4 * @remark Copyright 2002-2009 OProfile authors
5 * @remark Read the file COPYING
7 * @author John Levon <levon@movementarian.org>
8 * @author Barry Kasindorf
9 * @author Robert Richter <robert.richter@amd.com>
11 * This is the core of the buffer management. Each
12 * CPU buffer is processed and entered into the
13 * global event buffer. Such processing is necessary
14 * in several circumstances, mentioned below.
16 * The processing does the job of converting the
17 * transitory EIP value into a persistent dentry/offset
18 * value that the profiler can record at its leisure.
20 * See fs/dcookies.c for a description of the dentry/offset
25 #include <linux/workqueue.h>
26 #include <linux/notifier.h>
27 #include <linux/dcookies.h>
28 #include <linux/profile.h>
29 #include <linux/module.h>
31 #include <linux/oprofile.h>
32 #include <linux/sched.h>
33 #include <linux/gfp.h>
35 #include "oprofile_stats.h"
36 #include "event_buffer.h"
37 #include "cpu_buffer.h"
38 #include "buffer_sync.h"
40 static LIST_HEAD(dying_tasks
);
41 static LIST_HEAD(dead_tasks
);
42 static cpumask_var_t marked_cpus
;
43 static DEFINE_SPINLOCK(task_mortuary
);
44 static void process_task_mortuary(void);
46 /* Take ownership of the task struct and place it on the
47 * list for processing. Only after two full buffer syncs
48 * does the task eventually get freed, because by then
49 * we are sure we will not reference it again.
50 * Can be invoked from softirq via RCU callback due to
51 * call_rcu() of the task struct, hence the _irqsave.
54 task_free_notify(struct notifier_block
*self
, unsigned long val
, void *data
)
57 struct task_struct
*task
= data
;
58 spin_lock_irqsave(&task_mortuary
, flags
);
59 list_add(&task
->tasks
, &dying_tasks
);
60 spin_unlock_irqrestore(&task_mortuary
, flags
);
65 /* The task is on its way out. A sync of the buffer means we can catch
66 * any remaining samples for this task.
69 task_exit_notify(struct notifier_block
*self
, unsigned long val
, void *data
)
71 /* To avoid latency problems, we only process the current CPU,
72 * hoping that most samples for the task are on this CPU
74 sync_buffer(raw_smp_processor_id());
79 /* The task is about to try a do_munmap(). We peek at what it's going to
80 * do, and if it's an executable region, process the samples first, so
81 * we don't lose any. This does not have to be exact, it's a QoI issue
85 munmap_notify(struct notifier_block
*self
, unsigned long val
, void *data
)
87 unsigned long addr
= (unsigned long)data
;
88 struct mm_struct
*mm
= current
->mm
;
89 struct vm_area_struct
*mpnt
;
91 down_read(&mm
->mmap_sem
);
93 mpnt
= find_vma(mm
, addr
);
94 if (mpnt
&& mpnt
->vm_file
&& (mpnt
->vm_flags
& VM_EXEC
)) {
95 up_read(&mm
->mmap_sem
);
96 /* To avoid latency problems, we only process the current CPU,
97 * hoping that most samples for the task are on this CPU
99 sync_buffer(raw_smp_processor_id());
103 up_read(&mm
->mmap_sem
);
108 /* We need to be told about new modules so we don't attribute to a previously
109 * loaded module, or drop the samples on the floor.
112 module_load_notify(struct notifier_block
*self
, unsigned long val
, void *data
)
114 #ifdef CONFIG_MODULES
115 if (val
!= MODULE_STATE_COMING
)
118 /* FIXME: should we process all CPU buffers ? */
119 mutex_lock(&buffer_mutex
);
120 add_event_entry(ESCAPE_CODE
);
121 add_event_entry(MODULE_LOADED_CODE
);
122 mutex_unlock(&buffer_mutex
);
128 static struct notifier_block task_free_nb
= {
129 .notifier_call
= task_free_notify
,
132 static struct notifier_block task_exit_nb
= {
133 .notifier_call
= task_exit_notify
,
136 static struct notifier_block munmap_nb
= {
137 .notifier_call
= munmap_notify
,
140 static struct notifier_block module_load_nb
= {
141 .notifier_call
= module_load_notify
,
145 static void end_sync(void)
148 /* make sure we don't leak task structs */
149 process_task_mortuary();
150 process_task_mortuary();
158 if (!zalloc_cpumask_var(&marked_cpus
, GFP_KERNEL
))
163 err
= task_handoff_register(&task_free_nb
);
166 err
= profile_event_register(PROFILE_TASK_EXIT
, &task_exit_nb
);
169 err
= profile_event_register(PROFILE_MUNMAP
, &munmap_nb
);
172 err
= register_module_notifier(&module_load_nb
);
179 profile_event_unregister(PROFILE_MUNMAP
, &munmap_nb
);
181 profile_event_unregister(PROFILE_TASK_EXIT
, &task_exit_nb
);
183 task_handoff_unregister(&task_free_nb
);
186 free_cpumask_var(marked_cpus
);
193 unregister_module_notifier(&module_load_nb
);
194 profile_event_unregister(PROFILE_MUNMAP
, &munmap_nb
);
195 profile_event_unregister(PROFILE_TASK_EXIT
, &task_exit_nb
);
196 task_handoff_unregister(&task_free_nb
);
198 free_cpumask_var(marked_cpus
);
202 /* Optimisation. We can manage without taking the dcookie sem
203 * because we cannot reach this code without at least one
204 * dcookie user still being registered (namely, the reader
205 * of the event buffer). */
206 static inline unsigned long fast_get_dcookie(struct path
*path
)
208 unsigned long cookie
;
210 if (path
->dentry
->d_flags
& DCACHE_COOKIE
)
211 return (unsigned long)path
->dentry
;
212 get_dcookie(path
, &cookie
);
217 /* Look up the dcookie for the task's first VM_EXECUTABLE mapping,
218 * which corresponds loosely to "application name". This is
219 * not strictly necessary but allows oprofile to associate
220 * shared-library samples with particular applications
222 static unsigned long get_exec_dcookie(struct mm_struct
*mm
)
224 unsigned long cookie
= NO_COOKIE
;
225 struct vm_area_struct
*vma
;
230 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
233 if (!(vma
->vm_flags
& VM_EXECUTABLE
))
235 cookie
= fast_get_dcookie(&vma
->vm_file
->f_path
);
244 /* Convert the EIP value of a sample into a persistent dentry/offset
245 * pair that can then be added to the global event buffer. We make
246 * sure to do this lookup before a mm->mmap modification happens so
247 * we don't lose track.
250 lookup_dcookie(struct mm_struct
*mm
, unsigned long addr
, off_t
*offset
)
252 unsigned long cookie
= NO_COOKIE
;
253 struct vm_area_struct
*vma
;
255 for (vma
= find_vma(mm
, addr
); vma
; vma
= vma
->vm_next
) {
257 if (addr
< vma
->vm_start
|| addr
>= vma
->vm_end
)
261 cookie
= fast_get_dcookie(&vma
->vm_file
->f_path
);
262 *offset
= (vma
->vm_pgoff
<< PAGE_SHIFT
) + addr
-
265 /* must be an anonymous map */
273 cookie
= INVALID_COOKIE
;
278 static unsigned long last_cookie
= INVALID_COOKIE
;
280 static void add_cpu_switch(int i
)
282 add_event_entry(ESCAPE_CODE
);
283 add_event_entry(CPU_SWITCH_CODE
);
285 last_cookie
= INVALID_COOKIE
;
288 static void add_kernel_ctx_switch(unsigned int in_kernel
)
290 add_event_entry(ESCAPE_CODE
);
292 add_event_entry(KERNEL_ENTER_SWITCH_CODE
);
294 add_event_entry(KERNEL_EXIT_SWITCH_CODE
);
298 add_user_ctx_switch(struct task_struct
const *task
, unsigned long cookie
)
300 add_event_entry(ESCAPE_CODE
);
301 add_event_entry(CTX_SWITCH_CODE
);
302 add_event_entry(task
->pid
);
303 add_event_entry(cookie
);
304 /* Another code for daemon back-compat */
305 add_event_entry(ESCAPE_CODE
);
306 add_event_entry(CTX_TGID_CODE
);
307 add_event_entry(task
->tgid
);
311 static void add_cookie_switch(unsigned long cookie
)
313 add_event_entry(ESCAPE_CODE
);
314 add_event_entry(COOKIE_SWITCH_CODE
);
315 add_event_entry(cookie
);
319 static void add_trace_begin(void)
321 add_event_entry(ESCAPE_CODE
);
322 add_event_entry(TRACE_BEGIN_CODE
);
325 static void add_data(struct op_entry
*entry
, struct mm_struct
*mm
)
327 unsigned long code
, pc
, val
;
328 unsigned long cookie
;
331 if (!op_cpu_buffer_get_data(entry
, &code
))
333 if (!op_cpu_buffer_get_data(entry
, &pc
))
335 if (!op_cpu_buffer_get_size(entry
))
339 cookie
= lookup_dcookie(mm
, pc
, &offset
);
341 if (cookie
== NO_COOKIE
)
343 if (cookie
== INVALID_COOKIE
) {
344 atomic_inc(&oprofile_stats
.sample_lost_no_mapping
);
347 if (cookie
!= last_cookie
) {
348 add_cookie_switch(cookie
);
349 last_cookie
= cookie
;
354 add_event_entry(ESCAPE_CODE
);
355 add_event_entry(code
);
356 add_event_entry(offset
); /* Offset from Dcookie */
358 while (op_cpu_buffer_get_data(entry
, &val
))
359 add_event_entry(val
);
362 static inline void add_sample_entry(unsigned long offset
, unsigned long event
)
364 add_event_entry(offset
);
365 add_event_entry(event
);
370 * Add a sample to the global event buffer. If possible the
371 * sample is converted into a persistent dentry/offset pair
372 * for later lookup from userspace. Return 0 on failure.
375 add_sample(struct mm_struct
*mm
, struct op_sample
*s
, int in_kernel
)
377 unsigned long cookie
;
381 add_sample_entry(s
->eip
, s
->event
);
385 /* add userspace sample */
388 atomic_inc(&oprofile_stats
.sample_lost_no_mm
);
392 cookie
= lookup_dcookie(mm
, s
->eip
, &offset
);
394 if (cookie
== INVALID_COOKIE
) {
395 atomic_inc(&oprofile_stats
.sample_lost_no_mapping
);
399 if (cookie
!= last_cookie
) {
400 add_cookie_switch(cookie
);
401 last_cookie
= cookie
;
404 add_sample_entry(offset
, s
->event
);
410 static void release_mm(struct mm_struct
*mm
)
414 up_read(&mm
->mmap_sem
);
419 static struct mm_struct
*take_tasks_mm(struct task_struct
*task
)
421 struct mm_struct
*mm
= get_task_mm(task
);
423 down_read(&mm
->mmap_sem
);
428 static inline int is_code(unsigned long val
)
430 return val
== ESCAPE_CODE
;
434 /* Move tasks along towards death. Any tasks on dead_tasks
435 * will definitely have no remaining references in any
436 * CPU buffers at this point, because we use two lists,
437 * and to have reached the list, it must have gone through
438 * one full sync already.
440 static void process_task_mortuary(void)
443 LIST_HEAD(local_dead_tasks
);
444 struct task_struct
*task
;
445 struct task_struct
*ttask
;
447 spin_lock_irqsave(&task_mortuary
, flags
);
449 list_splice_init(&dead_tasks
, &local_dead_tasks
);
450 list_splice_init(&dying_tasks
, &dead_tasks
);
452 spin_unlock_irqrestore(&task_mortuary
, flags
);
454 list_for_each_entry_safe(task
, ttask
, &local_dead_tasks
, tasks
) {
455 list_del(&task
->tasks
);
461 static void mark_done(int cpu
)
465 cpumask_set_cpu(cpu
, marked_cpus
);
467 for_each_online_cpu(i
) {
468 if (!cpumask_test_cpu(i
, marked_cpus
))
472 /* All CPUs have been processed at least once,
473 * we can process the mortuary once
475 process_task_mortuary();
477 cpumask_clear(marked_cpus
);
481 /* FIXME: this is not sufficient if we implement syscall barrier backtrace
482 * traversal, the code switch to sb_sample_start at first kernel enter/exit
483 * switch so we need a fifth state and some special handling in sync_buffer()
492 /* Sync one of the CPU's buffers into the global event buffer.
493 * Here we need to go through each batch of samples punctuated
494 * by context switch notes, taking the task's mmap_sem and doing
495 * lookup in task->mm->mmap to convert EIP into dcookie/offset
498 void sync_buffer(int cpu
)
500 struct mm_struct
*mm
= NULL
;
501 struct mm_struct
*oldmm
;
503 struct task_struct
*new;
504 unsigned long cookie
= 0;
506 sync_buffer_state state
= sb_buffer_start
;
508 unsigned long available
;
510 struct op_entry entry
;
511 struct op_sample
*sample
;
513 mutex_lock(&buffer_mutex
);
517 op_cpu_buffer_reset(cpu
);
518 available
= op_cpu_buffer_entries(cpu
);
520 for (i
= 0; i
< available
; ++i
) {
521 sample
= op_cpu_buffer_read_entry(&entry
, cpu
);
525 if (is_code(sample
->eip
)) {
526 flags
= sample
->event
;
527 if (flags
& TRACE_BEGIN
) {
531 if (flags
& KERNEL_CTX_SWITCH
) {
532 /* kernel/userspace switch */
533 in_kernel
= flags
& IS_KERNEL
;
534 if (state
== sb_buffer_start
)
535 state
= sb_sample_start
;
536 add_kernel_ctx_switch(flags
& IS_KERNEL
);
538 if (flags
& USER_CTX_SWITCH
539 && op_cpu_buffer_get_data(&entry
, &val
)) {
540 /* userspace context switch */
541 new = (struct task_struct
*)val
;
544 mm
= take_tasks_mm(new);
546 cookie
= get_exec_dcookie(mm
);
547 add_user_ctx_switch(new, cookie
);
549 if (op_cpu_buffer_get_size(&entry
))
550 add_data(&entry
, mm
);
554 if (state
< sb_bt_start
)
558 if (add_sample(mm
, sample
, in_kernel
))
561 /* ignore backtraces if failed to add a sample */
562 if (state
== sb_bt_start
) {
563 state
= sb_bt_ignore
;
564 atomic_inc(&oprofile_stats
.bt_lost_no_mapping
);
571 mutex_unlock(&buffer_mutex
);
574 /* The function can be used to add a buffer worth of data directly to
575 * the kernel buffer. The buffer is assumed to be a circular buffer.
576 * Take the entries from index start and end at index end, wrapping
579 void oprofile_put_buff(unsigned long *buf
, unsigned int start
,
580 unsigned int stop
, unsigned int max
)
586 mutex_lock(&buffer_mutex
);
588 add_event_entry(buf
[i
++]);
594 mutex_unlock(&buffer_mutex
);