irqchip/mbigen: Fix return value check in mbigen_device_probe()
[linux-stable.git] / fs / xfs / xfs_buf.c
blobb6208728ba39767bbb2898880fbb515abcc5ab4f
1 /*
2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3 * All Rights Reserved.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 #include "xfs.h"
19 #include <linux/stddef.h>
20 #include <linux/errno.h>
21 #include <linux/gfp.h>
22 #include <linux/pagemap.h>
23 #include <linux/init.h>
24 #include <linux/vmalloc.h>
25 #include <linux/bio.h>
26 #include <linux/sysctl.h>
27 #include <linux/proc_fs.h>
28 #include <linux/workqueue.h>
29 #include <linux/percpu.h>
30 #include <linux/blkdev.h>
31 #include <linux/hash.h>
32 #include <linux/kthread.h>
33 #include <linux/migrate.h>
34 #include <linux/backing-dev.h>
35 #include <linux/freezer.h>
36 #include <linux/sched/mm.h>
38 #include "xfs_format.h"
39 #include "xfs_log_format.h"
40 #include "xfs_trans_resv.h"
41 #include "xfs_sb.h"
42 #include "xfs_mount.h"
43 #include "xfs_trace.h"
44 #include "xfs_log.h"
46 static kmem_zone_t *xfs_buf_zone;
48 #ifdef XFS_BUF_LOCK_TRACKING
49 # define XB_SET_OWNER(bp) ((bp)->b_last_holder = current->pid)
50 # define XB_CLEAR_OWNER(bp) ((bp)->b_last_holder = -1)
51 # define XB_GET_OWNER(bp) ((bp)->b_last_holder)
52 #else
53 # define XB_SET_OWNER(bp) do { } while (0)
54 # define XB_CLEAR_OWNER(bp) do { } while (0)
55 # define XB_GET_OWNER(bp) do { } while (0)
56 #endif
58 #define xb_to_gfp(flags) \
59 ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : GFP_NOFS) | __GFP_NOWARN)
62 static inline int
63 xfs_buf_is_vmapped(
64 struct xfs_buf *bp)
67 * Return true if the buffer is vmapped.
69 * b_addr is null if the buffer is not mapped, but the code is clever
70 * enough to know it doesn't have to map a single page, so the check has
71 * to be both for b_addr and bp->b_page_count > 1.
73 return bp->b_addr && bp->b_page_count > 1;
76 static inline int
77 xfs_buf_vmap_len(
78 struct xfs_buf *bp)
80 return (bp->b_page_count * PAGE_SIZE) - bp->b_offset;
84 * Bump the I/O in flight count on the buftarg if we haven't yet done so for
85 * this buffer. The count is incremented once per buffer (per hold cycle)
86 * because the corresponding decrement is deferred to buffer release. Buffers
87 * can undergo I/O multiple times in a hold-release cycle and per buffer I/O
88 * tracking adds unnecessary overhead. This is used for sychronization purposes
89 * with unmount (see xfs_wait_buftarg()), so all we really need is a count of
90 * in-flight buffers.
92 * Buffers that are never released (e.g., superblock, iclog buffers) must set
93 * the XBF_NO_IOACCT flag before I/O submission. Otherwise, the buftarg count
94 * never reaches zero and unmount hangs indefinitely.
96 static inline void
97 xfs_buf_ioacct_inc(
98 struct xfs_buf *bp)
100 if (bp->b_flags & (XBF_NO_IOACCT|_XBF_IN_FLIGHT))
101 return;
103 ASSERT(bp->b_flags & XBF_ASYNC);
104 bp->b_flags |= _XBF_IN_FLIGHT;
105 percpu_counter_inc(&bp->b_target->bt_io_count);
109 * Clear the in-flight state on a buffer about to be released to the LRU or
110 * freed and unaccount from the buftarg.
112 static inline void
113 xfs_buf_ioacct_dec(
114 struct xfs_buf *bp)
116 if (!(bp->b_flags & _XBF_IN_FLIGHT))
117 return;
119 bp->b_flags &= ~_XBF_IN_FLIGHT;
120 percpu_counter_dec(&bp->b_target->bt_io_count);
124 * When we mark a buffer stale, we remove the buffer from the LRU and clear the
125 * b_lru_ref count so that the buffer is freed immediately when the buffer
126 * reference count falls to zero. If the buffer is already on the LRU, we need
127 * to remove the reference that LRU holds on the buffer.
129 * This prevents build-up of stale buffers on the LRU.
131 void
132 xfs_buf_stale(
133 struct xfs_buf *bp)
135 ASSERT(xfs_buf_islocked(bp));
137 bp->b_flags |= XBF_STALE;
140 * Clear the delwri status so that a delwri queue walker will not
141 * flush this buffer to disk now that it is stale. The delwri queue has
142 * a reference to the buffer, so this is safe to do.
144 bp->b_flags &= ~_XBF_DELWRI_Q;
147 * Once the buffer is marked stale and unlocked, a subsequent lookup
148 * could reset b_flags. There is no guarantee that the buffer is
149 * unaccounted (released to LRU) before that occurs. Drop in-flight
150 * status now to preserve accounting consistency.
152 xfs_buf_ioacct_dec(bp);
154 spin_lock(&bp->b_lock);
155 atomic_set(&bp->b_lru_ref, 0);
156 if (!(bp->b_state & XFS_BSTATE_DISPOSE) &&
157 (list_lru_del(&bp->b_target->bt_lru, &bp->b_lru)))
158 atomic_dec(&bp->b_hold);
160 ASSERT(atomic_read(&bp->b_hold) >= 1);
161 spin_unlock(&bp->b_lock);
164 static int
165 xfs_buf_get_maps(
166 struct xfs_buf *bp,
167 int map_count)
169 ASSERT(bp->b_maps == NULL);
170 bp->b_map_count = map_count;
172 if (map_count == 1) {
173 bp->b_maps = &bp->__b_map;
174 return 0;
177 bp->b_maps = kmem_zalloc(map_count * sizeof(struct xfs_buf_map),
178 KM_NOFS);
179 if (!bp->b_maps)
180 return -ENOMEM;
181 return 0;
185 * Frees b_pages if it was allocated.
187 static void
188 xfs_buf_free_maps(
189 struct xfs_buf *bp)
191 if (bp->b_maps != &bp->__b_map) {
192 kmem_free(bp->b_maps);
193 bp->b_maps = NULL;
197 struct xfs_buf *
198 _xfs_buf_alloc(
199 struct xfs_buftarg *target,
200 struct xfs_buf_map *map,
201 int nmaps,
202 xfs_buf_flags_t flags)
204 struct xfs_buf *bp;
205 int error;
206 int i;
208 bp = kmem_zone_zalloc(xfs_buf_zone, KM_NOFS);
209 if (unlikely(!bp))
210 return NULL;
213 * We don't want certain flags to appear in b_flags unless they are
214 * specifically set by later operations on the buffer.
216 flags &= ~(XBF_UNMAPPED | XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD);
218 atomic_set(&bp->b_hold, 1);
219 atomic_set(&bp->b_lru_ref, 1);
220 init_completion(&bp->b_iowait);
221 INIT_LIST_HEAD(&bp->b_lru);
222 INIT_LIST_HEAD(&bp->b_list);
223 sema_init(&bp->b_sema, 0); /* held, no waiters */
224 spin_lock_init(&bp->b_lock);
225 XB_SET_OWNER(bp);
226 bp->b_target = target;
227 bp->b_flags = flags;
230 * Set length and io_length to the same value initially.
231 * I/O routines should use io_length, which will be the same in
232 * most cases but may be reset (e.g. XFS recovery).
234 error = xfs_buf_get_maps(bp, nmaps);
235 if (error) {
236 kmem_zone_free(xfs_buf_zone, bp);
237 return NULL;
240 bp->b_bn = map[0].bm_bn;
241 bp->b_length = 0;
242 for (i = 0; i < nmaps; i++) {
243 bp->b_maps[i].bm_bn = map[i].bm_bn;
244 bp->b_maps[i].bm_len = map[i].bm_len;
245 bp->b_length += map[i].bm_len;
247 bp->b_io_length = bp->b_length;
249 atomic_set(&bp->b_pin_count, 0);
250 init_waitqueue_head(&bp->b_waiters);
252 XFS_STATS_INC(target->bt_mount, xb_create);
253 trace_xfs_buf_init(bp, _RET_IP_);
255 return bp;
259 * Allocate a page array capable of holding a specified number
260 * of pages, and point the page buf at it.
262 STATIC int
263 _xfs_buf_get_pages(
264 xfs_buf_t *bp,
265 int page_count)
267 /* Make sure that we have a page list */
268 if (bp->b_pages == NULL) {
269 bp->b_page_count = page_count;
270 if (page_count <= XB_PAGES) {
271 bp->b_pages = bp->b_page_array;
272 } else {
273 bp->b_pages = kmem_alloc(sizeof(struct page *) *
274 page_count, KM_NOFS);
275 if (bp->b_pages == NULL)
276 return -ENOMEM;
278 memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
280 return 0;
284 * Frees b_pages if it was allocated.
286 STATIC void
287 _xfs_buf_free_pages(
288 xfs_buf_t *bp)
290 if (bp->b_pages != bp->b_page_array) {
291 kmem_free(bp->b_pages);
292 bp->b_pages = NULL;
297 * Releases the specified buffer.
299 * The modification state of any associated pages is left unchanged.
300 * The buffer must not be on any hash - use xfs_buf_rele instead for
301 * hashed and refcounted buffers
303 void
304 xfs_buf_free(
305 xfs_buf_t *bp)
307 trace_xfs_buf_free(bp, _RET_IP_);
309 ASSERT(list_empty(&bp->b_lru));
311 if (bp->b_flags & _XBF_PAGES) {
312 uint i;
314 if (xfs_buf_is_vmapped(bp))
315 vm_unmap_ram(bp->b_addr - bp->b_offset,
316 bp->b_page_count);
318 for (i = 0; i < bp->b_page_count; i++) {
319 struct page *page = bp->b_pages[i];
321 __free_page(page);
323 } else if (bp->b_flags & _XBF_KMEM)
324 kmem_free(bp->b_addr);
325 _xfs_buf_free_pages(bp);
326 xfs_buf_free_maps(bp);
327 kmem_zone_free(xfs_buf_zone, bp);
331 * Allocates all the pages for buffer in question and builds it's page list.
333 STATIC int
334 xfs_buf_allocate_memory(
335 xfs_buf_t *bp,
336 uint flags)
338 size_t size;
339 size_t nbytes, offset;
340 gfp_t gfp_mask = xb_to_gfp(flags);
341 unsigned short page_count, i;
342 xfs_off_t start, end;
343 int error;
346 * for buffers that are contained within a single page, just allocate
347 * the memory from the heap - there's no need for the complexity of
348 * page arrays to keep allocation down to order 0.
350 size = BBTOB(bp->b_length);
351 if (size < PAGE_SIZE) {
352 bp->b_addr = kmem_alloc(size, KM_NOFS);
353 if (!bp->b_addr) {
354 /* low memory - use alloc_page loop instead */
355 goto use_alloc_page;
358 if (((unsigned long)(bp->b_addr + size - 1) & PAGE_MASK) !=
359 ((unsigned long)bp->b_addr & PAGE_MASK)) {
360 /* b_addr spans two pages - use alloc_page instead */
361 kmem_free(bp->b_addr);
362 bp->b_addr = NULL;
363 goto use_alloc_page;
365 bp->b_offset = offset_in_page(bp->b_addr);
366 bp->b_pages = bp->b_page_array;
367 bp->b_pages[0] = virt_to_page(bp->b_addr);
368 bp->b_page_count = 1;
369 bp->b_flags |= _XBF_KMEM;
370 return 0;
373 use_alloc_page:
374 start = BBTOB(bp->b_maps[0].bm_bn) >> PAGE_SHIFT;
375 end = (BBTOB(bp->b_maps[0].bm_bn + bp->b_length) + PAGE_SIZE - 1)
376 >> PAGE_SHIFT;
377 page_count = end - start;
378 error = _xfs_buf_get_pages(bp, page_count);
379 if (unlikely(error))
380 return error;
382 offset = bp->b_offset;
383 bp->b_flags |= _XBF_PAGES;
385 for (i = 0; i < bp->b_page_count; i++) {
386 struct page *page;
387 uint retries = 0;
388 retry:
389 page = alloc_page(gfp_mask);
390 if (unlikely(page == NULL)) {
391 if (flags & XBF_READ_AHEAD) {
392 bp->b_page_count = i;
393 error = -ENOMEM;
394 goto out_free_pages;
398 * This could deadlock.
400 * But until all the XFS lowlevel code is revamped to
401 * handle buffer allocation failures we can't do much.
403 if (!(++retries % 100))
404 xfs_err(NULL,
405 "%s(%u) possible memory allocation deadlock in %s (mode:0x%x)",
406 current->comm, current->pid,
407 __func__, gfp_mask);
409 XFS_STATS_INC(bp->b_target->bt_mount, xb_page_retries);
410 congestion_wait(BLK_RW_ASYNC, HZ/50);
411 goto retry;
414 XFS_STATS_INC(bp->b_target->bt_mount, xb_page_found);
416 nbytes = min_t(size_t, size, PAGE_SIZE - offset);
417 size -= nbytes;
418 bp->b_pages[i] = page;
419 offset = 0;
421 return 0;
423 out_free_pages:
424 for (i = 0; i < bp->b_page_count; i++)
425 __free_page(bp->b_pages[i]);
426 bp->b_flags &= ~_XBF_PAGES;
427 return error;
431 * Map buffer into kernel address-space if necessary.
433 STATIC int
434 _xfs_buf_map_pages(
435 xfs_buf_t *bp,
436 uint flags)
438 ASSERT(bp->b_flags & _XBF_PAGES);
439 if (bp->b_page_count == 1) {
440 /* A single page buffer is always mappable */
441 bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
442 } else if (flags & XBF_UNMAPPED) {
443 bp->b_addr = NULL;
444 } else {
445 int retried = 0;
446 unsigned noio_flag;
449 * vm_map_ram() will allocate auxillary structures (e.g.
450 * pagetables) with GFP_KERNEL, yet we are likely to be under
451 * GFP_NOFS context here. Hence we need to tell memory reclaim
452 * that we are in such a context via PF_MEMALLOC_NOIO to prevent
453 * memory reclaim re-entering the filesystem here and
454 * potentially deadlocking.
456 noio_flag = memalloc_noio_save();
457 do {
458 bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
459 -1, PAGE_KERNEL);
460 if (bp->b_addr)
461 break;
462 vm_unmap_aliases();
463 } while (retried++ <= 1);
464 memalloc_noio_restore(noio_flag);
466 if (!bp->b_addr)
467 return -ENOMEM;
468 bp->b_addr += bp->b_offset;
471 return 0;
475 * Finding and Reading Buffers
477 static int
478 _xfs_buf_obj_cmp(
479 struct rhashtable_compare_arg *arg,
480 const void *obj)
482 const struct xfs_buf_map *map = arg->key;
483 const struct xfs_buf *bp = obj;
486 * The key hashing in the lookup path depends on the key being the
487 * first element of the compare_arg, make sure to assert this.
489 BUILD_BUG_ON(offsetof(struct xfs_buf_map, bm_bn) != 0);
491 if (bp->b_bn != map->bm_bn)
492 return 1;
494 if (unlikely(bp->b_length != map->bm_len)) {
496 * found a block number match. If the range doesn't
497 * match, the only way this is allowed is if the buffer
498 * in the cache is stale and the transaction that made
499 * it stale has not yet committed. i.e. we are
500 * reallocating a busy extent. Skip this buffer and
501 * continue searching for an exact match.
503 ASSERT(bp->b_flags & XBF_STALE);
504 return 1;
506 return 0;
509 static const struct rhashtable_params xfs_buf_hash_params = {
510 .min_size = 32, /* empty AGs have minimal footprint */
511 .nelem_hint = 16,
512 .key_len = sizeof(xfs_daddr_t),
513 .key_offset = offsetof(struct xfs_buf, b_bn),
514 .head_offset = offsetof(struct xfs_buf, b_rhash_head),
515 .automatic_shrinking = true,
516 .obj_cmpfn = _xfs_buf_obj_cmp,
520 xfs_buf_hash_init(
521 struct xfs_perag *pag)
523 spin_lock_init(&pag->pag_buf_lock);
524 return rhashtable_init(&pag->pag_buf_hash, &xfs_buf_hash_params);
527 void
528 xfs_buf_hash_destroy(
529 struct xfs_perag *pag)
531 rhashtable_destroy(&pag->pag_buf_hash);
535 * Look up, and creates if absent, a lockable buffer for
536 * a given range of an inode. The buffer is returned
537 * locked. No I/O is implied by this call.
539 xfs_buf_t *
540 _xfs_buf_find(
541 struct xfs_buftarg *btp,
542 struct xfs_buf_map *map,
543 int nmaps,
544 xfs_buf_flags_t flags,
545 xfs_buf_t *new_bp)
547 struct xfs_perag *pag;
548 xfs_buf_t *bp;
549 struct xfs_buf_map cmap = { .bm_bn = map[0].bm_bn };
550 xfs_daddr_t eofs;
551 int i;
553 for (i = 0; i < nmaps; i++)
554 cmap.bm_len += map[i].bm_len;
556 /* Check for IOs smaller than the sector size / not sector aligned */
557 ASSERT(!(BBTOB(cmap.bm_len) < btp->bt_meta_sectorsize));
558 ASSERT(!(BBTOB(cmap.bm_bn) & (xfs_off_t)btp->bt_meta_sectormask));
561 * Corrupted block numbers can get through to here, unfortunately, so we
562 * have to check that the buffer falls within the filesystem bounds.
564 eofs = XFS_FSB_TO_BB(btp->bt_mount, btp->bt_mount->m_sb.sb_dblocks);
565 if (cmap.bm_bn < 0 || cmap.bm_bn >= eofs) {
567 * XXX (dgc): we should really be returning -EFSCORRUPTED here,
568 * but none of the higher level infrastructure supports
569 * returning a specific error on buffer lookup failures.
571 xfs_alert(btp->bt_mount,
572 "%s: Block out of range: block 0x%llx, EOFS 0x%llx ",
573 __func__, cmap.bm_bn, eofs);
574 WARN_ON(1);
575 return NULL;
578 pag = xfs_perag_get(btp->bt_mount,
579 xfs_daddr_to_agno(btp->bt_mount, cmap.bm_bn));
581 spin_lock(&pag->pag_buf_lock);
582 bp = rhashtable_lookup_fast(&pag->pag_buf_hash, &cmap,
583 xfs_buf_hash_params);
584 if (bp) {
585 atomic_inc(&bp->b_hold);
586 goto found;
589 /* No match found */
590 if (new_bp) {
591 /* the buffer keeps the perag reference until it is freed */
592 new_bp->b_pag = pag;
593 rhashtable_insert_fast(&pag->pag_buf_hash,
594 &new_bp->b_rhash_head,
595 xfs_buf_hash_params);
596 spin_unlock(&pag->pag_buf_lock);
597 } else {
598 XFS_STATS_INC(btp->bt_mount, xb_miss_locked);
599 spin_unlock(&pag->pag_buf_lock);
600 xfs_perag_put(pag);
602 return new_bp;
604 found:
605 spin_unlock(&pag->pag_buf_lock);
606 xfs_perag_put(pag);
608 if (!xfs_buf_trylock(bp)) {
609 if (flags & XBF_TRYLOCK) {
610 xfs_buf_rele(bp);
611 XFS_STATS_INC(btp->bt_mount, xb_busy_locked);
612 return NULL;
614 xfs_buf_lock(bp);
615 XFS_STATS_INC(btp->bt_mount, xb_get_locked_waited);
619 * if the buffer is stale, clear all the external state associated with
620 * it. We need to keep flags such as how we allocated the buffer memory
621 * intact here.
623 if (bp->b_flags & XBF_STALE) {
624 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
625 ASSERT(bp->b_iodone == NULL);
626 bp->b_flags &= _XBF_KMEM | _XBF_PAGES;
627 bp->b_ops = NULL;
630 trace_xfs_buf_find(bp, flags, _RET_IP_);
631 XFS_STATS_INC(btp->bt_mount, xb_get_locked);
632 return bp;
636 * Assembles a buffer covering the specified range. The code is optimised for
637 * cache hits, as metadata intensive workloads will see 3 orders of magnitude
638 * more hits than misses.
640 struct xfs_buf *
641 xfs_buf_get_map(
642 struct xfs_buftarg *target,
643 struct xfs_buf_map *map,
644 int nmaps,
645 xfs_buf_flags_t flags)
647 struct xfs_buf *bp;
648 struct xfs_buf *new_bp;
649 int error = 0;
651 bp = _xfs_buf_find(target, map, nmaps, flags, NULL);
652 if (likely(bp))
653 goto found;
655 new_bp = _xfs_buf_alloc(target, map, nmaps, flags);
656 if (unlikely(!new_bp))
657 return NULL;
659 error = xfs_buf_allocate_memory(new_bp, flags);
660 if (error) {
661 xfs_buf_free(new_bp);
662 return NULL;
665 bp = _xfs_buf_find(target, map, nmaps, flags, new_bp);
666 if (!bp) {
667 xfs_buf_free(new_bp);
668 return NULL;
671 if (bp != new_bp)
672 xfs_buf_free(new_bp);
674 found:
675 if (!bp->b_addr) {
676 error = _xfs_buf_map_pages(bp, flags);
677 if (unlikely(error)) {
678 xfs_warn(target->bt_mount,
679 "%s: failed to map pagesn", __func__);
680 xfs_buf_relse(bp);
681 return NULL;
686 * Clear b_error if this is a lookup from a caller that doesn't expect
687 * valid data to be found in the buffer.
689 if (!(flags & XBF_READ))
690 xfs_buf_ioerror(bp, 0);
692 XFS_STATS_INC(target->bt_mount, xb_get);
693 trace_xfs_buf_get(bp, flags, _RET_IP_);
694 return bp;
697 STATIC int
698 _xfs_buf_read(
699 xfs_buf_t *bp,
700 xfs_buf_flags_t flags)
702 ASSERT(!(flags & XBF_WRITE));
703 ASSERT(bp->b_maps[0].bm_bn != XFS_BUF_DADDR_NULL);
705 bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD);
706 bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD);
708 if (flags & XBF_ASYNC) {
709 xfs_buf_submit(bp);
710 return 0;
712 return xfs_buf_submit_wait(bp);
715 xfs_buf_t *
716 xfs_buf_read_map(
717 struct xfs_buftarg *target,
718 struct xfs_buf_map *map,
719 int nmaps,
720 xfs_buf_flags_t flags,
721 const struct xfs_buf_ops *ops)
723 struct xfs_buf *bp;
725 flags |= XBF_READ;
727 bp = xfs_buf_get_map(target, map, nmaps, flags);
728 if (bp) {
729 trace_xfs_buf_read(bp, flags, _RET_IP_);
731 if (!(bp->b_flags & XBF_DONE)) {
732 XFS_STATS_INC(target->bt_mount, xb_get_read);
733 bp->b_ops = ops;
734 _xfs_buf_read(bp, flags);
735 } else if (flags & XBF_ASYNC) {
737 * Read ahead call which is already satisfied,
738 * drop the buffer
740 xfs_buf_relse(bp);
741 return NULL;
742 } else {
743 /* We do not want read in the flags */
744 bp->b_flags &= ~XBF_READ;
748 return bp;
752 * If we are not low on memory then do the readahead in a deadlock
753 * safe manner.
755 void
756 xfs_buf_readahead_map(
757 struct xfs_buftarg *target,
758 struct xfs_buf_map *map,
759 int nmaps,
760 const struct xfs_buf_ops *ops)
762 if (bdi_read_congested(target->bt_bdev->bd_bdi))
763 return;
765 xfs_buf_read_map(target, map, nmaps,
766 XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD, ops);
770 * Read an uncached buffer from disk. Allocates and returns a locked
771 * buffer containing the disk contents or nothing.
774 xfs_buf_read_uncached(
775 struct xfs_buftarg *target,
776 xfs_daddr_t daddr,
777 size_t numblks,
778 int flags,
779 struct xfs_buf **bpp,
780 const struct xfs_buf_ops *ops)
782 struct xfs_buf *bp;
784 *bpp = NULL;
786 bp = xfs_buf_get_uncached(target, numblks, flags);
787 if (!bp)
788 return -ENOMEM;
790 /* set up the buffer for a read IO */
791 ASSERT(bp->b_map_count == 1);
792 bp->b_bn = XFS_BUF_DADDR_NULL; /* always null for uncached buffers */
793 bp->b_maps[0].bm_bn = daddr;
794 bp->b_flags |= XBF_READ;
795 bp->b_ops = ops;
797 xfs_buf_submit_wait(bp);
798 if (bp->b_error) {
799 int error = bp->b_error;
800 xfs_buf_relse(bp);
801 return error;
804 *bpp = bp;
805 return 0;
809 * Return a buffer allocated as an empty buffer and associated to external
810 * memory via xfs_buf_associate_memory() back to it's empty state.
812 void
813 xfs_buf_set_empty(
814 struct xfs_buf *bp,
815 size_t numblks)
817 if (bp->b_pages)
818 _xfs_buf_free_pages(bp);
820 bp->b_pages = NULL;
821 bp->b_page_count = 0;
822 bp->b_addr = NULL;
823 bp->b_length = numblks;
824 bp->b_io_length = numblks;
826 ASSERT(bp->b_map_count == 1);
827 bp->b_bn = XFS_BUF_DADDR_NULL;
828 bp->b_maps[0].bm_bn = XFS_BUF_DADDR_NULL;
829 bp->b_maps[0].bm_len = bp->b_length;
832 static inline struct page *
833 mem_to_page(
834 void *addr)
836 if ((!is_vmalloc_addr(addr))) {
837 return virt_to_page(addr);
838 } else {
839 return vmalloc_to_page(addr);
844 xfs_buf_associate_memory(
845 xfs_buf_t *bp,
846 void *mem,
847 size_t len)
849 int rval;
850 int i = 0;
851 unsigned long pageaddr;
852 unsigned long offset;
853 size_t buflen;
854 int page_count;
856 pageaddr = (unsigned long)mem & PAGE_MASK;
857 offset = (unsigned long)mem - pageaddr;
858 buflen = PAGE_ALIGN(len + offset);
859 page_count = buflen >> PAGE_SHIFT;
861 /* Free any previous set of page pointers */
862 if (bp->b_pages)
863 _xfs_buf_free_pages(bp);
865 bp->b_pages = NULL;
866 bp->b_addr = mem;
868 rval = _xfs_buf_get_pages(bp, page_count);
869 if (rval)
870 return rval;
872 bp->b_offset = offset;
874 for (i = 0; i < bp->b_page_count; i++) {
875 bp->b_pages[i] = mem_to_page((void *)pageaddr);
876 pageaddr += PAGE_SIZE;
879 bp->b_io_length = BTOBB(len);
880 bp->b_length = BTOBB(buflen);
882 return 0;
885 xfs_buf_t *
886 xfs_buf_get_uncached(
887 struct xfs_buftarg *target,
888 size_t numblks,
889 int flags)
891 unsigned long page_count;
892 int error, i;
893 struct xfs_buf *bp;
894 DEFINE_SINGLE_BUF_MAP(map, XFS_BUF_DADDR_NULL, numblks);
896 /* flags might contain irrelevant bits, pass only what we care about */
897 bp = _xfs_buf_alloc(target, &map, 1, flags & XBF_NO_IOACCT);
898 if (unlikely(bp == NULL))
899 goto fail;
901 page_count = PAGE_ALIGN(numblks << BBSHIFT) >> PAGE_SHIFT;
902 error = _xfs_buf_get_pages(bp, page_count);
903 if (error)
904 goto fail_free_buf;
906 for (i = 0; i < page_count; i++) {
907 bp->b_pages[i] = alloc_page(xb_to_gfp(flags));
908 if (!bp->b_pages[i])
909 goto fail_free_mem;
911 bp->b_flags |= _XBF_PAGES;
913 error = _xfs_buf_map_pages(bp, 0);
914 if (unlikely(error)) {
915 xfs_warn(target->bt_mount,
916 "%s: failed to map pages", __func__);
917 goto fail_free_mem;
920 trace_xfs_buf_get_uncached(bp, _RET_IP_);
921 return bp;
923 fail_free_mem:
924 while (--i >= 0)
925 __free_page(bp->b_pages[i]);
926 _xfs_buf_free_pages(bp);
927 fail_free_buf:
928 xfs_buf_free_maps(bp);
929 kmem_zone_free(xfs_buf_zone, bp);
930 fail:
931 return NULL;
935 * Increment reference count on buffer, to hold the buffer concurrently
936 * with another thread which may release (free) the buffer asynchronously.
937 * Must hold the buffer already to call this function.
939 void
940 xfs_buf_hold(
941 xfs_buf_t *bp)
943 trace_xfs_buf_hold(bp, _RET_IP_);
944 atomic_inc(&bp->b_hold);
948 * Release a hold on the specified buffer. If the hold count is 1, the buffer is
949 * placed on LRU or freed (depending on b_lru_ref).
951 void
952 xfs_buf_rele(
953 xfs_buf_t *bp)
955 struct xfs_perag *pag = bp->b_pag;
956 bool release;
957 bool freebuf = false;
959 trace_xfs_buf_rele(bp, _RET_IP_);
961 if (!pag) {
962 ASSERT(list_empty(&bp->b_lru));
963 if (atomic_dec_and_test(&bp->b_hold)) {
964 xfs_buf_ioacct_dec(bp);
965 xfs_buf_free(bp);
967 return;
970 ASSERT(atomic_read(&bp->b_hold) > 0);
972 release = atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock);
973 spin_lock(&bp->b_lock);
974 if (!release) {
976 * Drop the in-flight state if the buffer is already on the LRU
977 * and it holds the only reference. This is racy because we
978 * haven't acquired the pag lock, but the use of _XBF_IN_FLIGHT
979 * ensures the decrement occurs only once per-buf.
981 if ((atomic_read(&bp->b_hold) == 1) && !list_empty(&bp->b_lru))
982 xfs_buf_ioacct_dec(bp);
983 goto out_unlock;
986 /* the last reference has been dropped ... */
987 xfs_buf_ioacct_dec(bp);
988 if (!(bp->b_flags & XBF_STALE) && atomic_read(&bp->b_lru_ref)) {
990 * If the buffer is added to the LRU take a new reference to the
991 * buffer for the LRU and clear the (now stale) dispose list
992 * state flag
994 if (list_lru_add(&bp->b_target->bt_lru, &bp->b_lru)) {
995 bp->b_state &= ~XFS_BSTATE_DISPOSE;
996 atomic_inc(&bp->b_hold);
998 spin_unlock(&pag->pag_buf_lock);
999 } else {
1001 * most of the time buffers will already be removed from the
1002 * LRU, so optimise that case by checking for the
1003 * XFS_BSTATE_DISPOSE flag indicating the last list the buffer
1004 * was on was the disposal list
1006 if (!(bp->b_state & XFS_BSTATE_DISPOSE)) {
1007 list_lru_del(&bp->b_target->bt_lru, &bp->b_lru);
1008 } else {
1009 ASSERT(list_empty(&bp->b_lru));
1012 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1013 rhashtable_remove_fast(&pag->pag_buf_hash, &bp->b_rhash_head,
1014 xfs_buf_hash_params);
1015 spin_unlock(&pag->pag_buf_lock);
1016 xfs_perag_put(pag);
1017 freebuf = true;
1020 out_unlock:
1021 spin_unlock(&bp->b_lock);
1023 if (freebuf)
1024 xfs_buf_free(bp);
1029 * Lock a buffer object, if it is not already locked.
1031 * If we come across a stale, pinned, locked buffer, we know that we are
1032 * being asked to lock a buffer that has been reallocated. Because it is
1033 * pinned, we know that the log has not been pushed to disk and hence it
1034 * will still be locked. Rather than continuing to have trylock attempts
1035 * fail until someone else pushes the log, push it ourselves before
1036 * returning. This means that the xfsaild will not get stuck trying
1037 * to push on stale inode buffers.
1040 xfs_buf_trylock(
1041 struct xfs_buf *bp)
1043 int locked;
1045 locked = down_trylock(&bp->b_sema) == 0;
1046 if (locked) {
1047 XB_SET_OWNER(bp);
1048 trace_xfs_buf_trylock(bp, _RET_IP_);
1049 } else {
1050 trace_xfs_buf_trylock_fail(bp, _RET_IP_);
1052 return locked;
1056 * Lock a buffer object.
1058 * If we come across a stale, pinned, locked buffer, we know that we
1059 * are being asked to lock a buffer that has been reallocated. Because
1060 * it is pinned, we know that the log has not been pushed to disk and
1061 * hence it will still be locked. Rather than sleeping until someone
1062 * else pushes the log, push it ourselves before trying to get the lock.
1064 void
1065 xfs_buf_lock(
1066 struct xfs_buf *bp)
1068 trace_xfs_buf_lock(bp, _RET_IP_);
1070 if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
1071 xfs_log_force(bp->b_target->bt_mount, 0);
1072 down(&bp->b_sema);
1073 XB_SET_OWNER(bp);
1075 trace_xfs_buf_lock_done(bp, _RET_IP_);
1078 void
1079 xfs_buf_unlock(
1080 struct xfs_buf *bp)
1082 XB_CLEAR_OWNER(bp);
1083 up(&bp->b_sema);
1085 trace_xfs_buf_unlock(bp, _RET_IP_);
1088 STATIC void
1089 xfs_buf_wait_unpin(
1090 xfs_buf_t *bp)
1092 DECLARE_WAITQUEUE (wait, current);
1094 if (atomic_read(&bp->b_pin_count) == 0)
1095 return;
1097 add_wait_queue(&bp->b_waiters, &wait);
1098 for (;;) {
1099 set_current_state(TASK_UNINTERRUPTIBLE);
1100 if (atomic_read(&bp->b_pin_count) == 0)
1101 break;
1102 io_schedule();
1104 remove_wait_queue(&bp->b_waiters, &wait);
1105 set_current_state(TASK_RUNNING);
1109 * Buffer Utility Routines
1112 void
1113 xfs_buf_ioend(
1114 struct xfs_buf *bp)
1116 bool read = bp->b_flags & XBF_READ;
1118 trace_xfs_buf_iodone(bp, _RET_IP_);
1120 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
1123 * Pull in IO completion errors now. We are guaranteed to be running
1124 * single threaded, so we don't need the lock to read b_io_error.
1126 if (!bp->b_error && bp->b_io_error)
1127 xfs_buf_ioerror(bp, bp->b_io_error);
1129 /* Only validate buffers that were read without errors */
1130 if (read && !bp->b_error && bp->b_ops) {
1131 ASSERT(!bp->b_iodone);
1132 bp->b_ops->verify_read(bp);
1135 if (!bp->b_error)
1136 bp->b_flags |= XBF_DONE;
1138 if (bp->b_iodone)
1139 (*(bp->b_iodone))(bp);
1140 else if (bp->b_flags & XBF_ASYNC)
1141 xfs_buf_relse(bp);
1142 else
1143 complete(&bp->b_iowait);
1146 static void
1147 xfs_buf_ioend_work(
1148 struct work_struct *work)
1150 struct xfs_buf *bp =
1151 container_of(work, xfs_buf_t, b_ioend_work);
1153 xfs_buf_ioend(bp);
1156 static void
1157 xfs_buf_ioend_async(
1158 struct xfs_buf *bp)
1160 INIT_WORK(&bp->b_ioend_work, xfs_buf_ioend_work);
1161 queue_work(bp->b_ioend_wq, &bp->b_ioend_work);
1164 void
1165 xfs_buf_ioerror(
1166 xfs_buf_t *bp,
1167 int error)
1169 ASSERT(error <= 0 && error >= -1000);
1170 bp->b_error = error;
1171 trace_xfs_buf_ioerror(bp, error, _RET_IP_);
1174 void
1175 xfs_buf_ioerror_alert(
1176 struct xfs_buf *bp,
1177 const char *func)
1179 xfs_alert(bp->b_target->bt_mount,
1180 "metadata I/O error: block 0x%llx (\"%s\") error %d numblks %d",
1181 (__uint64_t)XFS_BUF_ADDR(bp), func, -bp->b_error, bp->b_length);
1185 xfs_bwrite(
1186 struct xfs_buf *bp)
1188 int error;
1190 ASSERT(xfs_buf_islocked(bp));
1192 bp->b_flags |= XBF_WRITE;
1193 bp->b_flags &= ~(XBF_ASYNC | XBF_READ | _XBF_DELWRI_Q |
1194 XBF_WRITE_FAIL | XBF_DONE);
1196 error = xfs_buf_submit_wait(bp);
1197 if (error) {
1198 xfs_force_shutdown(bp->b_target->bt_mount,
1199 SHUTDOWN_META_IO_ERROR);
1201 return error;
1204 static void
1205 xfs_buf_bio_end_io(
1206 struct bio *bio)
1208 struct xfs_buf *bp = (struct xfs_buf *)bio->bi_private;
1211 * don't overwrite existing errors - otherwise we can lose errors on
1212 * buffers that require multiple bios to complete.
1214 if (bio->bi_error)
1215 cmpxchg(&bp->b_io_error, 0, bio->bi_error);
1217 if (!bp->b_error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
1218 invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1220 if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1221 xfs_buf_ioend_async(bp);
1222 bio_put(bio);
1225 static void
1226 xfs_buf_ioapply_map(
1227 struct xfs_buf *bp,
1228 int map,
1229 int *buf_offset,
1230 int *count,
1231 int op,
1232 int op_flags)
1234 int page_index;
1235 int total_nr_pages = bp->b_page_count;
1236 int nr_pages;
1237 struct bio *bio;
1238 sector_t sector = bp->b_maps[map].bm_bn;
1239 int size;
1240 int offset;
1242 total_nr_pages = bp->b_page_count;
1244 /* skip the pages in the buffer before the start offset */
1245 page_index = 0;
1246 offset = *buf_offset;
1247 while (offset >= PAGE_SIZE) {
1248 page_index++;
1249 offset -= PAGE_SIZE;
1253 * Limit the IO size to the length of the current vector, and update the
1254 * remaining IO count for the next time around.
1256 size = min_t(int, BBTOB(bp->b_maps[map].bm_len), *count);
1257 *count -= size;
1258 *buf_offset += size;
1260 next_chunk:
1261 atomic_inc(&bp->b_io_remaining);
1262 nr_pages = min(total_nr_pages, BIO_MAX_PAGES);
1264 bio = bio_alloc(GFP_NOIO, nr_pages);
1265 bio->bi_bdev = bp->b_target->bt_bdev;
1266 bio->bi_iter.bi_sector = sector;
1267 bio->bi_end_io = xfs_buf_bio_end_io;
1268 bio->bi_private = bp;
1269 bio_set_op_attrs(bio, op, op_flags);
1271 for (; size && nr_pages; nr_pages--, page_index++) {
1272 int rbytes, nbytes = PAGE_SIZE - offset;
1274 if (nbytes > size)
1275 nbytes = size;
1277 rbytes = bio_add_page(bio, bp->b_pages[page_index], nbytes,
1278 offset);
1279 if (rbytes < nbytes)
1280 break;
1282 offset = 0;
1283 sector += BTOBB(nbytes);
1284 size -= nbytes;
1285 total_nr_pages--;
1288 if (likely(bio->bi_iter.bi_size)) {
1289 if (xfs_buf_is_vmapped(bp)) {
1290 flush_kernel_vmap_range(bp->b_addr,
1291 xfs_buf_vmap_len(bp));
1293 submit_bio(bio);
1294 if (size)
1295 goto next_chunk;
1296 } else {
1298 * This is guaranteed not to be the last io reference count
1299 * because the caller (xfs_buf_submit) holds a count itself.
1301 atomic_dec(&bp->b_io_remaining);
1302 xfs_buf_ioerror(bp, -EIO);
1303 bio_put(bio);
1308 STATIC void
1309 _xfs_buf_ioapply(
1310 struct xfs_buf *bp)
1312 struct blk_plug plug;
1313 int op;
1314 int op_flags = 0;
1315 int offset;
1316 int size;
1317 int i;
1320 * Make sure we capture only current IO errors rather than stale errors
1321 * left over from previous use of the buffer (e.g. failed readahead).
1323 bp->b_error = 0;
1326 * Initialize the I/O completion workqueue if we haven't yet or the
1327 * submitter has not opted to specify a custom one.
1329 if (!bp->b_ioend_wq)
1330 bp->b_ioend_wq = bp->b_target->bt_mount->m_buf_workqueue;
1332 if (bp->b_flags & XBF_WRITE) {
1333 op = REQ_OP_WRITE;
1334 if (bp->b_flags & XBF_SYNCIO)
1335 op_flags = REQ_SYNC;
1336 if (bp->b_flags & XBF_FUA)
1337 op_flags |= REQ_FUA;
1338 if (bp->b_flags & XBF_FLUSH)
1339 op_flags |= REQ_PREFLUSH;
1342 * Run the write verifier callback function if it exists. If
1343 * this function fails it will mark the buffer with an error and
1344 * the IO should not be dispatched.
1346 if (bp->b_ops) {
1347 bp->b_ops->verify_write(bp);
1348 if (bp->b_error) {
1349 xfs_force_shutdown(bp->b_target->bt_mount,
1350 SHUTDOWN_CORRUPT_INCORE);
1351 return;
1353 } else if (bp->b_bn != XFS_BUF_DADDR_NULL) {
1354 struct xfs_mount *mp = bp->b_target->bt_mount;
1357 * non-crc filesystems don't attach verifiers during
1358 * log recovery, so don't warn for such filesystems.
1360 if (xfs_sb_version_hascrc(&mp->m_sb)) {
1361 xfs_warn(mp,
1362 "%s: no ops on block 0x%llx/0x%x",
1363 __func__, bp->b_bn, bp->b_length);
1364 xfs_hex_dump(bp->b_addr, 64);
1365 dump_stack();
1368 } else if (bp->b_flags & XBF_READ_AHEAD) {
1369 op = REQ_OP_READ;
1370 op_flags = REQ_RAHEAD;
1371 } else {
1372 op = REQ_OP_READ;
1375 /* we only use the buffer cache for meta-data */
1376 op_flags |= REQ_META;
1379 * Walk all the vectors issuing IO on them. Set up the initial offset
1380 * into the buffer and the desired IO size before we start -
1381 * _xfs_buf_ioapply_vec() will modify them appropriately for each
1382 * subsequent call.
1384 offset = bp->b_offset;
1385 size = BBTOB(bp->b_io_length);
1386 blk_start_plug(&plug);
1387 for (i = 0; i < bp->b_map_count; i++) {
1388 xfs_buf_ioapply_map(bp, i, &offset, &size, op, op_flags);
1389 if (bp->b_error)
1390 break;
1391 if (size <= 0)
1392 break; /* all done */
1394 blk_finish_plug(&plug);
1398 * Asynchronous IO submission path. This transfers the buffer lock ownership and
1399 * the current reference to the IO. It is not safe to reference the buffer after
1400 * a call to this function unless the caller holds an additional reference
1401 * itself.
1403 void
1404 xfs_buf_submit(
1405 struct xfs_buf *bp)
1407 trace_xfs_buf_submit(bp, _RET_IP_);
1409 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1410 ASSERT(bp->b_flags & XBF_ASYNC);
1412 /* on shutdown we stale and complete the buffer immediately */
1413 if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
1414 xfs_buf_ioerror(bp, -EIO);
1415 bp->b_flags &= ~XBF_DONE;
1416 xfs_buf_stale(bp);
1417 xfs_buf_ioend(bp);
1418 return;
1421 if (bp->b_flags & XBF_WRITE)
1422 xfs_buf_wait_unpin(bp);
1424 /* clear the internal error state to avoid spurious errors */
1425 bp->b_io_error = 0;
1428 * The caller's reference is released during I/O completion.
1429 * This occurs some time after the last b_io_remaining reference is
1430 * released, so after we drop our Io reference we have to have some
1431 * other reference to ensure the buffer doesn't go away from underneath
1432 * us. Take a direct reference to ensure we have safe access to the
1433 * buffer until we are finished with it.
1435 xfs_buf_hold(bp);
1438 * Set the count to 1 initially, this will stop an I/O completion
1439 * callout which happens before we have started all the I/O from calling
1440 * xfs_buf_ioend too early.
1442 atomic_set(&bp->b_io_remaining, 1);
1443 xfs_buf_ioacct_inc(bp);
1444 _xfs_buf_ioapply(bp);
1447 * If _xfs_buf_ioapply failed, we can get back here with only the IO
1448 * reference we took above. If we drop it to zero, run completion so
1449 * that we don't return to the caller with completion still pending.
1451 if (atomic_dec_and_test(&bp->b_io_remaining) == 1) {
1452 if (bp->b_error)
1453 xfs_buf_ioend(bp);
1454 else
1455 xfs_buf_ioend_async(bp);
1458 xfs_buf_rele(bp);
1459 /* Note: it is not safe to reference bp now we've dropped our ref */
1463 * Synchronous buffer IO submission path, read or write.
1466 xfs_buf_submit_wait(
1467 struct xfs_buf *bp)
1469 int error;
1471 trace_xfs_buf_submit_wait(bp, _RET_IP_);
1473 ASSERT(!(bp->b_flags & (_XBF_DELWRI_Q | XBF_ASYNC)));
1475 if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
1476 xfs_buf_ioerror(bp, -EIO);
1477 xfs_buf_stale(bp);
1478 bp->b_flags &= ~XBF_DONE;
1479 return -EIO;
1482 if (bp->b_flags & XBF_WRITE)
1483 xfs_buf_wait_unpin(bp);
1485 /* clear the internal error state to avoid spurious errors */
1486 bp->b_io_error = 0;
1489 * For synchronous IO, the IO does not inherit the submitters reference
1490 * count, nor the buffer lock. Hence we cannot release the reference we
1491 * are about to take until we've waited for all IO completion to occur,
1492 * including any xfs_buf_ioend_async() work that may be pending.
1494 xfs_buf_hold(bp);
1497 * Set the count to 1 initially, this will stop an I/O completion
1498 * callout which happens before we have started all the I/O from calling
1499 * xfs_buf_ioend too early.
1501 atomic_set(&bp->b_io_remaining, 1);
1502 _xfs_buf_ioapply(bp);
1505 * make sure we run completion synchronously if it raced with us and is
1506 * already complete.
1508 if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1509 xfs_buf_ioend(bp);
1511 /* wait for completion before gathering the error from the buffer */
1512 trace_xfs_buf_iowait(bp, _RET_IP_);
1513 wait_for_completion(&bp->b_iowait);
1514 trace_xfs_buf_iowait_done(bp, _RET_IP_);
1515 error = bp->b_error;
1518 * all done now, we can release the hold that keeps the buffer
1519 * referenced for the entire IO.
1521 xfs_buf_rele(bp);
1522 return error;
1525 void *
1526 xfs_buf_offset(
1527 struct xfs_buf *bp,
1528 size_t offset)
1530 struct page *page;
1532 if (bp->b_addr)
1533 return bp->b_addr + offset;
1535 offset += bp->b_offset;
1536 page = bp->b_pages[offset >> PAGE_SHIFT];
1537 return page_address(page) + (offset & (PAGE_SIZE-1));
1541 * Move data into or out of a buffer.
1543 void
1544 xfs_buf_iomove(
1545 xfs_buf_t *bp, /* buffer to process */
1546 size_t boff, /* starting buffer offset */
1547 size_t bsize, /* length to copy */
1548 void *data, /* data address */
1549 xfs_buf_rw_t mode) /* read/write/zero flag */
1551 size_t bend;
1553 bend = boff + bsize;
1554 while (boff < bend) {
1555 struct page *page;
1556 int page_index, page_offset, csize;
1558 page_index = (boff + bp->b_offset) >> PAGE_SHIFT;
1559 page_offset = (boff + bp->b_offset) & ~PAGE_MASK;
1560 page = bp->b_pages[page_index];
1561 csize = min_t(size_t, PAGE_SIZE - page_offset,
1562 BBTOB(bp->b_io_length) - boff);
1564 ASSERT((csize + page_offset) <= PAGE_SIZE);
1566 switch (mode) {
1567 case XBRW_ZERO:
1568 memset(page_address(page) + page_offset, 0, csize);
1569 break;
1570 case XBRW_READ:
1571 memcpy(data, page_address(page) + page_offset, csize);
1572 break;
1573 case XBRW_WRITE:
1574 memcpy(page_address(page) + page_offset, data, csize);
1577 boff += csize;
1578 data += csize;
1583 * Handling of buffer targets (buftargs).
1587 * Wait for any bufs with callbacks that have been submitted but have not yet
1588 * returned. These buffers will have an elevated hold count, so wait on those
1589 * while freeing all the buffers only held by the LRU.
1591 static enum lru_status
1592 xfs_buftarg_wait_rele(
1593 struct list_head *item,
1594 struct list_lru_one *lru,
1595 spinlock_t *lru_lock,
1596 void *arg)
1599 struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru);
1600 struct list_head *dispose = arg;
1602 if (atomic_read(&bp->b_hold) > 1) {
1603 /* need to wait, so skip it this pass */
1604 trace_xfs_buf_wait_buftarg(bp, _RET_IP_);
1605 return LRU_SKIP;
1607 if (!spin_trylock(&bp->b_lock))
1608 return LRU_SKIP;
1611 * clear the LRU reference count so the buffer doesn't get
1612 * ignored in xfs_buf_rele().
1614 atomic_set(&bp->b_lru_ref, 0);
1615 bp->b_state |= XFS_BSTATE_DISPOSE;
1616 list_lru_isolate_move(lru, item, dispose);
1617 spin_unlock(&bp->b_lock);
1618 return LRU_REMOVED;
1621 void
1622 xfs_wait_buftarg(
1623 struct xfs_buftarg *btp)
1625 LIST_HEAD(dispose);
1626 int loop = 0;
1629 * First wait on the buftarg I/O count for all in-flight buffers to be
1630 * released. This is critical as new buffers do not make the LRU until
1631 * they are released.
1633 * Next, flush the buffer workqueue to ensure all completion processing
1634 * has finished. Just waiting on buffer locks is not sufficient for
1635 * async IO as the reference count held over IO is not released until
1636 * after the buffer lock is dropped. Hence we need to ensure here that
1637 * all reference counts have been dropped before we start walking the
1638 * LRU list.
1640 while (percpu_counter_sum(&btp->bt_io_count))
1641 delay(100);
1642 flush_workqueue(btp->bt_mount->m_buf_workqueue);
1644 /* loop until there is nothing left on the lru list. */
1645 while (list_lru_count(&btp->bt_lru)) {
1646 list_lru_walk(&btp->bt_lru, xfs_buftarg_wait_rele,
1647 &dispose, LONG_MAX);
1649 while (!list_empty(&dispose)) {
1650 struct xfs_buf *bp;
1651 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1652 list_del_init(&bp->b_lru);
1653 if (bp->b_flags & XBF_WRITE_FAIL) {
1654 xfs_alert(btp->bt_mount,
1655 "Corruption Alert: Buffer at block 0x%llx had permanent write failures!",
1656 (long long)bp->b_bn);
1657 xfs_alert(btp->bt_mount,
1658 "Please run xfs_repair to determine the extent of the problem.");
1660 xfs_buf_rele(bp);
1662 if (loop++ != 0)
1663 delay(100);
1667 static enum lru_status
1668 xfs_buftarg_isolate(
1669 struct list_head *item,
1670 struct list_lru_one *lru,
1671 spinlock_t *lru_lock,
1672 void *arg)
1674 struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru);
1675 struct list_head *dispose = arg;
1678 * we are inverting the lru lock/bp->b_lock here, so use a trylock.
1679 * If we fail to get the lock, just skip it.
1681 if (!spin_trylock(&bp->b_lock))
1682 return LRU_SKIP;
1684 * Decrement the b_lru_ref count unless the value is already
1685 * zero. If the value is already zero, we need to reclaim the
1686 * buffer, otherwise it gets another trip through the LRU.
1688 if (!atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
1689 spin_unlock(&bp->b_lock);
1690 return LRU_ROTATE;
1693 bp->b_state |= XFS_BSTATE_DISPOSE;
1694 list_lru_isolate_move(lru, item, dispose);
1695 spin_unlock(&bp->b_lock);
1696 return LRU_REMOVED;
1699 static unsigned long
1700 xfs_buftarg_shrink_scan(
1701 struct shrinker *shrink,
1702 struct shrink_control *sc)
1704 struct xfs_buftarg *btp = container_of(shrink,
1705 struct xfs_buftarg, bt_shrinker);
1706 LIST_HEAD(dispose);
1707 unsigned long freed;
1709 freed = list_lru_shrink_walk(&btp->bt_lru, sc,
1710 xfs_buftarg_isolate, &dispose);
1712 while (!list_empty(&dispose)) {
1713 struct xfs_buf *bp;
1714 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1715 list_del_init(&bp->b_lru);
1716 xfs_buf_rele(bp);
1719 return freed;
1722 static unsigned long
1723 xfs_buftarg_shrink_count(
1724 struct shrinker *shrink,
1725 struct shrink_control *sc)
1727 struct xfs_buftarg *btp = container_of(shrink,
1728 struct xfs_buftarg, bt_shrinker);
1729 return list_lru_shrink_count(&btp->bt_lru, sc);
1732 void
1733 xfs_free_buftarg(
1734 struct xfs_mount *mp,
1735 struct xfs_buftarg *btp)
1737 unregister_shrinker(&btp->bt_shrinker);
1738 ASSERT(percpu_counter_sum(&btp->bt_io_count) == 0);
1739 percpu_counter_destroy(&btp->bt_io_count);
1740 list_lru_destroy(&btp->bt_lru);
1742 xfs_blkdev_issue_flush(btp);
1744 kmem_free(btp);
1748 xfs_setsize_buftarg(
1749 xfs_buftarg_t *btp,
1750 unsigned int sectorsize)
1752 /* Set up metadata sector size info */
1753 btp->bt_meta_sectorsize = sectorsize;
1754 btp->bt_meta_sectormask = sectorsize - 1;
1756 if (set_blocksize(btp->bt_bdev, sectorsize)) {
1757 xfs_warn(btp->bt_mount,
1758 "Cannot set_blocksize to %u on device %pg",
1759 sectorsize, btp->bt_bdev);
1760 return -EINVAL;
1763 /* Set up device logical sector size mask */
1764 btp->bt_logical_sectorsize = bdev_logical_block_size(btp->bt_bdev);
1765 btp->bt_logical_sectormask = bdev_logical_block_size(btp->bt_bdev) - 1;
1767 return 0;
1771 * When allocating the initial buffer target we have not yet
1772 * read in the superblock, so don't know what sized sectors
1773 * are being used at this early stage. Play safe.
1775 STATIC int
1776 xfs_setsize_buftarg_early(
1777 xfs_buftarg_t *btp,
1778 struct block_device *bdev)
1780 return xfs_setsize_buftarg(btp, bdev_logical_block_size(bdev));
1783 xfs_buftarg_t *
1784 xfs_alloc_buftarg(
1785 struct xfs_mount *mp,
1786 struct block_device *bdev)
1788 xfs_buftarg_t *btp;
1790 btp = kmem_zalloc(sizeof(*btp), KM_SLEEP | KM_NOFS);
1792 btp->bt_mount = mp;
1793 btp->bt_dev = bdev->bd_dev;
1794 btp->bt_bdev = bdev;
1796 if (xfs_setsize_buftarg_early(btp, bdev))
1797 goto error;
1799 if (list_lru_init(&btp->bt_lru))
1800 goto error;
1802 if (percpu_counter_init(&btp->bt_io_count, 0, GFP_KERNEL))
1803 goto error;
1805 btp->bt_shrinker.count_objects = xfs_buftarg_shrink_count;
1806 btp->bt_shrinker.scan_objects = xfs_buftarg_shrink_scan;
1807 btp->bt_shrinker.seeks = DEFAULT_SEEKS;
1808 btp->bt_shrinker.flags = SHRINKER_NUMA_AWARE;
1809 register_shrinker(&btp->bt_shrinker);
1810 return btp;
1812 error:
1813 kmem_free(btp);
1814 return NULL;
1818 * Add a buffer to the delayed write list.
1820 * This queues a buffer for writeout if it hasn't already been. Note that
1821 * neither this routine nor the buffer list submission functions perform
1822 * any internal synchronization. It is expected that the lists are thread-local
1823 * to the callers.
1825 * Returns true if we queued up the buffer, or false if it already had
1826 * been on the buffer list.
1828 bool
1829 xfs_buf_delwri_queue(
1830 struct xfs_buf *bp,
1831 struct list_head *list)
1833 ASSERT(xfs_buf_islocked(bp));
1834 ASSERT(!(bp->b_flags & XBF_READ));
1837 * If the buffer is already marked delwri it already is queued up
1838 * by someone else for imediate writeout. Just ignore it in that
1839 * case.
1841 if (bp->b_flags & _XBF_DELWRI_Q) {
1842 trace_xfs_buf_delwri_queued(bp, _RET_IP_);
1843 return false;
1846 trace_xfs_buf_delwri_queue(bp, _RET_IP_);
1849 * If a buffer gets written out synchronously or marked stale while it
1850 * is on a delwri list we lazily remove it. To do this, the other party
1851 * clears the _XBF_DELWRI_Q flag but otherwise leaves the buffer alone.
1852 * It remains referenced and on the list. In a rare corner case it
1853 * might get readded to a delwri list after the synchronous writeout, in
1854 * which case we need just need to re-add the flag here.
1856 bp->b_flags |= _XBF_DELWRI_Q;
1857 if (list_empty(&bp->b_list)) {
1858 atomic_inc(&bp->b_hold);
1859 list_add_tail(&bp->b_list, list);
1862 return true;
1866 * Compare function is more complex than it needs to be because
1867 * the return value is only 32 bits and we are doing comparisons
1868 * on 64 bit values
1870 static int
1871 xfs_buf_cmp(
1872 void *priv,
1873 struct list_head *a,
1874 struct list_head *b)
1876 struct xfs_buf *ap = container_of(a, struct xfs_buf, b_list);
1877 struct xfs_buf *bp = container_of(b, struct xfs_buf, b_list);
1878 xfs_daddr_t diff;
1880 diff = ap->b_maps[0].bm_bn - bp->b_maps[0].bm_bn;
1881 if (diff < 0)
1882 return -1;
1883 if (diff > 0)
1884 return 1;
1885 return 0;
1889 * submit buffers for write.
1891 * When we have a large buffer list, we do not want to hold all the buffers
1892 * locked while we block on the request queue waiting for IO dispatch. To avoid
1893 * this problem, we lock and submit buffers in groups of 50, thereby minimising
1894 * the lock hold times for lists which may contain thousands of objects.
1896 * To do this, we sort the buffer list before we walk the list to lock and
1897 * submit buffers, and we plug and unplug around each group of buffers we
1898 * submit.
1900 static int
1901 xfs_buf_delwri_submit_buffers(
1902 struct list_head *buffer_list,
1903 struct list_head *wait_list)
1905 struct xfs_buf *bp, *n;
1906 LIST_HEAD (submit_list);
1907 int pinned = 0;
1908 struct blk_plug plug;
1910 list_sort(NULL, buffer_list, xfs_buf_cmp);
1912 blk_start_plug(&plug);
1913 list_for_each_entry_safe(bp, n, buffer_list, b_list) {
1914 if (!wait_list) {
1915 if (xfs_buf_ispinned(bp)) {
1916 pinned++;
1917 continue;
1919 if (!xfs_buf_trylock(bp))
1920 continue;
1921 } else {
1922 xfs_buf_lock(bp);
1926 * Someone else might have written the buffer synchronously or
1927 * marked it stale in the meantime. In that case only the
1928 * _XBF_DELWRI_Q flag got cleared, and we have to drop the
1929 * reference and remove it from the list here.
1931 if (!(bp->b_flags & _XBF_DELWRI_Q)) {
1932 list_del_init(&bp->b_list);
1933 xfs_buf_relse(bp);
1934 continue;
1937 trace_xfs_buf_delwri_split(bp, _RET_IP_);
1940 * We do all IO submission async. This means if we need
1941 * to wait for IO completion we need to take an extra
1942 * reference so the buffer is still valid on the other
1943 * side. We need to move the buffer onto the io_list
1944 * at this point so the caller can still access it.
1946 bp->b_flags &= ~(_XBF_DELWRI_Q | XBF_WRITE_FAIL);
1947 bp->b_flags |= XBF_WRITE | XBF_ASYNC;
1948 if (wait_list) {
1949 xfs_buf_hold(bp);
1950 list_move_tail(&bp->b_list, wait_list);
1951 } else
1952 list_del_init(&bp->b_list);
1954 xfs_buf_submit(bp);
1956 blk_finish_plug(&plug);
1958 return pinned;
1962 * Write out a buffer list asynchronously.
1964 * This will take the @buffer_list, write all non-locked and non-pinned buffers
1965 * out and not wait for I/O completion on any of the buffers. This interface
1966 * is only safely useable for callers that can track I/O completion by higher
1967 * level means, e.g. AIL pushing as the @buffer_list is consumed in this
1968 * function.
1971 xfs_buf_delwri_submit_nowait(
1972 struct list_head *buffer_list)
1974 return xfs_buf_delwri_submit_buffers(buffer_list, NULL);
1978 * Write out a buffer list synchronously.
1980 * This will take the @buffer_list, write all buffers out and wait for I/O
1981 * completion on all of the buffers. @buffer_list is consumed by the function,
1982 * so callers must have some other way of tracking buffers if they require such
1983 * functionality.
1986 xfs_buf_delwri_submit(
1987 struct list_head *buffer_list)
1989 LIST_HEAD (wait_list);
1990 int error = 0, error2;
1991 struct xfs_buf *bp;
1993 xfs_buf_delwri_submit_buffers(buffer_list, &wait_list);
1995 /* Wait for IO to complete. */
1996 while (!list_empty(&wait_list)) {
1997 bp = list_first_entry(&wait_list, struct xfs_buf, b_list);
1999 list_del_init(&bp->b_list);
2001 /* locking the buffer will wait for async IO completion. */
2002 xfs_buf_lock(bp);
2003 error2 = bp->b_error;
2004 xfs_buf_relse(bp);
2005 if (!error)
2006 error = error2;
2009 return error;
2012 int __init
2013 xfs_buf_init(void)
2015 xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
2016 KM_ZONE_HWALIGN, NULL);
2017 if (!xfs_buf_zone)
2018 goto out;
2020 return 0;
2022 out:
2023 return -ENOMEM;
2026 void
2027 xfs_buf_terminate(void)
2029 kmem_zone_destroy(xfs_buf_zone);