Staging: wlan-ng: Remove multiple assignments
[linux-stable.git] / mm / page_io.c
blobb995a5ba5e8f13f49c049e99eface364148d5660
1 /*
2 * linux/mm/page_io.c
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 * Swap reorganised 29.12.95,
7 * Asynchronous swapping added 30.12.95. Stephen Tweedie
8 * Removed race in async swapping. 14.4.1996. Bruno Haible
9 * Add swap of shared pages through the page cache. 20.2.1998. Stephen Tweedie
10 * Always use brw_page, life becomes simpler. 12 May 1998 Eric Biederman
13 #include <linux/mm.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/gfp.h>
16 #include <linux/pagemap.h>
17 #include <linux/swap.h>
18 #include <linux/bio.h>
19 #include <linux/swapops.h>
20 #include <linux/buffer_head.h>
21 #include <linux/writeback.h>
22 #include <linux/frontswap.h>
23 #include <linux/blkdev.h>
24 #include <linux/uio.h>
25 #include <asm/pgtable.h>
27 static struct bio *get_swap_bio(gfp_t gfp_flags,
28 struct page *page, bio_end_io_t end_io)
30 struct bio *bio;
32 bio = bio_alloc(gfp_flags, 1);
33 if (bio) {
34 bio->bi_iter.bi_sector = map_swap_page(page, &bio->bi_bdev);
35 bio->bi_iter.bi_sector <<= PAGE_SHIFT - 9;
36 bio->bi_end_io = end_io;
38 bio_add_page(bio, page, PAGE_SIZE, 0);
39 BUG_ON(bio->bi_iter.bi_size != PAGE_SIZE);
41 return bio;
44 void end_swap_bio_write(struct bio *bio)
46 struct page *page = bio->bi_io_vec[0].bv_page;
48 if (bio->bi_error) {
49 SetPageError(page);
51 * We failed to write the page out to swap-space.
52 * Re-dirty the page in order to avoid it being reclaimed.
53 * Also print a dire warning that things will go BAD (tm)
54 * very quickly.
56 * Also clear PG_reclaim to avoid rotate_reclaimable_page()
58 set_page_dirty(page);
59 printk(KERN_ALERT "Write-error on swap-device (%u:%u:%Lu)\n",
60 imajor(bio->bi_bdev->bd_inode),
61 iminor(bio->bi_bdev->bd_inode),
62 (unsigned long long)bio->bi_iter.bi_sector);
63 ClearPageReclaim(page);
65 end_page_writeback(page);
66 bio_put(bio);
69 static void end_swap_bio_read(struct bio *bio)
71 struct page *page = bio->bi_io_vec[0].bv_page;
73 if (bio->bi_error) {
74 SetPageError(page);
75 ClearPageUptodate(page);
76 printk(KERN_ALERT "Read-error on swap-device (%u:%u:%Lu)\n",
77 imajor(bio->bi_bdev->bd_inode),
78 iminor(bio->bi_bdev->bd_inode),
79 (unsigned long long)bio->bi_iter.bi_sector);
80 goto out;
83 SetPageUptodate(page);
86 * There is no guarantee that the page is in swap cache - the software
87 * suspend code (at least) uses end_swap_bio_read() against a non-
88 * swapcache page. So we must check PG_swapcache before proceeding with
89 * this optimization.
91 if (likely(PageSwapCache(page))) {
92 struct swap_info_struct *sis;
94 sis = page_swap_info(page);
95 if (sis->flags & SWP_BLKDEV) {
97 * The swap subsystem performs lazy swap slot freeing,
98 * expecting that the page will be swapped out again.
99 * So we can avoid an unnecessary write if the page
100 * isn't redirtied.
101 * This is good for real swap storage because we can
102 * reduce unnecessary I/O and enhance wear-leveling
103 * if an SSD is used as the as swap device.
104 * But if in-memory swap device (eg zram) is used,
105 * this causes a duplicated copy between uncompressed
106 * data in VM-owned memory and compressed data in
107 * zram-owned memory. So let's free zram-owned memory
108 * and make the VM-owned decompressed page *dirty*,
109 * so the page should be swapped out somewhere again if
110 * we again wish to reclaim it.
112 struct gendisk *disk = sis->bdev->bd_disk;
113 if (disk->fops->swap_slot_free_notify) {
114 swp_entry_t entry;
115 unsigned long offset;
117 entry.val = page_private(page);
118 offset = swp_offset(entry);
120 SetPageDirty(page);
121 disk->fops->swap_slot_free_notify(sis->bdev,
122 offset);
127 out:
128 unlock_page(page);
129 bio_put(bio);
132 int generic_swapfile_activate(struct swap_info_struct *sis,
133 struct file *swap_file,
134 sector_t *span)
136 struct address_space *mapping = swap_file->f_mapping;
137 struct inode *inode = mapping->host;
138 unsigned blocks_per_page;
139 unsigned long page_no;
140 unsigned blkbits;
141 sector_t probe_block;
142 sector_t last_block;
143 sector_t lowest_block = -1;
144 sector_t highest_block = 0;
145 int nr_extents = 0;
146 int ret;
148 blkbits = inode->i_blkbits;
149 blocks_per_page = PAGE_SIZE >> blkbits;
152 * Map all the blocks into the extent list. This code doesn't try
153 * to be very smart.
155 probe_block = 0;
156 page_no = 0;
157 last_block = i_size_read(inode) >> blkbits;
158 while ((probe_block + blocks_per_page) <= last_block &&
159 page_no < sis->max) {
160 unsigned block_in_page;
161 sector_t first_block;
163 first_block = bmap(inode, probe_block);
164 if (first_block == 0)
165 goto bad_bmap;
168 * It must be PAGE_SIZE aligned on-disk
170 if (first_block & (blocks_per_page - 1)) {
171 probe_block++;
172 goto reprobe;
175 for (block_in_page = 1; block_in_page < blocks_per_page;
176 block_in_page++) {
177 sector_t block;
179 block = bmap(inode, probe_block + block_in_page);
180 if (block == 0)
181 goto bad_bmap;
182 if (block != first_block + block_in_page) {
183 /* Discontiguity */
184 probe_block++;
185 goto reprobe;
189 first_block >>= (PAGE_SHIFT - blkbits);
190 if (page_no) { /* exclude the header page */
191 if (first_block < lowest_block)
192 lowest_block = first_block;
193 if (first_block > highest_block)
194 highest_block = first_block;
198 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
200 ret = add_swap_extent(sis, page_no, 1, first_block);
201 if (ret < 0)
202 goto out;
203 nr_extents += ret;
204 page_no++;
205 probe_block += blocks_per_page;
206 reprobe:
207 continue;
209 ret = nr_extents;
210 *span = 1 + highest_block - lowest_block;
211 if (page_no == 0)
212 page_no = 1; /* force Empty message */
213 sis->max = page_no;
214 sis->pages = page_no - 1;
215 sis->highest_bit = page_no - 1;
216 out:
217 return ret;
218 bad_bmap:
219 printk(KERN_ERR "swapon: swapfile has holes\n");
220 ret = -EINVAL;
221 goto out;
225 * We may have stale swap cache pages in memory: notice
226 * them here and get rid of the unnecessary final write.
228 int swap_writepage(struct page *page, struct writeback_control *wbc)
230 int ret = 0;
232 if (try_to_free_swap(page)) {
233 unlock_page(page);
234 goto out;
236 if (frontswap_store(page) == 0) {
237 set_page_writeback(page);
238 unlock_page(page);
239 end_page_writeback(page);
240 goto out;
242 ret = __swap_writepage(page, wbc, end_swap_bio_write);
243 out:
244 return ret;
247 static sector_t swap_page_sector(struct page *page)
249 return (sector_t)__page_file_index(page) << (PAGE_CACHE_SHIFT - 9);
252 int __swap_writepage(struct page *page, struct writeback_control *wbc,
253 bio_end_io_t end_write_func)
255 struct bio *bio;
256 int ret, rw = WRITE;
257 struct swap_info_struct *sis = page_swap_info(page);
259 if (sis->flags & SWP_FILE) {
260 struct kiocb kiocb;
261 struct file *swap_file = sis->swap_file;
262 struct address_space *mapping = swap_file->f_mapping;
263 struct bio_vec bv = {
264 .bv_page = page,
265 .bv_len = PAGE_SIZE,
266 .bv_offset = 0
268 struct iov_iter from;
270 iov_iter_bvec(&from, ITER_BVEC | WRITE, &bv, 1, PAGE_SIZE);
271 init_sync_kiocb(&kiocb, swap_file);
272 kiocb.ki_pos = page_file_offset(page);
274 set_page_writeback(page);
275 unlock_page(page);
276 ret = mapping->a_ops->direct_IO(&kiocb, &from, kiocb.ki_pos);
277 if (ret == PAGE_SIZE) {
278 count_vm_event(PSWPOUT);
279 ret = 0;
280 } else {
282 * In the case of swap-over-nfs, this can be a
283 * temporary failure if the system has limited
284 * memory for allocating transmit buffers.
285 * Mark the page dirty and avoid
286 * rotate_reclaimable_page but rate-limit the
287 * messages but do not flag PageError like
288 * the normal direct-to-bio case as it could
289 * be temporary.
291 set_page_dirty(page);
292 ClearPageReclaim(page);
293 pr_err_ratelimited("Write error on dio swapfile (%Lu)\n",
294 page_file_offset(page));
296 end_page_writeback(page);
297 return ret;
300 ret = bdev_write_page(sis->bdev, swap_page_sector(page), page, wbc);
301 if (!ret) {
302 count_vm_event(PSWPOUT);
303 return 0;
306 ret = 0;
307 bio = get_swap_bio(GFP_NOIO, page, end_write_func);
308 if (bio == NULL) {
309 set_page_dirty(page);
310 unlock_page(page);
311 ret = -ENOMEM;
312 goto out;
314 if (wbc->sync_mode == WB_SYNC_ALL)
315 rw |= REQ_SYNC;
316 count_vm_event(PSWPOUT);
317 set_page_writeback(page);
318 unlock_page(page);
319 submit_bio(rw, bio);
320 out:
321 return ret;
324 int swap_readpage(struct page *page)
326 struct bio *bio;
327 int ret = 0;
328 struct swap_info_struct *sis = page_swap_info(page);
330 VM_BUG_ON_PAGE(!PageLocked(page), page);
331 VM_BUG_ON_PAGE(PageUptodate(page), page);
332 if (frontswap_load(page) == 0) {
333 SetPageUptodate(page);
334 unlock_page(page);
335 goto out;
338 if (sis->flags & SWP_FILE) {
339 struct file *swap_file = sis->swap_file;
340 struct address_space *mapping = swap_file->f_mapping;
342 ret = mapping->a_ops->readpage(swap_file, page);
343 if (!ret)
344 count_vm_event(PSWPIN);
345 return ret;
348 ret = bdev_read_page(sis->bdev, swap_page_sector(page), page);
349 if (!ret) {
350 count_vm_event(PSWPIN);
351 return 0;
354 ret = 0;
355 bio = get_swap_bio(GFP_KERNEL, page, end_swap_bio_read);
356 if (bio == NULL) {
357 unlock_page(page);
358 ret = -ENOMEM;
359 goto out;
361 count_vm_event(PSWPIN);
362 submit_bio(READ, bio);
363 out:
364 return ret;
367 int swap_set_page_dirty(struct page *page)
369 struct swap_info_struct *sis = page_swap_info(page);
371 if (sis->flags & SWP_FILE) {
372 struct address_space *mapping = sis->swap_file->f_mapping;
373 return mapping->a_ops->set_page_dirty(page);
374 } else {
375 return __set_page_dirty_no_writeback(page);