net: Introduce skb_orphan_try()
[linux-rapidio-2.6.git] / net / core / dev.c
blob8eb50e2292fbe0fc50215381e0569ed0e94e3ce1
1 /*
2 * NET3 Protocol independent device support routines.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
75 #include <asm/uaccess.h>
76 #include <asm/system.h>
77 #include <linux/bitops.h>
78 #include <linux/capability.h>
79 #include <linux/cpu.h>
80 #include <linux/types.h>
81 #include <linux/kernel.h>
82 #include <linux/hash.h>
83 #include <linux/slab.h>
84 #include <linux/sched.h>
85 #include <linux/mutex.h>
86 #include <linux/string.h>
87 #include <linux/mm.h>
88 #include <linux/socket.h>
89 #include <linux/sockios.h>
90 #include <linux/errno.h>
91 #include <linux/interrupt.h>
92 #include <linux/if_ether.h>
93 #include <linux/netdevice.h>
94 #include <linux/etherdevice.h>
95 #include <linux/ethtool.h>
96 #include <linux/notifier.h>
97 #include <linux/skbuff.h>
98 #include <net/net_namespace.h>
99 #include <net/sock.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/proc_fs.h>
102 #include <linux/seq_file.h>
103 #include <linux/stat.h>
104 #include <linux/if_bridge.h>
105 #include <linux/if_macvlan.h>
106 #include <net/dst.h>
107 #include <net/pkt_sched.h>
108 #include <net/checksum.h>
109 #include <net/xfrm.h>
110 #include <linux/highmem.h>
111 #include <linux/init.h>
112 #include <linux/kmod.h>
113 #include <linux/module.h>
114 #include <linux/netpoll.h>
115 #include <linux/rcupdate.h>
116 #include <linux/delay.h>
117 #include <net/wext.h>
118 #include <net/iw_handler.h>
119 #include <asm/current.h>
120 #include <linux/audit.h>
121 #include <linux/dmaengine.h>
122 #include <linux/err.h>
123 #include <linux/ctype.h>
124 #include <linux/if_arp.h>
125 #include <linux/if_vlan.h>
126 #include <linux/ip.h>
127 #include <net/ip.h>
128 #include <linux/ipv6.h>
129 #include <linux/in.h>
130 #include <linux/jhash.h>
131 #include <linux/random.h>
132 #include <trace/events/napi.h>
133 #include <linux/pci.h>
135 #include "net-sysfs.h"
137 /* Instead of increasing this, you should create a hash table. */
138 #define MAX_GRO_SKBS 8
140 /* This should be increased if a protocol with a bigger head is added. */
141 #define GRO_MAX_HEAD (MAX_HEADER + 128)
144 * The list of packet types we will receive (as opposed to discard)
145 * and the routines to invoke.
147 * Why 16. Because with 16 the only overlap we get on a hash of the
148 * low nibble of the protocol value is RARP/SNAP/X.25.
150 * NOTE: That is no longer true with the addition of VLAN tags. Not
151 * sure which should go first, but I bet it won't make much
152 * difference if we are running VLANs. The good news is that
153 * this protocol won't be in the list unless compiled in, so
154 * the average user (w/out VLANs) will not be adversely affected.
155 * --BLG
157 * 0800 IP
158 * 8100 802.1Q VLAN
159 * 0001 802.3
160 * 0002 AX.25
161 * 0004 802.2
162 * 8035 RARP
163 * 0005 SNAP
164 * 0805 X.25
165 * 0806 ARP
166 * 8137 IPX
167 * 0009 Localtalk
168 * 86DD IPv6
171 #define PTYPE_HASH_SIZE (16)
172 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
174 static DEFINE_SPINLOCK(ptype_lock);
175 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
176 static struct list_head ptype_all __read_mostly; /* Taps */
179 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
180 * semaphore.
182 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
184 * Writers must hold the rtnl semaphore while they loop through the
185 * dev_base_head list, and hold dev_base_lock for writing when they do the
186 * actual updates. This allows pure readers to access the list even
187 * while a writer is preparing to update it.
189 * To put it another way, dev_base_lock is held for writing only to
190 * protect against pure readers; the rtnl semaphore provides the
191 * protection against other writers.
193 * See, for example usages, register_netdevice() and
194 * unregister_netdevice(), which must be called with the rtnl
195 * semaphore held.
197 DEFINE_RWLOCK(dev_base_lock);
198 EXPORT_SYMBOL(dev_base_lock);
200 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
202 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
203 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
206 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
208 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
211 static inline void rps_lock(struct softnet_data *queue)
213 #ifdef CONFIG_RPS
214 spin_lock(&queue->input_pkt_queue.lock);
215 #endif
218 static inline void rps_unlock(struct softnet_data *queue)
220 #ifdef CONFIG_RPS
221 spin_unlock(&queue->input_pkt_queue.lock);
222 #endif
225 /* Device list insertion */
226 static int list_netdevice(struct net_device *dev)
228 struct net *net = dev_net(dev);
230 ASSERT_RTNL();
232 write_lock_bh(&dev_base_lock);
233 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
234 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
235 hlist_add_head_rcu(&dev->index_hlist,
236 dev_index_hash(net, dev->ifindex));
237 write_unlock_bh(&dev_base_lock);
238 return 0;
241 /* Device list removal
242 * caller must respect a RCU grace period before freeing/reusing dev
244 static void unlist_netdevice(struct net_device *dev)
246 ASSERT_RTNL();
248 /* Unlink dev from the device chain */
249 write_lock_bh(&dev_base_lock);
250 list_del_rcu(&dev->dev_list);
251 hlist_del_rcu(&dev->name_hlist);
252 hlist_del_rcu(&dev->index_hlist);
253 write_unlock_bh(&dev_base_lock);
257 * Our notifier list
260 static RAW_NOTIFIER_HEAD(netdev_chain);
263 * Device drivers call our routines to queue packets here. We empty the
264 * queue in the local softnet handler.
267 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
268 EXPORT_PER_CPU_SYMBOL(softnet_data);
270 #ifdef CONFIG_LOCKDEP
272 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
273 * according to dev->type
275 static const unsigned short netdev_lock_type[] =
276 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
277 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
278 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
279 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
280 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
281 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
282 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
283 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
284 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
285 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
286 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
287 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
288 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211,
289 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET,
290 ARPHRD_PHONET_PIPE, ARPHRD_IEEE802154,
291 ARPHRD_VOID, ARPHRD_NONE};
293 static const char *const netdev_lock_name[] =
294 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
295 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
296 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
297 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
298 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
299 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
300 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
301 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
302 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
303 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
304 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
305 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
306 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211",
307 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET",
308 "_xmit_PHONET_PIPE", "_xmit_IEEE802154",
309 "_xmit_VOID", "_xmit_NONE"};
311 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
312 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
314 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
316 int i;
318 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
319 if (netdev_lock_type[i] == dev_type)
320 return i;
321 /* the last key is used by default */
322 return ARRAY_SIZE(netdev_lock_type) - 1;
325 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
326 unsigned short dev_type)
328 int i;
330 i = netdev_lock_pos(dev_type);
331 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
332 netdev_lock_name[i]);
335 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
337 int i;
339 i = netdev_lock_pos(dev->type);
340 lockdep_set_class_and_name(&dev->addr_list_lock,
341 &netdev_addr_lock_key[i],
342 netdev_lock_name[i]);
344 #else
345 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
346 unsigned short dev_type)
349 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
352 #endif
354 /*******************************************************************************
356 Protocol management and registration routines
358 *******************************************************************************/
361 * Add a protocol ID to the list. Now that the input handler is
362 * smarter we can dispense with all the messy stuff that used to be
363 * here.
365 * BEWARE!!! Protocol handlers, mangling input packets,
366 * MUST BE last in hash buckets and checking protocol handlers
367 * MUST start from promiscuous ptype_all chain in net_bh.
368 * It is true now, do not change it.
369 * Explanation follows: if protocol handler, mangling packet, will
370 * be the first on list, it is not able to sense, that packet
371 * is cloned and should be copied-on-write, so that it will
372 * change it and subsequent readers will get broken packet.
373 * --ANK (980803)
377 * dev_add_pack - add packet handler
378 * @pt: packet type declaration
380 * Add a protocol handler to the networking stack. The passed &packet_type
381 * is linked into kernel lists and may not be freed until it has been
382 * removed from the kernel lists.
384 * This call does not sleep therefore it can not
385 * guarantee all CPU's that are in middle of receiving packets
386 * will see the new packet type (until the next received packet).
389 void dev_add_pack(struct packet_type *pt)
391 int hash;
393 spin_lock_bh(&ptype_lock);
394 if (pt->type == htons(ETH_P_ALL))
395 list_add_rcu(&pt->list, &ptype_all);
396 else {
397 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
398 list_add_rcu(&pt->list, &ptype_base[hash]);
400 spin_unlock_bh(&ptype_lock);
402 EXPORT_SYMBOL(dev_add_pack);
405 * __dev_remove_pack - remove packet handler
406 * @pt: packet type declaration
408 * Remove a protocol handler that was previously added to the kernel
409 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
410 * from the kernel lists and can be freed or reused once this function
411 * returns.
413 * The packet type might still be in use by receivers
414 * and must not be freed until after all the CPU's have gone
415 * through a quiescent state.
417 void __dev_remove_pack(struct packet_type *pt)
419 struct list_head *head;
420 struct packet_type *pt1;
422 spin_lock_bh(&ptype_lock);
424 if (pt->type == htons(ETH_P_ALL))
425 head = &ptype_all;
426 else
427 head = &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
429 list_for_each_entry(pt1, head, list) {
430 if (pt == pt1) {
431 list_del_rcu(&pt->list);
432 goto out;
436 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt);
437 out:
438 spin_unlock_bh(&ptype_lock);
440 EXPORT_SYMBOL(__dev_remove_pack);
443 * dev_remove_pack - remove packet handler
444 * @pt: packet type declaration
446 * Remove a protocol handler that was previously added to the kernel
447 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
448 * from the kernel lists and can be freed or reused once this function
449 * returns.
451 * This call sleeps to guarantee that no CPU is looking at the packet
452 * type after return.
454 void dev_remove_pack(struct packet_type *pt)
456 __dev_remove_pack(pt);
458 synchronize_net();
460 EXPORT_SYMBOL(dev_remove_pack);
462 /******************************************************************************
464 Device Boot-time Settings Routines
466 *******************************************************************************/
468 /* Boot time configuration table */
469 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
472 * netdev_boot_setup_add - add new setup entry
473 * @name: name of the device
474 * @map: configured settings for the device
476 * Adds new setup entry to the dev_boot_setup list. The function
477 * returns 0 on error and 1 on success. This is a generic routine to
478 * all netdevices.
480 static int netdev_boot_setup_add(char *name, struct ifmap *map)
482 struct netdev_boot_setup *s;
483 int i;
485 s = dev_boot_setup;
486 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
487 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
488 memset(s[i].name, 0, sizeof(s[i].name));
489 strlcpy(s[i].name, name, IFNAMSIZ);
490 memcpy(&s[i].map, map, sizeof(s[i].map));
491 break;
495 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
499 * netdev_boot_setup_check - check boot time settings
500 * @dev: the netdevice
502 * Check boot time settings for the device.
503 * The found settings are set for the device to be used
504 * later in the device probing.
505 * Returns 0 if no settings found, 1 if they are.
507 int netdev_boot_setup_check(struct net_device *dev)
509 struct netdev_boot_setup *s = dev_boot_setup;
510 int i;
512 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
513 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
514 !strcmp(dev->name, s[i].name)) {
515 dev->irq = s[i].map.irq;
516 dev->base_addr = s[i].map.base_addr;
517 dev->mem_start = s[i].map.mem_start;
518 dev->mem_end = s[i].map.mem_end;
519 return 1;
522 return 0;
524 EXPORT_SYMBOL(netdev_boot_setup_check);
528 * netdev_boot_base - get address from boot time settings
529 * @prefix: prefix for network device
530 * @unit: id for network device
532 * Check boot time settings for the base address of device.
533 * The found settings are set for the device to be used
534 * later in the device probing.
535 * Returns 0 if no settings found.
537 unsigned long netdev_boot_base(const char *prefix, int unit)
539 const struct netdev_boot_setup *s = dev_boot_setup;
540 char name[IFNAMSIZ];
541 int i;
543 sprintf(name, "%s%d", prefix, unit);
546 * If device already registered then return base of 1
547 * to indicate not to probe for this interface
549 if (__dev_get_by_name(&init_net, name))
550 return 1;
552 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
553 if (!strcmp(name, s[i].name))
554 return s[i].map.base_addr;
555 return 0;
559 * Saves at boot time configured settings for any netdevice.
561 int __init netdev_boot_setup(char *str)
563 int ints[5];
564 struct ifmap map;
566 str = get_options(str, ARRAY_SIZE(ints), ints);
567 if (!str || !*str)
568 return 0;
570 /* Save settings */
571 memset(&map, 0, sizeof(map));
572 if (ints[0] > 0)
573 map.irq = ints[1];
574 if (ints[0] > 1)
575 map.base_addr = ints[2];
576 if (ints[0] > 2)
577 map.mem_start = ints[3];
578 if (ints[0] > 3)
579 map.mem_end = ints[4];
581 /* Add new entry to the list */
582 return netdev_boot_setup_add(str, &map);
585 __setup("netdev=", netdev_boot_setup);
587 /*******************************************************************************
589 Device Interface Subroutines
591 *******************************************************************************/
594 * __dev_get_by_name - find a device by its name
595 * @net: the applicable net namespace
596 * @name: name to find
598 * Find an interface by name. Must be called under RTNL semaphore
599 * or @dev_base_lock. If the name is found a pointer to the device
600 * is returned. If the name is not found then %NULL is returned. The
601 * reference counters are not incremented so the caller must be
602 * careful with locks.
605 struct net_device *__dev_get_by_name(struct net *net, const char *name)
607 struct hlist_node *p;
608 struct net_device *dev;
609 struct hlist_head *head = dev_name_hash(net, name);
611 hlist_for_each_entry(dev, p, head, name_hlist)
612 if (!strncmp(dev->name, name, IFNAMSIZ))
613 return dev;
615 return NULL;
617 EXPORT_SYMBOL(__dev_get_by_name);
620 * dev_get_by_name_rcu - find a device by its name
621 * @net: the applicable net namespace
622 * @name: name to find
624 * Find an interface by name.
625 * If the name is found a pointer to the device is returned.
626 * If the name is not found then %NULL is returned.
627 * The reference counters are not incremented so the caller must be
628 * careful with locks. The caller must hold RCU lock.
631 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
633 struct hlist_node *p;
634 struct net_device *dev;
635 struct hlist_head *head = dev_name_hash(net, name);
637 hlist_for_each_entry_rcu(dev, p, head, name_hlist)
638 if (!strncmp(dev->name, name, IFNAMSIZ))
639 return dev;
641 return NULL;
643 EXPORT_SYMBOL(dev_get_by_name_rcu);
646 * dev_get_by_name - find a device by its name
647 * @net: the applicable net namespace
648 * @name: name to find
650 * Find an interface by name. This can be called from any
651 * context and does its own locking. The returned handle has
652 * the usage count incremented and the caller must use dev_put() to
653 * release it when it is no longer needed. %NULL is returned if no
654 * matching device is found.
657 struct net_device *dev_get_by_name(struct net *net, const char *name)
659 struct net_device *dev;
661 rcu_read_lock();
662 dev = dev_get_by_name_rcu(net, name);
663 if (dev)
664 dev_hold(dev);
665 rcu_read_unlock();
666 return dev;
668 EXPORT_SYMBOL(dev_get_by_name);
671 * __dev_get_by_index - find a device by its ifindex
672 * @net: the applicable net namespace
673 * @ifindex: index of device
675 * Search for an interface by index. Returns %NULL if the device
676 * is not found or a pointer to the device. The device has not
677 * had its reference counter increased so the caller must be careful
678 * about locking. The caller must hold either the RTNL semaphore
679 * or @dev_base_lock.
682 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
684 struct hlist_node *p;
685 struct net_device *dev;
686 struct hlist_head *head = dev_index_hash(net, ifindex);
688 hlist_for_each_entry(dev, p, head, index_hlist)
689 if (dev->ifindex == ifindex)
690 return dev;
692 return NULL;
694 EXPORT_SYMBOL(__dev_get_by_index);
697 * dev_get_by_index_rcu - find a device by its ifindex
698 * @net: the applicable net namespace
699 * @ifindex: index of device
701 * Search for an interface by index. Returns %NULL if the device
702 * is not found or a pointer to the device. The device has not
703 * had its reference counter increased so the caller must be careful
704 * about locking. The caller must hold RCU lock.
707 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
709 struct hlist_node *p;
710 struct net_device *dev;
711 struct hlist_head *head = dev_index_hash(net, ifindex);
713 hlist_for_each_entry_rcu(dev, p, head, index_hlist)
714 if (dev->ifindex == ifindex)
715 return dev;
717 return NULL;
719 EXPORT_SYMBOL(dev_get_by_index_rcu);
723 * dev_get_by_index - find a device by its ifindex
724 * @net: the applicable net namespace
725 * @ifindex: index of device
727 * Search for an interface by index. Returns NULL if the device
728 * is not found or a pointer to the device. The device returned has
729 * had a reference added and the pointer is safe until the user calls
730 * dev_put to indicate they have finished with it.
733 struct net_device *dev_get_by_index(struct net *net, int ifindex)
735 struct net_device *dev;
737 rcu_read_lock();
738 dev = dev_get_by_index_rcu(net, ifindex);
739 if (dev)
740 dev_hold(dev);
741 rcu_read_unlock();
742 return dev;
744 EXPORT_SYMBOL(dev_get_by_index);
747 * dev_getbyhwaddr - find a device by its hardware address
748 * @net: the applicable net namespace
749 * @type: media type of device
750 * @ha: hardware address
752 * Search for an interface by MAC address. Returns NULL if the device
753 * is not found or a pointer to the device. The caller must hold the
754 * rtnl semaphore. The returned device has not had its ref count increased
755 * and the caller must therefore be careful about locking
757 * BUGS:
758 * If the API was consistent this would be __dev_get_by_hwaddr
761 struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, char *ha)
763 struct net_device *dev;
765 ASSERT_RTNL();
767 for_each_netdev(net, dev)
768 if (dev->type == type &&
769 !memcmp(dev->dev_addr, ha, dev->addr_len))
770 return dev;
772 return NULL;
774 EXPORT_SYMBOL(dev_getbyhwaddr);
776 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
778 struct net_device *dev;
780 ASSERT_RTNL();
781 for_each_netdev(net, dev)
782 if (dev->type == type)
783 return dev;
785 return NULL;
787 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
789 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
791 struct net_device *dev, *ret = NULL;
793 rcu_read_lock();
794 for_each_netdev_rcu(net, dev)
795 if (dev->type == type) {
796 dev_hold(dev);
797 ret = dev;
798 break;
800 rcu_read_unlock();
801 return ret;
803 EXPORT_SYMBOL(dev_getfirstbyhwtype);
806 * dev_get_by_flags - find any device with given flags
807 * @net: the applicable net namespace
808 * @if_flags: IFF_* values
809 * @mask: bitmask of bits in if_flags to check
811 * Search for any interface with the given flags. Returns NULL if a device
812 * is not found or a pointer to the device. The device returned has
813 * had a reference added and the pointer is safe until the user calls
814 * dev_put to indicate they have finished with it.
817 struct net_device *dev_get_by_flags(struct net *net, unsigned short if_flags,
818 unsigned short mask)
820 struct net_device *dev, *ret;
822 ret = NULL;
823 rcu_read_lock();
824 for_each_netdev_rcu(net, dev) {
825 if (((dev->flags ^ if_flags) & mask) == 0) {
826 dev_hold(dev);
827 ret = dev;
828 break;
831 rcu_read_unlock();
832 return ret;
834 EXPORT_SYMBOL(dev_get_by_flags);
837 * dev_valid_name - check if name is okay for network device
838 * @name: name string
840 * Network device names need to be valid file names to
841 * to allow sysfs to work. We also disallow any kind of
842 * whitespace.
844 int dev_valid_name(const char *name)
846 if (*name == '\0')
847 return 0;
848 if (strlen(name) >= IFNAMSIZ)
849 return 0;
850 if (!strcmp(name, ".") || !strcmp(name, ".."))
851 return 0;
853 while (*name) {
854 if (*name == '/' || isspace(*name))
855 return 0;
856 name++;
858 return 1;
860 EXPORT_SYMBOL(dev_valid_name);
863 * __dev_alloc_name - allocate a name for a device
864 * @net: network namespace to allocate the device name in
865 * @name: name format string
866 * @buf: scratch buffer and result name string
868 * Passed a format string - eg "lt%d" it will try and find a suitable
869 * id. It scans list of devices to build up a free map, then chooses
870 * the first empty slot. The caller must hold the dev_base or rtnl lock
871 * while allocating the name and adding the device in order to avoid
872 * duplicates.
873 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
874 * Returns the number of the unit assigned or a negative errno code.
877 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
879 int i = 0;
880 const char *p;
881 const int max_netdevices = 8*PAGE_SIZE;
882 unsigned long *inuse;
883 struct net_device *d;
885 p = strnchr(name, IFNAMSIZ-1, '%');
886 if (p) {
888 * Verify the string as this thing may have come from
889 * the user. There must be either one "%d" and no other "%"
890 * characters.
892 if (p[1] != 'd' || strchr(p + 2, '%'))
893 return -EINVAL;
895 /* Use one page as a bit array of possible slots */
896 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
897 if (!inuse)
898 return -ENOMEM;
900 for_each_netdev(net, d) {
901 if (!sscanf(d->name, name, &i))
902 continue;
903 if (i < 0 || i >= max_netdevices)
904 continue;
906 /* avoid cases where sscanf is not exact inverse of printf */
907 snprintf(buf, IFNAMSIZ, name, i);
908 if (!strncmp(buf, d->name, IFNAMSIZ))
909 set_bit(i, inuse);
912 i = find_first_zero_bit(inuse, max_netdevices);
913 free_page((unsigned long) inuse);
916 if (buf != name)
917 snprintf(buf, IFNAMSIZ, name, i);
918 if (!__dev_get_by_name(net, buf))
919 return i;
921 /* It is possible to run out of possible slots
922 * when the name is long and there isn't enough space left
923 * for the digits, or if all bits are used.
925 return -ENFILE;
929 * dev_alloc_name - allocate a name for a device
930 * @dev: device
931 * @name: name format string
933 * Passed a format string - eg "lt%d" it will try and find a suitable
934 * id. It scans list of devices to build up a free map, then chooses
935 * the first empty slot. The caller must hold the dev_base or rtnl lock
936 * while allocating the name and adding the device in order to avoid
937 * duplicates.
938 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
939 * Returns the number of the unit assigned or a negative errno code.
942 int dev_alloc_name(struct net_device *dev, const char *name)
944 char buf[IFNAMSIZ];
945 struct net *net;
946 int ret;
948 BUG_ON(!dev_net(dev));
949 net = dev_net(dev);
950 ret = __dev_alloc_name(net, name, buf);
951 if (ret >= 0)
952 strlcpy(dev->name, buf, IFNAMSIZ);
953 return ret;
955 EXPORT_SYMBOL(dev_alloc_name);
957 static int dev_get_valid_name(struct net *net, const char *name, char *buf,
958 bool fmt)
960 if (!dev_valid_name(name))
961 return -EINVAL;
963 if (fmt && strchr(name, '%'))
964 return __dev_alloc_name(net, name, buf);
965 else if (__dev_get_by_name(net, name))
966 return -EEXIST;
967 else if (buf != name)
968 strlcpy(buf, name, IFNAMSIZ);
970 return 0;
974 * dev_change_name - change name of a device
975 * @dev: device
976 * @newname: name (or format string) must be at least IFNAMSIZ
978 * Change name of a device, can pass format strings "eth%d".
979 * for wildcarding.
981 int dev_change_name(struct net_device *dev, const char *newname)
983 char oldname[IFNAMSIZ];
984 int err = 0;
985 int ret;
986 struct net *net;
988 ASSERT_RTNL();
989 BUG_ON(!dev_net(dev));
991 net = dev_net(dev);
992 if (dev->flags & IFF_UP)
993 return -EBUSY;
995 if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
996 return 0;
998 memcpy(oldname, dev->name, IFNAMSIZ);
1000 err = dev_get_valid_name(net, newname, dev->name, 1);
1001 if (err < 0)
1002 return err;
1004 rollback:
1005 /* For now only devices in the initial network namespace
1006 * are in sysfs.
1008 if (net_eq(net, &init_net)) {
1009 ret = device_rename(&dev->dev, dev->name);
1010 if (ret) {
1011 memcpy(dev->name, oldname, IFNAMSIZ);
1012 return ret;
1016 write_lock_bh(&dev_base_lock);
1017 hlist_del(&dev->name_hlist);
1018 write_unlock_bh(&dev_base_lock);
1020 synchronize_rcu();
1022 write_lock_bh(&dev_base_lock);
1023 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1024 write_unlock_bh(&dev_base_lock);
1026 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1027 ret = notifier_to_errno(ret);
1029 if (ret) {
1030 /* err >= 0 after dev_alloc_name() or stores the first errno */
1031 if (err >= 0) {
1032 err = ret;
1033 memcpy(dev->name, oldname, IFNAMSIZ);
1034 goto rollback;
1035 } else {
1036 printk(KERN_ERR
1037 "%s: name change rollback failed: %d.\n",
1038 dev->name, ret);
1042 return err;
1046 * dev_set_alias - change ifalias of a device
1047 * @dev: device
1048 * @alias: name up to IFALIASZ
1049 * @len: limit of bytes to copy from info
1051 * Set ifalias for a device,
1053 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1055 ASSERT_RTNL();
1057 if (len >= IFALIASZ)
1058 return -EINVAL;
1060 if (!len) {
1061 if (dev->ifalias) {
1062 kfree(dev->ifalias);
1063 dev->ifalias = NULL;
1065 return 0;
1068 dev->ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1069 if (!dev->ifalias)
1070 return -ENOMEM;
1072 strlcpy(dev->ifalias, alias, len+1);
1073 return len;
1078 * netdev_features_change - device changes features
1079 * @dev: device to cause notification
1081 * Called to indicate a device has changed features.
1083 void netdev_features_change(struct net_device *dev)
1085 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1087 EXPORT_SYMBOL(netdev_features_change);
1090 * netdev_state_change - device changes state
1091 * @dev: device to cause notification
1093 * Called to indicate a device has changed state. This function calls
1094 * the notifier chains for netdev_chain and sends a NEWLINK message
1095 * to the routing socket.
1097 void netdev_state_change(struct net_device *dev)
1099 if (dev->flags & IFF_UP) {
1100 call_netdevice_notifiers(NETDEV_CHANGE, dev);
1101 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1104 EXPORT_SYMBOL(netdev_state_change);
1106 int netdev_bonding_change(struct net_device *dev, unsigned long event)
1108 return call_netdevice_notifiers(event, dev);
1110 EXPORT_SYMBOL(netdev_bonding_change);
1113 * dev_load - load a network module
1114 * @net: the applicable net namespace
1115 * @name: name of interface
1117 * If a network interface is not present and the process has suitable
1118 * privileges this function loads the module. If module loading is not
1119 * available in this kernel then it becomes a nop.
1122 void dev_load(struct net *net, const char *name)
1124 struct net_device *dev;
1126 rcu_read_lock();
1127 dev = dev_get_by_name_rcu(net, name);
1128 rcu_read_unlock();
1130 if (!dev && capable(CAP_NET_ADMIN))
1131 request_module("%s", name);
1133 EXPORT_SYMBOL(dev_load);
1135 static int __dev_open(struct net_device *dev)
1137 const struct net_device_ops *ops = dev->netdev_ops;
1138 int ret;
1140 ASSERT_RTNL();
1143 * Is it even present?
1145 if (!netif_device_present(dev))
1146 return -ENODEV;
1148 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1149 ret = notifier_to_errno(ret);
1150 if (ret)
1151 return ret;
1154 * Call device private open method
1156 set_bit(__LINK_STATE_START, &dev->state);
1158 if (ops->ndo_validate_addr)
1159 ret = ops->ndo_validate_addr(dev);
1161 if (!ret && ops->ndo_open)
1162 ret = ops->ndo_open(dev);
1165 * If it went open OK then:
1168 if (ret)
1169 clear_bit(__LINK_STATE_START, &dev->state);
1170 else {
1172 * Set the flags.
1174 dev->flags |= IFF_UP;
1177 * Enable NET_DMA
1179 net_dmaengine_get();
1182 * Initialize multicasting status
1184 dev_set_rx_mode(dev);
1187 * Wakeup transmit queue engine
1189 dev_activate(dev);
1192 return ret;
1196 * dev_open - prepare an interface for use.
1197 * @dev: device to open
1199 * Takes a device from down to up state. The device's private open
1200 * function is invoked and then the multicast lists are loaded. Finally
1201 * the device is moved into the up state and a %NETDEV_UP message is
1202 * sent to the netdev notifier chain.
1204 * Calling this function on an active interface is a nop. On a failure
1205 * a negative errno code is returned.
1207 int dev_open(struct net_device *dev)
1209 int ret;
1212 * Is it already up?
1214 if (dev->flags & IFF_UP)
1215 return 0;
1218 * Open device
1220 ret = __dev_open(dev);
1221 if (ret < 0)
1222 return ret;
1225 * ... and announce new interface.
1227 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1228 call_netdevice_notifiers(NETDEV_UP, dev);
1230 return ret;
1232 EXPORT_SYMBOL(dev_open);
1234 static int __dev_close(struct net_device *dev)
1236 const struct net_device_ops *ops = dev->netdev_ops;
1238 ASSERT_RTNL();
1239 might_sleep();
1242 * Tell people we are going down, so that they can
1243 * prepare to death, when device is still operating.
1245 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1247 clear_bit(__LINK_STATE_START, &dev->state);
1249 /* Synchronize to scheduled poll. We cannot touch poll list,
1250 * it can be even on different cpu. So just clear netif_running().
1252 * dev->stop() will invoke napi_disable() on all of it's
1253 * napi_struct instances on this device.
1255 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1257 dev_deactivate(dev);
1260 * Call the device specific close. This cannot fail.
1261 * Only if device is UP
1263 * We allow it to be called even after a DETACH hot-plug
1264 * event.
1266 if (ops->ndo_stop)
1267 ops->ndo_stop(dev);
1270 * Device is now down.
1273 dev->flags &= ~IFF_UP;
1276 * Shutdown NET_DMA
1278 net_dmaengine_put();
1280 return 0;
1284 * dev_close - shutdown an interface.
1285 * @dev: device to shutdown
1287 * This function moves an active device into down state. A
1288 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1289 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1290 * chain.
1292 int dev_close(struct net_device *dev)
1294 if (!(dev->flags & IFF_UP))
1295 return 0;
1297 __dev_close(dev);
1300 * Tell people we are down
1302 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1303 call_netdevice_notifiers(NETDEV_DOWN, dev);
1305 return 0;
1307 EXPORT_SYMBOL(dev_close);
1311 * dev_disable_lro - disable Large Receive Offload on a device
1312 * @dev: device
1314 * Disable Large Receive Offload (LRO) on a net device. Must be
1315 * called under RTNL. This is needed if received packets may be
1316 * forwarded to another interface.
1318 void dev_disable_lro(struct net_device *dev)
1320 if (dev->ethtool_ops && dev->ethtool_ops->get_flags &&
1321 dev->ethtool_ops->set_flags) {
1322 u32 flags = dev->ethtool_ops->get_flags(dev);
1323 if (flags & ETH_FLAG_LRO) {
1324 flags &= ~ETH_FLAG_LRO;
1325 dev->ethtool_ops->set_flags(dev, flags);
1328 WARN_ON(dev->features & NETIF_F_LRO);
1330 EXPORT_SYMBOL(dev_disable_lro);
1333 static int dev_boot_phase = 1;
1336 * Device change register/unregister. These are not inline or static
1337 * as we export them to the world.
1341 * register_netdevice_notifier - register a network notifier block
1342 * @nb: notifier
1344 * Register a notifier to be called when network device events occur.
1345 * The notifier passed is linked into the kernel structures and must
1346 * not be reused until it has been unregistered. A negative errno code
1347 * is returned on a failure.
1349 * When registered all registration and up events are replayed
1350 * to the new notifier to allow device to have a race free
1351 * view of the network device list.
1354 int register_netdevice_notifier(struct notifier_block *nb)
1356 struct net_device *dev;
1357 struct net_device *last;
1358 struct net *net;
1359 int err;
1361 rtnl_lock();
1362 err = raw_notifier_chain_register(&netdev_chain, nb);
1363 if (err)
1364 goto unlock;
1365 if (dev_boot_phase)
1366 goto unlock;
1367 for_each_net(net) {
1368 for_each_netdev(net, dev) {
1369 err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1370 err = notifier_to_errno(err);
1371 if (err)
1372 goto rollback;
1374 if (!(dev->flags & IFF_UP))
1375 continue;
1377 nb->notifier_call(nb, NETDEV_UP, dev);
1381 unlock:
1382 rtnl_unlock();
1383 return err;
1385 rollback:
1386 last = dev;
1387 for_each_net(net) {
1388 for_each_netdev(net, dev) {
1389 if (dev == last)
1390 break;
1392 if (dev->flags & IFF_UP) {
1393 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1394 nb->notifier_call(nb, NETDEV_DOWN, dev);
1396 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1397 nb->notifier_call(nb, NETDEV_UNREGISTER_BATCH, dev);
1401 raw_notifier_chain_unregister(&netdev_chain, nb);
1402 goto unlock;
1404 EXPORT_SYMBOL(register_netdevice_notifier);
1407 * unregister_netdevice_notifier - unregister a network notifier block
1408 * @nb: notifier
1410 * Unregister a notifier previously registered by
1411 * register_netdevice_notifier(). The notifier is unlinked into the
1412 * kernel structures and may then be reused. A negative errno code
1413 * is returned on a failure.
1416 int unregister_netdevice_notifier(struct notifier_block *nb)
1418 int err;
1420 rtnl_lock();
1421 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1422 rtnl_unlock();
1423 return err;
1425 EXPORT_SYMBOL(unregister_netdevice_notifier);
1428 * call_netdevice_notifiers - call all network notifier blocks
1429 * @val: value passed unmodified to notifier function
1430 * @dev: net_device pointer passed unmodified to notifier function
1432 * Call all network notifier blocks. Parameters and return value
1433 * are as for raw_notifier_call_chain().
1436 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1438 return raw_notifier_call_chain(&netdev_chain, val, dev);
1441 /* When > 0 there are consumers of rx skb time stamps */
1442 static atomic_t netstamp_needed = ATOMIC_INIT(0);
1444 void net_enable_timestamp(void)
1446 atomic_inc(&netstamp_needed);
1448 EXPORT_SYMBOL(net_enable_timestamp);
1450 void net_disable_timestamp(void)
1452 atomic_dec(&netstamp_needed);
1454 EXPORT_SYMBOL(net_disable_timestamp);
1456 static inline void net_timestamp(struct sk_buff *skb)
1458 if (atomic_read(&netstamp_needed))
1459 __net_timestamp(skb);
1460 else
1461 skb->tstamp.tv64 = 0;
1465 * dev_forward_skb - loopback an skb to another netif
1467 * @dev: destination network device
1468 * @skb: buffer to forward
1470 * return values:
1471 * NET_RX_SUCCESS (no congestion)
1472 * NET_RX_DROP (packet was dropped)
1474 * dev_forward_skb can be used for injecting an skb from the
1475 * start_xmit function of one device into the receive queue
1476 * of another device.
1478 * The receiving device may be in another namespace, so
1479 * we have to clear all information in the skb that could
1480 * impact namespace isolation.
1482 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1484 skb_orphan(skb);
1486 if (!(dev->flags & IFF_UP))
1487 return NET_RX_DROP;
1489 if (skb->len > (dev->mtu + dev->hard_header_len))
1490 return NET_RX_DROP;
1492 skb_set_dev(skb, dev);
1493 skb->tstamp.tv64 = 0;
1494 skb->pkt_type = PACKET_HOST;
1495 skb->protocol = eth_type_trans(skb, dev);
1496 return netif_rx(skb);
1498 EXPORT_SYMBOL_GPL(dev_forward_skb);
1501 * Support routine. Sends outgoing frames to any network
1502 * taps currently in use.
1505 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1507 struct packet_type *ptype;
1509 #ifdef CONFIG_NET_CLS_ACT
1510 if (!(skb->tstamp.tv64 && (G_TC_FROM(skb->tc_verd) & AT_INGRESS)))
1511 net_timestamp(skb);
1512 #else
1513 net_timestamp(skb);
1514 #endif
1516 rcu_read_lock();
1517 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1518 /* Never send packets back to the socket
1519 * they originated from - MvS (miquels@drinkel.ow.org)
1521 if ((ptype->dev == dev || !ptype->dev) &&
1522 (ptype->af_packet_priv == NULL ||
1523 (struct sock *)ptype->af_packet_priv != skb->sk)) {
1524 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1525 if (!skb2)
1526 break;
1528 /* skb->nh should be correctly
1529 set by sender, so that the second statement is
1530 just protection against buggy protocols.
1532 skb_reset_mac_header(skb2);
1534 if (skb_network_header(skb2) < skb2->data ||
1535 skb2->network_header > skb2->tail) {
1536 if (net_ratelimit())
1537 printk(KERN_CRIT "protocol %04x is "
1538 "buggy, dev %s\n",
1539 skb2->protocol, dev->name);
1540 skb_reset_network_header(skb2);
1543 skb2->transport_header = skb2->network_header;
1544 skb2->pkt_type = PACKET_OUTGOING;
1545 ptype->func(skb2, skb->dev, ptype, skb->dev);
1548 rcu_read_unlock();
1552 static inline void __netif_reschedule(struct Qdisc *q)
1554 struct softnet_data *sd;
1555 unsigned long flags;
1557 local_irq_save(flags);
1558 sd = &__get_cpu_var(softnet_data);
1559 q->next_sched = sd->output_queue;
1560 sd->output_queue = q;
1561 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1562 local_irq_restore(flags);
1565 void __netif_schedule(struct Qdisc *q)
1567 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
1568 __netif_reschedule(q);
1570 EXPORT_SYMBOL(__netif_schedule);
1572 void dev_kfree_skb_irq(struct sk_buff *skb)
1574 if (atomic_dec_and_test(&skb->users)) {
1575 struct softnet_data *sd;
1576 unsigned long flags;
1578 local_irq_save(flags);
1579 sd = &__get_cpu_var(softnet_data);
1580 skb->next = sd->completion_queue;
1581 sd->completion_queue = skb;
1582 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1583 local_irq_restore(flags);
1586 EXPORT_SYMBOL(dev_kfree_skb_irq);
1588 void dev_kfree_skb_any(struct sk_buff *skb)
1590 if (in_irq() || irqs_disabled())
1591 dev_kfree_skb_irq(skb);
1592 else
1593 dev_kfree_skb(skb);
1595 EXPORT_SYMBOL(dev_kfree_skb_any);
1599 * netif_device_detach - mark device as removed
1600 * @dev: network device
1602 * Mark device as removed from system and therefore no longer available.
1604 void netif_device_detach(struct net_device *dev)
1606 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1607 netif_running(dev)) {
1608 netif_tx_stop_all_queues(dev);
1611 EXPORT_SYMBOL(netif_device_detach);
1614 * netif_device_attach - mark device as attached
1615 * @dev: network device
1617 * Mark device as attached from system and restart if needed.
1619 void netif_device_attach(struct net_device *dev)
1621 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1622 netif_running(dev)) {
1623 netif_tx_wake_all_queues(dev);
1624 __netdev_watchdog_up(dev);
1627 EXPORT_SYMBOL(netif_device_attach);
1629 static bool can_checksum_protocol(unsigned long features, __be16 protocol)
1631 return ((features & NETIF_F_GEN_CSUM) ||
1632 ((features & NETIF_F_IP_CSUM) &&
1633 protocol == htons(ETH_P_IP)) ||
1634 ((features & NETIF_F_IPV6_CSUM) &&
1635 protocol == htons(ETH_P_IPV6)) ||
1636 ((features & NETIF_F_FCOE_CRC) &&
1637 protocol == htons(ETH_P_FCOE)));
1640 static bool dev_can_checksum(struct net_device *dev, struct sk_buff *skb)
1642 if (can_checksum_protocol(dev->features, skb->protocol))
1643 return true;
1645 if (skb->protocol == htons(ETH_P_8021Q)) {
1646 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
1647 if (can_checksum_protocol(dev->features & dev->vlan_features,
1648 veh->h_vlan_encapsulated_proto))
1649 return true;
1652 return false;
1656 * skb_dev_set -- assign a new device to a buffer
1657 * @skb: buffer for the new device
1658 * @dev: network device
1660 * If an skb is owned by a device already, we have to reset
1661 * all data private to the namespace a device belongs to
1662 * before assigning it a new device.
1664 #ifdef CONFIG_NET_NS
1665 void skb_set_dev(struct sk_buff *skb, struct net_device *dev)
1667 skb_dst_drop(skb);
1668 if (skb->dev && !net_eq(dev_net(skb->dev), dev_net(dev))) {
1669 secpath_reset(skb);
1670 nf_reset(skb);
1671 skb_init_secmark(skb);
1672 skb->mark = 0;
1673 skb->priority = 0;
1674 skb->nf_trace = 0;
1675 skb->ipvs_property = 0;
1676 #ifdef CONFIG_NET_SCHED
1677 skb->tc_index = 0;
1678 #endif
1680 skb->dev = dev;
1682 EXPORT_SYMBOL(skb_set_dev);
1683 #endif /* CONFIG_NET_NS */
1686 * Invalidate hardware checksum when packet is to be mangled, and
1687 * complete checksum manually on outgoing path.
1689 int skb_checksum_help(struct sk_buff *skb)
1691 __wsum csum;
1692 int ret = 0, offset;
1694 if (skb->ip_summed == CHECKSUM_COMPLETE)
1695 goto out_set_summed;
1697 if (unlikely(skb_shinfo(skb)->gso_size)) {
1698 /* Let GSO fix up the checksum. */
1699 goto out_set_summed;
1702 offset = skb->csum_start - skb_headroom(skb);
1703 BUG_ON(offset >= skb_headlen(skb));
1704 csum = skb_checksum(skb, offset, skb->len - offset, 0);
1706 offset += skb->csum_offset;
1707 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1709 if (skb_cloned(skb) &&
1710 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1711 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1712 if (ret)
1713 goto out;
1716 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
1717 out_set_summed:
1718 skb->ip_summed = CHECKSUM_NONE;
1719 out:
1720 return ret;
1722 EXPORT_SYMBOL(skb_checksum_help);
1725 * skb_gso_segment - Perform segmentation on skb.
1726 * @skb: buffer to segment
1727 * @features: features for the output path (see dev->features)
1729 * This function segments the given skb and returns a list of segments.
1731 * It may return NULL if the skb requires no segmentation. This is
1732 * only possible when GSO is used for verifying header integrity.
1734 struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features)
1736 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1737 struct packet_type *ptype;
1738 __be16 type = skb->protocol;
1739 int err;
1741 skb_reset_mac_header(skb);
1742 skb->mac_len = skb->network_header - skb->mac_header;
1743 __skb_pull(skb, skb->mac_len);
1745 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1746 struct net_device *dev = skb->dev;
1747 struct ethtool_drvinfo info = {};
1749 if (dev && dev->ethtool_ops && dev->ethtool_ops->get_drvinfo)
1750 dev->ethtool_ops->get_drvinfo(dev, &info);
1752 WARN(1, "%s: caps=(0x%lx, 0x%lx) len=%d data_len=%d "
1753 "ip_summed=%d",
1754 info.driver, dev ? dev->features : 0L,
1755 skb->sk ? skb->sk->sk_route_caps : 0L,
1756 skb->len, skb->data_len, skb->ip_summed);
1758 if (skb_header_cloned(skb) &&
1759 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1760 return ERR_PTR(err);
1763 rcu_read_lock();
1764 list_for_each_entry_rcu(ptype,
1765 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
1766 if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1767 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1768 err = ptype->gso_send_check(skb);
1769 segs = ERR_PTR(err);
1770 if (err || skb_gso_ok(skb, features))
1771 break;
1772 __skb_push(skb, (skb->data -
1773 skb_network_header(skb)));
1775 segs = ptype->gso_segment(skb, features);
1776 break;
1779 rcu_read_unlock();
1781 __skb_push(skb, skb->data - skb_mac_header(skb));
1783 return segs;
1785 EXPORT_SYMBOL(skb_gso_segment);
1787 /* Take action when hardware reception checksum errors are detected. */
1788 #ifdef CONFIG_BUG
1789 void netdev_rx_csum_fault(struct net_device *dev)
1791 if (net_ratelimit()) {
1792 printk(KERN_ERR "%s: hw csum failure.\n",
1793 dev ? dev->name : "<unknown>");
1794 dump_stack();
1797 EXPORT_SYMBOL(netdev_rx_csum_fault);
1798 #endif
1800 /* Actually, we should eliminate this check as soon as we know, that:
1801 * 1. IOMMU is present and allows to map all the memory.
1802 * 2. No high memory really exists on this machine.
1805 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1807 #ifdef CONFIG_HIGHMEM
1808 int i;
1809 if (!(dev->features & NETIF_F_HIGHDMA)) {
1810 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1811 if (PageHighMem(skb_shinfo(skb)->frags[i].page))
1812 return 1;
1815 if (PCI_DMA_BUS_IS_PHYS) {
1816 struct device *pdev = dev->dev.parent;
1818 if (!pdev)
1819 return 0;
1820 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1821 dma_addr_t addr = page_to_phys(skb_shinfo(skb)->frags[i].page);
1822 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
1823 return 1;
1826 #endif
1827 return 0;
1830 struct dev_gso_cb {
1831 void (*destructor)(struct sk_buff *skb);
1834 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
1836 static void dev_gso_skb_destructor(struct sk_buff *skb)
1838 struct dev_gso_cb *cb;
1840 do {
1841 struct sk_buff *nskb = skb->next;
1843 skb->next = nskb->next;
1844 nskb->next = NULL;
1845 kfree_skb(nskb);
1846 } while (skb->next);
1848 cb = DEV_GSO_CB(skb);
1849 if (cb->destructor)
1850 cb->destructor(skb);
1854 * dev_gso_segment - Perform emulated hardware segmentation on skb.
1855 * @skb: buffer to segment
1857 * This function segments the given skb and stores the list of segments
1858 * in skb->next.
1860 static int dev_gso_segment(struct sk_buff *skb)
1862 struct net_device *dev = skb->dev;
1863 struct sk_buff *segs;
1864 int features = dev->features & ~(illegal_highdma(dev, skb) ?
1865 NETIF_F_SG : 0);
1867 segs = skb_gso_segment(skb, features);
1869 /* Verifying header integrity only. */
1870 if (!segs)
1871 return 0;
1873 if (IS_ERR(segs))
1874 return PTR_ERR(segs);
1876 skb->next = segs;
1877 DEV_GSO_CB(skb)->destructor = skb->destructor;
1878 skb->destructor = dev_gso_skb_destructor;
1880 return 0;
1884 * Try to orphan skb early, right before transmission by the device.
1885 * We cannot orphan skb if tx timestamp is requested, since
1886 * drivers need to call skb_tstamp_tx() to send the timestamp.
1888 static inline void skb_orphan_try(struct sk_buff *skb)
1890 if (!skb_tx(skb)->flags)
1891 skb_orphan(skb);
1894 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
1895 struct netdev_queue *txq)
1897 const struct net_device_ops *ops = dev->netdev_ops;
1898 int rc = NETDEV_TX_OK;
1900 if (likely(!skb->next)) {
1901 if (!list_empty(&ptype_all))
1902 dev_queue_xmit_nit(skb, dev);
1904 if (netif_needs_gso(dev, skb)) {
1905 if (unlikely(dev_gso_segment(skb)))
1906 goto out_kfree_skb;
1907 if (skb->next)
1908 goto gso;
1912 * If device doesnt need skb->dst, release it right now while
1913 * its hot in this cpu cache
1915 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
1916 skb_dst_drop(skb);
1918 skb_orphan_try(skb);
1919 rc = ops->ndo_start_xmit(skb, dev);
1920 if (rc == NETDEV_TX_OK)
1921 txq_trans_update(txq);
1922 return rc;
1925 gso:
1926 do {
1927 struct sk_buff *nskb = skb->next;
1929 skb->next = nskb->next;
1930 nskb->next = NULL;
1933 * If device doesnt need nskb->dst, release it right now while
1934 * its hot in this cpu cache
1936 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
1937 skb_dst_drop(nskb);
1939 skb_orphan_try(nskb);
1940 rc = ops->ndo_start_xmit(nskb, dev);
1941 if (unlikely(rc != NETDEV_TX_OK)) {
1942 if (rc & ~NETDEV_TX_MASK)
1943 goto out_kfree_gso_skb;
1944 nskb->next = skb->next;
1945 skb->next = nskb;
1946 return rc;
1948 txq_trans_update(txq);
1949 if (unlikely(netif_tx_queue_stopped(txq) && skb->next))
1950 return NETDEV_TX_BUSY;
1951 } while (skb->next);
1953 out_kfree_gso_skb:
1954 if (likely(skb->next == NULL))
1955 skb->destructor = DEV_GSO_CB(skb)->destructor;
1956 out_kfree_skb:
1957 kfree_skb(skb);
1958 return rc;
1961 static u32 hashrnd __read_mostly;
1963 u16 skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb)
1965 u32 hash;
1967 if (skb_rx_queue_recorded(skb)) {
1968 hash = skb_get_rx_queue(skb);
1969 while (unlikely(hash >= dev->real_num_tx_queues))
1970 hash -= dev->real_num_tx_queues;
1971 return hash;
1974 if (skb->sk && skb->sk->sk_hash)
1975 hash = skb->sk->sk_hash;
1976 else
1977 hash = skb->protocol;
1979 hash = jhash_1word(hash, hashrnd);
1981 return (u16) (((u64) hash * dev->real_num_tx_queues) >> 32);
1983 EXPORT_SYMBOL(skb_tx_hash);
1985 static inline u16 dev_cap_txqueue(struct net_device *dev, u16 queue_index)
1987 if (unlikely(queue_index >= dev->real_num_tx_queues)) {
1988 if (net_ratelimit()) {
1989 pr_warning("%s selects TX queue %d, but "
1990 "real number of TX queues is %d\n",
1991 dev->name, queue_index, dev->real_num_tx_queues);
1993 return 0;
1995 return queue_index;
1998 static struct netdev_queue *dev_pick_tx(struct net_device *dev,
1999 struct sk_buff *skb)
2001 u16 queue_index;
2002 struct sock *sk = skb->sk;
2004 if (sk_tx_queue_recorded(sk)) {
2005 queue_index = sk_tx_queue_get(sk);
2006 } else {
2007 const struct net_device_ops *ops = dev->netdev_ops;
2009 if (ops->ndo_select_queue) {
2010 queue_index = ops->ndo_select_queue(dev, skb);
2011 queue_index = dev_cap_txqueue(dev, queue_index);
2012 } else {
2013 queue_index = 0;
2014 if (dev->real_num_tx_queues > 1)
2015 queue_index = skb_tx_hash(dev, skb);
2017 if (sk && rcu_dereference_check(sk->sk_dst_cache, 1))
2018 sk_tx_queue_set(sk, queue_index);
2022 skb_set_queue_mapping(skb, queue_index);
2023 return netdev_get_tx_queue(dev, queue_index);
2026 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2027 struct net_device *dev,
2028 struct netdev_queue *txq)
2030 spinlock_t *root_lock = qdisc_lock(q);
2031 int rc;
2033 spin_lock(root_lock);
2034 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2035 kfree_skb(skb);
2036 rc = NET_XMIT_DROP;
2037 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2038 !test_and_set_bit(__QDISC_STATE_RUNNING, &q->state)) {
2040 * This is a work-conserving queue; there are no old skbs
2041 * waiting to be sent out; and the qdisc is not running -
2042 * xmit the skb directly.
2044 __qdisc_update_bstats(q, skb->len);
2045 if (sch_direct_xmit(skb, q, dev, txq, root_lock))
2046 __qdisc_run(q);
2047 else
2048 clear_bit(__QDISC_STATE_RUNNING, &q->state);
2050 rc = NET_XMIT_SUCCESS;
2051 } else {
2052 rc = qdisc_enqueue_root(skb, q);
2053 qdisc_run(q);
2055 spin_unlock(root_lock);
2057 return rc;
2061 * Returns true if either:
2062 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
2063 * 2. skb is fragmented and the device does not support SG, or if
2064 * at least one of fragments is in highmem and device does not
2065 * support DMA from it.
2067 static inline int skb_needs_linearize(struct sk_buff *skb,
2068 struct net_device *dev)
2070 return (skb_has_frags(skb) && !(dev->features & NETIF_F_FRAGLIST)) ||
2071 (skb_shinfo(skb)->nr_frags && (!(dev->features & NETIF_F_SG) ||
2072 illegal_highdma(dev, skb)));
2076 * dev_queue_xmit - transmit a buffer
2077 * @skb: buffer to transmit
2079 * Queue a buffer for transmission to a network device. The caller must
2080 * have set the device and priority and built the buffer before calling
2081 * this function. The function can be called from an interrupt.
2083 * A negative errno code is returned on a failure. A success does not
2084 * guarantee the frame will be transmitted as it may be dropped due
2085 * to congestion or traffic shaping.
2087 * -----------------------------------------------------------------------------------
2088 * I notice this method can also return errors from the queue disciplines,
2089 * including NET_XMIT_DROP, which is a positive value. So, errors can also
2090 * be positive.
2092 * Regardless of the return value, the skb is consumed, so it is currently
2093 * difficult to retry a send to this method. (You can bump the ref count
2094 * before sending to hold a reference for retry if you are careful.)
2096 * When calling this method, interrupts MUST be enabled. This is because
2097 * the BH enable code must have IRQs enabled so that it will not deadlock.
2098 * --BLG
2100 int dev_queue_xmit(struct sk_buff *skb)
2102 struct net_device *dev = skb->dev;
2103 struct netdev_queue *txq;
2104 struct Qdisc *q;
2105 int rc = -ENOMEM;
2107 /* GSO will handle the following emulations directly. */
2108 if (netif_needs_gso(dev, skb))
2109 goto gso;
2111 /* Convert a paged skb to linear, if required */
2112 if (skb_needs_linearize(skb, dev) && __skb_linearize(skb))
2113 goto out_kfree_skb;
2115 /* If packet is not checksummed and device does not support
2116 * checksumming for this protocol, complete checksumming here.
2118 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2119 skb_set_transport_header(skb, skb->csum_start -
2120 skb_headroom(skb));
2121 if (!dev_can_checksum(dev, skb) && skb_checksum_help(skb))
2122 goto out_kfree_skb;
2125 gso:
2126 /* Disable soft irqs for various locks below. Also
2127 * stops preemption for RCU.
2129 rcu_read_lock_bh();
2131 txq = dev_pick_tx(dev, skb);
2132 q = rcu_dereference_bh(txq->qdisc);
2134 #ifdef CONFIG_NET_CLS_ACT
2135 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2136 #endif
2137 if (q->enqueue) {
2138 rc = __dev_xmit_skb(skb, q, dev, txq);
2139 goto out;
2142 /* The device has no queue. Common case for software devices:
2143 loopback, all the sorts of tunnels...
2145 Really, it is unlikely that netif_tx_lock protection is necessary
2146 here. (f.e. loopback and IP tunnels are clean ignoring statistics
2147 counters.)
2148 However, it is possible, that they rely on protection
2149 made by us here.
2151 Check this and shot the lock. It is not prone from deadlocks.
2152 Either shot noqueue qdisc, it is even simpler 8)
2154 if (dev->flags & IFF_UP) {
2155 int cpu = smp_processor_id(); /* ok because BHs are off */
2157 if (txq->xmit_lock_owner != cpu) {
2159 HARD_TX_LOCK(dev, txq, cpu);
2161 if (!netif_tx_queue_stopped(txq)) {
2162 rc = dev_hard_start_xmit(skb, dev, txq);
2163 if (dev_xmit_complete(rc)) {
2164 HARD_TX_UNLOCK(dev, txq);
2165 goto out;
2168 HARD_TX_UNLOCK(dev, txq);
2169 if (net_ratelimit())
2170 printk(KERN_CRIT "Virtual device %s asks to "
2171 "queue packet!\n", dev->name);
2172 } else {
2173 /* Recursion is detected! It is possible,
2174 * unfortunately */
2175 if (net_ratelimit())
2176 printk(KERN_CRIT "Dead loop on virtual device "
2177 "%s, fix it urgently!\n", dev->name);
2181 rc = -ENETDOWN;
2182 rcu_read_unlock_bh();
2184 out_kfree_skb:
2185 kfree_skb(skb);
2186 return rc;
2187 out:
2188 rcu_read_unlock_bh();
2189 return rc;
2191 EXPORT_SYMBOL(dev_queue_xmit);
2194 /*=======================================================================
2195 Receiver routines
2196 =======================================================================*/
2198 int netdev_max_backlog __read_mostly = 1000;
2199 int netdev_budget __read_mostly = 300;
2200 int weight_p __read_mostly = 64; /* old backlog weight */
2202 DEFINE_PER_CPU(struct netif_rx_stats, netdev_rx_stat) = { 0, };
2204 #ifdef CONFIG_RPS
2206 /* One global table that all flow-based protocols share. */
2207 struct rps_sock_flow_table *rps_sock_flow_table __read_mostly;
2208 EXPORT_SYMBOL(rps_sock_flow_table);
2211 * get_rps_cpu is called from netif_receive_skb and returns the target
2212 * CPU from the RPS map of the receiving queue for a given skb.
2213 * rcu_read_lock must be held on entry.
2215 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2216 struct rps_dev_flow **rflowp)
2218 struct ipv6hdr *ip6;
2219 struct iphdr *ip;
2220 struct netdev_rx_queue *rxqueue;
2221 struct rps_map *map;
2222 struct rps_dev_flow_table *flow_table;
2223 struct rps_sock_flow_table *sock_flow_table;
2224 int cpu = -1;
2225 u8 ip_proto;
2226 u16 tcpu;
2227 u32 addr1, addr2, ports, ihl;
2229 if (skb_rx_queue_recorded(skb)) {
2230 u16 index = skb_get_rx_queue(skb);
2231 if (unlikely(index >= dev->num_rx_queues)) {
2232 if (net_ratelimit()) {
2233 pr_warning("%s received packet on queue "
2234 "%u, but number of RX queues is %u\n",
2235 dev->name, index, dev->num_rx_queues);
2237 goto done;
2239 rxqueue = dev->_rx + index;
2240 } else
2241 rxqueue = dev->_rx;
2243 if (!rxqueue->rps_map && !rxqueue->rps_flow_table)
2244 goto done;
2246 if (skb->rxhash)
2247 goto got_hash; /* Skip hash computation on packet header */
2249 switch (skb->protocol) {
2250 case __constant_htons(ETH_P_IP):
2251 if (!pskb_may_pull(skb, sizeof(*ip)))
2252 goto done;
2254 ip = (struct iphdr *) skb->data;
2255 ip_proto = ip->protocol;
2256 addr1 = ip->saddr;
2257 addr2 = ip->daddr;
2258 ihl = ip->ihl;
2259 break;
2260 case __constant_htons(ETH_P_IPV6):
2261 if (!pskb_may_pull(skb, sizeof(*ip6)))
2262 goto done;
2264 ip6 = (struct ipv6hdr *) skb->data;
2265 ip_proto = ip6->nexthdr;
2266 addr1 = ip6->saddr.s6_addr32[3];
2267 addr2 = ip6->daddr.s6_addr32[3];
2268 ihl = (40 >> 2);
2269 break;
2270 default:
2271 goto done;
2273 ports = 0;
2274 switch (ip_proto) {
2275 case IPPROTO_TCP:
2276 case IPPROTO_UDP:
2277 case IPPROTO_DCCP:
2278 case IPPROTO_ESP:
2279 case IPPROTO_AH:
2280 case IPPROTO_SCTP:
2281 case IPPROTO_UDPLITE:
2282 if (pskb_may_pull(skb, (ihl * 4) + 4))
2283 ports = *((u32 *) (skb->data + (ihl * 4)));
2284 break;
2286 default:
2287 break;
2290 skb->rxhash = jhash_3words(addr1, addr2, ports, hashrnd);
2291 if (!skb->rxhash)
2292 skb->rxhash = 1;
2294 got_hash:
2295 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2296 sock_flow_table = rcu_dereference(rps_sock_flow_table);
2297 if (flow_table && sock_flow_table) {
2298 u16 next_cpu;
2299 struct rps_dev_flow *rflow;
2301 rflow = &flow_table->flows[skb->rxhash & flow_table->mask];
2302 tcpu = rflow->cpu;
2304 next_cpu = sock_flow_table->ents[skb->rxhash &
2305 sock_flow_table->mask];
2308 * If the desired CPU (where last recvmsg was done) is
2309 * different from current CPU (one in the rx-queue flow
2310 * table entry), switch if one of the following holds:
2311 * - Current CPU is unset (equal to RPS_NO_CPU).
2312 * - Current CPU is offline.
2313 * - The current CPU's queue tail has advanced beyond the
2314 * last packet that was enqueued using this table entry.
2315 * This guarantees that all previous packets for the flow
2316 * have been dequeued, thus preserving in order delivery.
2318 if (unlikely(tcpu != next_cpu) &&
2319 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
2320 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
2321 rflow->last_qtail)) >= 0)) {
2322 tcpu = rflow->cpu = next_cpu;
2323 if (tcpu != RPS_NO_CPU)
2324 rflow->last_qtail = per_cpu(softnet_data,
2325 tcpu).input_queue_head;
2327 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
2328 *rflowp = rflow;
2329 cpu = tcpu;
2330 goto done;
2334 map = rcu_dereference(rxqueue->rps_map);
2335 if (map) {
2336 tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32];
2338 if (cpu_online(tcpu)) {
2339 cpu = tcpu;
2340 goto done;
2344 done:
2345 return cpu;
2349 * This structure holds the per-CPU mask of CPUs for which IPIs are scheduled
2350 * to be sent to kick remote softirq processing. There are two masks since
2351 * the sending of IPIs must be done with interrupts enabled. The select field
2352 * indicates the current mask that enqueue_backlog uses to schedule IPIs.
2353 * select is flipped before net_rps_action is called while still under lock,
2354 * net_rps_action then uses the non-selected mask to send the IPIs and clears
2355 * it without conflicting with enqueue_backlog operation.
2357 struct rps_remote_softirq_cpus {
2358 cpumask_t mask[2];
2359 int select;
2361 static DEFINE_PER_CPU(struct rps_remote_softirq_cpus, rps_remote_softirq_cpus);
2363 /* Called from hardirq (IPI) context */
2364 static void trigger_softirq(void *data)
2366 struct softnet_data *queue = data;
2367 __napi_schedule(&queue->backlog);
2368 __get_cpu_var(netdev_rx_stat).received_rps++;
2370 #endif /* CONFIG_RPS */
2373 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
2374 * queue (may be a remote CPU queue).
2376 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
2377 unsigned int *qtail)
2379 struct softnet_data *queue;
2380 unsigned long flags;
2382 queue = &per_cpu(softnet_data, cpu);
2384 local_irq_save(flags);
2385 __get_cpu_var(netdev_rx_stat).total++;
2387 rps_lock(queue);
2388 if (queue->input_pkt_queue.qlen <= netdev_max_backlog) {
2389 if (queue->input_pkt_queue.qlen) {
2390 enqueue:
2391 __skb_queue_tail(&queue->input_pkt_queue, skb);
2392 #ifdef CONFIG_RPS
2393 *qtail = queue->input_queue_head +
2394 queue->input_pkt_queue.qlen;
2395 #endif
2396 rps_unlock(queue);
2397 local_irq_restore(flags);
2398 return NET_RX_SUCCESS;
2401 /* Schedule NAPI for backlog device */
2402 if (napi_schedule_prep(&queue->backlog)) {
2403 #ifdef CONFIG_RPS
2404 if (cpu != smp_processor_id()) {
2405 struct rps_remote_softirq_cpus *rcpus =
2406 &__get_cpu_var(rps_remote_softirq_cpus);
2408 cpu_set(cpu, rcpus->mask[rcpus->select]);
2409 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2410 goto enqueue;
2412 #endif
2413 __napi_schedule(&queue->backlog);
2415 goto enqueue;
2418 rps_unlock(queue);
2420 __get_cpu_var(netdev_rx_stat).dropped++;
2421 local_irq_restore(flags);
2423 kfree_skb(skb);
2424 return NET_RX_DROP;
2428 * netif_rx - post buffer to the network code
2429 * @skb: buffer to post
2431 * This function receives a packet from a device driver and queues it for
2432 * the upper (protocol) levels to process. It always succeeds. The buffer
2433 * may be dropped during processing for congestion control or by the
2434 * protocol layers.
2436 * return values:
2437 * NET_RX_SUCCESS (no congestion)
2438 * NET_RX_DROP (packet was dropped)
2442 int netif_rx(struct sk_buff *skb)
2444 int ret;
2446 /* if netpoll wants it, pretend we never saw it */
2447 if (netpoll_rx(skb))
2448 return NET_RX_DROP;
2450 if (!skb->tstamp.tv64)
2451 net_timestamp(skb);
2453 #ifdef CONFIG_RPS
2455 struct rps_dev_flow voidflow, *rflow = &voidflow;
2456 int cpu;
2458 rcu_read_lock();
2460 cpu = get_rps_cpu(skb->dev, skb, &rflow);
2461 if (cpu < 0)
2462 cpu = smp_processor_id();
2464 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
2466 rcu_read_unlock();
2468 #else
2470 unsigned int qtail;
2471 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
2472 put_cpu();
2474 #endif
2475 return ret;
2477 EXPORT_SYMBOL(netif_rx);
2479 int netif_rx_ni(struct sk_buff *skb)
2481 int err;
2483 preempt_disable();
2484 err = netif_rx(skb);
2485 if (local_softirq_pending())
2486 do_softirq();
2487 preempt_enable();
2489 return err;
2491 EXPORT_SYMBOL(netif_rx_ni);
2493 static void net_tx_action(struct softirq_action *h)
2495 struct softnet_data *sd = &__get_cpu_var(softnet_data);
2497 if (sd->completion_queue) {
2498 struct sk_buff *clist;
2500 local_irq_disable();
2501 clist = sd->completion_queue;
2502 sd->completion_queue = NULL;
2503 local_irq_enable();
2505 while (clist) {
2506 struct sk_buff *skb = clist;
2507 clist = clist->next;
2509 WARN_ON(atomic_read(&skb->users));
2510 __kfree_skb(skb);
2514 if (sd->output_queue) {
2515 struct Qdisc *head;
2517 local_irq_disable();
2518 head = sd->output_queue;
2519 sd->output_queue = NULL;
2520 local_irq_enable();
2522 while (head) {
2523 struct Qdisc *q = head;
2524 spinlock_t *root_lock;
2526 head = head->next_sched;
2528 root_lock = qdisc_lock(q);
2529 if (spin_trylock(root_lock)) {
2530 smp_mb__before_clear_bit();
2531 clear_bit(__QDISC_STATE_SCHED,
2532 &q->state);
2533 qdisc_run(q);
2534 spin_unlock(root_lock);
2535 } else {
2536 if (!test_bit(__QDISC_STATE_DEACTIVATED,
2537 &q->state)) {
2538 __netif_reschedule(q);
2539 } else {
2540 smp_mb__before_clear_bit();
2541 clear_bit(__QDISC_STATE_SCHED,
2542 &q->state);
2549 static inline int deliver_skb(struct sk_buff *skb,
2550 struct packet_type *pt_prev,
2551 struct net_device *orig_dev)
2553 atomic_inc(&skb->users);
2554 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2557 #if defined(CONFIG_BRIDGE) || defined (CONFIG_BRIDGE_MODULE)
2559 #if defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE)
2560 /* This hook is defined here for ATM LANE */
2561 int (*br_fdb_test_addr_hook)(struct net_device *dev,
2562 unsigned char *addr) __read_mostly;
2563 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
2564 #endif
2567 * If bridge module is loaded call bridging hook.
2568 * returns NULL if packet was consumed.
2570 struct sk_buff *(*br_handle_frame_hook)(struct net_bridge_port *p,
2571 struct sk_buff *skb) __read_mostly;
2572 EXPORT_SYMBOL_GPL(br_handle_frame_hook);
2574 static inline struct sk_buff *handle_bridge(struct sk_buff *skb,
2575 struct packet_type **pt_prev, int *ret,
2576 struct net_device *orig_dev)
2578 struct net_bridge_port *port;
2580 if (skb->pkt_type == PACKET_LOOPBACK ||
2581 (port = rcu_dereference(skb->dev->br_port)) == NULL)
2582 return skb;
2584 if (*pt_prev) {
2585 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2586 *pt_prev = NULL;
2589 return br_handle_frame_hook(port, skb);
2591 #else
2592 #define handle_bridge(skb, pt_prev, ret, orig_dev) (skb)
2593 #endif
2595 #if defined(CONFIG_MACVLAN) || defined(CONFIG_MACVLAN_MODULE)
2596 struct sk_buff *(*macvlan_handle_frame_hook)(struct sk_buff *skb) __read_mostly;
2597 EXPORT_SYMBOL_GPL(macvlan_handle_frame_hook);
2599 static inline struct sk_buff *handle_macvlan(struct sk_buff *skb,
2600 struct packet_type **pt_prev,
2601 int *ret,
2602 struct net_device *orig_dev)
2604 if (skb->dev->macvlan_port == NULL)
2605 return skb;
2607 if (*pt_prev) {
2608 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2609 *pt_prev = NULL;
2611 return macvlan_handle_frame_hook(skb);
2613 #else
2614 #define handle_macvlan(skb, pt_prev, ret, orig_dev) (skb)
2615 #endif
2617 #ifdef CONFIG_NET_CLS_ACT
2618 /* TODO: Maybe we should just force sch_ingress to be compiled in
2619 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
2620 * a compare and 2 stores extra right now if we dont have it on
2621 * but have CONFIG_NET_CLS_ACT
2622 * NOTE: This doesnt stop any functionality; if you dont have
2623 * the ingress scheduler, you just cant add policies on ingress.
2626 static int ing_filter(struct sk_buff *skb)
2628 struct net_device *dev = skb->dev;
2629 u32 ttl = G_TC_RTTL(skb->tc_verd);
2630 struct netdev_queue *rxq;
2631 int result = TC_ACT_OK;
2632 struct Qdisc *q;
2634 if (MAX_RED_LOOP < ttl++) {
2635 printk(KERN_WARNING
2636 "Redir loop detected Dropping packet (%d->%d)\n",
2637 skb->skb_iif, dev->ifindex);
2638 return TC_ACT_SHOT;
2641 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
2642 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
2644 rxq = &dev->rx_queue;
2646 q = rxq->qdisc;
2647 if (q != &noop_qdisc) {
2648 spin_lock(qdisc_lock(q));
2649 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
2650 result = qdisc_enqueue_root(skb, q);
2651 spin_unlock(qdisc_lock(q));
2654 return result;
2657 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
2658 struct packet_type **pt_prev,
2659 int *ret, struct net_device *orig_dev)
2661 if (skb->dev->rx_queue.qdisc == &noop_qdisc)
2662 goto out;
2664 if (*pt_prev) {
2665 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2666 *pt_prev = NULL;
2667 } else {
2668 /* Huh? Why does turning on AF_PACKET affect this? */
2669 skb->tc_verd = SET_TC_OK2MUNGE(skb->tc_verd);
2672 switch (ing_filter(skb)) {
2673 case TC_ACT_SHOT:
2674 case TC_ACT_STOLEN:
2675 kfree_skb(skb);
2676 return NULL;
2679 out:
2680 skb->tc_verd = 0;
2681 return skb;
2683 #endif
2686 * netif_nit_deliver - deliver received packets to network taps
2687 * @skb: buffer
2689 * This function is used to deliver incoming packets to network
2690 * taps. It should be used when the normal netif_receive_skb path
2691 * is bypassed, for example because of VLAN acceleration.
2693 void netif_nit_deliver(struct sk_buff *skb)
2695 struct packet_type *ptype;
2697 if (list_empty(&ptype_all))
2698 return;
2700 skb_reset_network_header(skb);
2701 skb_reset_transport_header(skb);
2702 skb->mac_len = skb->network_header - skb->mac_header;
2704 rcu_read_lock();
2705 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2706 if (!ptype->dev || ptype->dev == skb->dev)
2707 deliver_skb(skb, ptype, skb->dev);
2709 rcu_read_unlock();
2712 static inline void skb_bond_set_mac_by_master(struct sk_buff *skb,
2713 struct net_device *master)
2715 if (skb->pkt_type == PACKET_HOST) {
2716 u16 *dest = (u16 *) eth_hdr(skb)->h_dest;
2718 memcpy(dest, master->dev_addr, ETH_ALEN);
2722 /* On bonding slaves other than the currently active slave, suppress
2723 * duplicates except for 802.3ad ETH_P_SLOW, alb non-mcast/bcast, and
2724 * ARP on active-backup slaves with arp_validate enabled.
2726 int __skb_bond_should_drop(struct sk_buff *skb, struct net_device *master)
2728 struct net_device *dev = skb->dev;
2730 if (master->priv_flags & IFF_MASTER_ARPMON)
2731 dev->last_rx = jiffies;
2733 if ((master->priv_flags & IFF_MASTER_ALB) && master->br_port) {
2734 /* Do address unmangle. The local destination address
2735 * will be always the one master has. Provides the right
2736 * functionality in a bridge.
2738 skb_bond_set_mac_by_master(skb, master);
2741 if (dev->priv_flags & IFF_SLAVE_INACTIVE) {
2742 if ((dev->priv_flags & IFF_SLAVE_NEEDARP) &&
2743 skb->protocol == __cpu_to_be16(ETH_P_ARP))
2744 return 0;
2746 if (master->priv_flags & IFF_MASTER_ALB) {
2747 if (skb->pkt_type != PACKET_BROADCAST &&
2748 skb->pkt_type != PACKET_MULTICAST)
2749 return 0;
2751 if (master->priv_flags & IFF_MASTER_8023AD &&
2752 skb->protocol == __cpu_to_be16(ETH_P_SLOW))
2753 return 0;
2755 return 1;
2757 return 0;
2759 EXPORT_SYMBOL(__skb_bond_should_drop);
2761 static int __netif_receive_skb(struct sk_buff *skb)
2763 struct packet_type *ptype, *pt_prev;
2764 struct net_device *orig_dev;
2765 struct net_device *master;
2766 struct net_device *null_or_orig;
2767 struct net_device *null_or_bond;
2768 int ret = NET_RX_DROP;
2769 __be16 type;
2771 if (!skb->tstamp.tv64)
2772 net_timestamp(skb);
2774 if (vlan_tx_tag_present(skb) && vlan_hwaccel_do_receive(skb))
2775 return NET_RX_SUCCESS;
2777 /* if we've gotten here through NAPI, check netpoll */
2778 if (netpoll_receive_skb(skb))
2779 return NET_RX_DROP;
2781 if (!skb->skb_iif)
2782 skb->skb_iif = skb->dev->ifindex;
2784 null_or_orig = NULL;
2785 orig_dev = skb->dev;
2786 master = ACCESS_ONCE(orig_dev->master);
2787 if (master) {
2788 if (skb_bond_should_drop(skb, master))
2789 null_or_orig = orig_dev; /* deliver only exact match */
2790 else
2791 skb->dev = master;
2794 __get_cpu_var(netdev_rx_stat).total++;
2796 skb_reset_network_header(skb);
2797 skb_reset_transport_header(skb);
2798 skb->mac_len = skb->network_header - skb->mac_header;
2800 pt_prev = NULL;
2802 rcu_read_lock();
2804 #ifdef CONFIG_NET_CLS_ACT
2805 if (skb->tc_verd & TC_NCLS) {
2806 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
2807 goto ncls;
2809 #endif
2811 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2812 if (ptype->dev == null_or_orig || ptype->dev == skb->dev ||
2813 ptype->dev == orig_dev) {
2814 if (pt_prev)
2815 ret = deliver_skb(skb, pt_prev, orig_dev);
2816 pt_prev = ptype;
2820 #ifdef CONFIG_NET_CLS_ACT
2821 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
2822 if (!skb)
2823 goto out;
2824 ncls:
2825 #endif
2827 skb = handle_bridge(skb, &pt_prev, &ret, orig_dev);
2828 if (!skb)
2829 goto out;
2830 skb = handle_macvlan(skb, &pt_prev, &ret, orig_dev);
2831 if (!skb)
2832 goto out;
2835 * Make sure frames received on VLAN interfaces stacked on
2836 * bonding interfaces still make their way to any base bonding
2837 * device that may have registered for a specific ptype. The
2838 * handler may have to adjust skb->dev and orig_dev.
2840 null_or_bond = NULL;
2841 if ((skb->dev->priv_flags & IFF_802_1Q_VLAN) &&
2842 (vlan_dev_real_dev(skb->dev)->priv_flags & IFF_BONDING)) {
2843 null_or_bond = vlan_dev_real_dev(skb->dev);
2846 type = skb->protocol;
2847 list_for_each_entry_rcu(ptype,
2848 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
2849 if (ptype->type == type && (ptype->dev == null_or_orig ||
2850 ptype->dev == skb->dev || ptype->dev == orig_dev ||
2851 ptype->dev == null_or_bond)) {
2852 if (pt_prev)
2853 ret = deliver_skb(skb, pt_prev, orig_dev);
2854 pt_prev = ptype;
2858 if (pt_prev) {
2859 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2860 } else {
2861 kfree_skb(skb);
2862 /* Jamal, now you will not able to escape explaining
2863 * me how you were going to use this. :-)
2865 ret = NET_RX_DROP;
2868 out:
2869 rcu_read_unlock();
2870 return ret;
2874 * netif_receive_skb - process receive buffer from network
2875 * @skb: buffer to process
2877 * netif_receive_skb() is the main receive data processing function.
2878 * It always succeeds. The buffer may be dropped during processing
2879 * for congestion control or by the protocol layers.
2881 * This function may only be called from softirq context and interrupts
2882 * should be enabled.
2884 * Return values (usually ignored):
2885 * NET_RX_SUCCESS: no congestion
2886 * NET_RX_DROP: packet was dropped
2888 int netif_receive_skb(struct sk_buff *skb)
2890 #ifdef CONFIG_RPS
2891 struct rps_dev_flow voidflow, *rflow = &voidflow;
2892 int cpu, ret;
2894 rcu_read_lock();
2896 cpu = get_rps_cpu(skb->dev, skb, &rflow);
2898 if (cpu >= 0) {
2899 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
2900 rcu_read_unlock();
2901 } else {
2902 rcu_read_unlock();
2903 ret = __netif_receive_skb(skb);
2906 return ret;
2907 #else
2908 return __netif_receive_skb(skb);
2909 #endif
2911 EXPORT_SYMBOL(netif_receive_skb);
2913 /* Network device is going away, flush any packets still pending */
2914 static void flush_backlog(void *arg)
2916 struct net_device *dev = arg;
2917 struct softnet_data *queue = &__get_cpu_var(softnet_data);
2918 struct sk_buff *skb, *tmp;
2920 rps_lock(queue);
2921 skb_queue_walk_safe(&queue->input_pkt_queue, skb, tmp)
2922 if (skb->dev == dev) {
2923 __skb_unlink(skb, &queue->input_pkt_queue);
2924 kfree_skb(skb);
2925 incr_input_queue_head(queue);
2927 rps_unlock(queue);
2930 static int napi_gro_complete(struct sk_buff *skb)
2932 struct packet_type *ptype;
2933 __be16 type = skb->protocol;
2934 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
2935 int err = -ENOENT;
2937 if (NAPI_GRO_CB(skb)->count == 1) {
2938 skb_shinfo(skb)->gso_size = 0;
2939 goto out;
2942 rcu_read_lock();
2943 list_for_each_entry_rcu(ptype, head, list) {
2944 if (ptype->type != type || ptype->dev || !ptype->gro_complete)
2945 continue;
2947 err = ptype->gro_complete(skb);
2948 break;
2950 rcu_read_unlock();
2952 if (err) {
2953 WARN_ON(&ptype->list == head);
2954 kfree_skb(skb);
2955 return NET_RX_SUCCESS;
2958 out:
2959 return netif_receive_skb(skb);
2962 static void napi_gro_flush(struct napi_struct *napi)
2964 struct sk_buff *skb, *next;
2966 for (skb = napi->gro_list; skb; skb = next) {
2967 next = skb->next;
2968 skb->next = NULL;
2969 napi_gro_complete(skb);
2972 napi->gro_count = 0;
2973 napi->gro_list = NULL;
2976 enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
2978 struct sk_buff **pp = NULL;
2979 struct packet_type *ptype;
2980 __be16 type = skb->protocol;
2981 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
2982 int same_flow;
2983 int mac_len;
2984 enum gro_result ret;
2986 if (!(skb->dev->features & NETIF_F_GRO))
2987 goto normal;
2989 if (skb_is_gso(skb) || skb_has_frags(skb))
2990 goto normal;
2992 rcu_read_lock();
2993 list_for_each_entry_rcu(ptype, head, list) {
2994 if (ptype->type != type || ptype->dev || !ptype->gro_receive)
2995 continue;
2997 skb_set_network_header(skb, skb_gro_offset(skb));
2998 mac_len = skb->network_header - skb->mac_header;
2999 skb->mac_len = mac_len;
3000 NAPI_GRO_CB(skb)->same_flow = 0;
3001 NAPI_GRO_CB(skb)->flush = 0;
3002 NAPI_GRO_CB(skb)->free = 0;
3004 pp = ptype->gro_receive(&napi->gro_list, skb);
3005 break;
3007 rcu_read_unlock();
3009 if (&ptype->list == head)
3010 goto normal;
3012 same_flow = NAPI_GRO_CB(skb)->same_flow;
3013 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
3015 if (pp) {
3016 struct sk_buff *nskb = *pp;
3018 *pp = nskb->next;
3019 nskb->next = NULL;
3020 napi_gro_complete(nskb);
3021 napi->gro_count--;
3024 if (same_flow)
3025 goto ok;
3027 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
3028 goto normal;
3030 napi->gro_count++;
3031 NAPI_GRO_CB(skb)->count = 1;
3032 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
3033 skb->next = napi->gro_list;
3034 napi->gro_list = skb;
3035 ret = GRO_HELD;
3037 pull:
3038 if (skb_headlen(skb) < skb_gro_offset(skb)) {
3039 int grow = skb_gro_offset(skb) - skb_headlen(skb);
3041 BUG_ON(skb->end - skb->tail < grow);
3043 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3045 skb->tail += grow;
3046 skb->data_len -= grow;
3048 skb_shinfo(skb)->frags[0].page_offset += grow;
3049 skb_shinfo(skb)->frags[0].size -= grow;
3051 if (unlikely(!skb_shinfo(skb)->frags[0].size)) {
3052 put_page(skb_shinfo(skb)->frags[0].page);
3053 memmove(skb_shinfo(skb)->frags,
3054 skb_shinfo(skb)->frags + 1,
3055 --skb_shinfo(skb)->nr_frags);
3060 return ret;
3062 normal:
3063 ret = GRO_NORMAL;
3064 goto pull;
3066 EXPORT_SYMBOL(dev_gro_receive);
3068 static gro_result_t
3069 __napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3071 struct sk_buff *p;
3073 if (netpoll_rx_on(skb))
3074 return GRO_NORMAL;
3076 for (p = napi->gro_list; p; p = p->next) {
3077 NAPI_GRO_CB(p)->same_flow =
3078 (p->dev == skb->dev) &&
3079 !compare_ether_header(skb_mac_header(p),
3080 skb_gro_mac_header(skb));
3081 NAPI_GRO_CB(p)->flush = 0;
3084 return dev_gro_receive(napi, skb);
3087 gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
3089 switch (ret) {
3090 case GRO_NORMAL:
3091 if (netif_receive_skb(skb))
3092 ret = GRO_DROP;
3093 break;
3095 case GRO_DROP:
3096 case GRO_MERGED_FREE:
3097 kfree_skb(skb);
3098 break;
3100 case GRO_HELD:
3101 case GRO_MERGED:
3102 break;
3105 return ret;
3107 EXPORT_SYMBOL(napi_skb_finish);
3109 void skb_gro_reset_offset(struct sk_buff *skb)
3111 NAPI_GRO_CB(skb)->data_offset = 0;
3112 NAPI_GRO_CB(skb)->frag0 = NULL;
3113 NAPI_GRO_CB(skb)->frag0_len = 0;
3115 if (skb->mac_header == skb->tail &&
3116 !PageHighMem(skb_shinfo(skb)->frags[0].page)) {
3117 NAPI_GRO_CB(skb)->frag0 =
3118 page_address(skb_shinfo(skb)->frags[0].page) +
3119 skb_shinfo(skb)->frags[0].page_offset;
3120 NAPI_GRO_CB(skb)->frag0_len = skb_shinfo(skb)->frags[0].size;
3123 EXPORT_SYMBOL(skb_gro_reset_offset);
3125 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3127 skb_gro_reset_offset(skb);
3129 return napi_skb_finish(__napi_gro_receive(napi, skb), skb);
3131 EXPORT_SYMBOL(napi_gro_receive);
3133 void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
3135 __skb_pull(skb, skb_headlen(skb));
3136 skb_reserve(skb, NET_IP_ALIGN - skb_headroom(skb));
3138 napi->skb = skb;
3140 EXPORT_SYMBOL(napi_reuse_skb);
3142 struct sk_buff *napi_get_frags(struct napi_struct *napi)
3144 struct sk_buff *skb = napi->skb;
3146 if (!skb) {
3147 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
3148 if (skb)
3149 napi->skb = skb;
3151 return skb;
3153 EXPORT_SYMBOL(napi_get_frags);
3155 gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb,
3156 gro_result_t ret)
3158 switch (ret) {
3159 case GRO_NORMAL:
3160 case GRO_HELD:
3161 skb->protocol = eth_type_trans(skb, skb->dev);
3163 if (ret == GRO_HELD)
3164 skb_gro_pull(skb, -ETH_HLEN);
3165 else if (netif_receive_skb(skb))
3166 ret = GRO_DROP;
3167 break;
3169 case GRO_DROP:
3170 case GRO_MERGED_FREE:
3171 napi_reuse_skb(napi, skb);
3172 break;
3174 case GRO_MERGED:
3175 break;
3178 return ret;
3180 EXPORT_SYMBOL(napi_frags_finish);
3182 struct sk_buff *napi_frags_skb(struct napi_struct *napi)
3184 struct sk_buff *skb = napi->skb;
3185 struct ethhdr *eth;
3186 unsigned int hlen;
3187 unsigned int off;
3189 napi->skb = NULL;
3191 skb_reset_mac_header(skb);
3192 skb_gro_reset_offset(skb);
3194 off = skb_gro_offset(skb);
3195 hlen = off + sizeof(*eth);
3196 eth = skb_gro_header_fast(skb, off);
3197 if (skb_gro_header_hard(skb, hlen)) {
3198 eth = skb_gro_header_slow(skb, hlen, off);
3199 if (unlikely(!eth)) {
3200 napi_reuse_skb(napi, skb);
3201 skb = NULL;
3202 goto out;
3206 skb_gro_pull(skb, sizeof(*eth));
3209 * This works because the only protocols we care about don't require
3210 * special handling. We'll fix it up properly at the end.
3212 skb->protocol = eth->h_proto;
3214 out:
3215 return skb;
3217 EXPORT_SYMBOL(napi_frags_skb);
3219 gro_result_t napi_gro_frags(struct napi_struct *napi)
3221 struct sk_buff *skb = napi_frags_skb(napi);
3223 if (!skb)
3224 return GRO_DROP;
3226 return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb));
3228 EXPORT_SYMBOL(napi_gro_frags);
3230 static int process_backlog(struct napi_struct *napi, int quota)
3232 int work = 0;
3233 struct softnet_data *queue = &__get_cpu_var(softnet_data);
3235 napi->weight = weight_p;
3236 do {
3237 struct sk_buff *skb;
3239 local_irq_disable();
3240 rps_lock(queue);
3241 skb = __skb_dequeue(&queue->input_pkt_queue);
3242 if (!skb) {
3243 __napi_complete(napi);
3244 rps_unlock(queue);
3245 local_irq_enable();
3246 break;
3248 incr_input_queue_head(queue);
3249 rps_unlock(queue);
3250 local_irq_enable();
3252 __netif_receive_skb(skb);
3253 } while (++work < quota);
3255 return work;
3259 * __napi_schedule - schedule for receive
3260 * @n: entry to schedule
3262 * The entry's receive function will be scheduled to run
3264 void __napi_schedule(struct napi_struct *n)
3266 unsigned long flags;
3268 local_irq_save(flags);
3269 list_add_tail(&n->poll_list, &__get_cpu_var(softnet_data).poll_list);
3270 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3271 local_irq_restore(flags);
3273 EXPORT_SYMBOL(__napi_schedule);
3275 void __napi_complete(struct napi_struct *n)
3277 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
3278 BUG_ON(n->gro_list);
3280 list_del(&n->poll_list);
3281 smp_mb__before_clear_bit();
3282 clear_bit(NAPI_STATE_SCHED, &n->state);
3284 EXPORT_SYMBOL(__napi_complete);
3286 void napi_complete(struct napi_struct *n)
3288 unsigned long flags;
3291 * don't let napi dequeue from the cpu poll list
3292 * just in case its running on a different cpu
3294 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
3295 return;
3297 napi_gro_flush(n);
3298 local_irq_save(flags);
3299 __napi_complete(n);
3300 local_irq_restore(flags);
3302 EXPORT_SYMBOL(napi_complete);
3304 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
3305 int (*poll)(struct napi_struct *, int), int weight)
3307 INIT_LIST_HEAD(&napi->poll_list);
3308 napi->gro_count = 0;
3309 napi->gro_list = NULL;
3310 napi->skb = NULL;
3311 napi->poll = poll;
3312 napi->weight = weight;
3313 list_add(&napi->dev_list, &dev->napi_list);
3314 napi->dev = dev;
3315 #ifdef CONFIG_NETPOLL
3316 spin_lock_init(&napi->poll_lock);
3317 napi->poll_owner = -1;
3318 #endif
3319 set_bit(NAPI_STATE_SCHED, &napi->state);
3321 EXPORT_SYMBOL(netif_napi_add);
3323 void netif_napi_del(struct napi_struct *napi)
3325 struct sk_buff *skb, *next;
3327 list_del_init(&napi->dev_list);
3328 napi_free_frags(napi);
3330 for (skb = napi->gro_list; skb; skb = next) {
3331 next = skb->next;
3332 skb->next = NULL;
3333 kfree_skb(skb);
3336 napi->gro_list = NULL;
3337 napi->gro_count = 0;
3339 EXPORT_SYMBOL(netif_napi_del);
3341 #ifdef CONFIG_RPS
3343 * net_rps_action sends any pending IPI's for rps. This is only called from
3344 * softirq and interrupts must be enabled.
3346 static void net_rps_action(cpumask_t *mask)
3348 int cpu;
3350 /* Send pending IPI's to kick RPS processing on remote cpus. */
3351 for_each_cpu_mask_nr(cpu, *mask) {
3352 struct softnet_data *queue = &per_cpu(softnet_data, cpu);
3353 if (cpu_online(cpu))
3354 __smp_call_function_single(cpu, &queue->csd, 0);
3356 cpus_clear(*mask);
3358 #endif
3360 static void net_rx_action(struct softirq_action *h)
3362 struct list_head *list = &__get_cpu_var(softnet_data).poll_list;
3363 unsigned long time_limit = jiffies + 2;
3364 int budget = netdev_budget;
3365 void *have;
3366 #ifdef CONFIG_RPS
3367 int select;
3368 struct rps_remote_softirq_cpus *rcpus;
3369 #endif
3371 local_irq_disable();
3373 while (!list_empty(list)) {
3374 struct napi_struct *n;
3375 int work, weight;
3377 /* If softirq window is exhuasted then punt.
3378 * Allow this to run for 2 jiffies since which will allow
3379 * an average latency of 1.5/HZ.
3381 if (unlikely(budget <= 0 || time_after(jiffies, time_limit)))
3382 goto softnet_break;
3384 local_irq_enable();
3386 /* Even though interrupts have been re-enabled, this
3387 * access is safe because interrupts can only add new
3388 * entries to the tail of this list, and only ->poll()
3389 * calls can remove this head entry from the list.
3391 n = list_first_entry(list, struct napi_struct, poll_list);
3393 have = netpoll_poll_lock(n);
3395 weight = n->weight;
3397 /* This NAPI_STATE_SCHED test is for avoiding a race
3398 * with netpoll's poll_napi(). Only the entity which
3399 * obtains the lock and sees NAPI_STATE_SCHED set will
3400 * actually make the ->poll() call. Therefore we avoid
3401 * accidently calling ->poll() when NAPI is not scheduled.
3403 work = 0;
3404 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
3405 work = n->poll(n, weight);
3406 trace_napi_poll(n);
3409 WARN_ON_ONCE(work > weight);
3411 budget -= work;
3413 local_irq_disable();
3415 /* Drivers must not modify the NAPI state if they
3416 * consume the entire weight. In such cases this code
3417 * still "owns" the NAPI instance and therefore can
3418 * move the instance around on the list at-will.
3420 if (unlikely(work == weight)) {
3421 if (unlikely(napi_disable_pending(n))) {
3422 local_irq_enable();
3423 napi_complete(n);
3424 local_irq_disable();
3425 } else
3426 list_move_tail(&n->poll_list, list);
3429 netpoll_poll_unlock(have);
3431 out:
3432 #ifdef CONFIG_RPS
3433 rcpus = &__get_cpu_var(rps_remote_softirq_cpus);
3434 select = rcpus->select;
3435 rcpus->select ^= 1;
3437 local_irq_enable();
3439 net_rps_action(&rcpus->mask[select]);
3440 #else
3441 local_irq_enable();
3442 #endif
3444 #ifdef CONFIG_NET_DMA
3446 * There may not be any more sk_buffs coming right now, so push
3447 * any pending DMA copies to hardware
3449 dma_issue_pending_all();
3450 #endif
3452 return;
3454 softnet_break:
3455 __get_cpu_var(netdev_rx_stat).time_squeeze++;
3456 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3457 goto out;
3460 static gifconf_func_t *gifconf_list[NPROTO];
3463 * register_gifconf - register a SIOCGIF handler
3464 * @family: Address family
3465 * @gifconf: Function handler
3467 * Register protocol dependent address dumping routines. The handler
3468 * that is passed must not be freed or reused until it has been replaced
3469 * by another handler.
3471 int register_gifconf(unsigned int family, gifconf_func_t *gifconf)
3473 if (family >= NPROTO)
3474 return -EINVAL;
3475 gifconf_list[family] = gifconf;
3476 return 0;
3478 EXPORT_SYMBOL(register_gifconf);
3482 * Map an interface index to its name (SIOCGIFNAME)
3486 * We need this ioctl for efficient implementation of the
3487 * if_indextoname() function required by the IPv6 API. Without
3488 * it, we would have to search all the interfaces to find a
3489 * match. --pb
3492 static int dev_ifname(struct net *net, struct ifreq __user *arg)
3494 struct net_device *dev;
3495 struct ifreq ifr;
3498 * Fetch the caller's info block.
3501 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
3502 return -EFAULT;
3504 rcu_read_lock();
3505 dev = dev_get_by_index_rcu(net, ifr.ifr_ifindex);
3506 if (!dev) {
3507 rcu_read_unlock();
3508 return -ENODEV;
3511 strcpy(ifr.ifr_name, dev->name);
3512 rcu_read_unlock();
3514 if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
3515 return -EFAULT;
3516 return 0;
3520 * Perform a SIOCGIFCONF call. This structure will change
3521 * size eventually, and there is nothing I can do about it.
3522 * Thus we will need a 'compatibility mode'.
3525 static int dev_ifconf(struct net *net, char __user *arg)
3527 struct ifconf ifc;
3528 struct net_device *dev;
3529 char __user *pos;
3530 int len;
3531 int total;
3532 int i;
3535 * Fetch the caller's info block.
3538 if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
3539 return -EFAULT;
3541 pos = ifc.ifc_buf;
3542 len = ifc.ifc_len;
3545 * Loop over the interfaces, and write an info block for each.
3548 total = 0;
3549 for_each_netdev(net, dev) {
3550 for (i = 0; i < NPROTO; i++) {
3551 if (gifconf_list[i]) {
3552 int done;
3553 if (!pos)
3554 done = gifconf_list[i](dev, NULL, 0);
3555 else
3556 done = gifconf_list[i](dev, pos + total,
3557 len - total);
3558 if (done < 0)
3559 return -EFAULT;
3560 total += done;
3566 * All done. Write the updated control block back to the caller.
3568 ifc.ifc_len = total;
3571 * Both BSD and Solaris return 0 here, so we do too.
3573 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
3576 #ifdef CONFIG_PROC_FS
3578 * This is invoked by the /proc filesystem handler to display a device
3579 * in detail.
3581 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
3582 __acquires(RCU)
3584 struct net *net = seq_file_net(seq);
3585 loff_t off;
3586 struct net_device *dev;
3588 rcu_read_lock();
3589 if (!*pos)
3590 return SEQ_START_TOKEN;
3592 off = 1;
3593 for_each_netdev_rcu(net, dev)
3594 if (off++ == *pos)
3595 return dev;
3597 return NULL;
3600 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3602 struct net_device *dev = (v == SEQ_START_TOKEN) ?
3603 first_net_device(seq_file_net(seq)) :
3604 next_net_device((struct net_device *)v);
3606 ++*pos;
3607 return rcu_dereference(dev);
3610 void dev_seq_stop(struct seq_file *seq, void *v)
3611 __releases(RCU)
3613 rcu_read_unlock();
3616 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
3618 const struct net_device_stats *stats = dev_get_stats(dev);
3620 seq_printf(seq, "%6s: %7lu %7lu %4lu %4lu %4lu %5lu %10lu %9lu "
3621 "%8lu %7lu %4lu %4lu %4lu %5lu %7lu %10lu\n",
3622 dev->name, stats->rx_bytes, stats->rx_packets,
3623 stats->rx_errors,
3624 stats->rx_dropped + stats->rx_missed_errors,
3625 stats->rx_fifo_errors,
3626 stats->rx_length_errors + stats->rx_over_errors +
3627 stats->rx_crc_errors + stats->rx_frame_errors,
3628 stats->rx_compressed, stats->multicast,
3629 stats->tx_bytes, stats->tx_packets,
3630 stats->tx_errors, stats->tx_dropped,
3631 stats->tx_fifo_errors, stats->collisions,
3632 stats->tx_carrier_errors +
3633 stats->tx_aborted_errors +
3634 stats->tx_window_errors +
3635 stats->tx_heartbeat_errors,
3636 stats->tx_compressed);
3640 * Called from the PROCfs module. This now uses the new arbitrary sized
3641 * /proc/net interface to create /proc/net/dev
3643 static int dev_seq_show(struct seq_file *seq, void *v)
3645 if (v == SEQ_START_TOKEN)
3646 seq_puts(seq, "Inter-| Receive "
3647 " | Transmit\n"
3648 " face |bytes packets errs drop fifo frame "
3649 "compressed multicast|bytes packets errs "
3650 "drop fifo colls carrier compressed\n");
3651 else
3652 dev_seq_printf_stats(seq, v);
3653 return 0;
3656 static struct netif_rx_stats *softnet_get_online(loff_t *pos)
3658 struct netif_rx_stats *rc = NULL;
3660 while (*pos < nr_cpu_ids)
3661 if (cpu_online(*pos)) {
3662 rc = &per_cpu(netdev_rx_stat, *pos);
3663 break;
3664 } else
3665 ++*pos;
3666 return rc;
3669 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
3671 return softnet_get_online(pos);
3674 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3676 ++*pos;
3677 return softnet_get_online(pos);
3680 static void softnet_seq_stop(struct seq_file *seq, void *v)
3684 static int softnet_seq_show(struct seq_file *seq, void *v)
3686 struct netif_rx_stats *s = v;
3688 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
3689 s->total, s->dropped, s->time_squeeze, 0,
3690 0, 0, 0, 0, /* was fastroute */
3691 s->cpu_collision, s->received_rps);
3692 return 0;
3695 static const struct seq_operations dev_seq_ops = {
3696 .start = dev_seq_start,
3697 .next = dev_seq_next,
3698 .stop = dev_seq_stop,
3699 .show = dev_seq_show,
3702 static int dev_seq_open(struct inode *inode, struct file *file)
3704 return seq_open_net(inode, file, &dev_seq_ops,
3705 sizeof(struct seq_net_private));
3708 static const struct file_operations dev_seq_fops = {
3709 .owner = THIS_MODULE,
3710 .open = dev_seq_open,
3711 .read = seq_read,
3712 .llseek = seq_lseek,
3713 .release = seq_release_net,
3716 static const struct seq_operations softnet_seq_ops = {
3717 .start = softnet_seq_start,
3718 .next = softnet_seq_next,
3719 .stop = softnet_seq_stop,
3720 .show = softnet_seq_show,
3723 static int softnet_seq_open(struct inode *inode, struct file *file)
3725 return seq_open(file, &softnet_seq_ops);
3728 static const struct file_operations softnet_seq_fops = {
3729 .owner = THIS_MODULE,
3730 .open = softnet_seq_open,
3731 .read = seq_read,
3732 .llseek = seq_lseek,
3733 .release = seq_release,
3736 static void *ptype_get_idx(loff_t pos)
3738 struct packet_type *pt = NULL;
3739 loff_t i = 0;
3740 int t;
3742 list_for_each_entry_rcu(pt, &ptype_all, list) {
3743 if (i == pos)
3744 return pt;
3745 ++i;
3748 for (t = 0; t < PTYPE_HASH_SIZE; t++) {
3749 list_for_each_entry_rcu(pt, &ptype_base[t], list) {
3750 if (i == pos)
3751 return pt;
3752 ++i;
3755 return NULL;
3758 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
3759 __acquires(RCU)
3761 rcu_read_lock();
3762 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
3765 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3767 struct packet_type *pt;
3768 struct list_head *nxt;
3769 int hash;
3771 ++*pos;
3772 if (v == SEQ_START_TOKEN)
3773 return ptype_get_idx(0);
3775 pt = v;
3776 nxt = pt->list.next;
3777 if (pt->type == htons(ETH_P_ALL)) {
3778 if (nxt != &ptype_all)
3779 goto found;
3780 hash = 0;
3781 nxt = ptype_base[0].next;
3782 } else
3783 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
3785 while (nxt == &ptype_base[hash]) {
3786 if (++hash >= PTYPE_HASH_SIZE)
3787 return NULL;
3788 nxt = ptype_base[hash].next;
3790 found:
3791 return list_entry(nxt, struct packet_type, list);
3794 static void ptype_seq_stop(struct seq_file *seq, void *v)
3795 __releases(RCU)
3797 rcu_read_unlock();
3800 static int ptype_seq_show(struct seq_file *seq, void *v)
3802 struct packet_type *pt = v;
3804 if (v == SEQ_START_TOKEN)
3805 seq_puts(seq, "Type Device Function\n");
3806 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
3807 if (pt->type == htons(ETH_P_ALL))
3808 seq_puts(seq, "ALL ");
3809 else
3810 seq_printf(seq, "%04x", ntohs(pt->type));
3812 seq_printf(seq, " %-8s %pF\n",
3813 pt->dev ? pt->dev->name : "", pt->func);
3816 return 0;
3819 static const struct seq_operations ptype_seq_ops = {
3820 .start = ptype_seq_start,
3821 .next = ptype_seq_next,
3822 .stop = ptype_seq_stop,
3823 .show = ptype_seq_show,
3826 static int ptype_seq_open(struct inode *inode, struct file *file)
3828 return seq_open_net(inode, file, &ptype_seq_ops,
3829 sizeof(struct seq_net_private));
3832 static const struct file_operations ptype_seq_fops = {
3833 .owner = THIS_MODULE,
3834 .open = ptype_seq_open,
3835 .read = seq_read,
3836 .llseek = seq_lseek,
3837 .release = seq_release_net,
3841 static int __net_init dev_proc_net_init(struct net *net)
3843 int rc = -ENOMEM;
3845 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
3846 goto out;
3847 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
3848 goto out_dev;
3849 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
3850 goto out_softnet;
3852 if (wext_proc_init(net))
3853 goto out_ptype;
3854 rc = 0;
3855 out:
3856 return rc;
3857 out_ptype:
3858 proc_net_remove(net, "ptype");
3859 out_softnet:
3860 proc_net_remove(net, "softnet_stat");
3861 out_dev:
3862 proc_net_remove(net, "dev");
3863 goto out;
3866 static void __net_exit dev_proc_net_exit(struct net *net)
3868 wext_proc_exit(net);
3870 proc_net_remove(net, "ptype");
3871 proc_net_remove(net, "softnet_stat");
3872 proc_net_remove(net, "dev");
3875 static struct pernet_operations __net_initdata dev_proc_ops = {
3876 .init = dev_proc_net_init,
3877 .exit = dev_proc_net_exit,
3880 static int __init dev_proc_init(void)
3882 return register_pernet_subsys(&dev_proc_ops);
3884 #else
3885 #define dev_proc_init() 0
3886 #endif /* CONFIG_PROC_FS */
3890 * netdev_set_master - set up master/slave pair
3891 * @slave: slave device
3892 * @master: new master device
3894 * Changes the master device of the slave. Pass %NULL to break the
3895 * bonding. The caller must hold the RTNL semaphore. On a failure
3896 * a negative errno code is returned. On success the reference counts
3897 * are adjusted, %RTM_NEWLINK is sent to the routing socket and the
3898 * function returns zero.
3900 int netdev_set_master(struct net_device *slave, struct net_device *master)
3902 struct net_device *old = slave->master;
3904 ASSERT_RTNL();
3906 if (master) {
3907 if (old)
3908 return -EBUSY;
3909 dev_hold(master);
3912 slave->master = master;
3914 if (old) {
3915 synchronize_net();
3916 dev_put(old);
3918 if (master)
3919 slave->flags |= IFF_SLAVE;
3920 else
3921 slave->flags &= ~IFF_SLAVE;
3923 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
3924 return 0;
3926 EXPORT_SYMBOL(netdev_set_master);
3928 static void dev_change_rx_flags(struct net_device *dev, int flags)
3930 const struct net_device_ops *ops = dev->netdev_ops;
3932 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
3933 ops->ndo_change_rx_flags(dev, flags);
3936 static int __dev_set_promiscuity(struct net_device *dev, int inc)
3938 unsigned short old_flags = dev->flags;
3939 uid_t uid;
3940 gid_t gid;
3942 ASSERT_RTNL();
3944 dev->flags |= IFF_PROMISC;
3945 dev->promiscuity += inc;
3946 if (dev->promiscuity == 0) {
3948 * Avoid overflow.
3949 * If inc causes overflow, untouch promisc and return error.
3951 if (inc < 0)
3952 dev->flags &= ~IFF_PROMISC;
3953 else {
3954 dev->promiscuity -= inc;
3955 printk(KERN_WARNING "%s: promiscuity touches roof, "
3956 "set promiscuity failed, promiscuity feature "
3957 "of device might be broken.\n", dev->name);
3958 return -EOVERFLOW;
3961 if (dev->flags != old_flags) {
3962 printk(KERN_INFO "device %s %s promiscuous mode\n",
3963 dev->name, (dev->flags & IFF_PROMISC) ? "entered" :
3964 "left");
3965 if (audit_enabled) {
3966 current_uid_gid(&uid, &gid);
3967 audit_log(current->audit_context, GFP_ATOMIC,
3968 AUDIT_ANOM_PROMISCUOUS,
3969 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
3970 dev->name, (dev->flags & IFF_PROMISC),
3971 (old_flags & IFF_PROMISC),
3972 audit_get_loginuid(current),
3973 uid, gid,
3974 audit_get_sessionid(current));
3977 dev_change_rx_flags(dev, IFF_PROMISC);
3979 return 0;
3983 * dev_set_promiscuity - update promiscuity count on a device
3984 * @dev: device
3985 * @inc: modifier
3987 * Add or remove promiscuity from a device. While the count in the device
3988 * remains above zero the interface remains promiscuous. Once it hits zero
3989 * the device reverts back to normal filtering operation. A negative inc
3990 * value is used to drop promiscuity on the device.
3991 * Return 0 if successful or a negative errno code on error.
3993 int dev_set_promiscuity(struct net_device *dev, int inc)
3995 unsigned short old_flags = dev->flags;
3996 int err;
3998 err = __dev_set_promiscuity(dev, inc);
3999 if (err < 0)
4000 return err;
4001 if (dev->flags != old_flags)
4002 dev_set_rx_mode(dev);
4003 return err;
4005 EXPORT_SYMBOL(dev_set_promiscuity);
4008 * dev_set_allmulti - update allmulti count on a device
4009 * @dev: device
4010 * @inc: modifier
4012 * Add or remove reception of all multicast frames to a device. While the
4013 * count in the device remains above zero the interface remains listening
4014 * to all interfaces. Once it hits zero the device reverts back to normal
4015 * filtering operation. A negative @inc value is used to drop the counter
4016 * when releasing a resource needing all multicasts.
4017 * Return 0 if successful or a negative errno code on error.
4020 int dev_set_allmulti(struct net_device *dev, int inc)
4022 unsigned short old_flags = dev->flags;
4024 ASSERT_RTNL();
4026 dev->flags |= IFF_ALLMULTI;
4027 dev->allmulti += inc;
4028 if (dev->allmulti == 0) {
4030 * Avoid overflow.
4031 * If inc causes overflow, untouch allmulti and return error.
4033 if (inc < 0)
4034 dev->flags &= ~IFF_ALLMULTI;
4035 else {
4036 dev->allmulti -= inc;
4037 printk(KERN_WARNING "%s: allmulti touches roof, "
4038 "set allmulti failed, allmulti feature of "
4039 "device might be broken.\n", dev->name);
4040 return -EOVERFLOW;
4043 if (dev->flags ^ old_flags) {
4044 dev_change_rx_flags(dev, IFF_ALLMULTI);
4045 dev_set_rx_mode(dev);
4047 return 0;
4049 EXPORT_SYMBOL(dev_set_allmulti);
4052 * Upload unicast and multicast address lists to device and
4053 * configure RX filtering. When the device doesn't support unicast
4054 * filtering it is put in promiscuous mode while unicast addresses
4055 * are present.
4057 void __dev_set_rx_mode(struct net_device *dev)
4059 const struct net_device_ops *ops = dev->netdev_ops;
4061 /* dev_open will call this function so the list will stay sane. */
4062 if (!(dev->flags&IFF_UP))
4063 return;
4065 if (!netif_device_present(dev))
4066 return;
4068 if (ops->ndo_set_rx_mode)
4069 ops->ndo_set_rx_mode(dev);
4070 else {
4071 /* Unicast addresses changes may only happen under the rtnl,
4072 * therefore calling __dev_set_promiscuity here is safe.
4074 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
4075 __dev_set_promiscuity(dev, 1);
4076 dev->uc_promisc = 1;
4077 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
4078 __dev_set_promiscuity(dev, -1);
4079 dev->uc_promisc = 0;
4082 if (ops->ndo_set_multicast_list)
4083 ops->ndo_set_multicast_list(dev);
4087 void dev_set_rx_mode(struct net_device *dev)
4089 netif_addr_lock_bh(dev);
4090 __dev_set_rx_mode(dev);
4091 netif_addr_unlock_bh(dev);
4095 * dev_get_flags - get flags reported to userspace
4096 * @dev: device
4098 * Get the combination of flag bits exported through APIs to userspace.
4100 unsigned dev_get_flags(const struct net_device *dev)
4102 unsigned flags;
4104 flags = (dev->flags & ~(IFF_PROMISC |
4105 IFF_ALLMULTI |
4106 IFF_RUNNING |
4107 IFF_LOWER_UP |
4108 IFF_DORMANT)) |
4109 (dev->gflags & (IFF_PROMISC |
4110 IFF_ALLMULTI));
4112 if (netif_running(dev)) {
4113 if (netif_oper_up(dev))
4114 flags |= IFF_RUNNING;
4115 if (netif_carrier_ok(dev))
4116 flags |= IFF_LOWER_UP;
4117 if (netif_dormant(dev))
4118 flags |= IFF_DORMANT;
4121 return flags;
4123 EXPORT_SYMBOL(dev_get_flags);
4125 int __dev_change_flags(struct net_device *dev, unsigned int flags)
4127 int old_flags = dev->flags;
4128 int ret;
4130 ASSERT_RTNL();
4133 * Set the flags on our device.
4136 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
4137 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
4138 IFF_AUTOMEDIA)) |
4139 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
4140 IFF_ALLMULTI));
4143 * Load in the correct multicast list now the flags have changed.
4146 if ((old_flags ^ flags) & IFF_MULTICAST)
4147 dev_change_rx_flags(dev, IFF_MULTICAST);
4149 dev_set_rx_mode(dev);
4152 * Have we downed the interface. We handle IFF_UP ourselves
4153 * according to user attempts to set it, rather than blindly
4154 * setting it.
4157 ret = 0;
4158 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
4159 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
4161 if (!ret)
4162 dev_set_rx_mode(dev);
4165 if ((flags ^ dev->gflags) & IFF_PROMISC) {
4166 int inc = (flags & IFF_PROMISC) ? 1 : -1;
4168 dev->gflags ^= IFF_PROMISC;
4169 dev_set_promiscuity(dev, inc);
4172 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
4173 is important. Some (broken) drivers set IFF_PROMISC, when
4174 IFF_ALLMULTI is requested not asking us and not reporting.
4176 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
4177 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
4179 dev->gflags ^= IFF_ALLMULTI;
4180 dev_set_allmulti(dev, inc);
4183 return ret;
4186 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags)
4188 unsigned int changes = dev->flags ^ old_flags;
4190 if (changes & IFF_UP) {
4191 if (dev->flags & IFF_UP)
4192 call_netdevice_notifiers(NETDEV_UP, dev);
4193 else
4194 call_netdevice_notifiers(NETDEV_DOWN, dev);
4197 if (dev->flags & IFF_UP &&
4198 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE)))
4199 call_netdevice_notifiers(NETDEV_CHANGE, dev);
4203 * dev_change_flags - change device settings
4204 * @dev: device
4205 * @flags: device state flags
4207 * Change settings on device based state flags. The flags are
4208 * in the userspace exported format.
4210 int dev_change_flags(struct net_device *dev, unsigned flags)
4212 int ret, changes;
4213 int old_flags = dev->flags;
4215 ret = __dev_change_flags(dev, flags);
4216 if (ret < 0)
4217 return ret;
4219 changes = old_flags ^ dev->flags;
4220 if (changes)
4221 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
4223 __dev_notify_flags(dev, old_flags);
4224 return ret;
4226 EXPORT_SYMBOL(dev_change_flags);
4229 * dev_set_mtu - Change maximum transfer unit
4230 * @dev: device
4231 * @new_mtu: new transfer unit
4233 * Change the maximum transfer size of the network device.
4235 int dev_set_mtu(struct net_device *dev, int new_mtu)
4237 const struct net_device_ops *ops = dev->netdev_ops;
4238 int err;
4240 if (new_mtu == dev->mtu)
4241 return 0;
4243 /* MTU must be positive. */
4244 if (new_mtu < 0)
4245 return -EINVAL;
4247 if (!netif_device_present(dev))
4248 return -ENODEV;
4250 err = 0;
4251 if (ops->ndo_change_mtu)
4252 err = ops->ndo_change_mtu(dev, new_mtu);
4253 else
4254 dev->mtu = new_mtu;
4256 if (!err && dev->flags & IFF_UP)
4257 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
4258 return err;
4260 EXPORT_SYMBOL(dev_set_mtu);
4263 * dev_set_mac_address - Change Media Access Control Address
4264 * @dev: device
4265 * @sa: new address
4267 * Change the hardware (MAC) address of the device
4269 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
4271 const struct net_device_ops *ops = dev->netdev_ops;
4272 int err;
4274 if (!ops->ndo_set_mac_address)
4275 return -EOPNOTSUPP;
4276 if (sa->sa_family != dev->type)
4277 return -EINVAL;
4278 if (!netif_device_present(dev))
4279 return -ENODEV;
4280 err = ops->ndo_set_mac_address(dev, sa);
4281 if (!err)
4282 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4283 return err;
4285 EXPORT_SYMBOL(dev_set_mac_address);
4288 * Perform the SIOCxIFxxx calls, inside rcu_read_lock()
4290 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
4292 int err;
4293 struct net_device *dev = dev_get_by_name_rcu(net, ifr->ifr_name);
4295 if (!dev)
4296 return -ENODEV;
4298 switch (cmd) {
4299 case SIOCGIFFLAGS: /* Get interface flags */
4300 ifr->ifr_flags = (short) dev_get_flags(dev);
4301 return 0;
4303 case SIOCGIFMETRIC: /* Get the metric on the interface
4304 (currently unused) */
4305 ifr->ifr_metric = 0;
4306 return 0;
4308 case SIOCGIFMTU: /* Get the MTU of a device */
4309 ifr->ifr_mtu = dev->mtu;
4310 return 0;
4312 case SIOCGIFHWADDR:
4313 if (!dev->addr_len)
4314 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
4315 else
4316 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
4317 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4318 ifr->ifr_hwaddr.sa_family = dev->type;
4319 return 0;
4321 case SIOCGIFSLAVE:
4322 err = -EINVAL;
4323 break;
4325 case SIOCGIFMAP:
4326 ifr->ifr_map.mem_start = dev->mem_start;
4327 ifr->ifr_map.mem_end = dev->mem_end;
4328 ifr->ifr_map.base_addr = dev->base_addr;
4329 ifr->ifr_map.irq = dev->irq;
4330 ifr->ifr_map.dma = dev->dma;
4331 ifr->ifr_map.port = dev->if_port;
4332 return 0;
4334 case SIOCGIFINDEX:
4335 ifr->ifr_ifindex = dev->ifindex;
4336 return 0;
4338 case SIOCGIFTXQLEN:
4339 ifr->ifr_qlen = dev->tx_queue_len;
4340 return 0;
4342 default:
4343 /* dev_ioctl() should ensure this case
4344 * is never reached
4346 WARN_ON(1);
4347 err = -EINVAL;
4348 break;
4351 return err;
4355 * Perform the SIOCxIFxxx calls, inside rtnl_lock()
4357 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
4359 int err;
4360 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
4361 const struct net_device_ops *ops;
4363 if (!dev)
4364 return -ENODEV;
4366 ops = dev->netdev_ops;
4368 switch (cmd) {
4369 case SIOCSIFFLAGS: /* Set interface flags */
4370 return dev_change_flags(dev, ifr->ifr_flags);
4372 case SIOCSIFMETRIC: /* Set the metric on the interface
4373 (currently unused) */
4374 return -EOPNOTSUPP;
4376 case SIOCSIFMTU: /* Set the MTU of a device */
4377 return dev_set_mtu(dev, ifr->ifr_mtu);
4379 case SIOCSIFHWADDR:
4380 return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
4382 case SIOCSIFHWBROADCAST:
4383 if (ifr->ifr_hwaddr.sa_family != dev->type)
4384 return -EINVAL;
4385 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
4386 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4387 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4388 return 0;
4390 case SIOCSIFMAP:
4391 if (ops->ndo_set_config) {
4392 if (!netif_device_present(dev))
4393 return -ENODEV;
4394 return ops->ndo_set_config(dev, &ifr->ifr_map);
4396 return -EOPNOTSUPP;
4398 case SIOCADDMULTI:
4399 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4400 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4401 return -EINVAL;
4402 if (!netif_device_present(dev))
4403 return -ENODEV;
4404 return dev_mc_add_global(dev, ifr->ifr_hwaddr.sa_data);
4406 case SIOCDELMULTI:
4407 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4408 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4409 return -EINVAL;
4410 if (!netif_device_present(dev))
4411 return -ENODEV;
4412 return dev_mc_del_global(dev, ifr->ifr_hwaddr.sa_data);
4414 case SIOCSIFTXQLEN:
4415 if (ifr->ifr_qlen < 0)
4416 return -EINVAL;
4417 dev->tx_queue_len = ifr->ifr_qlen;
4418 return 0;
4420 case SIOCSIFNAME:
4421 ifr->ifr_newname[IFNAMSIZ-1] = '\0';
4422 return dev_change_name(dev, ifr->ifr_newname);
4425 * Unknown or private ioctl
4427 default:
4428 if ((cmd >= SIOCDEVPRIVATE &&
4429 cmd <= SIOCDEVPRIVATE + 15) ||
4430 cmd == SIOCBONDENSLAVE ||
4431 cmd == SIOCBONDRELEASE ||
4432 cmd == SIOCBONDSETHWADDR ||
4433 cmd == SIOCBONDSLAVEINFOQUERY ||
4434 cmd == SIOCBONDINFOQUERY ||
4435 cmd == SIOCBONDCHANGEACTIVE ||
4436 cmd == SIOCGMIIPHY ||
4437 cmd == SIOCGMIIREG ||
4438 cmd == SIOCSMIIREG ||
4439 cmd == SIOCBRADDIF ||
4440 cmd == SIOCBRDELIF ||
4441 cmd == SIOCSHWTSTAMP ||
4442 cmd == SIOCWANDEV) {
4443 err = -EOPNOTSUPP;
4444 if (ops->ndo_do_ioctl) {
4445 if (netif_device_present(dev))
4446 err = ops->ndo_do_ioctl(dev, ifr, cmd);
4447 else
4448 err = -ENODEV;
4450 } else
4451 err = -EINVAL;
4454 return err;
4458 * This function handles all "interface"-type I/O control requests. The actual
4459 * 'doing' part of this is dev_ifsioc above.
4463 * dev_ioctl - network device ioctl
4464 * @net: the applicable net namespace
4465 * @cmd: command to issue
4466 * @arg: pointer to a struct ifreq in user space
4468 * Issue ioctl functions to devices. This is normally called by the
4469 * user space syscall interfaces but can sometimes be useful for
4470 * other purposes. The return value is the return from the syscall if
4471 * positive or a negative errno code on error.
4474 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
4476 struct ifreq ifr;
4477 int ret;
4478 char *colon;
4480 /* One special case: SIOCGIFCONF takes ifconf argument
4481 and requires shared lock, because it sleeps writing
4482 to user space.
4485 if (cmd == SIOCGIFCONF) {
4486 rtnl_lock();
4487 ret = dev_ifconf(net, (char __user *) arg);
4488 rtnl_unlock();
4489 return ret;
4491 if (cmd == SIOCGIFNAME)
4492 return dev_ifname(net, (struct ifreq __user *)arg);
4494 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
4495 return -EFAULT;
4497 ifr.ifr_name[IFNAMSIZ-1] = 0;
4499 colon = strchr(ifr.ifr_name, ':');
4500 if (colon)
4501 *colon = 0;
4504 * See which interface the caller is talking about.
4507 switch (cmd) {
4509 * These ioctl calls:
4510 * - can be done by all.
4511 * - atomic and do not require locking.
4512 * - return a value
4514 case SIOCGIFFLAGS:
4515 case SIOCGIFMETRIC:
4516 case SIOCGIFMTU:
4517 case SIOCGIFHWADDR:
4518 case SIOCGIFSLAVE:
4519 case SIOCGIFMAP:
4520 case SIOCGIFINDEX:
4521 case SIOCGIFTXQLEN:
4522 dev_load(net, ifr.ifr_name);
4523 rcu_read_lock();
4524 ret = dev_ifsioc_locked(net, &ifr, cmd);
4525 rcu_read_unlock();
4526 if (!ret) {
4527 if (colon)
4528 *colon = ':';
4529 if (copy_to_user(arg, &ifr,
4530 sizeof(struct ifreq)))
4531 ret = -EFAULT;
4533 return ret;
4535 case SIOCETHTOOL:
4536 dev_load(net, ifr.ifr_name);
4537 rtnl_lock();
4538 ret = dev_ethtool(net, &ifr);
4539 rtnl_unlock();
4540 if (!ret) {
4541 if (colon)
4542 *colon = ':';
4543 if (copy_to_user(arg, &ifr,
4544 sizeof(struct ifreq)))
4545 ret = -EFAULT;
4547 return ret;
4550 * These ioctl calls:
4551 * - require superuser power.
4552 * - require strict serialization.
4553 * - return a value
4555 case SIOCGMIIPHY:
4556 case SIOCGMIIREG:
4557 case SIOCSIFNAME:
4558 if (!capable(CAP_NET_ADMIN))
4559 return -EPERM;
4560 dev_load(net, ifr.ifr_name);
4561 rtnl_lock();
4562 ret = dev_ifsioc(net, &ifr, cmd);
4563 rtnl_unlock();
4564 if (!ret) {
4565 if (colon)
4566 *colon = ':';
4567 if (copy_to_user(arg, &ifr,
4568 sizeof(struct ifreq)))
4569 ret = -EFAULT;
4571 return ret;
4574 * These ioctl calls:
4575 * - require superuser power.
4576 * - require strict serialization.
4577 * - do not return a value
4579 case SIOCSIFFLAGS:
4580 case SIOCSIFMETRIC:
4581 case SIOCSIFMTU:
4582 case SIOCSIFMAP:
4583 case SIOCSIFHWADDR:
4584 case SIOCSIFSLAVE:
4585 case SIOCADDMULTI:
4586 case SIOCDELMULTI:
4587 case SIOCSIFHWBROADCAST:
4588 case SIOCSIFTXQLEN:
4589 case SIOCSMIIREG:
4590 case SIOCBONDENSLAVE:
4591 case SIOCBONDRELEASE:
4592 case SIOCBONDSETHWADDR:
4593 case SIOCBONDCHANGEACTIVE:
4594 case SIOCBRADDIF:
4595 case SIOCBRDELIF:
4596 case SIOCSHWTSTAMP:
4597 if (!capable(CAP_NET_ADMIN))
4598 return -EPERM;
4599 /* fall through */
4600 case SIOCBONDSLAVEINFOQUERY:
4601 case SIOCBONDINFOQUERY:
4602 dev_load(net, ifr.ifr_name);
4603 rtnl_lock();
4604 ret = dev_ifsioc(net, &ifr, cmd);
4605 rtnl_unlock();
4606 return ret;
4608 case SIOCGIFMEM:
4609 /* Get the per device memory space. We can add this but
4610 * currently do not support it */
4611 case SIOCSIFMEM:
4612 /* Set the per device memory buffer space.
4613 * Not applicable in our case */
4614 case SIOCSIFLINK:
4615 return -EINVAL;
4618 * Unknown or private ioctl.
4620 default:
4621 if (cmd == SIOCWANDEV ||
4622 (cmd >= SIOCDEVPRIVATE &&
4623 cmd <= SIOCDEVPRIVATE + 15)) {
4624 dev_load(net, ifr.ifr_name);
4625 rtnl_lock();
4626 ret = dev_ifsioc(net, &ifr, cmd);
4627 rtnl_unlock();
4628 if (!ret && copy_to_user(arg, &ifr,
4629 sizeof(struct ifreq)))
4630 ret = -EFAULT;
4631 return ret;
4633 /* Take care of Wireless Extensions */
4634 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
4635 return wext_handle_ioctl(net, &ifr, cmd, arg);
4636 return -EINVAL;
4642 * dev_new_index - allocate an ifindex
4643 * @net: the applicable net namespace
4645 * Returns a suitable unique value for a new device interface
4646 * number. The caller must hold the rtnl semaphore or the
4647 * dev_base_lock to be sure it remains unique.
4649 static int dev_new_index(struct net *net)
4651 static int ifindex;
4652 for (;;) {
4653 if (++ifindex <= 0)
4654 ifindex = 1;
4655 if (!__dev_get_by_index(net, ifindex))
4656 return ifindex;
4660 /* Delayed registration/unregisteration */
4661 static LIST_HEAD(net_todo_list);
4663 static void net_set_todo(struct net_device *dev)
4665 list_add_tail(&dev->todo_list, &net_todo_list);
4668 static void rollback_registered_many(struct list_head *head)
4670 struct net_device *dev, *tmp;
4672 BUG_ON(dev_boot_phase);
4673 ASSERT_RTNL();
4675 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
4676 /* Some devices call without registering
4677 * for initialization unwind. Remove those
4678 * devices and proceed with the remaining.
4680 if (dev->reg_state == NETREG_UNINITIALIZED) {
4681 pr_debug("unregister_netdevice: device %s/%p never "
4682 "was registered\n", dev->name, dev);
4684 WARN_ON(1);
4685 list_del(&dev->unreg_list);
4686 continue;
4689 BUG_ON(dev->reg_state != NETREG_REGISTERED);
4691 /* If device is running, close it first. */
4692 dev_close(dev);
4694 /* And unlink it from device chain. */
4695 unlist_netdevice(dev);
4697 dev->reg_state = NETREG_UNREGISTERING;
4700 synchronize_net();
4702 list_for_each_entry(dev, head, unreg_list) {
4703 /* Shutdown queueing discipline. */
4704 dev_shutdown(dev);
4707 /* Notify protocols, that we are about to destroy
4708 this device. They should clean all the things.
4710 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4712 if (!dev->rtnl_link_ops ||
4713 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
4714 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
4717 * Flush the unicast and multicast chains
4719 dev_uc_flush(dev);
4720 dev_mc_flush(dev);
4722 if (dev->netdev_ops->ndo_uninit)
4723 dev->netdev_ops->ndo_uninit(dev);
4725 /* Notifier chain MUST detach us from master device. */
4726 WARN_ON(dev->master);
4728 /* Remove entries from kobject tree */
4729 netdev_unregister_kobject(dev);
4732 /* Process any work delayed until the end of the batch */
4733 dev = list_first_entry(head, struct net_device, unreg_list);
4734 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
4736 synchronize_net();
4738 list_for_each_entry(dev, head, unreg_list)
4739 dev_put(dev);
4742 static void rollback_registered(struct net_device *dev)
4744 LIST_HEAD(single);
4746 list_add(&dev->unreg_list, &single);
4747 rollback_registered_many(&single);
4750 static void __netdev_init_queue_locks_one(struct net_device *dev,
4751 struct netdev_queue *dev_queue,
4752 void *_unused)
4754 spin_lock_init(&dev_queue->_xmit_lock);
4755 netdev_set_xmit_lockdep_class(&dev_queue->_xmit_lock, dev->type);
4756 dev_queue->xmit_lock_owner = -1;
4759 static void netdev_init_queue_locks(struct net_device *dev)
4761 netdev_for_each_tx_queue(dev, __netdev_init_queue_locks_one, NULL);
4762 __netdev_init_queue_locks_one(dev, &dev->rx_queue, NULL);
4765 unsigned long netdev_fix_features(unsigned long features, const char *name)
4767 /* Fix illegal SG+CSUM combinations. */
4768 if ((features & NETIF_F_SG) &&
4769 !(features & NETIF_F_ALL_CSUM)) {
4770 if (name)
4771 printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no "
4772 "checksum feature.\n", name);
4773 features &= ~NETIF_F_SG;
4776 /* TSO requires that SG is present as well. */
4777 if ((features & NETIF_F_TSO) && !(features & NETIF_F_SG)) {
4778 if (name)
4779 printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no "
4780 "SG feature.\n", name);
4781 features &= ~NETIF_F_TSO;
4784 if (features & NETIF_F_UFO) {
4785 if (!(features & NETIF_F_GEN_CSUM)) {
4786 if (name)
4787 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
4788 "since no NETIF_F_HW_CSUM feature.\n",
4789 name);
4790 features &= ~NETIF_F_UFO;
4793 if (!(features & NETIF_F_SG)) {
4794 if (name)
4795 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
4796 "since no NETIF_F_SG feature.\n", name);
4797 features &= ~NETIF_F_UFO;
4801 return features;
4803 EXPORT_SYMBOL(netdev_fix_features);
4806 * netif_stacked_transfer_operstate - transfer operstate
4807 * @rootdev: the root or lower level device to transfer state from
4808 * @dev: the device to transfer operstate to
4810 * Transfer operational state from root to device. This is normally
4811 * called when a stacking relationship exists between the root
4812 * device and the device(a leaf device).
4814 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
4815 struct net_device *dev)
4817 if (rootdev->operstate == IF_OPER_DORMANT)
4818 netif_dormant_on(dev);
4819 else
4820 netif_dormant_off(dev);
4822 if (netif_carrier_ok(rootdev)) {
4823 if (!netif_carrier_ok(dev))
4824 netif_carrier_on(dev);
4825 } else {
4826 if (netif_carrier_ok(dev))
4827 netif_carrier_off(dev);
4830 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
4833 * register_netdevice - register a network device
4834 * @dev: device to register
4836 * Take a completed network device structure and add it to the kernel
4837 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
4838 * chain. 0 is returned on success. A negative errno code is returned
4839 * on a failure to set up the device, or if the name is a duplicate.
4841 * Callers must hold the rtnl semaphore. You may want
4842 * register_netdev() instead of this.
4844 * BUGS:
4845 * The locking appears insufficient to guarantee two parallel registers
4846 * will not get the same name.
4849 int register_netdevice(struct net_device *dev)
4851 int ret;
4852 struct net *net = dev_net(dev);
4854 BUG_ON(dev_boot_phase);
4855 ASSERT_RTNL();
4857 might_sleep();
4859 /* When net_device's are persistent, this will be fatal. */
4860 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
4861 BUG_ON(!net);
4863 spin_lock_init(&dev->addr_list_lock);
4864 netdev_set_addr_lockdep_class(dev);
4865 netdev_init_queue_locks(dev);
4867 dev->iflink = -1;
4869 #ifdef CONFIG_RPS
4870 if (!dev->num_rx_queues) {
4872 * Allocate a single RX queue if driver never called
4873 * alloc_netdev_mq
4876 dev->_rx = kzalloc(sizeof(struct netdev_rx_queue), GFP_KERNEL);
4877 if (!dev->_rx) {
4878 ret = -ENOMEM;
4879 goto out;
4882 dev->_rx->first = dev->_rx;
4883 atomic_set(&dev->_rx->count, 1);
4884 dev->num_rx_queues = 1;
4886 #endif
4887 /* Init, if this function is available */
4888 if (dev->netdev_ops->ndo_init) {
4889 ret = dev->netdev_ops->ndo_init(dev);
4890 if (ret) {
4891 if (ret > 0)
4892 ret = -EIO;
4893 goto out;
4897 ret = dev_get_valid_name(net, dev->name, dev->name, 0);
4898 if (ret)
4899 goto err_uninit;
4901 dev->ifindex = dev_new_index(net);
4902 if (dev->iflink == -1)
4903 dev->iflink = dev->ifindex;
4905 /* Fix illegal checksum combinations */
4906 if ((dev->features & NETIF_F_HW_CSUM) &&
4907 (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
4908 printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n",
4909 dev->name);
4910 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4913 if ((dev->features & NETIF_F_NO_CSUM) &&
4914 (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
4915 printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n",
4916 dev->name);
4917 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM);
4920 dev->features = netdev_fix_features(dev->features, dev->name);
4922 /* Enable software GSO if SG is supported. */
4923 if (dev->features & NETIF_F_SG)
4924 dev->features |= NETIF_F_GSO;
4926 netdev_initialize_kobject(dev);
4928 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
4929 ret = notifier_to_errno(ret);
4930 if (ret)
4931 goto err_uninit;
4933 ret = netdev_register_kobject(dev);
4934 if (ret)
4935 goto err_uninit;
4936 dev->reg_state = NETREG_REGISTERED;
4939 * Default initial state at registry is that the
4940 * device is present.
4943 set_bit(__LINK_STATE_PRESENT, &dev->state);
4945 dev_init_scheduler(dev);
4946 dev_hold(dev);
4947 list_netdevice(dev);
4949 /* Notify protocols, that a new device appeared. */
4950 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
4951 ret = notifier_to_errno(ret);
4952 if (ret) {
4953 rollback_registered(dev);
4954 dev->reg_state = NETREG_UNREGISTERED;
4957 * Prevent userspace races by waiting until the network
4958 * device is fully setup before sending notifications.
4960 if (!dev->rtnl_link_ops ||
4961 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
4962 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
4964 out:
4965 return ret;
4967 err_uninit:
4968 if (dev->netdev_ops->ndo_uninit)
4969 dev->netdev_ops->ndo_uninit(dev);
4970 goto out;
4972 EXPORT_SYMBOL(register_netdevice);
4975 * init_dummy_netdev - init a dummy network device for NAPI
4976 * @dev: device to init
4978 * This takes a network device structure and initialize the minimum
4979 * amount of fields so it can be used to schedule NAPI polls without
4980 * registering a full blown interface. This is to be used by drivers
4981 * that need to tie several hardware interfaces to a single NAPI
4982 * poll scheduler due to HW limitations.
4984 int init_dummy_netdev(struct net_device *dev)
4986 /* Clear everything. Note we don't initialize spinlocks
4987 * are they aren't supposed to be taken by any of the
4988 * NAPI code and this dummy netdev is supposed to be
4989 * only ever used for NAPI polls
4991 memset(dev, 0, sizeof(struct net_device));
4993 /* make sure we BUG if trying to hit standard
4994 * register/unregister code path
4996 dev->reg_state = NETREG_DUMMY;
4998 /* initialize the ref count */
4999 atomic_set(&dev->refcnt, 1);
5001 /* NAPI wants this */
5002 INIT_LIST_HEAD(&dev->napi_list);
5004 /* a dummy interface is started by default */
5005 set_bit(__LINK_STATE_PRESENT, &dev->state);
5006 set_bit(__LINK_STATE_START, &dev->state);
5008 return 0;
5010 EXPORT_SYMBOL_GPL(init_dummy_netdev);
5014 * register_netdev - register a network device
5015 * @dev: device to register
5017 * Take a completed network device structure and add it to the kernel
5018 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5019 * chain. 0 is returned on success. A negative errno code is returned
5020 * on a failure to set up the device, or if the name is a duplicate.
5022 * This is a wrapper around register_netdevice that takes the rtnl semaphore
5023 * and expands the device name if you passed a format string to
5024 * alloc_netdev.
5026 int register_netdev(struct net_device *dev)
5028 int err;
5030 rtnl_lock();
5033 * If the name is a format string the caller wants us to do a
5034 * name allocation.
5036 if (strchr(dev->name, '%')) {
5037 err = dev_alloc_name(dev, dev->name);
5038 if (err < 0)
5039 goto out;
5042 err = register_netdevice(dev);
5043 out:
5044 rtnl_unlock();
5045 return err;
5047 EXPORT_SYMBOL(register_netdev);
5050 * netdev_wait_allrefs - wait until all references are gone.
5052 * This is called when unregistering network devices.
5054 * Any protocol or device that holds a reference should register
5055 * for netdevice notification, and cleanup and put back the
5056 * reference if they receive an UNREGISTER event.
5057 * We can get stuck here if buggy protocols don't correctly
5058 * call dev_put.
5060 static void netdev_wait_allrefs(struct net_device *dev)
5062 unsigned long rebroadcast_time, warning_time;
5064 linkwatch_forget_dev(dev);
5066 rebroadcast_time = warning_time = jiffies;
5067 while (atomic_read(&dev->refcnt) != 0) {
5068 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
5069 rtnl_lock();
5071 /* Rebroadcast unregister notification */
5072 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5073 /* don't resend NETDEV_UNREGISTER_BATCH, _BATCH users
5074 * should have already handle it the first time */
5076 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
5077 &dev->state)) {
5078 /* We must not have linkwatch events
5079 * pending on unregister. If this
5080 * happens, we simply run the queue
5081 * unscheduled, resulting in a noop
5082 * for this device.
5084 linkwatch_run_queue();
5087 __rtnl_unlock();
5089 rebroadcast_time = jiffies;
5092 msleep(250);
5094 if (time_after(jiffies, warning_time + 10 * HZ)) {
5095 printk(KERN_EMERG "unregister_netdevice: "
5096 "waiting for %s to become free. Usage "
5097 "count = %d\n",
5098 dev->name, atomic_read(&dev->refcnt));
5099 warning_time = jiffies;
5104 /* The sequence is:
5106 * rtnl_lock();
5107 * ...
5108 * register_netdevice(x1);
5109 * register_netdevice(x2);
5110 * ...
5111 * unregister_netdevice(y1);
5112 * unregister_netdevice(y2);
5113 * ...
5114 * rtnl_unlock();
5115 * free_netdev(y1);
5116 * free_netdev(y2);
5118 * We are invoked by rtnl_unlock().
5119 * This allows us to deal with problems:
5120 * 1) We can delete sysfs objects which invoke hotplug
5121 * without deadlocking with linkwatch via keventd.
5122 * 2) Since we run with the RTNL semaphore not held, we can sleep
5123 * safely in order to wait for the netdev refcnt to drop to zero.
5125 * We must not return until all unregister events added during
5126 * the interval the lock was held have been completed.
5128 void netdev_run_todo(void)
5130 struct list_head list;
5132 /* Snapshot list, allow later requests */
5133 list_replace_init(&net_todo_list, &list);
5135 __rtnl_unlock();
5137 while (!list_empty(&list)) {
5138 struct net_device *dev
5139 = list_first_entry(&list, struct net_device, todo_list);
5140 list_del(&dev->todo_list);
5142 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
5143 printk(KERN_ERR "network todo '%s' but state %d\n",
5144 dev->name, dev->reg_state);
5145 dump_stack();
5146 continue;
5149 dev->reg_state = NETREG_UNREGISTERED;
5151 on_each_cpu(flush_backlog, dev, 1);
5153 netdev_wait_allrefs(dev);
5155 /* paranoia */
5156 BUG_ON(atomic_read(&dev->refcnt));
5157 WARN_ON(dev->ip_ptr);
5158 WARN_ON(dev->ip6_ptr);
5159 WARN_ON(dev->dn_ptr);
5161 if (dev->destructor)
5162 dev->destructor(dev);
5164 /* Free network device */
5165 kobject_put(&dev->dev.kobj);
5170 * dev_txq_stats_fold - fold tx_queues stats
5171 * @dev: device to get statistics from
5172 * @stats: struct net_device_stats to hold results
5174 void dev_txq_stats_fold(const struct net_device *dev,
5175 struct net_device_stats *stats)
5177 unsigned long tx_bytes = 0, tx_packets = 0, tx_dropped = 0;
5178 unsigned int i;
5179 struct netdev_queue *txq;
5181 for (i = 0; i < dev->num_tx_queues; i++) {
5182 txq = netdev_get_tx_queue(dev, i);
5183 tx_bytes += txq->tx_bytes;
5184 tx_packets += txq->tx_packets;
5185 tx_dropped += txq->tx_dropped;
5187 if (tx_bytes || tx_packets || tx_dropped) {
5188 stats->tx_bytes = tx_bytes;
5189 stats->tx_packets = tx_packets;
5190 stats->tx_dropped = tx_dropped;
5193 EXPORT_SYMBOL(dev_txq_stats_fold);
5196 * dev_get_stats - get network device statistics
5197 * @dev: device to get statistics from
5199 * Get network statistics from device. The device driver may provide
5200 * its own method by setting dev->netdev_ops->get_stats; otherwise
5201 * the internal statistics structure is used.
5203 const struct net_device_stats *dev_get_stats(struct net_device *dev)
5205 const struct net_device_ops *ops = dev->netdev_ops;
5207 if (ops->ndo_get_stats)
5208 return ops->ndo_get_stats(dev);
5210 dev_txq_stats_fold(dev, &dev->stats);
5211 return &dev->stats;
5213 EXPORT_SYMBOL(dev_get_stats);
5215 static void netdev_init_one_queue(struct net_device *dev,
5216 struct netdev_queue *queue,
5217 void *_unused)
5219 queue->dev = dev;
5222 static void netdev_init_queues(struct net_device *dev)
5224 netdev_init_one_queue(dev, &dev->rx_queue, NULL);
5225 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5226 spin_lock_init(&dev->tx_global_lock);
5230 * alloc_netdev_mq - allocate network device
5231 * @sizeof_priv: size of private data to allocate space for
5232 * @name: device name format string
5233 * @setup: callback to initialize device
5234 * @queue_count: the number of subqueues to allocate
5236 * Allocates a struct net_device with private data area for driver use
5237 * and performs basic initialization. Also allocates subquue structs
5238 * for each queue on the device at the end of the netdevice.
5240 struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name,
5241 void (*setup)(struct net_device *), unsigned int queue_count)
5243 struct netdev_queue *tx;
5244 struct net_device *dev;
5245 size_t alloc_size;
5246 struct net_device *p;
5247 #ifdef CONFIG_RPS
5248 struct netdev_rx_queue *rx;
5249 int i;
5250 #endif
5252 BUG_ON(strlen(name) >= sizeof(dev->name));
5254 alloc_size = sizeof(struct net_device);
5255 if (sizeof_priv) {
5256 /* ensure 32-byte alignment of private area */
5257 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
5258 alloc_size += sizeof_priv;
5260 /* ensure 32-byte alignment of whole construct */
5261 alloc_size += NETDEV_ALIGN - 1;
5263 p = kzalloc(alloc_size, GFP_KERNEL);
5264 if (!p) {
5265 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n");
5266 return NULL;
5269 tx = kcalloc(queue_count, sizeof(struct netdev_queue), GFP_KERNEL);
5270 if (!tx) {
5271 printk(KERN_ERR "alloc_netdev: Unable to allocate "
5272 "tx qdiscs.\n");
5273 goto free_p;
5276 #ifdef CONFIG_RPS
5277 rx = kcalloc(queue_count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
5278 if (!rx) {
5279 printk(KERN_ERR "alloc_netdev: Unable to allocate "
5280 "rx queues.\n");
5281 goto free_tx;
5284 atomic_set(&rx->count, queue_count);
5287 * Set a pointer to first element in the array which holds the
5288 * reference count.
5290 for (i = 0; i < queue_count; i++)
5291 rx[i].first = rx;
5292 #endif
5294 dev = PTR_ALIGN(p, NETDEV_ALIGN);
5295 dev->padded = (char *)dev - (char *)p;
5297 if (dev_addr_init(dev))
5298 goto free_rx;
5300 dev_mc_init(dev);
5301 dev_uc_init(dev);
5303 dev_net_set(dev, &init_net);
5305 dev->_tx = tx;
5306 dev->num_tx_queues = queue_count;
5307 dev->real_num_tx_queues = queue_count;
5309 #ifdef CONFIG_RPS
5310 dev->_rx = rx;
5311 dev->num_rx_queues = queue_count;
5312 #endif
5314 dev->gso_max_size = GSO_MAX_SIZE;
5316 netdev_init_queues(dev);
5318 INIT_LIST_HEAD(&dev->ethtool_ntuple_list.list);
5319 dev->ethtool_ntuple_list.count = 0;
5320 INIT_LIST_HEAD(&dev->napi_list);
5321 INIT_LIST_HEAD(&dev->unreg_list);
5322 INIT_LIST_HEAD(&dev->link_watch_list);
5323 dev->priv_flags = IFF_XMIT_DST_RELEASE;
5324 setup(dev);
5325 strcpy(dev->name, name);
5326 return dev;
5328 free_rx:
5329 #ifdef CONFIG_RPS
5330 kfree(rx);
5331 free_tx:
5332 #endif
5333 kfree(tx);
5334 free_p:
5335 kfree(p);
5336 return NULL;
5338 EXPORT_SYMBOL(alloc_netdev_mq);
5341 * free_netdev - free network device
5342 * @dev: device
5344 * This function does the last stage of destroying an allocated device
5345 * interface. The reference to the device object is released.
5346 * If this is the last reference then it will be freed.
5348 void free_netdev(struct net_device *dev)
5350 struct napi_struct *p, *n;
5352 release_net(dev_net(dev));
5354 kfree(dev->_tx);
5356 /* Flush device addresses */
5357 dev_addr_flush(dev);
5359 /* Clear ethtool n-tuple list */
5360 ethtool_ntuple_flush(dev);
5362 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
5363 netif_napi_del(p);
5365 /* Compatibility with error handling in drivers */
5366 if (dev->reg_state == NETREG_UNINITIALIZED) {
5367 kfree((char *)dev - dev->padded);
5368 return;
5371 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
5372 dev->reg_state = NETREG_RELEASED;
5374 /* will free via device release */
5375 put_device(&dev->dev);
5377 EXPORT_SYMBOL(free_netdev);
5380 * synchronize_net - Synchronize with packet receive processing
5382 * Wait for packets currently being received to be done.
5383 * Does not block later packets from starting.
5385 void synchronize_net(void)
5387 might_sleep();
5388 synchronize_rcu();
5390 EXPORT_SYMBOL(synchronize_net);
5393 * unregister_netdevice_queue - remove device from the kernel
5394 * @dev: device
5395 * @head: list
5397 * This function shuts down a device interface and removes it
5398 * from the kernel tables.
5399 * If head not NULL, device is queued to be unregistered later.
5401 * Callers must hold the rtnl semaphore. You may want
5402 * unregister_netdev() instead of this.
5405 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
5407 ASSERT_RTNL();
5409 if (head) {
5410 list_move_tail(&dev->unreg_list, head);
5411 } else {
5412 rollback_registered(dev);
5413 /* Finish processing unregister after unlock */
5414 net_set_todo(dev);
5417 EXPORT_SYMBOL(unregister_netdevice_queue);
5420 * unregister_netdevice_many - unregister many devices
5421 * @head: list of devices
5423 void unregister_netdevice_many(struct list_head *head)
5425 struct net_device *dev;
5427 if (!list_empty(head)) {
5428 rollback_registered_many(head);
5429 list_for_each_entry(dev, head, unreg_list)
5430 net_set_todo(dev);
5433 EXPORT_SYMBOL(unregister_netdevice_many);
5436 * unregister_netdev - remove device from the kernel
5437 * @dev: device
5439 * This function shuts down a device interface and removes it
5440 * from the kernel tables.
5442 * This is just a wrapper for unregister_netdevice that takes
5443 * the rtnl semaphore. In general you want to use this and not
5444 * unregister_netdevice.
5446 void unregister_netdev(struct net_device *dev)
5448 rtnl_lock();
5449 unregister_netdevice(dev);
5450 rtnl_unlock();
5452 EXPORT_SYMBOL(unregister_netdev);
5455 * dev_change_net_namespace - move device to different nethost namespace
5456 * @dev: device
5457 * @net: network namespace
5458 * @pat: If not NULL name pattern to try if the current device name
5459 * is already taken in the destination network namespace.
5461 * This function shuts down a device interface and moves it
5462 * to a new network namespace. On success 0 is returned, on
5463 * a failure a netagive errno code is returned.
5465 * Callers must hold the rtnl semaphore.
5468 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
5470 int err;
5472 ASSERT_RTNL();
5474 /* Don't allow namespace local devices to be moved. */
5475 err = -EINVAL;
5476 if (dev->features & NETIF_F_NETNS_LOCAL)
5477 goto out;
5479 #ifdef CONFIG_SYSFS
5480 /* Don't allow real devices to be moved when sysfs
5481 * is enabled.
5483 err = -EINVAL;
5484 if (dev->dev.parent)
5485 goto out;
5486 #endif
5488 /* Ensure the device has been registrered */
5489 err = -EINVAL;
5490 if (dev->reg_state != NETREG_REGISTERED)
5491 goto out;
5493 /* Get out if there is nothing todo */
5494 err = 0;
5495 if (net_eq(dev_net(dev), net))
5496 goto out;
5498 /* Pick the destination device name, and ensure
5499 * we can use it in the destination network namespace.
5501 err = -EEXIST;
5502 if (__dev_get_by_name(net, dev->name)) {
5503 /* We get here if we can't use the current device name */
5504 if (!pat)
5505 goto out;
5506 if (dev_get_valid_name(net, pat, dev->name, 1))
5507 goto out;
5511 * And now a mini version of register_netdevice unregister_netdevice.
5514 /* If device is running close it first. */
5515 dev_close(dev);
5517 /* And unlink it from device chain */
5518 err = -ENODEV;
5519 unlist_netdevice(dev);
5521 synchronize_net();
5523 /* Shutdown queueing discipline. */
5524 dev_shutdown(dev);
5526 /* Notify protocols, that we are about to destroy
5527 this device. They should clean all the things.
5529 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5530 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
5533 * Flush the unicast and multicast chains
5535 dev_uc_flush(dev);
5536 dev_mc_flush(dev);
5538 netdev_unregister_kobject(dev);
5540 /* Actually switch the network namespace */
5541 dev_net_set(dev, net);
5543 /* If there is an ifindex conflict assign a new one */
5544 if (__dev_get_by_index(net, dev->ifindex)) {
5545 int iflink = (dev->iflink == dev->ifindex);
5546 dev->ifindex = dev_new_index(net);
5547 if (iflink)
5548 dev->iflink = dev->ifindex;
5551 /* Fixup kobjects */
5552 err = netdev_register_kobject(dev);
5553 WARN_ON(err);
5555 /* Add the device back in the hashes */
5556 list_netdevice(dev);
5558 /* Notify protocols, that a new device appeared. */
5559 call_netdevice_notifiers(NETDEV_REGISTER, dev);
5562 * Prevent userspace races by waiting until the network
5563 * device is fully setup before sending notifications.
5565 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5567 synchronize_net();
5568 err = 0;
5569 out:
5570 return err;
5572 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
5574 static int dev_cpu_callback(struct notifier_block *nfb,
5575 unsigned long action,
5576 void *ocpu)
5578 struct sk_buff **list_skb;
5579 struct Qdisc **list_net;
5580 struct sk_buff *skb;
5581 unsigned int cpu, oldcpu = (unsigned long)ocpu;
5582 struct softnet_data *sd, *oldsd;
5584 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
5585 return NOTIFY_OK;
5587 local_irq_disable();
5588 cpu = smp_processor_id();
5589 sd = &per_cpu(softnet_data, cpu);
5590 oldsd = &per_cpu(softnet_data, oldcpu);
5592 /* Find end of our completion_queue. */
5593 list_skb = &sd->completion_queue;
5594 while (*list_skb)
5595 list_skb = &(*list_skb)->next;
5596 /* Append completion queue from offline CPU. */
5597 *list_skb = oldsd->completion_queue;
5598 oldsd->completion_queue = NULL;
5600 /* Find end of our output_queue. */
5601 list_net = &sd->output_queue;
5602 while (*list_net)
5603 list_net = &(*list_net)->next_sched;
5604 /* Append output queue from offline CPU. */
5605 *list_net = oldsd->output_queue;
5606 oldsd->output_queue = NULL;
5608 raise_softirq_irqoff(NET_TX_SOFTIRQ);
5609 local_irq_enable();
5611 /* Process offline CPU's input_pkt_queue */
5612 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
5613 netif_rx(skb);
5614 incr_input_queue_head(oldsd);
5617 return NOTIFY_OK;
5622 * netdev_increment_features - increment feature set by one
5623 * @all: current feature set
5624 * @one: new feature set
5625 * @mask: mask feature set
5627 * Computes a new feature set after adding a device with feature set
5628 * @one to the master device with current feature set @all. Will not
5629 * enable anything that is off in @mask. Returns the new feature set.
5631 unsigned long netdev_increment_features(unsigned long all, unsigned long one,
5632 unsigned long mask)
5634 /* If device needs checksumming, downgrade to it. */
5635 if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM))
5636 all ^= NETIF_F_NO_CSUM | (one & NETIF_F_ALL_CSUM);
5637 else if (mask & NETIF_F_ALL_CSUM) {
5638 /* If one device supports v4/v6 checksumming, set for all. */
5639 if (one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM) &&
5640 !(all & NETIF_F_GEN_CSUM)) {
5641 all &= ~NETIF_F_ALL_CSUM;
5642 all |= one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
5645 /* If one device supports hw checksumming, set for all. */
5646 if (one & NETIF_F_GEN_CSUM && !(all & NETIF_F_GEN_CSUM)) {
5647 all &= ~NETIF_F_ALL_CSUM;
5648 all |= NETIF_F_HW_CSUM;
5652 one |= NETIF_F_ALL_CSUM;
5654 one |= all & NETIF_F_ONE_FOR_ALL;
5655 all &= one | NETIF_F_LLTX | NETIF_F_GSO | NETIF_F_UFO;
5656 all |= one & mask & NETIF_F_ONE_FOR_ALL;
5658 return all;
5660 EXPORT_SYMBOL(netdev_increment_features);
5662 static struct hlist_head *netdev_create_hash(void)
5664 int i;
5665 struct hlist_head *hash;
5667 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
5668 if (hash != NULL)
5669 for (i = 0; i < NETDEV_HASHENTRIES; i++)
5670 INIT_HLIST_HEAD(&hash[i]);
5672 return hash;
5675 /* Initialize per network namespace state */
5676 static int __net_init netdev_init(struct net *net)
5678 INIT_LIST_HEAD(&net->dev_base_head);
5680 net->dev_name_head = netdev_create_hash();
5681 if (net->dev_name_head == NULL)
5682 goto err_name;
5684 net->dev_index_head = netdev_create_hash();
5685 if (net->dev_index_head == NULL)
5686 goto err_idx;
5688 return 0;
5690 err_idx:
5691 kfree(net->dev_name_head);
5692 err_name:
5693 return -ENOMEM;
5697 * netdev_drivername - network driver for the device
5698 * @dev: network device
5699 * @buffer: buffer for resulting name
5700 * @len: size of buffer
5702 * Determine network driver for device.
5704 char *netdev_drivername(const struct net_device *dev, char *buffer, int len)
5706 const struct device_driver *driver;
5707 const struct device *parent;
5709 if (len <= 0 || !buffer)
5710 return buffer;
5711 buffer[0] = 0;
5713 parent = dev->dev.parent;
5715 if (!parent)
5716 return buffer;
5718 driver = parent->driver;
5719 if (driver && driver->name)
5720 strlcpy(buffer, driver->name, len);
5721 return buffer;
5724 static void __net_exit netdev_exit(struct net *net)
5726 kfree(net->dev_name_head);
5727 kfree(net->dev_index_head);
5730 static struct pernet_operations __net_initdata netdev_net_ops = {
5731 .init = netdev_init,
5732 .exit = netdev_exit,
5735 static void __net_exit default_device_exit(struct net *net)
5737 struct net_device *dev, *aux;
5739 * Push all migratable network devices back to the
5740 * initial network namespace
5742 rtnl_lock();
5743 for_each_netdev_safe(net, dev, aux) {
5744 int err;
5745 char fb_name[IFNAMSIZ];
5747 /* Ignore unmoveable devices (i.e. loopback) */
5748 if (dev->features & NETIF_F_NETNS_LOCAL)
5749 continue;
5751 /* Leave virtual devices for the generic cleanup */
5752 if (dev->rtnl_link_ops)
5753 continue;
5755 /* Push remaing network devices to init_net */
5756 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
5757 err = dev_change_net_namespace(dev, &init_net, fb_name);
5758 if (err) {
5759 printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n",
5760 __func__, dev->name, err);
5761 BUG();
5764 rtnl_unlock();
5767 static void __net_exit default_device_exit_batch(struct list_head *net_list)
5769 /* At exit all network devices most be removed from a network
5770 * namespace. Do this in the reverse order of registeration.
5771 * Do this across as many network namespaces as possible to
5772 * improve batching efficiency.
5774 struct net_device *dev;
5775 struct net *net;
5776 LIST_HEAD(dev_kill_list);
5778 rtnl_lock();
5779 list_for_each_entry(net, net_list, exit_list) {
5780 for_each_netdev_reverse(net, dev) {
5781 if (dev->rtnl_link_ops)
5782 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
5783 else
5784 unregister_netdevice_queue(dev, &dev_kill_list);
5787 unregister_netdevice_many(&dev_kill_list);
5788 rtnl_unlock();
5791 static struct pernet_operations __net_initdata default_device_ops = {
5792 .exit = default_device_exit,
5793 .exit_batch = default_device_exit_batch,
5797 * Initialize the DEV module. At boot time this walks the device list and
5798 * unhooks any devices that fail to initialise (normally hardware not
5799 * present) and leaves us with a valid list of present and active devices.
5804 * This is called single threaded during boot, so no need
5805 * to take the rtnl semaphore.
5807 static int __init net_dev_init(void)
5809 int i, rc = -ENOMEM;
5811 BUG_ON(!dev_boot_phase);
5813 if (dev_proc_init())
5814 goto out;
5816 if (netdev_kobject_init())
5817 goto out;
5819 INIT_LIST_HEAD(&ptype_all);
5820 for (i = 0; i < PTYPE_HASH_SIZE; i++)
5821 INIT_LIST_HEAD(&ptype_base[i]);
5823 if (register_pernet_subsys(&netdev_net_ops))
5824 goto out;
5827 * Initialise the packet receive queues.
5830 for_each_possible_cpu(i) {
5831 struct softnet_data *queue;
5833 queue = &per_cpu(softnet_data, i);
5834 skb_queue_head_init(&queue->input_pkt_queue);
5835 queue->completion_queue = NULL;
5836 INIT_LIST_HEAD(&queue->poll_list);
5838 #ifdef CONFIG_RPS
5839 queue->csd.func = trigger_softirq;
5840 queue->csd.info = queue;
5841 queue->csd.flags = 0;
5842 #endif
5844 queue->backlog.poll = process_backlog;
5845 queue->backlog.weight = weight_p;
5846 queue->backlog.gro_list = NULL;
5847 queue->backlog.gro_count = 0;
5850 dev_boot_phase = 0;
5852 /* The loopback device is special if any other network devices
5853 * is present in a network namespace the loopback device must
5854 * be present. Since we now dynamically allocate and free the
5855 * loopback device ensure this invariant is maintained by
5856 * keeping the loopback device as the first device on the
5857 * list of network devices. Ensuring the loopback devices
5858 * is the first device that appears and the last network device
5859 * that disappears.
5861 if (register_pernet_device(&loopback_net_ops))
5862 goto out;
5864 if (register_pernet_device(&default_device_ops))
5865 goto out;
5867 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
5868 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
5870 hotcpu_notifier(dev_cpu_callback, 0);
5871 dst_init();
5872 dev_mcast_init();
5873 rc = 0;
5874 out:
5875 return rc;
5878 subsys_initcall(net_dev_init);
5880 static int __init initialize_hashrnd(void)
5882 get_random_bytes(&hashrnd, sizeof(hashrnd));
5883 return 0;
5886 late_initcall_sync(initialize_hashrnd);