net/mlx4_en: fix spelling mistake: "quiting" -> "quitting"
[linux-stable.git] / kernel / exit.c
blob2639a30a8aa5dd9054bc0af5951397efb1083713
1 /*
2 * linux/kernel/exit.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/sched/autogroup.h>
10 #include <linux/sched/mm.h>
11 #include <linux/sched/stat.h>
12 #include <linux/sched/task.h>
13 #include <linux/sched/task_stack.h>
14 #include <linux/sched/cputime.h>
15 #include <linux/interrupt.h>
16 #include <linux/module.h>
17 #include <linux/capability.h>
18 #include <linux/completion.h>
19 #include <linux/personality.h>
20 #include <linux/tty.h>
21 #include <linux/iocontext.h>
22 #include <linux/key.h>
23 #include <linux/cpu.h>
24 #include <linux/acct.h>
25 #include <linux/tsacct_kern.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
28 #include <linux/freezer.h>
29 #include <linux/binfmts.h>
30 #include <linux/nsproxy.h>
31 #include <linux/pid_namespace.h>
32 #include <linux/ptrace.h>
33 #include <linux/profile.h>
34 #include <linux/mount.h>
35 #include <linux/proc_fs.h>
36 #include <linux/kthread.h>
37 #include <linux/mempolicy.h>
38 #include <linux/taskstats_kern.h>
39 #include <linux/delayacct.h>
40 #include <linux/cgroup.h>
41 #include <linux/syscalls.h>
42 #include <linux/signal.h>
43 #include <linux/posix-timers.h>
44 #include <linux/cn_proc.h>
45 #include <linux/mutex.h>
46 #include <linux/futex.h>
47 #include <linux/pipe_fs_i.h>
48 #include <linux/audit.h> /* for audit_free() */
49 #include <linux/resource.h>
50 #include <linux/blkdev.h>
51 #include <linux/task_io_accounting_ops.h>
52 #include <linux/tracehook.h>
53 #include <linux/fs_struct.h>
54 #include <linux/init_task.h>
55 #include <linux/perf_event.h>
56 #include <trace/events/sched.h>
57 #include <linux/hw_breakpoint.h>
58 #include <linux/oom.h>
59 #include <linux/writeback.h>
60 #include <linux/shm.h>
61 #include <linux/kcov.h>
62 #include <linux/random.h>
63 #include <linux/rcuwait.h>
64 #include <linux/compat.h>
66 #include <linux/uaccess.h>
67 #include <asm/unistd.h>
68 #include <asm/pgtable.h>
69 #include <asm/mmu_context.h>
71 static void __unhash_process(struct task_struct *p, bool group_dead)
73 nr_threads--;
74 detach_pid(p, PIDTYPE_PID);
75 if (group_dead) {
76 detach_pid(p, PIDTYPE_TGID);
77 detach_pid(p, PIDTYPE_PGID);
78 detach_pid(p, PIDTYPE_SID);
80 list_del_rcu(&p->tasks);
81 list_del_init(&p->sibling);
82 __this_cpu_dec(process_counts);
84 list_del_rcu(&p->thread_group);
85 list_del_rcu(&p->thread_node);
89 * This function expects the tasklist_lock write-locked.
91 static void __exit_signal(struct task_struct *tsk)
93 struct signal_struct *sig = tsk->signal;
94 bool group_dead = thread_group_leader(tsk);
95 struct sighand_struct *sighand;
96 struct tty_struct *uninitialized_var(tty);
97 u64 utime, stime;
99 sighand = rcu_dereference_check(tsk->sighand,
100 lockdep_tasklist_lock_is_held());
101 spin_lock(&sighand->siglock);
103 #ifdef CONFIG_POSIX_TIMERS
104 posix_cpu_timers_exit(tsk);
105 if (group_dead) {
106 posix_cpu_timers_exit_group(tsk);
107 } else {
109 * This can only happen if the caller is de_thread().
110 * FIXME: this is the temporary hack, we should teach
111 * posix-cpu-timers to handle this case correctly.
113 if (unlikely(has_group_leader_pid(tsk)))
114 posix_cpu_timers_exit_group(tsk);
116 #endif
118 if (group_dead) {
119 tty = sig->tty;
120 sig->tty = NULL;
121 } else {
123 * If there is any task waiting for the group exit
124 * then notify it:
126 if (sig->notify_count > 0 && !--sig->notify_count)
127 wake_up_process(sig->group_exit_task);
129 if (tsk == sig->curr_target)
130 sig->curr_target = next_thread(tsk);
133 add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
134 sizeof(unsigned long long));
137 * Accumulate here the counters for all threads as they die. We could
138 * skip the group leader because it is the last user of signal_struct,
139 * but we want to avoid the race with thread_group_cputime() which can
140 * see the empty ->thread_head list.
142 task_cputime(tsk, &utime, &stime);
143 write_seqlock(&sig->stats_lock);
144 sig->utime += utime;
145 sig->stime += stime;
146 sig->gtime += task_gtime(tsk);
147 sig->min_flt += tsk->min_flt;
148 sig->maj_flt += tsk->maj_flt;
149 sig->nvcsw += tsk->nvcsw;
150 sig->nivcsw += tsk->nivcsw;
151 sig->inblock += task_io_get_inblock(tsk);
152 sig->oublock += task_io_get_oublock(tsk);
153 task_io_accounting_add(&sig->ioac, &tsk->ioac);
154 sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
155 sig->nr_threads--;
156 __unhash_process(tsk, group_dead);
157 write_sequnlock(&sig->stats_lock);
160 * Do this under ->siglock, we can race with another thread
161 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
163 flush_sigqueue(&tsk->pending);
164 tsk->sighand = NULL;
165 spin_unlock(&sighand->siglock);
167 __cleanup_sighand(sighand);
168 clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
169 if (group_dead) {
170 flush_sigqueue(&sig->shared_pending);
171 tty_kref_put(tty);
175 static void delayed_put_task_struct(struct rcu_head *rhp)
177 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
179 perf_event_delayed_put(tsk);
180 trace_sched_process_free(tsk);
181 put_task_struct(tsk);
185 void release_task(struct task_struct *p)
187 struct task_struct *leader;
188 int zap_leader;
189 repeat:
190 /* don't need to get the RCU readlock here - the process is dead and
191 * can't be modifying its own credentials. But shut RCU-lockdep up */
192 rcu_read_lock();
193 atomic_dec(&__task_cred(p)->user->processes);
194 rcu_read_unlock();
196 proc_flush_task(p);
198 write_lock_irq(&tasklist_lock);
199 ptrace_release_task(p);
200 __exit_signal(p);
203 * If we are the last non-leader member of the thread
204 * group, and the leader is zombie, then notify the
205 * group leader's parent process. (if it wants notification.)
207 zap_leader = 0;
208 leader = p->group_leader;
209 if (leader != p && thread_group_empty(leader)
210 && leader->exit_state == EXIT_ZOMBIE) {
212 * If we were the last child thread and the leader has
213 * exited already, and the leader's parent ignores SIGCHLD,
214 * then we are the one who should release the leader.
216 zap_leader = do_notify_parent(leader, leader->exit_signal);
217 if (zap_leader)
218 leader->exit_state = EXIT_DEAD;
221 write_unlock_irq(&tasklist_lock);
222 release_thread(p);
223 call_rcu(&p->rcu, delayed_put_task_struct);
225 p = leader;
226 if (unlikely(zap_leader))
227 goto repeat;
231 * Note that if this function returns a valid task_struct pointer (!NULL)
232 * task->usage must remain >0 for the duration of the RCU critical section.
234 struct task_struct *task_rcu_dereference(struct task_struct **ptask)
236 struct sighand_struct *sighand;
237 struct task_struct *task;
240 * We need to verify that release_task() was not called and thus
241 * delayed_put_task_struct() can't run and drop the last reference
242 * before rcu_read_unlock(). We check task->sighand != NULL,
243 * but we can read the already freed and reused memory.
245 retry:
246 task = rcu_dereference(*ptask);
247 if (!task)
248 return NULL;
250 probe_kernel_address(&task->sighand, sighand);
253 * Pairs with atomic_dec_and_test() in put_task_struct(). If this task
254 * was already freed we can not miss the preceding update of this
255 * pointer.
257 smp_rmb();
258 if (unlikely(task != READ_ONCE(*ptask)))
259 goto retry;
262 * We've re-checked that "task == *ptask", now we have two different
263 * cases:
265 * 1. This is actually the same task/task_struct. In this case
266 * sighand != NULL tells us it is still alive.
268 * 2. This is another task which got the same memory for task_struct.
269 * We can't know this of course, and we can not trust
270 * sighand != NULL.
272 * In this case we actually return a random value, but this is
273 * correct.
275 * If we return NULL - we can pretend that we actually noticed that
276 * *ptask was updated when the previous task has exited. Or pretend
277 * that probe_slab_address(&sighand) reads NULL.
279 * If we return the new task (because sighand is not NULL for any
280 * reason) - this is fine too. This (new) task can't go away before
281 * another gp pass.
283 * And note: We could even eliminate the false positive if re-read
284 * task->sighand once again to avoid the falsely NULL. But this case
285 * is very unlikely so we don't care.
287 if (!sighand)
288 return NULL;
290 return task;
293 void rcuwait_wake_up(struct rcuwait *w)
295 struct task_struct *task;
297 rcu_read_lock();
300 * Order condition vs @task, such that everything prior to the load
301 * of @task is visible. This is the condition as to why the user called
302 * rcuwait_trywake() in the first place. Pairs with set_current_state()
303 * barrier (A) in rcuwait_wait_event().
305 * WAIT WAKE
306 * [S] tsk = current [S] cond = true
307 * MB (A) MB (B)
308 * [L] cond [L] tsk
310 smp_mb(); /* (B) */
313 * Avoid using task_rcu_dereference() magic as long as we are careful,
314 * see comment in rcuwait_wait_event() regarding ->exit_state.
316 task = rcu_dereference(w->task);
317 if (task)
318 wake_up_process(task);
319 rcu_read_unlock();
323 * Determine if a process group is "orphaned", according to the POSIX
324 * definition in 2.2.2.52. Orphaned process groups are not to be affected
325 * by terminal-generated stop signals. Newly orphaned process groups are
326 * to receive a SIGHUP and a SIGCONT.
328 * "I ask you, have you ever known what it is to be an orphan?"
330 static int will_become_orphaned_pgrp(struct pid *pgrp,
331 struct task_struct *ignored_task)
333 struct task_struct *p;
335 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
336 if ((p == ignored_task) ||
337 (p->exit_state && thread_group_empty(p)) ||
338 is_global_init(p->real_parent))
339 continue;
341 if (task_pgrp(p->real_parent) != pgrp &&
342 task_session(p->real_parent) == task_session(p))
343 return 0;
344 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
346 return 1;
349 int is_current_pgrp_orphaned(void)
351 int retval;
353 read_lock(&tasklist_lock);
354 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
355 read_unlock(&tasklist_lock);
357 return retval;
360 static bool has_stopped_jobs(struct pid *pgrp)
362 struct task_struct *p;
364 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
365 if (p->signal->flags & SIGNAL_STOP_STOPPED)
366 return true;
367 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
369 return false;
373 * Check to see if any process groups have become orphaned as
374 * a result of our exiting, and if they have any stopped jobs,
375 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
377 static void
378 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
380 struct pid *pgrp = task_pgrp(tsk);
381 struct task_struct *ignored_task = tsk;
383 if (!parent)
384 /* exit: our father is in a different pgrp than
385 * we are and we were the only connection outside.
387 parent = tsk->real_parent;
388 else
389 /* reparent: our child is in a different pgrp than
390 * we are, and it was the only connection outside.
392 ignored_task = NULL;
394 if (task_pgrp(parent) != pgrp &&
395 task_session(parent) == task_session(tsk) &&
396 will_become_orphaned_pgrp(pgrp, ignored_task) &&
397 has_stopped_jobs(pgrp)) {
398 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
399 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
403 #ifdef CONFIG_MEMCG
405 * A task is exiting. If it owned this mm, find a new owner for the mm.
407 void mm_update_next_owner(struct mm_struct *mm)
409 struct task_struct *c, *g, *p = current;
411 retry:
413 * If the exiting or execing task is not the owner, it's
414 * someone else's problem.
416 if (mm->owner != p)
417 return;
419 * The current owner is exiting/execing and there are no other
420 * candidates. Do not leave the mm pointing to a possibly
421 * freed task structure.
423 if (atomic_read(&mm->mm_users) <= 1) {
424 mm->owner = NULL;
425 return;
428 read_lock(&tasklist_lock);
430 * Search in the children
432 list_for_each_entry(c, &p->children, sibling) {
433 if (c->mm == mm)
434 goto assign_new_owner;
438 * Search in the siblings
440 list_for_each_entry(c, &p->real_parent->children, sibling) {
441 if (c->mm == mm)
442 goto assign_new_owner;
446 * Search through everything else, we should not get here often.
448 for_each_process(g) {
449 if (g->flags & PF_KTHREAD)
450 continue;
451 for_each_thread(g, c) {
452 if (c->mm == mm)
453 goto assign_new_owner;
454 if (c->mm)
455 break;
458 read_unlock(&tasklist_lock);
460 * We found no owner yet mm_users > 1: this implies that we are
461 * most likely racing with swapoff (try_to_unuse()) or /proc or
462 * ptrace or page migration (get_task_mm()). Mark owner as NULL.
464 mm->owner = NULL;
465 return;
467 assign_new_owner:
468 BUG_ON(c == p);
469 get_task_struct(c);
471 * The task_lock protects c->mm from changing.
472 * We always want mm->owner->mm == mm
474 task_lock(c);
476 * Delay read_unlock() till we have the task_lock()
477 * to ensure that c does not slip away underneath us
479 read_unlock(&tasklist_lock);
480 if (c->mm != mm) {
481 task_unlock(c);
482 put_task_struct(c);
483 goto retry;
485 mm->owner = c;
486 task_unlock(c);
487 put_task_struct(c);
489 #endif /* CONFIG_MEMCG */
492 * Turn us into a lazy TLB process if we
493 * aren't already..
495 static void exit_mm(void)
497 struct mm_struct *mm = current->mm;
498 struct core_state *core_state;
500 mm_release(current, mm);
501 if (!mm)
502 return;
503 sync_mm_rss(mm);
505 * Serialize with any possible pending coredump.
506 * We must hold mmap_sem around checking core_state
507 * and clearing tsk->mm. The core-inducing thread
508 * will increment ->nr_threads for each thread in the
509 * group with ->mm != NULL.
511 down_read(&mm->mmap_sem);
512 core_state = mm->core_state;
513 if (core_state) {
514 struct core_thread self;
516 up_read(&mm->mmap_sem);
518 self.task = current;
519 self.next = xchg(&core_state->dumper.next, &self);
521 * Implies mb(), the result of xchg() must be visible
522 * to core_state->dumper.
524 if (atomic_dec_and_test(&core_state->nr_threads))
525 complete(&core_state->startup);
527 for (;;) {
528 set_current_state(TASK_UNINTERRUPTIBLE);
529 if (!self.task) /* see coredump_finish() */
530 break;
531 freezable_schedule();
533 __set_current_state(TASK_RUNNING);
534 down_read(&mm->mmap_sem);
536 mmgrab(mm);
537 BUG_ON(mm != current->active_mm);
538 /* more a memory barrier than a real lock */
539 task_lock(current);
540 current->mm = NULL;
541 up_read(&mm->mmap_sem);
542 enter_lazy_tlb(mm, current);
543 task_unlock(current);
544 mm_update_next_owner(mm);
545 mmput(mm);
546 if (test_thread_flag(TIF_MEMDIE))
547 exit_oom_victim();
550 static struct task_struct *find_alive_thread(struct task_struct *p)
552 struct task_struct *t;
554 for_each_thread(p, t) {
555 if (!(t->flags & PF_EXITING))
556 return t;
558 return NULL;
561 static struct task_struct *find_child_reaper(struct task_struct *father,
562 struct list_head *dead)
563 __releases(&tasklist_lock)
564 __acquires(&tasklist_lock)
566 struct pid_namespace *pid_ns = task_active_pid_ns(father);
567 struct task_struct *reaper = pid_ns->child_reaper;
568 struct task_struct *p, *n;
570 if (likely(reaper != father))
571 return reaper;
573 reaper = find_alive_thread(father);
574 if (reaper) {
575 pid_ns->child_reaper = reaper;
576 return reaper;
579 write_unlock_irq(&tasklist_lock);
580 if (unlikely(pid_ns == &init_pid_ns)) {
581 panic("Attempted to kill init! exitcode=0x%08x\n",
582 father->signal->group_exit_code ?: father->exit_code);
585 list_for_each_entry_safe(p, n, dead, ptrace_entry) {
586 list_del_init(&p->ptrace_entry);
587 release_task(p);
590 zap_pid_ns_processes(pid_ns);
591 write_lock_irq(&tasklist_lock);
593 return father;
597 * When we die, we re-parent all our children, and try to:
598 * 1. give them to another thread in our thread group, if such a member exists
599 * 2. give it to the first ancestor process which prctl'd itself as a
600 * child_subreaper for its children (like a service manager)
601 * 3. give it to the init process (PID 1) in our pid namespace
603 static struct task_struct *find_new_reaper(struct task_struct *father,
604 struct task_struct *child_reaper)
606 struct task_struct *thread, *reaper;
608 thread = find_alive_thread(father);
609 if (thread)
610 return thread;
612 if (father->signal->has_child_subreaper) {
613 unsigned int ns_level = task_pid(father)->level;
615 * Find the first ->is_child_subreaper ancestor in our pid_ns.
616 * We can't check reaper != child_reaper to ensure we do not
617 * cross the namespaces, the exiting parent could be injected
618 * by setns() + fork().
619 * We check pid->level, this is slightly more efficient than
620 * task_active_pid_ns(reaper) != task_active_pid_ns(father).
622 for (reaper = father->real_parent;
623 task_pid(reaper)->level == ns_level;
624 reaper = reaper->real_parent) {
625 if (reaper == &init_task)
626 break;
627 if (!reaper->signal->is_child_subreaper)
628 continue;
629 thread = find_alive_thread(reaper);
630 if (thread)
631 return thread;
635 return child_reaper;
639 * Any that need to be release_task'd are put on the @dead list.
641 static void reparent_leader(struct task_struct *father, struct task_struct *p,
642 struct list_head *dead)
644 if (unlikely(p->exit_state == EXIT_DEAD))
645 return;
647 /* We don't want people slaying init. */
648 p->exit_signal = SIGCHLD;
650 /* If it has exited notify the new parent about this child's death. */
651 if (!p->ptrace &&
652 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
653 if (do_notify_parent(p, p->exit_signal)) {
654 p->exit_state = EXIT_DEAD;
655 list_add(&p->ptrace_entry, dead);
659 kill_orphaned_pgrp(p, father);
663 * This does two things:
665 * A. Make init inherit all the child processes
666 * B. Check to see if any process groups have become orphaned
667 * as a result of our exiting, and if they have any stopped
668 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
670 static void forget_original_parent(struct task_struct *father,
671 struct list_head *dead)
673 struct task_struct *p, *t, *reaper;
675 if (unlikely(!list_empty(&father->ptraced)))
676 exit_ptrace(father, dead);
678 /* Can drop and reacquire tasklist_lock */
679 reaper = find_child_reaper(father, dead);
680 if (list_empty(&father->children))
681 return;
683 reaper = find_new_reaper(father, reaper);
684 list_for_each_entry(p, &father->children, sibling) {
685 for_each_thread(p, t) {
686 t->real_parent = reaper;
687 BUG_ON((!t->ptrace) != (t->parent == father));
688 if (likely(!t->ptrace))
689 t->parent = t->real_parent;
690 if (t->pdeath_signal)
691 group_send_sig_info(t->pdeath_signal,
692 SEND_SIG_NOINFO, t,
693 PIDTYPE_TGID);
696 * If this is a threaded reparent there is no need to
697 * notify anyone anything has happened.
699 if (!same_thread_group(reaper, father))
700 reparent_leader(father, p, dead);
702 list_splice_tail_init(&father->children, &reaper->children);
706 * Send signals to all our closest relatives so that they know
707 * to properly mourn us..
709 static void exit_notify(struct task_struct *tsk, int group_dead)
711 bool autoreap;
712 struct task_struct *p, *n;
713 LIST_HEAD(dead);
715 write_lock_irq(&tasklist_lock);
716 forget_original_parent(tsk, &dead);
718 if (group_dead)
719 kill_orphaned_pgrp(tsk->group_leader, NULL);
721 if (unlikely(tsk->ptrace)) {
722 int sig = thread_group_leader(tsk) &&
723 thread_group_empty(tsk) &&
724 !ptrace_reparented(tsk) ?
725 tsk->exit_signal : SIGCHLD;
726 autoreap = do_notify_parent(tsk, sig);
727 } else if (thread_group_leader(tsk)) {
728 autoreap = thread_group_empty(tsk) &&
729 do_notify_parent(tsk, tsk->exit_signal);
730 } else {
731 autoreap = true;
734 tsk->exit_state = autoreap ? EXIT_DEAD : EXIT_ZOMBIE;
735 if (tsk->exit_state == EXIT_DEAD)
736 list_add(&tsk->ptrace_entry, &dead);
738 /* mt-exec, de_thread() is waiting for group leader */
739 if (unlikely(tsk->signal->notify_count < 0))
740 wake_up_process(tsk->signal->group_exit_task);
741 write_unlock_irq(&tasklist_lock);
743 list_for_each_entry_safe(p, n, &dead, ptrace_entry) {
744 list_del_init(&p->ptrace_entry);
745 release_task(p);
749 #ifdef CONFIG_DEBUG_STACK_USAGE
750 static void check_stack_usage(void)
752 static DEFINE_SPINLOCK(low_water_lock);
753 static int lowest_to_date = THREAD_SIZE;
754 unsigned long free;
756 free = stack_not_used(current);
758 if (free >= lowest_to_date)
759 return;
761 spin_lock(&low_water_lock);
762 if (free < lowest_to_date) {
763 pr_info("%s (%d) used greatest stack depth: %lu bytes left\n",
764 current->comm, task_pid_nr(current), free);
765 lowest_to_date = free;
767 spin_unlock(&low_water_lock);
769 #else
770 static inline void check_stack_usage(void) {}
771 #endif
773 void __noreturn do_exit(long code)
775 struct task_struct *tsk = current;
776 int group_dead;
778 profile_task_exit(tsk);
779 kcov_task_exit(tsk);
781 WARN_ON(blk_needs_flush_plug(tsk));
783 if (unlikely(in_interrupt()))
784 panic("Aiee, killing interrupt handler!");
785 if (unlikely(!tsk->pid))
786 panic("Attempted to kill the idle task!");
789 * If do_exit is called because this processes oopsed, it's possible
790 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
791 * continuing. Amongst other possible reasons, this is to prevent
792 * mm_release()->clear_child_tid() from writing to a user-controlled
793 * kernel address.
795 set_fs(USER_DS);
797 ptrace_event(PTRACE_EVENT_EXIT, code);
799 validate_creds_for_do_exit(tsk);
802 * We're taking recursive faults here in do_exit. Safest is to just
803 * leave this task alone and wait for reboot.
805 if (unlikely(tsk->flags & PF_EXITING)) {
806 pr_alert("Fixing recursive fault but reboot is needed!\n");
808 * We can do this unlocked here. The futex code uses
809 * this flag just to verify whether the pi state
810 * cleanup has been done or not. In the worst case it
811 * loops once more. We pretend that the cleanup was
812 * done as there is no way to return. Either the
813 * OWNER_DIED bit is set by now or we push the blocked
814 * task into the wait for ever nirwana as well.
816 tsk->flags |= PF_EXITPIDONE;
817 set_current_state(TASK_UNINTERRUPTIBLE);
818 schedule();
821 exit_signals(tsk); /* sets PF_EXITING */
823 * Ensure that all new tsk->pi_lock acquisitions must observe
824 * PF_EXITING. Serializes against futex.c:attach_to_pi_owner().
826 smp_mb();
828 * Ensure that we must observe the pi_state in exit_mm() ->
829 * mm_release() -> exit_pi_state_list().
831 raw_spin_lock_irq(&tsk->pi_lock);
832 raw_spin_unlock_irq(&tsk->pi_lock);
834 if (unlikely(in_atomic())) {
835 pr_info("note: %s[%d] exited with preempt_count %d\n",
836 current->comm, task_pid_nr(current),
837 preempt_count());
838 preempt_count_set(PREEMPT_ENABLED);
841 /* sync mm's RSS info before statistics gathering */
842 if (tsk->mm)
843 sync_mm_rss(tsk->mm);
844 acct_update_integrals(tsk);
845 group_dead = atomic_dec_and_test(&tsk->signal->live);
846 if (group_dead) {
847 #ifdef CONFIG_POSIX_TIMERS
848 hrtimer_cancel(&tsk->signal->real_timer);
849 exit_itimers(tsk->signal);
850 #endif
851 if (tsk->mm)
852 setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
854 acct_collect(code, group_dead);
855 if (group_dead)
856 tty_audit_exit();
857 audit_free(tsk);
859 tsk->exit_code = code;
860 taskstats_exit(tsk, group_dead);
862 exit_mm();
864 if (group_dead)
865 acct_process();
866 trace_sched_process_exit(tsk);
868 exit_sem(tsk);
869 exit_shm(tsk);
870 exit_files(tsk);
871 exit_fs(tsk);
872 if (group_dead)
873 disassociate_ctty(1);
874 exit_task_namespaces(tsk);
875 exit_task_work(tsk);
876 exit_thread(tsk);
877 exit_umh(tsk);
880 * Flush inherited counters to the parent - before the parent
881 * gets woken up by child-exit notifications.
883 * because of cgroup mode, must be called before cgroup_exit()
885 perf_event_exit_task(tsk);
887 sched_autogroup_exit_task(tsk);
888 cgroup_exit(tsk);
891 * FIXME: do that only when needed, using sched_exit tracepoint
893 flush_ptrace_hw_breakpoint(tsk);
895 exit_tasks_rcu_start();
896 exit_notify(tsk, group_dead);
897 proc_exit_connector(tsk);
898 mpol_put_task_policy(tsk);
899 #ifdef CONFIG_FUTEX
900 if (unlikely(current->pi_state_cache))
901 kfree(current->pi_state_cache);
902 #endif
904 * Make sure we are holding no locks:
906 debug_check_no_locks_held();
908 * We can do this unlocked here. The futex code uses this flag
909 * just to verify whether the pi state cleanup has been done
910 * or not. In the worst case it loops once more.
912 tsk->flags |= PF_EXITPIDONE;
914 if (tsk->io_context)
915 exit_io_context(tsk);
917 if (tsk->splice_pipe)
918 free_pipe_info(tsk->splice_pipe);
920 if (tsk->task_frag.page)
921 put_page(tsk->task_frag.page);
923 validate_creds_for_do_exit(tsk);
925 check_stack_usage();
926 preempt_disable();
927 if (tsk->nr_dirtied)
928 __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
929 exit_rcu();
930 exit_tasks_rcu_finish();
932 lockdep_free_task(tsk);
933 do_task_dead();
935 EXPORT_SYMBOL_GPL(do_exit);
937 void complete_and_exit(struct completion *comp, long code)
939 if (comp)
940 complete(comp);
942 do_exit(code);
944 EXPORT_SYMBOL(complete_and_exit);
946 SYSCALL_DEFINE1(exit, int, error_code)
948 do_exit((error_code&0xff)<<8);
952 * Take down every thread in the group. This is called by fatal signals
953 * as well as by sys_exit_group (below).
955 void
956 do_group_exit(int exit_code)
958 struct signal_struct *sig = current->signal;
960 BUG_ON(exit_code & 0x80); /* core dumps don't get here */
962 if (signal_group_exit(sig))
963 exit_code = sig->group_exit_code;
964 else if (!thread_group_empty(current)) {
965 struct sighand_struct *const sighand = current->sighand;
967 spin_lock_irq(&sighand->siglock);
968 if (signal_group_exit(sig))
969 /* Another thread got here before we took the lock. */
970 exit_code = sig->group_exit_code;
971 else {
972 sig->group_exit_code = exit_code;
973 sig->flags = SIGNAL_GROUP_EXIT;
974 zap_other_threads(current);
976 spin_unlock_irq(&sighand->siglock);
979 do_exit(exit_code);
980 /* NOTREACHED */
984 * this kills every thread in the thread group. Note that any externally
985 * wait4()-ing process will get the correct exit code - even if this
986 * thread is not the thread group leader.
988 SYSCALL_DEFINE1(exit_group, int, error_code)
990 do_group_exit((error_code & 0xff) << 8);
991 /* NOTREACHED */
992 return 0;
995 struct waitid_info {
996 pid_t pid;
997 uid_t uid;
998 int status;
999 int cause;
1002 struct wait_opts {
1003 enum pid_type wo_type;
1004 int wo_flags;
1005 struct pid *wo_pid;
1007 struct waitid_info *wo_info;
1008 int wo_stat;
1009 struct rusage *wo_rusage;
1011 wait_queue_entry_t child_wait;
1012 int notask_error;
1015 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
1017 return wo->wo_type == PIDTYPE_MAX ||
1018 task_pid_type(p, wo->wo_type) == wo->wo_pid;
1021 static int
1022 eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p)
1024 if (!eligible_pid(wo, p))
1025 return 0;
1028 * Wait for all children (clone and not) if __WALL is set or
1029 * if it is traced by us.
1031 if (ptrace || (wo->wo_flags & __WALL))
1032 return 1;
1035 * Otherwise, wait for clone children *only* if __WCLONE is set;
1036 * otherwise, wait for non-clone children *only*.
1038 * Note: a "clone" child here is one that reports to its parent
1039 * using a signal other than SIGCHLD, or a non-leader thread which
1040 * we can only see if it is traced by us.
1042 if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
1043 return 0;
1045 return 1;
1049 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
1050 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1051 * the lock and this task is uninteresting. If we return nonzero, we have
1052 * released the lock and the system call should return.
1054 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1056 int state, status;
1057 pid_t pid = task_pid_vnr(p);
1058 uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
1059 struct waitid_info *infop;
1061 if (!likely(wo->wo_flags & WEXITED))
1062 return 0;
1064 if (unlikely(wo->wo_flags & WNOWAIT)) {
1065 status = p->exit_code;
1066 get_task_struct(p);
1067 read_unlock(&tasklist_lock);
1068 sched_annotate_sleep();
1069 if (wo->wo_rusage)
1070 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1071 put_task_struct(p);
1072 goto out_info;
1075 * Move the task's state to DEAD/TRACE, only one thread can do this.
1077 state = (ptrace_reparented(p) && thread_group_leader(p)) ?
1078 EXIT_TRACE : EXIT_DEAD;
1079 if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
1080 return 0;
1082 * We own this thread, nobody else can reap it.
1084 read_unlock(&tasklist_lock);
1085 sched_annotate_sleep();
1088 * Check thread_group_leader() to exclude the traced sub-threads.
1090 if (state == EXIT_DEAD && thread_group_leader(p)) {
1091 struct signal_struct *sig = p->signal;
1092 struct signal_struct *psig = current->signal;
1093 unsigned long maxrss;
1094 u64 tgutime, tgstime;
1097 * The resource counters for the group leader are in its
1098 * own task_struct. Those for dead threads in the group
1099 * are in its signal_struct, as are those for the child
1100 * processes it has previously reaped. All these
1101 * accumulate in the parent's signal_struct c* fields.
1103 * We don't bother to take a lock here to protect these
1104 * p->signal fields because the whole thread group is dead
1105 * and nobody can change them.
1107 * psig->stats_lock also protects us from our sub-theads
1108 * which can reap other children at the same time. Until
1109 * we change k_getrusage()-like users to rely on this lock
1110 * we have to take ->siglock as well.
1112 * We use thread_group_cputime_adjusted() to get times for
1113 * the thread group, which consolidates times for all threads
1114 * in the group including the group leader.
1116 thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1117 spin_lock_irq(&current->sighand->siglock);
1118 write_seqlock(&psig->stats_lock);
1119 psig->cutime += tgutime + sig->cutime;
1120 psig->cstime += tgstime + sig->cstime;
1121 psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1122 psig->cmin_flt +=
1123 p->min_flt + sig->min_flt + sig->cmin_flt;
1124 psig->cmaj_flt +=
1125 p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1126 psig->cnvcsw +=
1127 p->nvcsw + sig->nvcsw + sig->cnvcsw;
1128 psig->cnivcsw +=
1129 p->nivcsw + sig->nivcsw + sig->cnivcsw;
1130 psig->cinblock +=
1131 task_io_get_inblock(p) +
1132 sig->inblock + sig->cinblock;
1133 psig->coublock +=
1134 task_io_get_oublock(p) +
1135 sig->oublock + sig->coublock;
1136 maxrss = max(sig->maxrss, sig->cmaxrss);
1137 if (psig->cmaxrss < maxrss)
1138 psig->cmaxrss = maxrss;
1139 task_io_accounting_add(&psig->ioac, &p->ioac);
1140 task_io_accounting_add(&psig->ioac, &sig->ioac);
1141 write_sequnlock(&psig->stats_lock);
1142 spin_unlock_irq(&current->sighand->siglock);
1145 if (wo->wo_rusage)
1146 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1147 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1148 ? p->signal->group_exit_code : p->exit_code;
1149 wo->wo_stat = status;
1151 if (state == EXIT_TRACE) {
1152 write_lock_irq(&tasklist_lock);
1153 /* We dropped tasklist, ptracer could die and untrace */
1154 ptrace_unlink(p);
1156 /* If parent wants a zombie, don't release it now */
1157 state = EXIT_ZOMBIE;
1158 if (do_notify_parent(p, p->exit_signal))
1159 state = EXIT_DEAD;
1160 p->exit_state = state;
1161 write_unlock_irq(&tasklist_lock);
1163 if (state == EXIT_DEAD)
1164 release_task(p);
1166 out_info:
1167 infop = wo->wo_info;
1168 if (infop) {
1169 if ((status & 0x7f) == 0) {
1170 infop->cause = CLD_EXITED;
1171 infop->status = status >> 8;
1172 } else {
1173 infop->cause = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1174 infop->status = status & 0x7f;
1176 infop->pid = pid;
1177 infop->uid = uid;
1180 return pid;
1183 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1185 if (ptrace) {
1186 if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING))
1187 return &p->exit_code;
1188 } else {
1189 if (p->signal->flags & SIGNAL_STOP_STOPPED)
1190 return &p->signal->group_exit_code;
1192 return NULL;
1196 * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1197 * @wo: wait options
1198 * @ptrace: is the wait for ptrace
1199 * @p: task to wait for
1201 * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1203 * CONTEXT:
1204 * read_lock(&tasklist_lock), which is released if return value is
1205 * non-zero. Also, grabs and releases @p->sighand->siglock.
1207 * RETURNS:
1208 * 0 if wait condition didn't exist and search for other wait conditions
1209 * should continue. Non-zero return, -errno on failure and @p's pid on
1210 * success, implies that tasklist_lock is released and wait condition
1211 * search should terminate.
1213 static int wait_task_stopped(struct wait_opts *wo,
1214 int ptrace, struct task_struct *p)
1216 struct waitid_info *infop;
1217 int exit_code, *p_code, why;
1218 uid_t uid = 0; /* unneeded, required by compiler */
1219 pid_t pid;
1222 * Traditionally we see ptrace'd stopped tasks regardless of options.
1224 if (!ptrace && !(wo->wo_flags & WUNTRACED))
1225 return 0;
1227 if (!task_stopped_code(p, ptrace))
1228 return 0;
1230 exit_code = 0;
1231 spin_lock_irq(&p->sighand->siglock);
1233 p_code = task_stopped_code(p, ptrace);
1234 if (unlikely(!p_code))
1235 goto unlock_sig;
1237 exit_code = *p_code;
1238 if (!exit_code)
1239 goto unlock_sig;
1241 if (!unlikely(wo->wo_flags & WNOWAIT))
1242 *p_code = 0;
1244 uid = from_kuid_munged(current_user_ns(), task_uid(p));
1245 unlock_sig:
1246 spin_unlock_irq(&p->sighand->siglock);
1247 if (!exit_code)
1248 return 0;
1251 * Now we are pretty sure this task is interesting.
1252 * Make sure it doesn't get reaped out from under us while we
1253 * give up the lock and then examine it below. We don't want to
1254 * keep holding onto the tasklist_lock while we call getrusage and
1255 * possibly take page faults for user memory.
1257 get_task_struct(p);
1258 pid = task_pid_vnr(p);
1259 why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1260 read_unlock(&tasklist_lock);
1261 sched_annotate_sleep();
1262 if (wo->wo_rusage)
1263 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1264 put_task_struct(p);
1266 if (likely(!(wo->wo_flags & WNOWAIT)))
1267 wo->wo_stat = (exit_code << 8) | 0x7f;
1269 infop = wo->wo_info;
1270 if (infop) {
1271 infop->cause = why;
1272 infop->status = exit_code;
1273 infop->pid = pid;
1274 infop->uid = uid;
1276 return pid;
1280 * Handle do_wait work for one task in a live, non-stopped state.
1281 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1282 * the lock and this task is uninteresting. If we return nonzero, we have
1283 * released the lock and the system call should return.
1285 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1287 struct waitid_info *infop;
1288 pid_t pid;
1289 uid_t uid;
1291 if (!unlikely(wo->wo_flags & WCONTINUED))
1292 return 0;
1294 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1295 return 0;
1297 spin_lock_irq(&p->sighand->siglock);
1298 /* Re-check with the lock held. */
1299 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1300 spin_unlock_irq(&p->sighand->siglock);
1301 return 0;
1303 if (!unlikely(wo->wo_flags & WNOWAIT))
1304 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1305 uid = from_kuid_munged(current_user_ns(), task_uid(p));
1306 spin_unlock_irq(&p->sighand->siglock);
1308 pid = task_pid_vnr(p);
1309 get_task_struct(p);
1310 read_unlock(&tasklist_lock);
1311 sched_annotate_sleep();
1312 if (wo->wo_rusage)
1313 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1314 put_task_struct(p);
1316 infop = wo->wo_info;
1317 if (!infop) {
1318 wo->wo_stat = 0xffff;
1319 } else {
1320 infop->cause = CLD_CONTINUED;
1321 infop->pid = pid;
1322 infop->uid = uid;
1323 infop->status = SIGCONT;
1325 return pid;
1329 * Consider @p for a wait by @parent.
1331 * -ECHILD should be in ->notask_error before the first call.
1332 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1333 * Returns zero if the search for a child should continue;
1334 * then ->notask_error is 0 if @p is an eligible child,
1335 * or still -ECHILD.
1337 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1338 struct task_struct *p)
1341 * We can race with wait_task_zombie() from another thread.
1342 * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
1343 * can't confuse the checks below.
1345 int exit_state = READ_ONCE(p->exit_state);
1346 int ret;
1348 if (unlikely(exit_state == EXIT_DEAD))
1349 return 0;
1351 ret = eligible_child(wo, ptrace, p);
1352 if (!ret)
1353 return ret;
1355 if (unlikely(exit_state == EXIT_TRACE)) {
1357 * ptrace == 0 means we are the natural parent. In this case
1358 * we should clear notask_error, debugger will notify us.
1360 if (likely(!ptrace))
1361 wo->notask_error = 0;
1362 return 0;
1365 if (likely(!ptrace) && unlikely(p->ptrace)) {
1367 * If it is traced by its real parent's group, just pretend
1368 * the caller is ptrace_do_wait() and reap this child if it
1369 * is zombie.
1371 * This also hides group stop state from real parent; otherwise
1372 * a single stop can be reported twice as group and ptrace stop.
1373 * If a ptracer wants to distinguish these two events for its
1374 * own children it should create a separate process which takes
1375 * the role of real parent.
1377 if (!ptrace_reparented(p))
1378 ptrace = 1;
1381 /* slay zombie? */
1382 if (exit_state == EXIT_ZOMBIE) {
1383 /* we don't reap group leaders with subthreads */
1384 if (!delay_group_leader(p)) {
1386 * A zombie ptracee is only visible to its ptracer.
1387 * Notification and reaping will be cascaded to the
1388 * real parent when the ptracer detaches.
1390 if (unlikely(ptrace) || likely(!p->ptrace))
1391 return wait_task_zombie(wo, p);
1395 * Allow access to stopped/continued state via zombie by
1396 * falling through. Clearing of notask_error is complex.
1398 * When !@ptrace:
1400 * If WEXITED is set, notask_error should naturally be
1401 * cleared. If not, subset of WSTOPPED|WCONTINUED is set,
1402 * so, if there are live subthreads, there are events to
1403 * wait for. If all subthreads are dead, it's still safe
1404 * to clear - this function will be called again in finite
1405 * amount time once all the subthreads are released and
1406 * will then return without clearing.
1408 * When @ptrace:
1410 * Stopped state is per-task and thus can't change once the
1411 * target task dies. Only continued and exited can happen.
1412 * Clear notask_error if WCONTINUED | WEXITED.
1414 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1415 wo->notask_error = 0;
1416 } else {
1418 * @p is alive and it's gonna stop, continue or exit, so
1419 * there always is something to wait for.
1421 wo->notask_error = 0;
1425 * Wait for stopped. Depending on @ptrace, different stopped state
1426 * is used and the two don't interact with each other.
1428 ret = wait_task_stopped(wo, ptrace, p);
1429 if (ret)
1430 return ret;
1433 * Wait for continued. There's only one continued state and the
1434 * ptracer can consume it which can confuse the real parent. Don't
1435 * use WCONTINUED from ptracer. You don't need or want it.
1437 return wait_task_continued(wo, p);
1441 * Do the work of do_wait() for one thread in the group, @tsk.
1443 * -ECHILD should be in ->notask_error before the first call.
1444 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1445 * Returns zero if the search for a child should continue; then
1446 * ->notask_error is 0 if there were any eligible children,
1447 * or still -ECHILD.
1449 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1451 struct task_struct *p;
1453 list_for_each_entry(p, &tsk->children, sibling) {
1454 int ret = wait_consider_task(wo, 0, p);
1456 if (ret)
1457 return ret;
1460 return 0;
1463 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1465 struct task_struct *p;
1467 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1468 int ret = wait_consider_task(wo, 1, p);
1470 if (ret)
1471 return ret;
1474 return 0;
1477 static int child_wait_callback(wait_queue_entry_t *wait, unsigned mode,
1478 int sync, void *key)
1480 struct wait_opts *wo = container_of(wait, struct wait_opts,
1481 child_wait);
1482 struct task_struct *p = key;
1484 if (!eligible_pid(wo, p))
1485 return 0;
1487 if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1488 return 0;
1490 return default_wake_function(wait, mode, sync, key);
1493 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1495 __wake_up_sync_key(&parent->signal->wait_chldexit,
1496 TASK_INTERRUPTIBLE, 1, p);
1499 static long do_wait(struct wait_opts *wo)
1501 struct task_struct *tsk;
1502 int retval;
1504 trace_sched_process_wait(wo->wo_pid);
1506 init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1507 wo->child_wait.private = current;
1508 add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1509 repeat:
1511 * If there is nothing that can match our criteria, just get out.
1512 * We will clear ->notask_error to zero if we see any child that
1513 * might later match our criteria, even if we are not able to reap
1514 * it yet.
1516 wo->notask_error = -ECHILD;
1517 if ((wo->wo_type < PIDTYPE_MAX) &&
1518 (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type])))
1519 goto notask;
1521 set_current_state(TASK_INTERRUPTIBLE);
1522 read_lock(&tasklist_lock);
1523 tsk = current;
1524 do {
1525 retval = do_wait_thread(wo, tsk);
1526 if (retval)
1527 goto end;
1529 retval = ptrace_do_wait(wo, tsk);
1530 if (retval)
1531 goto end;
1533 if (wo->wo_flags & __WNOTHREAD)
1534 break;
1535 } while_each_thread(current, tsk);
1536 read_unlock(&tasklist_lock);
1538 notask:
1539 retval = wo->notask_error;
1540 if (!retval && !(wo->wo_flags & WNOHANG)) {
1541 retval = -ERESTARTSYS;
1542 if (!signal_pending(current)) {
1543 schedule();
1544 goto repeat;
1547 end:
1548 __set_current_state(TASK_RUNNING);
1549 remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1550 return retval;
1553 static long kernel_waitid(int which, pid_t upid, struct waitid_info *infop,
1554 int options, struct rusage *ru)
1556 struct wait_opts wo;
1557 struct pid *pid = NULL;
1558 enum pid_type type;
1559 long ret;
1561 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED|
1562 __WNOTHREAD|__WCLONE|__WALL))
1563 return -EINVAL;
1564 if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1565 return -EINVAL;
1567 switch (which) {
1568 case P_ALL:
1569 type = PIDTYPE_MAX;
1570 break;
1571 case P_PID:
1572 type = PIDTYPE_PID;
1573 if (upid <= 0)
1574 return -EINVAL;
1575 break;
1576 case P_PGID:
1577 type = PIDTYPE_PGID;
1578 if (upid <= 0)
1579 return -EINVAL;
1580 break;
1581 default:
1582 return -EINVAL;
1585 if (type < PIDTYPE_MAX)
1586 pid = find_get_pid(upid);
1588 wo.wo_type = type;
1589 wo.wo_pid = pid;
1590 wo.wo_flags = options;
1591 wo.wo_info = infop;
1592 wo.wo_rusage = ru;
1593 ret = do_wait(&wo);
1595 put_pid(pid);
1596 return ret;
1599 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1600 infop, int, options, struct rusage __user *, ru)
1602 struct rusage r;
1603 struct waitid_info info = {.status = 0};
1604 long err = kernel_waitid(which, upid, &info, options, ru ? &r : NULL);
1605 int signo = 0;
1607 if (err > 0) {
1608 signo = SIGCHLD;
1609 err = 0;
1610 if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1611 return -EFAULT;
1613 if (!infop)
1614 return err;
1616 if (!user_access_begin(infop, sizeof(*infop)))
1617 return -EFAULT;
1619 unsafe_put_user(signo, &infop->si_signo, Efault);
1620 unsafe_put_user(0, &infop->si_errno, Efault);
1621 unsafe_put_user(info.cause, &infop->si_code, Efault);
1622 unsafe_put_user(info.pid, &infop->si_pid, Efault);
1623 unsafe_put_user(info.uid, &infop->si_uid, Efault);
1624 unsafe_put_user(info.status, &infop->si_status, Efault);
1625 user_access_end();
1626 return err;
1627 Efault:
1628 user_access_end();
1629 return -EFAULT;
1632 long kernel_wait4(pid_t upid, int __user *stat_addr, int options,
1633 struct rusage *ru)
1635 struct wait_opts wo;
1636 struct pid *pid = NULL;
1637 enum pid_type type;
1638 long ret;
1640 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1641 __WNOTHREAD|__WCLONE|__WALL))
1642 return -EINVAL;
1644 /* -INT_MIN is not defined */
1645 if (upid == INT_MIN)
1646 return -ESRCH;
1648 if (upid == -1)
1649 type = PIDTYPE_MAX;
1650 else if (upid < 0) {
1651 type = PIDTYPE_PGID;
1652 pid = find_get_pid(-upid);
1653 } else if (upid == 0) {
1654 type = PIDTYPE_PGID;
1655 pid = get_task_pid(current, PIDTYPE_PGID);
1656 } else /* upid > 0 */ {
1657 type = PIDTYPE_PID;
1658 pid = find_get_pid(upid);
1661 wo.wo_type = type;
1662 wo.wo_pid = pid;
1663 wo.wo_flags = options | WEXITED;
1664 wo.wo_info = NULL;
1665 wo.wo_stat = 0;
1666 wo.wo_rusage = ru;
1667 ret = do_wait(&wo);
1668 put_pid(pid);
1669 if (ret > 0 && stat_addr && put_user(wo.wo_stat, stat_addr))
1670 ret = -EFAULT;
1672 return ret;
1675 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1676 int, options, struct rusage __user *, ru)
1678 struct rusage r;
1679 long err = kernel_wait4(upid, stat_addr, options, ru ? &r : NULL);
1681 if (err > 0) {
1682 if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1683 return -EFAULT;
1685 return err;
1688 #ifdef __ARCH_WANT_SYS_WAITPID
1691 * sys_waitpid() remains for compatibility. waitpid() should be
1692 * implemented by calling sys_wait4() from libc.a.
1694 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1696 return kernel_wait4(pid, stat_addr, options, NULL);
1699 #endif
1701 #ifdef CONFIG_COMPAT
1702 COMPAT_SYSCALL_DEFINE4(wait4,
1703 compat_pid_t, pid,
1704 compat_uint_t __user *, stat_addr,
1705 int, options,
1706 struct compat_rusage __user *, ru)
1708 struct rusage r;
1709 long err = kernel_wait4(pid, stat_addr, options, ru ? &r : NULL);
1710 if (err > 0) {
1711 if (ru && put_compat_rusage(&r, ru))
1712 return -EFAULT;
1714 return err;
1717 COMPAT_SYSCALL_DEFINE5(waitid,
1718 int, which, compat_pid_t, pid,
1719 struct compat_siginfo __user *, infop, int, options,
1720 struct compat_rusage __user *, uru)
1722 struct rusage ru;
1723 struct waitid_info info = {.status = 0};
1724 long err = kernel_waitid(which, pid, &info, options, uru ? &ru : NULL);
1725 int signo = 0;
1726 if (err > 0) {
1727 signo = SIGCHLD;
1728 err = 0;
1729 if (uru) {
1730 /* kernel_waitid() overwrites everything in ru */
1731 if (COMPAT_USE_64BIT_TIME)
1732 err = copy_to_user(uru, &ru, sizeof(ru));
1733 else
1734 err = put_compat_rusage(&ru, uru);
1735 if (err)
1736 return -EFAULT;
1740 if (!infop)
1741 return err;
1743 if (!user_access_begin(infop, sizeof(*infop)))
1744 return -EFAULT;
1746 unsafe_put_user(signo, &infop->si_signo, Efault);
1747 unsafe_put_user(0, &infop->si_errno, Efault);
1748 unsafe_put_user(info.cause, &infop->si_code, Efault);
1749 unsafe_put_user(info.pid, &infop->si_pid, Efault);
1750 unsafe_put_user(info.uid, &infop->si_uid, Efault);
1751 unsafe_put_user(info.status, &infop->si_status, Efault);
1752 user_access_end();
1753 return err;
1754 Efault:
1755 user_access_end();
1756 return -EFAULT;
1758 #endif
1760 __weak void abort(void)
1762 BUG();
1764 /* if that doesn't kill us, halt */
1765 panic("Oops failed to kill thread");
1767 EXPORT_SYMBOL(abort);