1 /* SPDX-License-Identifier: GPL-2.0 */
3 * Scheduler internal types and methods:
5 #include <linux/sched.h>
7 #include <linux/sched/autogroup.h>
8 #include <linux/sched/clock.h>
9 #include <linux/sched/coredump.h>
10 #include <linux/sched/cpufreq.h>
11 #include <linux/sched/cputime.h>
12 #include <linux/sched/deadline.h>
13 #include <linux/sched/debug.h>
14 #include <linux/sched/hotplug.h>
15 #include <linux/sched/idle.h>
16 #include <linux/sched/init.h>
17 #include <linux/sched/isolation.h>
18 #include <linux/sched/jobctl.h>
19 #include <linux/sched/loadavg.h>
20 #include <linux/sched/mm.h>
21 #include <linux/sched/nohz.h>
22 #include <linux/sched/numa_balancing.h>
23 #include <linux/sched/prio.h>
24 #include <linux/sched/rt.h>
25 #include <linux/sched/signal.h>
26 #include <linux/sched/smt.h>
27 #include <linux/sched/stat.h>
28 #include <linux/sched/sysctl.h>
29 #include <linux/sched/task.h>
30 #include <linux/sched/task_stack.h>
31 #include <linux/sched/topology.h>
32 #include <linux/sched/user.h>
33 #include <linux/sched/wake_q.h>
34 #include <linux/sched/xacct.h>
36 #include <uapi/linux/sched/types.h>
38 #include <linux/binfmts.h>
39 #include <linux/blkdev.h>
40 #include <linux/compat.h>
41 #include <linux/context_tracking.h>
42 #include <linux/cpufreq.h>
43 #include <linux/cpuidle.h>
44 #include <linux/cpuset.h>
45 #include <linux/ctype.h>
46 #include <linux/debugfs.h>
47 #include <linux/delayacct.h>
48 #include <linux/energy_model.h>
49 #include <linux/init_task.h>
50 #include <linux/kprobes.h>
51 #include <linux/kthread.h>
52 #include <linux/membarrier.h>
53 #include <linux/migrate.h>
54 #include <linux/mmu_context.h>
55 #include <linux/nmi.h>
56 #include <linux/proc_fs.h>
57 #include <linux/prefetch.h>
58 #include <linux/profile.h>
59 #include <linux/psi.h>
60 #include <linux/rcupdate_wait.h>
61 #include <linux/security.h>
62 #include <linux/stop_machine.h>
63 #include <linux/suspend.h>
64 #include <linux/swait.h>
65 #include <linux/syscalls.h>
66 #include <linux/task_work.h>
67 #include <linux/tsacct_kern.h>
71 #ifdef CONFIG_PARAVIRT
72 # include <asm/paravirt.h>
76 #include "cpudeadline.h"
78 #ifdef CONFIG_SCHED_DEBUG
79 # define SCHED_WARN_ON(x) WARN_ONCE(x, #x)
81 # define SCHED_WARN_ON(x) ({ (void)(x), 0; })
87 /* task_struct::on_rq states: */
88 #define TASK_ON_RQ_QUEUED 1
89 #define TASK_ON_RQ_MIGRATING 2
91 extern __read_mostly
int scheduler_running
;
93 extern unsigned long calc_load_update
;
94 extern atomic_long_t calc_load_tasks
;
96 extern void calc_global_load_tick(struct rq
*this_rq
);
97 extern long calc_load_fold_active(struct rq
*this_rq
, long adjust
);
100 extern void cpu_load_update_active(struct rq
*this_rq
);
102 static inline void cpu_load_update_active(struct rq
*this_rq
) { }
106 * Helpers for converting nanosecond timing to jiffy resolution
108 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
111 * Increase resolution of nice-level calculations for 64-bit architectures.
112 * The extra resolution improves shares distribution and load balancing of
113 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
114 * hierarchies, especially on larger systems. This is not a user-visible change
115 * and does not change the user-interface for setting shares/weights.
117 * We increase resolution only if we have enough bits to allow this increased
118 * resolution (i.e. 64-bit). The costs for increasing resolution when 32-bit
119 * are pretty high and the returns do not justify the increased costs.
121 * Really only required when CONFIG_FAIR_GROUP_SCHED=y is also set, but to
122 * increase coverage and consistency always enable it on 64-bit platforms.
125 # define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT + SCHED_FIXEDPOINT_SHIFT)
126 # define scale_load(w) ((w) << SCHED_FIXEDPOINT_SHIFT)
127 # define scale_load_down(w) ((w) >> SCHED_FIXEDPOINT_SHIFT)
129 # define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT)
130 # define scale_load(w) (w)
131 # define scale_load_down(w) (w)
135 * Task weight (visible to users) and its load (invisible to users) have
136 * independent resolution, but they should be well calibrated. We use
137 * scale_load() and scale_load_down(w) to convert between them. The
138 * following must be true:
140 * scale_load(sched_prio_to_weight[USER_PRIO(NICE_TO_PRIO(0))]) == NICE_0_LOAD
143 #define NICE_0_LOAD (1L << NICE_0_LOAD_SHIFT)
146 * Single value that decides SCHED_DEADLINE internal math precision.
147 * 10 -> just above 1us
148 * 9 -> just above 0.5us
153 * Single value that denotes runtime == period, ie unlimited time.
155 #define RUNTIME_INF ((u64)~0ULL)
157 static inline int idle_policy(int policy
)
159 return policy
== SCHED_IDLE
;
161 static inline int fair_policy(int policy
)
163 return policy
== SCHED_NORMAL
|| policy
== SCHED_BATCH
;
166 static inline int rt_policy(int policy
)
168 return policy
== SCHED_FIFO
|| policy
== SCHED_RR
;
171 static inline int dl_policy(int policy
)
173 return policy
== SCHED_DEADLINE
;
175 static inline bool valid_policy(int policy
)
177 return idle_policy(policy
) || fair_policy(policy
) ||
178 rt_policy(policy
) || dl_policy(policy
);
181 static inline int task_has_idle_policy(struct task_struct
*p
)
183 return idle_policy(p
->policy
);
186 static inline int task_has_rt_policy(struct task_struct
*p
)
188 return rt_policy(p
->policy
);
191 static inline int task_has_dl_policy(struct task_struct
*p
)
193 return dl_policy(p
->policy
);
196 #define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
199 * !! For sched_setattr_nocheck() (kernel) only !!
201 * This is actually gross. :(
203 * It is used to make schedutil kworker(s) higher priority than SCHED_DEADLINE
204 * tasks, but still be able to sleep. We need this on platforms that cannot
205 * atomically change clock frequency. Remove once fast switching will be
206 * available on such platforms.
208 * SUGOV stands for SchedUtil GOVernor.
210 #define SCHED_FLAG_SUGOV 0x10000000
212 static inline bool dl_entity_is_special(struct sched_dl_entity
*dl_se
)
214 #ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL
215 return unlikely(dl_se
->flags
& SCHED_FLAG_SUGOV
);
222 * Tells if entity @a should preempt entity @b.
225 dl_entity_preempt(struct sched_dl_entity
*a
, struct sched_dl_entity
*b
)
227 return dl_entity_is_special(a
) ||
228 dl_time_before(a
->deadline
, b
->deadline
);
232 * This is the priority-queue data structure of the RT scheduling class:
234 struct rt_prio_array
{
235 DECLARE_BITMAP(bitmap
, MAX_RT_PRIO
+1); /* include 1 bit for delimiter */
236 struct list_head queue
[MAX_RT_PRIO
];
239 struct rt_bandwidth
{
240 /* nests inside the rq lock: */
241 raw_spinlock_t rt_runtime_lock
;
244 struct hrtimer rt_period_timer
;
245 unsigned int rt_period_active
;
248 void __dl_clear_params(struct task_struct
*p
);
251 * To keep the bandwidth of -deadline tasks and groups under control
252 * we need some place where:
253 * - store the maximum -deadline bandwidth of the system (the group);
254 * - cache the fraction of that bandwidth that is currently allocated.
256 * This is all done in the data structure below. It is similar to the
257 * one used for RT-throttling (rt_bandwidth), with the main difference
258 * that, since here we are only interested in admission control, we
259 * do not decrease any runtime while the group "executes", neither we
260 * need a timer to replenish it.
262 * With respect to SMP, the bandwidth is given on a per-CPU basis,
264 * - dl_bw (< 100%) is the bandwidth of the system (group) on each CPU;
265 * - dl_total_bw array contains, in the i-eth element, the currently
266 * allocated bandwidth on the i-eth CPU.
267 * Moreover, groups consume bandwidth on each CPU, while tasks only
268 * consume bandwidth on the CPU they're running on.
269 * Finally, dl_total_bw_cpu is used to cache the index of dl_total_bw
270 * that will be shown the next time the proc or cgroup controls will
271 * be red. It on its turn can be changed by writing on its own
274 struct dl_bandwidth
{
275 raw_spinlock_t dl_runtime_lock
;
280 static inline int dl_bandwidth_enabled(void)
282 return sysctl_sched_rt_runtime
>= 0;
291 static inline void __dl_update(struct dl_bw
*dl_b
, s64 bw
);
294 void __dl_sub(struct dl_bw
*dl_b
, u64 tsk_bw
, int cpus
)
296 dl_b
->total_bw
-= tsk_bw
;
297 __dl_update(dl_b
, (s32
)tsk_bw
/ cpus
);
301 void __dl_add(struct dl_bw
*dl_b
, u64 tsk_bw
, int cpus
)
303 dl_b
->total_bw
+= tsk_bw
;
304 __dl_update(dl_b
, -((s32
)tsk_bw
/ cpus
));
308 bool __dl_overflow(struct dl_bw
*dl_b
, int cpus
, u64 old_bw
, u64 new_bw
)
310 return dl_b
->bw
!= -1 &&
311 dl_b
->bw
* cpus
< dl_b
->total_bw
- old_bw
+ new_bw
;
314 extern void dl_change_utilization(struct task_struct
*p
, u64 new_bw
);
315 extern void init_dl_bw(struct dl_bw
*dl_b
);
316 extern int sched_dl_global_validate(void);
317 extern void sched_dl_do_global(void);
318 extern int sched_dl_overflow(struct task_struct
*p
, int policy
, const struct sched_attr
*attr
);
319 extern void __setparam_dl(struct task_struct
*p
, const struct sched_attr
*attr
);
320 extern void __getparam_dl(struct task_struct
*p
, struct sched_attr
*attr
);
321 extern bool __checkparam_dl(const struct sched_attr
*attr
);
322 extern bool dl_param_changed(struct task_struct
*p
, const struct sched_attr
*attr
);
323 extern int dl_task_can_attach(struct task_struct
*p
, const struct cpumask
*cs_cpus_allowed
);
324 extern int dl_cpuset_cpumask_can_shrink(const struct cpumask
*cur
, const struct cpumask
*trial
);
325 extern bool dl_cpu_busy(unsigned int cpu
);
327 #ifdef CONFIG_CGROUP_SCHED
329 #include <linux/cgroup.h>
330 #include <linux/psi.h>
335 extern struct list_head task_groups
;
337 struct cfs_bandwidth
{
338 #ifdef CONFIG_CFS_BANDWIDTH
343 s64 hierarchical_quota
;
349 struct hrtimer period_timer
;
350 struct hrtimer slack_timer
;
351 struct list_head throttled_cfs_rq
;
358 bool distribute_running
;
362 /* Task group related information */
364 struct cgroup_subsys_state css
;
366 #ifdef CONFIG_FAIR_GROUP_SCHED
367 /* schedulable entities of this group on each CPU */
368 struct sched_entity
**se
;
369 /* runqueue "owned" by this group on each CPU */
370 struct cfs_rq
**cfs_rq
;
371 unsigned long shares
;
375 * load_avg can be heavily contended at clock tick time, so put
376 * it in its own cacheline separated from the fields above which
377 * will also be accessed at each tick.
379 atomic_long_t load_avg ____cacheline_aligned
;
383 #ifdef CONFIG_RT_GROUP_SCHED
384 struct sched_rt_entity
**rt_se
;
385 struct rt_rq
**rt_rq
;
387 struct rt_bandwidth rt_bandwidth
;
391 struct list_head list
;
393 struct task_group
*parent
;
394 struct list_head siblings
;
395 struct list_head children
;
397 #ifdef CONFIG_SCHED_AUTOGROUP
398 struct autogroup
*autogroup
;
401 struct cfs_bandwidth cfs_bandwidth
;
404 #ifdef CONFIG_FAIR_GROUP_SCHED
405 #define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
408 * A weight of 0 or 1 can cause arithmetics problems.
409 * A weight of a cfs_rq is the sum of weights of which entities
410 * are queued on this cfs_rq, so a weight of a entity should not be
411 * too large, so as the shares value of a task group.
412 * (The default weight is 1024 - so there's no practical
413 * limitation from this.)
415 #define MIN_SHARES (1UL << 1)
416 #define MAX_SHARES (1UL << 18)
419 typedef int (*tg_visitor
)(struct task_group
*, void *);
421 extern int walk_tg_tree_from(struct task_group
*from
,
422 tg_visitor down
, tg_visitor up
, void *data
);
425 * Iterate the full tree, calling @down when first entering a node and @up when
426 * leaving it for the final time.
428 * Caller must hold rcu_lock or sufficient equivalent.
430 static inline int walk_tg_tree(tg_visitor down
, tg_visitor up
, void *data
)
432 return walk_tg_tree_from(&root_task_group
, down
, up
, data
);
435 extern int tg_nop(struct task_group
*tg
, void *data
);
437 extern void free_fair_sched_group(struct task_group
*tg
);
438 extern int alloc_fair_sched_group(struct task_group
*tg
, struct task_group
*parent
);
439 extern void online_fair_sched_group(struct task_group
*tg
);
440 extern void unregister_fair_sched_group(struct task_group
*tg
);
441 extern void init_tg_cfs_entry(struct task_group
*tg
, struct cfs_rq
*cfs_rq
,
442 struct sched_entity
*se
, int cpu
,
443 struct sched_entity
*parent
);
444 extern void init_cfs_bandwidth(struct cfs_bandwidth
*cfs_b
);
446 extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth
*cfs_b
);
447 extern void start_cfs_bandwidth(struct cfs_bandwidth
*cfs_b
);
448 extern void unthrottle_cfs_rq(struct cfs_rq
*cfs_rq
);
450 extern void free_rt_sched_group(struct task_group
*tg
);
451 extern int alloc_rt_sched_group(struct task_group
*tg
, struct task_group
*parent
);
452 extern void init_tg_rt_entry(struct task_group
*tg
, struct rt_rq
*rt_rq
,
453 struct sched_rt_entity
*rt_se
, int cpu
,
454 struct sched_rt_entity
*parent
);
455 extern int sched_group_set_rt_runtime(struct task_group
*tg
, long rt_runtime_us
);
456 extern int sched_group_set_rt_period(struct task_group
*tg
, u64 rt_period_us
);
457 extern long sched_group_rt_runtime(struct task_group
*tg
);
458 extern long sched_group_rt_period(struct task_group
*tg
);
459 extern int sched_rt_can_attach(struct task_group
*tg
, struct task_struct
*tsk
);
461 extern struct task_group
*sched_create_group(struct task_group
*parent
);
462 extern void sched_online_group(struct task_group
*tg
,
463 struct task_group
*parent
);
464 extern void sched_destroy_group(struct task_group
*tg
);
465 extern void sched_offline_group(struct task_group
*tg
);
467 extern void sched_move_task(struct task_struct
*tsk
);
469 #ifdef CONFIG_FAIR_GROUP_SCHED
470 extern int sched_group_set_shares(struct task_group
*tg
, unsigned long shares
);
473 extern void set_task_rq_fair(struct sched_entity
*se
,
474 struct cfs_rq
*prev
, struct cfs_rq
*next
);
475 #else /* !CONFIG_SMP */
476 static inline void set_task_rq_fair(struct sched_entity
*se
,
477 struct cfs_rq
*prev
, struct cfs_rq
*next
) { }
478 #endif /* CONFIG_SMP */
479 #endif /* CONFIG_FAIR_GROUP_SCHED */
481 #else /* CONFIG_CGROUP_SCHED */
483 struct cfs_bandwidth
{ };
485 #endif /* CONFIG_CGROUP_SCHED */
487 /* CFS-related fields in a runqueue */
489 struct load_weight load
;
490 unsigned long runnable_weight
;
491 unsigned int nr_running
;
492 unsigned int h_nr_running
;
497 u64 min_vruntime_copy
;
500 struct rb_root_cached tasks_timeline
;
503 * 'curr' points to currently running entity on this cfs_rq.
504 * It is set to NULL otherwise (i.e when none are currently running).
506 struct sched_entity
*curr
;
507 struct sched_entity
*next
;
508 struct sched_entity
*last
;
509 struct sched_entity
*skip
;
511 #ifdef CONFIG_SCHED_DEBUG
512 unsigned int nr_spread_over
;
519 struct sched_avg avg
;
521 u64 load_last_update_time_copy
;
524 raw_spinlock_t lock ____cacheline_aligned
;
526 unsigned long load_avg
;
527 unsigned long util_avg
;
528 unsigned long runnable_sum
;
531 #ifdef CONFIG_FAIR_GROUP_SCHED
532 unsigned long tg_load_avg_contrib
;
534 long prop_runnable_sum
;
537 * h_load = weight * f(tg)
539 * Where f(tg) is the recursive weight fraction assigned to
542 unsigned long h_load
;
543 u64 last_h_load_update
;
544 struct sched_entity
*h_load_next
;
545 #endif /* CONFIG_FAIR_GROUP_SCHED */
546 #endif /* CONFIG_SMP */
548 #ifdef CONFIG_FAIR_GROUP_SCHED
549 struct rq
*rq
; /* CPU runqueue to which this cfs_rq is attached */
552 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
553 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
554 * (like users, containers etc.)
556 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a CPU.
557 * This list is used during load balance.
560 struct list_head leaf_cfs_rq_list
;
561 struct task_group
*tg
; /* group that "owns" this runqueue */
563 #ifdef CONFIG_CFS_BANDWIDTH
567 s64 runtime_remaining
;
570 u64 throttled_clock_task
;
571 u64 throttled_clock_task_time
;
574 struct list_head throttled_list
;
575 #endif /* CONFIG_CFS_BANDWIDTH */
576 #endif /* CONFIG_FAIR_GROUP_SCHED */
579 static inline int rt_bandwidth_enabled(void)
581 return sysctl_sched_rt_runtime
>= 0;
584 /* RT IPI pull logic requires IRQ_WORK */
585 #if defined(CONFIG_IRQ_WORK) && defined(CONFIG_SMP)
586 # define HAVE_RT_PUSH_IPI
589 /* Real-Time classes' related field in a runqueue: */
591 struct rt_prio_array active
;
592 unsigned int rt_nr_running
;
593 unsigned int rr_nr_running
;
594 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
596 int curr
; /* highest queued rt task prio */
598 int next
; /* next highest */
603 unsigned long rt_nr_migratory
;
604 unsigned long rt_nr_total
;
606 struct plist_head pushable_tasks
;
608 #endif /* CONFIG_SMP */
614 /* Nests inside the rq lock: */
615 raw_spinlock_t rt_runtime_lock
;
617 #ifdef CONFIG_RT_GROUP_SCHED
618 unsigned long rt_nr_boosted
;
621 struct task_group
*tg
;
625 static inline bool rt_rq_is_runnable(struct rt_rq
*rt_rq
)
627 return rt_rq
->rt_queued
&& rt_rq
->rt_nr_running
;
630 /* Deadline class' related fields in a runqueue */
632 /* runqueue is an rbtree, ordered by deadline */
633 struct rb_root_cached root
;
635 unsigned long dl_nr_running
;
639 * Deadline values of the currently executing and the
640 * earliest ready task on this rq. Caching these facilitates
641 * the decision whether or not a ready but not running task
642 * should migrate somewhere else.
649 unsigned long dl_nr_migratory
;
653 * Tasks on this rq that can be pushed away. They are kept in
654 * an rb-tree, ordered by tasks' deadlines, with caching
655 * of the leftmost (earliest deadline) element.
657 struct rb_root_cached pushable_dl_tasks_root
;
662 * "Active utilization" for this runqueue: increased when a
663 * task wakes up (becomes TASK_RUNNING) and decreased when a
669 * Utilization of the tasks "assigned" to this runqueue (including
670 * the tasks that are in runqueue and the tasks that executed on this
671 * CPU and blocked). Increased when a task moves to this runqueue, and
672 * decreased when the task moves away (migrates, changes scheduling
673 * policy, or terminates).
674 * This is needed to compute the "inactive utilization" for the
675 * runqueue (inactive utilization = this_bw - running_bw).
681 * Inverse of the fraction of CPU utilization that can be reclaimed
682 * by the GRUB algorithm.
687 #ifdef CONFIG_FAIR_GROUP_SCHED
688 /* An entity is a task if it doesn't "own" a runqueue */
689 #define entity_is_task(se) (!se->my_q)
691 #define entity_is_task(se) 1
696 * XXX we want to get rid of these helpers and use the full load resolution.
698 static inline long se_weight(struct sched_entity
*se
)
700 return scale_load_down(se
->load
.weight
);
703 static inline long se_runnable(struct sched_entity
*se
)
705 return scale_load_down(se
->runnable_weight
);
708 static inline bool sched_asym_prefer(int a
, int b
)
710 return arch_asym_cpu_priority(a
) > arch_asym_cpu_priority(b
);
714 struct em_perf_domain
*em_pd
;
715 struct perf_domain
*next
;
719 /* Scheduling group status flags */
720 #define SG_OVERLOAD 0x1 /* More than one runnable task on a CPU. */
721 #define SG_OVERUTILIZED 0x2 /* One or more CPUs are over-utilized. */
724 * We add the notion of a root-domain which will be used to define per-domain
725 * variables. Each exclusive cpuset essentially defines an island domain by
726 * fully partitioning the member CPUs from any other cpuset. Whenever a new
727 * exclusive cpuset is created, we also create and attach a new root-domain
736 cpumask_var_t online
;
739 * Indicate pullable load on at least one CPU, e.g:
740 * - More than one runnable task
741 * - Running task is misfit
745 /* Indicate one or more cpus over-utilized (tipping point) */
749 * The bit corresponding to a CPU gets set here if such CPU has more
750 * than one runnable -deadline task (as it is below for RT tasks).
752 cpumask_var_t dlo_mask
;
757 #ifdef HAVE_RT_PUSH_IPI
759 * For IPI pull requests, loop across the rto_mask.
761 struct irq_work rto_push_work
;
762 raw_spinlock_t rto_lock
;
763 /* These are only updated and read within rto_lock */
766 /* These atomics are updated outside of a lock */
767 atomic_t rto_loop_next
;
768 atomic_t rto_loop_start
;
771 * The "RT overload" flag: it gets set if a CPU has more than
772 * one runnable RT task.
774 cpumask_var_t rto_mask
;
775 struct cpupri cpupri
;
777 unsigned long max_cpu_capacity
;
780 * NULL-terminated list of performance domains intersecting with the
781 * CPUs of the rd. Protected by RCU.
783 struct perf_domain
*pd
;
786 extern struct root_domain def_root_domain
;
787 extern struct mutex sched_domains_mutex
;
789 extern void init_defrootdomain(void);
790 extern int sched_init_domains(const struct cpumask
*cpu_map
);
791 extern void rq_attach_root(struct rq
*rq
, struct root_domain
*rd
);
792 extern void sched_get_rd(struct root_domain
*rd
);
793 extern void sched_put_rd(struct root_domain
*rd
);
795 #ifdef HAVE_RT_PUSH_IPI
796 extern void rto_push_irq_work_func(struct irq_work
*work
);
798 #endif /* CONFIG_SMP */
801 * This is the main, per-CPU runqueue data structure.
803 * Locking rule: those places that want to lock multiple runqueues
804 * (such as the load balancing or the thread migration code), lock
805 * acquire operations must be ordered by ascending &runqueue.
812 * nr_running and cpu_load should be in the same cacheline because
813 * remote CPUs use both these fields when doing load calculation.
815 unsigned int nr_running
;
816 #ifdef CONFIG_NUMA_BALANCING
817 unsigned int nr_numa_running
;
818 unsigned int nr_preferred_running
;
819 unsigned int numa_migrate_on
;
821 #define CPU_LOAD_IDX_MAX 5
822 unsigned long cpu_load
[CPU_LOAD_IDX_MAX
];
823 #ifdef CONFIG_NO_HZ_COMMON
825 unsigned long last_load_update_tick
;
826 unsigned long last_blocked_load_update_tick
;
827 unsigned int has_blocked_load
;
828 #endif /* CONFIG_SMP */
829 unsigned int nohz_tick_stopped
;
831 #endif /* CONFIG_NO_HZ_COMMON */
833 /* capture load from *all* tasks on this CPU: */
834 struct load_weight load
;
835 unsigned long nr_load_updates
;
842 #ifdef CONFIG_FAIR_GROUP_SCHED
843 /* list of leaf cfs_rq on this CPU: */
844 struct list_head leaf_cfs_rq_list
;
845 struct list_head
*tmp_alone_branch
;
846 #endif /* CONFIG_FAIR_GROUP_SCHED */
849 * This is part of a global counter where only the total sum
850 * over all CPUs matters. A task can increase this counter on
851 * one CPU and if it got migrated afterwards it may decrease
852 * it on another CPU. Always updated under the runqueue lock:
854 unsigned long nr_uninterruptible
;
856 struct task_struct
*curr
;
857 struct task_struct
*idle
;
858 struct task_struct
*stop
;
859 unsigned long next_balance
;
860 struct mm_struct
*prev_mm
;
862 unsigned int clock_update_flags
;
869 struct root_domain
*rd
;
870 struct sched_domain
*sd
;
872 unsigned long cpu_capacity
;
873 unsigned long cpu_capacity_orig
;
875 struct callback_head
*balance_callback
;
877 unsigned char idle_balance
;
879 unsigned long misfit_task_load
;
881 /* For active balancing */
884 struct cpu_stop_work active_balance_work
;
886 /* CPU of this runqueue: */
890 struct list_head cfs_tasks
;
892 struct sched_avg avg_rt
;
893 struct sched_avg avg_dl
;
894 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
895 struct sched_avg avg_irq
;
900 /* This is used to determine avg_idle's max value */
901 u64 max_idle_balance_cost
;
904 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
907 #ifdef CONFIG_PARAVIRT
910 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
911 u64 prev_steal_time_rq
;
914 /* calc_load related fields */
915 unsigned long calc_load_update
;
916 long calc_load_active
;
918 #ifdef CONFIG_SCHED_HRTICK
920 int hrtick_csd_pending
;
921 call_single_data_t hrtick_csd
;
923 struct hrtimer hrtick_timer
;
926 #ifdef CONFIG_SCHEDSTATS
928 struct sched_info rq_sched_info
;
929 unsigned long long rq_cpu_time
;
930 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
932 /* sys_sched_yield() stats */
933 unsigned int yld_count
;
935 /* schedule() stats */
936 unsigned int sched_count
;
937 unsigned int sched_goidle
;
939 /* try_to_wake_up() stats */
940 unsigned int ttwu_count
;
941 unsigned int ttwu_local
;
945 struct llist_head wake_list
;
948 #ifdef CONFIG_CPU_IDLE
949 /* Must be inspected within a rcu lock section */
950 struct cpuidle_state
*idle_state
;
954 static inline int cpu_of(struct rq
*rq
)
964 #ifdef CONFIG_SCHED_SMT
965 extern void __update_idle_core(struct rq
*rq
);
967 static inline void update_idle_core(struct rq
*rq
)
969 if (static_branch_unlikely(&sched_smt_present
))
970 __update_idle_core(rq
);
974 static inline void update_idle_core(struct rq
*rq
) { }
977 DECLARE_PER_CPU_SHARED_ALIGNED(struct rq
, runqueues
);
979 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
980 #define this_rq() this_cpu_ptr(&runqueues)
981 #define task_rq(p) cpu_rq(task_cpu(p))
982 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
983 #define raw_rq() raw_cpu_ptr(&runqueues)
985 extern void update_rq_clock(struct rq
*rq
);
987 static inline u64
__rq_clock_broken(struct rq
*rq
)
989 return READ_ONCE(rq
->clock
);
993 * rq::clock_update_flags bits
995 * %RQCF_REQ_SKIP - will request skipping of clock update on the next
996 * call to __schedule(). This is an optimisation to avoid
997 * neighbouring rq clock updates.
999 * %RQCF_ACT_SKIP - is set from inside of __schedule() when skipping is
1000 * in effect and calls to update_rq_clock() are being ignored.
1002 * %RQCF_UPDATED - is a debug flag that indicates whether a call has been
1003 * made to update_rq_clock() since the last time rq::lock was pinned.
1005 * If inside of __schedule(), clock_update_flags will have been
1006 * shifted left (a left shift is a cheap operation for the fast path
1007 * to promote %RQCF_REQ_SKIP to %RQCF_ACT_SKIP), so you must use,
1009 * if (rq-clock_update_flags >= RQCF_UPDATED)
1011 * to check if %RQCF_UPADTED is set. It'll never be shifted more than
1012 * one position though, because the next rq_unpin_lock() will shift it
1015 #define RQCF_REQ_SKIP 0x01
1016 #define RQCF_ACT_SKIP 0x02
1017 #define RQCF_UPDATED 0x04
1019 static inline void assert_clock_updated(struct rq
*rq
)
1022 * The only reason for not seeing a clock update since the
1023 * last rq_pin_lock() is if we're currently skipping updates.
1025 SCHED_WARN_ON(rq
->clock_update_flags
< RQCF_ACT_SKIP
);
1028 static inline u64
rq_clock(struct rq
*rq
)
1030 lockdep_assert_held(&rq
->lock
);
1031 assert_clock_updated(rq
);
1036 static inline u64
rq_clock_task(struct rq
*rq
)
1038 lockdep_assert_held(&rq
->lock
);
1039 assert_clock_updated(rq
);
1041 return rq
->clock_task
;
1044 static inline void rq_clock_skip_update(struct rq
*rq
)
1046 lockdep_assert_held(&rq
->lock
);
1047 rq
->clock_update_flags
|= RQCF_REQ_SKIP
;
1051 * See rt task throttling, which is the only time a skip
1052 * request is cancelled.
1054 static inline void rq_clock_cancel_skipupdate(struct rq
*rq
)
1056 lockdep_assert_held(&rq
->lock
);
1057 rq
->clock_update_flags
&= ~RQCF_REQ_SKIP
;
1061 unsigned long flags
;
1062 struct pin_cookie cookie
;
1063 #ifdef CONFIG_SCHED_DEBUG
1065 * A copy of (rq::clock_update_flags & RQCF_UPDATED) for the
1066 * current pin context is stashed here in case it needs to be
1067 * restored in rq_repin_lock().
1069 unsigned int clock_update_flags
;
1073 static inline void rq_pin_lock(struct rq
*rq
, struct rq_flags
*rf
)
1075 rf
->cookie
= lockdep_pin_lock(&rq
->lock
);
1077 #ifdef CONFIG_SCHED_DEBUG
1078 rq
->clock_update_flags
&= (RQCF_REQ_SKIP
|RQCF_ACT_SKIP
);
1079 rf
->clock_update_flags
= 0;
1083 static inline void rq_unpin_lock(struct rq
*rq
, struct rq_flags
*rf
)
1085 #ifdef CONFIG_SCHED_DEBUG
1086 if (rq
->clock_update_flags
> RQCF_ACT_SKIP
)
1087 rf
->clock_update_flags
= RQCF_UPDATED
;
1090 lockdep_unpin_lock(&rq
->lock
, rf
->cookie
);
1093 static inline void rq_repin_lock(struct rq
*rq
, struct rq_flags
*rf
)
1095 lockdep_repin_lock(&rq
->lock
, rf
->cookie
);
1097 #ifdef CONFIG_SCHED_DEBUG
1099 * Restore the value we stashed in @rf for this pin context.
1101 rq
->clock_update_flags
|= rf
->clock_update_flags
;
1105 struct rq
*__task_rq_lock(struct task_struct
*p
, struct rq_flags
*rf
)
1106 __acquires(rq
->lock
);
1108 struct rq
*task_rq_lock(struct task_struct
*p
, struct rq_flags
*rf
)
1109 __acquires(p
->pi_lock
)
1110 __acquires(rq
->lock
);
1112 static inline void __task_rq_unlock(struct rq
*rq
, struct rq_flags
*rf
)
1113 __releases(rq
->lock
)
1115 rq_unpin_lock(rq
, rf
);
1116 raw_spin_unlock(&rq
->lock
);
1120 task_rq_unlock(struct rq
*rq
, struct task_struct
*p
, struct rq_flags
*rf
)
1121 __releases(rq
->lock
)
1122 __releases(p
->pi_lock
)
1124 rq_unpin_lock(rq
, rf
);
1125 raw_spin_unlock(&rq
->lock
);
1126 raw_spin_unlock_irqrestore(&p
->pi_lock
, rf
->flags
);
1130 rq_lock_irqsave(struct rq
*rq
, struct rq_flags
*rf
)
1131 __acquires(rq
->lock
)
1133 raw_spin_lock_irqsave(&rq
->lock
, rf
->flags
);
1134 rq_pin_lock(rq
, rf
);
1138 rq_lock_irq(struct rq
*rq
, struct rq_flags
*rf
)
1139 __acquires(rq
->lock
)
1141 raw_spin_lock_irq(&rq
->lock
);
1142 rq_pin_lock(rq
, rf
);
1146 rq_lock(struct rq
*rq
, struct rq_flags
*rf
)
1147 __acquires(rq
->lock
)
1149 raw_spin_lock(&rq
->lock
);
1150 rq_pin_lock(rq
, rf
);
1154 rq_relock(struct rq
*rq
, struct rq_flags
*rf
)
1155 __acquires(rq
->lock
)
1157 raw_spin_lock(&rq
->lock
);
1158 rq_repin_lock(rq
, rf
);
1162 rq_unlock_irqrestore(struct rq
*rq
, struct rq_flags
*rf
)
1163 __releases(rq
->lock
)
1165 rq_unpin_lock(rq
, rf
);
1166 raw_spin_unlock_irqrestore(&rq
->lock
, rf
->flags
);
1170 rq_unlock_irq(struct rq
*rq
, struct rq_flags
*rf
)
1171 __releases(rq
->lock
)
1173 rq_unpin_lock(rq
, rf
);
1174 raw_spin_unlock_irq(&rq
->lock
);
1178 rq_unlock(struct rq
*rq
, struct rq_flags
*rf
)
1179 __releases(rq
->lock
)
1181 rq_unpin_lock(rq
, rf
);
1182 raw_spin_unlock(&rq
->lock
);
1185 static inline struct rq
*
1186 this_rq_lock_irq(struct rq_flags
*rf
)
1187 __acquires(rq
->lock
)
1191 local_irq_disable();
1198 enum numa_topology_type
{
1203 extern enum numa_topology_type sched_numa_topology_type
;
1204 extern int sched_max_numa_distance
;
1205 extern bool find_numa_distance(int distance
);
1209 extern void sched_init_numa(void);
1210 extern void sched_domains_numa_masks_set(unsigned int cpu
);
1211 extern void sched_domains_numa_masks_clear(unsigned int cpu
);
1213 static inline void sched_init_numa(void) { }
1214 static inline void sched_domains_numa_masks_set(unsigned int cpu
) { }
1215 static inline void sched_domains_numa_masks_clear(unsigned int cpu
) { }
1218 #ifdef CONFIG_NUMA_BALANCING
1219 /* The regions in numa_faults array from task_struct */
1220 enum numa_faults_stats
{
1226 extern void sched_setnuma(struct task_struct
*p
, int node
);
1227 extern int migrate_task_to(struct task_struct
*p
, int cpu
);
1228 extern int migrate_swap(struct task_struct
*p
, struct task_struct
*t
,
1230 extern void init_numa_balancing(unsigned long clone_flags
, struct task_struct
*p
);
1233 init_numa_balancing(unsigned long clone_flags
, struct task_struct
*p
)
1236 #endif /* CONFIG_NUMA_BALANCING */
1241 queue_balance_callback(struct rq
*rq
,
1242 struct callback_head
*head
,
1243 void (*func
)(struct rq
*rq
))
1245 lockdep_assert_held(&rq
->lock
);
1247 if (unlikely(head
->next
))
1250 head
->func
= (void (*)(struct callback_head
*))func
;
1251 head
->next
= rq
->balance_callback
;
1252 rq
->balance_callback
= head
;
1255 extern void sched_ttwu_pending(void);
1257 #define rcu_dereference_check_sched_domain(p) \
1258 rcu_dereference_check((p), \
1259 lockdep_is_held(&sched_domains_mutex))
1262 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1263 * See detach_destroy_domains: synchronize_sched for details.
1265 * The domain tree of any CPU may only be accessed from within
1266 * preempt-disabled sections.
1268 #define for_each_domain(cpu, __sd) \
1269 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
1270 __sd; __sd = __sd->parent)
1272 #define for_each_lower_domain(sd) for (; sd; sd = sd->child)
1275 * highest_flag_domain - Return highest sched_domain containing flag.
1276 * @cpu: The CPU whose highest level of sched domain is to
1278 * @flag: The flag to check for the highest sched_domain
1279 * for the given CPU.
1281 * Returns the highest sched_domain of a CPU which contains the given flag.
1283 static inline struct sched_domain
*highest_flag_domain(int cpu
, int flag
)
1285 struct sched_domain
*sd
, *hsd
= NULL
;
1287 for_each_domain(cpu
, sd
) {
1288 if (!(sd
->flags
& flag
))
1296 static inline struct sched_domain
*lowest_flag_domain(int cpu
, int flag
)
1298 struct sched_domain
*sd
;
1300 for_each_domain(cpu
, sd
) {
1301 if (sd
->flags
& flag
)
1308 DECLARE_PER_CPU(struct sched_domain
*, sd_llc
);
1309 DECLARE_PER_CPU(int, sd_llc_size
);
1310 DECLARE_PER_CPU(int, sd_llc_id
);
1311 DECLARE_PER_CPU(struct sched_domain_shared
*, sd_llc_shared
);
1312 DECLARE_PER_CPU(struct sched_domain
*, sd_numa
);
1313 DECLARE_PER_CPU(struct sched_domain
*, sd_asym_packing
);
1314 DECLARE_PER_CPU(struct sched_domain
*, sd_asym_cpucapacity
);
1315 extern struct static_key_false sched_asym_cpucapacity
;
1317 struct sched_group_capacity
{
1320 * CPU capacity of this group, SCHED_CAPACITY_SCALE being max capacity
1323 unsigned long capacity
;
1324 unsigned long min_capacity
; /* Min per-CPU capacity in group */
1325 unsigned long max_capacity
; /* Max per-CPU capacity in group */
1326 unsigned long next_update
;
1327 int imbalance
; /* XXX unrelated to capacity but shared group state */
1329 #ifdef CONFIG_SCHED_DEBUG
1333 unsigned long cpumask
[0]; /* Balance mask */
1336 struct sched_group
{
1337 struct sched_group
*next
; /* Must be a circular list */
1340 unsigned int group_weight
;
1341 struct sched_group_capacity
*sgc
;
1342 int asym_prefer_cpu
; /* CPU of highest priority in group */
1345 * The CPUs this group covers.
1347 * NOTE: this field is variable length. (Allocated dynamically
1348 * by attaching extra space to the end of the structure,
1349 * depending on how many CPUs the kernel has booted up with)
1351 unsigned long cpumask
[0];
1354 static inline struct cpumask
*sched_group_span(struct sched_group
*sg
)
1356 return to_cpumask(sg
->cpumask
);
1360 * See build_balance_mask().
1362 static inline struct cpumask
*group_balance_mask(struct sched_group
*sg
)
1364 return to_cpumask(sg
->sgc
->cpumask
);
1368 * group_first_cpu - Returns the first CPU in the cpumask of a sched_group.
1369 * @group: The group whose first CPU is to be returned.
1371 static inline unsigned int group_first_cpu(struct sched_group
*group
)
1373 return cpumask_first(sched_group_span(group
));
1376 extern int group_balance_cpu(struct sched_group
*sg
);
1378 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
1379 void register_sched_domain_sysctl(void);
1380 void dirty_sched_domain_sysctl(int cpu
);
1381 void unregister_sched_domain_sysctl(void);
1383 static inline void register_sched_domain_sysctl(void)
1386 static inline void dirty_sched_domain_sysctl(int cpu
)
1389 static inline void unregister_sched_domain_sysctl(void)
1396 static inline void sched_ttwu_pending(void) { }
1398 #endif /* CONFIG_SMP */
1401 #include "autogroup.h"
1403 #ifdef CONFIG_CGROUP_SCHED
1406 * Return the group to which this tasks belongs.
1408 * We cannot use task_css() and friends because the cgroup subsystem
1409 * changes that value before the cgroup_subsys::attach() method is called,
1410 * therefore we cannot pin it and might observe the wrong value.
1412 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
1413 * core changes this before calling sched_move_task().
1415 * Instead we use a 'copy' which is updated from sched_move_task() while
1416 * holding both task_struct::pi_lock and rq::lock.
1418 static inline struct task_group
*task_group(struct task_struct
*p
)
1420 return p
->sched_task_group
;
1423 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
1424 static inline void set_task_rq(struct task_struct
*p
, unsigned int cpu
)
1426 #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
1427 struct task_group
*tg
= task_group(p
);
1430 #ifdef CONFIG_FAIR_GROUP_SCHED
1431 set_task_rq_fair(&p
->se
, p
->se
.cfs_rq
, tg
->cfs_rq
[cpu
]);
1432 p
->se
.cfs_rq
= tg
->cfs_rq
[cpu
];
1433 p
->se
.parent
= tg
->se
[cpu
];
1436 #ifdef CONFIG_RT_GROUP_SCHED
1437 p
->rt
.rt_rq
= tg
->rt_rq
[cpu
];
1438 p
->rt
.parent
= tg
->rt_se
[cpu
];
1442 #else /* CONFIG_CGROUP_SCHED */
1444 static inline void set_task_rq(struct task_struct
*p
, unsigned int cpu
) { }
1445 static inline struct task_group
*task_group(struct task_struct
*p
)
1450 #endif /* CONFIG_CGROUP_SCHED */
1452 static inline void __set_task_cpu(struct task_struct
*p
, unsigned int cpu
)
1454 set_task_rq(p
, cpu
);
1457 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1458 * successfully executed on another CPU. We must ensure that updates of
1459 * per-task data have been completed by this moment.
1462 #ifdef CONFIG_THREAD_INFO_IN_TASK
1465 task_thread_info(p
)->cpu
= cpu
;
1472 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
1474 #ifdef CONFIG_SCHED_DEBUG
1475 # include <linux/static_key.h>
1476 # define const_debug __read_mostly
1478 # define const_debug const
1481 #define SCHED_FEAT(name, enabled) \
1482 __SCHED_FEAT_##name ,
1485 #include "features.h"
1491 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_JUMP_LABEL)
1494 * To support run-time toggling of sched features, all the translation units
1495 * (but core.c) reference the sysctl_sched_features defined in core.c.
1497 extern const_debug
unsigned int sysctl_sched_features
;
1499 #define SCHED_FEAT(name, enabled) \
1500 static __always_inline bool static_branch_##name(struct static_key *key) \
1502 return static_key_##enabled(key); \
1505 #include "features.h"
1508 extern struct static_key sched_feat_keys
[__SCHED_FEAT_NR
];
1509 #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
1511 #else /* !(SCHED_DEBUG && CONFIG_JUMP_LABEL) */
1514 * Each translation unit has its own copy of sysctl_sched_features to allow
1515 * constants propagation at compile time and compiler optimization based on
1518 #define SCHED_FEAT(name, enabled) \
1519 (1UL << __SCHED_FEAT_##name) * enabled |
1520 static const_debug __maybe_unused
unsigned int sysctl_sched_features
=
1521 #include "features.h"
1525 #define sched_feat(x) !!(sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
1527 #endif /* SCHED_DEBUG && CONFIG_JUMP_LABEL */
1529 extern struct static_key_false sched_numa_balancing
;
1530 extern struct static_key_false sched_schedstats
;
1532 static inline u64
global_rt_period(void)
1534 return (u64
)sysctl_sched_rt_period
* NSEC_PER_USEC
;
1537 static inline u64
global_rt_runtime(void)
1539 if (sysctl_sched_rt_runtime
< 0)
1542 return (u64
)sysctl_sched_rt_runtime
* NSEC_PER_USEC
;
1545 static inline int task_current(struct rq
*rq
, struct task_struct
*p
)
1547 return rq
->curr
== p
;
1550 static inline int task_running(struct rq
*rq
, struct task_struct
*p
)
1555 return task_current(rq
, p
);
1559 static inline int task_on_rq_queued(struct task_struct
*p
)
1561 return p
->on_rq
== TASK_ON_RQ_QUEUED
;
1564 static inline int task_on_rq_migrating(struct task_struct
*p
)
1566 return p
->on_rq
== TASK_ON_RQ_MIGRATING
;
1572 #define WF_SYNC 0x01 /* Waker goes to sleep after wakeup */
1573 #define WF_FORK 0x02 /* Child wakeup after fork */
1574 #define WF_MIGRATED 0x4 /* Internal use, task got migrated */
1577 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1578 * of tasks with abnormal "nice" values across CPUs the contribution that
1579 * each task makes to its run queue's load is weighted according to its
1580 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1581 * scaled version of the new time slice allocation that they receive on time
1585 #define WEIGHT_IDLEPRIO 3
1586 #define WMULT_IDLEPRIO 1431655765
1588 extern const int sched_prio_to_weight
[40];
1589 extern const u32 sched_prio_to_wmult
[40];
1592 * {de,en}queue flags:
1594 * DEQUEUE_SLEEP - task is no longer runnable
1595 * ENQUEUE_WAKEUP - task just became runnable
1597 * SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks
1598 * are in a known state which allows modification. Such pairs
1599 * should preserve as much state as possible.
1601 * MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location
1604 * ENQUEUE_HEAD - place at front of runqueue (tail if not specified)
1605 * ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline)
1606 * ENQUEUE_MIGRATED - the task was migrated during wakeup
1610 #define DEQUEUE_SLEEP 0x01
1611 #define DEQUEUE_SAVE 0x02 /* Matches ENQUEUE_RESTORE */
1612 #define DEQUEUE_MOVE 0x04 /* Matches ENQUEUE_MOVE */
1613 #define DEQUEUE_NOCLOCK 0x08 /* Matches ENQUEUE_NOCLOCK */
1615 #define ENQUEUE_WAKEUP 0x01
1616 #define ENQUEUE_RESTORE 0x02
1617 #define ENQUEUE_MOVE 0x04
1618 #define ENQUEUE_NOCLOCK 0x08
1620 #define ENQUEUE_HEAD 0x10
1621 #define ENQUEUE_REPLENISH 0x20
1623 #define ENQUEUE_MIGRATED 0x40
1625 #define ENQUEUE_MIGRATED 0x00
1628 #define RETRY_TASK ((void *)-1UL)
1630 struct sched_class
{
1631 const struct sched_class
*next
;
1633 void (*enqueue_task
) (struct rq
*rq
, struct task_struct
*p
, int flags
);
1634 void (*dequeue_task
) (struct rq
*rq
, struct task_struct
*p
, int flags
);
1635 void (*yield_task
) (struct rq
*rq
);
1636 bool (*yield_to_task
)(struct rq
*rq
, struct task_struct
*p
, bool preempt
);
1638 void (*check_preempt_curr
)(struct rq
*rq
, struct task_struct
*p
, int flags
);
1641 * It is the responsibility of the pick_next_task() method that will
1642 * return the next task to call put_prev_task() on the @prev task or
1643 * something equivalent.
1645 * May return RETRY_TASK when it finds a higher prio class has runnable
1648 struct task_struct
* (*pick_next_task
)(struct rq
*rq
,
1649 struct task_struct
*prev
,
1650 struct rq_flags
*rf
);
1651 void (*put_prev_task
)(struct rq
*rq
, struct task_struct
*p
);
1654 int (*select_task_rq
)(struct task_struct
*p
, int task_cpu
, int sd_flag
, int flags
);
1655 void (*migrate_task_rq
)(struct task_struct
*p
, int new_cpu
);
1657 void (*task_woken
)(struct rq
*this_rq
, struct task_struct
*task
);
1659 void (*set_cpus_allowed
)(struct task_struct
*p
,
1660 const struct cpumask
*newmask
);
1662 void (*rq_online
)(struct rq
*rq
);
1663 void (*rq_offline
)(struct rq
*rq
);
1666 void (*set_curr_task
)(struct rq
*rq
);
1667 void (*task_tick
)(struct rq
*rq
, struct task_struct
*p
, int queued
);
1668 void (*task_fork
)(struct task_struct
*p
);
1669 void (*task_dead
)(struct task_struct
*p
);
1672 * The switched_from() call is allowed to drop rq->lock, therefore we
1673 * cannot assume the switched_from/switched_to pair is serliazed by
1674 * rq->lock. They are however serialized by p->pi_lock.
1676 void (*switched_from
)(struct rq
*this_rq
, struct task_struct
*task
);
1677 void (*switched_to
) (struct rq
*this_rq
, struct task_struct
*task
);
1678 void (*prio_changed
) (struct rq
*this_rq
, struct task_struct
*task
,
1681 unsigned int (*get_rr_interval
)(struct rq
*rq
,
1682 struct task_struct
*task
);
1684 void (*update_curr
)(struct rq
*rq
);
1686 #define TASK_SET_GROUP 0
1687 #define TASK_MOVE_GROUP 1
1689 #ifdef CONFIG_FAIR_GROUP_SCHED
1690 void (*task_change_group
)(struct task_struct
*p
, int type
);
1694 static inline void put_prev_task(struct rq
*rq
, struct task_struct
*prev
)
1696 prev
->sched_class
->put_prev_task(rq
, prev
);
1699 static inline void set_curr_task(struct rq
*rq
, struct task_struct
*curr
)
1701 curr
->sched_class
->set_curr_task(rq
);
1705 #define sched_class_highest (&stop_sched_class)
1707 #define sched_class_highest (&dl_sched_class)
1709 #define for_each_class(class) \
1710 for (class = sched_class_highest; class; class = class->next)
1712 extern const struct sched_class stop_sched_class
;
1713 extern const struct sched_class dl_sched_class
;
1714 extern const struct sched_class rt_sched_class
;
1715 extern const struct sched_class fair_sched_class
;
1716 extern const struct sched_class idle_sched_class
;
1721 extern void update_group_capacity(struct sched_domain
*sd
, int cpu
);
1723 extern void trigger_load_balance(struct rq
*rq
);
1725 extern void set_cpus_allowed_common(struct task_struct
*p
, const struct cpumask
*new_mask
);
1729 #ifdef CONFIG_CPU_IDLE
1730 static inline void idle_set_state(struct rq
*rq
,
1731 struct cpuidle_state
*idle_state
)
1733 rq
->idle_state
= idle_state
;
1736 static inline struct cpuidle_state
*idle_get_state(struct rq
*rq
)
1738 SCHED_WARN_ON(!rcu_read_lock_held());
1740 return rq
->idle_state
;
1743 static inline void idle_set_state(struct rq
*rq
,
1744 struct cpuidle_state
*idle_state
)
1748 static inline struct cpuidle_state
*idle_get_state(struct rq
*rq
)
1754 extern void schedule_idle(void);
1756 extern void sysrq_sched_debug_show(void);
1757 extern void sched_init_granularity(void);
1758 extern void update_max_interval(void);
1760 extern void init_sched_dl_class(void);
1761 extern void init_sched_rt_class(void);
1762 extern void init_sched_fair_class(void);
1764 extern void reweight_task(struct task_struct
*p
, int prio
);
1766 extern void resched_curr(struct rq
*rq
);
1767 extern void resched_cpu(int cpu
);
1769 extern struct rt_bandwidth def_rt_bandwidth
;
1770 extern void init_rt_bandwidth(struct rt_bandwidth
*rt_b
, u64 period
, u64 runtime
);
1772 extern struct dl_bandwidth def_dl_bandwidth
;
1773 extern void init_dl_bandwidth(struct dl_bandwidth
*dl_b
, u64 period
, u64 runtime
);
1774 extern void init_dl_task_timer(struct sched_dl_entity
*dl_se
);
1775 extern void init_dl_inactive_task_timer(struct sched_dl_entity
*dl_se
);
1776 extern void init_dl_rq_bw_ratio(struct dl_rq
*dl_rq
);
1779 #define BW_UNIT (1 << BW_SHIFT)
1780 #define RATIO_SHIFT 8
1781 unsigned long to_ratio(u64 period
, u64 runtime
);
1783 extern void init_entity_runnable_average(struct sched_entity
*se
);
1784 extern void post_init_entity_util_avg(struct sched_entity
*se
);
1786 #ifdef CONFIG_NO_HZ_FULL
1787 extern bool sched_can_stop_tick(struct rq
*rq
);
1788 extern int __init
sched_tick_offload_init(void);
1791 * Tick may be needed by tasks in the runqueue depending on their policy and
1792 * requirements. If tick is needed, lets send the target an IPI to kick it out of
1793 * nohz mode if necessary.
1795 static inline void sched_update_tick_dependency(struct rq
*rq
)
1799 if (!tick_nohz_full_enabled())
1804 if (!tick_nohz_full_cpu(cpu
))
1807 if (sched_can_stop_tick(rq
))
1808 tick_nohz_dep_clear_cpu(cpu
, TICK_DEP_BIT_SCHED
);
1810 tick_nohz_dep_set_cpu(cpu
, TICK_DEP_BIT_SCHED
);
1813 static inline int sched_tick_offload_init(void) { return 0; }
1814 static inline void sched_update_tick_dependency(struct rq
*rq
) { }
1817 static inline void add_nr_running(struct rq
*rq
, unsigned count
)
1819 unsigned prev_nr
= rq
->nr_running
;
1821 rq
->nr_running
= prev_nr
+ count
;
1824 if (prev_nr
< 2 && rq
->nr_running
>= 2) {
1825 if (!READ_ONCE(rq
->rd
->overload
))
1826 WRITE_ONCE(rq
->rd
->overload
, 1);
1830 sched_update_tick_dependency(rq
);
1833 static inline void sub_nr_running(struct rq
*rq
, unsigned count
)
1835 rq
->nr_running
-= count
;
1836 /* Check if we still need preemption */
1837 sched_update_tick_dependency(rq
);
1840 extern void activate_task(struct rq
*rq
, struct task_struct
*p
, int flags
);
1841 extern void deactivate_task(struct rq
*rq
, struct task_struct
*p
, int flags
);
1843 extern void check_preempt_curr(struct rq
*rq
, struct task_struct
*p
, int flags
);
1845 extern const_debug
unsigned int sysctl_sched_nr_migrate
;
1846 extern const_debug
unsigned int sysctl_sched_migration_cost
;
1848 #ifdef CONFIG_SCHED_HRTICK
1852 * - enabled by features
1853 * - hrtimer is actually high res
1855 static inline int hrtick_enabled(struct rq
*rq
)
1857 if (!sched_feat(HRTICK
))
1859 if (!cpu_active(cpu_of(rq
)))
1861 return hrtimer_is_hres_active(&rq
->hrtick_timer
);
1864 void hrtick_start(struct rq
*rq
, u64 delay
);
1868 static inline int hrtick_enabled(struct rq
*rq
)
1873 #endif /* CONFIG_SCHED_HRTICK */
1875 #ifndef arch_scale_freq_capacity
1876 static __always_inline
1877 unsigned long arch_scale_freq_capacity(int cpu
)
1879 return SCHED_CAPACITY_SCALE
;
1884 #ifdef CONFIG_PREEMPT
1886 static inline void double_rq_lock(struct rq
*rq1
, struct rq
*rq2
);
1889 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1890 * way at the expense of forcing extra atomic operations in all
1891 * invocations. This assures that the double_lock is acquired using the
1892 * same underlying policy as the spinlock_t on this architecture, which
1893 * reduces latency compared to the unfair variant below. However, it
1894 * also adds more overhead and therefore may reduce throughput.
1896 static inline int _double_lock_balance(struct rq
*this_rq
, struct rq
*busiest
)
1897 __releases(this_rq
->lock
)
1898 __acquires(busiest
->lock
)
1899 __acquires(this_rq
->lock
)
1901 raw_spin_unlock(&this_rq
->lock
);
1902 double_rq_lock(this_rq
, busiest
);
1909 * Unfair double_lock_balance: Optimizes throughput at the expense of
1910 * latency by eliminating extra atomic operations when the locks are
1911 * already in proper order on entry. This favors lower CPU-ids and will
1912 * grant the double lock to lower CPUs over higher ids under contention,
1913 * regardless of entry order into the function.
1915 static inline int _double_lock_balance(struct rq
*this_rq
, struct rq
*busiest
)
1916 __releases(this_rq
->lock
)
1917 __acquires(busiest
->lock
)
1918 __acquires(this_rq
->lock
)
1922 if (unlikely(!raw_spin_trylock(&busiest
->lock
))) {
1923 if (busiest
< this_rq
) {
1924 raw_spin_unlock(&this_rq
->lock
);
1925 raw_spin_lock(&busiest
->lock
);
1926 raw_spin_lock_nested(&this_rq
->lock
,
1927 SINGLE_DEPTH_NESTING
);
1930 raw_spin_lock_nested(&busiest
->lock
,
1931 SINGLE_DEPTH_NESTING
);
1936 #endif /* CONFIG_PREEMPT */
1939 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1941 static inline int double_lock_balance(struct rq
*this_rq
, struct rq
*busiest
)
1943 if (unlikely(!irqs_disabled())) {
1944 /* printk() doesn't work well under rq->lock */
1945 raw_spin_unlock(&this_rq
->lock
);
1949 return _double_lock_balance(this_rq
, busiest
);
1952 static inline void double_unlock_balance(struct rq
*this_rq
, struct rq
*busiest
)
1953 __releases(busiest
->lock
)
1955 raw_spin_unlock(&busiest
->lock
);
1956 lock_set_subclass(&this_rq
->lock
.dep_map
, 0, _RET_IP_
);
1959 static inline void double_lock(spinlock_t
*l1
, spinlock_t
*l2
)
1965 spin_lock_nested(l2
, SINGLE_DEPTH_NESTING
);
1968 static inline void double_lock_irq(spinlock_t
*l1
, spinlock_t
*l2
)
1974 spin_lock_nested(l2
, SINGLE_DEPTH_NESTING
);
1977 static inline void double_raw_lock(raw_spinlock_t
*l1
, raw_spinlock_t
*l2
)
1983 raw_spin_lock_nested(l2
, SINGLE_DEPTH_NESTING
);
1987 * double_rq_lock - safely lock two runqueues
1989 * Note this does not disable interrupts like task_rq_lock,
1990 * you need to do so manually before calling.
1992 static inline void double_rq_lock(struct rq
*rq1
, struct rq
*rq2
)
1993 __acquires(rq1
->lock
)
1994 __acquires(rq2
->lock
)
1996 BUG_ON(!irqs_disabled());
1998 raw_spin_lock(&rq1
->lock
);
1999 __acquire(rq2
->lock
); /* Fake it out ;) */
2002 raw_spin_lock(&rq1
->lock
);
2003 raw_spin_lock_nested(&rq2
->lock
, SINGLE_DEPTH_NESTING
);
2005 raw_spin_lock(&rq2
->lock
);
2006 raw_spin_lock_nested(&rq1
->lock
, SINGLE_DEPTH_NESTING
);
2012 * double_rq_unlock - safely unlock two runqueues
2014 * Note this does not restore interrupts like task_rq_unlock,
2015 * you need to do so manually after calling.
2017 static inline void double_rq_unlock(struct rq
*rq1
, struct rq
*rq2
)
2018 __releases(rq1
->lock
)
2019 __releases(rq2
->lock
)
2021 raw_spin_unlock(&rq1
->lock
);
2023 raw_spin_unlock(&rq2
->lock
);
2025 __release(rq2
->lock
);
2028 extern void set_rq_online (struct rq
*rq
);
2029 extern void set_rq_offline(struct rq
*rq
);
2030 extern bool sched_smp_initialized
;
2032 #else /* CONFIG_SMP */
2035 * double_rq_lock - safely lock two runqueues
2037 * Note this does not disable interrupts like task_rq_lock,
2038 * you need to do so manually before calling.
2040 static inline void double_rq_lock(struct rq
*rq1
, struct rq
*rq2
)
2041 __acquires(rq1
->lock
)
2042 __acquires(rq2
->lock
)
2044 BUG_ON(!irqs_disabled());
2046 raw_spin_lock(&rq1
->lock
);
2047 __acquire(rq2
->lock
); /* Fake it out ;) */
2051 * double_rq_unlock - safely unlock two runqueues
2053 * Note this does not restore interrupts like task_rq_unlock,
2054 * you need to do so manually after calling.
2056 static inline void double_rq_unlock(struct rq
*rq1
, struct rq
*rq2
)
2057 __releases(rq1
->lock
)
2058 __releases(rq2
->lock
)
2061 raw_spin_unlock(&rq1
->lock
);
2062 __release(rq2
->lock
);
2067 extern struct sched_entity
*__pick_first_entity(struct cfs_rq
*cfs_rq
);
2068 extern struct sched_entity
*__pick_last_entity(struct cfs_rq
*cfs_rq
);
2070 #ifdef CONFIG_SCHED_DEBUG
2071 extern bool sched_debug_enabled
;
2073 extern void print_cfs_stats(struct seq_file
*m
, int cpu
);
2074 extern void print_rt_stats(struct seq_file
*m
, int cpu
);
2075 extern void print_dl_stats(struct seq_file
*m
, int cpu
);
2076 extern void print_cfs_rq(struct seq_file
*m
, int cpu
, struct cfs_rq
*cfs_rq
);
2077 extern void print_rt_rq(struct seq_file
*m
, int cpu
, struct rt_rq
*rt_rq
);
2078 extern void print_dl_rq(struct seq_file
*m
, int cpu
, struct dl_rq
*dl_rq
);
2079 #ifdef CONFIG_NUMA_BALANCING
2081 show_numa_stats(struct task_struct
*p
, struct seq_file
*m
);
2083 print_numa_stats(struct seq_file
*m
, int node
, unsigned long tsf
,
2084 unsigned long tpf
, unsigned long gsf
, unsigned long gpf
);
2085 #endif /* CONFIG_NUMA_BALANCING */
2086 #endif /* CONFIG_SCHED_DEBUG */
2088 extern void init_cfs_rq(struct cfs_rq
*cfs_rq
);
2089 extern void init_rt_rq(struct rt_rq
*rt_rq
);
2090 extern void init_dl_rq(struct dl_rq
*dl_rq
);
2092 extern void cfs_bandwidth_usage_inc(void);
2093 extern void cfs_bandwidth_usage_dec(void);
2095 #ifdef CONFIG_NO_HZ_COMMON
2096 #define NOHZ_BALANCE_KICK_BIT 0
2097 #define NOHZ_STATS_KICK_BIT 1
2099 #define NOHZ_BALANCE_KICK BIT(NOHZ_BALANCE_KICK_BIT)
2100 #define NOHZ_STATS_KICK BIT(NOHZ_STATS_KICK_BIT)
2102 #define NOHZ_KICK_MASK (NOHZ_BALANCE_KICK | NOHZ_STATS_KICK)
2104 #define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags)
2106 extern void nohz_balance_exit_idle(struct rq
*rq
);
2108 static inline void nohz_balance_exit_idle(struct rq
*rq
) { }
2114 void __dl_update(struct dl_bw
*dl_b
, s64 bw
)
2116 struct root_domain
*rd
= container_of(dl_b
, struct root_domain
, dl_bw
);
2119 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2120 "sched RCU must be held");
2121 for_each_cpu_and(i
, rd
->span
, cpu_active_mask
) {
2122 struct rq
*rq
= cpu_rq(i
);
2124 rq
->dl
.extra_bw
+= bw
;
2129 void __dl_update(struct dl_bw
*dl_b
, s64 bw
)
2131 struct dl_rq
*dl
= container_of(dl_b
, struct dl_rq
, dl_bw
);
2138 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
2143 struct u64_stats_sync sync
;
2146 DECLARE_PER_CPU(struct irqtime
, cpu_irqtime
);
2149 * Returns the irqtime minus the softirq time computed by ksoftirqd.
2150 * Otherwise ksoftirqd's sum_exec_runtime is substracted its own runtime
2151 * and never move forward.
2153 static inline u64
irq_time_read(int cpu
)
2155 struct irqtime
*irqtime
= &per_cpu(cpu_irqtime
, cpu
);
2160 seq
= __u64_stats_fetch_begin(&irqtime
->sync
);
2161 total
= irqtime
->total
;
2162 } while (__u64_stats_fetch_retry(&irqtime
->sync
, seq
));
2166 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
2168 #ifdef CONFIG_CPU_FREQ
2169 DECLARE_PER_CPU(struct update_util_data
*, cpufreq_update_util_data
);
2172 * cpufreq_update_util - Take a note about CPU utilization changes.
2173 * @rq: Runqueue to carry out the update for.
2174 * @flags: Update reason flags.
2176 * This function is called by the scheduler on the CPU whose utilization is
2179 * It can only be called from RCU-sched read-side critical sections.
2181 * The way cpufreq is currently arranged requires it to evaluate the CPU
2182 * performance state (frequency/voltage) on a regular basis to prevent it from
2183 * being stuck in a completely inadequate performance level for too long.
2184 * That is not guaranteed to happen if the updates are only triggered from CFS
2185 * and DL, though, because they may not be coming in if only RT tasks are
2186 * active all the time (or there are RT tasks only).
2188 * As a workaround for that issue, this function is called periodically by the
2189 * RT sched class to trigger extra cpufreq updates to prevent it from stalling,
2190 * but that really is a band-aid. Going forward it should be replaced with
2191 * solutions targeted more specifically at RT tasks.
2193 static inline void cpufreq_update_util(struct rq
*rq
, unsigned int flags
)
2195 struct update_util_data
*data
;
2197 data
= rcu_dereference_sched(*per_cpu_ptr(&cpufreq_update_util_data
,
2200 data
->func(data
, rq_clock(rq
), flags
);
2203 static inline void cpufreq_update_util(struct rq
*rq
, unsigned int flags
) {}
2204 #endif /* CONFIG_CPU_FREQ */
2206 #ifdef arch_scale_freq_capacity
2207 # ifndef arch_scale_freq_invariant
2208 # define arch_scale_freq_invariant() true
2211 # define arch_scale_freq_invariant() false
2214 #ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL
2216 * enum schedutil_type - CPU utilization type
2217 * @FREQUENCY_UTIL: Utilization used to select frequency
2218 * @ENERGY_UTIL: Utilization used during energy calculation
2220 * The utilization signals of all scheduling classes (CFS/RT/DL) and IRQ time
2221 * need to be aggregated differently depending on the usage made of them. This
2222 * enum is used within schedutil_freq_util() to differentiate the types of
2223 * utilization expected by the callers, and adjust the aggregation accordingly.
2225 enum schedutil_type
{
2230 unsigned long schedutil_freq_util(int cpu
, unsigned long util_cfs
,
2231 unsigned long max
, enum schedutil_type type
);
2233 static inline unsigned long schedutil_energy_util(int cpu
, unsigned long cfs
)
2235 unsigned long max
= arch_scale_cpu_capacity(NULL
, cpu
);
2237 return schedutil_freq_util(cpu
, cfs
, max
, ENERGY_UTIL
);
2240 static inline unsigned long cpu_bw_dl(struct rq
*rq
)
2242 return (rq
->dl
.running_bw
* SCHED_CAPACITY_SCALE
) >> BW_SHIFT
;
2245 static inline unsigned long cpu_util_dl(struct rq
*rq
)
2247 return READ_ONCE(rq
->avg_dl
.util_avg
);
2250 static inline unsigned long cpu_util_cfs(struct rq
*rq
)
2252 unsigned long util
= READ_ONCE(rq
->cfs
.avg
.util_avg
);
2254 if (sched_feat(UTIL_EST
)) {
2255 util
= max_t(unsigned long, util
,
2256 READ_ONCE(rq
->cfs
.avg
.util_est
.enqueued
));
2262 static inline unsigned long cpu_util_rt(struct rq
*rq
)
2264 return READ_ONCE(rq
->avg_rt
.util_avg
);
2266 #else /* CONFIG_CPU_FREQ_GOV_SCHEDUTIL */
2267 static inline unsigned long schedutil_energy_util(int cpu
, unsigned long cfs
)
2273 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
2274 static inline unsigned long cpu_util_irq(struct rq
*rq
)
2276 return rq
->avg_irq
.util_avg
;
2280 unsigned long scale_irq_capacity(unsigned long util
, unsigned long irq
, unsigned long max
)
2282 util
*= (max
- irq
);
2289 static inline unsigned long cpu_util_irq(struct rq
*rq
)
2295 unsigned long scale_irq_capacity(unsigned long util
, unsigned long irq
, unsigned long max
)
2301 #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
2302 #define perf_domain_span(pd) (to_cpumask(((pd)->em_pd->cpus)))
2304 #define perf_domain_span(pd) NULL
2308 extern struct static_key_false sched_energy_present
;