net/mlx4_en: fix spelling mistake: "quiting" -> "quitting"
[linux-stable.git] / kernel / sched / sched.h
blobd04530bf251fed21dfa0e4bcc0711dee85c7323e
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3 * Scheduler internal types and methods:
4 */
5 #include <linux/sched.h>
7 #include <linux/sched/autogroup.h>
8 #include <linux/sched/clock.h>
9 #include <linux/sched/coredump.h>
10 #include <linux/sched/cpufreq.h>
11 #include <linux/sched/cputime.h>
12 #include <linux/sched/deadline.h>
13 #include <linux/sched/debug.h>
14 #include <linux/sched/hotplug.h>
15 #include <linux/sched/idle.h>
16 #include <linux/sched/init.h>
17 #include <linux/sched/isolation.h>
18 #include <linux/sched/jobctl.h>
19 #include <linux/sched/loadavg.h>
20 #include <linux/sched/mm.h>
21 #include <linux/sched/nohz.h>
22 #include <linux/sched/numa_balancing.h>
23 #include <linux/sched/prio.h>
24 #include <linux/sched/rt.h>
25 #include <linux/sched/signal.h>
26 #include <linux/sched/smt.h>
27 #include <linux/sched/stat.h>
28 #include <linux/sched/sysctl.h>
29 #include <linux/sched/task.h>
30 #include <linux/sched/task_stack.h>
31 #include <linux/sched/topology.h>
32 #include <linux/sched/user.h>
33 #include <linux/sched/wake_q.h>
34 #include <linux/sched/xacct.h>
36 #include <uapi/linux/sched/types.h>
38 #include <linux/binfmts.h>
39 #include <linux/blkdev.h>
40 #include <linux/compat.h>
41 #include <linux/context_tracking.h>
42 #include <linux/cpufreq.h>
43 #include <linux/cpuidle.h>
44 #include <linux/cpuset.h>
45 #include <linux/ctype.h>
46 #include <linux/debugfs.h>
47 #include <linux/delayacct.h>
48 #include <linux/energy_model.h>
49 #include <linux/init_task.h>
50 #include <linux/kprobes.h>
51 #include <linux/kthread.h>
52 #include <linux/membarrier.h>
53 #include <linux/migrate.h>
54 #include <linux/mmu_context.h>
55 #include <linux/nmi.h>
56 #include <linux/proc_fs.h>
57 #include <linux/prefetch.h>
58 #include <linux/profile.h>
59 #include <linux/psi.h>
60 #include <linux/rcupdate_wait.h>
61 #include <linux/security.h>
62 #include <linux/stop_machine.h>
63 #include <linux/suspend.h>
64 #include <linux/swait.h>
65 #include <linux/syscalls.h>
66 #include <linux/task_work.h>
67 #include <linux/tsacct_kern.h>
69 #include <asm/tlb.h>
71 #ifdef CONFIG_PARAVIRT
72 # include <asm/paravirt.h>
73 #endif
75 #include "cpupri.h"
76 #include "cpudeadline.h"
78 #ifdef CONFIG_SCHED_DEBUG
79 # define SCHED_WARN_ON(x) WARN_ONCE(x, #x)
80 #else
81 # define SCHED_WARN_ON(x) ({ (void)(x), 0; })
82 #endif
84 struct rq;
85 struct cpuidle_state;
87 /* task_struct::on_rq states: */
88 #define TASK_ON_RQ_QUEUED 1
89 #define TASK_ON_RQ_MIGRATING 2
91 extern __read_mostly int scheduler_running;
93 extern unsigned long calc_load_update;
94 extern atomic_long_t calc_load_tasks;
96 extern void calc_global_load_tick(struct rq *this_rq);
97 extern long calc_load_fold_active(struct rq *this_rq, long adjust);
99 #ifdef CONFIG_SMP
100 extern void cpu_load_update_active(struct rq *this_rq);
101 #else
102 static inline void cpu_load_update_active(struct rq *this_rq) { }
103 #endif
106 * Helpers for converting nanosecond timing to jiffy resolution
108 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
111 * Increase resolution of nice-level calculations for 64-bit architectures.
112 * The extra resolution improves shares distribution and load balancing of
113 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
114 * hierarchies, especially on larger systems. This is not a user-visible change
115 * and does not change the user-interface for setting shares/weights.
117 * We increase resolution only if we have enough bits to allow this increased
118 * resolution (i.e. 64-bit). The costs for increasing resolution when 32-bit
119 * are pretty high and the returns do not justify the increased costs.
121 * Really only required when CONFIG_FAIR_GROUP_SCHED=y is also set, but to
122 * increase coverage and consistency always enable it on 64-bit platforms.
124 #ifdef CONFIG_64BIT
125 # define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT + SCHED_FIXEDPOINT_SHIFT)
126 # define scale_load(w) ((w) << SCHED_FIXEDPOINT_SHIFT)
127 # define scale_load_down(w) ((w) >> SCHED_FIXEDPOINT_SHIFT)
128 #else
129 # define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT)
130 # define scale_load(w) (w)
131 # define scale_load_down(w) (w)
132 #endif
135 * Task weight (visible to users) and its load (invisible to users) have
136 * independent resolution, but they should be well calibrated. We use
137 * scale_load() and scale_load_down(w) to convert between them. The
138 * following must be true:
140 * scale_load(sched_prio_to_weight[USER_PRIO(NICE_TO_PRIO(0))]) == NICE_0_LOAD
143 #define NICE_0_LOAD (1L << NICE_0_LOAD_SHIFT)
146 * Single value that decides SCHED_DEADLINE internal math precision.
147 * 10 -> just above 1us
148 * 9 -> just above 0.5us
150 #define DL_SCALE 10
153 * Single value that denotes runtime == period, ie unlimited time.
155 #define RUNTIME_INF ((u64)~0ULL)
157 static inline int idle_policy(int policy)
159 return policy == SCHED_IDLE;
161 static inline int fair_policy(int policy)
163 return policy == SCHED_NORMAL || policy == SCHED_BATCH;
166 static inline int rt_policy(int policy)
168 return policy == SCHED_FIFO || policy == SCHED_RR;
171 static inline int dl_policy(int policy)
173 return policy == SCHED_DEADLINE;
175 static inline bool valid_policy(int policy)
177 return idle_policy(policy) || fair_policy(policy) ||
178 rt_policy(policy) || dl_policy(policy);
181 static inline int task_has_idle_policy(struct task_struct *p)
183 return idle_policy(p->policy);
186 static inline int task_has_rt_policy(struct task_struct *p)
188 return rt_policy(p->policy);
191 static inline int task_has_dl_policy(struct task_struct *p)
193 return dl_policy(p->policy);
196 #define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
199 * !! For sched_setattr_nocheck() (kernel) only !!
201 * This is actually gross. :(
203 * It is used to make schedutil kworker(s) higher priority than SCHED_DEADLINE
204 * tasks, but still be able to sleep. We need this on platforms that cannot
205 * atomically change clock frequency. Remove once fast switching will be
206 * available on such platforms.
208 * SUGOV stands for SchedUtil GOVernor.
210 #define SCHED_FLAG_SUGOV 0x10000000
212 static inline bool dl_entity_is_special(struct sched_dl_entity *dl_se)
214 #ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL
215 return unlikely(dl_se->flags & SCHED_FLAG_SUGOV);
216 #else
217 return false;
218 #endif
222 * Tells if entity @a should preempt entity @b.
224 static inline bool
225 dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b)
227 return dl_entity_is_special(a) ||
228 dl_time_before(a->deadline, b->deadline);
232 * This is the priority-queue data structure of the RT scheduling class:
234 struct rt_prio_array {
235 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
236 struct list_head queue[MAX_RT_PRIO];
239 struct rt_bandwidth {
240 /* nests inside the rq lock: */
241 raw_spinlock_t rt_runtime_lock;
242 ktime_t rt_period;
243 u64 rt_runtime;
244 struct hrtimer rt_period_timer;
245 unsigned int rt_period_active;
248 void __dl_clear_params(struct task_struct *p);
251 * To keep the bandwidth of -deadline tasks and groups under control
252 * we need some place where:
253 * - store the maximum -deadline bandwidth of the system (the group);
254 * - cache the fraction of that bandwidth that is currently allocated.
256 * This is all done in the data structure below. It is similar to the
257 * one used for RT-throttling (rt_bandwidth), with the main difference
258 * that, since here we are only interested in admission control, we
259 * do not decrease any runtime while the group "executes", neither we
260 * need a timer to replenish it.
262 * With respect to SMP, the bandwidth is given on a per-CPU basis,
263 * meaning that:
264 * - dl_bw (< 100%) is the bandwidth of the system (group) on each CPU;
265 * - dl_total_bw array contains, in the i-eth element, the currently
266 * allocated bandwidth on the i-eth CPU.
267 * Moreover, groups consume bandwidth on each CPU, while tasks only
268 * consume bandwidth on the CPU they're running on.
269 * Finally, dl_total_bw_cpu is used to cache the index of dl_total_bw
270 * that will be shown the next time the proc or cgroup controls will
271 * be red. It on its turn can be changed by writing on its own
272 * control.
274 struct dl_bandwidth {
275 raw_spinlock_t dl_runtime_lock;
276 u64 dl_runtime;
277 u64 dl_period;
280 static inline int dl_bandwidth_enabled(void)
282 return sysctl_sched_rt_runtime >= 0;
285 struct dl_bw {
286 raw_spinlock_t lock;
287 u64 bw;
288 u64 total_bw;
291 static inline void __dl_update(struct dl_bw *dl_b, s64 bw);
293 static inline
294 void __dl_sub(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
296 dl_b->total_bw -= tsk_bw;
297 __dl_update(dl_b, (s32)tsk_bw / cpus);
300 static inline
301 void __dl_add(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
303 dl_b->total_bw += tsk_bw;
304 __dl_update(dl_b, -((s32)tsk_bw / cpus));
307 static inline
308 bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
310 return dl_b->bw != -1 &&
311 dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
314 extern void dl_change_utilization(struct task_struct *p, u64 new_bw);
315 extern void init_dl_bw(struct dl_bw *dl_b);
316 extern int sched_dl_global_validate(void);
317 extern void sched_dl_do_global(void);
318 extern int sched_dl_overflow(struct task_struct *p, int policy, const struct sched_attr *attr);
319 extern void __setparam_dl(struct task_struct *p, const struct sched_attr *attr);
320 extern void __getparam_dl(struct task_struct *p, struct sched_attr *attr);
321 extern bool __checkparam_dl(const struct sched_attr *attr);
322 extern bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr);
323 extern int dl_task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed);
324 extern int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
325 extern bool dl_cpu_busy(unsigned int cpu);
327 #ifdef CONFIG_CGROUP_SCHED
329 #include <linux/cgroup.h>
330 #include <linux/psi.h>
332 struct cfs_rq;
333 struct rt_rq;
335 extern struct list_head task_groups;
337 struct cfs_bandwidth {
338 #ifdef CONFIG_CFS_BANDWIDTH
339 raw_spinlock_t lock;
340 ktime_t period;
341 u64 quota;
342 u64 runtime;
343 s64 hierarchical_quota;
344 u64 runtime_expires;
345 int expires_seq;
347 short idle;
348 short period_active;
349 struct hrtimer period_timer;
350 struct hrtimer slack_timer;
351 struct list_head throttled_cfs_rq;
353 /* Statistics: */
354 int nr_periods;
355 int nr_throttled;
356 u64 throttled_time;
358 bool distribute_running;
359 #endif
362 /* Task group related information */
363 struct task_group {
364 struct cgroup_subsys_state css;
366 #ifdef CONFIG_FAIR_GROUP_SCHED
367 /* schedulable entities of this group on each CPU */
368 struct sched_entity **se;
369 /* runqueue "owned" by this group on each CPU */
370 struct cfs_rq **cfs_rq;
371 unsigned long shares;
373 #ifdef CONFIG_SMP
375 * load_avg can be heavily contended at clock tick time, so put
376 * it in its own cacheline separated from the fields above which
377 * will also be accessed at each tick.
379 atomic_long_t load_avg ____cacheline_aligned;
380 #endif
381 #endif
383 #ifdef CONFIG_RT_GROUP_SCHED
384 struct sched_rt_entity **rt_se;
385 struct rt_rq **rt_rq;
387 struct rt_bandwidth rt_bandwidth;
388 #endif
390 struct rcu_head rcu;
391 struct list_head list;
393 struct task_group *parent;
394 struct list_head siblings;
395 struct list_head children;
397 #ifdef CONFIG_SCHED_AUTOGROUP
398 struct autogroup *autogroup;
399 #endif
401 struct cfs_bandwidth cfs_bandwidth;
404 #ifdef CONFIG_FAIR_GROUP_SCHED
405 #define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
408 * A weight of 0 or 1 can cause arithmetics problems.
409 * A weight of a cfs_rq is the sum of weights of which entities
410 * are queued on this cfs_rq, so a weight of a entity should not be
411 * too large, so as the shares value of a task group.
412 * (The default weight is 1024 - so there's no practical
413 * limitation from this.)
415 #define MIN_SHARES (1UL << 1)
416 #define MAX_SHARES (1UL << 18)
417 #endif
419 typedef int (*tg_visitor)(struct task_group *, void *);
421 extern int walk_tg_tree_from(struct task_group *from,
422 tg_visitor down, tg_visitor up, void *data);
425 * Iterate the full tree, calling @down when first entering a node and @up when
426 * leaving it for the final time.
428 * Caller must hold rcu_lock or sufficient equivalent.
430 static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
432 return walk_tg_tree_from(&root_task_group, down, up, data);
435 extern int tg_nop(struct task_group *tg, void *data);
437 extern void free_fair_sched_group(struct task_group *tg);
438 extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
439 extern void online_fair_sched_group(struct task_group *tg);
440 extern void unregister_fair_sched_group(struct task_group *tg);
441 extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
442 struct sched_entity *se, int cpu,
443 struct sched_entity *parent);
444 extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
446 extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
447 extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
448 extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
450 extern void free_rt_sched_group(struct task_group *tg);
451 extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
452 extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
453 struct sched_rt_entity *rt_se, int cpu,
454 struct sched_rt_entity *parent);
455 extern int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us);
456 extern int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us);
457 extern long sched_group_rt_runtime(struct task_group *tg);
458 extern long sched_group_rt_period(struct task_group *tg);
459 extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
461 extern struct task_group *sched_create_group(struct task_group *parent);
462 extern void sched_online_group(struct task_group *tg,
463 struct task_group *parent);
464 extern void sched_destroy_group(struct task_group *tg);
465 extern void sched_offline_group(struct task_group *tg);
467 extern void sched_move_task(struct task_struct *tsk);
469 #ifdef CONFIG_FAIR_GROUP_SCHED
470 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
472 #ifdef CONFIG_SMP
473 extern void set_task_rq_fair(struct sched_entity *se,
474 struct cfs_rq *prev, struct cfs_rq *next);
475 #else /* !CONFIG_SMP */
476 static inline void set_task_rq_fair(struct sched_entity *se,
477 struct cfs_rq *prev, struct cfs_rq *next) { }
478 #endif /* CONFIG_SMP */
479 #endif /* CONFIG_FAIR_GROUP_SCHED */
481 #else /* CONFIG_CGROUP_SCHED */
483 struct cfs_bandwidth { };
485 #endif /* CONFIG_CGROUP_SCHED */
487 /* CFS-related fields in a runqueue */
488 struct cfs_rq {
489 struct load_weight load;
490 unsigned long runnable_weight;
491 unsigned int nr_running;
492 unsigned int h_nr_running;
494 u64 exec_clock;
495 u64 min_vruntime;
496 #ifndef CONFIG_64BIT
497 u64 min_vruntime_copy;
498 #endif
500 struct rb_root_cached tasks_timeline;
503 * 'curr' points to currently running entity on this cfs_rq.
504 * It is set to NULL otherwise (i.e when none are currently running).
506 struct sched_entity *curr;
507 struct sched_entity *next;
508 struct sched_entity *last;
509 struct sched_entity *skip;
511 #ifdef CONFIG_SCHED_DEBUG
512 unsigned int nr_spread_over;
513 #endif
515 #ifdef CONFIG_SMP
517 * CFS load tracking
519 struct sched_avg avg;
520 #ifndef CONFIG_64BIT
521 u64 load_last_update_time_copy;
522 #endif
523 struct {
524 raw_spinlock_t lock ____cacheline_aligned;
525 int nr;
526 unsigned long load_avg;
527 unsigned long util_avg;
528 unsigned long runnable_sum;
529 } removed;
531 #ifdef CONFIG_FAIR_GROUP_SCHED
532 unsigned long tg_load_avg_contrib;
533 long propagate;
534 long prop_runnable_sum;
537 * h_load = weight * f(tg)
539 * Where f(tg) is the recursive weight fraction assigned to
540 * this group.
542 unsigned long h_load;
543 u64 last_h_load_update;
544 struct sched_entity *h_load_next;
545 #endif /* CONFIG_FAIR_GROUP_SCHED */
546 #endif /* CONFIG_SMP */
548 #ifdef CONFIG_FAIR_GROUP_SCHED
549 struct rq *rq; /* CPU runqueue to which this cfs_rq is attached */
552 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
553 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
554 * (like users, containers etc.)
556 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a CPU.
557 * This list is used during load balance.
559 int on_list;
560 struct list_head leaf_cfs_rq_list;
561 struct task_group *tg; /* group that "owns" this runqueue */
563 #ifdef CONFIG_CFS_BANDWIDTH
564 int runtime_enabled;
565 int expires_seq;
566 u64 runtime_expires;
567 s64 runtime_remaining;
569 u64 throttled_clock;
570 u64 throttled_clock_task;
571 u64 throttled_clock_task_time;
572 int throttled;
573 int throttle_count;
574 struct list_head throttled_list;
575 #endif /* CONFIG_CFS_BANDWIDTH */
576 #endif /* CONFIG_FAIR_GROUP_SCHED */
579 static inline int rt_bandwidth_enabled(void)
581 return sysctl_sched_rt_runtime >= 0;
584 /* RT IPI pull logic requires IRQ_WORK */
585 #if defined(CONFIG_IRQ_WORK) && defined(CONFIG_SMP)
586 # define HAVE_RT_PUSH_IPI
587 #endif
589 /* Real-Time classes' related field in a runqueue: */
590 struct rt_rq {
591 struct rt_prio_array active;
592 unsigned int rt_nr_running;
593 unsigned int rr_nr_running;
594 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
595 struct {
596 int curr; /* highest queued rt task prio */
597 #ifdef CONFIG_SMP
598 int next; /* next highest */
599 #endif
600 } highest_prio;
601 #endif
602 #ifdef CONFIG_SMP
603 unsigned long rt_nr_migratory;
604 unsigned long rt_nr_total;
605 int overloaded;
606 struct plist_head pushable_tasks;
608 #endif /* CONFIG_SMP */
609 int rt_queued;
611 int rt_throttled;
612 u64 rt_time;
613 u64 rt_runtime;
614 /* Nests inside the rq lock: */
615 raw_spinlock_t rt_runtime_lock;
617 #ifdef CONFIG_RT_GROUP_SCHED
618 unsigned long rt_nr_boosted;
620 struct rq *rq;
621 struct task_group *tg;
622 #endif
625 static inline bool rt_rq_is_runnable(struct rt_rq *rt_rq)
627 return rt_rq->rt_queued && rt_rq->rt_nr_running;
630 /* Deadline class' related fields in a runqueue */
631 struct dl_rq {
632 /* runqueue is an rbtree, ordered by deadline */
633 struct rb_root_cached root;
635 unsigned long dl_nr_running;
637 #ifdef CONFIG_SMP
639 * Deadline values of the currently executing and the
640 * earliest ready task on this rq. Caching these facilitates
641 * the decision whether or not a ready but not running task
642 * should migrate somewhere else.
644 struct {
645 u64 curr;
646 u64 next;
647 } earliest_dl;
649 unsigned long dl_nr_migratory;
650 int overloaded;
653 * Tasks on this rq that can be pushed away. They are kept in
654 * an rb-tree, ordered by tasks' deadlines, with caching
655 * of the leftmost (earliest deadline) element.
657 struct rb_root_cached pushable_dl_tasks_root;
658 #else
659 struct dl_bw dl_bw;
660 #endif
662 * "Active utilization" for this runqueue: increased when a
663 * task wakes up (becomes TASK_RUNNING) and decreased when a
664 * task blocks
666 u64 running_bw;
669 * Utilization of the tasks "assigned" to this runqueue (including
670 * the tasks that are in runqueue and the tasks that executed on this
671 * CPU and blocked). Increased when a task moves to this runqueue, and
672 * decreased when the task moves away (migrates, changes scheduling
673 * policy, or terminates).
674 * This is needed to compute the "inactive utilization" for the
675 * runqueue (inactive utilization = this_bw - running_bw).
677 u64 this_bw;
678 u64 extra_bw;
681 * Inverse of the fraction of CPU utilization that can be reclaimed
682 * by the GRUB algorithm.
684 u64 bw_ratio;
687 #ifdef CONFIG_FAIR_GROUP_SCHED
688 /* An entity is a task if it doesn't "own" a runqueue */
689 #define entity_is_task(se) (!se->my_q)
690 #else
691 #define entity_is_task(se) 1
692 #endif
694 #ifdef CONFIG_SMP
696 * XXX we want to get rid of these helpers and use the full load resolution.
698 static inline long se_weight(struct sched_entity *se)
700 return scale_load_down(se->load.weight);
703 static inline long se_runnable(struct sched_entity *se)
705 return scale_load_down(se->runnable_weight);
708 static inline bool sched_asym_prefer(int a, int b)
710 return arch_asym_cpu_priority(a) > arch_asym_cpu_priority(b);
713 struct perf_domain {
714 struct em_perf_domain *em_pd;
715 struct perf_domain *next;
716 struct rcu_head rcu;
719 /* Scheduling group status flags */
720 #define SG_OVERLOAD 0x1 /* More than one runnable task on a CPU. */
721 #define SG_OVERUTILIZED 0x2 /* One or more CPUs are over-utilized. */
724 * We add the notion of a root-domain which will be used to define per-domain
725 * variables. Each exclusive cpuset essentially defines an island domain by
726 * fully partitioning the member CPUs from any other cpuset. Whenever a new
727 * exclusive cpuset is created, we also create and attach a new root-domain
728 * object.
731 struct root_domain {
732 atomic_t refcount;
733 atomic_t rto_count;
734 struct rcu_head rcu;
735 cpumask_var_t span;
736 cpumask_var_t online;
739 * Indicate pullable load on at least one CPU, e.g:
740 * - More than one runnable task
741 * - Running task is misfit
743 int overload;
745 /* Indicate one or more cpus over-utilized (tipping point) */
746 int overutilized;
749 * The bit corresponding to a CPU gets set here if such CPU has more
750 * than one runnable -deadline task (as it is below for RT tasks).
752 cpumask_var_t dlo_mask;
753 atomic_t dlo_count;
754 struct dl_bw dl_bw;
755 struct cpudl cpudl;
757 #ifdef HAVE_RT_PUSH_IPI
759 * For IPI pull requests, loop across the rto_mask.
761 struct irq_work rto_push_work;
762 raw_spinlock_t rto_lock;
763 /* These are only updated and read within rto_lock */
764 int rto_loop;
765 int rto_cpu;
766 /* These atomics are updated outside of a lock */
767 atomic_t rto_loop_next;
768 atomic_t rto_loop_start;
769 #endif
771 * The "RT overload" flag: it gets set if a CPU has more than
772 * one runnable RT task.
774 cpumask_var_t rto_mask;
775 struct cpupri cpupri;
777 unsigned long max_cpu_capacity;
780 * NULL-terminated list of performance domains intersecting with the
781 * CPUs of the rd. Protected by RCU.
783 struct perf_domain *pd;
786 extern struct root_domain def_root_domain;
787 extern struct mutex sched_domains_mutex;
789 extern void init_defrootdomain(void);
790 extern int sched_init_domains(const struct cpumask *cpu_map);
791 extern void rq_attach_root(struct rq *rq, struct root_domain *rd);
792 extern void sched_get_rd(struct root_domain *rd);
793 extern void sched_put_rd(struct root_domain *rd);
795 #ifdef HAVE_RT_PUSH_IPI
796 extern void rto_push_irq_work_func(struct irq_work *work);
797 #endif
798 #endif /* CONFIG_SMP */
801 * This is the main, per-CPU runqueue data structure.
803 * Locking rule: those places that want to lock multiple runqueues
804 * (such as the load balancing or the thread migration code), lock
805 * acquire operations must be ordered by ascending &runqueue.
807 struct rq {
808 /* runqueue lock: */
809 raw_spinlock_t lock;
812 * nr_running and cpu_load should be in the same cacheline because
813 * remote CPUs use both these fields when doing load calculation.
815 unsigned int nr_running;
816 #ifdef CONFIG_NUMA_BALANCING
817 unsigned int nr_numa_running;
818 unsigned int nr_preferred_running;
819 unsigned int numa_migrate_on;
820 #endif
821 #define CPU_LOAD_IDX_MAX 5
822 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
823 #ifdef CONFIG_NO_HZ_COMMON
824 #ifdef CONFIG_SMP
825 unsigned long last_load_update_tick;
826 unsigned long last_blocked_load_update_tick;
827 unsigned int has_blocked_load;
828 #endif /* CONFIG_SMP */
829 unsigned int nohz_tick_stopped;
830 atomic_t nohz_flags;
831 #endif /* CONFIG_NO_HZ_COMMON */
833 /* capture load from *all* tasks on this CPU: */
834 struct load_weight load;
835 unsigned long nr_load_updates;
836 u64 nr_switches;
838 struct cfs_rq cfs;
839 struct rt_rq rt;
840 struct dl_rq dl;
842 #ifdef CONFIG_FAIR_GROUP_SCHED
843 /* list of leaf cfs_rq on this CPU: */
844 struct list_head leaf_cfs_rq_list;
845 struct list_head *tmp_alone_branch;
846 #endif /* CONFIG_FAIR_GROUP_SCHED */
849 * This is part of a global counter where only the total sum
850 * over all CPUs matters. A task can increase this counter on
851 * one CPU and if it got migrated afterwards it may decrease
852 * it on another CPU. Always updated under the runqueue lock:
854 unsigned long nr_uninterruptible;
856 struct task_struct *curr;
857 struct task_struct *idle;
858 struct task_struct *stop;
859 unsigned long next_balance;
860 struct mm_struct *prev_mm;
862 unsigned int clock_update_flags;
863 u64 clock;
864 u64 clock_task;
866 atomic_t nr_iowait;
868 #ifdef CONFIG_SMP
869 struct root_domain *rd;
870 struct sched_domain *sd;
872 unsigned long cpu_capacity;
873 unsigned long cpu_capacity_orig;
875 struct callback_head *balance_callback;
877 unsigned char idle_balance;
879 unsigned long misfit_task_load;
881 /* For active balancing */
882 int active_balance;
883 int push_cpu;
884 struct cpu_stop_work active_balance_work;
886 /* CPU of this runqueue: */
887 int cpu;
888 int online;
890 struct list_head cfs_tasks;
892 struct sched_avg avg_rt;
893 struct sched_avg avg_dl;
894 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
895 struct sched_avg avg_irq;
896 #endif
897 u64 idle_stamp;
898 u64 avg_idle;
900 /* This is used to determine avg_idle's max value */
901 u64 max_idle_balance_cost;
902 #endif
904 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
905 u64 prev_irq_time;
906 #endif
907 #ifdef CONFIG_PARAVIRT
908 u64 prev_steal_time;
909 #endif
910 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
911 u64 prev_steal_time_rq;
912 #endif
914 /* calc_load related fields */
915 unsigned long calc_load_update;
916 long calc_load_active;
918 #ifdef CONFIG_SCHED_HRTICK
919 #ifdef CONFIG_SMP
920 int hrtick_csd_pending;
921 call_single_data_t hrtick_csd;
922 #endif
923 struct hrtimer hrtick_timer;
924 #endif
926 #ifdef CONFIG_SCHEDSTATS
927 /* latency stats */
928 struct sched_info rq_sched_info;
929 unsigned long long rq_cpu_time;
930 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
932 /* sys_sched_yield() stats */
933 unsigned int yld_count;
935 /* schedule() stats */
936 unsigned int sched_count;
937 unsigned int sched_goidle;
939 /* try_to_wake_up() stats */
940 unsigned int ttwu_count;
941 unsigned int ttwu_local;
942 #endif
944 #ifdef CONFIG_SMP
945 struct llist_head wake_list;
946 #endif
948 #ifdef CONFIG_CPU_IDLE
949 /* Must be inspected within a rcu lock section */
950 struct cpuidle_state *idle_state;
951 #endif
954 static inline int cpu_of(struct rq *rq)
956 #ifdef CONFIG_SMP
957 return rq->cpu;
958 #else
959 return 0;
960 #endif
964 #ifdef CONFIG_SCHED_SMT
965 extern void __update_idle_core(struct rq *rq);
967 static inline void update_idle_core(struct rq *rq)
969 if (static_branch_unlikely(&sched_smt_present))
970 __update_idle_core(rq);
973 #else
974 static inline void update_idle_core(struct rq *rq) { }
975 #endif
977 DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
979 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
980 #define this_rq() this_cpu_ptr(&runqueues)
981 #define task_rq(p) cpu_rq(task_cpu(p))
982 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
983 #define raw_rq() raw_cpu_ptr(&runqueues)
985 extern void update_rq_clock(struct rq *rq);
987 static inline u64 __rq_clock_broken(struct rq *rq)
989 return READ_ONCE(rq->clock);
993 * rq::clock_update_flags bits
995 * %RQCF_REQ_SKIP - will request skipping of clock update on the next
996 * call to __schedule(). This is an optimisation to avoid
997 * neighbouring rq clock updates.
999 * %RQCF_ACT_SKIP - is set from inside of __schedule() when skipping is
1000 * in effect and calls to update_rq_clock() are being ignored.
1002 * %RQCF_UPDATED - is a debug flag that indicates whether a call has been
1003 * made to update_rq_clock() since the last time rq::lock was pinned.
1005 * If inside of __schedule(), clock_update_flags will have been
1006 * shifted left (a left shift is a cheap operation for the fast path
1007 * to promote %RQCF_REQ_SKIP to %RQCF_ACT_SKIP), so you must use,
1009 * if (rq-clock_update_flags >= RQCF_UPDATED)
1011 * to check if %RQCF_UPADTED is set. It'll never be shifted more than
1012 * one position though, because the next rq_unpin_lock() will shift it
1013 * back.
1015 #define RQCF_REQ_SKIP 0x01
1016 #define RQCF_ACT_SKIP 0x02
1017 #define RQCF_UPDATED 0x04
1019 static inline void assert_clock_updated(struct rq *rq)
1022 * The only reason for not seeing a clock update since the
1023 * last rq_pin_lock() is if we're currently skipping updates.
1025 SCHED_WARN_ON(rq->clock_update_flags < RQCF_ACT_SKIP);
1028 static inline u64 rq_clock(struct rq *rq)
1030 lockdep_assert_held(&rq->lock);
1031 assert_clock_updated(rq);
1033 return rq->clock;
1036 static inline u64 rq_clock_task(struct rq *rq)
1038 lockdep_assert_held(&rq->lock);
1039 assert_clock_updated(rq);
1041 return rq->clock_task;
1044 static inline void rq_clock_skip_update(struct rq *rq)
1046 lockdep_assert_held(&rq->lock);
1047 rq->clock_update_flags |= RQCF_REQ_SKIP;
1051 * See rt task throttling, which is the only time a skip
1052 * request is cancelled.
1054 static inline void rq_clock_cancel_skipupdate(struct rq *rq)
1056 lockdep_assert_held(&rq->lock);
1057 rq->clock_update_flags &= ~RQCF_REQ_SKIP;
1060 struct rq_flags {
1061 unsigned long flags;
1062 struct pin_cookie cookie;
1063 #ifdef CONFIG_SCHED_DEBUG
1065 * A copy of (rq::clock_update_flags & RQCF_UPDATED) for the
1066 * current pin context is stashed here in case it needs to be
1067 * restored in rq_repin_lock().
1069 unsigned int clock_update_flags;
1070 #endif
1073 static inline void rq_pin_lock(struct rq *rq, struct rq_flags *rf)
1075 rf->cookie = lockdep_pin_lock(&rq->lock);
1077 #ifdef CONFIG_SCHED_DEBUG
1078 rq->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
1079 rf->clock_update_flags = 0;
1080 #endif
1083 static inline void rq_unpin_lock(struct rq *rq, struct rq_flags *rf)
1085 #ifdef CONFIG_SCHED_DEBUG
1086 if (rq->clock_update_flags > RQCF_ACT_SKIP)
1087 rf->clock_update_flags = RQCF_UPDATED;
1088 #endif
1090 lockdep_unpin_lock(&rq->lock, rf->cookie);
1093 static inline void rq_repin_lock(struct rq *rq, struct rq_flags *rf)
1095 lockdep_repin_lock(&rq->lock, rf->cookie);
1097 #ifdef CONFIG_SCHED_DEBUG
1099 * Restore the value we stashed in @rf for this pin context.
1101 rq->clock_update_flags |= rf->clock_update_flags;
1102 #endif
1105 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1106 __acquires(rq->lock);
1108 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1109 __acquires(p->pi_lock)
1110 __acquires(rq->lock);
1112 static inline void __task_rq_unlock(struct rq *rq, struct rq_flags *rf)
1113 __releases(rq->lock)
1115 rq_unpin_lock(rq, rf);
1116 raw_spin_unlock(&rq->lock);
1119 static inline void
1120 task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1121 __releases(rq->lock)
1122 __releases(p->pi_lock)
1124 rq_unpin_lock(rq, rf);
1125 raw_spin_unlock(&rq->lock);
1126 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
1129 static inline void
1130 rq_lock_irqsave(struct rq *rq, struct rq_flags *rf)
1131 __acquires(rq->lock)
1133 raw_spin_lock_irqsave(&rq->lock, rf->flags);
1134 rq_pin_lock(rq, rf);
1137 static inline void
1138 rq_lock_irq(struct rq *rq, struct rq_flags *rf)
1139 __acquires(rq->lock)
1141 raw_spin_lock_irq(&rq->lock);
1142 rq_pin_lock(rq, rf);
1145 static inline void
1146 rq_lock(struct rq *rq, struct rq_flags *rf)
1147 __acquires(rq->lock)
1149 raw_spin_lock(&rq->lock);
1150 rq_pin_lock(rq, rf);
1153 static inline void
1154 rq_relock(struct rq *rq, struct rq_flags *rf)
1155 __acquires(rq->lock)
1157 raw_spin_lock(&rq->lock);
1158 rq_repin_lock(rq, rf);
1161 static inline void
1162 rq_unlock_irqrestore(struct rq *rq, struct rq_flags *rf)
1163 __releases(rq->lock)
1165 rq_unpin_lock(rq, rf);
1166 raw_spin_unlock_irqrestore(&rq->lock, rf->flags);
1169 static inline void
1170 rq_unlock_irq(struct rq *rq, struct rq_flags *rf)
1171 __releases(rq->lock)
1173 rq_unpin_lock(rq, rf);
1174 raw_spin_unlock_irq(&rq->lock);
1177 static inline void
1178 rq_unlock(struct rq *rq, struct rq_flags *rf)
1179 __releases(rq->lock)
1181 rq_unpin_lock(rq, rf);
1182 raw_spin_unlock(&rq->lock);
1185 static inline struct rq *
1186 this_rq_lock_irq(struct rq_flags *rf)
1187 __acquires(rq->lock)
1189 struct rq *rq;
1191 local_irq_disable();
1192 rq = this_rq();
1193 rq_lock(rq, rf);
1194 return rq;
1197 #ifdef CONFIG_NUMA
1198 enum numa_topology_type {
1199 NUMA_DIRECT,
1200 NUMA_GLUELESS_MESH,
1201 NUMA_BACKPLANE,
1203 extern enum numa_topology_type sched_numa_topology_type;
1204 extern int sched_max_numa_distance;
1205 extern bool find_numa_distance(int distance);
1206 #endif
1208 #ifdef CONFIG_NUMA
1209 extern void sched_init_numa(void);
1210 extern void sched_domains_numa_masks_set(unsigned int cpu);
1211 extern void sched_domains_numa_masks_clear(unsigned int cpu);
1212 #else
1213 static inline void sched_init_numa(void) { }
1214 static inline void sched_domains_numa_masks_set(unsigned int cpu) { }
1215 static inline void sched_domains_numa_masks_clear(unsigned int cpu) { }
1216 #endif
1218 #ifdef CONFIG_NUMA_BALANCING
1219 /* The regions in numa_faults array from task_struct */
1220 enum numa_faults_stats {
1221 NUMA_MEM = 0,
1222 NUMA_CPU,
1223 NUMA_MEMBUF,
1224 NUMA_CPUBUF
1226 extern void sched_setnuma(struct task_struct *p, int node);
1227 extern int migrate_task_to(struct task_struct *p, int cpu);
1228 extern int migrate_swap(struct task_struct *p, struct task_struct *t,
1229 int cpu, int scpu);
1230 extern void init_numa_balancing(unsigned long clone_flags, struct task_struct *p);
1231 #else
1232 static inline void
1233 init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
1236 #endif /* CONFIG_NUMA_BALANCING */
1238 #ifdef CONFIG_SMP
1240 static inline void
1241 queue_balance_callback(struct rq *rq,
1242 struct callback_head *head,
1243 void (*func)(struct rq *rq))
1245 lockdep_assert_held(&rq->lock);
1247 if (unlikely(head->next))
1248 return;
1250 head->func = (void (*)(struct callback_head *))func;
1251 head->next = rq->balance_callback;
1252 rq->balance_callback = head;
1255 extern void sched_ttwu_pending(void);
1257 #define rcu_dereference_check_sched_domain(p) \
1258 rcu_dereference_check((p), \
1259 lockdep_is_held(&sched_domains_mutex))
1262 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1263 * See detach_destroy_domains: synchronize_sched for details.
1265 * The domain tree of any CPU may only be accessed from within
1266 * preempt-disabled sections.
1268 #define for_each_domain(cpu, __sd) \
1269 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
1270 __sd; __sd = __sd->parent)
1272 #define for_each_lower_domain(sd) for (; sd; sd = sd->child)
1275 * highest_flag_domain - Return highest sched_domain containing flag.
1276 * @cpu: The CPU whose highest level of sched domain is to
1277 * be returned.
1278 * @flag: The flag to check for the highest sched_domain
1279 * for the given CPU.
1281 * Returns the highest sched_domain of a CPU which contains the given flag.
1283 static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
1285 struct sched_domain *sd, *hsd = NULL;
1287 for_each_domain(cpu, sd) {
1288 if (!(sd->flags & flag))
1289 break;
1290 hsd = sd;
1293 return hsd;
1296 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
1298 struct sched_domain *sd;
1300 for_each_domain(cpu, sd) {
1301 if (sd->flags & flag)
1302 break;
1305 return sd;
1308 DECLARE_PER_CPU(struct sched_domain *, sd_llc);
1309 DECLARE_PER_CPU(int, sd_llc_size);
1310 DECLARE_PER_CPU(int, sd_llc_id);
1311 DECLARE_PER_CPU(struct sched_domain_shared *, sd_llc_shared);
1312 DECLARE_PER_CPU(struct sched_domain *, sd_numa);
1313 DECLARE_PER_CPU(struct sched_domain *, sd_asym_packing);
1314 DECLARE_PER_CPU(struct sched_domain *, sd_asym_cpucapacity);
1315 extern struct static_key_false sched_asym_cpucapacity;
1317 struct sched_group_capacity {
1318 atomic_t ref;
1320 * CPU capacity of this group, SCHED_CAPACITY_SCALE being max capacity
1321 * for a single CPU.
1323 unsigned long capacity;
1324 unsigned long min_capacity; /* Min per-CPU capacity in group */
1325 unsigned long max_capacity; /* Max per-CPU capacity in group */
1326 unsigned long next_update;
1327 int imbalance; /* XXX unrelated to capacity but shared group state */
1329 #ifdef CONFIG_SCHED_DEBUG
1330 int id;
1331 #endif
1333 unsigned long cpumask[0]; /* Balance mask */
1336 struct sched_group {
1337 struct sched_group *next; /* Must be a circular list */
1338 atomic_t ref;
1340 unsigned int group_weight;
1341 struct sched_group_capacity *sgc;
1342 int asym_prefer_cpu; /* CPU of highest priority in group */
1345 * The CPUs this group covers.
1347 * NOTE: this field is variable length. (Allocated dynamically
1348 * by attaching extra space to the end of the structure,
1349 * depending on how many CPUs the kernel has booted up with)
1351 unsigned long cpumask[0];
1354 static inline struct cpumask *sched_group_span(struct sched_group *sg)
1356 return to_cpumask(sg->cpumask);
1360 * See build_balance_mask().
1362 static inline struct cpumask *group_balance_mask(struct sched_group *sg)
1364 return to_cpumask(sg->sgc->cpumask);
1368 * group_first_cpu - Returns the first CPU in the cpumask of a sched_group.
1369 * @group: The group whose first CPU is to be returned.
1371 static inline unsigned int group_first_cpu(struct sched_group *group)
1373 return cpumask_first(sched_group_span(group));
1376 extern int group_balance_cpu(struct sched_group *sg);
1378 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
1379 void register_sched_domain_sysctl(void);
1380 void dirty_sched_domain_sysctl(int cpu);
1381 void unregister_sched_domain_sysctl(void);
1382 #else
1383 static inline void register_sched_domain_sysctl(void)
1386 static inline void dirty_sched_domain_sysctl(int cpu)
1389 static inline void unregister_sched_domain_sysctl(void)
1392 #endif
1394 #else
1396 static inline void sched_ttwu_pending(void) { }
1398 #endif /* CONFIG_SMP */
1400 #include "stats.h"
1401 #include "autogroup.h"
1403 #ifdef CONFIG_CGROUP_SCHED
1406 * Return the group to which this tasks belongs.
1408 * We cannot use task_css() and friends because the cgroup subsystem
1409 * changes that value before the cgroup_subsys::attach() method is called,
1410 * therefore we cannot pin it and might observe the wrong value.
1412 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
1413 * core changes this before calling sched_move_task().
1415 * Instead we use a 'copy' which is updated from sched_move_task() while
1416 * holding both task_struct::pi_lock and rq::lock.
1418 static inline struct task_group *task_group(struct task_struct *p)
1420 return p->sched_task_group;
1423 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
1424 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
1426 #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
1427 struct task_group *tg = task_group(p);
1428 #endif
1430 #ifdef CONFIG_FAIR_GROUP_SCHED
1431 set_task_rq_fair(&p->se, p->se.cfs_rq, tg->cfs_rq[cpu]);
1432 p->se.cfs_rq = tg->cfs_rq[cpu];
1433 p->se.parent = tg->se[cpu];
1434 #endif
1436 #ifdef CONFIG_RT_GROUP_SCHED
1437 p->rt.rt_rq = tg->rt_rq[cpu];
1438 p->rt.parent = tg->rt_se[cpu];
1439 #endif
1442 #else /* CONFIG_CGROUP_SCHED */
1444 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
1445 static inline struct task_group *task_group(struct task_struct *p)
1447 return NULL;
1450 #endif /* CONFIG_CGROUP_SCHED */
1452 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1454 set_task_rq(p, cpu);
1455 #ifdef CONFIG_SMP
1457 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1458 * successfully executed on another CPU. We must ensure that updates of
1459 * per-task data have been completed by this moment.
1461 smp_wmb();
1462 #ifdef CONFIG_THREAD_INFO_IN_TASK
1463 p->cpu = cpu;
1464 #else
1465 task_thread_info(p)->cpu = cpu;
1466 #endif
1467 p->wake_cpu = cpu;
1468 #endif
1472 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
1474 #ifdef CONFIG_SCHED_DEBUG
1475 # include <linux/static_key.h>
1476 # define const_debug __read_mostly
1477 #else
1478 # define const_debug const
1479 #endif
1481 #define SCHED_FEAT(name, enabled) \
1482 __SCHED_FEAT_##name ,
1484 enum {
1485 #include "features.h"
1486 __SCHED_FEAT_NR,
1489 #undef SCHED_FEAT
1491 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_JUMP_LABEL)
1494 * To support run-time toggling of sched features, all the translation units
1495 * (but core.c) reference the sysctl_sched_features defined in core.c.
1497 extern const_debug unsigned int sysctl_sched_features;
1499 #define SCHED_FEAT(name, enabled) \
1500 static __always_inline bool static_branch_##name(struct static_key *key) \
1502 return static_key_##enabled(key); \
1505 #include "features.h"
1506 #undef SCHED_FEAT
1508 extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
1509 #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
1511 #else /* !(SCHED_DEBUG && CONFIG_JUMP_LABEL) */
1514 * Each translation unit has its own copy of sysctl_sched_features to allow
1515 * constants propagation at compile time and compiler optimization based on
1516 * features default.
1518 #define SCHED_FEAT(name, enabled) \
1519 (1UL << __SCHED_FEAT_##name) * enabled |
1520 static const_debug __maybe_unused unsigned int sysctl_sched_features =
1521 #include "features.h"
1523 #undef SCHED_FEAT
1525 #define sched_feat(x) !!(sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
1527 #endif /* SCHED_DEBUG && CONFIG_JUMP_LABEL */
1529 extern struct static_key_false sched_numa_balancing;
1530 extern struct static_key_false sched_schedstats;
1532 static inline u64 global_rt_period(void)
1534 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
1537 static inline u64 global_rt_runtime(void)
1539 if (sysctl_sched_rt_runtime < 0)
1540 return RUNTIME_INF;
1542 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
1545 static inline int task_current(struct rq *rq, struct task_struct *p)
1547 return rq->curr == p;
1550 static inline int task_running(struct rq *rq, struct task_struct *p)
1552 #ifdef CONFIG_SMP
1553 return p->on_cpu;
1554 #else
1555 return task_current(rq, p);
1556 #endif
1559 static inline int task_on_rq_queued(struct task_struct *p)
1561 return p->on_rq == TASK_ON_RQ_QUEUED;
1564 static inline int task_on_rq_migrating(struct task_struct *p)
1566 return p->on_rq == TASK_ON_RQ_MIGRATING;
1570 * wake flags
1572 #define WF_SYNC 0x01 /* Waker goes to sleep after wakeup */
1573 #define WF_FORK 0x02 /* Child wakeup after fork */
1574 #define WF_MIGRATED 0x4 /* Internal use, task got migrated */
1577 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1578 * of tasks with abnormal "nice" values across CPUs the contribution that
1579 * each task makes to its run queue's load is weighted according to its
1580 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1581 * scaled version of the new time slice allocation that they receive on time
1582 * slice expiry etc.
1585 #define WEIGHT_IDLEPRIO 3
1586 #define WMULT_IDLEPRIO 1431655765
1588 extern const int sched_prio_to_weight[40];
1589 extern const u32 sched_prio_to_wmult[40];
1592 * {de,en}queue flags:
1594 * DEQUEUE_SLEEP - task is no longer runnable
1595 * ENQUEUE_WAKEUP - task just became runnable
1597 * SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks
1598 * are in a known state which allows modification. Such pairs
1599 * should preserve as much state as possible.
1601 * MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location
1602 * in the runqueue.
1604 * ENQUEUE_HEAD - place at front of runqueue (tail if not specified)
1605 * ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline)
1606 * ENQUEUE_MIGRATED - the task was migrated during wakeup
1610 #define DEQUEUE_SLEEP 0x01
1611 #define DEQUEUE_SAVE 0x02 /* Matches ENQUEUE_RESTORE */
1612 #define DEQUEUE_MOVE 0x04 /* Matches ENQUEUE_MOVE */
1613 #define DEQUEUE_NOCLOCK 0x08 /* Matches ENQUEUE_NOCLOCK */
1615 #define ENQUEUE_WAKEUP 0x01
1616 #define ENQUEUE_RESTORE 0x02
1617 #define ENQUEUE_MOVE 0x04
1618 #define ENQUEUE_NOCLOCK 0x08
1620 #define ENQUEUE_HEAD 0x10
1621 #define ENQUEUE_REPLENISH 0x20
1622 #ifdef CONFIG_SMP
1623 #define ENQUEUE_MIGRATED 0x40
1624 #else
1625 #define ENQUEUE_MIGRATED 0x00
1626 #endif
1628 #define RETRY_TASK ((void *)-1UL)
1630 struct sched_class {
1631 const struct sched_class *next;
1633 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
1634 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
1635 void (*yield_task) (struct rq *rq);
1636 bool (*yield_to_task)(struct rq *rq, struct task_struct *p, bool preempt);
1638 void (*check_preempt_curr)(struct rq *rq, struct task_struct *p, int flags);
1641 * It is the responsibility of the pick_next_task() method that will
1642 * return the next task to call put_prev_task() on the @prev task or
1643 * something equivalent.
1645 * May return RETRY_TASK when it finds a higher prio class has runnable
1646 * tasks.
1648 struct task_struct * (*pick_next_task)(struct rq *rq,
1649 struct task_struct *prev,
1650 struct rq_flags *rf);
1651 void (*put_prev_task)(struct rq *rq, struct task_struct *p);
1653 #ifdef CONFIG_SMP
1654 int (*select_task_rq)(struct task_struct *p, int task_cpu, int sd_flag, int flags);
1655 void (*migrate_task_rq)(struct task_struct *p, int new_cpu);
1657 void (*task_woken)(struct rq *this_rq, struct task_struct *task);
1659 void (*set_cpus_allowed)(struct task_struct *p,
1660 const struct cpumask *newmask);
1662 void (*rq_online)(struct rq *rq);
1663 void (*rq_offline)(struct rq *rq);
1664 #endif
1666 void (*set_curr_task)(struct rq *rq);
1667 void (*task_tick)(struct rq *rq, struct task_struct *p, int queued);
1668 void (*task_fork)(struct task_struct *p);
1669 void (*task_dead)(struct task_struct *p);
1672 * The switched_from() call is allowed to drop rq->lock, therefore we
1673 * cannot assume the switched_from/switched_to pair is serliazed by
1674 * rq->lock. They are however serialized by p->pi_lock.
1676 void (*switched_from)(struct rq *this_rq, struct task_struct *task);
1677 void (*switched_to) (struct rq *this_rq, struct task_struct *task);
1678 void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1679 int oldprio);
1681 unsigned int (*get_rr_interval)(struct rq *rq,
1682 struct task_struct *task);
1684 void (*update_curr)(struct rq *rq);
1686 #define TASK_SET_GROUP 0
1687 #define TASK_MOVE_GROUP 1
1689 #ifdef CONFIG_FAIR_GROUP_SCHED
1690 void (*task_change_group)(struct task_struct *p, int type);
1691 #endif
1694 static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
1696 prev->sched_class->put_prev_task(rq, prev);
1699 static inline void set_curr_task(struct rq *rq, struct task_struct *curr)
1701 curr->sched_class->set_curr_task(rq);
1704 #ifdef CONFIG_SMP
1705 #define sched_class_highest (&stop_sched_class)
1706 #else
1707 #define sched_class_highest (&dl_sched_class)
1708 #endif
1709 #define for_each_class(class) \
1710 for (class = sched_class_highest; class; class = class->next)
1712 extern const struct sched_class stop_sched_class;
1713 extern const struct sched_class dl_sched_class;
1714 extern const struct sched_class rt_sched_class;
1715 extern const struct sched_class fair_sched_class;
1716 extern const struct sched_class idle_sched_class;
1719 #ifdef CONFIG_SMP
1721 extern void update_group_capacity(struct sched_domain *sd, int cpu);
1723 extern void trigger_load_balance(struct rq *rq);
1725 extern void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask);
1727 #endif
1729 #ifdef CONFIG_CPU_IDLE
1730 static inline void idle_set_state(struct rq *rq,
1731 struct cpuidle_state *idle_state)
1733 rq->idle_state = idle_state;
1736 static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1738 SCHED_WARN_ON(!rcu_read_lock_held());
1740 return rq->idle_state;
1742 #else
1743 static inline void idle_set_state(struct rq *rq,
1744 struct cpuidle_state *idle_state)
1748 static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1750 return NULL;
1752 #endif
1754 extern void schedule_idle(void);
1756 extern void sysrq_sched_debug_show(void);
1757 extern void sched_init_granularity(void);
1758 extern void update_max_interval(void);
1760 extern void init_sched_dl_class(void);
1761 extern void init_sched_rt_class(void);
1762 extern void init_sched_fair_class(void);
1764 extern void reweight_task(struct task_struct *p, int prio);
1766 extern void resched_curr(struct rq *rq);
1767 extern void resched_cpu(int cpu);
1769 extern struct rt_bandwidth def_rt_bandwidth;
1770 extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
1772 extern struct dl_bandwidth def_dl_bandwidth;
1773 extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime);
1774 extern void init_dl_task_timer(struct sched_dl_entity *dl_se);
1775 extern void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se);
1776 extern void init_dl_rq_bw_ratio(struct dl_rq *dl_rq);
1778 #define BW_SHIFT 20
1779 #define BW_UNIT (1 << BW_SHIFT)
1780 #define RATIO_SHIFT 8
1781 unsigned long to_ratio(u64 period, u64 runtime);
1783 extern void init_entity_runnable_average(struct sched_entity *se);
1784 extern void post_init_entity_util_avg(struct sched_entity *se);
1786 #ifdef CONFIG_NO_HZ_FULL
1787 extern bool sched_can_stop_tick(struct rq *rq);
1788 extern int __init sched_tick_offload_init(void);
1791 * Tick may be needed by tasks in the runqueue depending on their policy and
1792 * requirements. If tick is needed, lets send the target an IPI to kick it out of
1793 * nohz mode if necessary.
1795 static inline void sched_update_tick_dependency(struct rq *rq)
1797 int cpu;
1799 if (!tick_nohz_full_enabled())
1800 return;
1802 cpu = cpu_of(rq);
1804 if (!tick_nohz_full_cpu(cpu))
1805 return;
1807 if (sched_can_stop_tick(rq))
1808 tick_nohz_dep_clear_cpu(cpu, TICK_DEP_BIT_SCHED);
1809 else
1810 tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
1812 #else
1813 static inline int sched_tick_offload_init(void) { return 0; }
1814 static inline void sched_update_tick_dependency(struct rq *rq) { }
1815 #endif
1817 static inline void add_nr_running(struct rq *rq, unsigned count)
1819 unsigned prev_nr = rq->nr_running;
1821 rq->nr_running = prev_nr + count;
1823 #ifdef CONFIG_SMP
1824 if (prev_nr < 2 && rq->nr_running >= 2) {
1825 if (!READ_ONCE(rq->rd->overload))
1826 WRITE_ONCE(rq->rd->overload, 1);
1828 #endif
1830 sched_update_tick_dependency(rq);
1833 static inline void sub_nr_running(struct rq *rq, unsigned count)
1835 rq->nr_running -= count;
1836 /* Check if we still need preemption */
1837 sched_update_tick_dependency(rq);
1840 extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
1841 extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
1843 extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
1845 extern const_debug unsigned int sysctl_sched_nr_migrate;
1846 extern const_debug unsigned int sysctl_sched_migration_cost;
1848 #ifdef CONFIG_SCHED_HRTICK
1851 * Use hrtick when:
1852 * - enabled by features
1853 * - hrtimer is actually high res
1855 static inline int hrtick_enabled(struct rq *rq)
1857 if (!sched_feat(HRTICK))
1858 return 0;
1859 if (!cpu_active(cpu_of(rq)))
1860 return 0;
1861 return hrtimer_is_hres_active(&rq->hrtick_timer);
1864 void hrtick_start(struct rq *rq, u64 delay);
1866 #else
1868 static inline int hrtick_enabled(struct rq *rq)
1870 return 0;
1873 #endif /* CONFIG_SCHED_HRTICK */
1875 #ifndef arch_scale_freq_capacity
1876 static __always_inline
1877 unsigned long arch_scale_freq_capacity(int cpu)
1879 return SCHED_CAPACITY_SCALE;
1881 #endif
1883 #ifdef CONFIG_SMP
1884 #ifdef CONFIG_PREEMPT
1886 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);
1889 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1890 * way at the expense of forcing extra atomic operations in all
1891 * invocations. This assures that the double_lock is acquired using the
1892 * same underlying policy as the spinlock_t on this architecture, which
1893 * reduces latency compared to the unfair variant below. However, it
1894 * also adds more overhead and therefore may reduce throughput.
1896 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1897 __releases(this_rq->lock)
1898 __acquires(busiest->lock)
1899 __acquires(this_rq->lock)
1901 raw_spin_unlock(&this_rq->lock);
1902 double_rq_lock(this_rq, busiest);
1904 return 1;
1907 #else
1909 * Unfair double_lock_balance: Optimizes throughput at the expense of
1910 * latency by eliminating extra atomic operations when the locks are
1911 * already in proper order on entry. This favors lower CPU-ids and will
1912 * grant the double lock to lower CPUs over higher ids under contention,
1913 * regardless of entry order into the function.
1915 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1916 __releases(this_rq->lock)
1917 __acquires(busiest->lock)
1918 __acquires(this_rq->lock)
1920 int ret = 0;
1922 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1923 if (busiest < this_rq) {
1924 raw_spin_unlock(&this_rq->lock);
1925 raw_spin_lock(&busiest->lock);
1926 raw_spin_lock_nested(&this_rq->lock,
1927 SINGLE_DEPTH_NESTING);
1928 ret = 1;
1929 } else
1930 raw_spin_lock_nested(&busiest->lock,
1931 SINGLE_DEPTH_NESTING);
1933 return ret;
1936 #endif /* CONFIG_PREEMPT */
1939 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1941 static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1943 if (unlikely(!irqs_disabled())) {
1944 /* printk() doesn't work well under rq->lock */
1945 raw_spin_unlock(&this_rq->lock);
1946 BUG_ON(1);
1949 return _double_lock_balance(this_rq, busiest);
1952 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1953 __releases(busiest->lock)
1955 raw_spin_unlock(&busiest->lock);
1956 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1959 static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
1961 if (l1 > l2)
1962 swap(l1, l2);
1964 spin_lock(l1);
1965 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1968 static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2)
1970 if (l1 > l2)
1971 swap(l1, l2);
1973 spin_lock_irq(l1);
1974 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1977 static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
1979 if (l1 > l2)
1980 swap(l1, l2);
1982 raw_spin_lock(l1);
1983 raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1987 * double_rq_lock - safely lock two runqueues
1989 * Note this does not disable interrupts like task_rq_lock,
1990 * you need to do so manually before calling.
1992 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1993 __acquires(rq1->lock)
1994 __acquires(rq2->lock)
1996 BUG_ON(!irqs_disabled());
1997 if (rq1 == rq2) {
1998 raw_spin_lock(&rq1->lock);
1999 __acquire(rq2->lock); /* Fake it out ;) */
2000 } else {
2001 if (rq1 < rq2) {
2002 raw_spin_lock(&rq1->lock);
2003 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
2004 } else {
2005 raw_spin_lock(&rq2->lock);
2006 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
2012 * double_rq_unlock - safely unlock two runqueues
2014 * Note this does not restore interrupts like task_rq_unlock,
2015 * you need to do so manually after calling.
2017 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2018 __releases(rq1->lock)
2019 __releases(rq2->lock)
2021 raw_spin_unlock(&rq1->lock);
2022 if (rq1 != rq2)
2023 raw_spin_unlock(&rq2->lock);
2024 else
2025 __release(rq2->lock);
2028 extern void set_rq_online (struct rq *rq);
2029 extern void set_rq_offline(struct rq *rq);
2030 extern bool sched_smp_initialized;
2032 #else /* CONFIG_SMP */
2035 * double_rq_lock - safely lock two runqueues
2037 * Note this does not disable interrupts like task_rq_lock,
2038 * you need to do so manually before calling.
2040 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
2041 __acquires(rq1->lock)
2042 __acquires(rq2->lock)
2044 BUG_ON(!irqs_disabled());
2045 BUG_ON(rq1 != rq2);
2046 raw_spin_lock(&rq1->lock);
2047 __acquire(rq2->lock); /* Fake it out ;) */
2051 * double_rq_unlock - safely unlock two runqueues
2053 * Note this does not restore interrupts like task_rq_unlock,
2054 * you need to do so manually after calling.
2056 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2057 __releases(rq1->lock)
2058 __releases(rq2->lock)
2060 BUG_ON(rq1 != rq2);
2061 raw_spin_unlock(&rq1->lock);
2062 __release(rq2->lock);
2065 #endif
2067 extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
2068 extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
2070 #ifdef CONFIG_SCHED_DEBUG
2071 extern bool sched_debug_enabled;
2073 extern void print_cfs_stats(struct seq_file *m, int cpu);
2074 extern void print_rt_stats(struct seq_file *m, int cpu);
2075 extern void print_dl_stats(struct seq_file *m, int cpu);
2076 extern void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
2077 extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
2078 extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq);
2079 #ifdef CONFIG_NUMA_BALANCING
2080 extern void
2081 show_numa_stats(struct task_struct *p, struct seq_file *m);
2082 extern void
2083 print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
2084 unsigned long tpf, unsigned long gsf, unsigned long gpf);
2085 #endif /* CONFIG_NUMA_BALANCING */
2086 #endif /* CONFIG_SCHED_DEBUG */
2088 extern void init_cfs_rq(struct cfs_rq *cfs_rq);
2089 extern void init_rt_rq(struct rt_rq *rt_rq);
2090 extern void init_dl_rq(struct dl_rq *dl_rq);
2092 extern void cfs_bandwidth_usage_inc(void);
2093 extern void cfs_bandwidth_usage_dec(void);
2095 #ifdef CONFIG_NO_HZ_COMMON
2096 #define NOHZ_BALANCE_KICK_BIT 0
2097 #define NOHZ_STATS_KICK_BIT 1
2099 #define NOHZ_BALANCE_KICK BIT(NOHZ_BALANCE_KICK_BIT)
2100 #define NOHZ_STATS_KICK BIT(NOHZ_STATS_KICK_BIT)
2102 #define NOHZ_KICK_MASK (NOHZ_BALANCE_KICK | NOHZ_STATS_KICK)
2104 #define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags)
2106 extern void nohz_balance_exit_idle(struct rq *rq);
2107 #else
2108 static inline void nohz_balance_exit_idle(struct rq *rq) { }
2109 #endif
2112 #ifdef CONFIG_SMP
2113 static inline
2114 void __dl_update(struct dl_bw *dl_b, s64 bw)
2116 struct root_domain *rd = container_of(dl_b, struct root_domain, dl_bw);
2117 int i;
2119 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2120 "sched RCU must be held");
2121 for_each_cpu_and(i, rd->span, cpu_active_mask) {
2122 struct rq *rq = cpu_rq(i);
2124 rq->dl.extra_bw += bw;
2127 #else
2128 static inline
2129 void __dl_update(struct dl_bw *dl_b, s64 bw)
2131 struct dl_rq *dl = container_of(dl_b, struct dl_rq, dl_bw);
2133 dl->extra_bw += bw;
2135 #endif
2138 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
2139 struct irqtime {
2140 u64 total;
2141 u64 tick_delta;
2142 u64 irq_start_time;
2143 struct u64_stats_sync sync;
2146 DECLARE_PER_CPU(struct irqtime, cpu_irqtime);
2149 * Returns the irqtime minus the softirq time computed by ksoftirqd.
2150 * Otherwise ksoftirqd's sum_exec_runtime is substracted its own runtime
2151 * and never move forward.
2153 static inline u64 irq_time_read(int cpu)
2155 struct irqtime *irqtime = &per_cpu(cpu_irqtime, cpu);
2156 unsigned int seq;
2157 u64 total;
2159 do {
2160 seq = __u64_stats_fetch_begin(&irqtime->sync);
2161 total = irqtime->total;
2162 } while (__u64_stats_fetch_retry(&irqtime->sync, seq));
2164 return total;
2166 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
2168 #ifdef CONFIG_CPU_FREQ
2169 DECLARE_PER_CPU(struct update_util_data *, cpufreq_update_util_data);
2172 * cpufreq_update_util - Take a note about CPU utilization changes.
2173 * @rq: Runqueue to carry out the update for.
2174 * @flags: Update reason flags.
2176 * This function is called by the scheduler on the CPU whose utilization is
2177 * being updated.
2179 * It can only be called from RCU-sched read-side critical sections.
2181 * The way cpufreq is currently arranged requires it to evaluate the CPU
2182 * performance state (frequency/voltage) on a regular basis to prevent it from
2183 * being stuck in a completely inadequate performance level for too long.
2184 * That is not guaranteed to happen if the updates are only triggered from CFS
2185 * and DL, though, because they may not be coming in if only RT tasks are
2186 * active all the time (or there are RT tasks only).
2188 * As a workaround for that issue, this function is called periodically by the
2189 * RT sched class to trigger extra cpufreq updates to prevent it from stalling,
2190 * but that really is a band-aid. Going forward it should be replaced with
2191 * solutions targeted more specifically at RT tasks.
2193 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags)
2195 struct update_util_data *data;
2197 data = rcu_dereference_sched(*per_cpu_ptr(&cpufreq_update_util_data,
2198 cpu_of(rq)));
2199 if (data)
2200 data->func(data, rq_clock(rq), flags);
2202 #else
2203 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) {}
2204 #endif /* CONFIG_CPU_FREQ */
2206 #ifdef arch_scale_freq_capacity
2207 # ifndef arch_scale_freq_invariant
2208 # define arch_scale_freq_invariant() true
2209 # endif
2210 #else
2211 # define arch_scale_freq_invariant() false
2212 #endif
2214 #ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL
2216 * enum schedutil_type - CPU utilization type
2217 * @FREQUENCY_UTIL: Utilization used to select frequency
2218 * @ENERGY_UTIL: Utilization used during energy calculation
2220 * The utilization signals of all scheduling classes (CFS/RT/DL) and IRQ time
2221 * need to be aggregated differently depending on the usage made of them. This
2222 * enum is used within schedutil_freq_util() to differentiate the types of
2223 * utilization expected by the callers, and adjust the aggregation accordingly.
2225 enum schedutil_type {
2226 FREQUENCY_UTIL,
2227 ENERGY_UTIL,
2230 unsigned long schedutil_freq_util(int cpu, unsigned long util_cfs,
2231 unsigned long max, enum schedutil_type type);
2233 static inline unsigned long schedutil_energy_util(int cpu, unsigned long cfs)
2235 unsigned long max = arch_scale_cpu_capacity(NULL, cpu);
2237 return schedutil_freq_util(cpu, cfs, max, ENERGY_UTIL);
2240 static inline unsigned long cpu_bw_dl(struct rq *rq)
2242 return (rq->dl.running_bw * SCHED_CAPACITY_SCALE) >> BW_SHIFT;
2245 static inline unsigned long cpu_util_dl(struct rq *rq)
2247 return READ_ONCE(rq->avg_dl.util_avg);
2250 static inline unsigned long cpu_util_cfs(struct rq *rq)
2252 unsigned long util = READ_ONCE(rq->cfs.avg.util_avg);
2254 if (sched_feat(UTIL_EST)) {
2255 util = max_t(unsigned long, util,
2256 READ_ONCE(rq->cfs.avg.util_est.enqueued));
2259 return util;
2262 static inline unsigned long cpu_util_rt(struct rq *rq)
2264 return READ_ONCE(rq->avg_rt.util_avg);
2266 #else /* CONFIG_CPU_FREQ_GOV_SCHEDUTIL */
2267 static inline unsigned long schedutil_energy_util(int cpu, unsigned long cfs)
2269 return cfs;
2271 #endif
2273 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
2274 static inline unsigned long cpu_util_irq(struct rq *rq)
2276 return rq->avg_irq.util_avg;
2279 static inline
2280 unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
2282 util *= (max - irq);
2283 util /= max;
2285 return util;
2288 #else
2289 static inline unsigned long cpu_util_irq(struct rq *rq)
2291 return 0;
2294 static inline
2295 unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
2297 return util;
2299 #endif
2301 #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
2302 #define perf_domain_span(pd) (to_cpumask(((pd)->em_pd->cpus)))
2303 #else
2304 #define perf_domain_span(pd) NULL
2305 #endif
2307 #ifdef CONFIG_SMP
2308 extern struct static_key_false sched_energy_present;
2309 #endif