2 * (C) 2001, 2002, 2003, 2004 Rusty Russell
4 * This code is licenced under the GPL.
6 #include <linux/proc_fs.h>
8 #include <linux/init.h>
9 #include <linux/notifier.h>
10 #include <linux/sched/signal.h>
11 #include <linux/sched/hotplug.h>
12 #include <linux/sched/task.h>
13 #include <linux/sched/smt.h>
14 #include <linux/unistd.h>
15 #include <linux/cpu.h>
16 #include <linux/oom.h>
17 #include <linux/rcupdate.h>
18 #include <linux/export.h>
19 #include <linux/bug.h>
20 #include <linux/kthread.h>
21 #include <linux/stop_machine.h>
22 #include <linux/mutex.h>
23 #include <linux/gfp.h>
24 #include <linux/suspend.h>
25 #include <linux/lockdep.h>
26 #include <linux/tick.h>
27 #include <linux/irq.h>
28 #include <linux/nmi.h>
29 #include <linux/smpboot.h>
30 #include <linux/relay.h>
31 #include <linux/slab.h>
32 #include <linux/percpu-rwsem.h>
34 #include <trace/events/power.h>
35 #define CREATE_TRACE_POINTS
36 #include <trace/events/cpuhp.h>
41 * cpuhp_cpu_state - Per cpu hotplug state storage
42 * @state: The current cpu state
43 * @target: The target state
44 * @thread: Pointer to the hotplug thread
45 * @should_run: Thread should execute
46 * @rollback: Perform a rollback
47 * @single: Single callback invocation
48 * @bringup: Single callback bringup or teardown selector
49 * @cb_state: The state for a single callback (install/uninstall)
50 * @result: Result of the operation
51 * @done_up: Signal completion to the issuer of the task for cpu-up
52 * @done_down: Signal completion to the issuer of the task for cpu-down
54 struct cpuhp_cpu_state
{
55 enum cpuhp_state state
;
56 enum cpuhp_state target
;
57 enum cpuhp_state fail
;
59 struct task_struct
*thread
;
65 struct hlist_node
*node
;
66 struct hlist_node
*last
;
67 enum cpuhp_state cb_state
;
69 struct completion done_up
;
70 struct completion done_down
;
74 static DEFINE_PER_CPU(struct cpuhp_cpu_state
, cpuhp_state
) = {
75 .fail
= CPUHP_INVALID
,
78 #if defined(CONFIG_LOCKDEP) && defined(CONFIG_SMP)
79 static struct lockdep_map cpuhp_state_up_map
=
80 STATIC_LOCKDEP_MAP_INIT("cpuhp_state-up", &cpuhp_state_up_map
);
81 static struct lockdep_map cpuhp_state_down_map
=
82 STATIC_LOCKDEP_MAP_INIT("cpuhp_state-down", &cpuhp_state_down_map
);
85 static inline void cpuhp_lock_acquire(bool bringup
)
87 lock_map_acquire(bringup
? &cpuhp_state_up_map
: &cpuhp_state_down_map
);
90 static inline void cpuhp_lock_release(bool bringup
)
92 lock_map_release(bringup
? &cpuhp_state_up_map
: &cpuhp_state_down_map
);
96 static inline void cpuhp_lock_acquire(bool bringup
) { }
97 static inline void cpuhp_lock_release(bool bringup
) { }
102 * cpuhp_step - Hotplug state machine step
103 * @name: Name of the step
104 * @startup: Startup function of the step
105 * @teardown: Teardown function of the step
106 * @cant_stop: Bringup/teardown can't be stopped at this step
111 int (*single
)(unsigned int cpu
);
112 int (*multi
)(unsigned int cpu
,
113 struct hlist_node
*node
);
116 int (*single
)(unsigned int cpu
);
117 int (*multi
)(unsigned int cpu
,
118 struct hlist_node
*node
);
120 struct hlist_head list
;
125 static DEFINE_MUTEX(cpuhp_state_mutex
);
126 static struct cpuhp_step cpuhp_hp_states
[];
128 static struct cpuhp_step
*cpuhp_get_step(enum cpuhp_state state
)
130 return cpuhp_hp_states
+ state
;
134 * cpuhp_invoke_callback _ Invoke the callbacks for a given state
135 * @cpu: The cpu for which the callback should be invoked
136 * @state: The state to do callbacks for
137 * @bringup: True if the bringup callback should be invoked
138 * @node: For multi-instance, do a single entry callback for install/remove
139 * @lastp: For multi-instance rollback, remember how far we got
141 * Called from cpu hotplug and from the state register machinery.
143 static int cpuhp_invoke_callback(unsigned int cpu
, enum cpuhp_state state
,
144 bool bringup
, struct hlist_node
*node
,
145 struct hlist_node
**lastp
)
147 struct cpuhp_cpu_state
*st
= per_cpu_ptr(&cpuhp_state
, cpu
);
148 struct cpuhp_step
*step
= cpuhp_get_step(state
);
149 int (*cbm
)(unsigned int cpu
, struct hlist_node
*node
);
150 int (*cb
)(unsigned int cpu
);
153 if (st
->fail
== state
) {
154 st
->fail
= CPUHP_INVALID
;
156 if (!(bringup
? step
->startup
.single
: step
->teardown
.single
))
162 if (!step
->multi_instance
) {
163 WARN_ON_ONCE(lastp
&& *lastp
);
164 cb
= bringup
? step
->startup
.single
: step
->teardown
.single
;
167 trace_cpuhp_enter(cpu
, st
->target
, state
, cb
);
169 trace_cpuhp_exit(cpu
, st
->state
, state
, ret
);
172 cbm
= bringup
? step
->startup
.multi
: step
->teardown
.multi
;
176 /* Single invocation for instance add/remove */
178 WARN_ON_ONCE(lastp
&& *lastp
);
179 trace_cpuhp_multi_enter(cpu
, st
->target
, state
, cbm
, node
);
180 ret
= cbm(cpu
, node
);
181 trace_cpuhp_exit(cpu
, st
->state
, state
, ret
);
185 /* State transition. Invoke on all instances */
187 hlist_for_each(node
, &step
->list
) {
188 if (lastp
&& node
== *lastp
)
191 trace_cpuhp_multi_enter(cpu
, st
->target
, state
, cbm
, node
);
192 ret
= cbm(cpu
, node
);
193 trace_cpuhp_exit(cpu
, st
->state
, state
, ret
);
207 /* Rollback the instances if one failed */
208 cbm
= !bringup
? step
->startup
.multi
: step
->teardown
.multi
;
212 hlist_for_each(node
, &step
->list
) {
216 trace_cpuhp_multi_enter(cpu
, st
->target
, state
, cbm
, node
);
217 ret
= cbm(cpu
, node
);
218 trace_cpuhp_exit(cpu
, st
->state
, state
, ret
);
220 * Rollback must not fail,
228 static bool cpuhp_is_ap_state(enum cpuhp_state state
)
231 * The extra check for CPUHP_TEARDOWN_CPU is only for documentation
232 * purposes as that state is handled explicitly in cpu_down.
234 return state
> CPUHP_BRINGUP_CPU
&& state
!= CPUHP_TEARDOWN_CPU
;
237 static inline void wait_for_ap_thread(struct cpuhp_cpu_state
*st
, bool bringup
)
239 struct completion
*done
= bringup
? &st
->done_up
: &st
->done_down
;
240 wait_for_completion(done
);
243 static inline void complete_ap_thread(struct cpuhp_cpu_state
*st
, bool bringup
)
245 struct completion
*done
= bringup
? &st
->done_up
: &st
->done_down
;
250 * The former STARTING/DYING states, ran with IRQs disabled and must not fail.
252 static bool cpuhp_is_atomic_state(enum cpuhp_state state
)
254 return CPUHP_AP_IDLE_DEAD
<= state
&& state
< CPUHP_AP_ONLINE
;
257 /* Serializes the updates to cpu_online_mask, cpu_present_mask */
258 static DEFINE_MUTEX(cpu_add_remove_lock
);
259 bool cpuhp_tasks_frozen
;
260 EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen
);
263 * The following two APIs (cpu_maps_update_begin/done) must be used when
264 * attempting to serialize the updates to cpu_online_mask & cpu_present_mask.
266 void cpu_maps_update_begin(void)
268 mutex_lock(&cpu_add_remove_lock
);
271 void cpu_maps_update_done(void)
273 mutex_unlock(&cpu_add_remove_lock
);
277 * If set, cpu_up and cpu_down will return -EBUSY and do nothing.
278 * Should always be manipulated under cpu_add_remove_lock
280 static int cpu_hotplug_disabled
;
282 #ifdef CONFIG_HOTPLUG_CPU
284 DEFINE_STATIC_PERCPU_RWSEM(cpu_hotplug_lock
);
286 void cpus_read_lock(void)
288 percpu_down_read(&cpu_hotplug_lock
);
290 EXPORT_SYMBOL_GPL(cpus_read_lock
);
292 int cpus_read_trylock(void)
294 return percpu_down_read_trylock(&cpu_hotplug_lock
);
296 EXPORT_SYMBOL_GPL(cpus_read_trylock
);
298 void cpus_read_unlock(void)
300 percpu_up_read(&cpu_hotplug_lock
);
302 EXPORT_SYMBOL_GPL(cpus_read_unlock
);
304 void cpus_write_lock(void)
306 percpu_down_write(&cpu_hotplug_lock
);
309 void cpus_write_unlock(void)
311 percpu_up_write(&cpu_hotplug_lock
);
314 void lockdep_assert_cpus_held(void)
316 percpu_rwsem_assert_held(&cpu_hotplug_lock
);
319 static void lockdep_acquire_cpus_lock(void)
321 rwsem_acquire(&cpu_hotplug_lock
.rw_sem
.dep_map
, 0, 0, _THIS_IP_
);
324 static void lockdep_release_cpus_lock(void)
326 rwsem_release(&cpu_hotplug_lock
.rw_sem
.dep_map
, 1, _THIS_IP_
);
330 * Wait for currently running CPU hotplug operations to complete (if any) and
331 * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects
332 * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the
333 * hotplug path before performing hotplug operations. So acquiring that lock
334 * guarantees mutual exclusion from any currently running hotplug operations.
336 void cpu_hotplug_disable(void)
338 cpu_maps_update_begin();
339 cpu_hotplug_disabled
++;
340 cpu_maps_update_done();
342 EXPORT_SYMBOL_GPL(cpu_hotplug_disable
);
344 static void __cpu_hotplug_enable(void)
346 if (WARN_ONCE(!cpu_hotplug_disabled
, "Unbalanced cpu hotplug enable\n"))
348 cpu_hotplug_disabled
--;
351 void cpu_hotplug_enable(void)
353 cpu_maps_update_begin();
354 __cpu_hotplug_enable();
355 cpu_maps_update_done();
357 EXPORT_SYMBOL_GPL(cpu_hotplug_enable
);
361 static void lockdep_acquire_cpus_lock(void)
365 static void lockdep_release_cpus_lock(void)
369 #endif /* CONFIG_HOTPLUG_CPU */
372 * Architectures that need SMT-specific errata handling during SMT hotplug
373 * should override this.
375 void __weak
arch_smt_update(void) { }
377 #ifdef CONFIG_HOTPLUG_SMT
378 enum cpuhp_smt_control cpu_smt_control __read_mostly
= CPU_SMT_ENABLED
;
380 void __init
cpu_smt_disable(bool force
)
382 if (cpu_smt_control
== CPU_SMT_FORCE_DISABLED
||
383 cpu_smt_control
== CPU_SMT_NOT_SUPPORTED
)
387 pr_info("SMT: Force disabled\n");
388 cpu_smt_control
= CPU_SMT_FORCE_DISABLED
;
390 pr_info("SMT: disabled\n");
391 cpu_smt_control
= CPU_SMT_DISABLED
;
396 * The decision whether SMT is supported can only be done after the full
397 * CPU identification. Called from architecture code.
399 void __init
cpu_smt_check_topology(void)
401 if (!topology_smt_supported())
402 cpu_smt_control
= CPU_SMT_NOT_SUPPORTED
;
405 static int __init
smt_cmdline_disable(char *str
)
407 cpu_smt_disable(str
&& !strcmp(str
, "force"));
410 early_param("nosmt", smt_cmdline_disable
);
412 static inline bool cpu_smt_allowed(unsigned int cpu
)
414 if (cpu_smt_control
== CPU_SMT_ENABLED
)
417 if (topology_is_primary_thread(cpu
))
421 * On x86 it's required to boot all logical CPUs at least once so
422 * that the init code can get a chance to set CR4.MCE on each
423 * CPU. Otherwise, a broadacasted MCE observing CR4.MCE=0b on any
424 * core will shutdown the machine.
426 return !per_cpu(cpuhp_state
, cpu
).booted_once
;
429 static inline bool cpu_smt_allowed(unsigned int cpu
) { return true; }
432 static inline enum cpuhp_state
433 cpuhp_set_state(struct cpuhp_cpu_state
*st
, enum cpuhp_state target
)
435 enum cpuhp_state prev_state
= st
->state
;
437 st
->rollback
= false;
442 st
->bringup
= st
->state
< target
;
448 cpuhp_reset_state(struct cpuhp_cpu_state
*st
, enum cpuhp_state prev_state
)
453 * If we have st->last we need to undo partial multi_instance of this
454 * state first. Otherwise start undo at the previous state.
463 st
->target
= prev_state
;
464 st
->bringup
= !st
->bringup
;
467 /* Regular hotplug invocation of the AP hotplug thread */
468 static void __cpuhp_kick_ap(struct cpuhp_cpu_state
*st
)
470 if (!st
->single
&& st
->state
== st
->target
)
475 * Make sure the above stores are visible before should_run becomes
476 * true. Paired with the mb() above in cpuhp_thread_fun()
479 st
->should_run
= true;
480 wake_up_process(st
->thread
);
481 wait_for_ap_thread(st
, st
->bringup
);
484 static int cpuhp_kick_ap(struct cpuhp_cpu_state
*st
, enum cpuhp_state target
)
486 enum cpuhp_state prev_state
;
489 prev_state
= cpuhp_set_state(st
, target
);
491 if ((ret
= st
->result
)) {
492 cpuhp_reset_state(st
, prev_state
);
499 static int bringup_wait_for_ap(unsigned int cpu
)
501 struct cpuhp_cpu_state
*st
= per_cpu_ptr(&cpuhp_state
, cpu
);
503 /* Wait for the CPU to reach CPUHP_AP_ONLINE_IDLE */
504 wait_for_ap_thread(st
, true);
505 if (WARN_ON_ONCE((!cpu_online(cpu
))))
508 /* Unpark the stopper thread and the hotplug thread of the target cpu */
509 stop_machine_unpark(cpu
);
510 kthread_unpark(st
->thread
);
513 * SMT soft disabling on X86 requires to bring the CPU out of the
514 * BIOS 'wait for SIPI' state in order to set the CR4.MCE bit. The
515 * CPU marked itself as booted_once in cpu_notify_starting() so the
516 * cpu_smt_allowed() check will now return false if this is not the
519 if (!cpu_smt_allowed(cpu
))
522 if (st
->target
<= CPUHP_AP_ONLINE_IDLE
)
525 return cpuhp_kick_ap(st
, st
->target
);
528 static int bringup_cpu(unsigned int cpu
)
530 struct task_struct
*idle
= idle_thread_get(cpu
);
534 * Some architectures have to walk the irq descriptors to
535 * setup the vector space for the cpu which comes online.
536 * Prevent irq alloc/free across the bringup.
540 /* Arch-specific enabling code. */
541 ret
= __cpu_up(cpu
, idle
);
545 return bringup_wait_for_ap(cpu
);
549 * Hotplug state machine related functions
552 static void undo_cpu_up(unsigned int cpu
, struct cpuhp_cpu_state
*st
)
554 for (st
->state
--; st
->state
> st
->target
; st
->state
--)
555 cpuhp_invoke_callback(cpu
, st
->state
, false, NULL
, NULL
);
558 static int cpuhp_up_callbacks(unsigned int cpu
, struct cpuhp_cpu_state
*st
,
559 enum cpuhp_state target
)
561 enum cpuhp_state prev_state
= st
->state
;
564 while (st
->state
< target
) {
566 ret
= cpuhp_invoke_callback(cpu
, st
->state
, true, NULL
, NULL
);
568 st
->target
= prev_state
;
569 undo_cpu_up(cpu
, st
);
577 * The cpu hotplug threads manage the bringup and teardown of the cpus
579 static void cpuhp_create(unsigned int cpu
)
581 struct cpuhp_cpu_state
*st
= per_cpu_ptr(&cpuhp_state
, cpu
);
583 init_completion(&st
->done_up
);
584 init_completion(&st
->done_down
);
587 static int cpuhp_should_run(unsigned int cpu
)
589 struct cpuhp_cpu_state
*st
= this_cpu_ptr(&cpuhp_state
);
591 return st
->should_run
;
595 * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke
596 * callbacks when a state gets [un]installed at runtime.
598 * Each invocation of this function by the smpboot thread does a single AP
601 * It has 3 modes of operation:
602 * - single: runs st->cb_state
603 * - up: runs ++st->state, while st->state < st->target
604 * - down: runs st->state--, while st->state > st->target
606 * When complete or on error, should_run is cleared and the completion is fired.
608 static void cpuhp_thread_fun(unsigned int cpu
)
610 struct cpuhp_cpu_state
*st
= this_cpu_ptr(&cpuhp_state
);
611 bool bringup
= st
->bringup
;
612 enum cpuhp_state state
;
614 if (WARN_ON_ONCE(!st
->should_run
))
618 * ACQUIRE for the cpuhp_should_run() load of ->should_run. Ensures
619 * that if we see ->should_run we also see the rest of the state.
624 * The BP holds the hotplug lock, but we're now running on the AP,
625 * ensure that anybody asserting the lock is held, will actually find
628 lockdep_acquire_cpus_lock();
629 cpuhp_lock_acquire(bringup
);
632 state
= st
->cb_state
;
633 st
->should_run
= false;
638 st
->should_run
= (st
->state
< st
->target
);
639 WARN_ON_ONCE(st
->state
> st
->target
);
643 st
->should_run
= (st
->state
> st
->target
);
644 WARN_ON_ONCE(st
->state
< st
->target
);
648 WARN_ON_ONCE(!cpuhp_is_ap_state(state
));
650 if (cpuhp_is_atomic_state(state
)) {
652 st
->result
= cpuhp_invoke_callback(cpu
, state
, bringup
, st
->node
, &st
->last
);
656 * STARTING/DYING must not fail!
658 WARN_ON_ONCE(st
->result
);
660 st
->result
= cpuhp_invoke_callback(cpu
, state
, bringup
, st
->node
, &st
->last
);
665 * If we fail on a rollback, we're up a creek without no
666 * paddle, no way forward, no way back. We loose, thanks for
669 WARN_ON_ONCE(st
->rollback
);
670 st
->should_run
= false;
673 cpuhp_lock_release(bringup
);
674 lockdep_release_cpus_lock();
677 complete_ap_thread(st
, bringup
);
680 /* Invoke a single callback on a remote cpu */
682 cpuhp_invoke_ap_callback(int cpu
, enum cpuhp_state state
, bool bringup
,
683 struct hlist_node
*node
)
685 struct cpuhp_cpu_state
*st
= per_cpu_ptr(&cpuhp_state
, cpu
);
688 if (!cpu_online(cpu
))
691 cpuhp_lock_acquire(false);
692 cpuhp_lock_release(false);
694 cpuhp_lock_acquire(true);
695 cpuhp_lock_release(true);
698 * If we are up and running, use the hotplug thread. For early calls
699 * we invoke the thread function directly.
702 return cpuhp_invoke_callback(cpu
, state
, bringup
, node
, NULL
);
704 st
->rollback
= false;
708 st
->bringup
= bringup
;
709 st
->cb_state
= state
;
715 * If we failed and did a partial, do a rollback.
717 if ((ret
= st
->result
) && st
->last
) {
719 st
->bringup
= !bringup
;
725 * Clean up the leftovers so the next hotplug operation wont use stale
728 st
->node
= st
->last
= NULL
;
732 static int cpuhp_kick_ap_work(unsigned int cpu
)
734 struct cpuhp_cpu_state
*st
= per_cpu_ptr(&cpuhp_state
, cpu
);
735 enum cpuhp_state prev_state
= st
->state
;
738 cpuhp_lock_acquire(false);
739 cpuhp_lock_release(false);
741 cpuhp_lock_acquire(true);
742 cpuhp_lock_release(true);
744 trace_cpuhp_enter(cpu
, st
->target
, prev_state
, cpuhp_kick_ap_work
);
745 ret
= cpuhp_kick_ap(st
, st
->target
);
746 trace_cpuhp_exit(cpu
, st
->state
, prev_state
, ret
);
751 static struct smp_hotplug_thread cpuhp_threads
= {
752 .store
= &cpuhp_state
.thread
,
753 .create
= &cpuhp_create
,
754 .thread_should_run
= cpuhp_should_run
,
755 .thread_fn
= cpuhp_thread_fun
,
756 .thread_comm
= "cpuhp/%u",
760 void __init
cpuhp_threads_init(void)
762 BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads
));
763 kthread_unpark(this_cpu_read(cpuhp_state
.thread
));
766 #ifdef CONFIG_HOTPLUG_CPU
768 * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU
771 * This function walks all processes, finds a valid mm struct for each one and
772 * then clears a corresponding bit in mm's cpumask. While this all sounds
773 * trivial, there are various non-obvious corner cases, which this function
774 * tries to solve in a safe manner.
776 * Also note that the function uses a somewhat relaxed locking scheme, so it may
777 * be called only for an already offlined CPU.
779 void clear_tasks_mm_cpumask(int cpu
)
781 struct task_struct
*p
;
784 * This function is called after the cpu is taken down and marked
785 * offline, so its not like new tasks will ever get this cpu set in
786 * their mm mask. -- Peter Zijlstra
787 * Thus, we may use rcu_read_lock() here, instead of grabbing
788 * full-fledged tasklist_lock.
790 WARN_ON(cpu_online(cpu
));
792 for_each_process(p
) {
793 struct task_struct
*t
;
796 * Main thread might exit, but other threads may still have
797 * a valid mm. Find one.
799 t
= find_lock_task_mm(p
);
802 cpumask_clear_cpu(cpu
, mm_cpumask(t
->mm
));
808 /* Take this CPU down. */
809 static int take_cpu_down(void *_param
)
811 struct cpuhp_cpu_state
*st
= this_cpu_ptr(&cpuhp_state
);
812 enum cpuhp_state target
= max((int)st
->target
, CPUHP_AP_OFFLINE
);
813 int err
, cpu
= smp_processor_id();
816 /* Ensure this CPU doesn't handle any more interrupts. */
817 err
= __cpu_disable();
822 * We get here while we are in CPUHP_TEARDOWN_CPU state and we must not
823 * do this step again.
825 WARN_ON(st
->state
!= CPUHP_TEARDOWN_CPU
);
827 /* Invoke the former CPU_DYING callbacks */
828 for (; st
->state
> target
; st
->state
--) {
829 ret
= cpuhp_invoke_callback(cpu
, st
->state
, false, NULL
, NULL
);
831 * DYING must not fail!
836 /* Give up timekeeping duties */
837 tick_handover_do_timer();
838 /* Park the stopper thread */
839 stop_machine_park(cpu
);
843 static int takedown_cpu(unsigned int cpu
)
845 struct cpuhp_cpu_state
*st
= per_cpu_ptr(&cpuhp_state
, cpu
);
848 /* Park the smpboot threads */
849 kthread_park(per_cpu_ptr(&cpuhp_state
, cpu
)->thread
);
852 * Prevent irq alloc/free while the dying cpu reorganizes the
853 * interrupt affinities.
858 * So now all preempt/rcu users must observe !cpu_active().
860 err
= stop_machine_cpuslocked(take_cpu_down
, NULL
, cpumask_of(cpu
));
862 /* CPU refused to die */
864 /* Unpark the hotplug thread so we can rollback there */
865 kthread_unpark(per_cpu_ptr(&cpuhp_state
, cpu
)->thread
);
868 BUG_ON(cpu_online(cpu
));
871 * The teardown callback for CPUHP_AP_SCHED_STARTING will have removed
872 * all runnable tasks from the CPU, there's only the idle task left now
873 * that the migration thread is done doing the stop_machine thing.
875 * Wait for the stop thread to go away.
877 wait_for_ap_thread(st
, false);
878 BUG_ON(st
->state
!= CPUHP_AP_IDLE_DEAD
);
880 /* Interrupts are moved away from the dying cpu, reenable alloc/free */
883 hotplug_cpu__broadcast_tick_pull(cpu
);
884 /* This actually kills the CPU. */
887 tick_cleanup_dead_cpu(cpu
);
888 rcutree_migrate_callbacks(cpu
);
892 static void cpuhp_complete_idle_dead(void *arg
)
894 struct cpuhp_cpu_state
*st
= arg
;
896 complete_ap_thread(st
, false);
899 void cpuhp_report_idle_dead(void)
901 struct cpuhp_cpu_state
*st
= this_cpu_ptr(&cpuhp_state
);
903 BUG_ON(st
->state
!= CPUHP_AP_OFFLINE
);
904 rcu_report_dead(smp_processor_id());
905 st
->state
= CPUHP_AP_IDLE_DEAD
;
907 * We cannot call complete after rcu_report_dead() so we delegate it
910 smp_call_function_single(cpumask_first(cpu_online_mask
),
911 cpuhp_complete_idle_dead
, st
, 0);
914 static void undo_cpu_down(unsigned int cpu
, struct cpuhp_cpu_state
*st
)
916 for (st
->state
++; st
->state
< st
->target
; st
->state
++)
917 cpuhp_invoke_callback(cpu
, st
->state
, true, NULL
, NULL
);
920 static int cpuhp_down_callbacks(unsigned int cpu
, struct cpuhp_cpu_state
*st
,
921 enum cpuhp_state target
)
923 enum cpuhp_state prev_state
= st
->state
;
926 for (; st
->state
> target
; st
->state
--) {
927 ret
= cpuhp_invoke_callback(cpu
, st
->state
, false, NULL
, NULL
);
929 st
->target
= prev_state
;
930 if (st
->state
< prev_state
)
931 undo_cpu_down(cpu
, st
);
938 /* Requires cpu_add_remove_lock to be held */
939 static int __ref
_cpu_down(unsigned int cpu
, int tasks_frozen
,
940 enum cpuhp_state target
)
942 struct cpuhp_cpu_state
*st
= per_cpu_ptr(&cpuhp_state
, cpu
);
943 int prev_state
, ret
= 0;
945 if (num_online_cpus() == 1)
948 if (!cpu_present(cpu
))
953 cpuhp_tasks_frozen
= tasks_frozen
;
955 prev_state
= cpuhp_set_state(st
, target
);
957 * If the current CPU state is in the range of the AP hotplug thread,
958 * then we need to kick the thread.
960 if (st
->state
> CPUHP_TEARDOWN_CPU
) {
961 st
->target
= max((int)target
, CPUHP_TEARDOWN_CPU
);
962 ret
= cpuhp_kick_ap_work(cpu
);
964 * The AP side has done the error rollback already. Just
965 * return the error code..
971 * We might have stopped still in the range of the AP hotplug
972 * thread. Nothing to do anymore.
974 if (st
->state
> CPUHP_TEARDOWN_CPU
)
980 * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need
981 * to do the further cleanups.
983 ret
= cpuhp_down_callbacks(cpu
, st
, target
);
984 if (ret
&& st
->state
== CPUHP_TEARDOWN_CPU
&& st
->state
< prev_state
) {
985 cpuhp_reset_state(st
, prev_state
);
992 * Do post unplug cleanup. This is still protected against
993 * concurrent CPU hotplug via cpu_add_remove_lock.
995 lockup_detector_cleanup();
1000 static int cpu_down_maps_locked(unsigned int cpu
, enum cpuhp_state target
)
1002 if (cpu_hotplug_disabled
)
1004 return _cpu_down(cpu
, 0, target
);
1007 static int do_cpu_down(unsigned int cpu
, enum cpuhp_state target
)
1011 cpu_maps_update_begin();
1012 err
= cpu_down_maps_locked(cpu
, target
);
1013 cpu_maps_update_done();
1017 int cpu_down(unsigned int cpu
)
1019 return do_cpu_down(cpu
, CPUHP_OFFLINE
);
1021 EXPORT_SYMBOL(cpu_down
);
1024 #define takedown_cpu NULL
1025 #endif /*CONFIG_HOTPLUG_CPU*/
1028 * notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU
1029 * @cpu: cpu that just started
1031 * It must be called by the arch code on the new cpu, before the new cpu
1032 * enables interrupts and before the "boot" cpu returns from __cpu_up().
1034 void notify_cpu_starting(unsigned int cpu
)
1036 struct cpuhp_cpu_state
*st
= per_cpu_ptr(&cpuhp_state
, cpu
);
1037 enum cpuhp_state target
= min((int)st
->target
, CPUHP_AP_ONLINE
);
1040 rcu_cpu_starting(cpu
); /* Enables RCU usage on this CPU. */
1041 st
->booted_once
= true;
1042 while (st
->state
< target
) {
1044 ret
= cpuhp_invoke_callback(cpu
, st
->state
, true, NULL
, NULL
);
1046 * STARTING must not fail!
1053 * Called from the idle task. Wake up the controlling task which brings the
1054 * stopper and the hotplug thread of the upcoming CPU up and then delegates
1055 * the rest of the online bringup to the hotplug thread.
1057 void cpuhp_online_idle(enum cpuhp_state state
)
1059 struct cpuhp_cpu_state
*st
= this_cpu_ptr(&cpuhp_state
);
1061 /* Happens for the boot cpu */
1062 if (state
!= CPUHP_AP_ONLINE_IDLE
)
1065 st
->state
= CPUHP_AP_ONLINE_IDLE
;
1066 complete_ap_thread(st
, true);
1069 /* Requires cpu_add_remove_lock to be held */
1070 static int _cpu_up(unsigned int cpu
, int tasks_frozen
, enum cpuhp_state target
)
1072 struct cpuhp_cpu_state
*st
= per_cpu_ptr(&cpuhp_state
, cpu
);
1073 struct task_struct
*idle
;
1078 if (!cpu_present(cpu
)) {
1084 * The caller of do_cpu_up might have raced with another
1085 * caller. Ignore it for now.
1087 if (st
->state
>= target
)
1090 if (st
->state
== CPUHP_OFFLINE
) {
1091 /* Let it fail before we try to bring the cpu up */
1092 idle
= idle_thread_get(cpu
);
1094 ret
= PTR_ERR(idle
);
1099 cpuhp_tasks_frozen
= tasks_frozen
;
1101 cpuhp_set_state(st
, target
);
1103 * If the current CPU state is in the range of the AP hotplug thread,
1104 * then we need to kick the thread once more.
1106 if (st
->state
> CPUHP_BRINGUP_CPU
) {
1107 ret
= cpuhp_kick_ap_work(cpu
);
1109 * The AP side has done the error rollback already. Just
1110 * return the error code..
1117 * Try to reach the target state. We max out on the BP at
1118 * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is
1119 * responsible for bringing it up to the target state.
1121 target
= min((int)target
, CPUHP_BRINGUP_CPU
);
1122 ret
= cpuhp_up_callbacks(cpu
, st
, target
);
1124 cpus_write_unlock();
1129 static int do_cpu_up(unsigned int cpu
, enum cpuhp_state target
)
1133 if (!cpu_possible(cpu
)) {
1134 pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n",
1136 #if defined(CONFIG_IA64)
1137 pr_err("please check additional_cpus= boot parameter\n");
1142 err
= try_online_node(cpu_to_node(cpu
));
1146 cpu_maps_update_begin();
1148 if (cpu_hotplug_disabled
) {
1152 if (!cpu_smt_allowed(cpu
)) {
1157 err
= _cpu_up(cpu
, 0, target
);
1159 cpu_maps_update_done();
1163 int cpu_up(unsigned int cpu
)
1165 return do_cpu_up(cpu
, CPUHP_ONLINE
);
1167 EXPORT_SYMBOL_GPL(cpu_up
);
1169 #ifdef CONFIG_PM_SLEEP_SMP
1170 static cpumask_var_t frozen_cpus
;
1172 int freeze_secondary_cpus(int primary
)
1176 cpu_maps_update_begin();
1177 if (!cpu_online(primary
))
1178 primary
= cpumask_first(cpu_online_mask
);
1180 * We take down all of the non-boot CPUs in one shot to avoid races
1181 * with the userspace trying to use the CPU hotplug at the same time
1183 cpumask_clear(frozen_cpus
);
1185 pr_info("Disabling non-boot CPUs ...\n");
1186 for_each_online_cpu(cpu
) {
1189 trace_suspend_resume(TPS("CPU_OFF"), cpu
, true);
1190 error
= _cpu_down(cpu
, 1, CPUHP_OFFLINE
);
1191 trace_suspend_resume(TPS("CPU_OFF"), cpu
, false);
1193 cpumask_set_cpu(cpu
, frozen_cpus
);
1195 pr_err("Error taking CPU%d down: %d\n", cpu
, error
);
1201 BUG_ON(num_online_cpus() > 1);
1203 pr_err("Non-boot CPUs are not disabled\n");
1206 * Make sure the CPUs won't be enabled by someone else. We need to do
1207 * this even in case of failure as all disable_nonboot_cpus() users are
1208 * supposed to do enable_nonboot_cpus() on the failure path.
1210 cpu_hotplug_disabled
++;
1212 cpu_maps_update_done();
1216 void __weak
arch_enable_nonboot_cpus_begin(void)
1220 void __weak
arch_enable_nonboot_cpus_end(void)
1224 void enable_nonboot_cpus(void)
1228 /* Allow everyone to use the CPU hotplug again */
1229 cpu_maps_update_begin();
1230 __cpu_hotplug_enable();
1231 if (cpumask_empty(frozen_cpus
))
1234 pr_info("Enabling non-boot CPUs ...\n");
1236 arch_enable_nonboot_cpus_begin();
1238 for_each_cpu(cpu
, frozen_cpus
) {
1239 trace_suspend_resume(TPS("CPU_ON"), cpu
, true);
1240 error
= _cpu_up(cpu
, 1, CPUHP_ONLINE
);
1241 trace_suspend_resume(TPS("CPU_ON"), cpu
, false);
1243 pr_info("CPU%d is up\n", cpu
);
1246 pr_warn("Error taking CPU%d up: %d\n", cpu
, error
);
1249 arch_enable_nonboot_cpus_end();
1251 cpumask_clear(frozen_cpus
);
1253 cpu_maps_update_done();
1256 static int __init
alloc_frozen_cpus(void)
1258 if (!alloc_cpumask_var(&frozen_cpus
, GFP_KERNEL
|__GFP_ZERO
))
1262 core_initcall(alloc_frozen_cpus
);
1265 * When callbacks for CPU hotplug notifications are being executed, we must
1266 * ensure that the state of the system with respect to the tasks being frozen
1267 * or not, as reported by the notification, remains unchanged *throughout the
1268 * duration* of the execution of the callbacks.
1269 * Hence we need to prevent the freezer from racing with regular CPU hotplug.
1271 * This synchronization is implemented by mutually excluding regular CPU
1272 * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/
1273 * Hibernate notifications.
1276 cpu_hotplug_pm_callback(struct notifier_block
*nb
,
1277 unsigned long action
, void *ptr
)
1281 case PM_SUSPEND_PREPARE
:
1282 case PM_HIBERNATION_PREPARE
:
1283 cpu_hotplug_disable();
1286 case PM_POST_SUSPEND
:
1287 case PM_POST_HIBERNATION
:
1288 cpu_hotplug_enable();
1299 static int __init
cpu_hotplug_pm_sync_init(void)
1302 * cpu_hotplug_pm_callback has higher priority than x86
1303 * bsp_pm_callback which depends on cpu_hotplug_pm_callback
1304 * to disable cpu hotplug to avoid cpu hotplug race.
1306 pm_notifier(cpu_hotplug_pm_callback
, 0);
1309 core_initcall(cpu_hotplug_pm_sync_init
);
1311 #endif /* CONFIG_PM_SLEEP_SMP */
1315 #endif /* CONFIG_SMP */
1317 /* Boot processor state steps */
1318 static struct cpuhp_step cpuhp_hp_states
[] = {
1321 .startup
.single
= NULL
,
1322 .teardown
.single
= NULL
,
1325 [CPUHP_CREATE_THREADS
]= {
1326 .name
= "threads:prepare",
1327 .startup
.single
= smpboot_create_threads
,
1328 .teardown
.single
= NULL
,
1331 [CPUHP_PERF_PREPARE
] = {
1332 .name
= "perf:prepare",
1333 .startup
.single
= perf_event_init_cpu
,
1334 .teardown
.single
= perf_event_exit_cpu
,
1336 [CPUHP_WORKQUEUE_PREP
] = {
1337 .name
= "workqueue:prepare",
1338 .startup
.single
= workqueue_prepare_cpu
,
1339 .teardown
.single
= NULL
,
1341 [CPUHP_HRTIMERS_PREPARE
] = {
1342 .name
= "hrtimers:prepare",
1343 .startup
.single
= hrtimers_prepare_cpu
,
1344 .teardown
.single
= hrtimers_dead_cpu
,
1346 [CPUHP_SMPCFD_PREPARE
] = {
1347 .name
= "smpcfd:prepare",
1348 .startup
.single
= smpcfd_prepare_cpu
,
1349 .teardown
.single
= smpcfd_dead_cpu
,
1351 [CPUHP_RELAY_PREPARE
] = {
1352 .name
= "relay:prepare",
1353 .startup
.single
= relay_prepare_cpu
,
1354 .teardown
.single
= NULL
,
1356 [CPUHP_SLAB_PREPARE
] = {
1357 .name
= "slab:prepare",
1358 .startup
.single
= slab_prepare_cpu
,
1359 .teardown
.single
= slab_dead_cpu
,
1361 [CPUHP_RCUTREE_PREP
] = {
1362 .name
= "RCU/tree:prepare",
1363 .startup
.single
= rcutree_prepare_cpu
,
1364 .teardown
.single
= rcutree_dead_cpu
,
1367 * On the tear-down path, timers_dead_cpu() must be invoked
1368 * before blk_mq_queue_reinit_notify() from notify_dead(),
1369 * otherwise a RCU stall occurs.
1371 [CPUHP_TIMERS_PREPARE
] = {
1372 .name
= "timers:prepare",
1373 .startup
.single
= timers_prepare_cpu
,
1374 .teardown
.single
= timers_dead_cpu
,
1376 /* Kicks the plugged cpu into life */
1377 [CPUHP_BRINGUP_CPU
] = {
1378 .name
= "cpu:bringup",
1379 .startup
.single
= bringup_cpu
,
1380 .teardown
.single
= NULL
,
1383 /* Final state before CPU kills itself */
1384 [CPUHP_AP_IDLE_DEAD
] = {
1385 .name
= "idle:dead",
1388 * Last state before CPU enters the idle loop to die. Transient state
1389 * for synchronization.
1391 [CPUHP_AP_OFFLINE
] = {
1392 .name
= "ap:offline",
1395 /* First state is scheduler control. Interrupts are disabled */
1396 [CPUHP_AP_SCHED_STARTING
] = {
1397 .name
= "sched:starting",
1398 .startup
.single
= sched_cpu_starting
,
1399 .teardown
.single
= sched_cpu_dying
,
1401 [CPUHP_AP_RCUTREE_DYING
] = {
1402 .name
= "RCU/tree:dying",
1403 .startup
.single
= NULL
,
1404 .teardown
.single
= rcutree_dying_cpu
,
1406 [CPUHP_AP_SMPCFD_DYING
] = {
1407 .name
= "smpcfd:dying",
1408 .startup
.single
= NULL
,
1409 .teardown
.single
= smpcfd_dying_cpu
,
1411 /* Entry state on starting. Interrupts enabled from here on. Transient
1412 * state for synchronsization */
1413 [CPUHP_AP_ONLINE
] = {
1414 .name
= "ap:online",
1417 * Handled on controll processor until the plugged processor manages
1420 [CPUHP_TEARDOWN_CPU
] = {
1421 .name
= "cpu:teardown",
1422 .startup
.single
= NULL
,
1423 .teardown
.single
= takedown_cpu
,
1426 /* Handle smpboot threads park/unpark */
1427 [CPUHP_AP_SMPBOOT_THREADS
] = {
1428 .name
= "smpboot/threads:online",
1429 .startup
.single
= smpboot_unpark_threads
,
1430 .teardown
.single
= smpboot_park_threads
,
1432 [CPUHP_AP_IRQ_AFFINITY_ONLINE
] = {
1433 .name
= "irq/affinity:online",
1434 .startup
.single
= irq_affinity_online_cpu
,
1435 .teardown
.single
= NULL
,
1437 [CPUHP_AP_PERF_ONLINE
] = {
1438 .name
= "perf:online",
1439 .startup
.single
= perf_event_init_cpu
,
1440 .teardown
.single
= perf_event_exit_cpu
,
1442 [CPUHP_AP_WATCHDOG_ONLINE
] = {
1443 .name
= "lockup_detector:online",
1444 .startup
.single
= lockup_detector_online_cpu
,
1445 .teardown
.single
= lockup_detector_offline_cpu
,
1447 [CPUHP_AP_WORKQUEUE_ONLINE
] = {
1448 .name
= "workqueue:online",
1449 .startup
.single
= workqueue_online_cpu
,
1450 .teardown
.single
= workqueue_offline_cpu
,
1452 [CPUHP_AP_RCUTREE_ONLINE
] = {
1453 .name
= "RCU/tree:online",
1454 .startup
.single
= rcutree_online_cpu
,
1455 .teardown
.single
= rcutree_offline_cpu
,
1459 * The dynamically registered state space is here
1463 /* Last state is scheduler control setting the cpu active */
1464 [CPUHP_AP_ACTIVE
] = {
1465 .name
= "sched:active",
1466 .startup
.single
= sched_cpu_activate
,
1467 .teardown
.single
= sched_cpu_deactivate
,
1471 /* CPU is fully up and running. */
1474 .startup
.single
= NULL
,
1475 .teardown
.single
= NULL
,
1479 /* Sanity check for callbacks */
1480 static int cpuhp_cb_check(enum cpuhp_state state
)
1482 if (state
<= CPUHP_OFFLINE
|| state
>= CPUHP_ONLINE
)
1488 * Returns a free for dynamic slot assignment of the Online state. The states
1489 * are protected by the cpuhp_slot_states mutex and an empty slot is identified
1490 * by having no name assigned.
1492 static int cpuhp_reserve_state(enum cpuhp_state state
)
1494 enum cpuhp_state i
, end
;
1495 struct cpuhp_step
*step
;
1498 case CPUHP_AP_ONLINE_DYN
:
1499 step
= cpuhp_hp_states
+ CPUHP_AP_ONLINE_DYN
;
1500 end
= CPUHP_AP_ONLINE_DYN_END
;
1502 case CPUHP_BP_PREPARE_DYN
:
1503 step
= cpuhp_hp_states
+ CPUHP_BP_PREPARE_DYN
;
1504 end
= CPUHP_BP_PREPARE_DYN_END
;
1510 for (i
= state
; i
<= end
; i
++, step
++) {
1514 WARN(1, "No more dynamic states available for CPU hotplug\n");
1518 static int cpuhp_store_callbacks(enum cpuhp_state state
, const char *name
,
1519 int (*startup
)(unsigned int cpu
),
1520 int (*teardown
)(unsigned int cpu
),
1521 bool multi_instance
)
1523 /* (Un)Install the callbacks for further cpu hotplug operations */
1524 struct cpuhp_step
*sp
;
1528 * If name is NULL, then the state gets removed.
1530 * CPUHP_AP_ONLINE_DYN and CPUHP_BP_PREPARE_DYN are handed out on
1531 * the first allocation from these dynamic ranges, so the removal
1532 * would trigger a new allocation and clear the wrong (already
1533 * empty) state, leaving the callbacks of the to be cleared state
1534 * dangling, which causes wreckage on the next hotplug operation.
1536 if (name
&& (state
== CPUHP_AP_ONLINE_DYN
||
1537 state
== CPUHP_BP_PREPARE_DYN
)) {
1538 ret
= cpuhp_reserve_state(state
);
1543 sp
= cpuhp_get_step(state
);
1544 if (name
&& sp
->name
)
1547 sp
->startup
.single
= startup
;
1548 sp
->teardown
.single
= teardown
;
1550 sp
->multi_instance
= multi_instance
;
1551 INIT_HLIST_HEAD(&sp
->list
);
1555 static void *cpuhp_get_teardown_cb(enum cpuhp_state state
)
1557 return cpuhp_get_step(state
)->teardown
.single
;
1561 * Call the startup/teardown function for a step either on the AP or
1562 * on the current CPU.
1564 static int cpuhp_issue_call(int cpu
, enum cpuhp_state state
, bool bringup
,
1565 struct hlist_node
*node
)
1567 struct cpuhp_step
*sp
= cpuhp_get_step(state
);
1571 * If there's nothing to do, we done.
1572 * Relies on the union for multi_instance.
1574 if ((bringup
&& !sp
->startup
.single
) ||
1575 (!bringup
&& !sp
->teardown
.single
))
1578 * The non AP bound callbacks can fail on bringup. On teardown
1579 * e.g. module removal we crash for now.
1582 if (cpuhp_is_ap_state(state
))
1583 ret
= cpuhp_invoke_ap_callback(cpu
, state
, bringup
, node
);
1585 ret
= cpuhp_invoke_callback(cpu
, state
, bringup
, node
, NULL
);
1587 ret
= cpuhp_invoke_callback(cpu
, state
, bringup
, node
, NULL
);
1589 BUG_ON(ret
&& !bringup
);
1594 * Called from __cpuhp_setup_state on a recoverable failure.
1596 * Note: The teardown callbacks for rollback are not allowed to fail!
1598 static void cpuhp_rollback_install(int failedcpu
, enum cpuhp_state state
,
1599 struct hlist_node
*node
)
1603 /* Roll back the already executed steps on the other cpus */
1604 for_each_present_cpu(cpu
) {
1605 struct cpuhp_cpu_state
*st
= per_cpu_ptr(&cpuhp_state
, cpu
);
1606 int cpustate
= st
->state
;
1608 if (cpu
>= failedcpu
)
1611 /* Did we invoke the startup call on that cpu ? */
1612 if (cpustate
>= state
)
1613 cpuhp_issue_call(cpu
, state
, false, node
);
1617 int __cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state
,
1618 struct hlist_node
*node
,
1621 struct cpuhp_step
*sp
;
1625 lockdep_assert_cpus_held();
1627 sp
= cpuhp_get_step(state
);
1628 if (sp
->multi_instance
== false)
1631 mutex_lock(&cpuhp_state_mutex
);
1633 if (!invoke
|| !sp
->startup
.multi
)
1637 * Try to call the startup callback for each present cpu
1638 * depending on the hotplug state of the cpu.
1640 for_each_present_cpu(cpu
) {
1641 struct cpuhp_cpu_state
*st
= per_cpu_ptr(&cpuhp_state
, cpu
);
1642 int cpustate
= st
->state
;
1644 if (cpustate
< state
)
1647 ret
= cpuhp_issue_call(cpu
, state
, true, node
);
1649 if (sp
->teardown
.multi
)
1650 cpuhp_rollback_install(cpu
, state
, node
);
1656 hlist_add_head(node
, &sp
->list
);
1658 mutex_unlock(&cpuhp_state_mutex
);
1662 int __cpuhp_state_add_instance(enum cpuhp_state state
, struct hlist_node
*node
,
1668 ret
= __cpuhp_state_add_instance_cpuslocked(state
, node
, invoke
);
1672 EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance
);
1675 * __cpuhp_setup_state_cpuslocked - Setup the callbacks for an hotplug machine state
1676 * @state: The state to setup
1677 * @invoke: If true, the startup function is invoked for cpus where
1678 * cpu state >= @state
1679 * @startup: startup callback function
1680 * @teardown: teardown callback function
1681 * @multi_instance: State is set up for multiple instances which get
1684 * The caller needs to hold cpus read locked while calling this function.
1687 * Positive state number if @state is CPUHP_AP_ONLINE_DYN
1688 * 0 for all other states
1689 * On failure: proper (negative) error code
1691 int __cpuhp_setup_state_cpuslocked(enum cpuhp_state state
,
1692 const char *name
, bool invoke
,
1693 int (*startup
)(unsigned int cpu
),
1694 int (*teardown
)(unsigned int cpu
),
1695 bool multi_instance
)
1700 lockdep_assert_cpus_held();
1702 if (cpuhp_cb_check(state
) || !name
)
1705 mutex_lock(&cpuhp_state_mutex
);
1707 ret
= cpuhp_store_callbacks(state
, name
, startup
, teardown
,
1710 dynstate
= state
== CPUHP_AP_ONLINE_DYN
;
1711 if (ret
> 0 && dynstate
) {
1716 if (ret
|| !invoke
|| !startup
)
1720 * Try to call the startup callback for each present cpu
1721 * depending on the hotplug state of the cpu.
1723 for_each_present_cpu(cpu
) {
1724 struct cpuhp_cpu_state
*st
= per_cpu_ptr(&cpuhp_state
, cpu
);
1725 int cpustate
= st
->state
;
1727 if (cpustate
< state
)
1730 ret
= cpuhp_issue_call(cpu
, state
, true, NULL
);
1733 cpuhp_rollback_install(cpu
, state
, NULL
);
1734 cpuhp_store_callbacks(state
, NULL
, NULL
, NULL
, false);
1739 mutex_unlock(&cpuhp_state_mutex
);
1741 * If the requested state is CPUHP_AP_ONLINE_DYN, return the
1742 * dynamically allocated state in case of success.
1744 if (!ret
&& dynstate
)
1748 EXPORT_SYMBOL(__cpuhp_setup_state_cpuslocked
);
1750 int __cpuhp_setup_state(enum cpuhp_state state
,
1751 const char *name
, bool invoke
,
1752 int (*startup
)(unsigned int cpu
),
1753 int (*teardown
)(unsigned int cpu
),
1754 bool multi_instance
)
1759 ret
= __cpuhp_setup_state_cpuslocked(state
, name
, invoke
, startup
,
1760 teardown
, multi_instance
);
1764 EXPORT_SYMBOL(__cpuhp_setup_state
);
1766 int __cpuhp_state_remove_instance(enum cpuhp_state state
,
1767 struct hlist_node
*node
, bool invoke
)
1769 struct cpuhp_step
*sp
= cpuhp_get_step(state
);
1772 BUG_ON(cpuhp_cb_check(state
));
1774 if (!sp
->multi_instance
)
1778 mutex_lock(&cpuhp_state_mutex
);
1780 if (!invoke
|| !cpuhp_get_teardown_cb(state
))
1783 * Call the teardown callback for each present cpu depending
1784 * on the hotplug state of the cpu. This function is not
1785 * allowed to fail currently!
1787 for_each_present_cpu(cpu
) {
1788 struct cpuhp_cpu_state
*st
= per_cpu_ptr(&cpuhp_state
, cpu
);
1789 int cpustate
= st
->state
;
1791 if (cpustate
>= state
)
1792 cpuhp_issue_call(cpu
, state
, false, node
);
1797 mutex_unlock(&cpuhp_state_mutex
);
1802 EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance
);
1805 * __cpuhp_remove_state_cpuslocked - Remove the callbacks for an hotplug machine state
1806 * @state: The state to remove
1807 * @invoke: If true, the teardown function is invoked for cpus where
1808 * cpu state >= @state
1810 * The caller needs to hold cpus read locked while calling this function.
1811 * The teardown callback is currently not allowed to fail. Think
1812 * about module removal!
1814 void __cpuhp_remove_state_cpuslocked(enum cpuhp_state state
, bool invoke
)
1816 struct cpuhp_step
*sp
= cpuhp_get_step(state
);
1819 BUG_ON(cpuhp_cb_check(state
));
1821 lockdep_assert_cpus_held();
1823 mutex_lock(&cpuhp_state_mutex
);
1824 if (sp
->multi_instance
) {
1825 WARN(!hlist_empty(&sp
->list
),
1826 "Error: Removing state %d which has instances left.\n",
1831 if (!invoke
|| !cpuhp_get_teardown_cb(state
))
1835 * Call the teardown callback for each present cpu depending
1836 * on the hotplug state of the cpu. This function is not
1837 * allowed to fail currently!
1839 for_each_present_cpu(cpu
) {
1840 struct cpuhp_cpu_state
*st
= per_cpu_ptr(&cpuhp_state
, cpu
);
1841 int cpustate
= st
->state
;
1843 if (cpustate
>= state
)
1844 cpuhp_issue_call(cpu
, state
, false, NULL
);
1847 cpuhp_store_callbacks(state
, NULL
, NULL
, NULL
, false);
1848 mutex_unlock(&cpuhp_state_mutex
);
1850 EXPORT_SYMBOL(__cpuhp_remove_state_cpuslocked
);
1852 void __cpuhp_remove_state(enum cpuhp_state state
, bool invoke
)
1855 __cpuhp_remove_state_cpuslocked(state
, invoke
);
1858 EXPORT_SYMBOL(__cpuhp_remove_state
);
1860 #if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU)
1861 static ssize_t
show_cpuhp_state(struct device
*dev
,
1862 struct device_attribute
*attr
, char *buf
)
1864 struct cpuhp_cpu_state
*st
= per_cpu_ptr(&cpuhp_state
, dev
->id
);
1866 return sprintf(buf
, "%d\n", st
->state
);
1868 static DEVICE_ATTR(state
, 0444, show_cpuhp_state
, NULL
);
1870 static ssize_t
write_cpuhp_target(struct device
*dev
,
1871 struct device_attribute
*attr
,
1872 const char *buf
, size_t count
)
1874 struct cpuhp_cpu_state
*st
= per_cpu_ptr(&cpuhp_state
, dev
->id
);
1875 struct cpuhp_step
*sp
;
1878 ret
= kstrtoint(buf
, 10, &target
);
1882 #ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL
1883 if (target
< CPUHP_OFFLINE
|| target
> CPUHP_ONLINE
)
1886 if (target
!= CPUHP_OFFLINE
&& target
!= CPUHP_ONLINE
)
1890 ret
= lock_device_hotplug_sysfs();
1894 mutex_lock(&cpuhp_state_mutex
);
1895 sp
= cpuhp_get_step(target
);
1896 ret
= !sp
->name
|| sp
->cant_stop
? -EINVAL
: 0;
1897 mutex_unlock(&cpuhp_state_mutex
);
1901 if (st
->state
< target
)
1902 ret
= do_cpu_up(dev
->id
, target
);
1904 ret
= do_cpu_down(dev
->id
, target
);
1906 unlock_device_hotplug();
1907 return ret
? ret
: count
;
1910 static ssize_t
show_cpuhp_target(struct device
*dev
,
1911 struct device_attribute
*attr
, char *buf
)
1913 struct cpuhp_cpu_state
*st
= per_cpu_ptr(&cpuhp_state
, dev
->id
);
1915 return sprintf(buf
, "%d\n", st
->target
);
1917 static DEVICE_ATTR(target
, 0644, show_cpuhp_target
, write_cpuhp_target
);
1920 static ssize_t
write_cpuhp_fail(struct device
*dev
,
1921 struct device_attribute
*attr
,
1922 const char *buf
, size_t count
)
1924 struct cpuhp_cpu_state
*st
= per_cpu_ptr(&cpuhp_state
, dev
->id
);
1925 struct cpuhp_step
*sp
;
1928 ret
= kstrtoint(buf
, 10, &fail
);
1933 * Cannot fail STARTING/DYING callbacks.
1935 if (cpuhp_is_atomic_state(fail
))
1939 * Cannot fail anything that doesn't have callbacks.
1941 mutex_lock(&cpuhp_state_mutex
);
1942 sp
= cpuhp_get_step(fail
);
1943 if (!sp
->startup
.single
&& !sp
->teardown
.single
)
1945 mutex_unlock(&cpuhp_state_mutex
);
1954 static ssize_t
show_cpuhp_fail(struct device
*dev
,
1955 struct device_attribute
*attr
, char *buf
)
1957 struct cpuhp_cpu_state
*st
= per_cpu_ptr(&cpuhp_state
, dev
->id
);
1959 return sprintf(buf
, "%d\n", st
->fail
);
1962 static DEVICE_ATTR(fail
, 0644, show_cpuhp_fail
, write_cpuhp_fail
);
1964 static struct attribute
*cpuhp_cpu_attrs
[] = {
1965 &dev_attr_state
.attr
,
1966 &dev_attr_target
.attr
,
1967 &dev_attr_fail
.attr
,
1971 static const struct attribute_group cpuhp_cpu_attr_group
= {
1972 .attrs
= cpuhp_cpu_attrs
,
1977 static ssize_t
show_cpuhp_states(struct device
*dev
,
1978 struct device_attribute
*attr
, char *buf
)
1980 ssize_t cur
, res
= 0;
1983 mutex_lock(&cpuhp_state_mutex
);
1984 for (i
= CPUHP_OFFLINE
; i
<= CPUHP_ONLINE
; i
++) {
1985 struct cpuhp_step
*sp
= cpuhp_get_step(i
);
1988 cur
= sprintf(buf
, "%3d: %s\n", i
, sp
->name
);
1993 mutex_unlock(&cpuhp_state_mutex
);
1996 static DEVICE_ATTR(states
, 0444, show_cpuhp_states
, NULL
);
1998 static struct attribute
*cpuhp_cpu_root_attrs
[] = {
1999 &dev_attr_states
.attr
,
2003 static const struct attribute_group cpuhp_cpu_root_attr_group
= {
2004 .attrs
= cpuhp_cpu_root_attrs
,
2009 #ifdef CONFIG_HOTPLUG_SMT
2011 static const char *smt_states
[] = {
2012 [CPU_SMT_ENABLED
] = "on",
2013 [CPU_SMT_DISABLED
] = "off",
2014 [CPU_SMT_FORCE_DISABLED
] = "forceoff",
2015 [CPU_SMT_NOT_SUPPORTED
] = "notsupported",
2019 show_smt_control(struct device
*dev
, struct device_attribute
*attr
, char *buf
)
2021 return snprintf(buf
, PAGE_SIZE
- 2, "%s\n", smt_states
[cpu_smt_control
]);
2024 static void cpuhp_offline_cpu_device(unsigned int cpu
)
2026 struct device
*dev
= get_cpu_device(cpu
);
2028 dev
->offline
= true;
2029 /* Tell user space about the state change */
2030 kobject_uevent(&dev
->kobj
, KOBJ_OFFLINE
);
2033 static void cpuhp_online_cpu_device(unsigned int cpu
)
2035 struct device
*dev
= get_cpu_device(cpu
);
2037 dev
->offline
= false;
2038 /* Tell user space about the state change */
2039 kobject_uevent(&dev
->kobj
, KOBJ_ONLINE
);
2042 static int cpuhp_smt_disable(enum cpuhp_smt_control ctrlval
)
2046 cpu_maps_update_begin();
2047 for_each_online_cpu(cpu
) {
2048 if (topology_is_primary_thread(cpu
))
2050 ret
= cpu_down_maps_locked(cpu
, CPUHP_OFFLINE
);
2054 * As this needs to hold the cpu maps lock it's impossible
2055 * to call device_offline() because that ends up calling
2056 * cpu_down() which takes cpu maps lock. cpu maps lock
2057 * needs to be held as this might race against in kernel
2058 * abusers of the hotplug machinery (thermal management).
2060 * So nothing would update device:offline state. That would
2061 * leave the sysfs entry stale and prevent onlining after
2062 * smt control has been changed to 'off' again. This is
2063 * called under the sysfs hotplug lock, so it is properly
2064 * serialized against the regular offline usage.
2066 cpuhp_offline_cpu_device(cpu
);
2069 cpu_smt_control
= ctrlval
;
2070 cpu_maps_update_done();
2074 static int cpuhp_smt_enable(void)
2078 cpu_maps_update_begin();
2079 cpu_smt_control
= CPU_SMT_ENABLED
;
2080 for_each_present_cpu(cpu
) {
2081 /* Skip online CPUs and CPUs on offline nodes */
2082 if (cpu_online(cpu
) || !node_online(cpu_to_node(cpu
)))
2084 ret
= _cpu_up(cpu
, 0, CPUHP_ONLINE
);
2087 /* See comment in cpuhp_smt_disable() */
2088 cpuhp_online_cpu_device(cpu
);
2090 cpu_maps_update_done();
2095 store_smt_control(struct device
*dev
, struct device_attribute
*attr
,
2096 const char *buf
, size_t count
)
2100 if (sysfs_streq(buf
, "on"))
2101 ctrlval
= CPU_SMT_ENABLED
;
2102 else if (sysfs_streq(buf
, "off"))
2103 ctrlval
= CPU_SMT_DISABLED
;
2104 else if (sysfs_streq(buf
, "forceoff"))
2105 ctrlval
= CPU_SMT_FORCE_DISABLED
;
2109 if (cpu_smt_control
== CPU_SMT_FORCE_DISABLED
)
2112 if (cpu_smt_control
== CPU_SMT_NOT_SUPPORTED
)
2115 ret
= lock_device_hotplug_sysfs();
2119 if (ctrlval
!= cpu_smt_control
) {
2121 case CPU_SMT_ENABLED
:
2122 ret
= cpuhp_smt_enable();
2124 case CPU_SMT_DISABLED
:
2125 case CPU_SMT_FORCE_DISABLED
:
2126 ret
= cpuhp_smt_disable(ctrlval
);
2131 unlock_device_hotplug();
2132 return ret
? ret
: count
;
2134 static DEVICE_ATTR(control
, 0644, show_smt_control
, store_smt_control
);
2137 show_smt_active(struct device
*dev
, struct device_attribute
*attr
, char *buf
)
2139 bool active
= topology_max_smt_threads() > 1;
2141 return snprintf(buf
, PAGE_SIZE
- 2, "%d\n", active
);
2143 static DEVICE_ATTR(active
, 0444, show_smt_active
, NULL
);
2145 static struct attribute
*cpuhp_smt_attrs
[] = {
2146 &dev_attr_control
.attr
,
2147 &dev_attr_active
.attr
,
2151 static const struct attribute_group cpuhp_smt_attr_group
= {
2152 .attrs
= cpuhp_smt_attrs
,
2157 static int __init
cpu_smt_state_init(void)
2159 return sysfs_create_group(&cpu_subsys
.dev_root
->kobj
,
2160 &cpuhp_smt_attr_group
);
2164 static inline int cpu_smt_state_init(void) { return 0; }
2167 static int __init
cpuhp_sysfs_init(void)
2171 ret
= cpu_smt_state_init();
2175 ret
= sysfs_create_group(&cpu_subsys
.dev_root
->kobj
,
2176 &cpuhp_cpu_root_attr_group
);
2180 for_each_possible_cpu(cpu
) {
2181 struct device
*dev
= get_cpu_device(cpu
);
2185 ret
= sysfs_create_group(&dev
->kobj
, &cpuhp_cpu_attr_group
);
2191 device_initcall(cpuhp_sysfs_init
);
2195 * cpu_bit_bitmap[] is a special, "compressed" data structure that
2196 * represents all NR_CPUS bits binary values of 1<<nr.
2198 * It is used by cpumask_of() to get a constant address to a CPU
2199 * mask value that has a single bit set only.
2202 /* cpu_bit_bitmap[0] is empty - so we can back into it */
2203 #define MASK_DECLARE_1(x) [x+1][0] = (1UL << (x))
2204 #define MASK_DECLARE_2(x) MASK_DECLARE_1(x), MASK_DECLARE_1(x+1)
2205 #define MASK_DECLARE_4(x) MASK_DECLARE_2(x), MASK_DECLARE_2(x+2)
2206 #define MASK_DECLARE_8(x) MASK_DECLARE_4(x), MASK_DECLARE_4(x+4)
2208 const unsigned long cpu_bit_bitmap
[BITS_PER_LONG
+1][BITS_TO_LONGS(NR_CPUS
)] = {
2210 MASK_DECLARE_8(0), MASK_DECLARE_8(8),
2211 MASK_DECLARE_8(16), MASK_DECLARE_8(24),
2212 #if BITS_PER_LONG > 32
2213 MASK_DECLARE_8(32), MASK_DECLARE_8(40),
2214 MASK_DECLARE_8(48), MASK_DECLARE_8(56),
2217 EXPORT_SYMBOL_GPL(cpu_bit_bitmap
);
2219 const DECLARE_BITMAP(cpu_all_bits
, NR_CPUS
) = CPU_BITS_ALL
;
2220 EXPORT_SYMBOL(cpu_all_bits
);
2222 #ifdef CONFIG_INIT_ALL_POSSIBLE
2223 struct cpumask __cpu_possible_mask __read_mostly
2226 struct cpumask __cpu_possible_mask __read_mostly
;
2228 EXPORT_SYMBOL(__cpu_possible_mask
);
2230 struct cpumask __cpu_online_mask __read_mostly
;
2231 EXPORT_SYMBOL(__cpu_online_mask
);
2233 struct cpumask __cpu_present_mask __read_mostly
;
2234 EXPORT_SYMBOL(__cpu_present_mask
);
2236 struct cpumask __cpu_active_mask __read_mostly
;
2237 EXPORT_SYMBOL(__cpu_active_mask
);
2239 void init_cpu_present(const struct cpumask
*src
)
2241 cpumask_copy(&__cpu_present_mask
, src
);
2244 void init_cpu_possible(const struct cpumask
*src
)
2246 cpumask_copy(&__cpu_possible_mask
, src
);
2249 void init_cpu_online(const struct cpumask
*src
)
2251 cpumask_copy(&__cpu_online_mask
, src
);
2255 * Activate the first processor.
2257 void __init
boot_cpu_init(void)
2259 int cpu
= smp_processor_id();
2261 /* Mark the boot cpu "present", "online" etc for SMP and UP case */
2262 set_cpu_online(cpu
, true);
2263 set_cpu_active(cpu
, true);
2264 set_cpu_present(cpu
, true);
2265 set_cpu_possible(cpu
, true);
2268 __boot_cpu_id
= cpu
;
2273 * Must be called _AFTER_ setting up the per_cpu areas
2275 void __init
boot_cpu_hotplug_init(void)
2278 this_cpu_write(cpuhp_state
.booted_once
, true);
2280 this_cpu_write(cpuhp_state
.state
, CPUHP_ONLINE
);