1 // SPDX-License-Identifier: GPL-2.0
3 * Generic sched_clock() support, to extend low level hardware time
4 * counters to full 64-bit ns values.
6 #include <linux/clocksource.h>
7 #include <linux/init.h>
8 #include <linux/jiffies.h>
9 #include <linux/ktime.h>
10 #include <linux/kernel.h>
11 #include <linux/moduleparam.h>
12 #include <linux/sched.h>
13 #include <linux/sched/clock.h>
14 #include <linux/syscore_ops.h>
15 #include <linux/hrtimer.h>
16 #include <linux/sched_clock.h>
17 #include <linux/seqlock.h>
18 #include <linux/bitops.h>
21 * struct clock_read_data - data required to read from sched_clock()
23 * @epoch_ns: sched_clock() value at last update
24 * @epoch_cyc: Clock cycle value at last update.
25 * @sched_clock_mask: Bitmask for two's complement subtraction of non 64bit
27 * @read_sched_clock: Current clock source (or dummy source when suspended).
28 * @mult: Multipler for scaled math conversion.
29 * @shift: Shift value for scaled math conversion.
31 * Care must be taken when updating this structure; it is read by
32 * some very hot code paths. It occupies <=40 bytes and, when combined
33 * with the seqcount used to synchronize access, comfortably fits into
34 * a 64 byte cache line.
36 struct clock_read_data
{
40 u64 (*read_sched_clock
)(void);
46 * struct clock_data - all data needed for sched_clock() (including
47 * registration of a new clock source)
49 * @seq: Sequence counter for protecting updates. The lowest
50 * bit is the index for @read_data.
51 * @read_data: Data required to read from sched_clock.
52 * @wrap_kt: Duration for which clock can run before wrapping.
53 * @rate: Tick rate of the registered clock.
54 * @actual_read_sched_clock: Registered hardware level clock read function.
56 * The ordering of this structure has been chosen to optimize cache
57 * performance. In particular 'seq' and 'read_data[0]' (combined) should fit
58 * into a single 64-byte cache line.
62 struct clock_read_data read_data
[2];
66 u64 (*actual_read_sched_clock
)(void);
69 static struct hrtimer sched_clock_timer
;
70 static int irqtime
= -1;
72 core_param(irqtime
, irqtime
, int, 0400);
74 static u64 notrace
jiffy_sched_clock_read(void)
77 * We don't need to use get_jiffies_64 on 32-bit arches here
78 * because we register with BITS_PER_LONG
80 return (u64
)(jiffies
- INITIAL_JIFFIES
);
83 static struct clock_data cd ____cacheline_aligned
= {
84 .read_data
[0] = { .mult
= NSEC_PER_SEC
/ HZ
,
85 .read_sched_clock
= jiffy_sched_clock_read
, },
86 .actual_read_sched_clock
= jiffy_sched_clock_read
,
89 static inline u64 notrace
cyc_to_ns(u64 cyc
, u32 mult
, u32 shift
)
91 return (cyc
* mult
) >> shift
;
94 unsigned long long notrace
sched_clock(void)
98 struct clock_read_data
*rd
;
101 seq
= raw_read_seqcount(&cd
.seq
);
102 rd
= cd
.read_data
+ (seq
& 1);
104 cyc
= (rd
->read_sched_clock() - rd
->epoch_cyc
) &
105 rd
->sched_clock_mask
;
106 res
= rd
->epoch_ns
+ cyc_to_ns(cyc
, rd
->mult
, rd
->shift
);
107 } while (read_seqcount_retry(&cd
.seq
, seq
));
113 * Updating the data required to read the clock.
115 * sched_clock() will never observe mis-matched data even if called from
116 * an NMI. We do this by maintaining an odd/even copy of the data and
117 * steering sched_clock() to one or the other using a sequence counter.
118 * In order to preserve the data cache profile of sched_clock() as much
119 * as possible the system reverts back to the even copy when the update
120 * completes; the odd copy is used *only* during an update.
122 static void update_clock_read_data(struct clock_read_data
*rd
)
124 /* update the backup (odd) copy with the new data */
125 cd
.read_data
[1] = *rd
;
127 /* steer readers towards the odd copy */
128 raw_write_seqcount_latch(&cd
.seq
);
130 /* now its safe for us to update the normal (even) copy */
131 cd
.read_data
[0] = *rd
;
133 /* switch readers back to the even copy */
134 raw_write_seqcount_latch(&cd
.seq
);
138 * Atomically update the sched_clock() epoch.
140 static void update_sched_clock(void)
144 struct clock_read_data rd
;
146 rd
= cd
.read_data
[0];
148 cyc
= cd
.actual_read_sched_clock();
149 ns
= rd
.epoch_ns
+ cyc_to_ns((cyc
- rd
.epoch_cyc
) & rd
.sched_clock_mask
, rd
.mult
, rd
.shift
);
154 update_clock_read_data(&rd
);
157 static enum hrtimer_restart
sched_clock_poll(struct hrtimer
*hrt
)
159 update_sched_clock();
160 hrtimer_forward_now(hrt
, cd
.wrap_kt
);
162 return HRTIMER_RESTART
;
166 sched_clock_register(u64 (*read
)(void), int bits
, unsigned long rate
)
168 u64 res
, wrap
, new_mask
, new_epoch
, cyc
, ns
;
169 u32 new_mult
, new_shift
;
172 struct clock_read_data rd
;
177 WARN_ON(!irqs_disabled());
179 /* Calculate the mult/shift to convert counter ticks to ns. */
180 clocks_calc_mult_shift(&new_mult
, &new_shift
, rate
, NSEC_PER_SEC
, 3600);
182 new_mask
= CLOCKSOURCE_MASK(bits
);
185 /* Calculate how many nanosecs until we risk wrapping */
186 wrap
= clocks_calc_max_nsecs(new_mult
, new_shift
, 0, new_mask
, NULL
);
187 cd
.wrap_kt
= ns_to_ktime(wrap
);
189 rd
= cd
.read_data
[0];
191 /* Update epoch for new counter and update 'epoch_ns' from old counter*/
193 cyc
= cd
.actual_read_sched_clock();
194 ns
= rd
.epoch_ns
+ cyc_to_ns((cyc
- rd
.epoch_cyc
) & rd
.sched_clock_mask
, rd
.mult
, rd
.shift
);
195 cd
.actual_read_sched_clock
= read
;
197 rd
.read_sched_clock
= read
;
198 rd
.sched_clock_mask
= new_mask
;
200 rd
.shift
= new_shift
;
201 rd
.epoch_cyc
= new_epoch
;
204 update_clock_read_data(&rd
);
206 if (sched_clock_timer
.function
!= NULL
) {
207 /* update timeout for clock wrap */
208 hrtimer_start(&sched_clock_timer
, cd
.wrap_kt
, HRTIMER_MODE_REL
);
224 /* Calculate the ns resolution of this counter */
225 res
= cyc_to_ns(1ULL, new_mult
, new_shift
);
227 pr_info("sched_clock: %u bits at %lu%cHz, resolution %lluns, wraps every %lluns\n",
228 bits
, r
, r_unit
, res
, wrap
);
230 /* Enable IRQ time accounting if we have a fast enough sched_clock() */
231 if (irqtime
> 0 || (irqtime
== -1 && rate
>= 1000000))
232 enable_sched_clock_irqtime();
234 pr_debug("Registered %pF as sched_clock source\n", read
);
237 void __init
generic_sched_clock_init(void)
240 * If no sched_clock() function has been provided at that point,
241 * make it the final one one.
243 if (cd
.actual_read_sched_clock
== jiffy_sched_clock_read
)
244 sched_clock_register(jiffy_sched_clock_read
, BITS_PER_LONG
, HZ
);
246 update_sched_clock();
249 * Start the timer to keep sched_clock() properly updated and
250 * sets the initial epoch.
252 hrtimer_init(&sched_clock_timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
253 sched_clock_timer
.function
= sched_clock_poll
;
254 hrtimer_start(&sched_clock_timer
, cd
.wrap_kt
, HRTIMER_MODE_REL
);
258 * Clock read function for use when the clock is suspended.
260 * This function makes it appear to sched_clock() as if the clock
261 * stopped counting at its last update.
263 * This function must only be called from the critical
264 * section in sched_clock(). It relies on the read_seqcount_retry()
265 * at the end of the critical section to be sure we observe the
266 * correct copy of 'epoch_cyc'.
268 static u64 notrace
suspended_sched_clock_read(void)
270 unsigned long seq
= raw_read_seqcount(&cd
.seq
);
272 return cd
.read_data
[seq
& 1].epoch_cyc
;
275 static int sched_clock_suspend(void)
277 struct clock_read_data
*rd
= &cd
.read_data
[0];
279 update_sched_clock();
280 hrtimer_cancel(&sched_clock_timer
);
281 rd
->read_sched_clock
= suspended_sched_clock_read
;
286 static void sched_clock_resume(void)
288 struct clock_read_data
*rd
= &cd
.read_data
[0];
290 rd
->epoch_cyc
= cd
.actual_read_sched_clock();
291 hrtimer_start(&sched_clock_timer
, cd
.wrap_kt
, HRTIMER_MODE_REL
);
292 rd
->read_sched_clock
= cd
.actual_read_sched_clock
;
295 static struct syscore_ops sched_clock_ops
= {
296 .suspend
= sched_clock_suspend
,
297 .resume
= sched_clock_resume
,
300 static int __init
sched_clock_syscore_init(void)
302 register_syscore_ops(&sched_clock_ops
);
306 device_initcall(sched_clock_syscore_init
);