2 * Generic hugetlb support.
3 * (C) William Irwin, April 2004
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/module.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/cpuset.h>
17 #include <linux/mutex.h>
18 #include <linux/bootmem.h>
19 #include <linux/sysfs.h>
20 #include <linux/slab.h>
21 #include <linux/rmap.h>
22 #include <linux/swap.h>
23 #include <linux/swapops.h>
26 #include <asm/pgtable.h>
29 #include <linux/hugetlb.h>
30 #include <linux/node.h>
33 const unsigned long hugetlb_zero
= 0, hugetlb_infinity
= ~0UL;
34 static gfp_t htlb_alloc_mask
= GFP_HIGHUSER
;
35 unsigned long hugepages_treat_as_movable
;
37 static int max_hstate
;
38 unsigned int default_hstate_idx
;
39 struct hstate hstates
[HUGE_MAX_HSTATE
];
41 __initdata
LIST_HEAD(huge_boot_pages
);
43 /* for command line parsing */
44 static struct hstate
* __initdata parsed_hstate
;
45 static unsigned long __initdata default_hstate_max_huge_pages
;
46 static unsigned long __initdata default_hstate_size
;
48 #define for_each_hstate(h) \
49 for ((h) = hstates; (h) < &hstates[max_hstate]; (h)++)
52 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
54 static DEFINE_SPINLOCK(hugetlb_lock
);
57 * Region tracking -- allows tracking of reservations and instantiated pages
58 * across the pages in a mapping.
60 * The region data structures are protected by a combination of the mmap_sem
61 * and the hugetlb_instantion_mutex. To access or modify a region the caller
62 * must either hold the mmap_sem for write, or the mmap_sem for read and
63 * the hugetlb_instantiation mutex:
65 * down_write(&mm->mmap_sem);
67 * down_read(&mm->mmap_sem);
68 * mutex_lock(&hugetlb_instantiation_mutex);
71 struct list_head link
;
76 static long region_add(struct list_head
*head
, long f
, long t
)
78 struct file_region
*rg
, *nrg
, *trg
;
80 /* Locate the region we are either in or before. */
81 list_for_each_entry(rg
, head
, link
)
85 /* Round our left edge to the current segment if it encloses us. */
89 /* Check for and consume any regions we now overlap with. */
91 list_for_each_entry_safe(rg
, trg
, rg
->link
.prev
, link
) {
92 if (&rg
->link
== head
)
97 /* If this area reaches higher then extend our area to
98 * include it completely. If this is not the first area
99 * which we intend to reuse, free it. */
112 static long region_chg(struct list_head
*head
, long f
, long t
)
114 struct file_region
*rg
, *nrg
;
117 /* Locate the region we are before or in. */
118 list_for_each_entry(rg
, head
, link
)
122 /* If we are below the current region then a new region is required.
123 * Subtle, allocate a new region at the position but make it zero
124 * size such that we can guarantee to record the reservation. */
125 if (&rg
->link
== head
|| t
< rg
->from
) {
126 nrg
= kmalloc(sizeof(*nrg
), GFP_KERNEL
);
131 INIT_LIST_HEAD(&nrg
->link
);
132 list_add(&nrg
->link
, rg
->link
.prev
);
137 /* Round our left edge to the current segment if it encloses us. */
142 /* Check for and consume any regions we now overlap with. */
143 list_for_each_entry(rg
, rg
->link
.prev
, link
) {
144 if (&rg
->link
== head
)
149 /* We overlap with this area, if it extends futher than
150 * us then we must extend ourselves. Account for its
151 * existing reservation. */
156 chg
-= rg
->to
- rg
->from
;
161 static long region_truncate(struct list_head
*head
, long end
)
163 struct file_region
*rg
, *trg
;
166 /* Locate the region we are either in or before. */
167 list_for_each_entry(rg
, head
, link
)
170 if (&rg
->link
== head
)
173 /* If we are in the middle of a region then adjust it. */
174 if (end
> rg
->from
) {
177 rg
= list_entry(rg
->link
.next
, typeof(*rg
), link
);
180 /* Drop any remaining regions. */
181 list_for_each_entry_safe(rg
, trg
, rg
->link
.prev
, link
) {
182 if (&rg
->link
== head
)
184 chg
+= rg
->to
- rg
->from
;
191 static long region_count(struct list_head
*head
, long f
, long t
)
193 struct file_region
*rg
;
196 /* Locate each segment we overlap with, and count that overlap. */
197 list_for_each_entry(rg
, head
, link
) {
206 seg_from
= max(rg
->from
, f
);
207 seg_to
= min(rg
->to
, t
);
209 chg
+= seg_to
- seg_from
;
216 * Convert the address within this vma to the page offset within
217 * the mapping, in pagecache page units; huge pages here.
219 static pgoff_t
vma_hugecache_offset(struct hstate
*h
,
220 struct vm_area_struct
*vma
, unsigned long address
)
222 return ((address
- vma
->vm_start
) >> huge_page_shift(h
)) +
223 (vma
->vm_pgoff
>> huge_page_order(h
));
226 pgoff_t
linear_hugepage_index(struct vm_area_struct
*vma
,
227 unsigned long address
)
229 return vma_hugecache_offset(hstate_vma(vma
), vma
, address
);
233 * Return the size of the pages allocated when backing a VMA. In the majority
234 * cases this will be same size as used by the page table entries.
236 unsigned long vma_kernel_pagesize(struct vm_area_struct
*vma
)
238 struct hstate
*hstate
;
240 if (!is_vm_hugetlb_page(vma
))
243 hstate
= hstate_vma(vma
);
245 return 1UL << (hstate
->order
+ PAGE_SHIFT
);
247 EXPORT_SYMBOL_GPL(vma_kernel_pagesize
);
250 * Return the page size being used by the MMU to back a VMA. In the majority
251 * of cases, the page size used by the kernel matches the MMU size. On
252 * architectures where it differs, an architecture-specific version of this
253 * function is required.
255 #ifndef vma_mmu_pagesize
256 unsigned long vma_mmu_pagesize(struct vm_area_struct
*vma
)
258 return vma_kernel_pagesize(vma
);
263 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
264 * bits of the reservation map pointer, which are always clear due to
267 #define HPAGE_RESV_OWNER (1UL << 0)
268 #define HPAGE_RESV_UNMAPPED (1UL << 1)
269 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
272 * These helpers are used to track how many pages are reserved for
273 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
274 * is guaranteed to have their future faults succeed.
276 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
277 * the reserve counters are updated with the hugetlb_lock held. It is safe
278 * to reset the VMA at fork() time as it is not in use yet and there is no
279 * chance of the global counters getting corrupted as a result of the values.
281 * The private mapping reservation is represented in a subtly different
282 * manner to a shared mapping. A shared mapping has a region map associated
283 * with the underlying file, this region map represents the backing file
284 * pages which have ever had a reservation assigned which this persists even
285 * after the page is instantiated. A private mapping has a region map
286 * associated with the original mmap which is attached to all VMAs which
287 * reference it, this region map represents those offsets which have consumed
288 * reservation ie. where pages have been instantiated.
290 static unsigned long get_vma_private_data(struct vm_area_struct
*vma
)
292 return (unsigned long)vma
->vm_private_data
;
295 static void set_vma_private_data(struct vm_area_struct
*vma
,
298 vma
->vm_private_data
= (void *)value
;
303 struct list_head regions
;
306 static struct resv_map
*resv_map_alloc(void)
308 struct resv_map
*resv_map
= kmalloc(sizeof(*resv_map
), GFP_KERNEL
);
312 kref_init(&resv_map
->refs
);
313 INIT_LIST_HEAD(&resv_map
->regions
);
318 static void resv_map_release(struct kref
*ref
)
320 struct resv_map
*resv_map
= container_of(ref
, struct resv_map
, refs
);
322 /* Clear out any active regions before we release the map. */
323 region_truncate(&resv_map
->regions
, 0);
327 static struct resv_map
*vma_resv_map(struct vm_area_struct
*vma
)
329 VM_BUG_ON(!is_vm_hugetlb_page(vma
));
330 if (!(vma
->vm_flags
& VM_MAYSHARE
))
331 return (struct resv_map
*)(get_vma_private_data(vma
) &
336 static void set_vma_resv_map(struct vm_area_struct
*vma
, struct resv_map
*map
)
338 VM_BUG_ON(!is_vm_hugetlb_page(vma
));
339 VM_BUG_ON(vma
->vm_flags
& VM_MAYSHARE
);
341 set_vma_private_data(vma
, (get_vma_private_data(vma
) &
342 HPAGE_RESV_MASK
) | (unsigned long)map
);
345 static void set_vma_resv_flags(struct vm_area_struct
*vma
, unsigned long flags
)
347 VM_BUG_ON(!is_vm_hugetlb_page(vma
));
348 VM_BUG_ON(vma
->vm_flags
& VM_MAYSHARE
);
350 set_vma_private_data(vma
, get_vma_private_data(vma
) | flags
);
353 static int is_vma_resv_set(struct vm_area_struct
*vma
, unsigned long flag
)
355 VM_BUG_ON(!is_vm_hugetlb_page(vma
));
357 return (get_vma_private_data(vma
) & flag
) != 0;
360 /* Decrement the reserved pages in the hugepage pool by one */
361 static void decrement_hugepage_resv_vma(struct hstate
*h
,
362 struct vm_area_struct
*vma
)
364 if (vma
->vm_flags
& VM_NORESERVE
)
367 if (vma
->vm_flags
& VM_MAYSHARE
) {
368 /* Shared mappings always use reserves */
369 h
->resv_huge_pages
--;
370 } else if (is_vma_resv_set(vma
, HPAGE_RESV_OWNER
)) {
372 * Only the process that called mmap() has reserves for
375 h
->resv_huge_pages
--;
379 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
380 void reset_vma_resv_huge_pages(struct vm_area_struct
*vma
)
382 VM_BUG_ON(!is_vm_hugetlb_page(vma
));
383 if (!(vma
->vm_flags
& VM_MAYSHARE
))
384 vma
->vm_private_data
= (void *)0;
387 /* Returns true if the VMA has associated reserve pages */
388 static int vma_has_reserves(struct vm_area_struct
*vma
)
390 if (vma
->vm_flags
& VM_MAYSHARE
)
392 if (is_vma_resv_set(vma
, HPAGE_RESV_OWNER
))
397 static void clear_gigantic_page(struct page
*page
,
398 unsigned long addr
, unsigned long sz
)
401 struct page
*p
= page
;
404 for (i
= 0; i
< sz
/PAGE_SIZE
; i
++, p
= mem_map_next(p
, page
, i
)) {
406 clear_user_highpage(p
, addr
+ i
* PAGE_SIZE
);
409 static void clear_huge_page(struct page
*page
,
410 unsigned long addr
, unsigned long sz
)
414 if (unlikely(sz
/PAGE_SIZE
> MAX_ORDER_NR_PAGES
)) {
415 clear_gigantic_page(page
, addr
, sz
);
420 for (i
= 0; i
< sz
/PAGE_SIZE
; i
++) {
422 clear_user_highpage(page
+ i
, addr
+ i
* PAGE_SIZE
);
426 static void copy_gigantic_page(struct page
*dst
, struct page
*src
,
427 unsigned long addr
, struct vm_area_struct
*vma
)
430 struct hstate
*h
= hstate_vma(vma
);
431 struct page
*dst_base
= dst
;
432 struct page
*src_base
= src
;
434 for (i
= 0; i
< pages_per_huge_page(h
); ) {
436 copy_user_highpage(dst
, src
, addr
+ i
*PAGE_SIZE
, vma
);
439 dst
= mem_map_next(dst
, dst_base
, i
);
440 src
= mem_map_next(src
, src_base
, i
);
443 static void copy_huge_page(struct page
*dst
, struct page
*src
,
444 unsigned long addr
, struct vm_area_struct
*vma
)
447 struct hstate
*h
= hstate_vma(vma
);
449 if (unlikely(pages_per_huge_page(h
) > MAX_ORDER_NR_PAGES
)) {
450 copy_gigantic_page(dst
, src
, addr
, vma
);
455 for (i
= 0; i
< pages_per_huge_page(h
); i
++) {
457 copy_user_highpage(dst
+ i
, src
+ i
, addr
+ i
*PAGE_SIZE
, vma
);
461 static void enqueue_huge_page(struct hstate
*h
, struct page
*page
)
463 int nid
= page_to_nid(page
);
464 list_add(&page
->lru
, &h
->hugepage_freelists
[nid
]);
465 h
->free_huge_pages
++;
466 h
->free_huge_pages_node
[nid
]++;
469 static struct page
*dequeue_huge_page_vma(struct hstate
*h
,
470 struct vm_area_struct
*vma
,
471 unsigned long address
, int avoid_reserve
)
474 struct page
*page
= NULL
;
475 struct mempolicy
*mpol
;
476 nodemask_t
*nodemask
;
477 struct zonelist
*zonelist
;
482 zonelist
= huge_zonelist(vma
, address
,
483 htlb_alloc_mask
, &mpol
, &nodemask
);
485 * A child process with MAP_PRIVATE mappings created by their parent
486 * have no page reserves. This check ensures that reservations are
487 * not "stolen". The child may still get SIGKILLed
489 if (!vma_has_reserves(vma
) &&
490 h
->free_huge_pages
- h
->resv_huge_pages
== 0)
493 /* If reserves cannot be used, ensure enough pages are in the pool */
494 if (avoid_reserve
&& h
->free_huge_pages
- h
->resv_huge_pages
== 0)
497 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
,
498 MAX_NR_ZONES
- 1, nodemask
) {
499 nid
= zone_to_nid(zone
);
500 if (cpuset_zone_allowed_softwall(zone
, htlb_alloc_mask
) &&
501 !list_empty(&h
->hugepage_freelists
[nid
])) {
502 page
= list_entry(h
->hugepage_freelists
[nid
].next
,
504 list_del(&page
->lru
);
505 h
->free_huge_pages
--;
506 h
->free_huge_pages_node
[nid
]--;
509 decrement_hugepage_resv_vma(h
, vma
);
520 static void update_and_free_page(struct hstate
*h
, struct page
*page
)
524 VM_BUG_ON(h
->order
>= MAX_ORDER
);
527 h
->nr_huge_pages_node
[page_to_nid(page
)]--;
528 for (i
= 0; i
< pages_per_huge_page(h
); i
++) {
529 page
[i
].flags
&= ~(1 << PG_locked
| 1 << PG_error
| 1 << PG_referenced
|
530 1 << PG_dirty
| 1 << PG_active
| 1 << PG_reserved
|
531 1 << PG_private
| 1<< PG_writeback
);
533 set_compound_page_dtor(page
, NULL
);
534 set_page_refcounted(page
);
535 arch_release_hugepage(page
);
536 __free_pages(page
, huge_page_order(h
));
539 struct hstate
*size_to_hstate(unsigned long size
)
544 if (huge_page_size(h
) == size
)
550 static void free_huge_page(struct page
*page
)
553 * Can't pass hstate in here because it is called from the
554 * compound page destructor.
556 struct hstate
*h
= page_hstate(page
);
557 int nid
= page_to_nid(page
);
558 struct address_space
*mapping
;
560 mapping
= (struct address_space
*) page_private(page
);
561 set_page_private(page
, 0);
562 page
->mapping
= NULL
;
563 BUG_ON(page_count(page
));
564 BUG_ON(page_mapcount(page
));
565 INIT_LIST_HEAD(&page
->lru
);
567 spin_lock(&hugetlb_lock
);
568 if (h
->surplus_huge_pages_node
[nid
] && huge_page_order(h
) < MAX_ORDER
) {
569 update_and_free_page(h
, page
);
570 h
->surplus_huge_pages
--;
571 h
->surplus_huge_pages_node
[nid
]--;
573 enqueue_huge_page(h
, page
);
575 spin_unlock(&hugetlb_lock
);
577 hugetlb_put_quota(mapping
, 1);
580 static void prep_new_huge_page(struct hstate
*h
, struct page
*page
, int nid
)
582 set_compound_page_dtor(page
, free_huge_page
);
583 spin_lock(&hugetlb_lock
);
585 h
->nr_huge_pages_node
[nid
]++;
586 spin_unlock(&hugetlb_lock
);
587 put_page(page
); /* free it into the hugepage allocator */
590 static void prep_compound_gigantic_page(struct page
*page
, unsigned long order
)
593 int nr_pages
= 1 << order
;
594 struct page
*p
= page
+ 1;
596 /* we rely on prep_new_huge_page to set the destructor */
597 set_compound_order(page
, order
);
599 for (i
= 1; i
< nr_pages
; i
++, p
= mem_map_next(p
, page
, i
)) {
601 p
->first_page
= page
;
605 int PageHuge(struct page
*page
)
607 compound_page_dtor
*dtor
;
609 if (!PageCompound(page
))
612 page
= compound_head(page
);
613 dtor
= get_compound_page_dtor(page
);
615 return dtor
== free_huge_page
;
618 EXPORT_SYMBOL_GPL(PageHuge
);
620 static struct page
*alloc_fresh_huge_page_node(struct hstate
*h
, int nid
)
624 if (h
->order
>= MAX_ORDER
)
627 page
= alloc_pages_exact_node(nid
,
628 htlb_alloc_mask
|__GFP_COMP
|__GFP_THISNODE
|
629 __GFP_REPEAT
|__GFP_NOWARN
,
632 if (arch_prepare_hugepage(page
)) {
633 __free_pages(page
, huge_page_order(h
));
636 prep_new_huge_page(h
, page
, nid
);
643 * common helper functions for hstate_next_node_to_{alloc|free}.
644 * We may have allocated or freed a huge page based on a different
645 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
646 * be outside of *nodes_allowed. Ensure that we use an allowed
647 * node for alloc or free.
649 static int next_node_allowed(int nid
, nodemask_t
*nodes_allowed
)
651 nid
= next_node(nid
, *nodes_allowed
);
652 if (nid
== MAX_NUMNODES
)
653 nid
= first_node(*nodes_allowed
);
654 VM_BUG_ON(nid
>= MAX_NUMNODES
);
659 static int get_valid_node_allowed(int nid
, nodemask_t
*nodes_allowed
)
661 if (!node_isset(nid
, *nodes_allowed
))
662 nid
= next_node_allowed(nid
, nodes_allowed
);
667 * returns the previously saved node ["this node"] from which to
668 * allocate a persistent huge page for the pool and advance the
669 * next node from which to allocate, handling wrap at end of node
672 static int hstate_next_node_to_alloc(struct hstate
*h
,
673 nodemask_t
*nodes_allowed
)
677 VM_BUG_ON(!nodes_allowed
);
679 nid
= get_valid_node_allowed(h
->next_nid_to_alloc
, nodes_allowed
);
680 h
->next_nid_to_alloc
= next_node_allowed(nid
, nodes_allowed
);
685 static int alloc_fresh_huge_page(struct hstate
*h
, nodemask_t
*nodes_allowed
)
692 start_nid
= hstate_next_node_to_alloc(h
, nodes_allowed
);
693 next_nid
= start_nid
;
696 page
= alloc_fresh_huge_page_node(h
, next_nid
);
701 next_nid
= hstate_next_node_to_alloc(h
, nodes_allowed
);
702 } while (next_nid
!= start_nid
);
705 count_vm_event(HTLB_BUDDY_PGALLOC
);
707 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL
);
713 * helper for free_pool_huge_page() - return the previously saved
714 * node ["this node"] from which to free a huge page. Advance the
715 * next node id whether or not we find a free huge page to free so
716 * that the next attempt to free addresses the next node.
718 static int hstate_next_node_to_free(struct hstate
*h
, nodemask_t
*nodes_allowed
)
722 VM_BUG_ON(!nodes_allowed
);
724 nid
= get_valid_node_allowed(h
->next_nid_to_free
, nodes_allowed
);
725 h
->next_nid_to_free
= next_node_allowed(nid
, nodes_allowed
);
731 * Free huge page from pool from next node to free.
732 * Attempt to keep persistent huge pages more or less
733 * balanced over allowed nodes.
734 * Called with hugetlb_lock locked.
736 static int free_pool_huge_page(struct hstate
*h
, nodemask_t
*nodes_allowed
,
743 start_nid
= hstate_next_node_to_free(h
, nodes_allowed
);
744 next_nid
= start_nid
;
748 * If we're returning unused surplus pages, only examine
749 * nodes with surplus pages.
751 if ((!acct_surplus
|| h
->surplus_huge_pages_node
[next_nid
]) &&
752 !list_empty(&h
->hugepage_freelists
[next_nid
])) {
754 list_entry(h
->hugepage_freelists
[next_nid
].next
,
756 list_del(&page
->lru
);
757 h
->free_huge_pages
--;
758 h
->free_huge_pages_node
[next_nid
]--;
760 h
->surplus_huge_pages
--;
761 h
->surplus_huge_pages_node
[next_nid
]--;
763 update_and_free_page(h
, page
);
767 next_nid
= hstate_next_node_to_free(h
, nodes_allowed
);
768 } while (next_nid
!= start_nid
);
773 static struct page
*alloc_buddy_huge_page(struct hstate
*h
,
774 struct vm_area_struct
*vma
, unsigned long address
)
779 if (h
->order
>= MAX_ORDER
)
783 * Assume we will successfully allocate the surplus page to
784 * prevent racing processes from causing the surplus to exceed
787 * This however introduces a different race, where a process B
788 * tries to grow the static hugepage pool while alloc_pages() is
789 * called by process A. B will only examine the per-node
790 * counters in determining if surplus huge pages can be
791 * converted to normal huge pages in adjust_pool_surplus(). A
792 * won't be able to increment the per-node counter, until the
793 * lock is dropped by B, but B doesn't drop hugetlb_lock until
794 * no more huge pages can be converted from surplus to normal
795 * state (and doesn't try to convert again). Thus, we have a
796 * case where a surplus huge page exists, the pool is grown, and
797 * the surplus huge page still exists after, even though it
798 * should just have been converted to a normal huge page. This
799 * does not leak memory, though, as the hugepage will be freed
800 * once it is out of use. It also does not allow the counters to
801 * go out of whack in adjust_pool_surplus() as we don't modify
802 * the node values until we've gotten the hugepage and only the
803 * per-node value is checked there.
805 spin_lock(&hugetlb_lock
);
806 if (h
->surplus_huge_pages
>= h
->nr_overcommit_huge_pages
) {
807 spin_unlock(&hugetlb_lock
);
811 h
->surplus_huge_pages
++;
813 spin_unlock(&hugetlb_lock
);
815 page
= alloc_pages(htlb_alloc_mask
|__GFP_COMP
|
816 __GFP_REPEAT
|__GFP_NOWARN
,
819 if (page
&& arch_prepare_hugepage(page
)) {
820 __free_pages(page
, huge_page_order(h
));
824 spin_lock(&hugetlb_lock
);
827 * This page is now managed by the hugetlb allocator and has
828 * no users -- drop the buddy allocator's reference.
830 put_page_testzero(page
);
831 VM_BUG_ON(page_count(page
));
832 nid
= page_to_nid(page
);
833 set_compound_page_dtor(page
, free_huge_page
);
835 * We incremented the global counters already
837 h
->nr_huge_pages_node
[nid
]++;
838 h
->surplus_huge_pages_node
[nid
]++;
839 __count_vm_event(HTLB_BUDDY_PGALLOC
);
842 h
->surplus_huge_pages
--;
843 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL
);
845 spin_unlock(&hugetlb_lock
);
851 * Increase the hugetlb pool such that it can accomodate a reservation
854 static int gather_surplus_pages(struct hstate
*h
, int delta
)
856 struct list_head surplus_list
;
857 struct page
*page
, *tmp
;
859 int needed
, allocated
;
861 needed
= (h
->resv_huge_pages
+ delta
) - h
->free_huge_pages
;
863 h
->resv_huge_pages
+= delta
;
868 INIT_LIST_HEAD(&surplus_list
);
872 spin_unlock(&hugetlb_lock
);
873 for (i
= 0; i
< needed
; i
++) {
874 page
= alloc_buddy_huge_page(h
, NULL
, 0);
877 * We were not able to allocate enough pages to
878 * satisfy the entire reservation so we free what
879 * we've allocated so far.
881 spin_lock(&hugetlb_lock
);
886 list_add(&page
->lru
, &surplus_list
);
891 * After retaking hugetlb_lock, we need to recalculate 'needed'
892 * because either resv_huge_pages or free_huge_pages may have changed.
894 spin_lock(&hugetlb_lock
);
895 needed
= (h
->resv_huge_pages
+ delta
) -
896 (h
->free_huge_pages
+ allocated
);
901 * The surplus_list now contains _at_least_ the number of extra pages
902 * needed to accomodate the reservation. Add the appropriate number
903 * of pages to the hugetlb pool and free the extras back to the buddy
904 * allocator. Commit the entire reservation here to prevent another
905 * process from stealing the pages as they are added to the pool but
906 * before they are reserved.
909 h
->resv_huge_pages
+= delta
;
912 /* Free the needed pages to the hugetlb pool */
913 list_for_each_entry_safe(page
, tmp
, &surplus_list
, lru
) {
916 list_del(&page
->lru
);
917 enqueue_huge_page(h
, page
);
920 /* Free unnecessary surplus pages to the buddy allocator */
921 if (!list_empty(&surplus_list
)) {
922 spin_unlock(&hugetlb_lock
);
923 list_for_each_entry_safe(page
, tmp
, &surplus_list
, lru
) {
924 list_del(&page
->lru
);
926 * The page has a reference count of zero already, so
927 * call free_huge_page directly instead of using
928 * put_page. This must be done with hugetlb_lock
929 * unlocked which is safe because free_huge_page takes
930 * hugetlb_lock before deciding how to free the page.
932 free_huge_page(page
);
934 spin_lock(&hugetlb_lock
);
941 * When releasing a hugetlb pool reservation, any surplus pages that were
942 * allocated to satisfy the reservation must be explicitly freed if they were
944 * Called with hugetlb_lock held.
946 static void return_unused_surplus_pages(struct hstate
*h
,
947 unsigned long unused_resv_pages
)
949 unsigned long nr_pages
;
951 /* Uncommit the reservation */
952 h
->resv_huge_pages
-= unused_resv_pages
;
954 /* Cannot return gigantic pages currently */
955 if (h
->order
>= MAX_ORDER
)
958 nr_pages
= min(unused_resv_pages
, h
->surplus_huge_pages
);
961 * We want to release as many surplus pages as possible, spread
962 * evenly across all nodes with memory. Iterate across these nodes
963 * until we can no longer free unreserved surplus pages. This occurs
964 * when the nodes with surplus pages have no free pages.
965 * free_pool_huge_page() will balance the the freed pages across the
966 * on-line nodes with memory and will handle the hstate accounting.
969 if (!free_pool_huge_page(h
, &node_states
[N_HIGH_MEMORY
], 1))
975 * Determine if the huge page at addr within the vma has an associated
976 * reservation. Where it does not we will need to logically increase
977 * reservation and actually increase quota before an allocation can occur.
978 * Where any new reservation would be required the reservation change is
979 * prepared, but not committed. Once the page has been quota'd allocated
980 * an instantiated the change should be committed via vma_commit_reservation.
981 * No action is required on failure.
983 static long vma_needs_reservation(struct hstate
*h
,
984 struct vm_area_struct
*vma
, unsigned long addr
)
986 struct address_space
*mapping
= vma
->vm_file
->f_mapping
;
987 struct inode
*inode
= mapping
->host
;
989 if (vma
->vm_flags
& VM_MAYSHARE
) {
990 pgoff_t idx
= vma_hugecache_offset(h
, vma
, addr
);
991 return region_chg(&inode
->i_mapping
->private_list
,
994 } else if (!is_vma_resv_set(vma
, HPAGE_RESV_OWNER
)) {
999 pgoff_t idx
= vma_hugecache_offset(h
, vma
, addr
);
1000 struct resv_map
*reservations
= vma_resv_map(vma
);
1002 err
= region_chg(&reservations
->regions
, idx
, idx
+ 1);
1008 static void vma_commit_reservation(struct hstate
*h
,
1009 struct vm_area_struct
*vma
, unsigned long addr
)
1011 struct address_space
*mapping
= vma
->vm_file
->f_mapping
;
1012 struct inode
*inode
= mapping
->host
;
1014 if (vma
->vm_flags
& VM_MAYSHARE
) {
1015 pgoff_t idx
= vma_hugecache_offset(h
, vma
, addr
);
1016 region_add(&inode
->i_mapping
->private_list
, idx
, idx
+ 1);
1018 } else if (is_vma_resv_set(vma
, HPAGE_RESV_OWNER
)) {
1019 pgoff_t idx
= vma_hugecache_offset(h
, vma
, addr
);
1020 struct resv_map
*reservations
= vma_resv_map(vma
);
1022 /* Mark this page used in the map. */
1023 region_add(&reservations
->regions
, idx
, idx
+ 1);
1027 static struct page
*alloc_huge_page(struct vm_area_struct
*vma
,
1028 unsigned long addr
, int avoid_reserve
)
1030 struct hstate
*h
= hstate_vma(vma
);
1032 struct address_space
*mapping
= vma
->vm_file
->f_mapping
;
1033 struct inode
*inode
= mapping
->host
;
1037 * Processes that did not create the mapping will have no reserves and
1038 * will not have accounted against quota. Check that the quota can be
1039 * made before satisfying the allocation
1040 * MAP_NORESERVE mappings may also need pages and quota allocated
1041 * if no reserve mapping overlaps.
1043 chg
= vma_needs_reservation(h
, vma
, addr
);
1045 return ERR_PTR(chg
);
1047 if (hugetlb_get_quota(inode
->i_mapping
, chg
))
1048 return ERR_PTR(-ENOSPC
);
1050 spin_lock(&hugetlb_lock
);
1051 page
= dequeue_huge_page_vma(h
, vma
, addr
, avoid_reserve
);
1052 spin_unlock(&hugetlb_lock
);
1055 page
= alloc_buddy_huge_page(h
, vma
, addr
);
1057 hugetlb_put_quota(inode
->i_mapping
, chg
);
1058 return ERR_PTR(-VM_FAULT_SIGBUS
);
1062 set_page_refcounted(page
);
1063 set_page_private(page
, (unsigned long) mapping
);
1065 vma_commit_reservation(h
, vma
, addr
);
1070 int __weak
alloc_bootmem_huge_page(struct hstate
*h
)
1072 struct huge_bootmem_page
*m
;
1073 int nr_nodes
= nodes_weight(node_states
[N_HIGH_MEMORY
]);
1078 addr
= __alloc_bootmem_node_nopanic(
1079 NODE_DATA(hstate_next_node_to_alloc(h
,
1080 &node_states
[N_HIGH_MEMORY
])),
1081 huge_page_size(h
), huge_page_size(h
), 0);
1085 * Use the beginning of the huge page to store the
1086 * huge_bootmem_page struct (until gather_bootmem
1087 * puts them into the mem_map).
1097 BUG_ON((unsigned long)virt_to_phys(m
) & (huge_page_size(h
) - 1));
1098 /* Put them into a private list first because mem_map is not up yet */
1099 list_add(&m
->list
, &huge_boot_pages
);
1104 static void prep_compound_huge_page(struct page
*page
, int order
)
1106 if (unlikely(order
> (MAX_ORDER
- 1)))
1107 prep_compound_gigantic_page(page
, order
);
1109 prep_compound_page(page
, order
);
1112 /* Put bootmem huge pages into the standard lists after mem_map is up */
1113 static void __init
gather_bootmem_prealloc(void)
1115 struct huge_bootmem_page
*m
;
1117 list_for_each_entry(m
, &huge_boot_pages
, list
) {
1118 struct page
*page
= virt_to_page(m
);
1119 struct hstate
*h
= m
->hstate
;
1120 __ClearPageReserved(page
);
1121 WARN_ON(page_count(page
) != 1);
1122 prep_compound_huge_page(page
, h
->order
);
1123 prep_new_huge_page(h
, page
, page_to_nid(page
));
1127 static void __init
hugetlb_hstate_alloc_pages(struct hstate
*h
)
1131 for (i
= 0; i
< h
->max_huge_pages
; ++i
) {
1132 if (h
->order
>= MAX_ORDER
) {
1133 if (!alloc_bootmem_huge_page(h
))
1135 } else if (!alloc_fresh_huge_page(h
,
1136 &node_states
[N_HIGH_MEMORY
]))
1139 h
->max_huge_pages
= i
;
1142 static void __init
hugetlb_init_hstates(void)
1146 for_each_hstate(h
) {
1147 /* oversize hugepages were init'ed in early boot */
1148 if (h
->order
< MAX_ORDER
)
1149 hugetlb_hstate_alloc_pages(h
);
1153 static char * __init
memfmt(char *buf
, unsigned long n
)
1155 if (n
>= (1UL << 30))
1156 sprintf(buf
, "%lu GB", n
>> 30);
1157 else if (n
>= (1UL << 20))
1158 sprintf(buf
, "%lu MB", n
>> 20);
1160 sprintf(buf
, "%lu KB", n
>> 10);
1164 static void __init
report_hugepages(void)
1168 for_each_hstate(h
) {
1170 printk(KERN_INFO
"HugeTLB registered %s page size, "
1171 "pre-allocated %ld pages\n",
1172 memfmt(buf
, huge_page_size(h
)),
1173 h
->free_huge_pages
);
1177 #ifdef CONFIG_HIGHMEM
1178 static void try_to_free_low(struct hstate
*h
, unsigned long count
,
1179 nodemask_t
*nodes_allowed
)
1183 if (h
->order
>= MAX_ORDER
)
1186 for_each_node_mask(i
, *nodes_allowed
) {
1187 struct page
*page
, *next
;
1188 struct list_head
*freel
= &h
->hugepage_freelists
[i
];
1189 list_for_each_entry_safe(page
, next
, freel
, lru
) {
1190 if (count
>= h
->nr_huge_pages
)
1192 if (PageHighMem(page
))
1194 list_del(&page
->lru
);
1195 update_and_free_page(h
, page
);
1196 h
->free_huge_pages
--;
1197 h
->free_huge_pages_node
[page_to_nid(page
)]--;
1202 static inline void try_to_free_low(struct hstate
*h
, unsigned long count
,
1203 nodemask_t
*nodes_allowed
)
1209 * Increment or decrement surplus_huge_pages. Keep node-specific counters
1210 * balanced by operating on them in a round-robin fashion.
1211 * Returns 1 if an adjustment was made.
1213 static int adjust_pool_surplus(struct hstate
*h
, nodemask_t
*nodes_allowed
,
1216 int start_nid
, next_nid
;
1219 VM_BUG_ON(delta
!= -1 && delta
!= 1);
1222 start_nid
= hstate_next_node_to_alloc(h
, nodes_allowed
);
1224 start_nid
= hstate_next_node_to_free(h
, nodes_allowed
);
1225 next_nid
= start_nid
;
1231 * To shrink on this node, there must be a surplus page
1233 if (!h
->surplus_huge_pages_node
[nid
]) {
1234 next_nid
= hstate_next_node_to_alloc(h
,
1241 * Surplus cannot exceed the total number of pages
1243 if (h
->surplus_huge_pages_node
[nid
] >=
1244 h
->nr_huge_pages_node
[nid
]) {
1245 next_nid
= hstate_next_node_to_free(h
,
1251 h
->surplus_huge_pages
+= delta
;
1252 h
->surplus_huge_pages_node
[nid
] += delta
;
1255 } while (next_nid
!= start_nid
);
1260 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1261 static unsigned long set_max_huge_pages(struct hstate
*h
, unsigned long count
,
1262 nodemask_t
*nodes_allowed
)
1264 unsigned long min_count
, ret
;
1266 if (h
->order
>= MAX_ORDER
)
1267 return h
->max_huge_pages
;
1270 * Increase the pool size
1271 * First take pages out of surplus state. Then make up the
1272 * remaining difference by allocating fresh huge pages.
1274 * We might race with alloc_buddy_huge_page() here and be unable
1275 * to convert a surplus huge page to a normal huge page. That is
1276 * not critical, though, it just means the overall size of the
1277 * pool might be one hugepage larger than it needs to be, but
1278 * within all the constraints specified by the sysctls.
1280 spin_lock(&hugetlb_lock
);
1281 while (h
->surplus_huge_pages
&& count
> persistent_huge_pages(h
)) {
1282 if (!adjust_pool_surplus(h
, nodes_allowed
, -1))
1286 while (count
> persistent_huge_pages(h
)) {
1288 * If this allocation races such that we no longer need the
1289 * page, free_huge_page will handle it by freeing the page
1290 * and reducing the surplus.
1292 spin_unlock(&hugetlb_lock
);
1293 ret
= alloc_fresh_huge_page(h
, nodes_allowed
);
1294 spin_lock(&hugetlb_lock
);
1298 /* Bail for signals. Probably ctrl-c from user */
1299 if (signal_pending(current
))
1304 * Decrease the pool size
1305 * First return free pages to the buddy allocator (being careful
1306 * to keep enough around to satisfy reservations). Then place
1307 * pages into surplus state as needed so the pool will shrink
1308 * to the desired size as pages become free.
1310 * By placing pages into the surplus state independent of the
1311 * overcommit value, we are allowing the surplus pool size to
1312 * exceed overcommit. There are few sane options here. Since
1313 * alloc_buddy_huge_page() is checking the global counter,
1314 * though, we'll note that we're not allowed to exceed surplus
1315 * and won't grow the pool anywhere else. Not until one of the
1316 * sysctls are changed, or the surplus pages go out of use.
1318 min_count
= h
->resv_huge_pages
+ h
->nr_huge_pages
- h
->free_huge_pages
;
1319 min_count
= max(count
, min_count
);
1320 try_to_free_low(h
, min_count
, nodes_allowed
);
1321 while (min_count
< persistent_huge_pages(h
)) {
1322 if (!free_pool_huge_page(h
, nodes_allowed
, 0))
1325 while (count
< persistent_huge_pages(h
)) {
1326 if (!adjust_pool_surplus(h
, nodes_allowed
, 1))
1330 ret
= persistent_huge_pages(h
);
1331 spin_unlock(&hugetlb_lock
);
1335 #define HSTATE_ATTR_RO(_name) \
1336 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1338 #define HSTATE_ATTR(_name) \
1339 static struct kobj_attribute _name##_attr = \
1340 __ATTR(_name, 0644, _name##_show, _name##_store)
1342 static struct kobject
*hugepages_kobj
;
1343 static struct kobject
*hstate_kobjs
[HUGE_MAX_HSTATE
];
1345 static struct hstate
*kobj_to_node_hstate(struct kobject
*kobj
, int *nidp
);
1347 static struct hstate
*kobj_to_hstate(struct kobject
*kobj
, int *nidp
)
1351 for (i
= 0; i
< HUGE_MAX_HSTATE
; i
++)
1352 if (hstate_kobjs
[i
] == kobj
) {
1354 *nidp
= NUMA_NO_NODE
;
1358 return kobj_to_node_hstate(kobj
, nidp
);
1361 static ssize_t
nr_hugepages_show_common(struct kobject
*kobj
,
1362 struct kobj_attribute
*attr
, char *buf
)
1365 unsigned long nr_huge_pages
;
1368 h
= kobj_to_hstate(kobj
, &nid
);
1369 if (nid
== NUMA_NO_NODE
)
1370 nr_huge_pages
= h
->nr_huge_pages
;
1372 nr_huge_pages
= h
->nr_huge_pages_node
[nid
];
1374 return sprintf(buf
, "%lu\n", nr_huge_pages
);
1376 static ssize_t
nr_hugepages_store_common(bool obey_mempolicy
,
1377 struct kobject
*kobj
, struct kobj_attribute
*attr
,
1378 const char *buf
, size_t len
)
1382 unsigned long count
;
1384 NODEMASK_ALLOC(nodemask_t
, nodes_allowed
, GFP_KERNEL
| __GFP_NORETRY
);
1386 err
= strict_strtoul(buf
, 10, &count
);
1390 h
= kobj_to_hstate(kobj
, &nid
);
1391 if (nid
== NUMA_NO_NODE
) {
1393 * global hstate attribute
1395 if (!(obey_mempolicy
&&
1396 init_nodemask_of_mempolicy(nodes_allowed
))) {
1397 NODEMASK_FREE(nodes_allowed
);
1398 nodes_allowed
= &node_states
[N_HIGH_MEMORY
];
1400 } else if (nodes_allowed
) {
1402 * per node hstate attribute: adjust count to global,
1403 * but restrict alloc/free to the specified node.
1405 count
+= h
->nr_huge_pages
- h
->nr_huge_pages_node
[nid
];
1406 init_nodemask_of_node(nodes_allowed
, nid
);
1408 nodes_allowed
= &node_states
[N_HIGH_MEMORY
];
1410 h
->max_huge_pages
= set_max_huge_pages(h
, count
, nodes_allowed
);
1412 if (nodes_allowed
!= &node_states
[N_HIGH_MEMORY
])
1413 NODEMASK_FREE(nodes_allowed
);
1418 static ssize_t
nr_hugepages_show(struct kobject
*kobj
,
1419 struct kobj_attribute
*attr
, char *buf
)
1421 return nr_hugepages_show_common(kobj
, attr
, buf
);
1424 static ssize_t
nr_hugepages_store(struct kobject
*kobj
,
1425 struct kobj_attribute
*attr
, const char *buf
, size_t len
)
1427 return nr_hugepages_store_common(false, kobj
, attr
, buf
, len
);
1429 HSTATE_ATTR(nr_hugepages
);
1434 * hstate attribute for optionally mempolicy-based constraint on persistent
1435 * huge page alloc/free.
1437 static ssize_t
nr_hugepages_mempolicy_show(struct kobject
*kobj
,
1438 struct kobj_attribute
*attr
, char *buf
)
1440 return nr_hugepages_show_common(kobj
, attr
, buf
);
1443 static ssize_t
nr_hugepages_mempolicy_store(struct kobject
*kobj
,
1444 struct kobj_attribute
*attr
, const char *buf
, size_t len
)
1446 return nr_hugepages_store_common(true, kobj
, attr
, buf
, len
);
1448 HSTATE_ATTR(nr_hugepages_mempolicy
);
1452 static ssize_t
nr_overcommit_hugepages_show(struct kobject
*kobj
,
1453 struct kobj_attribute
*attr
, char *buf
)
1455 struct hstate
*h
= kobj_to_hstate(kobj
, NULL
);
1456 return sprintf(buf
, "%lu\n", h
->nr_overcommit_huge_pages
);
1458 static ssize_t
nr_overcommit_hugepages_store(struct kobject
*kobj
,
1459 struct kobj_attribute
*attr
, const char *buf
, size_t count
)
1462 unsigned long input
;
1463 struct hstate
*h
= kobj_to_hstate(kobj
, NULL
);
1465 err
= strict_strtoul(buf
, 10, &input
);
1469 spin_lock(&hugetlb_lock
);
1470 h
->nr_overcommit_huge_pages
= input
;
1471 spin_unlock(&hugetlb_lock
);
1475 HSTATE_ATTR(nr_overcommit_hugepages
);
1477 static ssize_t
free_hugepages_show(struct kobject
*kobj
,
1478 struct kobj_attribute
*attr
, char *buf
)
1481 unsigned long free_huge_pages
;
1484 h
= kobj_to_hstate(kobj
, &nid
);
1485 if (nid
== NUMA_NO_NODE
)
1486 free_huge_pages
= h
->free_huge_pages
;
1488 free_huge_pages
= h
->free_huge_pages_node
[nid
];
1490 return sprintf(buf
, "%lu\n", free_huge_pages
);
1492 HSTATE_ATTR_RO(free_hugepages
);
1494 static ssize_t
resv_hugepages_show(struct kobject
*kobj
,
1495 struct kobj_attribute
*attr
, char *buf
)
1497 struct hstate
*h
= kobj_to_hstate(kobj
, NULL
);
1498 return sprintf(buf
, "%lu\n", h
->resv_huge_pages
);
1500 HSTATE_ATTR_RO(resv_hugepages
);
1502 static ssize_t
surplus_hugepages_show(struct kobject
*kobj
,
1503 struct kobj_attribute
*attr
, char *buf
)
1506 unsigned long surplus_huge_pages
;
1509 h
= kobj_to_hstate(kobj
, &nid
);
1510 if (nid
== NUMA_NO_NODE
)
1511 surplus_huge_pages
= h
->surplus_huge_pages
;
1513 surplus_huge_pages
= h
->surplus_huge_pages_node
[nid
];
1515 return sprintf(buf
, "%lu\n", surplus_huge_pages
);
1517 HSTATE_ATTR_RO(surplus_hugepages
);
1519 static struct attribute
*hstate_attrs
[] = {
1520 &nr_hugepages_attr
.attr
,
1521 &nr_overcommit_hugepages_attr
.attr
,
1522 &free_hugepages_attr
.attr
,
1523 &resv_hugepages_attr
.attr
,
1524 &surplus_hugepages_attr
.attr
,
1526 &nr_hugepages_mempolicy_attr
.attr
,
1531 static struct attribute_group hstate_attr_group
= {
1532 .attrs
= hstate_attrs
,
1535 static int hugetlb_sysfs_add_hstate(struct hstate
*h
, struct kobject
*parent
,
1536 struct kobject
**hstate_kobjs
,
1537 struct attribute_group
*hstate_attr_group
)
1540 int hi
= h
- hstates
;
1542 hstate_kobjs
[hi
] = kobject_create_and_add(h
->name
, parent
);
1543 if (!hstate_kobjs
[hi
])
1546 retval
= sysfs_create_group(hstate_kobjs
[hi
], hstate_attr_group
);
1548 kobject_put(hstate_kobjs
[hi
]);
1553 static void __init
hugetlb_sysfs_init(void)
1558 hugepages_kobj
= kobject_create_and_add("hugepages", mm_kobj
);
1559 if (!hugepages_kobj
)
1562 for_each_hstate(h
) {
1563 err
= hugetlb_sysfs_add_hstate(h
, hugepages_kobj
,
1564 hstate_kobjs
, &hstate_attr_group
);
1566 printk(KERN_ERR
"Hugetlb: Unable to add hstate %s",
1574 * node_hstate/s - associate per node hstate attributes, via their kobjects,
1575 * with node sysdevs in node_devices[] using a parallel array. The array
1576 * index of a node sysdev or _hstate == node id.
1577 * This is here to avoid any static dependency of the node sysdev driver, in
1578 * the base kernel, on the hugetlb module.
1580 struct node_hstate
{
1581 struct kobject
*hugepages_kobj
;
1582 struct kobject
*hstate_kobjs
[HUGE_MAX_HSTATE
];
1584 struct node_hstate node_hstates
[MAX_NUMNODES
];
1587 * A subset of global hstate attributes for node sysdevs
1589 static struct attribute
*per_node_hstate_attrs
[] = {
1590 &nr_hugepages_attr
.attr
,
1591 &free_hugepages_attr
.attr
,
1592 &surplus_hugepages_attr
.attr
,
1596 static struct attribute_group per_node_hstate_attr_group
= {
1597 .attrs
= per_node_hstate_attrs
,
1601 * kobj_to_node_hstate - lookup global hstate for node sysdev hstate attr kobj.
1602 * Returns node id via non-NULL nidp.
1604 static struct hstate
*kobj_to_node_hstate(struct kobject
*kobj
, int *nidp
)
1608 for (nid
= 0; nid
< nr_node_ids
; nid
++) {
1609 struct node_hstate
*nhs
= &node_hstates
[nid
];
1611 for (i
= 0; i
< HUGE_MAX_HSTATE
; i
++)
1612 if (nhs
->hstate_kobjs
[i
] == kobj
) {
1624 * Unregister hstate attributes from a single node sysdev.
1625 * No-op if no hstate attributes attached.
1627 void hugetlb_unregister_node(struct node
*node
)
1630 struct node_hstate
*nhs
= &node_hstates
[node
->sysdev
.id
];
1632 if (!nhs
->hugepages_kobj
)
1633 return; /* no hstate attributes */
1636 if (nhs
->hstate_kobjs
[h
- hstates
]) {
1637 kobject_put(nhs
->hstate_kobjs
[h
- hstates
]);
1638 nhs
->hstate_kobjs
[h
- hstates
] = NULL
;
1641 kobject_put(nhs
->hugepages_kobj
);
1642 nhs
->hugepages_kobj
= NULL
;
1646 * hugetlb module exit: unregister hstate attributes from node sysdevs
1649 static void hugetlb_unregister_all_nodes(void)
1654 * disable node sysdev registrations.
1656 register_hugetlbfs_with_node(NULL
, NULL
);
1659 * remove hstate attributes from any nodes that have them.
1661 for (nid
= 0; nid
< nr_node_ids
; nid
++)
1662 hugetlb_unregister_node(&node_devices
[nid
]);
1666 * Register hstate attributes for a single node sysdev.
1667 * No-op if attributes already registered.
1669 void hugetlb_register_node(struct node
*node
)
1672 struct node_hstate
*nhs
= &node_hstates
[node
->sysdev
.id
];
1675 if (nhs
->hugepages_kobj
)
1676 return; /* already allocated */
1678 nhs
->hugepages_kobj
= kobject_create_and_add("hugepages",
1679 &node
->sysdev
.kobj
);
1680 if (!nhs
->hugepages_kobj
)
1683 for_each_hstate(h
) {
1684 err
= hugetlb_sysfs_add_hstate(h
, nhs
->hugepages_kobj
,
1686 &per_node_hstate_attr_group
);
1688 printk(KERN_ERR
"Hugetlb: Unable to add hstate %s"
1690 h
->name
, node
->sysdev
.id
);
1691 hugetlb_unregister_node(node
);
1698 * hugetlb init time: register hstate attributes for all registered node
1699 * sysdevs of nodes that have memory. All on-line nodes should have
1700 * registered their associated sysdev by this time.
1702 static void hugetlb_register_all_nodes(void)
1706 for_each_node_state(nid
, N_HIGH_MEMORY
) {
1707 struct node
*node
= &node_devices
[nid
];
1708 if (node
->sysdev
.id
== nid
)
1709 hugetlb_register_node(node
);
1713 * Let the node sysdev driver know we're here so it can
1714 * [un]register hstate attributes on node hotplug.
1716 register_hugetlbfs_with_node(hugetlb_register_node
,
1717 hugetlb_unregister_node
);
1719 #else /* !CONFIG_NUMA */
1721 static struct hstate
*kobj_to_node_hstate(struct kobject
*kobj
, int *nidp
)
1729 static void hugetlb_unregister_all_nodes(void) { }
1731 static void hugetlb_register_all_nodes(void) { }
1735 static void __exit
hugetlb_exit(void)
1739 hugetlb_unregister_all_nodes();
1741 for_each_hstate(h
) {
1742 kobject_put(hstate_kobjs
[h
- hstates
]);
1745 kobject_put(hugepages_kobj
);
1747 module_exit(hugetlb_exit
);
1749 static int __init
hugetlb_init(void)
1751 /* Some platform decide whether they support huge pages at boot
1752 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1753 * there is no such support
1755 if (HPAGE_SHIFT
== 0)
1758 if (!size_to_hstate(default_hstate_size
)) {
1759 default_hstate_size
= HPAGE_SIZE
;
1760 if (!size_to_hstate(default_hstate_size
))
1761 hugetlb_add_hstate(HUGETLB_PAGE_ORDER
);
1763 default_hstate_idx
= size_to_hstate(default_hstate_size
) - hstates
;
1764 if (default_hstate_max_huge_pages
)
1765 default_hstate
.max_huge_pages
= default_hstate_max_huge_pages
;
1767 hugetlb_init_hstates();
1769 gather_bootmem_prealloc();
1773 hugetlb_sysfs_init();
1775 hugetlb_register_all_nodes();
1779 module_init(hugetlb_init
);
1781 /* Should be called on processing a hugepagesz=... option */
1782 void __init
hugetlb_add_hstate(unsigned order
)
1787 if (size_to_hstate(PAGE_SIZE
<< order
)) {
1788 printk(KERN_WARNING
"hugepagesz= specified twice, ignoring\n");
1791 BUG_ON(max_hstate
>= HUGE_MAX_HSTATE
);
1793 h
= &hstates
[max_hstate
++];
1795 h
->mask
= ~((1ULL << (order
+ PAGE_SHIFT
)) - 1);
1796 h
->nr_huge_pages
= 0;
1797 h
->free_huge_pages
= 0;
1798 for (i
= 0; i
< MAX_NUMNODES
; ++i
)
1799 INIT_LIST_HEAD(&h
->hugepage_freelists
[i
]);
1800 h
->next_nid_to_alloc
= first_node(node_states
[N_HIGH_MEMORY
]);
1801 h
->next_nid_to_free
= first_node(node_states
[N_HIGH_MEMORY
]);
1802 snprintf(h
->name
, HSTATE_NAME_LEN
, "hugepages-%lukB",
1803 huge_page_size(h
)/1024);
1808 static int __init
hugetlb_nrpages_setup(char *s
)
1811 static unsigned long *last_mhp
;
1814 * !max_hstate means we haven't parsed a hugepagesz= parameter yet,
1815 * so this hugepages= parameter goes to the "default hstate".
1818 mhp
= &default_hstate_max_huge_pages
;
1820 mhp
= &parsed_hstate
->max_huge_pages
;
1822 if (mhp
== last_mhp
) {
1823 printk(KERN_WARNING
"hugepages= specified twice without "
1824 "interleaving hugepagesz=, ignoring\n");
1828 if (sscanf(s
, "%lu", mhp
) <= 0)
1832 * Global state is always initialized later in hugetlb_init.
1833 * But we need to allocate >= MAX_ORDER hstates here early to still
1834 * use the bootmem allocator.
1836 if (max_hstate
&& parsed_hstate
->order
>= MAX_ORDER
)
1837 hugetlb_hstate_alloc_pages(parsed_hstate
);
1843 __setup("hugepages=", hugetlb_nrpages_setup
);
1845 static int __init
hugetlb_default_setup(char *s
)
1847 default_hstate_size
= memparse(s
, &s
);
1850 __setup("default_hugepagesz=", hugetlb_default_setup
);
1852 static unsigned int cpuset_mems_nr(unsigned int *array
)
1855 unsigned int nr
= 0;
1857 for_each_node_mask(node
, cpuset_current_mems_allowed
)
1863 #ifdef CONFIG_SYSCTL
1864 static int hugetlb_sysctl_handler_common(bool obey_mempolicy
,
1865 struct ctl_table
*table
, int write
,
1866 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
1868 struct hstate
*h
= &default_hstate
;
1872 tmp
= h
->max_huge_pages
;
1875 table
->maxlen
= sizeof(unsigned long);
1876 proc_doulongvec_minmax(table
, write
, buffer
, length
, ppos
);
1879 NODEMASK_ALLOC(nodemask_t
, nodes_allowed
,
1880 GFP_KERNEL
| __GFP_NORETRY
);
1881 if (!(obey_mempolicy
&&
1882 init_nodemask_of_mempolicy(nodes_allowed
))) {
1883 NODEMASK_FREE(nodes_allowed
);
1884 nodes_allowed
= &node_states
[N_HIGH_MEMORY
];
1886 h
->max_huge_pages
= set_max_huge_pages(h
, tmp
, nodes_allowed
);
1888 if (nodes_allowed
!= &node_states
[N_HIGH_MEMORY
])
1889 NODEMASK_FREE(nodes_allowed
);
1895 int hugetlb_sysctl_handler(struct ctl_table
*table
, int write
,
1896 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
1899 return hugetlb_sysctl_handler_common(false, table
, write
,
1900 buffer
, length
, ppos
);
1904 int hugetlb_mempolicy_sysctl_handler(struct ctl_table
*table
, int write
,
1905 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
1907 return hugetlb_sysctl_handler_common(true, table
, write
,
1908 buffer
, length
, ppos
);
1910 #endif /* CONFIG_NUMA */
1912 int hugetlb_treat_movable_handler(struct ctl_table
*table
, int write
,
1913 void __user
*buffer
,
1914 size_t *length
, loff_t
*ppos
)
1916 proc_dointvec(table
, write
, buffer
, length
, ppos
);
1917 if (hugepages_treat_as_movable
)
1918 htlb_alloc_mask
= GFP_HIGHUSER_MOVABLE
;
1920 htlb_alloc_mask
= GFP_HIGHUSER
;
1924 int hugetlb_overcommit_handler(struct ctl_table
*table
, int write
,
1925 void __user
*buffer
,
1926 size_t *length
, loff_t
*ppos
)
1928 struct hstate
*h
= &default_hstate
;
1932 tmp
= h
->nr_overcommit_huge_pages
;
1935 table
->maxlen
= sizeof(unsigned long);
1936 proc_doulongvec_minmax(table
, write
, buffer
, length
, ppos
);
1939 spin_lock(&hugetlb_lock
);
1940 h
->nr_overcommit_huge_pages
= tmp
;
1941 spin_unlock(&hugetlb_lock
);
1947 #endif /* CONFIG_SYSCTL */
1949 void hugetlb_report_meminfo(struct seq_file
*m
)
1951 struct hstate
*h
= &default_hstate
;
1953 "HugePages_Total: %5lu\n"
1954 "HugePages_Free: %5lu\n"
1955 "HugePages_Rsvd: %5lu\n"
1956 "HugePages_Surp: %5lu\n"
1957 "Hugepagesize: %8lu kB\n",
1961 h
->surplus_huge_pages
,
1962 1UL << (huge_page_order(h
) + PAGE_SHIFT
- 10));
1965 int hugetlb_report_node_meminfo(int nid
, char *buf
)
1967 struct hstate
*h
= &default_hstate
;
1969 "Node %d HugePages_Total: %5u\n"
1970 "Node %d HugePages_Free: %5u\n"
1971 "Node %d HugePages_Surp: %5u\n",
1972 nid
, h
->nr_huge_pages_node
[nid
],
1973 nid
, h
->free_huge_pages_node
[nid
],
1974 nid
, h
->surplus_huge_pages_node
[nid
]);
1977 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
1978 unsigned long hugetlb_total_pages(void)
1980 struct hstate
*h
= &default_hstate
;
1981 return h
->nr_huge_pages
* pages_per_huge_page(h
);
1984 static int hugetlb_acct_memory(struct hstate
*h
, long delta
)
1988 spin_lock(&hugetlb_lock
);
1990 * When cpuset is configured, it breaks the strict hugetlb page
1991 * reservation as the accounting is done on a global variable. Such
1992 * reservation is completely rubbish in the presence of cpuset because
1993 * the reservation is not checked against page availability for the
1994 * current cpuset. Application can still potentially OOM'ed by kernel
1995 * with lack of free htlb page in cpuset that the task is in.
1996 * Attempt to enforce strict accounting with cpuset is almost
1997 * impossible (or too ugly) because cpuset is too fluid that
1998 * task or memory node can be dynamically moved between cpusets.
2000 * The change of semantics for shared hugetlb mapping with cpuset is
2001 * undesirable. However, in order to preserve some of the semantics,
2002 * we fall back to check against current free page availability as
2003 * a best attempt and hopefully to minimize the impact of changing
2004 * semantics that cpuset has.
2007 if (gather_surplus_pages(h
, delta
) < 0)
2010 if (delta
> cpuset_mems_nr(h
->free_huge_pages_node
)) {
2011 return_unused_surplus_pages(h
, delta
);
2018 return_unused_surplus_pages(h
, (unsigned long) -delta
);
2021 spin_unlock(&hugetlb_lock
);
2025 static void hugetlb_vm_op_open(struct vm_area_struct
*vma
)
2027 struct resv_map
*reservations
= vma_resv_map(vma
);
2030 * This new VMA should share its siblings reservation map if present.
2031 * The VMA will only ever have a valid reservation map pointer where
2032 * it is being copied for another still existing VMA. As that VMA
2033 * has a reference to the reservation map it cannot dissappear until
2034 * after this open call completes. It is therefore safe to take a
2035 * new reference here without additional locking.
2038 kref_get(&reservations
->refs
);
2041 static void hugetlb_vm_op_close(struct vm_area_struct
*vma
)
2043 struct hstate
*h
= hstate_vma(vma
);
2044 struct resv_map
*reservations
= vma_resv_map(vma
);
2045 unsigned long reserve
;
2046 unsigned long start
;
2050 start
= vma_hugecache_offset(h
, vma
, vma
->vm_start
);
2051 end
= vma_hugecache_offset(h
, vma
, vma
->vm_end
);
2053 reserve
= (end
- start
) -
2054 region_count(&reservations
->regions
, start
, end
);
2056 kref_put(&reservations
->refs
, resv_map_release
);
2059 hugetlb_acct_memory(h
, -reserve
);
2060 hugetlb_put_quota(vma
->vm_file
->f_mapping
, reserve
);
2066 * We cannot handle pagefaults against hugetlb pages at all. They cause
2067 * handle_mm_fault() to try to instantiate regular-sized pages in the
2068 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
2071 static int hugetlb_vm_op_fault(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
2077 const struct vm_operations_struct hugetlb_vm_ops
= {
2078 .fault
= hugetlb_vm_op_fault
,
2079 .open
= hugetlb_vm_op_open
,
2080 .close
= hugetlb_vm_op_close
,
2083 static pte_t
make_huge_pte(struct vm_area_struct
*vma
, struct page
*page
,
2090 pte_mkwrite(pte_mkdirty(mk_pte(page
, vma
->vm_page_prot
)));
2092 entry
= huge_pte_wrprotect(mk_pte(page
, vma
->vm_page_prot
));
2094 entry
= pte_mkyoung(entry
);
2095 entry
= pte_mkhuge(entry
);
2100 static void set_huge_ptep_writable(struct vm_area_struct
*vma
,
2101 unsigned long address
, pte_t
*ptep
)
2105 entry
= pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep
)));
2106 if (huge_ptep_set_access_flags(vma
, address
, ptep
, entry
, 1)) {
2107 update_mmu_cache(vma
, address
, ptep
);
2112 int copy_hugetlb_page_range(struct mm_struct
*dst
, struct mm_struct
*src
,
2113 struct vm_area_struct
*vma
)
2115 pte_t
*src_pte
, *dst_pte
, entry
;
2116 struct page
*ptepage
;
2119 struct hstate
*h
= hstate_vma(vma
);
2120 unsigned long sz
= huge_page_size(h
);
2122 cow
= (vma
->vm_flags
& (VM_SHARED
| VM_MAYWRITE
)) == VM_MAYWRITE
;
2124 for (addr
= vma
->vm_start
; addr
< vma
->vm_end
; addr
+= sz
) {
2125 src_pte
= huge_pte_offset(src
, addr
);
2128 dst_pte
= huge_pte_alloc(dst
, addr
, sz
);
2132 /* If the pagetables are shared don't copy or take references */
2133 if (dst_pte
== src_pte
)
2136 spin_lock(&dst
->page_table_lock
);
2137 spin_lock_nested(&src
->page_table_lock
, SINGLE_DEPTH_NESTING
);
2138 if (!huge_pte_none(huge_ptep_get(src_pte
))) {
2140 huge_ptep_set_wrprotect(src
, addr
, src_pte
);
2141 entry
= huge_ptep_get(src_pte
);
2142 ptepage
= pte_page(entry
);
2144 page_dup_rmap(ptepage
);
2145 set_huge_pte_at(dst
, addr
, dst_pte
, entry
);
2147 spin_unlock(&src
->page_table_lock
);
2148 spin_unlock(&dst
->page_table_lock
);
2156 static int is_hugetlb_entry_hwpoisoned(pte_t pte
)
2160 if (huge_pte_none(pte
) || pte_present(pte
))
2162 swp
= pte_to_swp_entry(pte
);
2163 if (non_swap_entry(swp
) && is_hwpoison_entry(swp
)) {
2169 void __unmap_hugepage_range(struct vm_area_struct
*vma
, unsigned long start
,
2170 unsigned long end
, struct page
*ref_page
)
2172 struct mm_struct
*mm
= vma
->vm_mm
;
2173 unsigned long address
;
2178 struct hstate
*h
= hstate_vma(vma
);
2179 unsigned long sz
= huge_page_size(h
);
2182 * A page gathering list, protected by per file i_mmap_lock. The
2183 * lock is used to avoid list corruption from multiple unmapping
2184 * of the same page since we are using page->lru.
2186 LIST_HEAD(page_list
);
2188 WARN_ON(!is_vm_hugetlb_page(vma
));
2189 BUG_ON(start
& ~huge_page_mask(h
));
2190 BUG_ON(end
& ~huge_page_mask(h
));
2192 mmu_notifier_invalidate_range_start(mm
, start
, end
);
2193 spin_lock(&mm
->page_table_lock
);
2194 for (address
= start
; address
< end
; address
+= sz
) {
2195 ptep
= huge_pte_offset(mm
, address
);
2199 if (huge_pmd_unshare(mm
, &address
, ptep
))
2203 * If a reference page is supplied, it is because a specific
2204 * page is being unmapped, not a range. Ensure the page we
2205 * are about to unmap is the actual page of interest.
2208 pte
= huge_ptep_get(ptep
);
2209 if (huge_pte_none(pte
))
2211 page
= pte_page(pte
);
2212 if (page
!= ref_page
)
2216 * Mark the VMA as having unmapped its page so that
2217 * future faults in this VMA will fail rather than
2218 * looking like data was lost
2220 set_vma_resv_flags(vma
, HPAGE_RESV_UNMAPPED
);
2223 pte
= huge_ptep_get_and_clear(mm
, address
, ptep
);
2224 if (huge_pte_none(pte
))
2228 * HWPoisoned hugepage is already unmapped and dropped reference
2230 if (unlikely(is_hugetlb_entry_hwpoisoned(pte
)))
2233 page
= pte_page(pte
);
2235 set_page_dirty(page
);
2236 list_add(&page
->lru
, &page_list
);
2238 spin_unlock(&mm
->page_table_lock
);
2239 flush_tlb_range(vma
, start
, end
);
2240 mmu_notifier_invalidate_range_end(mm
, start
, end
);
2241 list_for_each_entry_safe(page
, tmp
, &page_list
, lru
) {
2242 page_remove_rmap(page
);
2243 list_del(&page
->lru
);
2248 void unmap_hugepage_range(struct vm_area_struct
*vma
, unsigned long start
,
2249 unsigned long end
, struct page
*ref_page
)
2251 spin_lock(&vma
->vm_file
->f_mapping
->i_mmap_lock
);
2252 __unmap_hugepage_range(vma
, start
, end
, ref_page
);
2253 spin_unlock(&vma
->vm_file
->f_mapping
->i_mmap_lock
);
2257 * This is called when the original mapper is failing to COW a MAP_PRIVATE
2258 * mappping it owns the reserve page for. The intention is to unmap the page
2259 * from other VMAs and let the children be SIGKILLed if they are faulting the
2262 static int unmap_ref_private(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2263 struct page
*page
, unsigned long address
)
2265 struct hstate
*h
= hstate_vma(vma
);
2266 struct vm_area_struct
*iter_vma
;
2267 struct address_space
*mapping
;
2268 struct prio_tree_iter iter
;
2272 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2273 * from page cache lookup which is in HPAGE_SIZE units.
2275 address
= address
& huge_page_mask(h
);
2276 pgoff
= ((address
- vma
->vm_start
) >> PAGE_SHIFT
)
2277 + (vma
->vm_pgoff
>> PAGE_SHIFT
);
2278 mapping
= (struct address_space
*)page_private(page
);
2281 * Take the mapping lock for the duration of the table walk. As
2282 * this mapping should be shared between all the VMAs,
2283 * __unmap_hugepage_range() is called as the lock is already held
2285 spin_lock(&mapping
->i_mmap_lock
);
2286 vma_prio_tree_foreach(iter_vma
, &iter
, &mapping
->i_mmap
, pgoff
, pgoff
) {
2287 /* Do not unmap the current VMA */
2288 if (iter_vma
== vma
)
2292 * Unmap the page from other VMAs without their own reserves.
2293 * They get marked to be SIGKILLed if they fault in these
2294 * areas. This is because a future no-page fault on this VMA
2295 * could insert a zeroed page instead of the data existing
2296 * from the time of fork. This would look like data corruption
2298 if (!is_vma_resv_set(iter_vma
, HPAGE_RESV_OWNER
))
2299 __unmap_hugepage_range(iter_vma
,
2300 address
, address
+ huge_page_size(h
),
2303 spin_unlock(&mapping
->i_mmap_lock
);
2309 * Hugetlb_cow() should be called with page lock of the original hugepage held.
2311 static int hugetlb_cow(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2312 unsigned long address
, pte_t
*ptep
, pte_t pte
,
2313 struct page
*pagecache_page
)
2315 struct hstate
*h
= hstate_vma(vma
);
2316 struct page
*old_page
, *new_page
;
2318 int outside_reserve
= 0;
2320 old_page
= pte_page(pte
);
2323 /* If no-one else is actually using this page, avoid the copy
2324 * and just make the page writable */
2325 avoidcopy
= (page_mapcount(old_page
) == 1);
2327 if (PageAnon(old_page
))
2328 page_move_anon_rmap(old_page
, vma
, address
);
2329 set_huge_ptep_writable(vma
, address
, ptep
);
2334 * If the process that created a MAP_PRIVATE mapping is about to
2335 * perform a COW due to a shared page count, attempt to satisfy
2336 * the allocation without using the existing reserves. The pagecache
2337 * page is used to determine if the reserve at this address was
2338 * consumed or not. If reserves were used, a partial faulted mapping
2339 * at the time of fork() could consume its reserves on COW instead
2340 * of the full address range.
2342 if (!(vma
->vm_flags
& VM_MAYSHARE
) &&
2343 is_vma_resv_set(vma
, HPAGE_RESV_OWNER
) &&
2344 old_page
!= pagecache_page
)
2345 outside_reserve
= 1;
2347 page_cache_get(old_page
);
2349 /* Drop page_table_lock as buddy allocator may be called */
2350 spin_unlock(&mm
->page_table_lock
);
2351 new_page
= alloc_huge_page(vma
, address
, outside_reserve
);
2353 if (IS_ERR(new_page
)) {
2354 page_cache_release(old_page
);
2357 * If a process owning a MAP_PRIVATE mapping fails to COW,
2358 * it is due to references held by a child and an insufficient
2359 * huge page pool. To guarantee the original mappers
2360 * reliability, unmap the page from child processes. The child
2361 * may get SIGKILLed if it later faults.
2363 if (outside_reserve
) {
2364 BUG_ON(huge_pte_none(pte
));
2365 if (unmap_ref_private(mm
, vma
, old_page
, address
)) {
2366 BUG_ON(page_count(old_page
) != 1);
2367 BUG_ON(huge_pte_none(pte
));
2368 spin_lock(&mm
->page_table_lock
);
2369 goto retry_avoidcopy
;
2374 /* Caller expects lock to be held */
2375 spin_lock(&mm
->page_table_lock
);
2376 return -PTR_ERR(new_page
);
2380 * When the original hugepage is shared one, it does not have
2381 * anon_vma prepared.
2383 if (unlikely(anon_vma_prepare(vma
)))
2384 return VM_FAULT_OOM
;
2386 copy_huge_page(new_page
, old_page
, address
, vma
);
2387 __SetPageUptodate(new_page
);
2390 * Retake the page_table_lock to check for racing updates
2391 * before the page tables are altered
2393 spin_lock(&mm
->page_table_lock
);
2394 ptep
= huge_pte_offset(mm
, address
& huge_page_mask(h
));
2395 if (likely(pte_same(huge_ptep_get(ptep
), pte
))) {
2397 mmu_notifier_invalidate_range_start(mm
,
2398 address
& huge_page_mask(h
),
2399 (address
& huge_page_mask(h
)) + huge_page_size(h
));
2400 huge_ptep_clear_flush(vma
, address
, ptep
);
2401 set_huge_pte_at(mm
, address
, ptep
,
2402 make_huge_pte(vma
, new_page
, 1));
2403 page_remove_rmap(old_page
);
2404 hugepage_add_new_anon_rmap(new_page
, vma
, address
);
2405 /* Make the old page be freed below */
2406 new_page
= old_page
;
2407 mmu_notifier_invalidate_range_end(mm
,
2408 address
& huge_page_mask(h
),
2409 (address
& huge_page_mask(h
)) + huge_page_size(h
));
2411 page_cache_release(new_page
);
2412 page_cache_release(old_page
);
2416 /* Return the pagecache page at a given address within a VMA */
2417 static struct page
*hugetlbfs_pagecache_page(struct hstate
*h
,
2418 struct vm_area_struct
*vma
, unsigned long address
)
2420 struct address_space
*mapping
;
2423 mapping
= vma
->vm_file
->f_mapping
;
2424 idx
= vma_hugecache_offset(h
, vma
, address
);
2426 return find_lock_page(mapping
, idx
);
2430 * Return whether there is a pagecache page to back given address within VMA.
2431 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
2433 static bool hugetlbfs_pagecache_present(struct hstate
*h
,
2434 struct vm_area_struct
*vma
, unsigned long address
)
2436 struct address_space
*mapping
;
2440 mapping
= vma
->vm_file
->f_mapping
;
2441 idx
= vma_hugecache_offset(h
, vma
, address
);
2443 page
= find_get_page(mapping
, idx
);
2446 return page
!= NULL
;
2449 static int hugetlb_no_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2450 unsigned long address
, pte_t
*ptep
, unsigned int flags
)
2452 struct hstate
*h
= hstate_vma(vma
);
2453 int ret
= VM_FAULT_SIGBUS
;
2457 struct address_space
*mapping
;
2461 * Currently, we are forced to kill the process in the event the
2462 * original mapper has unmapped pages from the child due to a failed
2463 * COW. Warn that such a situation has occured as it may not be obvious
2465 if (is_vma_resv_set(vma
, HPAGE_RESV_UNMAPPED
)) {
2467 "PID %d killed due to inadequate hugepage pool\n",
2472 mapping
= vma
->vm_file
->f_mapping
;
2473 idx
= vma_hugecache_offset(h
, vma
, address
);
2476 * Use page lock to guard against racing truncation
2477 * before we get page_table_lock.
2480 page
= find_lock_page(mapping
, idx
);
2482 size
= i_size_read(mapping
->host
) >> huge_page_shift(h
);
2485 page
= alloc_huge_page(vma
, address
, 0);
2487 ret
= -PTR_ERR(page
);
2490 clear_huge_page(page
, address
, huge_page_size(h
));
2491 __SetPageUptodate(page
);
2493 if (vma
->vm_flags
& VM_MAYSHARE
) {
2495 struct inode
*inode
= mapping
->host
;
2497 err
= add_to_page_cache(page
, mapping
, idx
, GFP_KERNEL
);
2505 spin_lock(&inode
->i_lock
);
2506 inode
->i_blocks
+= blocks_per_huge_page(h
);
2507 spin_unlock(&inode
->i_lock
);
2508 page_dup_rmap(page
);
2511 if (unlikely(anon_vma_prepare(vma
))) {
2513 goto backout_unlocked
;
2515 hugepage_add_new_anon_rmap(page
, vma
, address
);
2518 page_dup_rmap(page
);
2522 * Since memory error handler replaces pte into hwpoison swap entry
2523 * at the time of error handling, a process which reserved but not have
2524 * the mapping to the error hugepage does not have hwpoison swap entry.
2525 * So we need to block accesses from such a process by checking
2526 * PG_hwpoison bit here.
2528 if (unlikely(PageHWPoison(page
))) {
2529 ret
= VM_FAULT_HWPOISON
;
2530 goto backout_unlocked
;
2534 * If we are going to COW a private mapping later, we examine the
2535 * pending reservations for this page now. This will ensure that
2536 * any allocations necessary to record that reservation occur outside
2539 if ((flags
& FAULT_FLAG_WRITE
) && !(vma
->vm_flags
& VM_SHARED
))
2540 if (vma_needs_reservation(h
, vma
, address
) < 0) {
2542 goto backout_unlocked
;
2545 spin_lock(&mm
->page_table_lock
);
2546 size
= i_size_read(mapping
->host
) >> huge_page_shift(h
);
2551 if (!huge_pte_none(huge_ptep_get(ptep
)))
2554 new_pte
= make_huge_pte(vma
, page
, ((vma
->vm_flags
& VM_WRITE
)
2555 && (vma
->vm_flags
& VM_SHARED
)));
2556 set_huge_pte_at(mm
, address
, ptep
, new_pte
);
2558 if ((flags
& FAULT_FLAG_WRITE
) && !(vma
->vm_flags
& VM_SHARED
)) {
2559 /* Optimization, do the COW without a second fault */
2560 ret
= hugetlb_cow(mm
, vma
, address
, ptep
, new_pte
, page
);
2563 spin_unlock(&mm
->page_table_lock
);
2569 spin_unlock(&mm
->page_table_lock
);
2576 int hugetlb_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2577 unsigned long address
, unsigned int flags
)
2582 struct page
*page
= NULL
;
2583 struct page
*pagecache_page
= NULL
;
2584 static DEFINE_MUTEX(hugetlb_instantiation_mutex
);
2585 struct hstate
*h
= hstate_vma(vma
);
2587 ptep
= huge_pte_offset(mm
, address
);
2589 entry
= huge_ptep_get(ptep
);
2590 if (unlikely(is_hugetlb_entry_hwpoisoned(entry
)))
2591 return VM_FAULT_HWPOISON
;
2594 ptep
= huge_pte_alloc(mm
, address
, huge_page_size(h
));
2596 return VM_FAULT_OOM
;
2599 * Serialize hugepage allocation and instantiation, so that we don't
2600 * get spurious allocation failures if two CPUs race to instantiate
2601 * the same page in the page cache.
2603 mutex_lock(&hugetlb_instantiation_mutex
);
2604 entry
= huge_ptep_get(ptep
);
2605 if (huge_pte_none(entry
)) {
2606 ret
= hugetlb_no_page(mm
, vma
, address
, ptep
, flags
);
2613 * If we are going to COW the mapping later, we examine the pending
2614 * reservations for this page now. This will ensure that any
2615 * allocations necessary to record that reservation occur outside the
2616 * spinlock. For private mappings, we also lookup the pagecache
2617 * page now as it is used to determine if a reservation has been
2620 if ((flags
& FAULT_FLAG_WRITE
) && !pte_write(entry
)) {
2621 if (vma_needs_reservation(h
, vma
, address
) < 0) {
2626 if (!(vma
->vm_flags
& VM_MAYSHARE
))
2627 pagecache_page
= hugetlbfs_pagecache_page(h
,
2632 * hugetlb_cow() requires page locks of pte_page(entry) and
2633 * pagecache_page, so here we need take the former one
2634 * when page != pagecache_page or !pagecache_page.
2635 * Note that locking order is always pagecache_page -> page,
2636 * so no worry about deadlock.
2638 page
= pte_page(entry
);
2639 if (page
!= pagecache_page
)
2642 spin_lock(&mm
->page_table_lock
);
2643 /* Check for a racing update before calling hugetlb_cow */
2644 if (unlikely(!pte_same(entry
, huge_ptep_get(ptep
))))
2645 goto out_page_table_lock
;
2648 if (flags
& FAULT_FLAG_WRITE
) {
2649 if (!pte_write(entry
)) {
2650 ret
= hugetlb_cow(mm
, vma
, address
, ptep
, entry
,
2652 goto out_page_table_lock
;
2654 entry
= pte_mkdirty(entry
);
2656 entry
= pte_mkyoung(entry
);
2657 if (huge_ptep_set_access_flags(vma
, address
, ptep
, entry
,
2658 flags
& FAULT_FLAG_WRITE
))
2659 update_mmu_cache(vma
, address
, ptep
);
2661 out_page_table_lock
:
2662 spin_unlock(&mm
->page_table_lock
);
2664 if (pagecache_page
) {
2665 unlock_page(pagecache_page
);
2666 put_page(pagecache_page
);
2671 mutex_unlock(&hugetlb_instantiation_mutex
);
2676 /* Can be overriden by architectures */
2677 __attribute__((weak
)) struct page
*
2678 follow_huge_pud(struct mm_struct
*mm
, unsigned long address
,
2679 pud_t
*pud
, int write
)
2685 int follow_hugetlb_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2686 struct page
**pages
, struct vm_area_struct
**vmas
,
2687 unsigned long *position
, int *length
, int i
,
2690 unsigned long pfn_offset
;
2691 unsigned long vaddr
= *position
;
2692 int remainder
= *length
;
2693 struct hstate
*h
= hstate_vma(vma
);
2695 spin_lock(&mm
->page_table_lock
);
2696 while (vaddr
< vma
->vm_end
&& remainder
) {
2702 * Some archs (sparc64, sh*) have multiple pte_ts to
2703 * each hugepage. We have to make sure we get the
2704 * first, for the page indexing below to work.
2706 pte
= huge_pte_offset(mm
, vaddr
& huge_page_mask(h
));
2707 absent
= !pte
|| huge_pte_none(huge_ptep_get(pte
));
2710 * When coredumping, it suits get_dump_page if we just return
2711 * an error where there's an empty slot with no huge pagecache
2712 * to back it. This way, we avoid allocating a hugepage, and
2713 * the sparse dumpfile avoids allocating disk blocks, but its
2714 * huge holes still show up with zeroes where they need to be.
2716 if (absent
&& (flags
& FOLL_DUMP
) &&
2717 !hugetlbfs_pagecache_present(h
, vma
, vaddr
)) {
2723 ((flags
& FOLL_WRITE
) && !pte_write(huge_ptep_get(pte
)))) {
2726 spin_unlock(&mm
->page_table_lock
);
2727 ret
= hugetlb_fault(mm
, vma
, vaddr
,
2728 (flags
& FOLL_WRITE
) ? FAULT_FLAG_WRITE
: 0);
2729 spin_lock(&mm
->page_table_lock
);
2730 if (!(ret
& VM_FAULT_ERROR
))
2737 pfn_offset
= (vaddr
& ~huge_page_mask(h
)) >> PAGE_SHIFT
;
2738 page
= pte_page(huge_ptep_get(pte
));
2741 pages
[i
] = mem_map_offset(page
, pfn_offset
);
2752 if (vaddr
< vma
->vm_end
&& remainder
&&
2753 pfn_offset
< pages_per_huge_page(h
)) {
2755 * We use pfn_offset to avoid touching the pageframes
2756 * of this compound page.
2761 spin_unlock(&mm
->page_table_lock
);
2762 *length
= remainder
;
2765 return i
? i
: -EFAULT
;
2768 void hugetlb_change_protection(struct vm_area_struct
*vma
,
2769 unsigned long address
, unsigned long end
, pgprot_t newprot
)
2771 struct mm_struct
*mm
= vma
->vm_mm
;
2772 unsigned long start
= address
;
2775 struct hstate
*h
= hstate_vma(vma
);
2777 BUG_ON(address
>= end
);
2778 flush_cache_range(vma
, address
, end
);
2780 spin_lock(&vma
->vm_file
->f_mapping
->i_mmap_lock
);
2781 spin_lock(&mm
->page_table_lock
);
2782 for (; address
< end
; address
+= huge_page_size(h
)) {
2783 ptep
= huge_pte_offset(mm
, address
);
2786 if (huge_pmd_unshare(mm
, &address
, ptep
))
2788 if (!huge_pte_none(huge_ptep_get(ptep
))) {
2789 pte
= huge_ptep_get_and_clear(mm
, address
, ptep
);
2790 pte
= pte_mkhuge(pte_modify(pte
, newprot
));
2791 set_huge_pte_at(mm
, address
, ptep
, pte
);
2794 spin_unlock(&mm
->page_table_lock
);
2795 spin_unlock(&vma
->vm_file
->f_mapping
->i_mmap_lock
);
2797 flush_tlb_range(vma
, start
, end
);
2800 int hugetlb_reserve_pages(struct inode
*inode
,
2802 struct vm_area_struct
*vma
,
2806 struct hstate
*h
= hstate_inode(inode
);
2809 * Only apply hugepage reservation if asked. At fault time, an
2810 * attempt will be made for VM_NORESERVE to allocate a page
2811 * and filesystem quota without using reserves
2813 if (acctflag
& VM_NORESERVE
)
2817 * Shared mappings base their reservation on the number of pages that
2818 * are already allocated on behalf of the file. Private mappings need
2819 * to reserve the full area even if read-only as mprotect() may be
2820 * called to make the mapping read-write. Assume !vma is a shm mapping
2822 if (!vma
|| vma
->vm_flags
& VM_MAYSHARE
)
2823 chg
= region_chg(&inode
->i_mapping
->private_list
, from
, to
);
2825 struct resv_map
*resv_map
= resv_map_alloc();
2831 set_vma_resv_map(vma
, resv_map
);
2832 set_vma_resv_flags(vma
, HPAGE_RESV_OWNER
);
2838 /* There must be enough filesystem quota for the mapping */
2839 if (hugetlb_get_quota(inode
->i_mapping
, chg
))
2843 * Check enough hugepages are available for the reservation.
2844 * Hand back the quota if there are not
2846 ret
= hugetlb_acct_memory(h
, chg
);
2848 hugetlb_put_quota(inode
->i_mapping
, chg
);
2853 * Account for the reservations made. Shared mappings record regions
2854 * that have reservations as they are shared by multiple VMAs.
2855 * When the last VMA disappears, the region map says how much
2856 * the reservation was and the page cache tells how much of
2857 * the reservation was consumed. Private mappings are per-VMA and
2858 * only the consumed reservations are tracked. When the VMA
2859 * disappears, the original reservation is the VMA size and the
2860 * consumed reservations are stored in the map. Hence, nothing
2861 * else has to be done for private mappings here
2863 if (!vma
|| vma
->vm_flags
& VM_MAYSHARE
)
2864 region_add(&inode
->i_mapping
->private_list
, from
, to
);
2868 void hugetlb_unreserve_pages(struct inode
*inode
, long offset
, long freed
)
2870 struct hstate
*h
= hstate_inode(inode
);
2871 long chg
= region_truncate(&inode
->i_mapping
->private_list
, offset
);
2873 spin_lock(&inode
->i_lock
);
2874 inode
->i_blocks
-= (blocks_per_huge_page(h
) * freed
);
2875 spin_unlock(&inode
->i_lock
);
2877 hugetlb_put_quota(inode
->i_mapping
, (chg
- freed
));
2878 hugetlb_acct_memory(h
, -(chg
- freed
));
2882 * This function is called from memory failure code.
2883 * Assume the caller holds page lock of the head page.
2885 void __isolate_hwpoisoned_huge_page(struct page
*hpage
)
2887 struct hstate
*h
= page_hstate(hpage
);
2888 int nid
= page_to_nid(hpage
);
2890 spin_lock(&hugetlb_lock
);
2891 list_del(&hpage
->lru
);
2892 h
->free_huge_pages
--;
2893 h
->free_huge_pages_node
[nid
]--;
2894 spin_unlock(&hugetlb_lock
);