4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 * Swap reorganised 29.12.95,
7 * Asynchronous swapping added 30.12.95. Stephen Tweedie
8 * Removed race in async swapping. 14.4.1996. Bruno Haible
9 * Add swap of shared pages through the page cache. 20.2.1998. Stephen Tweedie
10 * Always use brw_page, life becomes simpler. 12 May 1998 Eric Biederman
14 #include <linux/kernel_stat.h>
15 #include <linux/gfp.h>
16 #include <linux/pagemap.h>
17 #include <linux/swap.h>
18 #include <linux/bio.h>
19 #include <linux/swapops.h>
20 #include <linux/buffer_head.h>
21 #include <linux/writeback.h>
22 #include <linux/frontswap.h>
23 #include <linux/blkdev.h>
24 #include <linux/uio.h>
25 #include <asm/pgtable.h>
27 static struct bio
*get_swap_bio(gfp_t gfp_flags
,
28 struct page
*page
, bio_end_io_t end_io
)
32 bio
= bio_alloc(gfp_flags
, 1);
34 bio
->bi_iter
.bi_sector
= map_swap_page(page
, &bio
->bi_bdev
);
35 bio
->bi_iter
.bi_sector
<<= PAGE_SHIFT
- 9;
36 bio
->bi_end_io
= end_io
;
38 bio_add_page(bio
, page
, PAGE_SIZE
, 0);
39 BUG_ON(bio
->bi_iter
.bi_size
!= PAGE_SIZE
);
44 void end_swap_bio_write(struct bio
*bio
)
46 struct page
*page
= bio
->bi_io_vec
[0].bv_page
;
51 * We failed to write the page out to swap-space.
52 * Re-dirty the page in order to avoid it being reclaimed.
53 * Also print a dire warning that things will go BAD (tm)
56 * Also clear PG_reclaim to avoid rotate_reclaimable_page()
59 printk(KERN_ALERT
"Write-error on swap-device (%u:%u:%Lu)\n",
60 imajor(bio
->bi_bdev
->bd_inode
),
61 iminor(bio
->bi_bdev
->bd_inode
),
62 (unsigned long long)bio
->bi_iter
.bi_sector
);
63 ClearPageReclaim(page
);
65 end_page_writeback(page
);
69 static void end_swap_bio_read(struct bio
*bio
)
71 struct page
*page
= bio
->bi_io_vec
[0].bv_page
;
75 ClearPageUptodate(page
);
76 printk(KERN_ALERT
"Read-error on swap-device (%u:%u:%Lu)\n",
77 imajor(bio
->bi_bdev
->bd_inode
),
78 iminor(bio
->bi_bdev
->bd_inode
),
79 (unsigned long long)bio
->bi_iter
.bi_sector
);
83 SetPageUptodate(page
);
86 * There is no guarantee that the page is in swap cache - the software
87 * suspend code (at least) uses end_swap_bio_read() against a non-
88 * swapcache page. So we must check PG_swapcache before proceeding with
91 if (likely(PageSwapCache(page
))) {
92 struct swap_info_struct
*sis
;
94 sis
= page_swap_info(page
);
95 if (sis
->flags
& SWP_BLKDEV
) {
97 * The swap subsystem performs lazy swap slot freeing,
98 * expecting that the page will be swapped out again.
99 * So we can avoid an unnecessary write if the page
101 * This is good for real swap storage because we can
102 * reduce unnecessary I/O and enhance wear-leveling
103 * if an SSD is used as the as swap device.
104 * But if in-memory swap device (eg zram) is used,
105 * this causes a duplicated copy between uncompressed
106 * data in VM-owned memory and compressed data in
107 * zram-owned memory. So let's free zram-owned memory
108 * and make the VM-owned decompressed page *dirty*,
109 * so the page should be swapped out somewhere again if
110 * we again wish to reclaim it.
112 struct gendisk
*disk
= sis
->bdev
->bd_disk
;
113 if (disk
->fops
->swap_slot_free_notify
) {
115 unsigned long offset
;
117 entry
.val
= page_private(page
);
118 offset
= swp_offset(entry
);
121 disk
->fops
->swap_slot_free_notify(sis
->bdev
,
132 int generic_swapfile_activate(struct swap_info_struct
*sis
,
133 struct file
*swap_file
,
136 struct address_space
*mapping
= swap_file
->f_mapping
;
137 struct inode
*inode
= mapping
->host
;
138 unsigned blocks_per_page
;
139 unsigned long page_no
;
141 sector_t probe_block
;
143 sector_t lowest_block
= -1;
144 sector_t highest_block
= 0;
148 blkbits
= inode
->i_blkbits
;
149 blocks_per_page
= PAGE_SIZE
>> blkbits
;
152 * Map all the blocks into the extent list. This code doesn't try
157 last_block
= i_size_read(inode
) >> blkbits
;
158 while ((probe_block
+ blocks_per_page
) <= last_block
&&
159 page_no
< sis
->max
) {
160 unsigned block_in_page
;
161 sector_t first_block
;
163 first_block
= bmap(inode
, probe_block
);
164 if (first_block
== 0)
168 * It must be PAGE_SIZE aligned on-disk
170 if (first_block
& (blocks_per_page
- 1)) {
175 for (block_in_page
= 1; block_in_page
< blocks_per_page
;
179 block
= bmap(inode
, probe_block
+ block_in_page
);
182 if (block
!= first_block
+ block_in_page
) {
189 first_block
>>= (PAGE_SHIFT
- blkbits
);
190 if (page_no
) { /* exclude the header page */
191 if (first_block
< lowest_block
)
192 lowest_block
= first_block
;
193 if (first_block
> highest_block
)
194 highest_block
= first_block
;
198 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
200 ret
= add_swap_extent(sis
, page_no
, 1, first_block
);
205 probe_block
+= blocks_per_page
;
210 *span
= 1 + highest_block
- lowest_block
;
212 page_no
= 1; /* force Empty message */
214 sis
->pages
= page_no
- 1;
215 sis
->highest_bit
= page_no
- 1;
219 printk(KERN_ERR
"swapon: swapfile has holes\n");
225 * We may have stale swap cache pages in memory: notice
226 * them here and get rid of the unnecessary final write.
228 int swap_writepage(struct page
*page
, struct writeback_control
*wbc
)
232 if (try_to_free_swap(page
)) {
236 if (frontswap_store(page
) == 0) {
237 set_page_writeback(page
);
239 end_page_writeback(page
);
242 ret
= __swap_writepage(page
, wbc
, end_swap_bio_write
);
247 static sector_t
swap_page_sector(struct page
*page
)
249 return (sector_t
)__page_file_index(page
) << (PAGE_CACHE_SHIFT
- 9);
252 int __swap_writepage(struct page
*page
, struct writeback_control
*wbc
,
253 bio_end_io_t end_write_func
)
257 struct swap_info_struct
*sis
= page_swap_info(page
);
259 if (sis
->flags
& SWP_FILE
) {
261 struct file
*swap_file
= sis
->swap_file
;
262 struct address_space
*mapping
= swap_file
->f_mapping
;
263 struct bio_vec bv
= {
268 struct iov_iter from
;
270 iov_iter_bvec(&from
, ITER_BVEC
| WRITE
, &bv
, 1, PAGE_SIZE
);
271 init_sync_kiocb(&kiocb
, swap_file
);
272 kiocb
.ki_pos
= page_file_offset(page
);
274 set_page_writeback(page
);
276 ret
= mapping
->a_ops
->direct_IO(&kiocb
, &from
, kiocb
.ki_pos
);
277 if (ret
== PAGE_SIZE
) {
278 count_vm_event(PSWPOUT
);
282 * In the case of swap-over-nfs, this can be a
283 * temporary failure if the system has limited
284 * memory for allocating transmit buffers.
285 * Mark the page dirty and avoid
286 * rotate_reclaimable_page but rate-limit the
287 * messages but do not flag PageError like
288 * the normal direct-to-bio case as it could
291 set_page_dirty(page
);
292 ClearPageReclaim(page
);
293 pr_err_ratelimited("Write error on dio swapfile (%Lu)\n",
294 page_file_offset(page
));
296 end_page_writeback(page
);
300 ret
= bdev_write_page(sis
->bdev
, swap_page_sector(page
), page
, wbc
);
302 count_vm_event(PSWPOUT
);
307 bio
= get_swap_bio(GFP_NOIO
, page
, end_write_func
);
309 set_page_dirty(page
);
314 if (wbc
->sync_mode
== WB_SYNC_ALL
)
316 count_vm_event(PSWPOUT
);
317 set_page_writeback(page
);
324 int swap_readpage(struct page
*page
)
328 struct swap_info_struct
*sis
= page_swap_info(page
);
330 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
331 VM_BUG_ON_PAGE(PageUptodate(page
), page
);
332 if (frontswap_load(page
) == 0) {
333 SetPageUptodate(page
);
338 if (sis
->flags
& SWP_FILE
) {
339 struct file
*swap_file
= sis
->swap_file
;
340 struct address_space
*mapping
= swap_file
->f_mapping
;
342 ret
= mapping
->a_ops
->readpage(swap_file
, page
);
344 count_vm_event(PSWPIN
);
348 ret
= bdev_read_page(sis
->bdev
, swap_page_sector(page
), page
);
350 count_vm_event(PSWPIN
);
355 bio
= get_swap_bio(GFP_KERNEL
, page
, end_swap_bio_read
);
361 count_vm_event(PSWPIN
);
362 submit_bio(READ
, bio
);
367 int swap_set_page_dirty(struct page
*page
)
369 struct swap_info_struct
*sis
= page_swap_info(page
);
371 if (sis
->flags
& SWP_FILE
) {
372 struct address_space
*mapping
= sis
->swap_file
->f_mapping
;
373 return mapping
->a_ops
->set_page_dirty(page
);
375 return __set_page_dirty_no_writeback(page
);