txc
->freq
)
2292 if (LLONG_MAX
/ PPM_SCALE
< txc
->freq
)
2301 * do_adjtimex() - Accessor function to NTP __do_adjtimex function
2303 int do_adjtimex(struct timex
*txc
)
2305 struct timekeeper
*tk
= &tk_core
.timekeeper
;
2306 unsigned long flags
;
2307 struct timespec64 ts
;
2311 /* Validate the data before disabling interrupts */
2312 ret
= timekeeping_validate_timex(txc
);
2316 if (txc
->modes
& ADJ_SETOFFSET
) {
2317 struct timespec64 delta
;
2318 delta
.tv_sec
= txc
->time
.tv_sec
;
2319 delta
.tv_nsec
= txc
->time
.tv_usec
;
2320 if (!(txc
->modes
& ADJ_NANO
))
2321 delta
.tv_nsec
*= 1000;
2322 ret
= timekeeping_inject_offset(&delta
);
2327 ktime_get_real_ts64(&ts
);
2329 raw_spin_lock_irqsave(&timekeeper_lock
, flags
);
2330 write_seqcount_begin(&tk_core
.seq
);
2332 orig_tai
= tai
= tk
->tai_offset
;
2333 ret
= __do_adjtimex(txc
, &ts
, &tai
);
2335 if (tai
!= orig_tai
) {
2336 __timekeeping_set_tai_offset(tk
, tai
);
2337 timekeeping_update(tk
, TK_MIRROR
| TK_CLOCK_WAS_SET
);
2339 tk_update_leap_state(tk
);
2341 write_seqcount_end(&tk_core
.seq
);
2342 raw_spin_unlock_irqrestore(&timekeeper_lock
, flags
);
2344 /* Update the multiplier immediately if frequency was set directly */
2345 if (txc
->modes
& (ADJ_FREQUENCY
| ADJ_TICK
))
2346 timekeeping_advance(TK_ADV_FREQ
);
2348 if (tai
!= orig_tai
)
2351 ntp_notify_cmos_timer();
2356 #ifdef CONFIG_NTP_PPS
2358 * hardpps() - Accessor function to NTP __hardpps function
2360 void hardpps(const struct timespec64
*phase_ts
, const struct timespec64
*raw_ts
)
2362 unsigned long flags
;
2364 raw_spin_lock_irqsave(&timekeeper_lock
, flags
);
2365 write_seqcount_begin(&tk_core
.seq
);
2367 __hardpps(phase_ts
, raw_ts
);
2369 write_seqcount_end(&tk_core
.seq
);
2370 raw_spin_unlock_irqrestore(&timekeeper_lock
, flags
);
2372 EXPORT_SYMBOL(hardpps
);
2373 #endif /* CONFIG_NTP_PPS */
2376 * xtime_update() - advances the timekeeping infrastructure
2377 * @ticks: number of ticks, that have elapsed since the last call.
2379 * Must be called with interrupts disabled.
2381 void xtime_update(unsigned long ticks
)
2383 write_seqlock(&jiffies_lock
);
2385 write_sequnlock(&jiffies_lock
);