2 * kexec.c - kexec system call core code.
3 * Copyright (C) 2002-2004 Eric Biederman <ebiederm@xmission.com>
5 * This source code is licensed under the GNU General Public License,
6 * Version 2. See the file COPYING for more details.
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 #include <linux/capability.h>
13 #include <linux/file.h>
14 #include <linux/slab.h>
16 #include <linux/kexec.h>
17 #include <linux/mutex.h>
18 #include <linux/list.h>
19 #include <linux/highmem.h>
20 #include <linux/syscalls.h>
21 #include <linux/reboot.h>
22 #include <linux/ioport.h>
23 #include <linux/hardirq.h>
24 #include <linux/elf.h>
25 #include <linux/elfcore.h>
26 #include <linux/utsname.h>
27 #include <linux/numa.h>
28 #include <linux/suspend.h>
29 #include <linux/device.h>
30 #include <linux/freezer.h>
32 #include <linux/cpu.h>
33 #include <linux/uaccess.h>
35 #include <linux/console.h>
36 #include <linux/vmalloc.h>
37 #include <linux/swap.h>
38 #include <linux/syscore_ops.h>
39 #include <linux/compiler.h>
40 #include <linux/hugetlb.h>
41 #include <linux/frame.h>
44 #include <asm/sections.h>
46 #include <crypto/hash.h>
47 #include <crypto/sha.h>
48 #include "kexec_internal.h"
50 DEFINE_MUTEX(kexec_mutex
);
52 /* Per cpu memory for storing cpu states in case of system crash. */
53 note_buf_t __percpu
*crash_notes
;
55 /* Flag to indicate we are going to kexec a new kernel */
56 bool kexec_in_progress
= false;
59 /* Location of the reserved area for the crash kernel */
60 struct resource crashk_res
= {
61 .name
= "Crash kernel",
64 .flags
= IORESOURCE_BUSY
| IORESOURCE_SYSTEM_RAM
,
65 .desc
= IORES_DESC_CRASH_KERNEL
67 struct resource crashk_low_res
= {
68 .name
= "Crash kernel",
71 .flags
= IORESOURCE_BUSY
| IORESOURCE_SYSTEM_RAM
,
72 .desc
= IORES_DESC_CRASH_KERNEL
75 int kexec_should_crash(struct task_struct
*p
)
78 * If crash_kexec_post_notifiers is enabled, don't run
79 * crash_kexec() here yet, which must be run after panic
80 * notifiers in panic().
82 if (crash_kexec_post_notifiers
)
85 * There are 4 panic() calls in do_exit() path, each of which
86 * corresponds to each of these 4 conditions.
88 if (in_interrupt() || !p
->pid
|| is_global_init(p
) || panic_on_oops
)
93 int kexec_crash_loaded(void)
95 return !!kexec_crash_image
;
97 EXPORT_SYMBOL_GPL(kexec_crash_loaded
);
100 * When kexec transitions to the new kernel there is a one-to-one
101 * mapping between physical and virtual addresses. On processors
102 * where you can disable the MMU this is trivial, and easy. For
103 * others it is still a simple predictable page table to setup.
105 * In that environment kexec copies the new kernel to its final
106 * resting place. This means I can only support memory whose
107 * physical address can fit in an unsigned long. In particular
108 * addresses where (pfn << PAGE_SHIFT) > ULONG_MAX cannot be handled.
109 * If the assembly stub has more restrictive requirements
110 * KEXEC_SOURCE_MEMORY_LIMIT and KEXEC_DEST_MEMORY_LIMIT can be
111 * defined more restrictively in <asm/kexec.h>.
113 * The code for the transition from the current kernel to the
114 * the new kernel is placed in the control_code_buffer, whose size
115 * is given by KEXEC_CONTROL_PAGE_SIZE. In the best case only a single
116 * page of memory is necessary, but some architectures require more.
117 * Because this memory must be identity mapped in the transition from
118 * virtual to physical addresses it must live in the range
119 * 0 - TASK_SIZE, as only the user space mappings are arbitrarily
122 * The assembly stub in the control code buffer is passed a linked list
123 * of descriptor pages detailing the source pages of the new kernel,
124 * and the destination addresses of those source pages. As this data
125 * structure is not used in the context of the current OS, it must
128 * The code has been made to work with highmem pages and will use a
129 * destination page in its final resting place (if it happens
130 * to allocate it). The end product of this is that most of the
131 * physical address space, and most of RAM can be used.
133 * Future directions include:
134 * - allocating a page table with the control code buffer identity
135 * mapped, to simplify machine_kexec and make kexec_on_panic more
140 * KIMAGE_NO_DEST is an impossible destination address..., for
141 * allocating pages whose destination address we do not care about.
143 #define KIMAGE_NO_DEST (-1UL)
144 #define PAGE_COUNT(x) (((x) + PAGE_SIZE - 1) >> PAGE_SHIFT)
146 static struct page
*kimage_alloc_page(struct kimage
*image
,
150 int sanity_check_segment_list(struct kimage
*image
)
153 unsigned long nr_segments
= image
->nr_segments
;
154 unsigned long total_pages
= 0;
157 * Verify we have good destination addresses. The caller is
158 * responsible for making certain we don't attempt to load
159 * the new image into invalid or reserved areas of RAM. This
160 * just verifies it is an address we can use.
162 * Since the kernel does everything in page size chunks ensure
163 * the destination addresses are page aligned. Too many
164 * special cases crop of when we don't do this. The most
165 * insidious is getting overlapping destination addresses
166 * simply because addresses are changed to page size
169 for (i
= 0; i
< nr_segments
; i
++) {
170 unsigned long mstart
, mend
;
172 mstart
= image
->segment
[i
].mem
;
173 mend
= mstart
+ image
->segment
[i
].memsz
;
175 return -EADDRNOTAVAIL
;
176 if ((mstart
& ~PAGE_MASK
) || (mend
& ~PAGE_MASK
))
177 return -EADDRNOTAVAIL
;
178 if (mend
>= KEXEC_DESTINATION_MEMORY_LIMIT
)
179 return -EADDRNOTAVAIL
;
182 /* Verify our destination addresses do not overlap.
183 * If we alloed overlapping destination addresses
184 * through very weird things can happen with no
185 * easy explanation as one segment stops on another.
187 for (i
= 0; i
< nr_segments
; i
++) {
188 unsigned long mstart
, mend
;
191 mstart
= image
->segment
[i
].mem
;
192 mend
= mstart
+ image
->segment
[i
].memsz
;
193 for (j
= 0; j
< i
; j
++) {
194 unsigned long pstart
, pend
;
196 pstart
= image
->segment
[j
].mem
;
197 pend
= pstart
+ image
->segment
[j
].memsz
;
198 /* Do the segments overlap ? */
199 if ((mend
> pstart
) && (mstart
< pend
))
204 /* Ensure our buffer sizes are strictly less than
205 * our memory sizes. This should always be the case,
206 * and it is easier to check up front than to be surprised
209 for (i
= 0; i
< nr_segments
; i
++) {
210 if (image
->segment
[i
].bufsz
> image
->segment
[i
].memsz
)
215 * Verify that no more than half of memory will be consumed. If the
216 * request from userspace is too large, a large amount of time will be
217 * wasted allocating pages, which can cause a soft lockup.
219 for (i
= 0; i
< nr_segments
; i
++) {
220 if (PAGE_COUNT(image
->segment
[i
].memsz
) > totalram_pages
/ 2)
223 total_pages
+= PAGE_COUNT(image
->segment
[i
].memsz
);
226 if (total_pages
> totalram_pages
/ 2)
230 * Verify we have good destination addresses. Normally
231 * the caller is responsible for making certain we don't
232 * attempt to load the new image into invalid or reserved
233 * areas of RAM. But crash kernels are preloaded into a
234 * reserved area of ram. We must ensure the addresses
235 * are in the reserved area otherwise preloading the
236 * kernel could corrupt things.
239 if (image
->type
== KEXEC_TYPE_CRASH
) {
240 for (i
= 0; i
< nr_segments
; i
++) {
241 unsigned long mstart
, mend
;
243 mstart
= image
->segment
[i
].mem
;
244 mend
= mstart
+ image
->segment
[i
].memsz
- 1;
245 /* Ensure we are within the crash kernel limits */
246 if ((mstart
< phys_to_boot_phys(crashk_res
.start
)) ||
247 (mend
> phys_to_boot_phys(crashk_res
.end
)))
248 return -EADDRNOTAVAIL
;
255 struct kimage
*do_kimage_alloc_init(void)
257 struct kimage
*image
;
259 /* Allocate a controlling structure */
260 image
= kzalloc(sizeof(*image
), GFP_KERNEL
);
265 image
->entry
= &image
->head
;
266 image
->last_entry
= &image
->head
;
267 image
->control_page
= ~0; /* By default this does not apply */
268 image
->type
= KEXEC_TYPE_DEFAULT
;
270 /* Initialize the list of control pages */
271 INIT_LIST_HEAD(&image
->control_pages
);
273 /* Initialize the list of destination pages */
274 INIT_LIST_HEAD(&image
->dest_pages
);
276 /* Initialize the list of unusable pages */
277 INIT_LIST_HEAD(&image
->unusable_pages
);
282 int kimage_is_destination_range(struct kimage
*image
,
288 for (i
= 0; i
< image
->nr_segments
; i
++) {
289 unsigned long mstart
, mend
;
291 mstart
= image
->segment
[i
].mem
;
292 mend
= mstart
+ image
->segment
[i
].memsz
;
293 if ((end
> mstart
) && (start
< mend
))
300 static struct page
*kimage_alloc_pages(gfp_t gfp_mask
, unsigned int order
)
304 pages
= alloc_pages(gfp_mask
& ~__GFP_ZERO
, order
);
306 unsigned int count
, i
;
308 pages
->mapping
= NULL
;
309 set_page_private(pages
, order
);
311 for (i
= 0; i
< count
; i
++)
312 SetPageReserved(pages
+ i
);
314 arch_kexec_post_alloc_pages(page_address(pages
), count
,
317 if (gfp_mask
& __GFP_ZERO
)
318 for (i
= 0; i
< count
; i
++)
319 clear_highpage(pages
+ i
);
325 static void kimage_free_pages(struct page
*page
)
327 unsigned int order
, count
, i
;
329 order
= page_private(page
);
332 arch_kexec_pre_free_pages(page_address(page
), count
);
334 for (i
= 0; i
< count
; i
++)
335 ClearPageReserved(page
+ i
);
336 __free_pages(page
, order
);
339 void kimage_free_page_list(struct list_head
*list
)
341 struct page
*page
, *next
;
343 list_for_each_entry_safe(page
, next
, list
, lru
) {
344 list_del(&page
->lru
);
345 kimage_free_pages(page
);
349 static struct page
*kimage_alloc_normal_control_pages(struct kimage
*image
,
352 /* Control pages are special, they are the intermediaries
353 * that are needed while we copy the rest of the pages
354 * to their final resting place. As such they must
355 * not conflict with either the destination addresses
356 * or memory the kernel is already using.
358 * The only case where we really need more than one of
359 * these are for architectures where we cannot disable
360 * the MMU and must instead generate an identity mapped
361 * page table for all of the memory.
363 * At worst this runs in O(N) of the image size.
365 struct list_head extra_pages
;
370 INIT_LIST_HEAD(&extra_pages
);
372 /* Loop while I can allocate a page and the page allocated
373 * is a destination page.
376 unsigned long pfn
, epfn
, addr
, eaddr
;
378 pages
= kimage_alloc_pages(KEXEC_CONTROL_MEMORY_GFP
, order
);
381 pfn
= page_to_boot_pfn(pages
);
383 addr
= pfn
<< PAGE_SHIFT
;
384 eaddr
= epfn
<< PAGE_SHIFT
;
385 if ((epfn
>= (KEXEC_CONTROL_MEMORY_LIMIT
>> PAGE_SHIFT
)) ||
386 kimage_is_destination_range(image
, addr
, eaddr
)) {
387 list_add(&pages
->lru
, &extra_pages
);
393 /* Remember the allocated page... */
394 list_add(&pages
->lru
, &image
->control_pages
);
396 /* Because the page is already in it's destination
397 * location we will never allocate another page at
398 * that address. Therefore kimage_alloc_pages
399 * will not return it (again) and we don't need
400 * to give it an entry in image->segment[].
403 /* Deal with the destination pages I have inadvertently allocated.
405 * Ideally I would convert multi-page allocations into single
406 * page allocations, and add everything to image->dest_pages.
408 * For now it is simpler to just free the pages.
410 kimage_free_page_list(&extra_pages
);
415 static struct page
*kimage_alloc_crash_control_pages(struct kimage
*image
,
418 /* Control pages are special, they are the intermediaries
419 * that are needed while we copy the rest of the pages
420 * to their final resting place. As such they must
421 * not conflict with either the destination addresses
422 * or memory the kernel is already using.
424 * Control pages are also the only pags we must allocate
425 * when loading a crash kernel. All of the other pages
426 * are specified by the segments and we just memcpy
427 * into them directly.
429 * The only case where we really need more than one of
430 * these are for architectures where we cannot disable
431 * the MMU and must instead generate an identity mapped
432 * page table for all of the memory.
434 * Given the low demand this implements a very simple
435 * allocator that finds the first hole of the appropriate
436 * size in the reserved memory region, and allocates all
437 * of the memory up to and including the hole.
439 unsigned long hole_start
, hole_end
, size
;
443 size
= (1 << order
) << PAGE_SHIFT
;
444 hole_start
= (image
->control_page
+ (size
- 1)) & ~(size
- 1);
445 hole_end
= hole_start
+ size
- 1;
446 while (hole_end
<= crashk_res
.end
) {
451 if (hole_end
> KEXEC_CRASH_CONTROL_MEMORY_LIMIT
)
453 /* See if I overlap any of the segments */
454 for (i
= 0; i
< image
->nr_segments
; i
++) {
455 unsigned long mstart
, mend
;
457 mstart
= image
->segment
[i
].mem
;
458 mend
= mstart
+ image
->segment
[i
].memsz
- 1;
459 if ((hole_end
>= mstart
) && (hole_start
<= mend
)) {
460 /* Advance the hole to the end of the segment */
461 hole_start
= (mend
+ (size
- 1)) & ~(size
- 1);
462 hole_end
= hole_start
+ size
- 1;
466 /* If I don't overlap any segments I have found my hole! */
467 if (i
== image
->nr_segments
) {
468 pages
= pfn_to_page(hole_start
>> PAGE_SHIFT
);
469 image
->control_page
= hole_end
;
478 struct page
*kimage_alloc_control_pages(struct kimage
*image
,
481 struct page
*pages
= NULL
;
483 switch (image
->type
) {
484 case KEXEC_TYPE_DEFAULT
:
485 pages
= kimage_alloc_normal_control_pages(image
, order
);
487 case KEXEC_TYPE_CRASH
:
488 pages
= kimage_alloc_crash_control_pages(image
, order
);
495 int kimage_crash_copy_vmcoreinfo(struct kimage
*image
)
497 struct page
*vmcoreinfo_page
;
500 if (image
->type
!= KEXEC_TYPE_CRASH
)
504 * For kdump, allocate one vmcoreinfo safe copy from the
505 * crash memory. as we have arch_kexec_protect_crashkres()
506 * after kexec syscall, we naturally protect it from write
507 * (even read) access under kernel direct mapping. But on
508 * the other hand, we still need to operate it when crash
509 * happens to generate vmcoreinfo note, hereby we rely on
510 * vmap for this purpose.
512 vmcoreinfo_page
= kimage_alloc_control_pages(image
, 0);
513 if (!vmcoreinfo_page
) {
514 pr_warn("Could not allocate vmcoreinfo buffer\n");
517 safecopy
= vmap(&vmcoreinfo_page
, 1, VM_MAP
, PAGE_KERNEL
);
519 pr_warn("Could not vmap vmcoreinfo buffer\n");
523 image
->vmcoreinfo_data_copy
= safecopy
;
524 crash_update_vmcoreinfo_safecopy(safecopy
);
529 static int kimage_add_entry(struct kimage
*image
, kimage_entry_t entry
)
531 if (*image
->entry
!= 0)
534 if (image
->entry
== image
->last_entry
) {
535 kimage_entry_t
*ind_page
;
538 page
= kimage_alloc_page(image
, GFP_KERNEL
, KIMAGE_NO_DEST
);
542 ind_page
= page_address(page
);
543 *image
->entry
= virt_to_boot_phys(ind_page
) | IND_INDIRECTION
;
544 image
->entry
= ind_page
;
545 image
->last_entry
= ind_page
+
546 ((PAGE_SIZE
/sizeof(kimage_entry_t
)) - 1);
548 *image
->entry
= entry
;
555 static int kimage_set_destination(struct kimage
*image
,
556 unsigned long destination
)
560 destination
&= PAGE_MASK
;
561 result
= kimage_add_entry(image
, destination
| IND_DESTINATION
);
567 static int kimage_add_page(struct kimage
*image
, unsigned long page
)
572 result
= kimage_add_entry(image
, page
| IND_SOURCE
);
578 static void kimage_free_extra_pages(struct kimage
*image
)
580 /* Walk through and free any extra destination pages I may have */
581 kimage_free_page_list(&image
->dest_pages
);
583 /* Walk through and free any unusable pages I have cached */
584 kimage_free_page_list(&image
->unusable_pages
);
587 void kimage_terminate(struct kimage
*image
)
589 if (*image
->entry
!= 0)
592 *image
->entry
= IND_DONE
;
595 #define for_each_kimage_entry(image, ptr, entry) \
596 for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE); \
597 ptr = (entry & IND_INDIRECTION) ? \
598 boot_phys_to_virt((entry & PAGE_MASK)) : ptr + 1)
600 static void kimage_free_entry(kimage_entry_t entry
)
604 page
= boot_pfn_to_page(entry
>> PAGE_SHIFT
);
605 kimage_free_pages(page
);
608 void kimage_free(struct kimage
*image
)
610 kimage_entry_t
*ptr
, entry
;
611 kimage_entry_t ind
= 0;
616 if (image
->vmcoreinfo_data_copy
) {
617 crash_update_vmcoreinfo_safecopy(NULL
);
618 vunmap(image
->vmcoreinfo_data_copy
);
621 kimage_free_extra_pages(image
);
622 for_each_kimage_entry(image
, ptr
, entry
) {
623 if (entry
& IND_INDIRECTION
) {
624 /* Free the previous indirection page */
625 if (ind
& IND_INDIRECTION
)
626 kimage_free_entry(ind
);
627 /* Save this indirection page until we are
631 } else if (entry
& IND_SOURCE
)
632 kimage_free_entry(entry
);
634 /* Free the final indirection page */
635 if (ind
& IND_INDIRECTION
)
636 kimage_free_entry(ind
);
638 /* Handle any machine specific cleanup */
639 machine_kexec_cleanup(image
);
641 /* Free the kexec control pages... */
642 kimage_free_page_list(&image
->control_pages
);
645 * Free up any temporary buffers allocated. This might hit if
646 * error occurred much later after buffer allocation.
648 if (image
->file_mode
)
649 kimage_file_post_load_cleanup(image
);
654 static kimage_entry_t
*kimage_dst_used(struct kimage
*image
,
657 kimage_entry_t
*ptr
, entry
;
658 unsigned long destination
= 0;
660 for_each_kimage_entry(image
, ptr
, entry
) {
661 if (entry
& IND_DESTINATION
)
662 destination
= entry
& PAGE_MASK
;
663 else if (entry
& IND_SOURCE
) {
664 if (page
== destination
)
666 destination
+= PAGE_SIZE
;
673 static struct page
*kimage_alloc_page(struct kimage
*image
,
675 unsigned long destination
)
678 * Here we implement safeguards to ensure that a source page
679 * is not copied to its destination page before the data on
680 * the destination page is no longer useful.
682 * To do this we maintain the invariant that a source page is
683 * either its own destination page, or it is not a
684 * destination page at all.
686 * That is slightly stronger than required, but the proof
687 * that no problems will not occur is trivial, and the
688 * implementation is simply to verify.
690 * When allocating all pages normally this algorithm will run
691 * in O(N) time, but in the worst case it will run in O(N^2)
692 * time. If the runtime is a problem the data structures can
699 * Walk through the list of destination pages, and see if I
702 list_for_each_entry(page
, &image
->dest_pages
, lru
) {
703 addr
= page_to_boot_pfn(page
) << PAGE_SHIFT
;
704 if (addr
== destination
) {
705 list_del(&page
->lru
);
713 /* Allocate a page, if we run out of memory give up */
714 page
= kimage_alloc_pages(gfp_mask
, 0);
717 /* If the page cannot be used file it away */
718 if (page_to_boot_pfn(page
) >
719 (KEXEC_SOURCE_MEMORY_LIMIT
>> PAGE_SHIFT
)) {
720 list_add(&page
->lru
, &image
->unusable_pages
);
723 addr
= page_to_boot_pfn(page
) << PAGE_SHIFT
;
725 /* If it is the destination page we want use it */
726 if (addr
== destination
)
729 /* If the page is not a destination page use it */
730 if (!kimage_is_destination_range(image
, addr
,
735 * I know that the page is someones destination page.
736 * See if there is already a source page for this
737 * destination page. And if so swap the source pages.
739 old
= kimage_dst_used(image
, addr
);
742 unsigned long old_addr
;
743 struct page
*old_page
;
745 old_addr
= *old
& PAGE_MASK
;
746 old_page
= boot_pfn_to_page(old_addr
>> PAGE_SHIFT
);
747 copy_highpage(page
, old_page
);
748 *old
= addr
| (*old
& ~PAGE_MASK
);
750 /* The old page I have found cannot be a
751 * destination page, so return it if it's
752 * gfp_flags honor the ones passed in.
754 if (!(gfp_mask
& __GFP_HIGHMEM
) &&
755 PageHighMem(old_page
)) {
756 kimage_free_pages(old_page
);
763 /* Place the page on the destination list, to be used later */
764 list_add(&page
->lru
, &image
->dest_pages
);
770 static int kimage_load_normal_segment(struct kimage
*image
,
771 struct kexec_segment
*segment
)
774 size_t ubytes
, mbytes
;
776 unsigned char __user
*buf
= NULL
;
777 unsigned char *kbuf
= NULL
;
780 if (image
->file_mode
)
781 kbuf
= segment
->kbuf
;
784 ubytes
= segment
->bufsz
;
785 mbytes
= segment
->memsz
;
786 maddr
= segment
->mem
;
788 result
= kimage_set_destination(image
, maddr
);
795 size_t uchunk
, mchunk
;
797 page
= kimage_alloc_page(image
, GFP_HIGHUSER
, maddr
);
802 result
= kimage_add_page(image
, page_to_boot_pfn(page
)
808 /* Start with a clear page */
810 ptr
+= maddr
& ~PAGE_MASK
;
811 mchunk
= min_t(size_t, mbytes
,
812 PAGE_SIZE
- (maddr
& ~PAGE_MASK
));
813 uchunk
= min(ubytes
, mchunk
);
815 /* For file based kexec, source pages are in kernel memory */
816 if (image
->file_mode
)
817 memcpy(ptr
, kbuf
, uchunk
);
819 result
= copy_from_user(ptr
, buf
, uchunk
);
827 if (image
->file_mode
)
837 static int kimage_load_crash_segment(struct kimage
*image
,
838 struct kexec_segment
*segment
)
840 /* For crash dumps kernels we simply copy the data from
841 * user space to it's destination.
842 * We do things a page at a time for the sake of kmap.
845 size_t ubytes
, mbytes
;
847 unsigned char __user
*buf
= NULL
;
848 unsigned char *kbuf
= NULL
;
851 if (image
->file_mode
)
852 kbuf
= segment
->kbuf
;
855 ubytes
= segment
->bufsz
;
856 mbytes
= segment
->memsz
;
857 maddr
= segment
->mem
;
861 size_t uchunk
, mchunk
;
863 page
= boot_pfn_to_page(maddr
>> PAGE_SHIFT
);
869 ptr
+= maddr
& ~PAGE_MASK
;
870 mchunk
= min_t(size_t, mbytes
,
871 PAGE_SIZE
- (maddr
& ~PAGE_MASK
));
872 uchunk
= min(ubytes
, mchunk
);
873 if (mchunk
> uchunk
) {
874 /* Zero the trailing part of the page */
875 memset(ptr
+ uchunk
, 0, mchunk
- uchunk
);
878 /* For file based kexec, source pages are in kernel memory */
879 if (image
->file_mode
)
880 memcpy(ptr
, kbuf
, uchunk
);
882 result
= copy_from_user(ptr
, buf
, uchunk
);
883 kexec_flush_icache_page(page
);
891 if (image
->file_mode
)
901 int kimage_load_segment(struct kimage
*image
,
902 struct kexec_segment
*segment
)
904 int result
= -ENOMEM
;
906 switch (image
->type
) {
907 case KEXEC_TYPE_DEFAULT
:
908 result
= kimage_load_normal_segment(image
, segment
);
910 case KEXEC_TYPE_CRASH
:
911 result
= kimage_load_crash_segment(image
, segment
);
918 struct kimage
*kexec_image
;
919 struct kimage
*kexec_crash_image
;
920 int kexec_load_disabled
;
923 * No panic_cpu check version of crash_kexec(). This function is called
924 * only when panic_cpu holds the current CPU number; this is the only CPU
925 * which processes crash_kexec routines.
927 void __noclone
__crash_kexec(struct pt_regs
*regs
)
929 /* Take the kexec_mutex here to prevent sys_kexec_load
930 * running on one cpu from replacing the crash kernel
931 * we are using after a panic on a different cpu.
933 * If the crash kernel was not located in a fixed area
934 * of memory the xchg(&kexec_crash_image) would be
935 * sufficient. But since I reuse the memory...
937 if (mutex_trylock(&kexec_mutex
)) {
938 if (kexec_crash_image
) {
939 struct pt_regs fixed_regs
;
941 crash_setup_regs(&fixed_regs
, regs
);
942 crash_save_vmcoreinfo();
943 machine_crash_shutdown(&fixed_regs
);
944 machine_kexec(kexec_crash_image
);
946 mutex_unlock(&kexec_mutex
);
949 STACK_FRAME_NON_STANDARD(__crash_kexec
);
951 void crash_kexec(struct pt_regs
*regs
)
953 int old_cpu
, this_cpu
;
956 * Only one CPU is allowed to execute the crash_kexec() code as with
957 * panic(). Otherwise parallel calls of panic() and crash_kexec()
958 * may stop each other. To exclude them, we use panic_cpu here too.
960 this_cpu
= raw_smp_processor_id();
961 old_cpu
= atomic_cmpxchg(&panic_cpu
, PANIC_CPU_INVALID
, this_cpu
);
962 if (old_cpu
== PANIC_CPU_INVALID
) {
963 /* This is the 1st CPU which comes here, so go ahead. */
964 printk_safe_flush_on_panic();
968 * Reset panic_cpu to allow another panic()/crash_kexec()
971 atomic_set(&panic_cpu
, PANIC_CPU_INVALID
);
975 size_t crash_get_memory_size(void)
979 mutex_lock(&kexec_mutex
);
980 if (crashk_res
.end
!= crashk_res
.start
)
981 size
= resource_size(&crashk_res
);
982 mutex_unlock(&kexec_mutex
);
986 void __weak
crash_free_reserved_phys_range(unsigned long begin
,
991 for (addr
= begin
; addr
< end
; addr
+= PAGE_SIZE
)
992 free_reserved_page(boot_pfn_to_page(addr
>> PAGE_SHIFT
));
995 int crash_shrink_memory(unsigned long new_size
)
998 unsigned long start
, end
;
999 unsigned long old_size
;
1000 struct resource
*ram_res
;
1002 mutex_lock(&kexec_mutex
);
1004 if (kexec_crash_image
) {
1008 start
= crashk_res
.start
;
1009 end
= crashk_res
.end
;
1010 old_size
= (end
== 0) ? 0 : end
- start
+ 1;
1011 if (new_size
>= old_size
) {
1012 ret
= (new_size
== old_size
) ? 0 : -EINVAL
;
1016 ram_res
= kzalloc(sizeof(*ram_res
), GFP_KERNEL
);
1022 start
= roundup(start
, KEXEC_CRASH_MEM_ALIGN
);
1023 end
= roundup(start
+ new_size
, KEXEC_CRASH_MEM_ALIGN
);
1025 crash_free_reserved_phys_range(end
, crashk_res
.end
);
1027 if ((start
== end
) && (crashk_res
.parent
!= NULL
))
1028 release_resource(&crashk_res
);
1030 ram_res
->start
= end
;
1031 ram_res
->end
= crashk_res
.end
;
1032 ram_res
->flags
= IORESOURCE_BUSY
| IORESOURCE_SYSTEM_RAM
;
1033 ram_res
->name
= "System RAM";
1035 crashk_res
.end
= end
- 1;
1037 insert_resource(&iomem_resource
, ram_res
);
1040 mutex_unlock(&kexec_mutex
);
1044 void crash_save_cpu(struct pt_regs
*regs
, int cpu
)
1046 struct elf_prstatus prstatus
;
1049 if ((cpu
< 0) || (cpu
>= nr_cpu_ids
))
1052 /* Using ELF notes here is opportunistic.
1053 * I need a well defined structure format
1054 * for the data I pass, and I need tags
1055 * on the data to indicate what information I have
1056 * squirrelled away. ELF notes happen to provide
1057 * all of that, so there is no need to invent something new.
1059 buf
= (u32
*)per_cpu_ptr(crash_notes
, cpu
);
1062 memset(&prstatus
, 0, sizeof(prstatus
));
1063 prstatus
.pr_pid
= current
->pid
;
1064 elf_core_copy_kernel_regs(&prstatus
.pr_reg
, regs
);
1065 buf
= append_elf_note(buf
, KEXEC_CORE_NOTE_NAME
, NT_PRSTATUS
,
1066 &prstatus
, sizeof(prstatus
));
1070 static int __init
crash_notes_memory_init(void)
1072 /* Allocate memory for saving cpu registers. */
1076 * crash_notes could be allocated across 2 vmalloc pages when percpu
1077 * is vmalloc based . vmalloc doesn't guarantee 2 continuous vmalloc
1078 * pages are also on 2 continuous physical pages. In this case the
1079 * 2nd part of crash_notes in 2nd page could be lost since only the
1080 * starting address and size of crash_notes are exported through sysfs.
1081 * Here round up the size of crash_notes to the nearest power of two
1082 * and pass it to __alloc_percpu as align value. This can make sure
1083 * crash_notes is allocated inside one physical page.
1085 size
= sizeof(note_buf_t
);
1086 align
= min(roundup_pow_of_two(sizeof(note_buf_t
)), PAGE_SIZE
);
1089 * Break compile if size is bigger than PAGE_SIZE since crash_notes
1090 * definitely will be in 2 pages with that.
1092 BUILD_BUG_ON(size
> PAGE_SIZE
);
1094 crash_notes
= __alloc_percpu(size
, align
);
1096 pr_warn("Memory allocation for saving cpu register states failed\n");
1101 subsys_initcall(crash_notes_memory_init
);
1105 * Move into place and start executing a preloaded standalone
1106 * executable. If nothing was preloaded return an error.
1108 int kernel_kexec(void)
1112 if (!mutex_trylock(&kexec_mutex
))
1119 #ifdef CONFIG_KEXEC_JUMP
1120 if (kexec_image
->preserve_context
) {
1121 lock_system_sleep();
1122 pm_prepare_console();
1123 error
= freeze_processes();
1126 goto Restore_console
;
1129 error
= dpm_suspend_start(PMSG_FREEZE
);
1131 goto Resume_console
;
1132 /* At this point, dpm_suspend_start() has been called,
1133 * but *not* dpm_suspend_end(). We *must* call
1134 * dpm_suspend_end() now. Otherwise, drivers for
1135 * some devices (e.g. interrupt controllers) become
1136 * desynchronized with the actual state of the
1137 * hardware at resume time, and evil weirdness ensues.
1139 error
= dpm_suspend_end(PMSG_FREEZE
);
1141 goto Resume_devices
;
1142 error
= disable_nonboot_cpus();
1145 local_irq_disable();
1146 error
= syscore_suspend();
1152 kexec_in_progress
= true;
1153 kernel_restart_prepare(NULL
);
1154 migrate_to_reboot_cpu();
1157 * migrate_to_reboot_cpu() disables CPU hotplug assuming that
1158 * no further code needs to use CPU hotplug (which is true in
1159 * the reboot case). However, the kexec path depends on using
1160 * CPU hotplug again; so re-enable it here.
1162 cpu_hotplug_enable();
1163 pr_emerg("Starting new kernel\n");
1167 machine_kexec(kexec_image
);
1169 #ifdef CONFIG_KEXEC_JUMP
1170 if (kexec_image
->preserve_context
) {
1175 enable_nonboot_cpus();
1176 dpm_resume_start(PMSG_RESTORE
);
1178 dpm_resume_end(PMSG_RESTORE
);
1183 pm_restore_console();
1184 unlock_system_sleep();
1189 mutex_unlock(&kexec_mutex
);
1194 * Protection mechanism for crashkernel reserved memory after
1195 * the kdump kernel is loaded.
1197 * Provide an empty default implementation here -- architecture
1198 * code may override this
1200 void __weak
arch_kexec_protect_crashkres(void)
1203 void __weak
arch_kexec_unprotect_crashkres(void)