1 // SPDX-License-Identifier: GPL-2.0
3 * Interface for controlling IO bandwidth on a request queue
5 * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com>
8 #include <linux/module.h>
9 #include <linux/slab.h>
10 #include <linux/blkdev.h>
11 #include <linux/bio.h>
12 #include <linux/blktrace_api.h>
13 #include <linux/blk-cgroup.h>
16 /* Max dispatch from a group in 1 round */
17 static int throtl_grp_quantum
= 8;
19 /* Total max dispatch from all groups in one round */
20 static int throtl_quantum
= 32;
22 /* Throttling is performed over a slice and after that slice is renewed */
23 #define DFL_THROTL_SLICE_HD (HZ / 10)
24 #define DFL_THROTL_SLICE_SSD (HZ / 50)
25 #define MAX_THROTL_SLICE (HZ)
26 #define MAX_IDLE_TIME (5L * 1000 * 1000) /* 5 s */
27 #define MIN_THROTL_BPS (320 * 1024)
28 #define MIN_THROTL_IOPS (10)
29 #define DFL_LATENCY_TARGET (-1L)
30 #define DFL_IDLE_THRESHOLD (0)
31 #define DFL_HD_BASELINE_LATENCY (4000L) /* 4ms */
32 #define LATENCY_FILTERED_SSD (0)
34 * For HD, very small latency comes from sequential IO. Such IO is helpless to
35 * help determine if its IO is impacted by others, hence we ignore the IO
37 #define LATENCY_FILTERED_HD (1000L) /* 1ms */
39 #define SKIP_LATENCY (((u64)1) << BLK_STAT_RES_SHIFT)
41 static struct blkcg_policy blkcg_policy_throtl
;
43 /* A workqueue to queue throttle related work */
44 static struct workqueue_struct
*kthrotld_workqueue
;
47 * To implement hierarchical throttling, throtl_grps form a tree and bios
48 * are dispatched upwards level by level until they reach the top and get
49 * issued. When dispatching bios from the children and local group at each
50 * level, if the bios are dispatched into a single bio_list, there's a risk
51 * of a local or child group which can queue many bios at once filling up
52 * the list starving others.
54 * To avoid such starvation, dispatched bios are queued separately
55 * according to where they came from. When they are again dispatched to
56 * the parent, they're popped in round-robin order so that no single source
57 * hogs the dispatch window.
59 * throtl_qnode is used to keep the queued bios separated by their sources.
60 * Bios are queued to throtl_qnode which in turn is queued to
61 * throtl_service_queue and then dispatched in round-robin order.
63 * It's also used to track the reference counts on blkg's. A qnode always
64 * belongs to a throtl_grp and gets queued on itself or the parent, so
65 * incrementing the reference of the associated throtl_grp when a qnode is
66 * queued and decrementing when dequeued is enough to keep the whole blkg
67 * tree pinned while bios are in flight.
70 struct list_head node
; /* service_queue->queued[] */
71 struct bio_list bios
; /* queued bios */
72 struct throtl_grp
*tg
; /* tg this qnode belongs to */
75 struct throtl_service_queue
{
76 struct throtl_service_queue
*parent_sq
; /* the parent service_queue */
79 * Bios queued directly to this service_queue or dispatched from
80 * children throtl_grp's.
82 struct list_head queued
[2]; /* throtl_qnode [READ/WRITE] */
83 unsigned int nr_queued
[2]; /* number of queued bios */
86 * RB tree of active children throtl_grp's, which are sorted by
89 struct rb_root pending_tree
; /* RB tree of active tgs */
90 struct rb_node
*first_pending
; /* first node in the tree */
91 unsigned int nr_pending
; /* # queued in the tree */
92 unsigned long first_pending_disptime
; /* disptime of the first tg */
93 struct timer_list pending_timer
; /* fires on first_pending_disptime */
97 THROTL_TG_PENDING
= 1 << 0, /* on parent's pending tree */
98 THROTL_TG_WAS_EMPTY
= 1 << 1, /* bio_lists[] became non-empty */
101 #define rb_entry_tg(node) rb_entry((node), struct throtl_grp, rb_node)
110 /* must be the first member */
111 struct blkg_policy_data pd
;
113 /* active throtl group service_queue member */
114 struct rb_node rb_node
;
116 /* throtl_data this group belongs to */
117 struct throtl_data
*td
;
119 /* this group's service queue */
120 struct throtl_service_queue service_queue
;
123 * qnode_on_self is used when bios are directly queued to this
124 * throtl_grp so that local bios compete fairly with bios
125 * dispatched from children. qnode_on_parent is used when bios are
126 * dispatched from this throtl_grp into its parent and will compete
127 * with the sibling qnode_on_parents and the parent's
130 struct throtl_qnode qnode_on_self
[2];
131 struct throtl_qnode qnode_on_parent
[2];
134 * Dispatch time in jiffies. This is the estimated time when group
135 * will unthrottle and is ready to dispatch more bio. It is used as
136 * key to sort active groups in service tree.
138 unsigned long disptime
;
142 /* are there any throtl rules between this group and td? */
145 /* internally used bytes per second rate limits */
146 uint64_t bps
[2][LIMIT_CNT
];
147 /* user configured bps limits */
148 uint64_t bps_conf
[2][LIMIT_CNT
];
150 /* internally used IOPS limits */
151 unsigned int iops
[2][LIMIT_CNT
];
152 /* user configured IOPS limits */
153 unsigned int iops_conf
[2][LIMIT_CNT
];
155 /* Number of bytes disptached in current slice */
156 uint64_t bytes_disp
[2];
157 /* Number of bio's dispatched in current slice */
158 unsigned int io_disp
[2];
160 unsigned long last_low_overflow_time
[2];
162 uint64_t last_bytes_disp
[2];
163 unsigned int last_io_disp
[2];
165 unsigned long last_check_time
;
167 unsigned long latency_target
; /* us */
168 unsigned long latency_target_conf
; /* us */
169 /* When did we start a new slice */
170 unsigned long slice_start
[2];
171 unsigned long slice_end
[2];
173 unsigned long last_finish_time
; /* ns / 1024 */
174 unsigned long checked_last_finish_time
; /* ns / 1024 */
175 unsigned long avg_idletime
; /* ns / 1024 */
176 unsigned long idletime_threshold
; /* us */
177 unsigned long idletime_threshold_conf
; /* us */
179 unsigned int bio_cnt
; /* total bios */
180 unsigned int bad_bio_cnt
; /* bios exceeding latency threshold */
181 unsigned long bio_cnt_reset_time
;
184 /* We measure latency for request size from <= 4k to >= 1M */
185 #define LATENCY_BUCKET_SIZE 9
187 struct latency_bucket
{
188 unsigned long total_latency
; /* ns / 1024 */
192 struct avg_latency_bucket
{
193 unsigned long latency
; /* ns / 1024 */
199 /* service tree for active throtl groups */
200 struct throtl_service_queue service_queue
;
202 struct request_queue
*queue
;
204 /* Total Number of queued bios on READ and WRITE lists */
205 unsigned int nr_queued
[2];
207 unsigned int throtl_slice
;
209 /* Work for dispatching throttled bios */
210 struct work_struct dispatch_work
;
211 unsigned int limit_index
;
212 bool limit_valid
[LIMIT_CNT
];
214 unsigned long low_upgrade_time
;
215 unsigned long low_downgrade_time
;
219 struct latency_bucket tmp_buckets
[LATENCY_BUCKET_SIZE
];
220 struct avg_latency_bucket avg_buckets
[LATENCY_BUCKET_SIZE
];
221 struct latency_bucket __percpu
*latency_buckets
;
222 unsigned long last_calculate_time
;
223 unsigned long filtered_latency
;
225 bool track_bio_latency
;
228 static void throtl_pending_timer_fn(unsigned long arg
);
230 static inline struct throtl_grp
*pd_to_tg(struct blkg_policy_data
*pd
)
232 return pd
? container_of(pd
, struct throtl_grp
, pd
) : NULL
;
235 static inline struct throtl_grp
*blkg_to_tg(struct blkcg_gq
*blkg
)
237 return pd_to_tg(blkg_to_pd(blkg
, &blkcg_policy_throtl
));
240 static inline struct blkcg_gq
*tg_to_blkg(struct throtl_grp
*tg
)
242 return pd_to_blkg(&tg
->pd
);
246 * sq_to_tg - return the throl_grp the specified service queue belongs to
247 * @sq: the throtl_service_queue of interest
249 * Return the throtl_grp @sq belongs to. If @sq is the top-level one
250 * embedded in throtl_data, %NULL is returned.
252 static struct throtl_grp
*sq_to_tg(struct throtl_service_queue
*sq
)
254 if (sq
&& sq
->parent_sq
)
255 return container_of(sq
, struct throtl_grp
, service_queue
);
261 * sq_to_td - return throtl_data the specified service queue belongs to
262 * @sq: the throtl_service_queue of interest
264 * A service_queue can be embedded in either a throtl_grp or throtl_data.
265 * Determine the associated throtl_data accordingly and return it.
267 static struct throtl_data
*sq_to_td(struct throtl_service_queue
*sq
)
269 struct throtl_grp
*tg
= sq_to_tg(sq
);
274 return container_of(sq
, struct throtl_data
, service_queue
);
278 * cgroup's limit in LIMIT_MAX is scaled if low limit is set. This scale is to
279 * make the IO dispatch more smooth.
280 * Scale up: linearly scale up according to lapsed time since upgrade. For
281 * every throtl_slice, the limit scales up 1/2 .low limit till the
282 * limit hits .max limit
283 * Scale down: exponentially scale down if a cgroup doesn't hit its .low limit
285 static uint64_t throtl_adjusted_limit(uint64_t low
, struct throtl_data
*td
)
287 /* arbitrary value to avoid too big scale */
288 if (td
->scale
< 4096 && time_after_eq(jiffies
,
289 td
->low_upgrade_time
+ td
->scale
* td
->throtl_slice
))
290 td
->scale
= (jiffies
- td
->low_upgrade_time
) / td
->throtl_slice
;
292 return low
+ (low
>> 1) * td
->scale
;
295 static uint64_t tg_bps_limit(struct throtl_grp
*tg
, int rw
)
297 struct blkcg_gq
*blkg
= tg_to_blkg(tg
);
298 struct throtl_data
*td
;
301 if (cgroup_subsys_on_dfl(io_cgrp_subsys
) && !blkg
->parent
)
305 ret
= tg
->bps
[rw
][td
->limit_index
];
306 if (ret
== 0 && td
->limit_index
== LIMIT_LOW
) {
307 /* intermediate node or iops isn't 0 */
308 if (!list_empty(&blkg
->blkcg
->css
.children
) ||
309 tg
->iops
[rw
][td
->limit_index
])
312 return MIN_THROTL_BPS
;
315 if (td
->limit_index
== LIMIT_MAX
&& tg
->bps
[rw
][LIMIT_LOW
] &&
316 tg
->bps
[rw
][LIMIT_LOW
] != tg
->bps
[rw
][LIMIT_MAX
]) {
319 adjusted
= throtl_adjusted_limit(tg
->bps
[rw
][LIMIT_LOW
], td
);
320 ret
= min(tg
->bps
[rw
][LIMIT_MAX
], adjusted
);
325 static unsigned int tg_iops_limit(struct throtl_grp
*tg
, int rw
)
327 struct blkcg_gq
*blkg
= tg_to_blkg(tg
);
328 struct throtl_data
*td
;
331 if (cgroup_subsys_on_dfl(io_cgrp_subsys
) && !blkg
->parent
)
335 ret
= tg
->iops
[rw
][td
->limit_index
];
336 if (ret
== 0 && tg
->td
->limit_index
== LIMIT_LOW
) {
337 /* intermediate node or bps isn't 0 */
338 if (!list_empty(&blkg
->blkcg
->css
.children
) ||
339 tg
->bps
[rw
][td
->limit_index
])
342 return MIN_THROTL_IOPS
;
345 if (td
->limit_index
== LIMIT_MAX
&& tg
->iops
[rw
][LIMIT_LOW
] &&
346 tg
->iops
[rw
][LIMIT_LOW
] != tg
->iops
[rw
][LIMIT_MAX
]) {
349 adjusted
= throtl_adjusted_limit(tg
->iops
[rw
][LIMIT_LOW
], td
);
350 if (adjusted
> UINT_MAX
)
352 ret
= min_t(unsigned int, tg
->iops
[rw
][LIMIT_MAX
], adjusted
);
357 #define request_bucket_index(sectors) \
358 clamp_t(int, order_base_2(sectors) - 3, 0, LATENCY_BUCKET_SIZE - 1)
361 * throtl_log - log debug message via blktrace
362 * @sq: the service_queue being reported
363 * @fmt: printf format string
366 * The messages are prefixed with "throtl BLKG_NAME" if @sq belongs to a
367 * throtl_grp; otherwise, just "throtl".
369 #define throtl_log(sq, fmt, args...) do { \
370 struct throtl_grp *__tg = sq_to_tg((sq)); \
371 struct throtl_data *__td = sq_to_td((sq)); \
374 if (likely(!blk_trace_note_message_enabled(__td->queue))) \
377 blk_add_cgroup_trace_msg(__td->queue, \
378 tg_to_blkg(__tg)->blkcg, "throtl " fmt, ##args);\
380 blk_add_trace_msg(__td->queue, "throtl " fmt, ##args); \
384 static inline unsigned int throtl_bio_data_size(struct bio
*bio
)
386 /* assume it's one sector */
387 if (unlikely(bio_op(bio
) == REQ_OP_DISCARD
))
389 return bio
->bi_iter
.bi_size
;
392 static void throtl_qnode_init(struct throtl_qnode
*qn
, struct throtl_grp
*tg
)
394 INIT_LIST_HEAD(&qn
->node
);
395 bio_list_init(&qn
->bios
);
400 * throtl_qnode_add_bio - add a bio to a throtl_qnode and activate it
401 * @bio: bio being added
402 * @qn: qnode to add bio to
403 * @queued: the service_queue->queued[] list @qn belongs to
405 * Add @bio to @qn and put @qn on @queued if it's not already on.
406 * @qn->tg's reference count is bumped when @qn is activated. See the
407 * comment on top of throtl_qnode definition for details.
409 static void throtl_qnode_add_bio(struct bio
*bio
, struct throtl_qnode
*qn
,
410 struct list_head
*queued
)
412 bio_list_add(&qn
->bios
, bio
);
413 if (list_empty(&qn
->node
)) {
414 list_add_tail(&qn
->node
, queued
);
415 blkg_get(tg_to_blkg(qn
->tg
));
420 * throtl_peek_queued - peek the first bio on a qnode list
421 * @queued: the qnode list to peek
423 static struct bio
*throtl_peek_queued(struct list_head
*queued
)
425 struct throtl_qnode
*qn
= list_first_entry(queued
, struct throtl_qnode
, node
);
428 if (list_empty(queued
))
431 bio
= bio_list_peek(&qn
->bios
);
437 * throtl_pop_queued - pop the first bio form a qnode list
438 * @queued: the qnode list to pop a bio from
439 * @tg_to_put: optional out argument for throtl_grp to put
441 * Pop the first bio from the qnode list @queued. After popping, the first
442 * qnode is removed from @queued if empty or moved to the end of @queued so
443 * that the popping order is round-robin.
445 * When the first qnode is removed, its associated throtl_grp should be put
446 * too. If @tg_to_put is NULL, this function automatically puts it;
447 * otherwise, *@tg_to_put is set to the throtl_grp to put and the caller is
448 * responsible for putting it.
450 static struct bio
*throtl_pop_queued(struct list_head
*queued
,
451 struct throtl_grp
**tg_to_put
)
453 struct throtl_qnode
*qn
= list_first_entry(queued
, struct throtl_qnode
, node
);
456 if (list_empty(queued
))
459 bio
= bio_list_pop(&qn
->bios
);
462 if (bio_list_empty(&qn
->bios
)) {
463 list_del_init(&qn
->node
);
467 blkg_put(tg_to_blkg(qn
->tg
));
469 list_move_tail(&qn
->node
, queued
);
475 /* init a service_queue, assumes the caller zeroed it */
476 static void throtl_service_queue_init(struct throtl_service_queue
*sq
)
478 INIT_LIST_HEAD(&sq
->queued
[0]);
479 INIT_LIST_HEAD(&sq
->queued
[1]);
480 sq
->pending_tree
= RB_ROOT
;
481 setup_timer(&sq
->pending_timer
, throtl_pending_timer_fn
,
485 static struct blkg_policy_data
*throtl_pd_alloc(gfp_t gfp
, int node
)
487 struct throtl_grp
*tg
;
490 tg
= kzalloc_node(sizeof(*tg
), gfp
, node
);
494 throtl_service_queue_init(&tg
->service_queue
);
496 for (rw
= READ
; rw
<= WRITE
; rw
++) {
497 throtl_qnode_init(&tg
->qnode_on_self
[rw
], tg
);
498 throtl_qnode_init(&tg
->qnode_on_parent
[rw
], tg
);
501 RB_CLEAR_NODE(&tg
->rb_node
);
502 tg
->bps
[READ
][LIMIT_MAX
] = U64_MAX
;
503 tg
->bps
[WRITE
][LIMIT_MAX
] = U64_MAX
;
504 tg
->iops
[READ
][LIMIT_MAX
] = UINT_MAX
;
505 tg
->iops
[WRITE
][LIMIT_MAX
] = UINT_MAX
;
506 tg
->bps_conf
[READ
][LIMIT_MAX
] = U64_MAX
;
507 tg
->bps_conf
[WRITE
][LIMIT_MAX
] = U64_MAX
;
508 tg
->iops_conf
[READ
][LIMIT_MAX
] = UINT_MAX
;
509 tg
->iops_conf
[WRITE
][LIMIT_MAX
] = UINT_MAX
;
510 /* LIMIT_LOW will have default value 0 */
512 tg
->latency_target
= DFL_LATENCY_TARGET
;
513 tg
->latency_target_conf
= DFL_LATENCY_TARGET
;
514 tg
->idletime_threshold
= DFL_IDLE_THRESHOLD
;
515 tg
->idletime_threshold_conf
= DFL_IDLE_THRESHOLD
;
520 static void throtl_pd_init(struct blkg_policy_data
*pd
)
522 struct throtl_grp
*tg
= pd_to_tg(pd
);
523 struct blkcg_gq
*blkg
= tg_to_blkg(tg
);
524 struct throtl_data
*td
= blkg
->q
->td
;
525 struct throtl_service_queue
*sq
= &tg
->service_queue
;
528 * If on the default hierarchy, we switch to properly hierarchical
529 * behavior where limits on a given throtl_grp are applied to the
530 * whole subtree rather than just the group itself. e.g. If 16M
531 * read_bps limit is set on the root group, the whole system can't
532 * exceed 16M for the device.
534 * If not on the default hierarchy, the broken flat hierarchy
535 * behavior is retained where all throtl_grps are treated as if
536 * they're all separate root groups right below throtl_data.
537 * Limits of a group don't interact with limits of other groups
538 * regardless of the position of the group in the hierarchy.
540 sq
->parent_sq
= &td
->service_queue
;
541 if (cgroup_subsys_on_dfl(io_cgrp_subsys
) && blkg
->parent
)
542 sq
->parent_sq
= &blkg_to_tg(blkg
->parent
)->service_queue
;
547 * Set has_rules[] if @tg or any of its parents have limits configured.
548 * This doesn't require walking up to the top of the hierarchy as the
549 * parent's has_rules[] is guaranteed to be correct.
551 static void tg_update_has_rules(struct throtl_grp
*tg
)
553 struct throtl_grp
*parent_tg
= sq_to_tg(tg
->service_queue
.parent_sq
);
554 struct throtl_data
*td
= tg
->td
;
557 for (rw
= READ
; rw
<= WRITE
; rw
++)
558 tg
->has_rules
[rw
] = (parent_tg
&& parent_tg
->has_rules
[rw
]) ||
559 (td
->limit_valid
[td
->limit_index
] &&
560 (tg_bps_limit(tg
, rw
) != U64_MAX
||
561 tg_iops_limit(tg
, rw
) != UINT_MAX
));
564 static void throtl_pd_online(struct blkg_policy_data
*pd
)
566 struct throtl_grp
*tg
= pd_to_tg(pd
);
568 * We don't want new groups to escape the limits of its ancestors.
569 * Update has_rules[] after a new group is brought online.
571 tg_update_has_rules(tg
);
574 static void blk_throtl_update_limit_valid(struct throtl_data
*td
)
576 struct cgroup_subsys_state
*pos_css
;
577 struct blkcg_gq
*blkg
;
578 bool low_valid
= false;
581 blkg_for_each_descendant_post(blkg
, pos_css
, td
->queue
->root_blkg
) {
582 struct throtl_grp
*tg
= blkg_to_tg(blkg
);
584 if (tg
->bps
[READ
][LIMIT_LOW
] || tg
->bps
[WRITE
][LIMIT_LOW
] ||
585 tg
->iops
[READ
][LIMIT_LOW
] || tg
->iops
[WRITE
][LIMIT_LOW
])
590 td
->limit_valid
[LIMIT_LOW
] = low_valid
;
593 static void throtl_upgrade_state(struct throtl_data
*td
);
594 static void throtl_pd_offline(struct blkg_policy_data
*pd
)
596 struct throtl_grp
*tg
= pd_to_tg(pd
);
598 tg
->bps
[READ
][LIMIT_LOW
] = 0;
599 tg
->bps
[WRITE
][LIMIT_LOW
] = 0;
600 tg
->iops
[READ
][LIMIT_LOW
] = 0;
601 tg
->iops
[WRITE
][LIMIT_LOW
] = 0;
603 blk_throtl_update_limit_valid(tg
->td
);
605 if (!tg
->td
->limit_valid
[tg
->td
->limit_index
])
606 throtl_upgrade_state(tg
->td
);
609 static void throtl_pd_free(struct blkg_policy_data
*pd
)
611 struct throtl_grp
*tg
= pd_to_tg(pd
);
613 del_timer_sync(&tg
->service_queue
.pending_timer
);
617 static struct throtl_grp
*
618 throtl_rb_first(struct throtl_service_queue
*parent_sq
)
620 /* Service tree is empty */
621 if (!parent_sq
->nr_pending
)
624 if (!parent_sq
->first_pending
)
625 parent_sq
->first_pending
= rb_first(&parent_sq
->pending_tree
);
627 if (parent_sq
->first_pending
)
628 return rb_entry_tg(parent_sq
->first_pending
);
633 static void rb_erase_init(struct rb_node
*n
, struct rb_root
*root
)
639 static void throtl_rb_erase(struct rb_node
*n
,
640 struct throtl_service_queue
*parent_sq
)
642 if (parent_sq
->first_pending
== n
)
643 parent_sq
->first_pending
= NULL
;
644 rb_erase_init(n
, &parent_sq
->pending_tree
);
645 --parent_sq
->nr_pending
;
648 static void update_min_dispatch_time(struct throtl_service_queue
*parent_sq
)
650 struct throtl_grp
*tg
;
652 tg
= throtl_rb_first(parent_sq
);
656 parent_sq
->first_pending_disptime
= tg
->disptime
;
659 static void tg_service_queue_add(struct throtl_grp
*tg
)
661 struct throtl_service_queue
*parent_sq
= tg
->service_queue
.parent_sq
;
662 struct rb_node
**node
= &parent_sq
->pending_tree
.rb_node
;
663 struct rb_node
*parent
= NULL
;
664 struct throtl_grp
*__tg
;
665 unsigned long key
= tg
->disptime
;
668 while (*node
!= NULL
) {
670 __tg
= rb_entry_tg(parent
);
672 if (time_before(key
, __tg
->disptime
))
673 node
= &parent
->rb_left
;
675 node
= &parent
->rb_right
;
681 parent_sq
->first_pending
= &tg
->rb_node
;
683 rb_link_node(&tg
->rb_node
, parent
, node
);
684 rb_insert_color(&tg
->rb_node
, &parent_sq
->pending_tree
);
687 static void __throtl_enqueue_tg(struct throtl_grp
*tg
)
689 tg_service_queue_add(tg
);
690 tg
->flags
|= THROTL_TG_PENDING
;
691 tg
->service_queue
.parent_sq
->nr_pending
++;
694 static void throtl_enqueue_tg(struct throtl_grp
*tg
)
696 if (!(tg
->flags
& THROTL_TG_PENDING
))
697 __throtl_enqueue_tg(tg
);
700 static void __throtl_dequeue_tg(struct throtl_grp
*tg
)
702 throtl_rb_erase(&tg
->rb_node
, tg
->service_queue
.parent_sq
);
703 tg
->flags
&= ~THROTL_TG_PENDING
;
706 static void throtl_dequeue_tg(struct throtl_grp
*tg
)
708 if (tg
->flags
& THROTL_TG_PENDING
)
709 __throtl_dequeue_tg(tg
);
712 /* Call with queue lock held */
713 static void throtl_schedule_pending_timer(struct throtl_service_queue
*sq
,
714 unsigned long expires
)
716 unsigned long max_expire
= jiffies
+ 8 * sq_to_td(sq
)->throtl_slice
;
719 * Since we are adjusting the throttle limit dynamically, the sleep
720 * time calculated according to previous limit might be invalid. It's
721 * possible the cgroup sleep time is very long and no other cgroups
722 * have IO running so notify the limit changes. Make sure the cgroup
723 * doesn't sleep too long to avoid the missed notification.
725 if (time_after(expires
, max_expire
))
726 expires
= max_expire
;
727 mod_timer(&sq
->pending_timer
, expires
);
728 throtl_log(sq
, "schedule timer. delay=%lu jiffies=%lu",
729 expires
- jiffies
, jiffies
);
733 * throtl_schedule_next_dispatch - schedule the next dispatch cycle
734 * @sq: the service_queue to schedule dispatch for
735 * @force: force scheduling
737 * Arm @sq->pending_timer so that the next dispatch cycle starts on the
738 * dispatch time of the first pending child. Returns %true if either timer
739 * is armed or there's no pending child left. %false if the current
740 * dispatch window is still open and the caller should continue
743 * If @force is %true, the dispatch timer is always scheduled and this
744 * function is guaranteed to return %true. This is to be used when the
745 * caller can't dispatch itself and needs to invoke pending_timer
746 * unconditionally. Note that forced scheduling is likely to induce short
747 * delay before dispatch starts even if @sq->first_pending_disptime is not
748 * in the future and thus shouldn't be used in hot paths.
750 static bool throtl_schedule_next_dispatch(struct throtl_service_queue
*sq
,
753 /* any pending children left? */
757 update_min_dispatch_time(sq
);
759 /* is the next dispatch time in the future? */
760 if (force
|| time_after(sq
->first_pending_disptime
, jiffies
)) {
761 throtl_schedule_pending_timer(sq
, sq
->first_pending_disptime
);
765 /* tell the caller to continue dispatching */
769 static inline void throtl_start_new_slice_with_credit(struct throtl_grp
*tg
,
770 bool rw
, unsigned long start
)
772 tg
->bytes_disp
[rw
] = 0;
776 * Previous slice has expired. We must have trimmed it after last
777 * bio dispatch. That means since start of last slice, we never used
778 * that bandwidth. Do try to make use of that bandwidth while giving
781 if (time_after_eq(start
, tg
->slice_start
[rw
]))
782 tg
->slice_start
[rw
] = start
;
784 tg
->slice_end
[rw
] = jiffies
+ tg
->td
->throtl_slice
;
785 throtl_log(&tg
->service_queue
,
786 "[%c] new slice with credit start=%lu end=%lu jiffies=%lu",
787 rw
== READ
? 'R' : 'W', tg
->slice_start
[rw
],
788 tg
->slice_end
[rw
], jiffies
);
791 static inline void throtl_start_new_slice(struct throtl_grp
*tg
, bool rw
)
793 tg
->bytes_disp
[rw
] = 0;
795 tg
->slice_start
[rw
] = jiffies
;
796 tg
->slice_end
[rw
] = jiffies
+ tg
->td
->throtl_slice
;
797 throtl_log(&tg
->service_queue
,
798 "[%c] new slice start=%lu end=%lu jiffies=%lu",
799 rw
== READ
? 'R' : 'W', tg
->slice_start
[rw
],
800 tg
->slice_end
[rw
], jiffies
);
803 static inline void throtl_set_slice_end(struct throtl_grp
*tg
, bool rw
,
804 unsigned long jiffy_end
)
806 tg
->slice_end
[rw
] = roundup(jiffy_end
, tg
->td
->throtl_slice
);
809 static inline void throtl_extend_slice(struct throtl_grp
*tg
, bool rw
,
810 unsigned long jiffy_end
)
812 tg
->slice_end
[rw
] = roundup(jiffy_end
, tg
->td
->throtl_slice
);
813 throtl_log(&tg
->service_queue
,
814 "[%c] extend slice start=%lu end=%lu jiffies=%lu",
815 rw
== READ
? 'R' : 'W', tg
->slice_start
[rw
],
816 tg
->slice_end
[rw
], jiffies
);
819 /* Determine if previously allocated or extended slice is complete or not */
820 static bool throtl_slice_used(struct throtl_grp
*tg
, bool rw
)
822 if (time_in_range(jiffies
, tg
->slice_start
[rw
], tg
->slice_end
[rw
]))
828 /* Trim the used slices and adjust slice start accordingly */
829 static inline void throtl_trim_slice(struct throtl_grp
*tg
, bool rw
)
831 unsigned long nr_slices
, time_elapsed
, io_trim
;
834 BUG_ON(time_before(tg
->slice_end
[rw
], tg
->slice_start
[rw
]));
837 * If bps are unlimited (-1), then time slice don't get
838 * renewed. Don't try to trim the slice if slice is used. A new
839 * slice will start when appropriate.
841 if (throtl_slice_used(tg
, rw
))
845 * A bio has been dispatched. Also adjust slice_end. It might happen
846 * that initially cgroup limit was very low resulting in high
847 * slice_end, but later limit was bumped up and bio was dispached
848 * sooner, then we need to reduce slice_end. A high bogus slice_end
849 * is bad because it does not allow new slice to start.
852 throtl_set_slice_end(tg
, rw
, jiffies
+ tg
->td
->throtl_slice
);
854 time_elapsed
= jiffies
- tg
->slice_start
[rw
];
856 nr_slices
= time_elapsed
/ tg
->td
->throtl_slice
;
860 tmp
= tg_bps_limit(tg
, rw
) * tg
->td
->throtl_slice
* nr_slices
;
864 io_trim
= (tg_iops_limit(tg
, rw
) * tg
->td
->throtl_slice
* nr_slices
) /
867 if (!bytes_trim
&& !io_trim
)
870 if (tg
->bytes_disp
[rw
] >= bytes_trim
)
871 tg
->bytes_disp
[rw
] -= bytes_trim
;
873 tg
->bytes_disp
[rw
] = 0;
875 if (tg
->io_disp
[rw
] >= io_trim
)
876 tg
->io_disp
[rw
] -= io_trim
;
880 tg
->slice_start
[rw
] += nr_slices
* tg
->td
->throtl_slice
;
882 throtl_log(&tg
->service_queue
,
883 "[%c] trim slice nr=%lu bytes=%llu io=%lu start=%lu end=%lu jiffies=%lu",
884 rw
== READ
? 'R' : 'W', nr_slices
, bytes_trim
, io_trim
,
885 tg
->slice_start
[rw
], tg
->slice_end
[rw
], jiffies
);
888 static bool tg_with_in_iops_limit(struct throtl_grp
*tg
, struct bio
*bio
,
891 bool rw
= bio_data_dir(bio
);
892 unsigned int io_allowed
;
893 unsigned long jiffy_elapsed
, jiffy_wait
, jiffy_elapsed_rnd
;
896 jiffy_elapsed
= jiffy_elapsed_rnd
= jiffies
- tg
->slice_start
[rw
];
898 /* Slice has just started. Consider one slice interval */
900 jiffy_elapsed_rnd
= tg
->td
->throtl_slice
;
902 jiffy_elapsed_rnd
= roundup(jiffy_elapsed_rnd
, tg
->td
->throtl_slice
);
905 * jiffy_elapsed_rnd should not be a big value as minimum iops can be
906 * 1 then at max jiffy elapsed should be equivalent of 1 second as we
907 * will allow dispatch after 1 second and after that slice should
911 tmp
= (u64
)tg_iops_limit(tg
, rw
) * jiffy_elapsed_rnd
;
915 io_allowed
= UINT_MAX
;
919 if (tg
->io_disp
[rw
] + 1 <= io_allowed
) {
925 /* Calc approx time to dispatch */
926 jiffy_wait
= ((tg
->io_disp
[rw
] + 1) * HZ
) / tg_iops_limit(tg
, rw
) + 1;
928 if (jiffy_wait
> jiffy_elapsed
)
929 jiffy_wait
= jiffy_wait
- jiffy_elapsed
;
938 static bool tg_with_in_bps_limit(struct throtl_grp
*tg
, struct bio
*bio
,
941 bool rw
= bio_data_dir(bio
);
942 u64 bytes_allowed
, extra_bytes
, tmp
;
943 unsigned long jiffy_elapsed
, jiffy_wait
, jiffy_elapsed_rnd
;
944 unsigned int bio_size
= throtl_bio_data_size(bio
);
946 jiffy_elapsed
= jiffy_elapsed_rnd
= jiffies
- tg
->slice_start
[rw
];
948 /* Slice has just started. Consider one slice interval */
950 jiffy_elapsed_rnd
= tg
->td
->throtl_slice
;
952 jiffy_elapsed_rnd
= roundup(jiffy_elapsed_rnd
, tg
->td
->throtl_slice
);
954 tmp
= tg_bps_limit(tg
, rw
) * jiffy_elapsed_rnd
;
958 if (tg
->bytes_disp
[rw
] + bio_size
<= bytes_allowed
) {
964 /* Calc approx time to dispatch */
965 extra_bytes
= tg
->bytes_disp
[rw
] + bio_size
- bytes_allowed
;
966 jiffy_wait
= div64_u64(extra_bytes
* HZ
, tg_bps_limit(tg
, rw
));
972 * This wait time is without taking into consideration the rounding
973 * up we did. Add that time also.
975 jiffy_wait
= jiffy_wait
+ (jiffy_elapsed_rnd
- jiffy_elapsed
);
982 * Returns whether one can dispatch a bio or not. Also returns approx number
983 * of jiffies to wait before this bio is with-in IO rate and can be dispatched
985 static bool tg_may_dispatch(struct throtl_grp
*tg
, struct bio
*bio
,
988 bool rw
= bio_data_dir(bio
);
989 unsigned long bps_wait
= 0, iops_wait
= 0, max_wait
= 0;
992 * Currently whole state machine of group depends on first bio
993 * queued in the group bio list. So one should not be calling
994 * this function with a different bio if there are other bios
997 BUG_ON(tg
->service_queue
.nr_queued
[rw
] &&
998 bio
!= throtl_peek_queued(&tg
->service_queue
.queued
[rw
]));
1000 /* If tg->bps = -1, then BW is unlimited */
1001 if (tg_bps_limit(tg
, rw
) == U64_MAX
&&
1002 tg_iops_limit(tg
, rw
) == UINT_MAX
) {
1009 * If previous slice expired, start a new one otherwise renew/extend
1010 * existing slice to make sure it is at least throtl_slice interval
1011 * long since now. New slice is started only for empty throttle group.
1012 * If there is queued bio, that means there should be an active
1013 * slice and it should be extended instead.
1015 if (throtl_slice_used(tg
, rw
) && !(tg
->service_queue
.nr_queued
[rw
]))
1016 throtl_start_new_slice(tg
, rw
);
1018 if (time_before(tg
->slice_end
[rw
],
1019 jiffies
+ tg
->td
->throtl_slice
))
1020 throtl_extend_slice(tg
, rw
,
1021 jiffies
+ tg
->td
->throtl_slice
);
1024 if (tg_with_in_bps_limit(tg
, bio
, &bps_wait
) &&
1025 tg_with_in_iops_limit(tg
, bio
, &iops_wait
)) {
1031 max_wait
= max(bps_wait
, iops_wait
);
1036 if (time_before(tg
->slice_end
[rw
], jiffies
+ max_wait
))
1037 throtl_extend_slice(tg
, rw
, jiffies
+ max_wait
);
1042 static void throtl_charge_bio(struct throtl_grp
*tg
, struct bio
*bio
)
1044 bool rw
= bio_data_dir(bio
);
1045 unsigned int bio_size
= throtl_bio_data_size(bio
);
1047 /* Charge the bio to the group */
1048 tg
->bytes_disp
[rw
] += bio_size
;
1050 tg
->last_bytes_disp
[rw
] += bio_size
;
1051 tg
->last_io_disp
[rw
]++;
1054 * BIO_THROTTLED is used to prevent the same bio to be throttled
1055 * more than once as a throttled bio will go through blk-throtl the
1056 * second time when it eventually gets issued. Set it when a bio
1057 * is being charged to a tg.
1059 if (!bio_flagged(bio
, BIO_THROTTLED
))
1060 bio_set_flag(bio
, BIO_THROTTLED
);
1064 * throtl_add_bio_tg - add a bio to the specified throtl_grp
1067 * @tg: the target throtl_grp
1069 * Add @bio to @tg's service_queue using @qn. If @qn is not specified,
1070 * tg->qnode_on_self[] is used.
1072 static void throtl_add_bio_tg(struct bio
*bio
, struct throtl_qnode
*qn
,
1073 struct throtl_grp
*tg
)
1075 struct throtl_service_queue
*sq
= &tg
->service_queue
;
1076 bool rw
= bio_data_dir(bio
);
1079 qn
= &tg
->qnode_on_self
[rw
];
1082 * If @tg doesn't currently have any bios queued in the same
1083 * direction, queueing @bio can change when @tg should be
1084 * dispatched. Mark that @tg was empty. This is automatically
1085 * cleaered on the next tg_update_disptime().
1087 if (!sq
->nr_queued
[rw
])
1088 tg
->flags
|= THROTL_TG_WAS_EMPTY
;
1090 throtl_qnode_add_bio(bio
, qn
, &sq
->queued
[rw
]);
1092 sq
->nr_queued
[rw
]++;
1093 throtl_enqueue_tg(tg
);
1096 static void tg_update_disptime(struct throtl_grp
*tg
)
1098 struct throtl_service_queue
*sq
= &tg
->service_queue
;
1099 unsigned long read_wait
= -1, write_wait
= -1, min_wait
= -1, disptime
;
1102 bio
= throtl_peek_queued(&sq
->queued
[READ
]);
1104 tg_may_dispatch(tg
, bio
, &read_wait
);
1106 bio
= throtl_peek_queued(&sq
->queued
[WRITE
]);
1108 tg_may_dispatch(tg
, bio
, &write_wait
);
1110 min_wait
= min(read_wait
, write_wait
);
1111 disptime
= jiffies
+ min_wait
;
1113 /* Update dispatch time */
1114 throtl_dequeue_tg(tg
);
1115 tg
->disptime
= disptime
;
1116 throtl_enqueue_tg(tg
);
1118 /* see throtl_add_bio_tg() */
1119 tg
->flags
&= ~THROTL_TG_WAS_EMPTY
;
1122 static void start_parent_slice_with_credit(struct throtl_grp
*child_tg
,
1123 struct throtl_grp
*parent_tg
, bool rw
)
1125 if (throtl_slice_used(parent_tg
, rw
)) {
1126 throtl_start_new_slice_with_credit(parent_tg
, rw
,
1127 child_tg
->slice_start
[rw
]);
1132 static void tg_dispatch_one_bio(struct throtl_grp
*tg
, bool rw
)
1134 struct throtl_service_queue
*sq
= &tg
->service_queue
;
1135 struct throtl_service_queue
*parent_sq
= sq
->parent_sq
;
1136 struct throtl_grp
*parent_tg
= sq_to_tg(parent_sq
);
1137 struct throtl_grp
*tg_to_put
= NULL
;
1141 * @bio is being transferred from @tg to @parent_sq. Popping a bio
1142 * from @tg may put its reference and @parent_sq might end up
1143 * getting released prematurely. Remember the tg to put and put it
1144 * after @bio is transferred to @parent_sq.
1146 bio
= throtl_pop_queued(&sq
->queued
[rw
], &tg_to_put
);
1147 sq
->nr_queued
[rw
]--;
1149 throtl_charge_bio(tg
, bio
);
1152 * If our parent is another tg, we just need to transfer @bio to
1153 * the parent using throtl_add_bio_tg(). If our parent is
1154 * @td->service_queue, @bio is ready to be issued. Put it on its
1155 * bio_lists[] and decrease total number queued. The caller is
1156 * responsible for issuing these bios.
1159 throtl_add_bio_tg(bio
, &tg
->qnode_on_parent
[rw
], parent_tg
);
1160 start_parent_slice_with_credit(tg
, parent_tg
, rw
);
1162 throtl_qnode_add_bio(bio
, &tg
->qnode_on_parent
[rw
],
1163 &parent_sq
->queued
[rw
]);
1164 BUG_ON(tg
->td
->nr_queued
[rw
] <= 0);
1165 tg
->td
->nr_queued
[rw
]--;
1168 throtl_trim_slice(tg
, rw
);
1171 blkg_put(tg_to_blkg(tg_to_put
));
1174 static int throtl_dispatch_tg(struct throtl_grp
*tg
)
1176 struct throtl_service_queue
*sq
= &tg
->service_queue
;
1177 unsigned int nr_reads
= 0, nr_writes
= 0;
1178 unsigned int max_nr_reads
= throtl_grp_quantum
*3/4;
1179 unsigned int max_nr_writes
= throtl_grp_quantum
- max_nr_reads
;
1182 /* Try to dispatch 75% READS and 25% WRITES */
1184 while ((bio
= throtl_peek_queued(&sq
->queued
[READ
])) &&
1185 tg_may_dispatch(tg
, bio
, NULL
)) {
1187 tg_dispatch_one_bio(tg
, bio_data_dir(bio
));
1190 if (nr_reads
>= max_nr_reads
)
1194 while ((bio
= throtl_peek_queued(&sq
->queued
[WRITE
])) &&
1195 tg_may_dispatch(tg
, bio
, NULL
)) {
1197 tg_dispatch_one_bio(tg
, bio_data_dir(bio
));
1200 if (nr_writes
>= max_nr_writes
)
1204 return nr_reads
+ nr_writes
;
1207 static int throtl_select_dispatch(struct throtl_service_queue
*parent_sq
)
1209 unsigned int nr_disp
= 0;
1212 struct throtl_grp
*tg
= throtl_rb_first(parent_sq
);
1213 struct throtl_service_queue
*sq
= &tg
->service_queue
;
1218 if (time_before(jiffies
, tg
->disptime
))
1221 throtl_dequeue_tg(tg
);
1223 nr_disp
+= throtl_dispatch_tg(tg
);
1225 if (sq
->nr_queued
[0] || sq
->nr_queued
[1])
1226 tg_update_disptime(tg
);
1228 if (nr_disp
>= throtl_quantum
)
1235 static bool throtl_can_upgrade(struct throtl_data
*td
,
1236 struct throtl_grp
*this_tg
);
1238 * throtl_pending_timer_fn - timer function for service_queue->pending_timer
1239 * @arg: the throtl_service_queue being serviced
1241 * This timer is armed when a child throtl_grp with active bio's become
1242 * pending and queued on the service_queue's pending_tree and expires when
1243 * the first child throtl_grp should be dispatched. This function
1244 * dispatches bio's from the children throtl_grps to the parent
1247 * If the parent's parent is another throtl_grp, dispatching is propagated
1248 * by either arming its pending_timer or repeating dispatch directly. If
1249 * the top-level service_tree is reached, throtl_data->dispatch_work is
1250 * kicked so that the ready bio's are issued.
1252 static void throtl_pending_timer_fn(unsigned long arg
)
1254 struct throtl_service_queue
*sq
= (void *)arg
;
1255 struct throtl_grp
*tg
= sq_to_tg(sq
);
1256 struct throtl_data
*td
= sq_to_td(sq
);
1257 struct request_queue
*q
= td
->queue
;
1258 struct throtl_service_queue
*parent_sq
;
1262 spin_lock_irq(q
->queue_lock
);
1263 if (throtl_can_upgrade(td
, NULL
))
1264 throtl_upgrade_state(td
);
1267 parent_sq
= sq
->parent_sq
;
1271 throtl_log(sq
, "dispatch nr_queued=%u read=%u write=%u",
1272 sq
->nr_queued
[READ
] + sq
->nr_queued
[WRITE
],
1273 sq
->nr_queued
[READ
], sq
->nr_queued
[WRITE
]);
1275 ret
= throtl_select_dispatch(sq
);
1277 throtl_log(sq
, "bios disp=%u", ret
);
1281 if (throtl_schedule_next_dispatch(sq
, false))
1284 /* this dispatch windows is still open, relax and repeat */
1285 spin_unlock_irq(q
->queue_lock
);
1287 spin_lock_irq(q
->queue_lock
);
1294 /* @parent_sq is another throl_grp, propagate dispatch */
1295 if (tg
->flags
& THROTL_TG_WAS_EMPTY
) {
1296 tg_update_disptime(tg
);
1297 if (!throtl_schedule_next_dispatch(parent_sq
, false)) {
1298 /* window is already open, repeat dispatching */
1305 /* reached the top-level, queue issueing */
1306 queue_work(kthrotld_workqueue
, &td
->dispatch_work
);
1309 spin_unlock_irq(q
->queue_lock
);
1313 * blk_throtl_dispatch_work_fn - work function for throtl_data->dispatch_work
1314 * @work: work item being executed
1316 * This function is queued for execution when bio's reach the bio_lists[]
1317 * of throtl_data->service_queue. Those bio's are ready and issued by this
1320 static void blk_throtl_dispatch_work_fn(struct work_struct
*work
)
1322 struct throtl_data
*td
= container_of(work
, struct throtl_data
,
1324 struct throtl_service_queue
*td_sq
= &td
->service_queue
;
1325 struct request_queue
*q
= td
->queue
;
1326 struct bio_list bio_list_on_stack
;
1328 struct blk_plug plug
;
1331 bio_list_init(&bio_list_on_stack
);
1333 spin_lock_irq(q
->queue_lock
);
1334 for (rw
= READ
; rw
<= WRITE
; rw
++)
1335 while ((bio
= throtl_pop_queued(&td_sq
->queued
[rw
], NULL
)))
1336 bio_list_add(&bio_list_on_stack
, bio
);
1337 spin_unlock_irq(q
->queue_lock
);
1339 if (!bio_list_empty(&bio_list_on_stack
)) {
1340 blk_start_plug(&plug
);
1341 while((bio
= bio_list_pop(&bio_list_on_stack
)))
1342 generic_make_request(bio
);
1343 blk_finish_plug(&plug
);
1347 static u64
tg_prfill_conf_u64(struct seq_file
*sf
, struct blkg_policy_data
*pd
,
1350 struct throtl_grp
*tg
= pd_to_tg(pd
);
1351 u64 v
= *(u64
*)((void *)tg
+ off
);
1355 return __blkg_prfill_u64(sf
, pd
, v
);
1358 static u64
tg_prfill_conf_uint(struct seq_file
*sf
, struct blkg_policy_data
*pd
,
1361 struct throtl_grp
*tg
= pd_to_tg(pd
);
1362 unsigned int v
= *(unsigned int *)((void *)tg
+ off
);
1366 return __blkg_prfill_u64(sf
, pd
, v
);
1369 static int tg_print_conf_u64(struct seq_file
*sf
, void *v
)
1371 blkcg_print_blkgs(sf
, css_to_blkcg(seq_css(sf
)), tg_prfill_conf_u64
,
1372 &blkcg_policy_throtl
, seq_cft(sf
)->private, false);
1376 static int tg_print_conf_uint(struct seq_file
*sf
, void *v
)
1378 blkcg_print_blkgs(sf
, css_to_blkcg(seq_css(sf
)), tg_prfill_conf_uint
,
1379 &blkcg_policy_throtl
, seq_cft(sf
)->private, false);
1383 static void tg_conf_updated(struct throtl_grp
*tg
, bool global
)
1385 struct throtl_service_queue
*sq
= &tg
->service_queue
;
1386 struct cgroup_subsys_state
*pos_css
;
1387 struct blkcg_gq
*blkg
;
1389 throtl_log(&tg
->service_queue
,
1390 "limit change rbps=%llu wbps=%llu riops=%u wiops=%u",
1391 tg_bps_limit(tg
, READ
), tg_bps_limit(tg
, WRITE
),
1392 tg_iops_limit(tg
, READ
), tg_iops_limit(tg
, WRITE
));
1395 * Update has_rules[] flags for the updated tg's subtree. A tg is
1396 * considered to have rules if either the tg itself or any of its
1397 * ancestors has rules. This identifies groups without any
1398 * restrictions in the whole hierarchy and allows them to bypass
1401 blkg_for_each_descendant_pre(blkg
, pos_css
,
1402 global
? tg
->td
->queue
->root_blkg
: tg_to_blkg(tg
)) {
1403 struct throtl_grp
*this_tg
= blkg_to_tg(blkg
);
1404 struct throtl_grp
*parent_tg
;
1406 tg_update_has_rules(this_tg
);
1407 /* ignore root/second level */
1408 if (!cgroup_subsys_on_dfl(io_cgrp_subsys
) || !blkg
->parent
||
1409 !blkg
->parent
->parent
)
1411 parent_tg
= blkg_to_tg(blkg
->parent
);
1413 * make sure all children has lower idle time threshold and
1414 * higher latency target
1416 this_tg
->idletime_threshold
= min(this_tg
->idletime_threshold
,
1417 parent_tg
->idletime_threshold
);
1418 this_tg
->latency_target
= max(this_tg
->latency_target
,
1419 parent_tg
->latency_target
);
1423 * We're already holding queue_lock and know @tg is valid. Let's
1424 * apply the new config directly.
1426 * Restart the slices for both READ and WRITES. It might happen
1427 * that a group's limit are dropped suddenly and we don't want to
1428 * account recently dispatched IO with new low rate.
1430 throtl_start_new_slice(tg
, 0);
1431 throtl_start_new_slice(tg
, 1);
1433 if (tg
->flags
& THROTL_TG_PENDING
) {
1434 tg_update_disptime(tg
);
1435 throtl_schedule_next_dispatch(sq
->parent_sq
, true);
1439 static ssize_t
tg_set_conf(struct kernfs_open_file
*of
,
1440 char *buf
, size_t nbytes
, loff_t off
, bool is_u64
)
1442 struct blkcg
*blkcg
= css_to_blkcg(of_css(of
));
1443 struct blkg_conf_ctx ctx
;
1444 struct throtl_grp
*tg
;
1448 ret
= blkg_conf_prep(blkcg
, &blkcg_policy_throtl
, buf
, &ctx
);
1453 if (sscanf(ctx
.body
, "%llu", &v
) != 1)
1458 tg
= blkg_to_tg(ctx
.blkg
);
1461 *(u64
*)((void *)tg
+ of_cft(of
)->private) = v
;
1463 *(unsigned int *)((void *)tg
+ of_cft(of
)->private) = v
;
1465 tg_conf_updated(tg
, false);
1468 blkg_conf_finish(&ctx
);
1469 return ret
?: nbytes
;
1472 static ssize_t
tg_set_conf_u64(struct kernfs_open_file
*of
,
1473 char *buf
, size_t nbytes
, loff_t off
)
1475 return tg_set_conf(of
, buf
, nbytes
, off
, true);
1478 static ssize_t
tg_set_conf_uint(struct kernfs_open_file
*of
,
1479 char *buf
, size_t nbytes
, loff_t off
)
1481 return tg_set_conf(of
, buf
, nbytes
, off
, false);
1484 static struct cftype throtl_legacy_files
[] = {
1486 .name
= "throttle.read_bps_device",
1487 .private = offsetof(struct throtl_grp
, bps
[READ
][LIMIT_MAX
]),
1488 .seq_show
= tg_print_conf_u64
,
1489 .write
= tg_set_conf_u64
,
1492 .name
= "throttle.write_bps_device",
1493 .private = offsetof(struct throtl_grp
, bps
[WRITE
][LIMIT_MAX
]),
1494 .seq_show
= tg_print_conf_u64
,
1495 .write
= tg_set_conf_u64
,
1498 .name
= "throttle.read_iops_device",
1499 .private = offsetof(struct throtl_grp
, iops
[READ
][LIMIT_MAX
]),
1500 .seq_show
= tg_print_conf_uint
,
1501 .write
= tg_set_conf_uint
,
1504 .name
= "throttle.write_iops_device",
1505 .private = offsetof(struct throtl_grp
, iops
[WRITE
][LIMIT_MAX
]),
1506 .seq_show
= tg_print_conf_uint
,
1507 .write
= tg_set_conf_uint
,
1510 .name
= "throttle.io_service_bytes",
1511 .private = (unsigned long)&blkcg_policy_throtl
,
1512 .seq_show
= blkg_print_stat_bytes
,
1515 .name
= "throttle.io_serviced",
1516 .private = (unsigned long)&blkcg_policy_throtl
,
1517 .seq_show
= blkg_print_stat_ios
,
1522 static u64
tg_prfill_limit(struct seq_file
*sf
, struct blkg_policy_data
*pd
,
1525 struct throtl_grp
*tg
= pd_to_tg(pd
);
1526 const char *dname
= blkg_dev_name(pd
->blkg
);
1527 char bufs
[4][21] = { "max", "max", "max", "max" };
1529 unsigned int iops_dft
;
1530 char idle_time
[26] = "";
1531 char latency_time
[26] = "";
1536 if (off
== LIMIT_LOW
) {
1541 iops_dft
= UINT_MAX
;
1544 if (tg
->bps_conf
[READ
][off
] == bps_dft
&&
1545 tg
->bps_conf
[WRITE
][off
] == bps_dft
&&
1546 tg
->iops_conf
[READ
][off
] == iops_dft
&&
1547 tg
->iops_conf
[WRITE
][off
] == iops_dft
&&
1548 (off
!= LIMIT_LOW
||
1549 (tg
->idletime_threshold_conf
== DFL_IDLE_THRESHOLD
&&
1550 tg
->latency_target_conf
== DFL_LATENCY_TARGET
)))
1553 if (tg
->bps_conf
[READ
][off
] != U64_MAX
)
1554 snprintf(bufs
[0], sizeof(bufs
[0]), "%llu",
1555 tg
->bps_conf
[READ
][off
]);
1556 if (tg
->bps_conf
[WRITE
][off
] != U64_MAX
)
1557 snprintf(bufs
[1], sizeof(bufs
[1]), "%llu",
1558 tg
->bps_conf
[WRITE
][off
]);
1559 if (tg
->iops_conf
[READ
][off
] != UINT_MAX
)
1560 snprintf(bufs
[2], sizeof(bufs
[2]), "%u",
1561 tg
->iops_conf
[READ
][off
]);
1562 if (tg
->iops_conf
[WRITE
][off
] != UINT_MAX
)
1563 snprintf(bufs
[3], sizeof(bufs
[3]), "%u",
1564 tg
->iops_conf
[WRITE
][off
]);
1565 if (off
== LIMIT_LOW
) {
1566 if (tg
->idletime_threshold_conf
== ULONG_MAX
)
1567 strcpy(idle_time
, " idle=max");
1569 snprintf(idle_time
, sizeof(idle_time
), " idle=%lu",
1570 tg
->idletime_threshold_conf
);
1572 if (tg
->latency_target_conf
== ULONG_MAX
)
1573 strcpy(latency_time
, " latency=max");
1575 snprintf(latency_time
, sizeof(latency_time
),
1576 " latency=%lu", tg
->latency_target_conf
);
1579 seq_printf(sf
, "%s rbps=%s wbps=%s riops=%s wiops=%s%s%s\n",
1580 dname
, bufs
[0], bufs
[1], bufs
[2], bufs
[3], idle_time
,
1585 static int tg_print_limit(struct seq_file
*sf
, void *v
)
1587 blkcg_print_blkgs(sf
, css_to_blkcg(seq_css(sf
)), tg_prfill_limit
,
1588 &blkcg_policy_throtl
, seq_cft(sf
)->private, false);
1592 static ssize_t
tg_set_limit(struct kernfs_open_file
*of
,
1593 char *buf
, size_t nbytes
, loff_t off
)
1595 struct blkcg
*blkcg
= css_to_blkcg(of_css(of
));
1596 struct blkg_conf_ctx ctx
;
1597 struct throtl_grp
*tg
;
1599 unsigned long idle_time
;
1600 unsigned long latency_time
;
1602 int index
= of_cft(of
)->private;
1604 ret
= blkg_conf_prep(blkcg
, &blkcg_policy_throtl
, buf
, &ctx
);
1608 tg
= blkg_to_tg(ctx
.blkg
);
1610 v
[0] = tg
->bps_conf
[READ
][index
];
1611 v
[1] = tg
->bps_conf
[WRITE
][index
];
1612 v
[2] = tg
->iops_conf
[READ
][index
];
1613 v
[3] = tg
->iops_conf
[WRITE
][index
];
1615 idle_time
= tg
->idletime_threshold_conf
;
1616 latency_time
= tg
->latency_target_conf
;
1618 char tok
[27]; /* wiops=18446744073709551616 */
1623 if (sscanf(ctx
.body
, "%26s%n", tok
, &len
) != 1)
1632 if (!p
|| (sscanf(p
, "%llu", &val
) != 1 && strcmp(p
, "max")))
1640 if (!strcmp(tok
, "rbps"))
1642 else if (!strcmp(tok
, "wbps"))
1644 else if (!strcmp(tok
, "riops"))
1645 v
[2] = min_t(u64
, val
, UINT_MAX
);
1646 else if (!strcmp(tok
, "wiops"))
1647 v
[3] = min_t(u64
, val
, UINT_MAX
);
1648 else if (off
== LIMIT_LOW
&& !strcmp(tok
, "idle"))
1650 else if (off
== LIMIT_LOW
&& !strcmp(tok
, "latency"))
1656 tg
->bps_conf
[READ
][index
] = v
[0];
1657 tg
->bps_conf
[WRITE
][index
] = v
[1];
1658 tg
->iops_conf
[READ
][index
] = v
[2];
1659 tg
->iops_conf
[WRITE
][index
] = v
[3];
1661 if (index
== LIMIT_MAX
) {
1662 tg
->bps
[READ
][index
] = v
[0];
1663 tg
->bps
[WRITE
][index
] = v
[1];
1664 tg
->iops
[READ
][index
] = v
[2];
1665 tg
->iops
[WRITE
][index
] = v
[3];
1667 tg
->bps
[READ
][LIMIT_LOW
] = min(tg
->bps_conf
[READ
][LIMIT_LOW
],
1668 tg
->bps_conf
[READ
][LIMIT_MAX
]);
1669 tg
->bps
[WRITE
][LIMIT_LOW
] = min(tg
->bps_conf
[WRITE
][LIMIT_LOW
],
1670 tg
->bps_conf
[WRITE
][LIMIT_MAX
]);
1671 tg
->iops
[READ
][LIMIT_LOW
] = min(tg
->iops_conf
[READ
][LIMIT_LOW
],
1672 tg
->iops_conf
[READ
][LIMIT_MAX
]);
1673 tg
->iops
[WRITE
][LIMIT_LOW
] = min(tg
->iops_conf
[WRITE
][LIMIT_LOW
],
1674 tg
->iops_conf
[WRITE
][LIMIT_MAX
]);
1675 tg
->idletime_threshold_conf
= idle_time
;
1676 tg
->latency_target_conf
= latency_time
;
1678 /* force user to configure all settings for low limit */
1679 if (!(tg
->bps
[READ
][LIMIT_LOW
] || tg
->iops
[READ
][LIMIT_LOW
] ||
1680 tg
->bps
[WRITE
][LIMIT_LOW
] || tg
->iops
[WRITE
][LIMIT_LOW
]) ||
1681 tg
->idletime_threshold_conf
== DFL_IDLE_THRESHOLD
||
1682 tg
->latency_target_conf
== DFL_LATENCY_TARGET
) {
1683 tg
->bps
[READ
][LIMIT_LOW
] = 0;
1684 tg
->bps
[WRITE
][LIMIT_LOW
] = 0;
1685 tg
->iops
[READ
][LIMIT_LOW
] = 0;
1686 tg
->iops
[WRITE
][LIMIT_LOW
] = 0;
1687 tg
->idletime_threshold
= DFL_IDLE_THRESHOLD
;
1688 tg
->latency_target
= DFL_LATENCY_TARGET
;
1689 } else if (index
== LIMIT_LOW
) {
1690 tg
->idletime_threshold
= tg
->idletime_threshold_conf
;
1691 tg
->latency_target
= tg
->latency_target_conf
;
1694 blk_throtl_update_limit_valid(tg
->td
);
1695 if (tg
->td
->limit_valid
[LIMIT_LOW
]) {
1696 if (index
== LIMIT_LOW
)
1697 tg
->td
->limit_index
= LIMIT_LOW
;
1699 tg
->td
->limit_index
= LIMIT_MAX
;
1700 tg_conf_updated(tg
, index
== LIMIT_LOW
&&
1701 tg
->td
->limit_valid
[LIMIT_LOW
]);
1704 blkg_conf_finish(&ctx
);
1705 return ret
?: nbytes
;
1708 static struct cftype throtl_files
[] = {
1709 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
1712 .flags
= CFTYPE_NOT_ON_ROOT
,
1713 .seq_show
= tg_print_limit
,
1714 .write
= tg_set_limit
,
1715 .private = LIMIT_LOW
,
1720 .flags
= CFTYPE_NOT_ON_ROOT
,
1721 .seq_show
= tg_print_limit
,
1722 .write
= tg_set_limit
,
1723 .private = LIMIT_MAX
,
1728 static void throtl_shutdown_wq(struct request_queue
*q
)
1730 struct throtl_data
*td
= q
->td
;
1732 cancel_work_sync(&td
->dispatch_work
);
1735 static struct blkcg_policy blkcg_policy_throtl
= {
1736 .dfl_cftypes
= throtl_files
,
1737 .legacy_cftypes
= throtl_legacy_files
,
1739 .pd_alloc_fn
= throtl_pd_alloc
,
1740 .pd_init_fn
= throtl_pd_init
,
1741 .pd_online_fn
= throtl_pd_online
,
1742 .pd_offline_fn
= throtl_pd_offline
,
1743 .pd_free_fn
= throtl_pd_free
,
1746 static unsigned long __tg_last_low_overflow_time(struct throtl_grp
*tg
)
1748 unsigned long rtime
= jiffies
, wtime
= jiffies
;
1750 if (tg
->bps
[READ
][LIMIT_LOW
] || tg
->iops
[READ
][LIMIT_LOW
])
1751 rtime
= tg
->last_low_overflow_time
[READ
];
1752 if (tg
->bps
[WRITE
][LIMIT_LOW
] || tg
->iops
[WRITE
][LIMIT_LOW
])
1753 wtime
= tg
->last_low_overflow_time
[WRITE
];
1754 return min(rtime
, wtime
);
1757 /* tg should not be an intermediate node */
1758 static unsigned long tg_last_low_overflow_time(struct throtl_grp
*tg
)
1760 struct throtl_service_queue
*parent_sq
;
1761 struct throtl_grp
*parent
= tg
;
1762 unsigned long ret
= __tg_last_low_overflow_time(tg
);
1765 parent_sq
= parent
->service_queue
.parent_sq
;
1766 parent
= sq_to_tg(parent_sq
);
1771 * The parent doesn't have low limit, it always reaches low
1772 * limit. Its overflow time is useless for children
1774 if (!parent
->bps
[READ
][LIMIT_LOW
] &&
1775 !parent
->iops
[READ
][LIMIT_LOW
] &&
1776 !parent
->bps
[WRITE
][LIMIT_LOW
] &&
1777 !parent
->iops
[WRITE
][LIMIT_LOW
])
1779 if (time_after(__tg_last_low_overflow_time(parent
), ret
))
1780 ret
= __tg_last_low_overflow_time(parent
);
1785 static bool throtl_tg_is_idle(struct throtl_grp
*tg
)
1788 * cgroup is idle if:
1789 * - single idle is too long, longer than a fixed value (in case user
1790 * configure a too big threshold) or 4 times of idletime threshold
1791 * - average think time is more than threshold
1792 * - IO latency is largely below threshold
1797 time
= min_t(unsigned long, MAX_IDLE_TIME
, 4 * tg
->idletime_threshold
);
1798 ret
= tg
->latency_target
== DFL_LATENCY_TARGET
||
1799 tg
->idletime_threshold
== DFL_IDLE_THRESHOLD
||
1800 (ktime_get_ns() >> 10) - tg
->last_finish_time
> time
||
1801 tg
->avg_idletime
> tg
->idletime_threshold
||
1802 (tg
->latency_target
&& tg
->bio_cnt
&&
1803 tg
->bad_bio_cnt
* 5 < tg
->bio_cnt
);
1804 throtl_log(&tg
->service_queue
,
1805 "avg_idle=%ld, idle_threshold=%ld, bad_bio=%d, total_bio=%d, is_idle=%d, scale=%d",
1806 tg
->avg_idletime
, tg
->idletime_threshold
, tg
->bad_bio_cnt
,
1807 tg
->bio_cnt
, ret
, tg
->td
->scale
);
1811 static bool throtl_tg_can_upgrade(struct throtl_grp
*tg
)
1813 struct throtl_service_queue
*sq
= &tg
->service_queue
;
1814 bool read_limit
, write_limit
;
1817 * if cgroup reaches low limit (if low limit is 0, the cgroup always
1818 * reaches), it's ok to upgrade to next limit
1820 read_limit
= tg
->bps
[READ
][LIMIT_LOW
] || tg
->iops
[READ
][LIMIT_LOW
];
1821 write_limit
= tg
->bps
[WRITE
][LIMIT_LOW
] || tg
->iops
[WRITE
][LIMIT_LOW
];
1822 if (!read_limit
&& !write_limit
)
1824 if (read_limit
&& sq
->nr_queued
[READ
] &&
1825 (!write_limit
|| sq
->nr_queued
[WRITE
]))
1827 if (write_limit
&& sq
->nr_queued
[WRITE
] &&
1828 (!read_limit
|| sq
->nr_queued
[READ
]))
1831 if (time_after_eq(jiffies
,
1832 tg_last_low_overflow_time(tg
) + tg
->td
->throtl_slice
) &&
1833 throtl_tg_is_idle(tg
))
1838 static bool throtl_hierarchy_can_upgrade(struct throtl_grp
*tg
)
1841 if (throtl_tg_can_upgrade(tg
))
1843 tg
= sq_to_tg(tg
->service_queue
.parent_sq
);
1844 if (!tg
|| !tg_to_blkg(tg
)->parent
)
1850 static bool throtl_can_upgrade(struct throtl_data
*td
,
1851 struct throtl_grp
*this_tg
)
1853 struct cgroup_subsys_state
*pos_css
;
1854 struct blkcg_gq
*blkg
;
1856 if (td
->limit_index
!= LIMIT_LOW
)
1859 if (time_before(jiffies
, td
->low_downgrade_time
+ td
->throtl_slice
))
1863 blkg_for_each_descendant_post(blkg
, pos_css
, td
->queue
->root_blkg
) {
1864 struct throtl_grp
*tg
= blkg_to_tg(blkg
);
1868 if (!list_empty(&tg_to_blkg(tg
)->blkcg
->css
.children
))
1870 if (!throtl_hierarchy_can_upgrade(tg
)) {
1879 static void throtl_upgrade_check(struct throtl_grp
*tg
)
1881 unsigned long now
= jiffies
;
1883 if (tg
->td
->limit_index
!= LIMIT_LOW
)
1886 if (time_after(tg
->last_check_time
+ tg
->td
->throtl_slice
, now
))
1889 tg
->last_check_time
= now
;
1891 if (!time_after_eq(now
,
1892 __tg_last_low_overflow_time(tg
) + tg
->td
->throtl_slice
))
1895 if (throtl_can_upgrade(tg
->td
, NULL
))
1896 throtl_upgrade_state(tg
->td
);
1899 static void throtl_upgrade_state(struct throtl_data
*td
)
1901 struct cgroup_subsys_state
*pos_css
;
1902 struct blkcg_gq
*blkg
;
1904 throtl_log(&td
->service_queue
, "upgrade to max");
1905 td
->limit_index
= LIMIT_MAX
;
1906 td
->low_upgrade_time
= jiffies
;
1909 blkg_for_each_descendant_post(blkg
, pos_css
, td
->queue
->root_blkg
) {
1910 struct throtl_grp
*tg
= blkg_to_tg(blkg
);
1911 struct throtl_service_queue
*sq
= &tg
->service_queue
;
1913 tg
->disptime
= jiffies
- 1;
1914 throtl_select_dispatch(sq
);
1915 throtl_schedule_next_dispatch(sq
, true);
1918 throtl_select_dispatch(&td
->service_queue
);
1919 throtl_schedule_next_dispatch(&td
->service_queue
, true);
1920 queue_work(kthrotld_workqueue
, &td
->dispatch_work
);
1923 static void throtl_downgrade_state(struct throtl_data
*td
, int new)
1927 throtl_log(&td
->service_queue
, "downgrade, scale %d", td
->scale
);
1929 td
->low_upgrade_time
= jiffies
- td
->scale
* td
->throtl_slice
;
1933 td
->limit_index
= new;
1934 td
->low_downgrade_time
= jiffies
;
1937 static bool throtl_tg_can_downgrade(struct throtl_grp
*tg
)
1939 struct throtl_data
*td
= tg
->td
;
1940 unsigned long now
= jiffies
;
1943 * If cgroup is below low limit, consider downgrade and throttle other
1946 if (time_after_eq(now
, td
->low_upgrade_time
+ td
->throtl_slice
) &&
1947 time_after_eq(now
, tg_last_low_overflow_time(tg
) +
1948 td
->throtl_slice
) &&
1949 (!throtl_tg_is_idle(tg
) ||
1950 !list_empty(&tg_to_blkg(tg
)->blkcg
->css
.children
)))
1955 static bool throtl_hierarchy_can_downgrade(struct throtl_grp
*tg
)
1958 if (!throtl_tg_can_downgrade(tg
))
1960 tg
= sq_to_tg(tg
->service_queue
.parent_sq
);
1961 if (!tg
|| !tg_to_blkg(tg
)->parent
)
1967 static void throtl_downgrade_check(struct throtl_grp
*tg
)
1971 unsigned long elapsed_time
;
1972 unsigned long now
= jiffies
;
1974 if (tg
->td
->limit_index
!= LIMIT_MAX
||
1975 !tg
->td
->limit_valid
[LIMIT_LOW
])
1977 if (!list_empty(&tg_to_blkg(tg
)->blkcg
->css
.children
))
1979 if (time_after(tg
->last_check_time
+ tg
->td
->throtl_slice
, now
))
1982 elapsed_time
= now
- tg
->last_check_time
;
1983 tg
->last_check_time
= now
;
1985 if (time_before(now
, tg_last_low_overflow_time(tg
) +
1986 tg
->td
->throtl_slice
))
1989 if (tg
->bps
[READ
][LIMIT_LOW
]) {
1990 bps
= tg
->last_bytes_disp
[READ
] * HZ
;
1991 do_div(bps
, elapsed_time
);
1992 if (bps
>= tg
->bps
[READ
][LIMIT_LOW
])
1993 tg
->last_low_overflow_time
[READ
] = now
;
1996 if (tg
->bps
[WRITE
][LIMIT_LOW
]) {
1997 bps
= tg
->last_bytes_disp
[WRITE
] * HZ
;
1998 do_div(bps
, elapsed_time
);
1999 if (bps
>= tg
->bps
[WRITE
][LIMIT_LOW
])
2000 tg
->last_low_overflow_time
[WRITE
] = now
;
2003 if (tg
->iops
[READ
][LIMIT_LOW
]) {
2004 iops
= tg
->last_io_disp
[READ
] * HZ
/ elapsed_time
;
2005 if (iops
>= tg
->iops
[READ
][LIMIT_LOW
])
2006 tg
->last_low_overflow_time
[READ
] = now
;
2009 if (tg
->iops
[WRITE
][LIMIT_LOW
]) {
2010 iops
= tg
->last_io_disp
[WRITE
] * HZ
/ elapsed_time
;
2011 if (iops
>= tg
->iops
[WRITE
][LIMIT_LOW
])
2012 tg
->last_low_overflow_time
[WRITE
] = now
;
2016 * If cgroup is below low limit, consider downgrade and throttle other
2019 if (throtl_hierarchy_can_downgrade(tg
))
2020 throtl_downgrade_state(tg
->td
, LIMIT_LOW
);
2022 tg
->last_bytes_disp
[READ
] = 0;
2023 tg
->last_bytes_disp
[WRITE
] = 0;
2024 tg
->last_io_disp
[READ
] = 0;
2025 tg
->last_io_disp
[WRITE
] = 0;
2028 static void blk_throtl_update_idletime(struct throtl_grp
*tg
)
2030 unsigned long now
= ktime_get_ns() >> 10;
2031 unsigned long last_finish_time
= tg
->last_finish_time
;
2033 if (now
<= last_finish_time
|| last_finish_time
== 0 ||
2034 last_finish_time
== tg
->checked_last_finish_time
)
2037 tg
->avg_idletime
= (tg
->avg_idletime
* 7 + now
- last_finish_time
) >> 3;
2038 tg
->checked_last_finish_time
= last_finish_time
;
2041 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2042 static void throtl_update_latency_buckets(struct throtl_data
*td
)
2044 struct avg_latency_bucket avg_latency
[LATENCY_BUCKET_SIZE
];
2046 unsigned long last_latency
= 0;
2047 unsigned long latency
;
2049 if (!blk_queue_nonrot(td
->queue
))
2051 if (time_before(jiffies
, td
->last_calculate_time
+ HZ
))
2053 td
->last_calculate_time
= jiffies
;
2055 memset(avg_latency
, 0, sizeof(avg_latency
));
2056 for (i
= 0; i
< LATENCY_BUCKET_SIZE
; i
++) {
2057 struct latency_bucket
*tmp
= &td
->tmp_buckets
[i
];
2059 for_each_possible_cpu(cpu
) {
2060 struct latency_bucket
*bucket
;
2062 /* this isn't race free, but ok in practice */
2063 bucket
= per_cpu_ptr(td
->latency_buckets
, cpu
);
2064 tmp
->total_latency
+= bucket
[i
].total_latency
;
2065 tmp
->samples
+= bucket
[i
].samples
;
2066 bucket
[i
].total_latency
= 0;
2067 bucket
[i
].samples
= 0;
2070 if (tmp
->samples
>= 32) {
2071 int samples
= tmp
->samples
;
2073 latency
= tmp
->total_latency
;
2075 tmp
->total_latency
= 0;
2080 avg_latency
[i
].latency
= latency
;
2084 for (i
= 0; i
< LATENCY_BUCKET_SIZE
; i
++) {
2085 if (!avg_latency
[i
].latency
) {
2086 if (td
->avg_buckets
[i
].latency
< last_latency
)
2087 td
->avg_buckets
[i
].latency
= last_latency
;
2091 if (!td
->avg_buckets
[i
].valid
)
2092 latency
= avg_latency
[i
].latency
;
2094 latency
= (td
->avg_buckets
[i
].latency
* 7 +
2095 avg_latency
[i
].latency
) >> 3;
2097 td
->avg_buckets
[i
].latency
= max(latency
, last_latency
);
2098 td
->avg_buckets
[i
].valid
= true;
2099 last_latency
= td
->avg_buckets
[i
].latency
;
2102 for (i
= 0; i
< LATENCY_BUCKET_SIZE
; i
++)
2103 throtl_log(&td
->service_queue
,
2104 "Latency bucket %d: latency=%ld, valid=%d", i
,
2105 td
->avg_buckets
[i
].latency
, td
->avg_buckets
[i
].valid
);
2108 static inline void throtl_update_latency_buckets(struct throtl_data
*td
)
2113 static void blk_throtl_assoc_bio(struct throtl_grp
*tg
, struct bio
*bio
)
2115 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2117 bio
->bi_cg_private
= tg
;
2118 blk_stat_set_issue(&bio
->bi_issue_stat
, bio_sectors(bio
));
2122 bool blk_throtl_bio(struct request_queue
*q
, struct blkcg_gq
*blkg
,
2125 struct throtl_qnode
*qn
= NULL
;
2126 struct throtl_grp
*tg
= blkg_to_tg(blkg
?: q
->root_blkg
);
2127 struct throtl_service_queue
*sq
;
2128 bool rw
= bio_data_dir(bio
);
2129 bool throttled
= false;
2130 struct throtl_data
*td
= tg
->td
;
2132 WARN_ON_ONCE(!rcu_read_lock_held());
2134 /* see throtl_charge_bio() */
2135 if (bio_flagged(bio
, BIO_THROTTLED
) || !tg
->has_rules
[rw
])
2138 spin_lock_irq(q
->queue_lock
);
2140 throtl_update_latency_buckets(td
);
2142 if (unlikely(blk_queue_bypass(q
)))
2145 blk_throtl_assoc_bio(tg
, bio
);
2146 blk_throtl_update_idletime(tg
);
2148 sq
= &tg
->service_queue
;
2152 if (tg
->last_low_overflow_time
[rw
] == 0)
2153 tg
->last_low_overflow_time
[rw
] = jiffies
;
2154 throtl_downgrade_check(tg
);
2155 throtl_upgrade_check(tg
);
2156 /* throtl is FIFO - if bios are already queued, should queue */
2157 if (sq
->nr_queued
[rw
])
2160 /* if above limits, break to queue */
2161 if (!tg_may_dispatch(tg
, bio
, NULL
)) {
2162 tg
->last_low_overflow_time
[rw
] = jiffies
;
2163 if (throtl_can_upgrade(td
, tg
)) {
2164 throtl_upgrade_state(td
);
2170 /* within limits, let's charge and dispatch directly */
2171 throtl_charge_bio(tg
, bio
);
2174 * We need to trim slice even when bios are not being queued
2175 * otherwise it might happen that a bio is not queued for
2176 * a long time and slice keeps on extending and trim is not
2177 * called for a long time. Now if limits are reduced suddenly
2178 * we take into account all the IO dispatched so far at new
2179 * low rate and * newly queued IO gets a really long dispatch
2182 * So keep on trimming slice even if bio is not queued.
2184 throtl_trim_slice(tg
, rw
);
2187 * @bio passed through this layer without being throttled.
2188 * Climb up the ladder. If we''re already at the top, it
2189 * can be executed directly.
2191 qn
= &tg
->qnode_on_parent
[rw
];
2198 /* out-of-limit, queue to @tg */
2199 throtl_log(sq
, "[%c] bio. bdisp=%llu sz=%u bps=%llu iodisp=%u iops=%u queued=%d/%d",
2200 rw
== READ
? 'R' : 'W',
2201 tg
->bytes_disp
[rw
], bio
->bi_iter
.bi_size
,
2202 tg_bps_limit(tg
, rw
),
2203 tg
->io_disp
[rw
], tg_iops_limit(tg
, rw
),
2204 sq
->nr_queued
[READ
], sq
->nr_queued
[WRITE
]);
2206 tg
->last_low_overflow_time
[rw
] = jiffies
;
2208 td
->nr_queued
[rw
]++;
2209 throtl_add_bio_tg(bio
, qn
, tg
);
2213 * Update @tg's dispatch time and force schedule dispatch if @tg
2214 * was empty before @bio. The forced scheduling isn't likely to
2215 * cause undue delay as @bio is likely to be dispatched directly if
2216 * its @tg's disptime is not in the future.
2218 if (tg
->flags
& THROTL_TG_WAS_EMPTY
) {
2219 tg_update_disptime(tg
);
2220 throtl_schedule_next_dispatch(tg
->service_queue
.parent_sq
, true);
2224 spin_unlock_irq(q
->queue_lock
);
2226 bio_set_flag(bio
, BIO_THROTTLED
);
2228 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2229 if (throttled
|| !td
->track_bio_latency
)
2230 bio
->bi_issue_stat
.stat
|= SKIP_LATENCY
;
2235 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2236 static void throtl_track_latency(struct throtl_data
*td
, sector_t size
,
2237 int op
, unsigned long time
)
2239 struct latency_bucket
*latency
;
2242 if (!td
|| td
->limit_index
!= LIMIT_LOW
|| op
!= REQ_OP_READ
||
2243 !blk_queue_nonrot(td
->queue
))
2246 index
= request_bucket_index(size
);
2248 latency
= get_cpu_ptr(td
->latency_buckets
);
2249 latency
[index
].total_latency
+= time
;
2250 latency
[index
].samples
++;
2251 put_cpu_ptr(td
->latency_buckets
);
2254 void blk_throtl_stat_add(struct request
*rq
, u64 time_ns
)
2256 struct request_queue
*q
= rq
->q
;
2257 struct throtl_data
*td
= q
->td
;
2259 throtl_track_latency(td
, blk_stat_size(&rq
->issue_stat
),
2260 req_op(rq
), time_ns
>> 10);
2263 void blk_throtl_bio_endio(struct bio
*bio
)
2265 struct throtl_grp
*tg
;
2267 unsigned long finish_time
;
2268 unsigned long start_time
;
2271 tg
= bio
->bi_cg_private
;
2274 bio
->bi_cg_private
= NULL
;
2276 finish_time_ns
= ktime_get_ns();
2277 tg
->last_finish_time
= finish_time_ns
>> 10;
2279 start_time
= blk_stat_time(&bio
->bi_issue_stat
) >> 10;
2280 finish_time
= __blk_stat_time(finish_time_ns
) >> 10;
2281 if (!start_time
|| finish_time
<= start_time
)
2284 lat
= finish_time
- start_time
;
2285 /* this is only for bio based driver */
2286 if (!(bio
->bi_issue_stat
.stat
& SKIP_LATENCY
))
2287 throtl_track_latency(tg
->td
, blk_stat_size(&bio
->bi_issue_stat
),
2290 if (tg
->latency_target
&& lat
>= tg
->td
->filtered_latency
) {
2292 unsigned int threshold
;
2294 bucket
= request_bucket_index(
2295 blk_stat_size(&bio
->bi_issue_stat
));
2296 threshold
= tg
->td
->avg_buckets
[bucket
].latency
+
2298 if (lat
> threshold
)
2301 * Not race free, could get wrong count, which means cgroups
2307 if (time_after(jiffies
, tg
->bio_cnt_reset_time
) || tg
->bio_cnt
> 1024) {
2308 tg
->bio_cnt_reset_time
= tg
->td
->throtl_slice
+ jiffies
;
2310 tg
->bad_bio_cnt
/= 2;
2316 * Dispatch all bios from all children tg's queued on @parent_sq. On
2317 * return, @parent_sq is guaranteed to not have any active children tg's
2318 * and all bios from previously active tg's are on @parent_sq->bio_lists[].
2320 static void tg_drain_bios(struct throtl_service_queue
*parent_sq
)
2322 struct throtl_grp
*tg
;
2324 while ((tg
= throtl_rb_first(parent_sq
))) {
2325 struct throtl_service_queue
*sq
= &tg
->service_queue
;
2328 throtl_dequeue_tg(tg
);
2330 while ((bio
= throtl_peek_queued(&sq
->queued
[READ
])))
2331 tg_dispatch_one_bio(tg
, bio_data_dir(bio
));
2332 while ((bio
= throtl_peek_queued(&sq
->queued
[WRITE
])))
2333 tg_dispatch_one_bio(tg
, bio_data_dir(bio
));
2338 * blk_throtl_drain - drain throttled bios
2339 * @q: request_queue to drain throttled bios for
2341 * Dispatch all currently throttled bios on @q through ->make_request_fn().
2343 void blk_throtl_drain(struct request_queue
*q
)
2344 __releases(q
->queue_lock
) __acquires(q
->queue_lock
)
2346 struct throtl_data
*td
= q
->td
;
2347 struct blkcg_gq
*blkg
;
2348 struct cgroup_subsys_state
*pos_css
;
2352 queue_lockdep_assert_held(q
);
2356 * Drain each tg while doing post-order walk on the blkg tree, so
2357 * that all bios are propagated to td->service_queue. It'd be
2358 * better to walk service_queue tree directly but blkg walk is
2361 blkg_for_each_descendant_post(blkg
, pos_css
, td
->queue
->root_blkg
)
2362 tg_drain_bios(&blkg_to_tg(blkg
)->service_queue
);
2364 /* finally, transfer bios from top-level tg's into the td */
2365 tg_drain_bios(&td
->service_queue
);
2368 spin_unlock_irq(q
->queue_lock
);
2370 /* all bios now should be in td->service_queue, issue them */
2371 for (rw
= READ
; rw
<= WRITE
; rw
++)
2372 while ((bio
= throtl_pop_queued(&td
->service_queue
.queued
[rw
],
2374 generic_make_request(bio
);
2376 spin_lock_irq(q
->queue_lock
);
2379 int blk_throtl_init(struct request_queue
*q
)
2381 struct throtl_data
*td
;
2384 td
= kzalloc_node(sizeof(*td
), GFP_KERNEL
, q
->node
);
2387 td
->latency_buckets
= __alloc_percpu(sizeof(struct latency_bucket
) *
2388 LATENCY_BUCKET_SIZE
, __alignof__(u64
));
2389 if (!td
->latency_buckets
) {
2394 INIT_WORK(&td
->dispatch_work
, blk_throtl_dispatch_work_fn
);
2395 throtl_service_queue_init(&td
->service_queue
);
2400 td
->limit_valid
[LIMIT_MAX
] = true;
2401 td
->limit_index
= LIMIT_MAX
;
2402 td
->low_upgrade_time
= jiffies
;
2403 td
->low_downgrade_time
= jiffies
;
2405 /* activate policy */
2406 ret
= blkcg_activate_policy(q
, &blkcg_policy_throtl
);
2408 free_percpu(td
->latency_buckets
);
2414 void blk_throtl_exit(struct request_queue
*q
)
2417 throtl_shutdown_wq(q
);
2418 blkcg_deactivate_policy(q
, &blkcg_policy_throtl
);
2419 free_percpu(q
->td
->latency_buckets
);
2423 void blk_throtl_register_queue(struct request_queue
*q
)
2425 struct throtl_data
*td
;
2431 if (blk_queue_nonrot(q
)) {
2432 td
->throtl_slice
= DFL_THROTL_SLICE_SSD
;
2433 td
->filtered_latency
= LATENCY_FILTERED_SSD
;
2435 td
->throtl_slice
= DFL_THROTL_SLICE_HD
;
2436 td
->filtered_latency
= LATENCY_FILTERED_HD
;
2437 for (i
= 0; i
< LATENCY_BUCKET_SIZE
; i
++)
2438 td
->avg_buckets
[i
].latency
= DFL_HD_BASELINE_LATENCY
;
2440 #ifndef CONFIG_BLK_DEV_THROTTLING_LOW
2441 /* if no low limit, use previous default */
2442 td
->throtl_slice
= DFL_THROTL_SLICE_HD
;
2445 td
->track_bio_latency
= !q
->mq_ops
&& !q
->request_fn
;
2446 if (!td
->track_bio_latency
)
2447 blk_stat_enable_accounting(q
);
2450 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2451 ssize_t
blk_throtl_sample_time_show(struct request_queue
*q
, char *page
)
2455 return sprintf(page
, "%u\n", jiffies_to_msecs(q
->td
->throtl_slice
));
2458 ssize_t
blk_throtl_sample_time_store(struct request_queue
*q
,
2459 const char *page
, size_t count
)
2466 if (kstrtoul(page
, 10, &v
))
2468 t
= msecs_to_jiffies(v
);
2469 if (t
== 0 || t
> MAX_THROTL_SLICE
)
2471 q
->td
->throtl_slice
= t
;
2476 static int __init
throtl_init(void)
2478 kthrotld_workqueue
= alloc_workqueue("kthrotld", WQ_MEM_RECLAIM
, 0);
2479 if (!kthrotld_workqueue
)
2480 panic("Failed to create kthrotld\n");
2482 return blkcg_policy_register(&blkcg_policy_throtl
);
2485 module_init(throtl_init
);