2 * mm/percpu-vm.c - vmalloc area based chunk allocation
4 * Copyright (C) 2010 SUSE Linux Products GmbH
5 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
7 * This file is released under the GPLv2.
9 * Chunks are mapped into vmalloc areas and populated page by page.
10 * This is the default chunk allocator.
13 static struct page
*pcpu_chunk_page(struct pcpu_chunk
*chunk
,
14 unsigned int cpu
, int page_idx
)
16 /* must not be used on pre-mapped chunk */
17 WARN_ON(chunk
->immutable
);
19 return vmalloc_to_page((void *)pcpu_chunk_addr(chunk
, cpu
, page_idx
));
23 * pcpu_get_pages - get temp pages array
24 * @chunk: chunk of interest
26 * Returns pointer to array of pointers to struct page which can be indexed
27 * with pcpu_page_idx(). Note that there is only one array and accesses
28 * should be serialized by pcpu_alloc_mutex.
31 * Pointer to temp pages array on success.
33 static struct page
**pcpu_get_pages(struct pcpu_chunk
*chunk_alloc
)
35 static struct page
**pages
;
36 size_t pages_size
= pcpu_nr_units
* pcpu_unit_pages
* sizeof(pages
[0]);
38 lockdep_assert_held(&pcpu_alloc_mutex
);
41 pages
= pcpu_mem_zalloc(pages_size
);
46 * pcpu_free_pages - free pages which were allocated for @chunk
47 * @chunk: chunk pages were allocated for
48 * @pages: array of pages to be freed, indexed by pcpu_page_idx()
49 * @page_start: page index of the first page to be freed
50 * @page_end: page index of the last page to be freed + 1
52 * Free pages [@page_start and @page_end) in @pages for all units.
53 * The pages were allocated for @chunk.
55 static void pcpu_free_pages(struct pcpu_chunk
*chunk
,
56 struct page
**pages
, int page_start
, int page_end
)
61 for_each_possible_cpu(cpu
) {
62 for (i
= page_start
; i
< page_end
; i
++) {
63 struct page
*page
= pages
[pcpu_page_idx(cpu
, i
)];
72 * pcpu_alloc_pages - allocates pages for @chunk
73 * @chunk: target chunk
74 * @pages: array to put the allocated pages into, indexed by pcpu_page_idx()
75 * @page_start: page index of the first page to be allocated
76 * @page_end: page index of the last page to be allocated + 1
78 * Allocate pages [@page_start,@page_end) into @pages for all units.
79 * The allocation is for @chunk. Percpu core doesn't care about the
80 * content of @pages and will pass it verbatim to pcpu_map_pages().
82 static int pcpu_alloc_pages(struct pcpu_chunk
*chunk
,
83 struct page
**pages
, int page_start
, int page_end
)
85 const gfp_t gfp
= GFP_KERNEL
| __GFP_HIGHMEM
| __GFP_COLD
;
86 unsigned int cpu
, tcpu
;
89 for_each_possible_cpu(cpu
) {
90 for (i
= page_start
; i
< page_end
; i
++) {
91 struct page
**pagep
= &pages
[pcpu_page_idx(cpu
, i
)];
93 *pagep
= alloc_pages_node(cpu_to_node(cpu
), gfp
, 0);
101 while (--i
>= page_start
)
102 __free_page(pages
[pcpu_page_idx(cpu
, i
)]);
104 for_each_possible_cpu(tcpu
) {
107 for (i
= page_start
; i
< page_end
; i
++)
108 __free_page(pages
[pcpu_page_idx(tcpu
, i
)]);
114 * pcpu_pre_unmap_flush - flush cache prior to unmapping
115 * @chunk: chunk the regions to be flushed belongs to
116 * @page_start: page index of the first page to be flushed
117 * @page_end: page index of the last page to be flushed + 1
119 * Pages in [@page_start,@page_end) of @chunk are about to be
120 * unmapped. Flush cache. As each flushing trial can be very
121 * expensive, issue flush on the whole region at once rather than
122 * doing it for each cpu. This could be an overkill but is more
125 static void pcpu_pre_unmap_flush(struct pcpu_chunk
*chunk
,
126 int page_start
, int page_end
)
129 pcpu_chunk_addr(chunk
, pcpu_low_unit_cpu
, page_start
),
130 pcpu_chunk_addr(chunk
, pcpu_high_unit_cpu
, page_end
));
133 static void __pcpu_unmap_pages(unsigned long addr
, int nr_pages
)
135 unmap_kernel_range_noflush(addr
, nr_pages
<< PAGE_SHIFT
);
139 * pcpu_unmap_pages - unmap pages out of a pcpu_chunk
140 * @chunk: chunk of interest
141 * @pages: pages array which can be used to pass information to free
142 * @page_start: page index of the first page to unmap
143 * @page_end: page index of the last page to unmap + 1
145 * For each cpu, unmap pages [@page_start,@page_end) out of @chunk.
146 * Corresponding elements in @pages were cleared by the caller and can
147 * be used to carry information to pcpu_free_pages() which will be
148 * called after all unmaps are finished. The caller should call
149 * proper pre/post flush functions.
151 static void pcpu_unmap_pages(struct pcpu_chunk
*chunk
,
152 struct page
**pages
, int page_start
, int page_end
)
157 for_each_possible_cpu(cpu
) {
158 for (i
= page_start
; i
< page_end
; i
++) {
161 page
= pcpu_chunk_page(chunk
, cpu
, i
);
163 pages
[pcpu_page_idx(cpu
, i
)] = page
;
165 __pcpu_unmap_pages(pcpu_chunk_addr(chunk
, cpu
, page_start
),
166 page_end
- page_start
);
171 * pcpu_post_unmap_tlb_flush - flush TLB after unmapping
172 * @chunk: pcpu_chunk the regions to be flushed belong to
173 * @page_start: page index of the first page to be flushed
174 * @page_end: page index of the last page to be flushed + 1
176 * Pages [@page_start,@page_end) of @chunk have been unmapped. Flush
177 * TLB for the regions. This can be skipped if the area is to be
178 * returned to vmalloc as vmalloc will handle TLB flushing lazily.
180 * As with pcpu_pre_unmap_flush(), TLB flushing also is done at once
181 * for the whole region.
183 static void pcpu_post_unmap_tlb_flush(struct pcpu_chunk
*chunk
,
184 int page_start
, int page_end
)
186 flush_tlb_kernel_range(
187 pcpu_chunk_addr(chunk
, pcpu_low_unit_cpu
, page_start
),
188 pcpu_chunk_addr(chunk
, pcpu_high_unit_cpu
, page_end
));
191 static int __pcpu_map_pages(unsigned long addr
, struct page
**pages
,
194 return map_kernel_range_noflush(addr
, nr_pages
<< PAGE_SHIFT
,
199 * pcpu_map_pages - map pages into a pcpu_chunk
200 * @chunk: chunk of interest
201 * @pages: pages array containing pages to be mapped
202 * @page_start: page index of the first page to map
203 * @page_end: page index of the last page to map + 1
205 * For each cpu, map pages [@page_start,@page_end) into @chunk. The
206 * caller is responsible for calling pcpu_post_map_flush() after all
207 * mappings are complete.
209 * This function is responsible for setting up whatever is necessary for
210 * reverse lookup (addr -> chunk).
212 static int pcpu_map_pages(struct pcpu_chunk
*chunk
,
213 struct page
**pages
, int page_start
, int page_end
)
215 unsigned int cpu
, tcpu
;
218 for_each_possible_cpu(cpu
) {
219 err
= __pcpu_map_pages(pcpu_chunk_addr(chunk
, cpu
, page_start
),
220 &pages
[pcpu_page_idx(cpu
, page_start
)],
221 page_end
- page_start
);
225 for (i
= page_start
; i
< page_end
; i
++)
226 pcpu_set_page_chunk(pages
[pcpu_page_idx(cpu
, i
)],
231 for_each_possible_cpu(tcpu
) {
234 __pcpu_unmap_pages(pcpu_chunk_addr(chunk
, tcpu
, page_start
),
235 page_end
- page_start
);
237 pcpu_post_unmap_tlb_flush(chunk
, page_start
, page_end
);
242 * pcpu_post_map_flush - flush cache after mapping
243 * @chunk: pcpu_chunk the regions to be flushed belong to
244 * @page_start: page index of the first page to be flushed
245 * @page_end: page index of the last page to be flushed + 1
247 * Pages [@page_start,@page_end) of @chunk have been mapped. Flush
250 * As with pcpu_pre_unmap_flush(), TLB flushing also is done at once
251 * for the whole region.
253 static void pcpu_post_map_flush(struct pcpu_chunk
*chunk
,
254 int page_start
, int page_end
)
257 pcpu_chunk_addr(chunk
, pcpu_low_unit_cpu
, page_start
),
258 pcpu_chunk_addr(chunk
, pcpu_high_unit_cpu
, page_end
));
262 * pcpu_populate_chunk - populate and map an area of a pcpu_chunk
263 * @chunk: chunk of interest
264 * @page_start: the start page
265 * @page_end: the end page
267 * For each cpu, populate and map pages [@page_start,@page_end) into
271 * pcpu_alloc_mutex, does GFP_KERNEL allocation.
273 static int pcpu_populate_chunk(struct pcpu_chunk
*chunk
,
274 int page_start
, int page_end
)
278 pages
= pcpu_get_pages(chunk
);
282 if (pcpu_alloc_pages(chunk
, pages
, page_start
, page_end
))
285 if (pcpu_map_pages(chunk
, pages
, page_start
, page_end
)) {
286 pcpu_free_pages(chunk
, pages
, page_start
, page_end
);
289 pcpu_post_map_flush(chunk
, page_start
, page_end
);
295 * pcpu_depopulate_chunk - depopulate and unmap an area of a pcpu_chunk
296 * @chunk: chunk to depopulate
297 * @page_start: the start page
298 * @page_end: the end page
300 * For each cpu, depopulate and unmap pages [@page_start,@page_end)
306 static void pcpu_depopulate_chunk(struct pcpu_chunk
*chunk
,
307 int page_start
, int page_end
)
312 * If control reaches here, there must have been at least one
313 * successful population attempt so the temp pages array must
316 pages
= pcpu_get_pages(chunk
);
320 pcpu_pre_unmap_flush(chunk
, page_start
, page_end
);
322 pcpu_unmap_pages(chunk
, pages
, page_start
, page_end
);
324 /* no need to flush tlb, vmalloc will handle it lazily */
326 pcpu_free_pages(chunk
, pages
, page_start
, page_end
);
329 static struct pcpu_chunk
*pcpu_create_chunk(void)
331 struct pcpu_chunk
*chunk
;
332 struct vm_struct
**vms
;
334 chunk
= pcpu_alloc_chunk();
338 vms
= pcpu_get_vm_areas(pcpu_group_offsets
, pcpu_group_sizes
,
339 pcpu_nr_groups
, pcpu_atom_size
);
341 pcpu_free_chunk(chunk
);
346 chunk
->base_addr
= vms
[0]->addr
- pcpu_group_offsets
[0];
350 static void pcpu_destroy_chunk(struct pcpu_chunk
*chunk
)
352 if (chunk
&& chunk
->data
)
353 pcpu_free_vm_areas(chunk
->data
, pcpu_nr_groups
);
354 pcpu_free_chunk(chunk
);
357 static struct page
*pcpu_addr_to_page(void *addr
)
359 return vmalloc_to_page(addr
);
362 static int __init
pcpu_verify_alloc_info(const struct pcpu_alloc_info
*ai
)
364 /* no extra restriction */