net/mlx4_en: fix spelling mistake: "quiting" -> "quitting"
[linux-stable.git] / kernel / time / timekeeping.c
blobac5dbf2cd4a21db91f2e9adc5c8fed5636f7650a
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Kernel timekeeping code and accessor functions. Based on code from
4 * timer.c, moved in commit 8524070b7982.
5 */
6 #include <linux/timekeeper_internal.h>
7 #include <linux/module.h>
8 #include <linux/interrupt.h>
9 #include <linux/percpu.h>
10 #include <linux/init.h>
11 #include <linux/mm.h>
12 #include <linux/nmi.h>
13 #include <linux/sched.h>
14 #include <linux/sched/loadavg.h>
15 #include <linux/sched/clock.h>
16 #include <linux/syscore_ops.h>
17 #include <linux/clocksource.h>
18 #include <linux/jiffies.h>
19 #include <linux/time.h>
20 #include <linux/tick.h>
21 #include <linux/stop_machine.h>
22 #include <linux/pvclock_gtod.h>
23 #include <linux/compiler.h>
25 #include "tick-internal.h"
26 #include "ntp_internal.h"
27 #include "timekeeping_internal.h"
29 #define TK_CLEAR_NTP (1 << 0)
30 #define TK_MIRROR (1 << 1)
31 #define TK_CLOCK_WAS_SET (1 << 2)
33 enum timekeeping_adv_mode {
34 /* Update timekeeper when a tick has passed */
35 TK_ADV_TICK,
37 /* Update timekeeper on a direct frequency change */
38 TK_ADV_FREQ
42 * The most important data for readout fits into a single 64 byte
43 * cache line.
45 static struct {
46 seqcount_t seq;
47 struct timekeeper timekeeper;
48 } tk_core ____cacheline_aligned = {
49 .seq = SEQCNT_ZERO(tk_core.seq),
52 static DEFINE_RAW_SPINLOCK(timekeeper_lock);
53 static struct timekeeper shadow_timekeeper;
55 /**
56 * struct tk_fast - NMI safe timekeeper
57 * @seq: Sequence counter for protecting updates. The lowest bit
58 * is the index for the tk_read_base array
59 * @base: tk_read_base array. Access is indexed by the lowest bit of
60 * @seq.
62 * See @update_fast_timekeeper() below.
64 struct tk_fast {
65 seqcount_t seq;
66 struct tk_read_base base[2];
69 /* Suspend-time cycles value for halted fast timekeeper. */
70 static u64 cycles_at_suspend;
72 static u64 dummy_clock_read(struct clocksource *cs)
74 return cycles_at_suspend;
77 static struct clocksource dummy_clock = {
78 .read = dummy_clock_read,
81 static struct tk_fast tk_fast_mono ____cacheline_aligned = {
82 .base[0] = { .clock = &dummy_clock, },
83 .base[1] = { .clock = &dummy_clock, },
86 static struct tk_fast tk_fast_raw ____cacheline_aligned = {
87 .base[0] = { .clock = &dummy_clock, },
88 .base[1] = { .clock = &dummy_clock, },
91 /* flag for if timekeeping is suspended */
92 int __read_mostly timekeeping_suspended;
94 static inline void tk_normalize_xtime(struct timekeeper *tk)
96 while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) {
97 tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
98 tk->xtime_sec++;
100 while (tk->tkr_raw.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_raw.shift)) {
101 tk->tkr_raw.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_raw.shift;
102 tk->raw_sec++;
106 static inline struct timespec64 tk_xtime(const struct timekeeper *tk)
108 struct timespec64 ts;
110 ts.tv_sec = tk->xtime_sec;
111 ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
112 return ts;
115 static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
117 tk->xtime_sec = ts->tv_sec;
118 tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift;
121 static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
123 tk->xtime_sec += ts->tv_sec;
124 tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift;
125 tk_normalize_xtime(tk);
128 static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
130 struct timespec64 tmp;
133 * Verify consistency of: offset_real = -wall_to_monotonic
134 * before modifying anything
136 set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
137 -tk->wall_to_monotonic.tv_nsec);
138 WARN_ON_ONCE(tk->offs_real != timespec64_to_ktime(tmp));
139 tk->wall_to_monotonic = wtm;
140 set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
141 tk->offs_real = timespec64_to_ktime(tmp);
142 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
145 static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
147 tk->offs_boot = ktime_add(tk->offs_boot, delta);
151 * tk_clock_read - atomic clocksource read() helper
153 * This helper is necessary to use in the read paths because, while the
154 * seqlock ensures we don't return a bad value while structures are updated,
155 * it doesn't protect from potential crashes. There is the possibility that
156 * the tkr's clocksource may change between the read reference, and the
157 * clock reference passed to the read function. This can cause crashes if
158 * the wrong clocksource is passed to the wrong read function.
159 * This isn't necessary to use when holding the timekeeper_lock or doing
160 * a read of the fast-timekeeper tkrs (which is protected by its own locking
161 * and update logic).
163 static inline u64 tk_clock_read(const struct tk_read_base *tkr)
165 struct clocksource *clock = READ_ONCE(tkr->clock);
167 return clock->read(clock);
170 #ifdef CONFIG_DEBUG_TIMEKEEPING
171 #define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */
173 static void timekeeping_check_update(struct timekeeper *tk, u64 offset)
176 u64 max_cycles = tk->tkr_mono.clock->max_cycles;
177 const char *name = tk->tkr_mono.clock->name;
179 if (offset > max_cycles) {
180 printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n",
181 offset, name, max_cycles);
182 printk_deferred(" timekeeping: Your kernel is sick, but tries to cope by capping time updates\n");
183 } else {
184 if (offset > (max_cycles >> 1)) {
185 printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the '%s' clock's 50%% safety margin (%lld)\n",
186 offset, name, max_cycles >> 1);
187 printk_deferred(" timekeeping: Your kernel is still fine, but is feeling a bit nervous\n");
191 if (tk->underflow_seen) {
192 if (jiffies - tk->last_warning > WARNING_FREQ) {
193 printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name);
194 printk_deferred(" Please report this, consider using a different clocksource, if possible.\n");
195 printk_deferred(" Your kernel is probably still fine.\n");
196 tk->last_warning = jiffies;
198 tk->underflow_seen = 0;
201 if (tk->overflow_seen) {
202 if (jiffies - tk->last_warning > WARNING_FREQ) {
203 printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name);
204 printk_deferred(" Please report this, consider using a different clocksource, if possible.\n");
205 printk_deferred(" Your kernel is probably still fine.\n");
206 tk->last_warning = jiffies;
208 tk->overflow_seen = 0;
212 static inline u64 timekeeping_get_delta(const struct tk_read_base *tkr)
214 struct timekeeper *tk = &tk_core.timekeeper;
215 u64 now, last, mask, max, delta;
216 unsigned int seq;
219 * Since we're called holding a seqlock, the data may shift
220 * under us while we're doing the calculation. This can cause
221 * false positives, since we'd note a problem but throw the
222 * results away. So nest another seqlock here to atomically
223 * grab the points we are checking with.
225 do {
226 seq = read_seqcount_begin(&tk_core.seq);
227 now = tk_clock_read(tkr);
228 last = tkr->cycle_last;
229 mask = tkr->mask;
230 max = tkr->clock->max_cycles;
231 } while (read_seqcount_retry(&tk_core.seq, seq));
233 delta = clocksource_delta(now, last, mask);
236 * Try to catch underflows by checking if we are seeing small
237 * mask-relative negative values.
239 if (unlikely((~delta & mask) < (mask >> 3))) {
240 tk->underflow_seen = 1;
241 delta = 0;
244 /* Cap delta value to the max_cycles values to avoid mult overflows */
245 if (unlikely(delta > max)) {
246 tk->overflow_seen = 1;
247 delta = tkr->clock->max_cycles;
250 return delta;
252 #else
253 static inline void timekeeping_check_update(struct timekeeper *tk, u64 offset)
256 static inline u64 timekeeping_get_delta(const struct tk_read_base *tkr)
258 u64 cycle_now, delta;
260 /* read clocksource */
261 cycle_now = tk_clock_read(tkr);
263 /* calculate the delta since the last update_wall_time */
264 delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);
266 return delta;
268 #endif
271 * tk_setup_internals - Set up internals to use clocksource clock.
273 * @tk: The target timekeeper to setup.
274 * @clock: Pointer to clocksource.
276 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
277 * pair and interval request.
279 * Unless you're the timekeeping code, you should not be using this!
281 static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
283 u64 interval;
284 u64 tmp, ntpinterval;
285 struct clocksource *old_clock;
287 ++tk->cs_was_changed_seq;
288 old_clock = tk->tkr_mono.clock;
289 tk->tkr_mono.clock = clock;
290 tk->tkr_mono.mask = clock->mask;
291 tk->tkr_mono.cycle_last = tk_clock_read(&tk->tkr_mono);
293 tk->tkr_raw.clock = clock;
294 tk->tkr_raw.mask = clock->mask;
295 tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last;
297 /* Do the ns -> cycle conversion first, using original mult */
298 tmp = NTP_INTERVAL_LENGTH;
299 tmp <<= clock->shift;
300 ntpinterval = tmp;
301 tmp += clock->mult/2;
302 do_div(tmp, clock->mult);
303 if (tmp == 0)
304 tmp = 1;
306 interval = (u64) tmp;
307 tk->cycle_interval = interval;
309 /* Go back from cycles -> shifted ns */
310 tk->xtime_interval = interval * clock->mult;
311 tk->xtime_remainder = ntpinterval - tk->xtime_interval;
312 tk->raw_interval = interval * clock->mult;
314 /* if changing clocks, convert xtime_nsec shift units */
315 if (old_clock) {
316 int shift_change = clock->shift - old_clock->shift;
317 if (shift_change < 0) {
318 tk->tkr_mono.xtime_nsec >>= -shift_change;
319 tk->tkr_raw.xtime_nsec >>= -shift_change;
320 } else {
321 tk->tkr_mono.xtime_nsec <<= shift_change;
322 tk->tkr_raw.xtime_nsec <<= shift_change;
326 tk->tkr_mono.shift = clock->shift;
327 tk->tkr_raw.shift = clock->shift;
329 tk->ntp_error = 0;
330 tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
331 tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
334 * The timekeeper keeps its own mult values for the currently
335 * active clocksource. These value will be adjusted via NTP
336 * to counteract clock drifting.
338 tk->tkr_mono.mult = clock->mult;
339 tk->tkr_raw.mult = clock->mult;
340 tk->ntp_err_mult = 0;
341 tk->skip_second_overflow = 0;
344 /* Timekeeper helper functions. */
346 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
347 static u32 default_arch_gettimeoffset(void) { return 0; }
348 u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset;
349 #else
350 static inline u32 arch_gettimeoffset(void) { return 0; }
351 #endif
353 static inline u64 timekeeping_delta_to_ns(const struct tk_read_base *tkr, u64 delta)
355 u64 nsec;
357 nsec = delta * tkr->mult + tkr->xtime_nsec;
358 nsec >>= tkr->shift;
360 /* If arch requires, add in get_arch_timeoffset() */
361 return nsec + arch_gettimeoffset();
364 static inline u64 timekeeping_get_ns(const struct tk_read_base *tkr)
366 u64 delta;
368 delta = timekeeping_get_delta(tkr);
369 return timekeeping_delta_to_ns(tkr, delta);
372 static inline u64 timekeeping_cycles_to_ns(const struct tk_read_base *tkr, u64 cycles)
374 u64 delta;
376 /* calculate the delta since the last update_wall_time */
377 delta = clocksource_delta(cycles, tkr->cycle_last, tkr->mask);
378 return timekeeping_delta_to_ns(tkr, delta);
382 * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
383 * @tkr: Timekeeping readout base from which we take the update
385 * We want to use this from any context including NMI and tracing /
386 * instrumenting the timekeeping code itself.
388 * Employ the latch technique; see @raw_write_seqcount_latch.
390 * So if a NMI hits the update of base[0] then it will use base[1]
391 * which is still consistent. In the worst case this can result is a
392 * slightly wrong timestamp (a few nanoseconds). See
393 * @ktime_get_mono_fast_ns.
395 static void update_fast_timekeeper(const struct tk_read_base *tkr,
396 struct tk_fast *tkf)
398 struct tk_read_base *base = tkf->base;
400 /* Force readers off to base[1] */
401 raw_write_seqcount_latch(&tkf->seq);
403 /* Update base[0] */
404 memcpy(base, tkr, sizeof(*base));
406 /* Force readers back to base[0] */
407 raw_write_seqcount_latch(&tkf->seq);
409 /* Update base[1] */
410 memcpy(base + 1, base, sizeof(*base));
414 * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
416 * This timestamp is not guaranteed to be monotonic across an update.
417 * The timestamp is calculated by:
419 * now = base_mono + clock_delta * slope
421 * So if the update lowers the slope, readers who are forced to the
422 * not yet updated second array are still using the old steeper slope.
424 * tmono
426 * | o n
427 * | o n
428 * | u
429 * | o
430 * |o
431 * |12345678---> reader order
433 * o = old slope
434 * u = update
435 * n = new slope
437 * So reader 6 will observe time going backwards versus reader 5.
439 * While other CPUs are likely to be able observe that, the only way
440 * for a CPU local observation is when an NMI hits in the middle of
441 * the update. Timestamps taken from that NMI context might be ahead
442 * of the following timestamps. Callers need to be aware of that and
443 * deal with it.
445 static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf)
447 struct tk_read_base *tkr;
448 unsigned int seq;
449 u64 now;
451 do {
452 seq = raw_read_seqcount_latch(&tkf->seq);
453 tkr = tkf->base + (seq & 0x01);
454 now = ktime_to_ns(tkr->base);
456 now += timekeeping_delta_to_ns(tkr,
457 clocksource_delta(
458 tk_clock_read(tkr),
459 tkr->cycle_last,
460 tkr->mask));
461 } while (read_seqcount_retry(&tkf->seq, seq));
463 return now;
466 u64 ktime_get_mono_fast_ns(void)
468 return __ktime_get_fast_ns(&tk_fast_mono);
470 EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);
472 u64 ktime_get_raw_fast_ns(void)
474 return __ktime_get_fast_ns(&tk_fast_raw);
476 EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns);
479 * ktime_get_boot_fast_ns - NMI safe and fast access to boot clock.
481 * To keep it NMI safe since we're accessing from tracing, we're not using a
482 * separate timekeeper with updates to monotonic clock and boot offset
483 * protected with seqlocks. This has the following minor side effects:
485 * (1) Its possible that a timestamp be taken after the boot offset is updated
486 * but before the timekeeper is updated. If this happens, the new boot offset
487 * is added to the old timekeeping making the clock appear to update slightly
488 * earlier:
489 * CPU 0 CPU 1
490 * timekeeping_inject_sleeptime64()
491 * __timekeeping_inject_sleeptime(tk, delta);
492 * timestamp();
493 * timekeeping_update(tk, TK_CLEAR_NTP...);
495 * (2) On 32-bit systems, the 64-bit boot offset (tk->offs_boot) may be
496 * partially updated. Since the tk->offs_boot update is a rare event, this
497 * should be a rare occurrence which postprocessing should be able to handle.
499 u64 notrace ktime_get_boot_fast_ns(void)
501 struct timekeeper *tk = &tk_core.timekeeper;
503 return (ktime_get_mono_fast_ns() + ktime_to_ns(tk->offs_boot));
505 EXPORT_SYMBOL_GPL(ktime_get_boot_fast_ns);
509 * See comment for __ktime_get_fast_ns() vs. timestamp ordering
511 static __always_inline u64 __ktime_get_real_fast_ns(struct tk_fast *tkf)
513 struct tk_read_base *tkr;
514 unsigned int seq;
515 u64 now;
517 do {
518 seq = raw_read_seqcount_latch(&tkf->seq);
519 tkr = tkf->base + (seq & 0x01);
520 now = ktime_to_ns(tkr->base_real);
522 now += timekeeping_delta_to_ns(tkr,
523 clocksource_delta(
524 tk_clock_read(tkr),
525 tkr->cycle_last,
526 tkr->mask));
527 } while (read_seqcount_retry(&tkf->seq, seq));
529 return now;
533 * ktime_get_real_fast_ns: - NMI safe and fast access to clock realtime.
535 u64 ktime_get_real_fast_ns(void)
537 return __ktime_get_real_fast_ns(&tk_fast_mono);
539 EXPORT_SYMBOL_GPL(ktime_get_real_fast_ns);
542 * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource.
543 * @tk: Timekeeper to snapshot.
545 * It generally is unsafe to access the clocksource after timekeeping has been
546 * suspended, so take a snapshot of the readout base of @tk and use it as the
547 * fast timekeeper's readout base while suspended. It will return the same
548 * number of cycles every time until timekeeping is resumed at which time the
549 * proper readout base for the fast timekeeper will be restored automatically.
551 static void halt_fast_timekeeper(const struct timekeeper *tk)
553 static struct tk_read_base tkr_dummy;
554 const struct tk_read_base *tkr = &tk->tkr_mono;
556 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
557 cycles_at_suspend = tk_clock_read(tkr);
558 tkr_dummy.clock = &dummy_clock;
559 tkr_dummy.base_real = tkr->base + tk->offs_real;
560 update_fast_timekeeper(&tkr_dummy, &tk_fast_mono);
562 tkr = &tk->tkr_raw;
563 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
564 tkr_dummy.clock = &dummy_clock;
565 update_fast_timekeeper(&tkr_dummy, &tk_fast_raw);
568 static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);
570 static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
572 raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
576 * pvclock_gtod_register_notifier - register a pvclock timedata update listener
578 int pvclock_gtod_register_notifier(struct notifier_block *nb)
580 struct timekeeper *tk = &tk_core.timekeeper;
581 unsigned long flags;
582 int ret;
584 raw_spin_lock_irqsave(&timekeeper_lock, flags);
585 ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
586 update_pvclock_gtod(tk, true);
587 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
589 return ret;
591 EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);
594 * pvclock_gtod_unregister_notifier - unregister a pvclock
595 * timedata update listener
597 int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
599 unsigned long flags;
600 int ret;
602 raw_spin_lock_irqsave(&timekeeper_lock, flags);
603 ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
604 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
606 return ret;
608 EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);
611 * tk_update_leap_state - helper to update the next_leap_ktime
613 static inline void tk_update_leap_state(struct timekeeper *tk)
615 tk->next_leap_ktime = ntp_get_next_leap();
616 if (tk->next_leap_ktime != KTIME_MAX)
617 /* Convert to monotonic time */
618 tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real);
622 * Update the ktime_t based scalar nsec members of the timekeeper
624 static inline void tk_update_ktime_data(struct timekeeper *tk)
626 u64 seconds;
627 u32 nsec;
630 * The xtime based monotonic readout is:
631 * nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
632 * The ktime based monotonic readout is:
633 * nsec = base_mono + now();
634 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
636 seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
637 nsec = (u32) tk->wall_to_monotonic.tv_nsec;
638 tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec);
641 * The sum of the nanoseconds portions of xtime and
642 * wall_to_monotonic can be greater/equal one second. Take
643 * this into account before updating tk->ktime_sec.
645 nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
646 if (nsec >= NSEC_PER_SEC)
647 seconds++;
648 tk->ktime_sec = seconds;
650 /* Update the monotonic raw base */
651 tk->tkr_raw.base = ns_to_ktime(tk->raw_sec * NSEC_PER_SEC);
654 /* must hold timekeeper_lock */
655 static void timekeeping_update(struct timekeeper *tk, unsigned int action)
657 if (action & TK_CLEAR_NTP) {
658 tk->ntp_error = 0;
659 ntp_clear();
662 tk_update_leap_state(tk);
663 tk_update_ktime_data(tk);
665 update_vsyscall(tk);
666 update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);
668 tk->tkr_mono.base_real = tk->tkr_mono.base + tk->offs_real;
669 update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono);
670 update_fast_timekeeper(&tk->tkr_raw, &tk_fast_raw);
672 if (action & TK_CLOCK_WAS_SET)
673 tk->clock_was_set_seq++;
675 * The mirroring of the data to the shadow-timekeeper needs
676 * to happen last here to ensure we don't over-write the
677 * timekeeper structure on the next update with stale data
679 if (action & TK_MIRROR)
680 memcpy(&shadow_timekeeper, &tk_core.timekeeper,
681 sizeof(tk_core.timekeeper));
685 * timekeeping_forward_now - update clock to the current time
687 * Forward the current clock to update its state since the last call to
688 * update_wall_time(). This is useful before significant clock changes,
689 * as it avoids having to deal with this time offset explicitly.
691 static void timekeeping_forward_now(struct timekeeper *tk)
693 u64 cycle_now, delta;
695 cycle_now = tk_clock_read(&tk->tkr_mono);
696 delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
697 tk->tkr_mono.cycle_last = cycle_now;
698 tk->tkr_raw.cycle_last = cycle_now;
700 tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult;
702 /* If arch requires, add in get_arch_timeoffset() */
703 tk->tkr_mono.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_mono.shift;
706 tk->tkr_raw.xtime_nsec += delta * tk->tkr_raw.mult;
708 /* If arch requires, add in get_arch_timeoffset() */
709 tk->tkr_raw.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_raw.shift;
711 tk_normalize_xtime(tk);
715 * ktime_get_real_ts64 - Returns the time of day in a timespec64.
716 * @ts: pointer to the timespec to be set
718 * Returns the time of day in a timespec64 (WARN if suspended).
720 void ktime_get_real_ts64(struct timespec64 *ts)
722 struct timekeeper *tk = &tk_core.timekeeper;
723 unsigned long seq;
724 u64 nsecs;
726 WARN_ON(timekeeping_suspended);
728 do {
729 seq = read_seqcount_begin(&tk_core.seq);
731 ts->tv_sec = tk->xtime_sec;
732 nsecs = timekeeping_get_ns(&tk->tkr_mono);
734 } while (read_seqcount_retry(&tk_core.seq, seq));
736 ts->tv_nsec = 0;
737 timespec64_add_ns(ts, nsecs);
739 EXPORT_SYMBOL(ktime_get_real_ts64);
741 ktime_t ktime_get(void)
743 struct timekeeper *tk = &tk_core.timekeeper;
744 unsigned int seq;
745 ktime_t base;
746 u64 nsecs;
748 WARN_ON(timekeeping_suspended);
750 do {
751 seq = read_seqcount_begin(&tk_core.seq);
752 base = tk->tkr_mono.base;
753 nsecs = timekeeping_get_ns(&tk->tkr_mono);
755 } while (read_seqcount_retry(&tk_core.seq, seq));
757 return ktime_add_ns(base, nsecs);
759 EXPORT_SYMBOL_GPL(ktime_get);
761 u32 ktime_get_resolution_ns(void)
763 struct timekeeper *tk = &tk_core.timekeeper;
764 unsigned int seq;
765 u32 nsecs;
767 WARN_ON(timekeeping_suspended);
769 do {
770 seq = read_seqcount_begin(&tk_core.seq);
771 nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift;
772 } while (read_seqcount_retry(&tk_core.seq, seq));
774 return nsecs;
776 EXPORT_SYMBOL_GPL(ktime_get_resolution_ns);
778 static ktime_t *offsets[TK_OFFS_MAX] = {
779 [TK_OFFS_REAL] = &tk_core.timekeeper.offs_real,
780 [TK_OFFS_BOOT] = &tk_core.timekeeper.offs_boot,
781 [TK_OFFS_TAI] = &tk_core.timekeeper.offs_tai,
784 ktime_t ktime_get_with_offset(enum tk_offsets offs)
786 struct timekeeper *tk = &tk_core.timekeeper;
787 unsigned int seq;
788 ktime_t base, *offset = offsets[offs];
789 u64 nsecs;
791 WARN_ON(timekeeping_suspended);
793 do {
794 seq = read_seqcount_begin(&tk_core.seq);
795 base = ktime_add(tk->tkr_mono.base, *offset);
796 nsecs = timekeeping_get_ns(&tk->tkr_mono);
798 } while (read_seqcount_retry(&tk_core.seq, seq));
800 return ktime_add_ns(base, nsecs);
803 EXPORT_SYMBOL_GPL(ktime_get_with_offset);
805 ktime_t ktime_get_coarse_with_offset(enum tk_offsets offs)
807 struct timekeeper *tk = &tk_core.timekeeper;
808 unsigned int seq;
809 ktime_t base, *offset = offsets[offs];
811 WARN_ON(timekeeping_suspended);
813 do {
814 seq = read_seqcount_begin(&tk_core.seq);
815 base = ktime_add(tk->tkr_mono.base, *offset);
817 } while (read_seqcount_retry(&tk_core.seq, seq));
819 return base;
822 EXPORT_SYMBOL_GPL(ktime_get_coarse_with_offset);
825 * ktime_mono_to_any() - convert mononotic time to any other time
826 * @tmono: time to convert.
827 * @offs: which offset to use
829 ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
831 ktime_t *offset = offsets[offs];
832 unsigned long seq;
833 ktime_t tconv;
835 do {
836 seq = read_seqcount_begin(&tk_core.seq);
837 tconv = ktime_add(tmono, *offset);
838 } while (read_seqcount_retry(&tk_core.seq, seq));
840 return tconv;
842 EXPORT_SYMBOL_GPL(ktime_mono_to_any);
845 * ktime_get_raw - Returns the raw monotonic time in ktime_t format
847 ktime_t ktime_get_raw(void)
849 struct timekeeper *tk = &tk_core.timekeeper;
850 unsigned int seq;
851 ktime_t base;
852 u64 nsecs;
854 do {
855 seq = read_seqcount_begin(&tk_core.seq);
856 base = tk->tkr_raw.base;
857 nsecs = timekeeping_get_ns(&tk->tkr_raw);
859 } while (read_seqcount_retry(&tk_core.seq, seq));
861 return ktime_add_ns(base, nsecs);
863 EXPORT_SYMBOL_GPL(ktime_get_raw);
866 * ktime_get_ts64 - get the monotonic clock in timespec64 format
867 * @ts: pointer to timespec variable
869 * The function calculates the monotonic clock from the realtime
870 * clock and the wall_to_monotonic offset and stores the result
871 * in normalized timespec64 format in the variable pointed to by @ts.
873 void ktime_get_ts64(struct timespec64 *ts)
875 struct timekeeper *tk = &tk_core.timekeeper;
876 struct timespec64 tomono;
877 unsigned int seq;
878 u64 nsec;
880 WARN_ON(timekeeping_suspended);
882 do {
883 seq = read_seqcount_begin(&tk_core.seq);
884 ts->tv_sec = tk->xtime_sec;
885 nsec = timekeeping_get_ns(&tk->tkr_mono);
886 tomono = tk->wall_to_monotonic;
888 } while (read_seqcount_retry(&tk_core.seq, seq));
890 ts->tv_sec += tomono.tv_sec;
891 ts->tv_nsec = 0;
892 timespec64_add_ns(ts, nsec + tomono.tv_nsec);
894 EXPORT_SYMBOL_GPL(ktime_get_ts64);
897 * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
899 * Returns the seconds portion of CLOCK_MONOTONIC with a single non
900 * serialized read. tk->ktime_sec is of type 'unsigned long' so this
901 * works on both 32 and 64 bit systems. On 32 bit systems the readout
902 * covers ~136 years of uptime which should be enough to prevent
903 * premature wrap arounds.
905 time64_t ktime_get_seconds(void)
907 struct timekeeper *tk = &tk_core.timekeeper;
909 WARN_ON(timekeeping_suspended);
910 return tk->ktime_sec;
912 EXPORT_SYMBOL_GPL(ktime_get_seconds);
915 * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME
917 * Returns the wall clock seconds since 1970. This replaces the
918 * get_seconds() interface which is not y2038 safe on 32bit systems.
920 * For 64bit systems the fast access to tk->xtime_sec is preserved. On
921 * 32bit systems the access must be protected with the sequence
922 * counter to provide "atomic" access to the 64bit tk->xtime_sec
923 * value.
925 time64_t ktime_get_real_seconds(void)
927 struct timekeeper *tk = &tk_core.timekeeper;
928 time64_t seconds;
929 unsigned int seq;
931 if (IS_ENABLED(CONFIG_64BIT))
932 return tk->xtime_sec;
934 do {
935 seq = read_seqcount_begin(&tk_core.seq);
936 seconds = tk->xtime_sec;
938 } while (read_seqcount_retry(&tk_core.seq, seq));
940 return seconds;
942 EXPORT_SYMBOL_GPL(ktime_get_real_seconds);
945 * __ktime_get_real_seconds - The same as ktime_get_real_seconds
946 * but without the sequence counter protect. This internal function
947 * is called just when timekeeping lock is already held.
949 time64_t __ktime_get_real_seconds(void)
951 struct timekeeper *tk = &tk_core.timekeeper;
953 return tk->xtime_sec;
957 * ktime_get_snapshot - snapshots the realtime/monotonic raw clocks with counter
958 * @systime_snapshot: pointer to struct receiving the system time snapshot
960 void ktime_get_snapshot(struct system_time_snapshot *systime_snapshot)
962 struct timekeeper *tk = &tk_core.timekeeper;
963 unsigned long seq;
964 ktime_t base_raw;
965 ktime_t base_real;
966 u64 nsec_raw;
967 u64 nsec_real;
968 u64 now;
970 WARN_ON_ONCE(timekeeping_suspended);
972 do {
973 seq = read_seqcount_begin(&tk_core.seq);
974 now = tk_clock_read(&tk->tkr_mono);
975 systime_snapshot->cs_was_changed_seq = tk->cs_was_changed_seq;
976 systime_snapshot->clock_was_set_seq = tk->clock_was_set_seq;
977 base_real = ktime_add(tk->tkr_mono.base,
978 tk_core.timekeeper.offs_real);
979 base_raw = tk->tkr_raw.base;
980 nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, now);
981 nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw, now);
982 } while (read_seqcount_retry(&tk_core.seq, seq));
984 systime_snapshot->cycles = now;
985 systime_snapshot->real = ktime_add_ns(base_real, nsec_real);
986 systime_snapshot->raw = ktime_add_ns(base_raw, nsec_raw);
988 EXPORT_SYMBOL_GPL(ktime_get_snapshot);
990 /* Scale base by mult/div checking for overflow */
991 static int scale64_check_overflow(u64 mult, u64 div, u64 *base)
993 u64 tmp, rem;
995 tmp = div64_u64_rem(*base, div, &rem);
997 if (((int)sizeof(u64)*8 - fls64(mult) < fls64(tmp)) ||
998 ((int)sizeof(u64)*8 - fls64(mult) < fls64(rem)))
999 return -EOVERFLOW;
1000 tmp *= mult;
1001 rem *= mult;
1003 do_div(rem, div);
1004 *base = tmp + rem;
1005 return 0;
1009 * adjust_historical_crosststamp - adjust crosstimestamp previous to current interval
1010 * @history: Snapshot representing start of history
1011 * @partial_history_cycles: Cycle offset into history (fractional part)
1012 * @total_history_cycles: Total history length in cycles
1013 * @discontinuity: True indicates clock was set on history period
1014 * @ts: Cross timestamp that should be adjusted using
1015 * partial/total ratio
1017 * Helper function used by get_device_system_crosststamp() to correct the
1018 * crosstimestamp corresponding to the start of the current interval to the
1019 * system counter value (timestamp point) provided by the driver. The
1020 * total_history_* quantities are the total history starting at the provided
1021 * reference point and ending at the start of the current interval. The cycle
1022 * count between the driver timestamp point and the start of the current
1023 * interval is partial_history_cycles.
1025 static int adjust_historical_crosststamp(struct system_time_snapshot *history,
1026 u64 partial_history_cycles,
1027 u64 total_history_cycles,
1028 bool discontinuity,
1029 struct system_device_crosststamp *ts)
1031 struct timekeeper *tk = &tk_core.timekeeper;
1032 u64 corr_raw, corr_real;
1033 bool interp_forward;
1034 int ret;
1036 if (total_history_cycles == 0 || partial_history_cycles == 0)
1037 return 0;
1039 /* Interpolate shortest distance from beginning or end of history */
1040 interp_forward = partial_history_cycles > total_history_cycles / 2;
1041 partial_history_cycles = interp_forward ?
1042 total_history_cycles - partial_history_cycles :
1043 partial_history_cycles;
1046 * Scale the monotonic raw time delta by:
1047 * partial_history_cycles / total_history_cycles
1049 corr_raw = (u64)ktime_to_ns(
1050 ktime_sub(ts->sys_monoraw, history->raw));
1051 ret = scale64_check_overflow(partial_history_cycles,
1052 total_history_cycles, &corr_raw);
1053 if (ret)
1054 return ret;
1057 * If there is a discontinuity in the history, scale monotonic raw
1058 * correction by:
1059 * mult(real)/mult(raw) yielding the realtime correction
1060 * Otherwise, calculate the realtime correction similar to monotonic
1061 * raw calculation
1063 if (discontinuity) {
1064 corr_real = mul_u64_u32_div
1065 (corr_raw, tk->tkr_mono.mult, tk->tkr_raw.mult);
1066 } else {
1067 corr_real = (u64)ktime_to_ns(
1068 ktime_sub(ts->sys_realtime, history->real));
1069 ret = scale64_check_overflow(partial_history_cycles,
1070 total_history_cycles, &corr_real);
1071 if (ret)
1072 return ret;
1075 /* Fixup monotonic raw and real time time values */
1076 if (interp_forward) {
1077 ts->sys_monoraw = ktime_add_ns(history->raw, corr_raw);
1078 ts->sys_realtime = ktime_add_ns(history->real, corr_real);
1079 } else {
1080 ts->sys_monoraw = ktime_sub_ns(ts->sys_monoraw, corr_raw);
1081 ts->sys_realtime = ktime_sub_ns(ts->sys_realtime, corr_real);
1084 return 0;
1088 * cycle_between - true if test occurs chronologically between before and after
1090 static bool cycle_between(u64 before, u64 test, u64 after)
1092 if (test > before && test < after)
1093 return true;
1094 if (test < before && before > after)
1095 return true;
1096 return false;
1100 * get_device_system_crosststamp - Synchronously capture system/device timestamp
1101 * @get_time_fn: Callback to get simultaneous device time and
1102 * system counter from the device driver
1103 * @ctx: Context passed to get_time_fn()
1104 * @history_begin: Historical reference point used to interpolate system
1105 * time when counter provided by the driver is before the current interval
1106 * @xtstamp: Receives simultaneously captured system and device time
1108 * Reads a timestamp from a device and correlates it to system time
1110 int get_device_system_crosststamp(int (*get_time_fn)
1111 (ktime_t *device_time,
1112 struct system_counterval_t *sys_counterval,
1113 void *ctx),
1114 void *ctx,
1115 struct system_time_snapshot *history_begin,
1116 struct system_device_crosststamp *xtstamp)
1118 struct system_counterval_t system_counterval;
1119 struct timekeeper *tk = &tk_core.timekeeper;
1120 u64 cycles, now, interval_start;
1121 unsigned int clock_was_set_seq = 0;
1122 ktime_t base_real, base_raw;
1123 u64 nsec_real, nsec_raw;
1124 u8 cs_was_changed_seq;
1125 unsigned long seq;
1126 bool do_interp;
1127 int ret;
1129 do {
1130 seq = read_seqcount_begin(&tk_core.seq);
1132 * Try to synchronously capture device time and a system
1133 * counter value calling back into the device driver
1135 ret = get_time_fn(&xtstamp->device, &system_counterval, ctx);
1136 if (ret)
1137 return ret;
1140 * Verify that the clocksource associated with the captured
1141 * system counter value is the same as the currently installed
1142 * timekeeper clocksource
1144 if (tk->tkr_mono.clock != system_counterval.cs)
1145 return -ENODEV;
1146 cycles = system_counterval.cycles;
1149 * Check whether the system counter value provided by the
1150 * device driver is on the current timekeeping interval.
1152 now = tk_clock_read(&tk->tkr_mono);
1153 interval_start = tk->tkr_mono.cycle_last;
1154 if (!cycle_between(interval_start, cycles, now)) {
1155 clock_was_set_seq = tk->clock_was_set_seq;
1156 cs_was_changed_seq = tk->cs_was_changed_seq;
1157 cycles = interval_start;
1158 do_interp = true;
1159 } else {
1160 do_interp = false;
1163 base_real = ktime_add(tk->tkr_mono.base,
1164 tk_core.timekeeper.offs_real);
1165 base_raw = tk->tkr_raw.base;
1167 nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono,
1168 system_counterval.cycles);
1169 nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw,
1170 system_counterval.cycles);
1171 } while (read_seqcount_retry(&tk_core.seq, seq));
1173 xtstamp->sys_realtime = ktime_add_ns(base_real, nsec_real);
1174 xtstamp->sys_monoraw = ktime_add_ns(base_raw, nsec_raw);
1177 * Interpolate if necessary, adjusting back from the start of the
1178 * current interval
1180 if (do_interp) {
1181 u64 partial_history_cycles, total_history_cycles;
1182 bool discontinuity;
1185 * Check that the counter value occurs after the provided
1186 * history reference and that the history doesn't cross a
1187 * clocksource change
1189 if (!history_begin ||
1190 !cycle_between(history_begin->cycles,
1191 system_counterval.cycles, cycles) ||
1192 history_begin->cs_was_changed_seq != cs_was_changed_seq)
1193 return -EINVAL;
1194 partial_history_cycles = cycles - system_counterval.cycles;
1195 total_history_cycles = cycles - history_begin->cycles;
1196 discontinuity =
1197 history_begin->clock_was_set_seq != clock_was_set_seq;
1199 ret = adjust_historical_crosststamp(history_begin,
1200 partial_history_cycles,
1201 total_history_cycles,
1202 discontinuity, xtstamp);
1203 if (ret)
1204 return ret;
1207 return 0;
1209 EXPORT_SYMBOL_GPL(get_device_system_crosststamp);
1212 * do_settimeofday64 - Sets the time of day.
1213 * @ts: pointer to the timespec64 variable containing the new time
1215 * Sets the time of day to the new time and update NTP and notify hrtimers
1217 int do_settimeofday64(const struct timespec64 *ts)
1219 struct timekeeper *tk = &tk_core.timekeeper;
1220 struct timespec64 ts_delta, xt;
1221 unsigned long flags;
1222 int ret = 0;
1224 if (!timespec64_valid_strict(ts))
1225 return -EINVAL;
1227 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1228 write_seqcount_begin(&tk_core.seq);
1230 timekeeping_forward_now(tk);
1232 xt = tk_xtime(tk);
1233 ts_delta.tv_sec = ts->tv_sec - xt.tv_sec;
1234 ts_delta.tv_nsec = ts->tv_nsec - xt.tv_nsec;
1236 if (timespec64_compare(&tk->wall_to_monotonic, &ts_delta) > 0) {
1237 ret = -EINVAL;
1238 goto out;
1241 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
1243 tk_set_xtime(tk, ts);
1244 out:
1245 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1247 write_seqcount_end(&tk_core.seq);
1248 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1250 /* signal hrtimers about time change */
1251 clock_was_set();
1253 return ret;
1255 EXPORT_SYMBOL(do_settimeofday64);
1258 * timekeeping_inject_offset - Adds or subtracts from the current time.
1259 * @tv: pointer to the timespec variable containing the offset
1261 * Adds or subtracts an offset value from the current time.
1263 static int timekeeping_inject_offset(const struct timespec64 *ts)
1265 struct timekeeper *tk = &tk_core.timekeeper;
1266 unsigned long flags;
1267 struct timespec64 tmp;
1268 int ret = 0;
1270 if (ts->tv_nsec < 0 || ts->tv_nsec >= NSEC_PER_SEC)
1271 return -EINVAL;
1273 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1274 write_seqcount_begin(&tk_core.seq);
1276 timekeeping_forward_now(tk);
1278 /* Make sure the proposed value is valid */
1279 tmp = timespec64_add(tk_xtime(tk), *ts);
1280 if (timespec64_compare(&tk->wall_to_monotonic, ts) > 0 ||
1281 !timespec64_valid_strict(&tmp)) {
1282 ret = -EINVAL;
1283 goto error;
1286 tk_xtime_add(tk, ts);
1287 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *ts));
1289 error: /* even if we error out, we forwarded the time, so call update */
1290 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1292 write_seqcount_end(&tk_core.seq);
1293 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1295 /* signal hrtimers about time change */
1296 clock_was_set();
1298 return ret;
1302 * Indicates if there is an offset between the system clock and the hardware
1303 * clock/persistent clock/rtc.
1305 int persistent_clock_is_local;
1308 * Adjust the time obtained from the CMOS to be UTC time instead of
1309 * local time.
1311 * This is ugly, but preferable to the alternatives. Otherwise we
1312 * would either need to write a program to do it in /etc/rc (and risk
1313 * confusion if the program gets run more than once; it would also be
1314 * hard to make the program warp the clock precisely n hours) or
1315 * compile in the timezone information into the kernel. Bad, bad....
1317 * - TYT, 1992-01-01
1319 * The best thing to do is to keep the CMOS clock in universal time (UTC)
1320 * as real UNIX machines always do it. This avoids all headaches about
1321 * daylight saving times and warping kernel clocks.
1323 void timekeeping_warp_clock(void)
1325 if (sys_tz.tz_minuteswest != 0) {
1326 struct timespec64 adjust;
1328 persistent_clock_is_local = 1;
1329 adjust.tv_sec = sys_tz.tz_minuteswest * 60;
1330 adjust.tv_nsec = 0;
1331 timekeeping_inject_offset(&adjust);
1336 * __timekeeping_set_tai_offset - Sets the TAI offset from UTC and monotonic
1339 static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
1341 tk->tai_offset = tai_offset;
1342 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
1346 * change_clocksource - Swaps clocksources if a new one is available
1348 * Accumulates current time interval and initializes new clocksource
1350 static int change_clocksource(void *data)
1352 struct timekeeper *tk = &tk_core.timekeeper;
1353 struct clocksource *new, *old;
1354 unsigned long flags;
1356 new = (struct clocksource *) data;
1358 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1359 write_seqcount_begin(&tk_core.seq);
1361 timekeeping_forward_now(tk);
1363 * If the cs is in module, get a module reference. Succeeds
1364 * for built-in code (owner == NULL) as well.
1366 if (try_module_get(new->owner)) {
1367 if (!new->enable || new->enable(new) == 0) {
1368 old = tk->tkr_mono.clock;
1369 tk_setup_internals(tk, new);
1370 if (old->disable)
1371 old->disable(old);
1372 module_put(old->owner);
1373 } else {
1374 module_put(new->owner);
1377 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1379 write_seqcount_end(&tk_core.seq);
1380 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1382 return 0;
1386 * timekeeping_notify - Install a new clock source
1387 * @clock: pointer to the clock source
1389 * This function is called from clocksource.c after a new, better clock
1390 * source has been registered. The caller holds the clocksource_mutex.
1392 int timekeeping_notify(struct clocksource *clock)
1394 struct timekeeper *tk = &tk_core.timekeeper;
1396 if (tk->tkr_mono.clock == clock)
1397 return 0;
1398 stop_machine(change_clocksource, clock, NULL);
1399 tick_clock_notify();
1400 return tk->tkr_mono.clock == clock ? 0 : -1;
1404 * ktime_get_raw_ts64 - Returns the raw monotonic time in a timespec
1405 * @ts: pointer to the timespec64 to be set
1407 * Returns the raw monotonic time (completely un-modified by ntp)
1409 void ktime_get_raw_ts64(struct timespec64 *ts)
1411 struct timekeeper *tk = &tk_core.timekeeper;
1412 unsigned long seq;
1413 u64 nsecs;
1415 do {
1416 seq = read_seqcount_begin(&tk_core.seq);
1417 ts->tv_sec = tk->raw_sec;
1418 nsecs = timekeeping_get_ns(&tk->tkr_raw);
1420 } while (read_seqcount_retry(&tk_core.seq, seq));
1422 ts->tv_nsec = 0;
1423 timespec64_add_ns(ts, nsecs);
1425 EXPORT_SYMBOL(ktime_get_raw_ts64);
1429 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
1431 int timekeeping_valid_for_hres(void)
1433 struct timekeeper *tk = &tk_core.timekeeper;
1434 unsigned long seq;
1435 int ret;
1437 do {
1438 seq = read_seqcount_begin(&tk_core.seq);
1440 ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
1442 } while (read_seqcount_retry(&tk_core.seq, seq));
1444 return ret;
1448 * timekeeping_max_deferment - Returns max time the clocksource can be deferred
1450 u64 timekeeping_max_deferment(void)
1452 struct timekeeper *tk = &tk_core.timekeeper;
1453 unsigned long seq;
1454 u64 ret;
1456 do {
1457 seq = read_seqcount_begin(&tk_core.seq);
1459 ret = tk->tkr_mono.clock->max_idle_ns;
1461 } while (read_seqcount_retry(&tk_core.seq, seq));
1463 return ret;
1467 * read_persistent_clock64 - Return time from the persistent clock.
1469 * Weak dummy function for arches that do not yet support it.
1470 * Reads the time from the battery backed persistent clock.
1471 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
1473 * XXX - Do be sure to remove it once all arches implement it.
1475 void __weak read_persistent_clock64(struct timespec64 *ts)
1477 ts->tv_sec = 0;
1478 ts->tv_nsec = 0;
1482 * read_persistent_wall_and_boot_offset - Read persistent clock, and also offset
1483 * from the boot.
1485 * Weak dummy function for arches that do not yet support it.
1486 * wall_time - current time as returned by persistent clock
1487 * boot_offset - offset that is defined as wall_time - boot_time
1488 * The default function calculates offset based on the current value of
1489 * local_clock(). This way architectures that support sched_clock() but don't
1490 * support dedicated boot time clock will provide the best estimate of the
1491 * boot time.
1493 void __weak __init
1494 read_persistent_wall_and_boot_offset(struct timespec64 *wall_time,
1495 struct timespec64 *boot_offset)
1497 read_persistent_clock64(wall_time);
1498 *boot_offset = ns_to_timespec64(local_clock());
1502 * Flag reflecting whether timekeeping_resume() has injected sleeptime.
1504 * The flag starts of false and is only set when a suspend reaches
1505 * timekeeping_suspend(), timekeeping_resume() sets it to false when the
1506 * timekeeper clocksource is not stopping across suspend and has been
1507 * used to update sleep time. If the timekeeper clocksource has stopped
1508 * then the flag stays true and is used by the RTC resume code to decide
1509 * whether sleeptime must be injected and if so the flag gets false then.
1511 * If a suspend fails before reaching timekeeping_resume() then the flag
1512 * stays false and prevents erroneous sleeptime injection.
1514 static bool suspend_timing_needed;
1516 /* Flag for if there is a persistent clock on this platform */
1517 static bool persistent_clock_exists;
1520 * timekeeping_init - Initializes the clocksource and common timekeeping values
1522 void __init timekeeping_init(void)
1524 struct timespec64 wall_time, boot_offset, wall_to_mono;
1525 struct timekeeper *tk = &tk_core.timekeeper;
1526 struct clocksource *clock;
1527 unsigned long flags;
1529 read_persistent_wall_and_boot_offset(&wall_time, &boot_offset);
1530 if (timespec64_valid_strict(&wall_time) &&
1531 timespec64_to_ns(&wall_time) > 0) {
1532 persistent_clock_exists = true;
1533 } else if (timespec64_to_ns(&wall_time) != 0) {
1534 pr_warn("Persistent clock returned invalid value");
1535 wall_time = (struct timespec64){0};
1538 if (timespec64_compare(&wall_time, &boot_offset) < 0)
1539 boot_offset = (struct timespec64){0};
1542 * We want set wall_to_mono, so the following is true:
1543 * wall time + wall_to_mono = boot time
1545 wall_to_mono = timespec64_sub(boot_offset, wall_time);
1547 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1548 write_seqcount_begin(&tk_core.seq);
1549 ntp_init();
1551 clock = clocksource_default_clock();
1552 if (clock->enable)
1553 clock->enable(clock);
1554 tk_setup_internals(tk, clock);
1556 tk_set_xtime(tk, &wall_time);
1557 tk->raw_sec = 0;
1559 tk_set_wall_to_mono(tk, wall_to_mono);
1561 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1563 write_seqcount_end(&tk_core.seq);
1564 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1567 /* time in seconds when suspend began for persistent clock */
1568 static struct timespec64 timekeeping_suspend_time;
1571 * __timekeeping_inject_sleeptime - Internal function to add sleep interval
1572 * @delta: pointer to a timespec delta value
1574 * Takes a timespec offset measuring a suspend interval and properly
1575 * adds the sleep offset to the timekeeping variables.
1577 static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
1578 const struct timespec64 *delta)
1580 if (!timespec64_valid_strict(delta)) {
1581 printk_deferred(KERN_WARNING
1582 "__timekeeping_inject_sleeptime: Invalid "
1583 "sleep delta value!\n");
1584 return;
1586 tk_xtime_add(tk, delta);
1587 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
1588 tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
1589 tk_debug_account_sleep_time(delta);
1592 #if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
1594 * We have three kinds of time sources to use for sleep time
1595 * injection, the preference order is:
1596 * 1) non-stop clocksource
1597 * 2) persistent clock (ie: RTC accessible when irqs are off)
1598 * 3) RTC
1600 * 1) and 2) are used by timekeeping, 3) by RTC subsystem.
1601 * If system has neither 1) nor 2), 3) will be used finally.
1604 * If timekeeping has injected sleeptime via either 1) or 2),
1605 * 3) becomes needless, so in this case we don't need to call
1606 * rtc_resume(), and this is what timekeeping_rtc_skipresume()
1607 * means.
1609 bool timekeeping_rtc_skipresume(void)
1611 return !suspend_timing_needed;
1615 * 1) can be determined whether to use or not only when doing
1616 * timekeeping_resume() which is invoked after rtc_suspend(),
1617 * so we can't skip rtc_suspend() surely if system has 1).
1619 * But if system has 2), 2) will definitely be used, so in this
1620 * case we don't need to call rtc_suspend(), and this is what
1621 * timekeeping_rtc_skipsuspend() means.
1623 bool timekeeping_rtc_skipsuspend(void)
1625 return persistent_clock_exists;
1629 * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
1630 * @delta: pointer to a timespec64 delta value
1632 * This hook is for architectures that cannot support read_persistent_clock64
1633 * because their RTC/persistent clock is only accessible when irqs are enabled.
1634 * and also don't have an effective nonstop clocksource.
1636 * This function should only be called by rtc_resume(), and allows
1637 * a suspend offset to be injected into the timekeeping values.
1639 void timekeeping_inject_sleeptime64(const struct timespec64 *delta)
1641 struct timekeeper *tk = &tk_core.timekeeper;
1642 unsigned long flags;
1644 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1645 write_seqcount_begin(&tk_core.seq);
1647 suspend_timing_needed = false;
1649 timekeeping_forward_now(tk);
1651 __timekeeping_inject_sleeptime(tk, delta);
1653 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1655 write_seqcount_end(&tk_core.seq);
1656 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1658 /* signal hrtimers about time change */
1659 clock_was_set();
1661 #endif
1664 * timekeeping_resume - Resumes the generic timekeeping subsystem.
1666 void timekeeping_resume(void)
1668 struct timekeeper *tk = &tk_core.timekeeper;
1669 struct clocksource *clock = tk->tkr_mono.clock;
1670 unsigned long flags;
1671 struct timespec64 ts_new, ts_delta;
1672 u64 cycle_now, nsec;
1673 bool inject_sleeptime = false;
1675 read_persistent_clock64(&ts_new);
1677 clockevents_resume();
1678 clocksource_resume();
1680 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1681 write_seqcount_begin(&tk_core.seq);
1684 * After system resumes, we need to calculate the suspended time and
1685 * compensate it for the OS time. There are 3 sources that could be
1686 * used: Nonstop clocksource during suspend, persistent clock and rtc
1687 * device.
1689 * One specific platform may have 1 or 2 or all of them, and the
1690 * preference will be:
1691 * suspend-nonstop clocksource -> persistent clock -> rtc
1692 * The less preferred source will only be tried if there is no better
1693 * usable source. The rtc part is handled separately in rtc core code.
1695 cycle_now = tk_clock_read(&tk->tkr_mono);
1696 nsec = clocksource_stop_suspend_timing(clock, cycle_now);
1697 if (nsec > 0) {
1698 ts_delta = ns_to_timespec64(nsec);
1699 inject_sleeptime = true;
1700 } else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
1701 ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
1702 inject_sleeptime = true;
1705 if (inject_sleeptime) {
1706 suspend_timing_needed = false;
1707 __timekeeping_inject_sleeptime(tk, &ts_delta);
1710 /* Re-base the last cycle value */
1711 tk->tkr_mono.cycle_last = cycle_now;
1712 tk->tkr_raw.cycle_last = cycle_now;
1714 tk->ntp_error = 0;
1715 timekeeping_suspended = 0;
1716 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1717 write_seqcount_end(&tk_core.seq);
1718 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1720 touch_softlockup_watchdog();
1722 tick_resume();
1723 hrtimers_resume();
1726 int timekeeping_suspend(void)
1728 struct timekeeper *tk = &tk_core.timekeeper;
1729 unsigned long flags;
1730 struct timespec64 delta, delta_delta;
1731 static struct timespec64 old_delta;
1732 struct clocksource *curr_clock;
1733 u64 cycle_now;
1735 read_persistent_clock64(&timekeeping_suspend_time);
1738 * On some systems the persistent_clock can not be detected at
1739 * timekeeping_init by its return value, so if we see a valid
1740 * value returned, update the persistent_clock_exists flag.
1742 if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
1743 persistent_clock_exists = true;
1745 suspend_timing_needed = true;
1747 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1748 write_seqcount_begin(&tk_core.seq);
1749 timekeeping_forward_now(tk);
1750 timekeeping_suspended = 1;
1753 * Since we've called forward_now, cycle_last stores the value
1754 * just read from the current clocksource. Save this to potentially
1755 * use in suspend timing.
1757 curr_clock = tk->tkr_mono.clock;
1758 cycle_now = tk->tkr_mono.cycle_last;
1759 clocksource_start_suspend_timing(curr_clock, cycle_now);
1761 if (persistent_clock_exists) {
1763 * To avoid drift caused by repeated suspend/resumes,
1764 * which each can add ~1 second drift error,
1765 * try to compensate so the difference in system time
1766 * and persistent_clock time stays close to constant.
1768 delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
1769 delta_delta = timespec64_sub(delta, old_delta);
1770 if (abs(delta_delta.tv_sec) >= 2) {
1772 * if delta_delta is too large, assume time correction
1773 * has occurred and set old_delta to the current delta.
1775 old_delta = delta;
1776 } else {
1777 /* Otherwise try to adjust old_system to compensate */
1778 timekeeping_suspend_time =
1779 timespec64_add(timekeeping_suspend_time, delta_delta);
1783 timekeeping_update(tk, TK_MIRROR);
1784 halt_fast_timekeeper(tk);
1785 write_seqcount_end(&tk_core.seq);
1786 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1788 tick_suspend();
1789 clocksource_suspend();
1790 clockevents_suspend();
1792 return 0;
1795 /* sysfs resume/suspend bits for timekeeping */
1796 static struct syscore_ops timekeeping_syscore_ops = {
1797 .resume = timekeeping_resume,
1798 .suspend = timekeeping_suspend,
1801 static int __init timekeeping_init_ops(void)
1803 register_syscore_ops(&timekeeping_syscore_ops);
1804 return 0;
1806 device_initcall(timekeeping_init_ops);
1809 * Apply a multiplier adjustment to the timekeeper
1811 static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
1812 s64 offset,
1813 s32 mult_adj)
1815 s64 interval = tk->cycle_interval;
1817 if (mult_adj == 0) {
1818 return;
1819 } else if (mult_adj == -1) {
1820 interval = -interval;
1821 offset = -offset;
1822 } else if (mult_adj != 1) {
1823 interval *= mult_adj;
1824 offset *= mult_adj;
1828 * So the following can be confusing.
1830 * To keep things simple, lets assume mult_adj == 1 for now.
1832 * When mult_adj != 1, remember that the interval and offset values
1833 * have been appropriately scaled so the math is the same.
1835 * The basic idea here is that we're increasing the multiplier
1836 * by one, this causes the xtime_interval to be incremented by
1837 * one cycle_interval. This is because:
1838 * xtime_interval = cycle_interval * mult
1839 * So if mult is being incremented by one:
1840 * xtime_interval = cycle_interval * (mult + 1)
1841 * Its the same as:
1842 * xtime_interval = (cycle_interval * mult) + cycle_interval
1843 * Which can be shortened to:
1844 * xtime_interval += cycle_interval
1846 * So offset stores the non-accumulated cycles. Thus the current
1847 * time (in shifted nanoseconds) is:
1848 * now = (offset * adj) + xtime_nsec
1849 * Now, even though we're adjusting the clock frequency, we have
1850 * to keep time consistent. In other words, we can't jump back
1851 * in time, and we also want to avoid jumping forward in time.
1853 * So given the same offset value, we need the time to be the same
1854 * both before and after the freq adjustment.
1855 * now = (offset * adj_1) + xtime_nsec_1
1856 * now = (offset * adj_2) + xtime_nsec_2
1857 * So:
1858 * (offset * adj_1) + xtime_nsec_1 =
1859 * (offset * adj_2) + xtime_nsec_2
1860 * And we know:
1861 * adj_2 = adj_1 + 1
1862 * So:
1863 * (offset * adj_1) + xtime_nsec_1 =
1864 * (offset * (adj_1+1)) + xtime_nsec_2
1865 * (offset * adj_1) + xtime_nsec_1 =
1866 * (offset * adj_1) + offset + xtime_nsec_2
1867 * Canceling the sides:
1868 * xtime_nsec_1 = offset + xtime_nsec_2
1869 * Which gives us:
1870 * xtime_nsec_2 = xtime_nsec_1 - offset
1871 * Which simplfies to:
1872 * xtime_nsec -= offset
1874 if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) {
1875 /* NTP adjustment caused clocksource mult overflow */
1876 WARN_ON_ONCE(1);
1877 return;
1880 tk->tkr_mono.mult += mult_adj;
1881 tk->xtime_interval += interval;
1882 tk->tkr_mono.xtime_nsec -= offset;
1886 * Adjust the timekeeper's multiplier to the correct frequency
1887 * and also to reduce the accumulated error value.
1889 static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
1891 u32 mult;
1894 * Determine the multiplier from the current NTP tick length.
1895 * Avoid expensive division when the tick length doesn't change.
1897 if (likely(tk->ntp_tick == ntp_tick_length())) {
1898 mult = tk->tkr_mono.mult - tk->ntp_err_mult;
1899 } else {
1900 tk->ntp_tick = ntp_tick_length();
1901 mult = div64_u64((tk->ntp_tick >> tk->ntp_error_shift) -
1902 tk->xtime_remainder, tk->cycle_interval);
1906 * If the clock is behind the NTP time, increase the multiplier by 1
1907 * to catch up with it. If it's ahead and there was a remainder in the
1908 * tick division, the clock will slow down. Otherwise it will stay
1909 * ahead until the tick length changes to a non-divisible value.
1911 tk->ntp_err_mult = tk->ntp_error > 0 ? 1 : 0;
1912 mult += tk->ntp_err_mult;
1914 timekeeping_apply_adjustment(tk, offset, mult - tk->tkr_mono.mult);
1916 if (unlikely(tk->tkr_mono.clock->maxadj &&
1917 (abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult)
1918 > tk->tkr_mono.clock->maxadj))) {
1919 printk_once(KERN_WARNING
1920 "Adjusting %s more than 11%% (%ld vs %ld)\n",
1921 tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult,
1922 (long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj);
1926 * It may be possible that when we entered this function, xtime_nsec
1927 * was very small. Further, if we're slightly speeding the clocksource
1928 * in the code above, its possible the required corrective factor to
1929 * xtime_nsec could cause it to underflow.
1931 * Now, since we have already accumulated the second and the NTP
1932 * subsystem has been notified via second_overflow(), we need to skip
1933 * the next update.
1935 if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) {
1936 tk->tkr_mono.xtime_nsec += (u64)NSEC_PER_SEC <<
1937 tk->tkr_mono.shift;
1938 tk->xtime_sec--;
1939 tk->skip_second_overflow = 1;
1944 * accumulate_nsecs_to_secs - Accumulates nsecs into secs
1946 * Helper function that accumulates the nsecs greater than a second
1947 * from the xtime_nsec field to the xtime_secs field.
1948 * It also calls into the NTP code to handle leapsecond processing.
1951 static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
1953 u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
1954 unsigned int clock_set = 0;
1956 while (tk->tkr_mono.xtime_nsec >= nsecps) {
1957 int leap;
1959 tk->tkr_mono.xtime_nsec -= nsecps;
1960 tk->xtime_sec++;
1963 * Skip NTP update if this second was accumulated before,
1964 * i.e. xtime_nsec underflowed in timekeeping_adjust()
1966 if (unlikely(tk->skip_second_overflow)) {
1967 tk->skip_second_overflow = 0;
1968 continue;
1971 /* Figure out if its a leap sec and apply if needed */
1972 leap = second_overflow(tk->xtime_sec);
1973 if (unlikely(leap)) {
1974 struct timespec64 ts;
1976 tk->xtime_sec += leap;
1978 ts.tv_sec = leap;
1979 ts.tv_nsec = 0;
1980 tk_set_wall_to_mono(tk,
1981 timespec64_sub(tk->wall_to_monotonic, ts));
1983 __timekeeping_set_tai_offset(tk, tk->tai_offset - leap);
1985 clock_set = TK_CLOCK_WAS_SET;
1988 return clock_set;
1992 * logarithmic_accumulation - shifted accumulation of cycles
1994 * This functions accumulates a shifted interval of cycles into
1995 * into a shifted interval nanoseconds. Allows for O(log) accumulation
1996 * loop.
1998 * Returns the unconsumed cycles.
2000 static u64 logarithmic_accumulation(struct timekeeper *tk, u64 offset,
2001 u32 shift, unsigned int *clock_set)
2003 u64 interval = tk->cycle_interval << shift;
2004 u64 snsec_per_sec;
2006 /* If the offset is smaller than a shifted interval, do nothing */
2007 if (offset < interval)
2008 return offset;
2010 /* Accumulate one shifted interval */
2011 offset -= interval;
2012 tk->tkr_mono.cycle_last += interval;
2013 tk->tkr_raw.cycle_last += interval;
2015 tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift;
2016 *clock_set |= accumulate_nsecs_to_secs(tk);
2018 /* Accumulate raw time */
2019 tk->tkr_raw.xtime_nsec += tk->raw_interval << shift;
2020 snsec_per_sec = (u64)NSEC_PER_SEC << tk->tkr_raw.shift;
2021 while (tk->tkr_raw.xtime_nsec >= snsec_per_sec) {
2022 tk->tkr_raw.xtime_nsec -= snsec_per_sec;
2023 tk->raw_sec++;
2026 /* Accumulate error between NTP and clock interval */
2027 tk->ntp_error += tk->ntp_tick << shift;
2028 tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
2029 (tk->ntp_error_shift + shift);
2031 return offset;
2035 * timekeeping_advance - Updates the timekeeper to the current time and
2036 * current NTP tick length
2038 static void timekeeping_advance(enum timekeeping_adv_mode mode)
2040 struct timekeeper *real_tk = &tk_core.timekeeper;
2041 struct timekeeper *tk = &shadow_timekeeper;
2042 u64 offset;
2043 int shift = 0, maxshift;
2044 unsigned int clock_set = 0;
2045 unsigned long flags;
2047 raw_spin_lock_irqsave(&timekeeper_lock, flags);
2049 /* Make sure we're fully resumed: */
2050 if (unlikely(timekeeping_suspended))
2051 goto out;
2053 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
2054 offset = real_tk->cycle_interval;
2056 if (mode != TK_ADV_TICK)
2057 goto out;
2058 #else
2059 offset = clocksource_delta(tk_clock_read(&tk->tkr_mono),
2060 tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
2062 /* Check if there's really nothing to do */
2063 if (offset < real_tk->cycle_interval && mode == TK_ADV_TICK)
2064 goto out;
2065 #endif
2067 /* Do some additional sanity checking */
2068 timekeeping_check_update(tk, offset);
2071 * With NO_HZ we may have to accumulate many cycle_intervals
2072 * (think "ticks") worth of time at once. To do this efficiently,
2073 * we calculate the largest doubling multiple of cycle_intervals
2074 * that is smaller than the offset. We then accumulate that
2075 * chunk in one go, and then try to consume the next smaller
2076 * doubled multiple.
2078 shift = ilog2(offset) - ilog2(tk->cycle_interval);
2079 shift = max(0, shift);
2080 /* Bound shift to one less than what overflows tick_length */
2081 maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
2082 shift = min(shift, maxshift);
2083 while (offset >= tk->cycle_interval) {
2084 offset = logarithmic_accumulation(tk, offset, shift,
2085 &clock_set);
2086 if (offset < tk->cycle_interval<<shift)
2087 shift--;
2090 /* Adjust the multiplier to correct NTP error */
2091 timekeeping_adjust(tk, offset);
2094 * Finally, make sure that after the rounding
2095 * xtime_nsec isn't larger than NSEC_PER_SEC
2097 clock_set |= accumulate_nsecs_to_secs(tk);
2099 write_seqcount_begin(&tk_core.seq);
2101 * Update the real timekeeper.
2103 * We could avoid this memcpy by switching pointers, but that
2104 * requires changes to all other timekeeper usage sites as
2105 * well, i.e. move the timekeeper pointer getter into the
2106 * spinlocked/seqcount protected sections. And we trade this
2107 * memcpy under the tk_core.seq against one before we start
2108 * updating.
2110 timekeeping_update(tk, clock_set);
2111 memcpy(real_tk, tk, sizeof(*tk));
2112 /* The memcpy must come last. Do not put anything here! */
2113 write_seqcount_end(&tk_core.seq);
2114 out:
2115 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2116 if (clock_set)
2117 /* Have to call _delayed version, since in irq context*/
2118 clock_was_set_delayed();
2122 * update_wall_time - Uses the current clocksource to increment the wall time
2125 void update_wall_time(void)
2127 timekeeping_advance(TK_ADV_TICK);
2131 * getboottime64 - Return the real time of system boot.
2132 * @ts: pointer to the timespec64 to be set
2134 * Returns the wall-time of boot in a timespec64.
2136 * This is based on the wall_to_monotonic offset and the total suspend
2137 * time. Calls to settimeofday will affect the value returned (which
2138 * basically means that however wrong your real time clock is at boot time,
2139 * you get the right time here).
2141 void getboottime64(struct timespec64 *ts)
2143 struct timekeeper *tk = &tk_core.timekeeper;
2144 ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);
2146 *ts = ktime_to_timespec64(t);
2148 EXPORT_SYMBOL_GPL(getboottime64);
2150 void ktime_get_coarse_real_ts64(struct timespec64 *ts)
2152 struct timekeeper *tk = &tk_core.timekeeper;
2153 unsigned long seq;
2155 do {
2156 seq = read_seqcount_begin(&tk_core.seq);
2158 *ts = tk_xtime(tk);
2159 } while (read_seqcount_retry(&tk_core.seq, seq));
2161 EXPORT_SYMBOL(ktime_get_coarse_real_ts64);
2163 void ktime_get_coarse_ts64(struct timespec64 *ts)
2165 struct timekeeper *tk = &tk_core.timekeeper;
2166 struct timespec64 now, mono;
2167 unsigned long seq;
2169 do {
2170 seq = read_seqcount_begin(&tk_core.seq);
2172 now = tk_xtime(tk);
2173 mono = tk->wall_to_monotonic;
2174 } while (read_seqcount_retry(&tk_core.seq, seq));
2176 set_normalized_timespec64(ts, now.tv_sec + mono.tv_sec,
2177 now.tv_nsec + mono.tv_nsec);
2179 EXPORT_SYMBOL(ktime_get_coarse_ts64);
2182 * Must hold jiffies_lock
2184 void do_timer(unsigned long ticks)
2186 jiffies_64 += ticks;
2187 calc_global_load(ticks);
2191 * ktime_get_update_offsets_now - hrtimer helper
2192 * @cwsseq: pointer to check and store the clock was set sequence number
2193 * @offs_real: pointer to storage for monotonic -> realtime offset
2194 * @offs_boot: pointer to storage for monotonic -> boottime offset
2195 * @offs_tai: pointer to storage for monotonic -> clock tai offset
2197 * Returns current monotonic time and updates the offsets if the
2198 * sequence number in @cwsseq and timekeeper.clock_was_set_seq are
2199 * different.
2201 * Called from hrtimer_interrupt() or retrigger_next_event()
2203 ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real,
2204 ktime_t *offs_boot, ktime_t *offs_tai)
2206 struct timekeeper *tk = &tk_core.timekeeper;
2207 unsigned int seq;
2208 ktime_t base;
2209 u64 nsecs;
2211 do {
2212 seq = read_seqcount_begin(&tk_core.seq);
2214 base = tk->tkr_mono.base;
2215 nsecs = timekeeping_get_ns(&tk->tkr_mono);
2216 base = ktime_add_ns(base, nsecs);
2218 if (*cwsseq != tk->clock_was_set_seq) {
2219 *cwsseq = tk->clock_was_set_seq;
2220 *offs_real = tk->offs_real;
2221 *offs_boot = tk->offs_boot;
2222 *offs_tai = tk->offs_tai;
2225 /* Handle leapsecond insertion adjustments */
2226 if (unlikely(base >= tk->next_leap_ktime))
2227 *offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0));
2229 } while (read_seqcount_retry(&tk_core.seq, seq));
2231 return base;
2235 * timekeeping_validate_timex - Ensures the timex is ok for use in do_adjtimex
2237 static int timekeeping_validate_timex(const struct timex *txc)
2239 if (txc->modes & ADJ_ADJTIME) {
2240 /* singleshot must not be used with any other mode bits */
2241 if (!(txc->modes & ADJ_OFFSET_SINGLESHOT))
2242 return -EINVAL;
2243 if (!(txc->modes & ADJ_OFFSET_READONLY) &&
2244 !capable(CAP_SYS_TIME))
2245 return -EPERM;
2246 } else {
2247 /* In order to modify anything, you gotta be super-user! */
2248 if (txc->modes && !capable(CAP_SYS_TIME))
2249 return -EPERM;
2251 * if the quartz is off by more than 10% then
2252 * something is VERY wrong!
2254 if (txc->modes & ADJ_TICK &&
2255 (txc->tick < 900000/USER_HZ ||
2256 txc->tick > 1100000/USER_HZ))
2257 return -EINVAL;
2260 if (txc->modes & ADJ_SETOFFSET) {
2261 /* In order to inject time, you gotta be super-user! */
2262 if (!capable(CAP_SYS_TIME))
2263 return -EPERM;
2266 * Validate if a timespec/timeval used to inject a time
2267 * offset is valid. Offsets can be postive or negative, so
2268 * we don't check tv_sec. The value of the timeval/timespec
2269 * is the sum of its fields,but *NOTE*:
2270 * The field tv_usec/tv_nsec must always be non-negative and
2271 * we can't have more nanoseconds/microseconds than a second.
2273 if (txc->time.tv_usec < 0)
2274 return -EINVAL;
2276 if (txc->modes & ADJ_NANO) {
2277 if (txc->time.tv_usec >= NSEC_PER_SEC)
2278 return -EINVAL;
2279 } else {
2280 if (txc->time.tv_usec >= USEC_PER_SEC)
2281 return -EINVAL;
2286 * Check for potential multiplication overflows that can
2287 * only happen on 64-bit systems:
2289 if ((txc->modes & ADJ_FREQUENCY) && (BITS_PER_LONG == 64)) {
2290 if (LLONG_MIN / PPM_SCALE > txc->freq)
2291 return -EINVAL;
2292 if (LLONG_MAX / PPM_SCALE < txc->freq)
2293 return -EINVAL;
2296 return 0;
2301 * do_adjtimex() - Accessor function to NTP __do_adjtimex function
2303 int do_adjtimex(struct timex *txc)
2305 struct timekeeper *tk = &tk_core.timekeeper;
2306 unsigned long flags;
2307 struct timespec64 ts;
2308 s32 orig_tai, tai;
2309 int ret;
2311 /* Validate the data before disabling interrupts */
2312 ret = timekeeping_validate_timex(txc);
2313 if (ret)
2314 return ret;
2316 if (txc->modes & ADJ_SETOFFSET) {
2317 struct timespec64 delta;
2318 delta.tv_sec = txc->time.tv_sec;
2319 delta.tv_nsec = txc->time.tv_usec;
2320 if (!(txc->modes & ADJ_NANO))
2321 delta.tv_nsec *= 1000;
2322 ret = timekeeping_inject_offset(&delta);
2323 if (ret)
2324 return ret;
2327 ktime_get_real_ts64(&ts);
2329 raw_spin_lock_irqsave(&timekeeper_lock, flags);
2330 write_seqcount_begin(&tk_core.seq);
2332 orig_tai = tai = tk->tai_offset;
2333 ret = __do_adjtimex(txc, &ts, &tai);
2335 if (tai != orig_tai) {
2336 __timekeeping_set_tai_offset(tk, tai);
2337 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
2339 tk_update_leap_state(tk);
2341 write_seqcount_end(&tk_core.seq);
2342 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2344 /* Update the multiplier immediately if frequency was set directly */
2345 if (txc->modes & (ADJ_FREQUENCY | ADJ_TICK))
2346 timekeeping_advance(TK_ADV_FREQ);
2348 if (tai != orig_tai)
2349 clock_was_set();
2351 ntp_notify_cmos_timer();
2353 return ret;
2356 #ifdef CONFIG_NTP_PPS
2358 * hardpps() - Accessor function to NTP __hardpps function
2360 void hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts)
2362 unsigned long flags;
2364 raw_spin_lock_irqsave(&timekeeper_lock, flags);
2365 write_seqcount_begin(&tk_core.seq);
2367 __hardpps(phase_ts, raw_ts);
2369 write_seqcount_end(&tk_core.seq);
2370 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2372 EXPORT_SYMBOL(hardpps);
2373 #endif /* CONFIG_NTP_PPS */
2376 * xtime_update() - advances the timekeeping infrastructure
2377 * @ticks: number of ticks, that have elapsed since the last call.
2379 * Must be called with interrupts disabled.
2381 void xtime_update(unsigned long ticks)
2383 write_seqlock(&jiffies_lock);
2384 do_timer(ticks);
2385 write_sequnlock(&jiffies_lock);
2386 update_wall_time();